L [=g
e
e

)

<5 UNIVERSIDADE FEDERAL DE PERNAMBUCO s v

!’?‘9 CENTRO DE INFORMATICA Centro de
v

US IMPAVIDA - R 5 Informatica
' GRADUACAO EM CIENciA DA COMPUTACAO

=
<l

THOMAS ANDERSON FEITOSA MONTEIRO

MODELAGEM DE BANCO DE DADOS ORIENTADOS A
DOCUMENTOS COM AML

RECIFE
2023
UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMATICA
CURSO DE BACHARELADO EM CIENCIA DA COMPUTACAO

THOMAS ANDERSON FEITOSA MONTEIRO

MODELAGEM DE BANCO DE DADOS ORIENTADOS A
DOCUMENTOS COM AML

Monografia apresentada ao Centro de
Informatica (CIn) da Universidade Federal de
Pernambuco (UFPE), como requisito parcial
para conclusdo do Curso de Ciéncia da
Computagdo, orientada pelo professor Robson
do Nascimento Fidalgo.

RECIFE
2023

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragéo automatica do SIB/UFPE

Monteiro, Thomas Anderson Feitosa.

M odelagem de banco de dados orientados a documentos com AML /
Thomas Anderson Feitosa Monteiro. - Recife, 2023.

40p:il.

Orientador(a): Robson do Nascimento Fidalgo

Trabalho de Conclusdo de Curso (Graduag&o) - Universidade Federal de
Pernambuco, Centro de Informatica, Ciéncias da Computagéo - Bacharel ado,
2023.

1. AML. 2. Modelagem Idgica. 3. NoSQL. 4. DDD. 5. Agregados. |. Fidalgo,
Robson do Nascimento. (Orientac&o). I1. Titulo.

000 CDD (22.ed.)

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
CURSO DE BACHARELADO EM CIENCIA DA COMPUTACAO

THOMAS ANDERSON FEITOSA MONTEIRO

MODELAGEM DE BANCO DE DADOS ORIENTADOS A
DOCUMENTOS COM AML

Monografia submetida ao corpo docente da Universidade Federal de Pernambuco, defendida e
aprovada em 27 de setembro de 2023.

Banca Examinadora:

7 Orientador(a)
Robson do Nascimento Fidalgo

Doutor(a)

Examinador(a)
Vinicius Cardoso Garcia

Doutor(a)

AGRADECIMENTOS

Entrego este trabalho de conclusdo representando um coletivo de pessoas que me deram
suporte, devido principalmente ao fato de nenhuma delas ter dado a opcao de desistir do curso
ao longo das dificuldades. A propria matricula nao seria possivel sem o apoio dos meus tios
que forneceram moradia durante anos até me tornar independente. Tive grande apoio da
familia, de amigos que conheci durante o curso que foram fundamentais, de colegas de
trabalho e também dos excelentes professores do CIN (Centro de Informatica). Chego a reta
final contando com o apoio do Prof. Robson que me orienta e seu doutorando Genesis sempre
tirando duvidas sobre o tema do trabalho. Um enorme conjunto de pessoas tornaram possivel

essa caminhada e s6 tenho a agradecer a todos.

“Odeio o privilégio € 0 monopolio. Para mim,
tudo o que nao pode ser dividido com as
multiddes ¢ tabu.”
Mahatma Gandhi

2

RESUMO

Nos ultimos anos houve, devido a ascensdo de grandes redes sociais, big data entre outros
uma ascensao de bancos NoSQL. Dentre estes bancos definidos como NoSQL destacam-se os
bancos orientados a documentos, em especial o MongoDB com grande popularizagdo. A
medida que mais organizagdes adotam bancos orientados a documentos, hd uma necessidade
crescente de diretrizes e melhores praticas na modelagem logica desses sistemas. Uma forma
de criar modelagem de dados logica para este tipo de banco ¢ através da Aggregate Modeling

Language (AML), que tem forte base no conceito de agregados do Domain-Driven Design.

Palavras-chave: NoSQL, Modelagem logica, DDD, AML, Agregados

ABSTRACT

In recent years, due to the rise of large social networks, big data, and other factors, there has
been an emergence of NoSQL databases. Among these databases classified as NoSQL,
document-oriented databases have gained prominence, with MongoDB being particularly
popular. As more organizations adopt document-oriented databases, there is a growing need
for guidelines and best practices in the logical modeling of these systems. One approach to
creating logical data modeling for this type of database is through the use of the Aggregate
Modeling Language (AML), which is strongly rooted in the concept of aggregates from

Domain-Driven Design.

Keywords: NoSQL, Logical modeling, DDD, AML, Aggregates

Sumario

R 1 o T (1o T PRSP 7
3 0 T o 1Y T~ o TSRS 7
R 0] o] 1] 4 Yo LTSS 7

P Oo] Tol <Y Lo T T] ol LTSRN 8
2.1. Importancia da modelagem de dados............coiiiiiiiiiiiiiiiice e 8
2.2.BanCoS NOSQLL......uueiiiiiiiieiceeeeeeeee e 11
2.3. Bancos orientados @ doCUMENTOS............ooviiiiiiiiiiiic e 12
2.4. AML - Aggregate Modelling LangQuage...........cooouuiiiiiiiiiiiiiiiiiee e 14
2.4.1. Construtores da AML...........oooiiiiiiiii e 17

F N (1] o] 1 (o = TP PR 17
Entidades € 0bjetos de ValOr...........coo i 19
a0 =Y =T o S 20
I S UPPPPRP 21

3. Boas praticas para modelagem de bancos orientados a documentos....................... 25
3.1. Modelagem de agregados COM AML........ccooiiiiiiiii e 25

3 09 o 4 Yo 11 T3 T 1SS 38

Tabela de Siglas

Sigla Significado

SQL Structured Query Language

UML Unified Modeling Language

DDD Domain Driven Design

ER Diagrama entidade-relacionamento
OMG Object Management Group

DSML Domain-Specific Modelling Language

1. Introducio

1.1. Motivacao

Os bancos de dados orientados a documentos estdo se tornando cada vez mais
prevalentes em uma ampla variedade de aplicagdes e sistemas, devido a sua flexibilidade e
escalabilidade. Isso torna a pesquisa e o desenvolvimento nessa area altamente relevantes para
o cendrio atual da computagao.

