
Comparando soluções para o problema de N+1 queries com APIs
GraphQL em Ruby on Rails

Igor Simões
ibps@cin.ufpe.br

Centro de Informática da Universidade Federal de Pernambuco
Recife, Pernambuco, Brasil

RESUMO
Atualmente, APIs (Application Programming Interface) enfrentam
desafios comuns relacionados ao problema de N+1 queries, como
as APIs GraphQL escritas em Ruby on Rails (Rails). Este problema
pode impactar significativamente a eficiência e a performance das
aplicações. No entanto, existem diversas soluções que têm sido
exploradas para contornar essa questão. Dentro do ecossistema
Rails, soluções nativas são frequentemente adotadas.

O Active Record, um ORM (Object-Relational Mapping) utilizado
pelo Rails, possui um método chamado includes. Esse método pré-
carrega associações entre objetos, o que minimiza a quantidade de
queries ao banco de dados. Além disso, algumas gems têm ganhado
destaque no combate ao problema de N+1 queries em GraphQL.
Gems, no contexto do Ruby, são pacotes de código que fornecem
funcionalidades específicas, funcionando como bibliotecas que po-
dem ser facilmente adicionados a projetos Ruby. Entre elas, pode-
mos destacar a graphql-batch e a batch-loader. Ambas oferecem
ferramentas poderosas para agrupar e resolver queries de maneira
mais eficiente, eliminando a necessidade de múltiplas consultas
individuais ao banco de dados. Ao desenvolver ou otimizar APIs
GraphQL em Rails, é essencial considerar estas soluções e avaliar
qual se encaixa melhor no contexto da aplicação, tendo em vista os
prós e contras de cada abordagem e a necessidade de performance
do sistema. Para aprofundar nossa compreensão, as soluções fo-
ram implementadas e testadas considerando métricas quantitativas,
como o tempo total de execução, e qualitativas, como flexibilidade
e usabilidade.

Em conclusão, enquanto cada solução pode ter suas vantagens
e desvantagens, a escolha ideal para abordar o problema de N+1
queries em APIs GraphQL em Rails deve levar em consideração
as especificidades e necessidades de cada projeto. Neste estudo,
esperamos fornecer uma base sólida para tomada de decisão para
desenvolvedores e equipes que enfrentam desafios semelhantes.

ABSTRACT
Currently, APIs (Application Programming Interface) face common
challenges related to the N+1 queries problem, like GraphQL APIs
written in Ruby on Rails (Rails). This issue can significantly impact
the efficiency and performance of applications. However, several
solutions have been explored to address this matter. Within the
Rails ecosystem, native solutions are often adopted.

The Active Record, an ORM (Object-Relational Mapping) used by
Rails, has a method called includes. This method pre-loads associa-
tions between objects, whichminimizes the number of queries to the
database. Moreover, some gems have gained prominence in tackling
the N+1 queries problem in GraphQL. Gems, in the context of Ruby,
are code packages that provide specific functionalities, acting as

libraries that can be easily added to Ruby projects. Notably among
them are graphql-batch and batch-loader. Both provide powerful
tools for batching and resolving queries more efficiently, elimi-
nating the need for multiple individual database queries. When
developing or optimizing GraphQL APIs in Rails, it’s crucial to
consider these solutions and evaluate which fits best within the
application’s context, considering the pros and cons of each ap-
proach and the system’s performance requirements. To deepen our
understanding, the solutions were implemented and tested, con-
sidering quantitative metrics, such as the total execution time in
milliseconds, and qualitative ones, like flexibility and usability.

In conclusion, while each solution may have its pros and cons,
the ideal choice for addressing the N+1 queries problem in GraphQL
APIs in Rails should take into account the specificities and needs of
each project. With this study, we hope to provide a solid founda-
tion for decision-making for developers and teams facing similar
challenges.

KEYWORDS
GraphQL, Ruby on Rails, APIs, N+1, Queries

1 INTRODUÇÃO
Serviços web compreendem um conjunto de protocolos e padrões
adotados para a transferência de informações entre sistemas online.
Software, desenvolvidos em múltiplas linguagens de programação e
operando em diferentes plataformas, recorrem a esses serviços para
compartilhar dados por meio de redes, como a Internet. Tais servi-
ços garantem a compatibilidade na comunicação entre diferentes
sistemas[1].

Proposta publicamente em 2015 pelo Facebook, GraphQL foi
concebido como uma linguagem de consulta para facilitar a cons-
trução de arquiteturas de serviços web, oferecendo sintaxe e sistema
flexíveis e intuitivos para detalhar suas demandas de dados[5]. O
GraphQL emergiu como uma alternativa promissora para resolver
problemas enfrentados por outros estilos arquiteturais populares
para a criação de APIs web, como o REST (Representational Style
Transfer)[2–4]. Como resultado, a linguagem começou a ganhar
força e é atualmente suportada por APIs web de diversas empre-
sas e seus respectivos produtos, como Github, Airbnb, Netflix e
Twitter[1].

Dentre os problemas que GraphQL se propõe a resolver, nós
temos o problema de under-fetching. Em geral, o under-fetching
ocorre quando uma API não fornece todos os dados necessários em
uma única solicitação, exigindo requisições adicionais para obter
as informações desejadas, por exemplo [7].

No contexto das ORM, este problema pode semanifestar na forma
deN+1 queries, resultando emmúltiplas consultas ao banco de dados

Igor Simões

quando apenas uma seria suficiente. Roksela et al[7] apontou um
cenário comum: a primeira query ao banco de dados retorna uma
lista de referências (1 query retorna N objetos), e depois N queries
são feitas para acessar cada um desses objetos, causandoN+1 queries
ao banco de dados.

Em APIs GraphQL implementadas em Rails, o problema de N+1
queries é bastante comum noActive Record[13]. Neste artigo, nós fo-
camos em comparar soluções para esse problema em APIs GraphQL
desenvolvidas em Rails, tanto de forma quantitativa, analisando
aspectos de performance vistos na Subseção 4.1, como de forma
qualitativa, investigando aspectos das implementações apontados
na Subseção 4.2. Dessa forma, visamos oferecer diretrizes valiosas
para a comunidade de desenvolvimento.

Para ilustrar esse problema, usamos um simples sistema clone do
Twitter, em que os usuários podem criar vários tweets, armazenados
no banco de dados em suas respectivas tabelas. Na Listagem 1,
vemos uma consulta ao banco de dados usando o Active Record
para obter os tweets de id 5, 7 e 9. Ao tentar acessar o usuário para
cada um desses tweets, terão sido feitas mais 3 queries, uma para
cada usuário, desse modo ocorrendo o problema de N+1 queries.
Ilustramos o problema na Figura 1.

1 Tweet.where(id: [5, 7, 9]).each do |tweet|
2 tweet.user
3 end

Listagem 1: Consulta do Active Record para obter tweets por
ids

Figura 1: Demonstração de N+1 queries ao acessar autores
dos tweets

A estrutura do trabalho está descrita a seguir. A Seção 2 apresenta
os principais conceitos do GraphQL. A Seção 3 explica a necessidade
de comparar as soluções para o problema de N+1 queries e quais
soluções serão comparadas. A Seção 4 mostra como a comparação
é feita. A Seção 5 exibe todos os passos da comparação. A Seção
6 compreende os resultados da comparação. A Seção 7 trata dos
trabalhos relacionados na literatura. A Seção 8 conclui o artigo.

2 PRINCIPAIS CONCEITOS DO GRAPHQL
Nesta sessão apresentamos os principais conceitos do GraphQL,
definidos de forma simples e eficaz por Gleison Brito e Marco
Valente[1].