A modelagem de bancos de dados orientados a documentos apresenta desafios
distintos em compara¢do com os sistemas tradicionais de banco de dados relacional. Explorar
esses desafios proporciona uma oportunidade valiosa para entender e resolver questdes
especificas que surgem nesse contexto.

A medida que mais organiza¢des adotam bancos orientados a documentos, ha uma
necessidade crescente de diretrizes e melhores praticas na modelagem logica desses sistemas.

O presente trabalho visa contribuir para a defini¢do dessas praticas e padrdes.

1.2. Objetivos

O objetivo deste trabalho ¢ mostrar uma abordagem pratica de modelagem logica de
bancos orientados a documentos utilizando Aggregate Modeling Language (AML). Sera
mostrado como utilizar construtores AML no processo de modelagem logica a partir do
conceito de modelagem orientada a agregados, um conceito do DDD que pode ser utilizado
para balizar a modelagem de dados. O trabalho também ira mostrar, a partir de um exemplo
de uso do mundo real, cenarios em que uma abordagem de modelagem se torna mais eficaz
frente a outra do ponto de vista de desempenho e consisténcia. Este trabalho se limita apenas
ao contexto de bancos orientados a documentos, utilizando como referéncia para exemplos o
banco MongoDB devido ao fato de ser o banco orientado a documentos mais utilizado no

momento em que este trabalho é desenvolvido.

2. Conceitos Basicos

Neste capitulo, sdo introduzidos alguns termos e conceitos utilizados ao longo deste
trabalho, em especial o por que engenheiros de software, administradores de bancos de dados
e arquitetos de sistemas buscam meios de modelagem como ferramenta de auxilio a
implementagdo do trabalho. Também sdo discutidas as diferengas e desafios especificos de

modelagem de bancos ndo relacionais quando comparados a bancos relacionais.

2.1. Importancia da modelagem de dados

Na area de bancos de dados a modelagem de dados tem um papel fundamental, pois a
partir dessa € possivel tirar conclusdes a respeito de como estruturar o banco. Michael
Kaufmann e Andreas Meier [2] em sua publica¢do afirmam que o processo de estruturagao de
um banco de dados se constitui em 3 fases principais: andlise de requisitos, modelagem
conceitual e a implementacao dos esquemas do banco. A modelagem conceitual tem um papel
importante principalmente em se tratando de documentacdo de conhecimento.

Quando se fala de modelagem de bancos de dados existem 3 tipos distintos:
modelagem conceitual, logica e fisica. O modelo conceitual ¢ o de mais alto nivel e por ser
menos detalhado possibilita uma comunicagdo e discussdo efetiva com pessoas de negdcio e
menos técnicas antes das etapas de implementacdo. Nessa modelagem inicial geralmente sdo

definidas as entidades e relacionamentos entre as mesmas.

Figura 1 - Modelagem conceitual envolvendo 3 entidades

2. Entity-relationship
DEPARTMENT model

- Entity sets

Relationship sets

MEMBERSHIP

INVOLVED

Fonte: Figura de [2]

A modelagem logica por outro lado contém detalhes estruturais do banco utilizado. O
mapeamento deste modelo conceitual apresentado em um modelo logico deve ser feito em

uma notagdo adequada a depender do paradigma do banco utilizado.

Figura 2 - Modelagens logicas em 3 paradigmas de bancos distintos
3a. Relational model 3b. Graph model

DEPARTMENT
I EMPLOYEE

IS_MEMBER IS_INVOLVED
EMPLOYEE

N I
DEPARTMENT PROJECT

PROJECT
[[[[| 3c. Document model

EMPLOYEE:
MEMBERSHIP
DEPARTMENT:
S -

INVOLVED PROJECTS:

I —— Waorkload:

L Workload 7

Fonte: Figura de [2]

Observando a Figura 2, no banco de dados relacional, os relacionamentos, como
esperado por serem N para N, aparecem como tabelas, o que ndo existe por exemplo no banco
de dados de grafos, pelas referéncias de relacionamento existirem nos proprios noés (ou
documentos). Particularmente interessante ¢ exemplo em 3c que mostra o modelo l6gico para
um banco de dados nao relacional orientado a documentos, pois nada no modelo conceitual
indica que essa seria a hierarquia dos objetos no modelo logico. Qualquer das entidades
poderiam estar hierarquicamente no nivel mais alto e representar os mesmos relacionamentos.
Michael Kaufmann e Andreas Meier [2] deixam claro que essa hierarquia na modelagem 3¢

foi uma escolha particular, ndo algo que derivou da etapa de modelagem conceitual.

10

Esta variedade de possibilidades na representacao de entidades em um banco orientado
a documentos torna especialmente importante além da modelagem conceitual também a

modelagem légica que ¢ o foco deste trabalho.

2.2. Bancos NoSQL

Por um tempo os bancos relacionais, eram a escolha indiscutivel em se tratando de
bancos de dados. Até os dias atuais os bancos de dados relacionais sdo largamente utilizados e
tem solucdes bastante maduras e testadas no mercado como Oracle, Postgres, SQL Server
entre outros. De acordo com o site statista.com [4] até fevereiro deste ano (2023) dos 5 bancos
de dados mais utilizados, os 4 primeiros sdo bancos de dados relacionais, o que mostra sua
importincia no mercado.

Embora tecnicamente o modelo relacional tenha muito a oferecer, com a popularizagao
cada vez maior da internet e grandes redes sociais - com sua grande quantidade de dados
gerados - acabaram por demandar bancos mais flexiveis e eficientes para novos cenarios.
Dentre estes cenarios temos como por exemplo andlise de dados, armazenamento de grandes
quantidades de logs ou tempos de leitura proximo ao real time. Cada uma dessas necessidades
acabou por resultar em bancos com abordagens distintas com foco na solu¢do de problemas
especificos, com muitos destes sendo categorizados como bancos NoSQL.