Em essência, o GraphQL dá aos clientes a capacidade de fazer
consultas a um banco de dados representado por um Schema espe-
cífico. Esse banco de dados é modelado por um Schema que toma

a forma de um grafo direcionado, onde os nós são objetos que de-
finem tipos e possuem um conjunto de campos. Cada campo, por
sua vez, possui um nome e um tipo. Esses objetos podem ser aces-
sados por meio do tipo Query, a porta de entrada da API GraphQL.
Considerando o mesmo sistema clone do Twitter apontado na se-
ção anterior, mostramos a definição dos tipos Tweet, User e Query,
utilizando o GraphQL, na Listagem 2.

1 type Tweet {
2 id: Int!
3 content: String!
4 author: User!
5 }
6
7 type User {
8 id: Int!
9 nickname: String!
10 }
11
12 type Query {
13 feed: [Tweet!]
14 }

Listagem 2: Schema GraphQL exemplo

O GraphQL, além de propor um Schema, também fornece uma
linguagem de consulta para os clientes. Os resultados das consultas
são retornados em formato JSON, facilitando a análise e processa-
mento pelos clientes. A Listagem 3 mostra um exemplo de query
nessa linguagem, enquanto a Listagem 4 exibe seu resultado.

1 query ViewerFeed {
2 feed {
3 id
4 content
5 author {
6 id
7 nickname
8 }
9 }
10 }

Listagem 3: Query GraphQL exemplo para obter tweets do
feed

Em um servidor GraphQL, os desenvolvedores estabelecem fun-
ções resolver para cada tipo de consulta. Quando uma consulta é
realizada, estas funções são ativadas, buscando dados, comumente,
de um banco de dados. No cenário que tratamos, utilizamos um
banco relacional controlado pelo ORM do Rails. Na Listagem 5
temos a implementação do tipo Query em Rails. Nesse exemplo,
vemos um resolver definido para o campo feed (linhas 4-6). Esse
resolver garante o resultado visto na Listagem 4.

3 MOTIVAÇÃO
Com a crescente taxa de adoção do GraphQL em organizações, é
cada vez mais importante estar ciente de como as APIs baseadas
em GraphQL podem desempenhar [7].

A escolha da solução a ser adotada para tratar o problema de N+1
queries em APIs GraphQL desenvolvidas com Rails é um elemento
vital que pode influenciar a eficiência e viabilidade do sistema. Há
tanto soluções nativas do Active Record, quanto soluções open-
source desenvolvidas pela comunidade no formato de gems. Gems

Comparando soluções para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

1 {
2 "data": {
3 "feed": [
4 {
5 "id": 5,
6 "content ": "Vou atras do Sasuke custe o que

custar.",
7 "author" : {
8 "id": 10,
9 "nickname ": "Naruto Uzumaki"
10 }
11 },
12 {
13 "id": 7,
14 "content ": "Nao pertenco mais aqui nesta vila.",
15 "author" : {
16 "id": 14,
17 "nickname ": "Sasuke Uchiha"
18 }
19 },
20 {
21 "id": 9,
22 "content ": "Serei a mais forte.",
23 "author" : {
24 "id": 18,
25 "nickname ": "Sakura Haruno"
26 }
27 }
28]
29 }
30 }

Listagem 4: Resultado em formato JSON da Query GraphQL
exemplo

1 class QueryType < Types::Base:: Object
2 field :feed , [TweetType], null: false
3
4 def feed
5 Tweet.where(id: [5, 7, 9])
6 end
7 end

Listagem 5: Implementação exemplo em Ruby do resolver do
campo feed no tipo Query

são pacotes de software que contém uma aplicação ou biblioteca
Ruby empacotada, distribuídas pelo RubyGems [8]. Por sua vez,
RubyGems é o serviço de hospedagem de gems da comunidade
Ruby.

Quando falando de gems que resolvem um mesmo problema, é
muito importante escolher a mais adequada. Se houver arrependi-
mento em ter adicionado uma gem no sistema, é difícil voltar atrás
depois do sistema ter evoluído e código ter sido escrito usando os
recursos da gem[12].

Embora existammuitos recursos e discussões online1 sobre como
tratar o problema deN+1 queries [11], em nosso entendimento,nota-
se a ausência de estudos aprofundados que avaliem essas
soluções de forma imparcial e acurada. Uma análise detalhada
é essencial para determinar qual delas é a mais adequada para as
necessidades específicas de um projeto. A falta de tais informações
pode culminar em escolhas que não atendem de forma ótima às
demandas da aplicação.

1Discussão no Github https://github.com/rmosolgo/graphql-ruby/issues/189

3.1 Soluções Escolhidas
As soluções podem ser categorizadas de acordo com seus respec-
tivos funcionamentos. Agrupamos as soluções em duas catego-
rias de acordo com a forma que acessam o banco de dados: pré-
carregamento de associações e carregamento em lote. Tendo em
vista uma query base à uma tabela do banco de dados, o pré-carregamento
de associações envolve a recuperação antecipada de entidades rela-
cionadas a essa tabela. Já o carregamento em lote agrupa as várias
operações de acesso aos dados relacionados e somente os obtém
quando são explicitamente necessários. As Figuras 2 e 3 ilustram
essas categorias.

Figura 2: Estratégia de pré-carregamento de associações

Figura 3: Estratégia de carregamento em lote

Assim, focamos a comparação entre as seguintes soluções:
• Pré-carregamento de associações

Solução Includes Método includes do Active Record
• Carregamento preguiçoso em lote

Solução GraphqlBatch Gem graphql-batch
Solução BatchLoader Gem batch-loader

Escolhemos a Solução Includes porque julgamos importante com-
parar pelo menos uma solução nativa do Active Record, uma vez
que não adiciona dependências externas ao projeto. Implementa-
mos o método includes como sugerido no guia oficial do Rails [10] e
não utilizamos outros métodos por serem usados da mesma forma,
o que será um ponto de comparação qualitativa.

Quanto às gems escolhidas (Soluções GraphqlBatch e BatchLo-
ader), elas são as mais populares na indústria, de acordo com a
quantidade de downloads no RubyGems, que se propõem a resolver
esse problema, sendo utilizadas por grandes empresas

• Graphql-batch2 possui 14 milhões de downloads e foi con-
cebida pelo Shopify, que continua fazendo amplo uso.

2Gem graphql-batch https://rubygems.org/gems/graphql-batch

Igor Simões

• Batch-loader3 possui 21 milhões de downloads e é utilizada
pelo Netflix, por exemplo.

Embora funcionem da mesma forma ao acessar o banco de da-
dos, é essencial destacar que as gems graphql-batch e batch-loader
tem algumas diferenças relevantes entre si. A gem graphql-batch é
específica ao GraphQL e utiliza promises4 em sua implementação
interna. No caso da gem batch-loader, ela é genérica e carrega os
lotes de forma lazy5 (preguiçosa).

4 MÉTODO PROPOSTO
Analisamos e comparamos as soluções apontadas na seção 3.1 entre
si a fim de verificar tanto aspectos quantitativos como qualitativos,
como explicado nas subseções a seguir. Dentro do contexto de
nosso estudo, também avaliamos intencionalmente um cenário
onde o problema N+1 queries não foi resolvido. Fizemos isso de
forma deliberada para nos permitir quantificar o impacto real dessas
soluções. Chamamos esse ponto de referência como Cenário Slow.

4.1 Aspectos Quantitativos
Para comparar os aspectos quantitativos, escolhemos algumas mé-
tricas e ferramentas frequentemente utilizadas na comunidade67
para comparação de performance.

4.1.1 IPS (Iterações Por Segundo). Utilizamos a gem benchmark-
ips8 para medir o IPS da solução. De forma simples, IPS se refere à
quantidade de vezes que um pedaço de código pode ser executado
dentro de um segundo. Quanto maior o IPS, mais rápido o código,
mostrando quão mais rápida é uma solução em relação a outra.