Sadalage e Fowler [6] apontam que ndo existe uma defini¢ao geral aceita para o termo

NoSQL, porém listam uma série de caracteristicas para categorizar este tipo de banco.

“Ndo existe uma defini¢do geral aceita, nem uma entidade para
fornecer uma, entdo tudo o que podemos fazer é discutir algumas
caracteristicas comuns dos bancos de dados que tendem a ser chamados de

NoSQL.” [13, tradugdo propria]

Dentre essas caracteristicas destacam-se a auséncia da linguagem SQL e o fato de

operar sem necessidade de defini¢ao de um esquema prévio dos dados a serem inseridos.

11

2.3. Bancos orientados a documentos

Os bancos orientados a documentos sao um tipo especifico de banco NoSQL.
Sadalage e Fowler [6] descrevem os documentos suportados por este tipo de banco como
estruturas hierarquicas em arvore, sendo estas estruturas compostas por mapas chave-valor,

colecdes e escalares. Uma dessas estruturas hierarquicas largamente conhecidas ¢ o JSON.

Figura 3 - Representagdo de documento JSON

Fonte: De autoria propria

Em termos de popularidade, o banco de dados orientado a documentos mais utilizado
atualmente [4] € o MongoDB.

Bancos orientados a documentos tém por caracteristica serem schemaless [6], ou seja,
oferecem suporte ao armazenamento e consulta de dados sem restricao estrutural em uma
mesma cole¢do. Essa permissividade de dados com estruturas distintas traz consigo decisdes a
serem tomadas na modelagem logica dos dados no banco. Alessandro Fiori [3] diz que por
conta dessas particularidades, especialmente a heterogeneidade dos dados, a modelagem se
torna mais uma arte que um mero exercicio de engenharia, isto porque o design final da
modelagem logica deve levar em conta casos de uso da aplicacao.

Uma particularidade na modelagem de bancos orientados a documentos diz respeito a
como relacionar seus dados. Basicamente existem duas formas [9]: pela utilizacdo de
documentos embutidos ou documentos referenciados. Nos relacionamentos implementados

via documentos embutidos, a relagdo ocorre por hierarquia na arvore de objetos em uma

12

mesma colecdo de dados. Por sua vez, no relacionamento por referéncia, os documentos
residem em colegdes distintas com referéncias ao documento relacionado.
Exemplo de duas possibilidades distintas de relacdo 1 para 1 em um banco orientado a

documentos:

Figura 4 - Representacdo de documento JSON com relacionamento embutido de

entidades Usuario ¢ Endereco

Fonte: De autoria propria

Figura 5 - Representacao de documento JSON com relacionamento por referéncia de

entidades Usuario ¢ Endereco

Fonte: De autoria propria

13

2.4. AML - Aggregate Modelling Language

A necessidade de lidar com hierarquias quando modelando a estrutura de um banco
orientado a documentos traz elementos a mais de dificuldade. Uma dessas dificuldades ¢ a
tomada de decisdo em termos de estrutura, ou seja, quando dois documentos distintos devem
estar aninhados na mesma cole¢do e quando devem ser persistidos em colec¢des diferentes.
Hoberman [12] sugere, por exemplo, um conjunto de heuristicas a se considerar na tomada
dessas decisdes de modelagem, como a dependéncia existencial entre entidades e frequéncia
com que sao lidas simultaneamente. Por ser um tema pouco explorado [11] quando se trata de
modelagem logica para bancos NoSQL, outro tema igualmente importante ¢ a representagao
diagramatica dessas hierarquias em uma linguagem de modelagem.

Para o primeiro desafio, um ponto de partida que alguns autores como Sadalage e
Fowler [6] citam para tomada dessas decisdes ¢ o DDD (Domain-Driven Design),
especialmente seu conceito de entidades e agregados. Segundo esses autores, o conceito de
agregados pode guiar o processo de modelagem légica de bancos orientados a documentos,
especialmente como método de modelagem com fins de reduzir ou evitar a necessidade de
joins.

No DDD - que ¢ utilizado como guia de modelagem de desenvolvimento orientado a
objetos - uma entidade ¢ uma classe que representa objetos que tenham identidade propria.
Vaughn Vernon [5] em seu livro Implementando DDD define uma entidade nos seguintes
termos: ¢ a identidade unica e a mutabilidade de caracteristicas que distinguem entidade de
objetos de valor. Um exemplo disso seria uma classe representando um usudrio, que tem
identidade Uinica representando uma pessoa, diferente disso seria uma classe para representar e
agrupar informag¢des do endereco do usuario, por ndo possuir identidade unica ¢ considerado
um objeto de valor.

Além desta distingdo entre entidades e objetos de valor, o DDD também define o
conceito de agregados. Vernon [5] descreve os agregados como clusters de objetos
interligados entre si. Evans [1] cita que um agregado pode ter apenas uma entidade como raiz,
a qual preferencialmente deve servir como ponto inicial de acesso a qualquer objeto dentro

daquele agregado.

Figura 6 - Exemplo de 3 agregados no DDD com suas entidades e objetos de valor

14

B Entity

] Value object

Aggregate root

Fonte: Retirado de [10]

Sadalage e Fowler [6] em NoSQL distilled discutem o fato de que alguns bancos
NoSQL, como por exemplo os bancos orientados a documentos, possuirem a caracteristica de
serem “orientados a agregados”. Essa caracteristica identificada se d& pelo fato de nesse tipo
de banco existir uma tendéncia de que os dados relacionados se mantenham agrupados na
mesma colec¢do, uma ligacdo semelhante ao que ocorre com os agregados do DDD. Segundo
Sadalage e¢ Fowler ter essa abordagem de modelagem do banco orientada a agregados,
tomando como base os mesmos agregados do DDD, pode trazer consigo alguns beneficios.
Modelar um agregado em uma mesma cole¢do do banco pode levar a uma maior facilidade ao
lidar com clusters de instincias diversas do banco, diminuindo o numero de nds distintos
necessarios na busca de informacgdes. Outro beneficio citado ¢ a obtengao de atomicidade em
operagoes de leitura e escrita das informagdes desses agregados, levando a ganhos no quesito

de consisténcia de dados.