4.1.2 Tempo Total de Execução. Recorremos ao módulo Bench-
mark9 para calcular o tempo total de execução de cada solução.
Quanto menor, melhor, o que indica que a solução levou menos
tempo para retornar um resultado.

4.1.3 Memória Total Alocada. Lançamos mão da gem memory-
profiler10 para calcular a memória total alocada de cada solução.
Quanto menor, melhor, exibindo que a solução demanda menos
recursos do sistema para ser executada.

4.2 Aspectos Qualitativos
Além da análise quantitativa, também achamos relevante analisar
qualitativamente as soluções alternativas, levando em consideração
vantagens e desvantagens voltadas à escolha de adotar uma dessas
soluções.

4.2.1 Usabilidade. Representa o nível de esforço necessário para
usar as soluções. Quanto maior a usabilidade, menor o nível de
esforço e mais fácil é sua utilização.

3Gem batch-loader https://rubygems.org/gems/batch-loader
4Promises/A+ https://promisesaplus.com/
5Lazy Loading
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading
6Gem graphql-ruby public benchmark
https://github.com/rmosolgo/graphql-ruby/blob/master/benchmark/run.rb
7Gem ar_lazy_preload public benchmark
https://github.com/DmitryTsepelev/ar_lazy_preload/blob/master/benchmark/main.rb
8Gem benchmark-ips https://github.com/evanphx/benchmark-ips
9Módulo Benchmark https://ruby-doc.org/3.2.2/stdlibs/benchmark/Benchmark.html
10Gem memory-profiler https://github.com/SamSaffron/memory_profiler

4.2.2 Flexibilidade. A flexibilidade se concentra na capacidade de
lidar com diferentes condições ou requisitos, sem que grandes mu-
danças sejam necessárias.

4.2.3 Adição de Dependência Externa. Trata-se da necessidade de
incluir bibliotecas ao projeto que não são fornecidadas nativamente
em um sistema. Apesar da adição de dependências poder fornecer
novas funcionalidades, implica também em fatores como manuten-
ção, potenciais vulnerabilidades e carga inicial de aprendizado para
usar tais funcionalidades.

5 DESENVOLVIMENTO
Para efetivamente analisar o problema das N+1 queries em APIs
GraphQL em Rails, adotamos a seguinte abordagem: inicialmente,
escolhemos uma aplicação base que serviria como nossa referência
para desenvolver a aplicação de teste. Com essa aplicação emmente,
avançamos para a implementação das entidades do banco de dados,
estabelecendo seus relacionamentos específicos no Rails.

Em seguida, desenvolvemos o Schema GraphQL da nossa aplica-
ção Rails. Isso envolveu a definição de cada tipo, juntamente com
seus campos e resolvers. Com o Schema GraphQL pronto, passamos
para a etapa de determinação das queries usadas em nossos testes
quantitativos. Estas queries servem como nossos casos de teste para
avaliar a performance das soluções.

Uma vez tendo as queries definidas, criamos scripts individuais
no Rails, cujo propósito é executar as análises quantitativas. Es-
tes scripts foram cuidadosamente projetados para garantir que os
testes fossem repetíveis e consistentes. Na fase subsequente, execu-
tamos estes scripts, realizando a análise quantitativa e capturando
os resultados para avaliação.

Finalmente, além da avaliação quantitativa, realizamos uma aná-
lise qualitativa seguindo os aspectos apontados na Subseção 4.2.
Essa análise qualitativa complementou nossos resultados quantita-
tivos, oferecendo uma visão abrangente do problema e das soluções
propostas.

Definimos os seguintes passos a fim de atingir o objetivo de
comparar as três soluções:

(1) Escolher a aplicação base
(2) Implementar as entidades do banco de dados e seus respec-

tivos relacionamentos em Rails
(3) Desenvolver o Schema GraphQL da aplicação Rails, defi-

nindo cada tipo com seus respectivos campos e resolvers
(4) Determinar queries a serem efetuadas nos testes quantitati-

vos
(5) Criar scripts individuais para executar as análises quantita-

tivas em Rails
(6) Executar os scripts, efetuando a análise quantitativa
(7) Fazer a análise qualitativa

5.1 Escolha da Aplicação Base
Nos baseamos em uma aplicação clone do Twitter11. A nossa apli-
cação é um simples servidor GraphQL implementado em Rails se-
guindo a seguinte arquitetura: Cliente, GraphQL Controller, Schema
GraphQL e um banco de dados. Para implementar os elementos

11Aplicação Clone do Twitter
https://gist.github.com/DmitryTsepelev/d0d4f52b1d0a0f6acf3c5894b11a52ca

Comparando soluções para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

GraphQL, utilizamos a gem graphql-ruby12, amplamente utilizada
na indústria. O fluxo comum de uso é fazer uma query GraphQL por
meio de uma requisição HTTP ao servidor, que será tratada pelo
GraphQL Controller e por sua vez usará o Schema GraphQL para
executar a query recebida. Durante a execução, o Schema GraphQL
é responsável por obter os dados necessários por meio de queries
ao banco de dados, utilizando o Active Record.

Essa aplicação permite consultarmos uma API GraphQL que
fornece o feed do usuário autenticado no sistema, exibindo tweets
de outros usuários. Para cada tweet, podemos obter seu content
(conteúdo), seu author (autor) e seus comments (comentários). Cada
author possui um nickname (apelido) e um avatar. Por sua vez,
o avatar tem apenas a url da imagem de perfil do usuário. De
cada comment, podemos obter seu content e seu author, de forma
bem similar ao tweet. A arquitetura da aplicação pode ser vista na
Figura 4.

Figura 4: Arquitetura da aplicação Rails

5.2 Implementação das Entidades e
Relacionamentos em Rails

No esquema do banco de dados proposto, temos várias entidades
interconectadas para modelar o sistema clone do Twitter, ou seja,
um sistema típico de rede social. Cada user tem um único avatar,
que representa seu perfil e tem como atributo a imagem do usuário.
Definimos a entidade avatar à parte porque ele pode, em uma
aplicação real, compreender outros atributos, como configurações
para o usuário. Esse usuário pode criar tweets, que não passam de
mensagens, e também pode responder ou interagir com os tweets de
outros usuários por meio de comments (comentários). Na Figura 5,
temos o diagrama entidade-relacionamento do banco de dados.

Para aprofundar as relações sociais, o esquema permite que um
usuário siga outros usuários. Essas relações de follow (seguir são
representadas na tabela user_connection (conexão do usuário), que
registra quem cada usuário decide seguir. Esta representação per-
mite um fluxo de informações onde um usuário pode ver as atuali-
zações de quem ele decide seguir, simulando uma típica dinâmica
de rede social.

Cada tweet, além de pertencer a um usuário, pode ser a base
para uma série de comentários. Esses comentários, assim como os
tweets, estão vinculados a um usuário específico, indicando quem
os escreveu.
12GraphQL Ruby https://graphql-ruby.org/

Figura 5: Diagrama Entidade-Relacionamento do banco de
dados

Assim, capturamos as principais atividades e interações em uma
plataforma de mídia social: postar mensagens, comentar sobre elas,
representar-se por meio de um avatar e formar conexões seguindo
outros usuários.

Em Rails, as entidades são implementadas na forma de models
(modelos), classes que permitem o acesso ao banco de dados. Por sua
vez, os relacionamentos entre entidades são definidos por meio de
associations (associações) entremodels, implementados de forma de-
clarativa em cada model[9]. Na Listagem 6 temos a implementação
dos seguintes relacionamentos:

• User 1 : 1 Avatar
• User 1 : N Tweet
• User 1 : N Comment
• User N : N User
• Tweet 1 : N Comment

Emnossa implementação, fizemos uso de 4 associações diferentes.
A função has_one estabelece uma relação um-para-um e foi usada
para definir que cada usuário tem apenas um avatar associado a
ele.