15

No contexto de modelagem de dados, uma das formas de representacdo ldgica destes
agregados se da a partir da representagao estrutural dos documentos como na Figura 2. Este
tipo de representagdo apesar de ilustrar bem a estrutura deste agregado e as hierarquias no
documento ndo fornece uma boa representacao de relacionamentos por referéncia assim como
da multiplicidade de relacionamentos por documentos embutidos. Este tipo de modelo ¢
amplamente utilizado em materiais sobre modelagem logica de bancos orientados a
documentos.

Uma linguagem de modelagem que fornece suporte para modelagem de bancos
orientados a documentos e que ¢ fortemente baseada no conceito de agregados ¢ a AML. A
AML ¢ uma Domain Specific Modeling Language (DSML) inspirada pelos mesmos
elementos visuais da UML porém voltada a modelagem de bancos orientados a documentos, o

que permite a utilizacdo de ferramentas de modelagem UML ja existentes no mercado (e.g,

Astah UML).

Figura 7: Exemplo de modelo l6gico em AML com 3 colecdes

Usuarios Pedidos Produtos
Usuario Pedido Produto
cpf : String - pedidos # numero : int # _idint
nome : String data : Date neme : String

LA

{produt
- endereco _itens
1 0.%*
Endereco ItemPedido
rua : String quantidade : int
numero © int
bairro : String

Fonte: De autoria propria

Linguagens de modelagem de propdsito geral tem como principal objetivo permitir
especificar uma miriade de cendrios utilizando seu arcabougo de construtores, ja que nao

orienta-se por um paradigma especifico. Diferente da UML, a AML possui uma quantidade
16

menor de construtores, possui semantica Unica para cada construtor ¢ menor complexidade.
A base soélida no conceito de agregados do Domain-Driven Design (DDD) proporciona um
alicerce conceitual robusto, promovendo a coeréncia e a clareza na modelagem logica de

dados no contexto de bancos orientados a documentos.

2.4.1. Construtores da AML

Os construtores da AML sdo classificados em nds, links e pictogramas. Por intermédio
dos Nos representam-se os conceitos de Atributo (Attribute), Entidade (Entity), VO
(Value-Object) , Agregado (Aggregate), e Rétulo Final (Label Final).

Figura 8 - Significado dos elementos graficos de nos da UML na AML

r Nodes —l

Symbol Description
[1:: Jhiem
Entity
1€ Jm)
Value Object
Mm Regular Field
<<MNms> Stereotype

Fonte: Arquivo do idealizador da AML

Atributos

17

A notacdo de atributo descreve um campo de uma entidade ou objeto de valor,

contendo em sua estrutura mais basica o nome deste atributo seguido do tipo do mesmo.

Figura 9 - Declaragdo de 3 atributos distintos em sua forma minima, isto €, contendo apenas o

nome do campo e o tipo

rua: String
bairro: String
numero: int

Fonte: De autoria propria

Além do nome e tipo de campo mostrados na Figura 9, a AML permite, assim como
na UML, a definicdo de multiplicidade de um atributo indicando, no contexto da AML, se o
campo em questdo se trata de um array. Também ¢ possivel a utilizagdo do modificador de

visibilidade de atributo da UML, com significados distintos na AML, indicados na Figura 10.

Figura 10 - Significado de elementos de visibilidade de atributo da UML na AML

Plctogram Description

+ Regular

— Unigque

Identifier

Fonte: Arquivo do idealizador da AML

Na Figura 10, temos o pictograma de visibilidade privada na UML com significado na
AML de atributo Unique, isto ¢, ndo poder conter referéncias repetidas para um mesmo
objeto. O pictograma Identifier na mesma figura, indica que este campo ¢ o identificador da
entidade, ou seja, um atributo que tem valor Unico entre todas as instancias da entidade e que,
por ter essa propriedade, ¢ definido como identificador da mesma. Vale destacar, que,
diferente dos atributos unicos, os atributos identificadores sdo usados para referenciar

documentos. O pictograma Regular por outro lado indica a auséncia destas duas restricdes e ¢

18

opcional, considera-se que um atributo que ndo utilize o pictograma Unique ou Identifier &

um atributo Regular por padrao.

Figura 11 - Exemplo de atributo telefone como array de String e campo cpf declarado como

identificador

cpf: String
nome: String
telefone: String[*]

Fonte: De autoria propria

A defini¢do de multiplicidade do atributo telefone na Figura 11 implica que este
campo ¢ um array do tipo especificado, no caso, um array de String possuindo N telefones. O
uso de Unique no campo cpf indica que este campo ¢ o identificador Uinico entre todas as
instancias de objetos deste mesmo tipo.

O uso do pictograma Unique serd exemplificado em conjunto com a utilizagcdo de

links.

Entidades e objetos de valor

No DDD [1], como discutido na Secdo 2, uma entidade ¢ uma classe que representa
objetos que tenham identidade prépria. Sua representacao grafica na AML se dd como uma
figura de classe ativa da UML, isto ¢, possui uma borda mais grossa. Os Value Objects (VO) ,
por outro lado, ndo contém identificador unico e na AML sao representados como uma classe

comum, com a borda mais fina em relacdo as entidades.

19

Figura 12 - Exemplos de uma entidade e um Value Object (VO)

Usuario Endereco
cpf : String rua : String
nome : String bairro : String
telefone : String[*] humero : int

Entidade VO

Fonte: De autoria propria

Como mostra a Figura 12, tanto entidades, como Value Objects (VO) sdo compostos
por um Nome (Nm na Figura 8) e seus respectivos atributos, a diferenca entre ambos se da
pela identidade tinica presente nas entidades e que nao esta presente nos Value Objects. Na

Figura 12, usuério ¢ uma entidade e possui o atributo cpf como identificador.

Agregados

Na AML, o uso de agregados ¢ fundamental para modelagem légica de bancos
orientados a documentos, isto porque, na AML existe uma relacao direta entre uma colegao
em termos de banco de dados e um agregado. O fato de entidades e objetos de valor distintos
estarem no mesmo agregado no modelo em AML, implica que a nivel de banco de dados
estardo presentes em uma mesma colecao.

Existem duas formas de representar agregados na AML. A primeira como prefixo do
nome das entidades e Value Objects, seguido pelos caracteres :: que na UML ¢ usado para

representar o pacote que a classe esta contida.

20

Figura 13 - Exemplo de agregado composto por entidade Usuario e Value Object (VO)

Endereco
Usuarios::Usuario Usuarios::Endereco
cpf : String rua : String
nome : String bairro : String
telefone : String[*] numero : int

Fonte: De autoria propria

A segunda forma de representar um agregado em AML ¢ através do simbolo
Aggregate visto na Figura 8. Nesta forma, o nome do agregado ¢ sinalizado pelo nome
definido no simbolo de Aggregate, sendo desnecessario explicitar o nome do agregado nos
nomes das Entidades ou VOs como na Figura 13. Para os exemplos daqui em diante sera

utilizada esta segunda forma de representacdo de agregados.

Figura 14 - Exemplo de agregado utilizando simbolo Aggregate

I
Usuadrios
Usuario Endereco
cpf : String rua : String
nome : String bairro : String
telefone : String[*] humero : int

Fonte: De autoria propria

O modelo da Figura 14 ¢ equivalente a Figura 13, ambos contém um unico agregado
de nome Usudrios composto pela mesma entidade Usudrio € o mesmo VO Endereco.

Embora a partir da Figura 14 e da Figura 13 seja possivel definir a cole¢do no banco e
até mesmo o0s objetos presentes nesta colegdo, estas figuras ndo definem a hierarquia destes
objetos, isto €, como eles se relacionam. Os relacionamentos entre objetos e hierarquia, no

caso de objetos de um mesmo agregado, sao definidos a partir do uso dos Links.

21

Links

Os links na AML definem os relacionamentos entre entidades e objetos de valor e
existem tipos de links distintos para diferentes situagdes.

Figura 15 - Links na AML

'S:.rm bol Descrlptiari

l+|-1bm 1]4

Association

Composition

Fonte: Arquivo do idealizador da AML

Tomando como exemplo a Figura 14, a forma como relacionamos entidades e Value
Objects ¢ através do link de composigao.

Figura 16 - Link de composi¢ao relacionando Entidade e Value Object

Usuarios

Usuario

cpf : String
nome : String

telefone : String[*]

- endereco

Endereco

1

rua : String
bairro : String
numero : int

22

Fonte: De autoria propria

Na Figura 16, temos um exemplo completo de um modelo 16gico em AML, com todas
as informacgdes necessarias. Temos neste exemplo informacgdes a respeito do nome da colecao,
os nomes ¢ atributos da entidade e do VO bem como informagdes sobre como se relacionam
neste agregado (hierarquia, representada pela direcdao da associacao e cardinalidade).

O link de composi¢do define um relacionamento por documento embutido, ele ¢ usado
entre Entidade e Value Object e sempre dentro de um mesmo agregado, ou seja, relaciona
objetos dentro de uma mesma cole¢do. A Figura 17 mostra um objeto JSON valido para o
modelo da Figura 16 com a relagdo entre Usuario e Endereco através de documentos

embutidos.

Figura 17 - Link de composi¢ao relacionando Entidade e Value Object

Jardim Sao Paulo

Fonte: De autoria propria

Neste exemplo da Figura 16, Usudrio ¢ a raiz do agregado Usuarios, por ser o
elemento hierarquicamente superior, ou seja, nao existe nenhum link partindo em diregdo a
esta entidade.

Outra forma de relacionar objetos na AML ¢ através do uso de referéncias para objetos

que compdem agregados distintos.

23

Figura 18 - Relacionamento por associacao entre entidades de agregados distintos

Usuarios Veiculos
Usuario Veiculo
- - veiculos
cpf: Strllng > # placa : String
nome : String * cor : String
telefone : String[*] '

Fonte: De autoria propria

Diferente da Figura 17, o relacionamento por referéncia mostrado na Figura 18 ¢ feito
com uso do link de associagdo na AML. Os documentos neste tipo de relacionamento

guardam informacdo apenas do identificador do objeto que referenciam, como mostra a

Figura 19.

Figura 19 - JSON exemplificando relacionamento por referéncia entre Usudrio e Veiculo

Fonte: De autoria propria

Para permitir instancias repetidas de um mesmo objeto em um relacionamento deve-se
substituir o pictograma Unique no link que relaciona as entidades pelo pictograma Regular da
Figura 10. Isto ¢, na Figura 18 tem-se a representacdo grafica de um relacionamento 1:N pois

"veiculos" ¢ precedido pelo pictograma Unique (-veiculos), enquanto que na Figura 20 tem-se

24

a diagramacdo de um relacionamento M:N, pois ndo hé essa restri¢do de unicidade, uma vez

que utilizado o Pictograma Regular (+veiculos).

Figura 20 - Relacionamento por referéncia sem restricao de instancias duplicadas

1] 1]

Usuadrios Veiculos
Jsuario + veiculos Veiculo
cpf : String

placa : String

nome : String * cor : String

telefone : String[*]

Fonte: De autoria propria

25

3. Boas praticas para modelagem de bancos orientados a documentos

Este capitulo tem como objetivo introduzir o leitor ao processo de modelagem 16gica
de dados de bancos orientados a documentos a partir do uso da Aggregate Modeling
Language (AML) e seus construtores, bem como auxiliar na aplicagdo de boas praticas de
modelagem. Serdo apresentadas variagdes distintas de modelagem de relacionamentos,
contribuindo para a identificacao de bad smells relativos a modelagem de dados orientados a
documentos a partir da reflexdo sobre as vantagens e desvantagens entre diferentes
modelagens 16gicas de um determinado dominio. Serdo levantadas as implicagdes dessas
escolhas na constru¢do e evolugdo de uma aplicagdo em termos de desempenho e
consisténcia. Os exemplos utilizam a linguagem de modelagem logica AML e para

representacao dos documentos o formato JSON utilizado no MongoDB.