Já a função has_many define uma relação um-para-muitos. Como
visto na classe User, para estabeler que um usuário pode criar vários
tweets, mas cada tweet individual pertence a apenas um usuário.

Igor Simões

1 class User < ApplicationRecord
2 has_one :avatar
3
4 has_many :tweets
5 has_many :comments
6
7 has_many :followers_connections ,
8 class_name: "UserConnection",
9 foreign key: :user_id
10 has_many :followed_connections ,
11 class_name: "UserConnection",
12 foreign_key: :follower_id
13
14 has_many :followers ,
15 through: :followers_connections ,
16 class_name: "User",
17 source: :follower
18 has_many :followed_users ,
19 through: :followed_connections ,
20 class_name: "User",
21 source: :user ,
22 end
23
24 class Avatar < ApplicationRecord
25 belongs_to :user
26 end
27
28 class Tweet < ApplicationRecord
29 belongs_to :user
30 has_many :comments
31 end
32
33 class Comment < ApplicationRecord
34 belongs_to :user
35 belongs_to :tweet
36 end
37
38 class UserConnection < ApplicationRecord
39 belongs_to :user
40 belongs_to :follower , class_name: "User"
41 end

Listagem 6: Associações entre models

Estabelecemos a relação de pertencimento com o belongs_to. É
frequentemente a contraparte do has_one ou has_many. Sua decla-
ração na classe Avatar afirma que um avatar está associado a um e
apenas um usuário.

E finalmente, há o modificador through, que é frequentemente
usado com has_many para estabelecer associações muitos-para-
muitos através de uma tabela intermediária. Utilizamos para repre-
sentar as relações de follow entre usuários.

5.3 Desenvolvimento do Schema GraphQL em
Rails

A construção e evolução do Schema GraphQL desempenhou um
papel crucial na comparação das soluções. Inicialmente, adotamos
uma abordagem simplista, criando um Schema sem nenhuma solu-
ção específica para o problema, visando reproduzir o problema de
N+1 queries. Assim, tivemos o ponto de referência mencionado na
Seção 4, o Cenário Slow. Vemos o Schema inicial na Figura 6.

No início, implementamos o tipo Viewer com apenas um campo
feed que utiliza o resolver FeedResolver para buscar e construir o
feed do usuário. Nele, utilizamos a função for definida no módulo
FeedBuilder, cujo retorno são os 10 primeiros tweets mais recentes
dos followed users (usuários seguidos) pelo usuário recebido como
argumento. Na Listagem 7 vemos a implementação desse módulo.

Figura 6: Schema GraphQL inicial

1 module FeedBuilder
2 module_function
3
4 def for(user)
5 Tweet.where(user: user.followed_users)
6 .order(created_at: :desc)
7 .limit (10)
8 end
9 end

Listagem 7: Módulo FeedBuilder responsável pela query de
tweets

Os outros tipos do Schema foram desenvolvidos seguindo a abor-
dagem simplista, apenas definindo campos simples. Por meio da
Listagem 8 vemos as implementações iniciais do tipo Viewer men-
cionado e como exemplo da implementação dos outros tipos vemos
o tipo Comment.

1 class ViewerType < Types::Base:: Object
2 field :feed , resolver: Resolvers :: FeedResolver
3 end
4
5 class CommentType < Types::Base:: Object
6 field :content , String , null: false
7 field :author , UserType , null: false , method: :user
8 end
9
10 module Resolvers
11 class BaseFeedResolver < Base
12 type [Types:: TweetType], null: false
13
14 def resolve
15 raise NotImplementedError
16 end
17 end
18
19 class FeedResolver < BaseFeedResolver
20 def resolve
21 FeedBuilder.for(current_user)
22 end
23 end
24 end

Listagem 8: Implementação inicial do tipo GraphQL Viewer
e Comment

Na primeira evolução do Schema, acrescentamos um novo campo
chamado feed_with_includes no tipo Viewer, para compreender e
demonstrar a eficácia da Solução Includes. O resolver desse campo,
FeedResolverIncludes, incorporou a otimização chamando ométodo

Comparando soluções para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

includes para pré-carregar associações e evitar múltiplas queries.
Apontamos essa evolução na Listagem 9.