3.1. Modelagem de agregados com AML

A AML permite variagdes distintas de modelagens 16gicas para um mesmo esquema
conceitual. Este capitulo tem como objetivo mostrar a modelagem de relacionamentos
utilizando AML, tanto por meio de documentos embutidos quanto fazendo uso de
documentos referenciados, discutindo quando utilizar cada modelo possivel.

Tomemos como exemplo esquema conceitual a seguir, onde um usuario pode possuir

varios veiculos e um veiculo pode ser possuido por no maximo um usudrio.

Figura 21 - Modelo conceitual utilizado como base para modelagem 16gica

Lisuario Welculo

Fonte: De autoria propria

Para este modelo conceitual existem as 8 seguintes possibilidades de modelagem logicas em

um banco orientado a documentos:

1. Colecao com array de documentos embutidos

26

Figura 22- Colegao de usudrios contendo N veiculos

I
Usuarios
Usuario _veiculo Veiculo
id:int [* = placa : String
nome @ String * cor : String

Fonte: De autoria propria

Na Figura 22 existe apenas um agregado em que Usuario € a raiz do mesmo. Logo, o
ciclo de vida dos documentos representando os veiculos estdo diretamente relacionados a
existéncia dos objetos de usudrios. Este relacionamento utilizando documentos embutidos
garante que os documentos serdo armazenados fisicamente juntos a nivel de disco e que
podem ser encontrados a partir da mesma instdncia do banco [9], contribuindo no
desempenho de leitura e escrita especialmente em casos de buscas a partir dos usuarios. Além
disso, esse relacionamento, por atrelar a existéncia dos documentos de veiculos ao usuario ao
qual pertence, garante a nivel de banco uma das caracteristicas dos agregados no DDD [1],
que ¢ restringir (quando possivel) o acesso as entidades somente a partir da raiz dos agregados
da mesma.

Em forma de JSON este tipo de agregado consiste de uma tnica colecao:

Figura 23 - Representagdo em JSON de cole¢do de usuarios contento N veiculos

27

Fonte: De autoria propria

2. Colecao com array de documentos embutidos mais cole¢do redundante

Figura 24 - Colegao de usudrios contento N veiculos com redundancia dos

documentos de veiculos

| |
Usudarios Veiculos
Usuario R T Veiculo Veiculo
id:int > placa : String # placa : String
nome : String * cor : String cor @ String

Fonte: De autoria propria

Na Figura 24 existem 2 agregados independentes, o agregado a esquerda tendo a
entidade Usudrio como raiz e o segundo tendo a entidade Veiculo como raiz e unica entidade
do agregado. No primeiro agregado a relacao entre as entidades ¢ de composigao, pelo fato de
veiculo estar estruturalmente atrelado a existéncia das instancias dos usudrios. A imagem a

seguir mostra a estrutura JSON dessas colecdes:

Figura 25 - Estrutura JSON de modelagem com 2 agregados

28

Fonte: De autoria propria

Esta modelagem pode ser utilizada em um cenério que a existéncia da entidade veiculo
seja independente a existéncia de algum usuario especifico, ou seja, independe do
relacionamento no primeiro agregado. Essa redundancia de dados pode levar a problemas de
inconsisténcia ao lidar com atualizagdes e exclusdes de documentos - que era uma das
vantagens do primeiro modelo - porém tém como beneficio ganhos de desempenho. Rick
Copeland [9] fala sobre esses ganhos de desempenho obtidos através de redundancia de dados
no MongoDB, porém deixando claro que essa redundancia pode dificultar o processo de
design do modelo légico como um ponto negativo. Para este exemplo, o ganho de
desempenho pode vir, por exemplo, da possibilidade de leitura apenas dos dados de um
veiculo a partir de sua colegdo, sem trazer obrigatoriamente todos os dados do usuario e dos

demais veiculos deste usuario.

3. Colecao com array de documentos embutidos mais colecio com apenas um
documento embutido

Figura 26 - Relacionamento bidirecional com redundancia de documentos das duas

entidades
I
Usuarios
Usuario ol Veiculo
id:int > placa : String
nome @ String * cor : String
I
Veiculos
Veiculo - Usuario Usuario
placa : String [* _idiint
cor : String 1 nome : String

Fonte: De autoria propria

29

A Figura 26 tem propriedades semelhantes as do primeiro exemplo, pois ela traz
consigo os mesmos ganhos de desempenho de leitura - ao tornar possivel obter todos os dados
de veiculo e usudrio a partir da leitura de um tinico documento - com a vantagem de permitir
maior flexibilidade de consultas. Essa flexibilidade se da pois a partir desta redundancia de
dados podemos realizar consultas tanto na cole¢ao de usuarios quanto na colegdo de veiculos
e os dados de ambas as entidades sempre serdo retornados. Por outro lado, isso pode se tornar
uma desvantagem em casos que a inten¢do seja obter somente os dados de uma tUnica
entidade. Outra desvantagem diz respeito a maior dificuldade de consisténcia na medida que
os dados das entidades estdo redundantes e a propria informagdo da relacdo também esta,
sendo necessario tratar sempre de forma conjunta alteracdes em ambas as entidades para

garantir a consisténcia das mesmas.

Figura 27 - JSON de relacionamento bidirecional com redundancia de documentos das

duas entidades em ambos os lados da relacao

Fonte: De autoria propria

4. Colec¢do com apenas um documento embutido

30

Figura 28 - Inversdo de raiz do agregado no modelo de colecdo Unica

I
Veiculos
Veiculo e Usuario
placa : string [® =1 _idiint
cor : String 1 nome : String

Fonte: De autoria propria

Na Figura 28, em comparacao a Figura 22, os papéis no agregado se invertem, veiculo
se torna a raiz do agregado. Em termos de vantagens e desvantagens este modelo preserva as
mesmas propriedades que o primeiro exemplo, porém como estrutura JSON sao persistidos de

maneira diferente.

Figura 29 - Estrutura JSON de agregado inico com veiculo sendo a raiz

Fonte: De autoria propria

Vaughn Vernon [5] diz que o requisito para se tornar raiz de um agregado ¢ que a
entidade tenha uma identidade unica global, ou seja, entre todos os agregados. No exemplo
em questdo o veiculo tem uma identidade Unica: a placa, e que, dependendo do caso de uso

pode ser mais interessante que seja utilizada para ser o identificador dos documentos que
31

algum atributo do usudrio. Esta abordagem porém exige uma maior quantidade de leituras na
busca por todos os veiculos de um usudrio, dado que os veiculos estdo em documentos

distintos.

5. Colec¢ao com apenas um documento embutido mais colecio redundante

Figura 30: Usuario como documento embutido de veiculo e em colegdo propria

| I
Veiculos Usuarios
Veiculo I - T Usuario Usuario
placa : String Jdiint # id:int
cor: String 1 nome ; String nome : String

Fonte: De autoria propria

A Figura 30 carrega as mesmas caracteristicas da Figura 24 (exemplo 2), porém a
redundancia estd nos documentos de usudrios e ndo em veiculos. Isto €, desta forma podemos
realizar buscas e leituras apenas dos usuarios se for necessario e garantimos também que as
informacdes dos usuarios estdo sempre presentes em casos que seja necessario realizar uma
busca de veiculos. Esse agrupamento evita, ao realizar a busca de um veiculo, ter de realizar
algum tipo de JOIN para obter os dados dos usuarios donos desses veiculos.

Como ponto negativo, ao contrario do exemplo 2, uma listagem de veiculos por
usuario pode ser computacionalmente mais custosa, sendo necessario a leitura de mais de um
documento para montar a listagem de veiculos. Copeland [9] afirma que essa modelagem em
termos de custo computacional ¢ mais custosa, exemplificando o fato que no caso do
MongoDB o banco garante apenas que os dados de um tnico documento sdo armazenados de

forma contigua em disco.

Figura 31 - JSON mostrando modelagem com usudrio como documento embutido de

veiculo e redundante em colecdo propria

32

6. Colecdo com array de documentos referenciados

Figura 32 - Veiculo como array de referéncias dos usuarios

Fonte: De autoria propria

Usuarios

Usuario

id:int
norme : String

-wveiculos

Veiculos

Veiculo

o}

A placa : String
cor @ String

Fonte: De autoria propria

33

Com relacdo aos exemplos de modelagem vistos até aqui, este ¢ o primeiro que utiliza
referéncia no lugar de documentos embutidos para realizar o relacionamento entre usudrio e
veiculos através da notacio AML de dois agregados distintos. Copeland [9] discute as
vantagens e desvantagens entre as duas abordagens para uma tomada de decisdo de qual
utilizar. Segundo ele, no relacionamento de documentos embutidos existem ganhos de
localidade, ou seja, a garantia de que ambas as entidades permanecem fisicamente juntas na
mesma instancia de banco. Outro ganho viria através do que ele chama de atomicidade, ou
seja, existem ganhos de consisténcia de dados ao editar atributos de ambas as entidades e
aplicar essas alteragdes de forma conjunta. J& no modelo de relacionamento por referéncia os
ganhos viriam em termos de flexibilidade e escalabilidade. A flexibilidade se da pelo fato de
permitir, quando necessario, buscas e leituras diretas por qualquer uma das entidades sem
necessidade de trazer no resultado também dados da outra entidade. Ja em termos de ganho de
escala Copeland [9] cita as proprias limitagdes de tamanho de documentos, no caso do
MongoDB, 16MB por documento. Essa limitagdo no exemplo de relacionamento por
documento embutido limitaria a quantidade de veiculos relacionados com um usuério a partir
desta limita¢ao do tamanho maximo do documento do usuario.

Neste relacionamento seriam gerados dois documentos JSON independentes:

Figura 33 - Relacionamento usudrio-veiculo através de array de referéncias em JSON

Fonte: De autoria propria

34

7. Coleciao de documentos referenciados

Figura 34 - Usuario como referéncia de veiculos

| |

Veiculos Usuarios

Veiculo . Usuario Usuario
placa : String A # _id int
cor : String 1 nome | string

Fonte: De autoria propria

Em termos de propriedades, a Figura 34 ¢ semelhante a Figura 32 (exemplo 6), porém
a escolha de colocar a referéncia nos veiculos no lugar de usudrios dependendo do cenario
pode trazer algumas vantagens. Sadalage e Fowler [6] dizem que em um cenario ideal os
dados de um mesmo usuério deveriam permanecer em uma mesma instancia do banco para
obter ganhos de desempenho de leitura. A partir desta perspectiva, considerando que a
colecdo de veiculos seja particionada através da funcionalidade de sharding do MongoDB, no
exemplo anterior apenas com as informag¢des que temos do lado da entidade veiculo ndo ¢
possivel ter essa garantia. Na modelagem atual porém a entidade veiculo tem o identificador

do usuario como ¢ possivel ver no JSON de exemplo:

Figura 35 - Relacionamento usuério-veiculo através de referéncia na entidade usuario

em JSON

35

Fonte: De autoria propria

Desta forma ao realizar um particionamento no MongoDB da colegcdo Veiculo ¢
possivel definir como chave de particionamento (ou sharding key) o identificador de usuario,
permitindo que uma listagem de todos os veiculos de determinado usuario possa ser atendida

requisitando uma unica instancia de banco.

8. Colecao intermediaria de referéncias

Figura 36 - Relacionamento usudario-veiculo através de referéncias em entidade de

relacionamento

36

Usuarios Veiculos
—=%
Usuario Veiculo
id :int # placa : String
nome : String cor ! String
N 7

T

- usuério - veiculo

UsyariosVeiculbs

UsuarioVeiculo
id:int

Fonte: De autoria propria

Copeland [9] fala sobre este tipo de relacionamento, citando que embora ndo haja
duplicidade de dados nas entidades Usudrio e Veiculo ele traz complexidade nas consultas,
necessitando da utilizacdo de JOINS, semelhante a Figura 6, pois diferentemente dos
documentos embutidos, documentos referenciados exigem jungdes quando precisam ser
consultados em conjunto. Contudo, nesse cenario, tem-se uma juncao extra. Ou seja, existe
uma perda de desempenho maior sempre que necessario a leitura dos veiculos de um usuario,
ou de dados de usuario dono de um veiculo, logo € necessario pesar o tradeoff desempenho e
consisténcia. Ao eliminar a cole¢do intermediaria e duplicar os dados das entidades usuario
dentro dos documentos de veiculos e vice-versa eliminamos a necessidade de JOINS, porém
temos que ter cuidados para garantir a consisténcia dessas relagdes em ambas as colegdes.
Este prejuizo de consisténcia ndo ocorre na modelagem com uma cole¢ao intermedidria
realizando o relacionamento pois permite eliminar e criar relacionamentos de forma atomica,
ou seja, com escrita em um unico documento.

Exemplo de cole¢des e documentos em JSON representando esta modelagem:

Figura 37 - Relacionamento usudrio-veiculo através de referéncias em entidade
intermediaria

37

Fonte: De autoria propria

Analisando o JSON da cole¢dao UsuarioVeiculo na Figura 37, € possivel identificar
uma outra utilizagdo deste tipo de modelagem. Em um cenario que seja permitido realizar
transferéncias de veiculos entre usudrios € possivel manter um historico destes vinculos na
entidade intermediaria e adicionar um campo extra sinalizando se o vinculo ainda ¢ valido.
Embora este tipo de historico também possa ser feito nas proprias colegdes de Usuario e

Veiculo pode esbarrar nos limites de tamanho de documento como j4 discutido anteriormente.

38

4 Conclusao

A Linguagem de Modelagem Loégica AML (Agregate Modeling Language) emerge
como uma ferramenta inovadora e valiosa para abordar os desafios de modelagem de bancos
de dados orientados a documentos. A capacidade de aproveitar ferramentas de modelagem
UML existentes amplia a acessibilidade na ado¢do da AML, proporcionando uma transi¢ao
suave para profissionais que ja estdo familiarizados com a UML. Além disso, a forte base no
conceito de agregados do Domain-Driven Design (DDD) promove uma abordagem logica e
coesa na modelagem de dados, alinhando-se com as melhores praticas da industria.

O presente trabalho mostrou como utilizar os construtores da AML no processo de
modelagem logica de um banco orientado a documentos e explorou a versatilidade da AML
ao demonstrar sua capacidade de lidar com variagdes distintas na modelagem de
relacionamentos de um esquema conceitual especifico. Também foram discutidos os impactos
de desempenho e consisténcia ao escolher determinada modelagem de relacionamento em
detrimento de outra.

A partir dos exemplos de modelagem mostrados na Secdo 3, ¢ possivel utilizar este
trabalho uma fonte de consulta para modelagens mais genéricas em casos que se fizer
necessario considerar o tradeoff entre consisténcia e desempenho na modelagem dos
relacionamentos independente do dominio em questao.

O fato de ter utilizado o MongoDB como referéncia de implementacdo de banco
orientado a documentos bem como estrutura JSON utilizada pelo mesmo, por outro lado,
pode limitar a aplicagdo dos exemplos mostrados em outros contextos de bancos e estruturas
de documento distintas.

Em um cenario em constante evolu¢dao da tecnologia da informagao, a AML emerge
como uma ferramenta que nao apenas facilita a modelagem de sistemas de banco de dados,
mas também contribui para a constru¢do de sistemas mais robustos, eficientes e alinhados

com as demandas do mundo contemporaneo de bancos de dados orientados a documentos.

39

5 Bibliografia

[1] EVANS, Eric. Domain-driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2004.

[2] KAUFMAN, Michael; MEIER, Andreas. SQL and NoSQL Databases: Modeling,
Languages, Security and Architectures for Big Data Management - Second Edition. Springer,
2023

[3] FIORI, Alessandro. Design with MongoDB: Best models for applications, Publicagdo
propria ISBN: 9798557417884, 2020

[4] Ranking of the most popular database management systems worldwide, as of February

2023 - statista.com - acesso em 10/09/2023

[5] VERNON, Vaughn. Implementing Domain-Driven Design. Addison-Wesley Professional,
2013

[6] SADALAGE, Pramod J; FOWLER, Martin. NoSQL Distilled. Addison-Wesley
Professional, 2012

[7] BUGIOTTII, Francesca; Database Design for NoSQL Systems, Universita Roma Tre,
2014

[8] LIMA, C. Projeto Logico de Bancos de Dados NOSQL Documentos a Partir de Esquemas
Conceituais Entidade-Relacionamento Estandido(EER). Universidade Federal de Santa
Catarina, 2016.

[9] COPELAND, Rick. MongoDB Applied Design Patterns.

[10] Persistence with NoSQL Databases - DDD -
https://www.aschommer.de/blog/persistence-with-nosql-databases-ddd.html - acesso em
15/09/2023

[11] de Lima, C. and dos Santos Mello, R. (2015). 4 workload-driven logical design approach

for nosql document databases. In Proceedings of the 17th International Conference on
Information Integration and Web-based Applications & Services, pages 1-10

[12] Hoberman, S. Data modeling for MongoDB: Building well-designed and supportable
MongoDB databases (Ist ed.) Basking Ridge, NJ: Technics Publications, 2014

40

https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
https://www.aschommer.de/blog/persistence-with-nosql-databases-ddd.html