1 class ViewerType < Types::Base:: Object
2 field :feed , resolver: Resolvers :: FeedResolver
3 field :feed_with_includes , resolver: Resolvers ::

FeedResolverIncludes
4 end
5
6 module Resolvers
7 class FeedResolverIncludes < BaseFeedResolver
8 def resolve
9 user_includes = {user: :avatar}
10
11 FeedBuilder.for(current_user).includes(

user_includes , comments: user_includes)
12 end
13 end
14 end

Listagem 9: Implementação final do tipo GraphQL Viewer

Para explorar as Soluções GraphqlBatch e BatchLoader, evoluí-
mos o Schema incrementando os tipos como Tweet, User e Com-
ment com novos campos específicos para essas soluções. Por exem-
plo, no tipo Comment, originalmente, tínhamos um simples campo
author que trazia o usuário associado ao comentário. Com a evo-
lução, adicionamos campos adicionais: author_graphql_batch e
author_batch_loader, que empregam respectivamente as Soluções
GraphqlBatch e BatchLoader para resolver o problema de N+1 que-
ries. Essa alteração está na Listagem 10.

1 class CommentType < Types::Base:: Object
2 field :content , String , null: false
3 field :author , UserType , null: false , method: :user
4
5 field :author_graphql_batch , UserType , null: false
6
7 def author_graphql_batch
8 Loaders :: AssociationLoader.for(Comment , :user).load(

object)
9 end
10
11 field :author_batch_loader , UserType , null: false
12
13 def author_batch_loader
14 BatchLoader :: GraphQL.for(object.user_id).batch do |

user_ids , loader|
15 User.where(id: user_ids).each { |author| loader.

call(author.id, author) }
16 end
17 end
18 end

Listagem 10: Implementação final do tipo GraphQLComment

O Schema final, após as evoluções mencionadas, é visto na Fi-
gura 7. Essa abordagem progressiva de desenvolver e evoluir o
Schema GraphQL permitiu uma comparação justa e detalhada entre
as várias soluções, explicada na próxima subseção.

5.4 Queries Determinadas
O Schema GraphQL foi estrategicamente construído para permitir
testar cada solução de forma isolada e direta. A chave para essa
abordagem modular foi incorporar diferentes resolvers no Schema,
cada um implementando uma das soluções. Dito isso, para obter

Figura 7: Schema GraphQL completo

uma visão mais abrangente na análise de performance e eficácia das
soluções propostas, não nos restringimos a uma única abordagem
de consulta. Em nossos testes, definimos dois tipos distintos de
queries: Completa e Parcial.

Uma query Completa solicita todo o fluxo de dados apontado na
Subseção 5.1. Como ponto de partida, definimos a query completa
SlowCompleta, padrão, sem a aplicação de qualquer solução, ou
seja, simulando o Cenário Slow. A partir da adaptação dessa query,
pudemos testar as diferentes implementações garantindo o mesmo
resultado, porém com diferentes performances.

Para testar a Solução Includes, definimos a query IncludesCom-
pleta, apenas solicitando o campo feed_with_includes ao invés do
campo feed. Do mesmo modo, para avaliar as Soluções Graphql-
Batch e BatchLoader, criamos as queries GraphqlBatchCompleta e
BatchLoaderCompleta, solicitando os campos especificamente adi-
cionados para cada uma dessas soluções. Por exemplo, para avaliar
a Solução GraphqlBatch, basta trocarmos na query o campo author
pelo campo author_graphql_batch, enquanto no caso da Solução Bat-
chLoader, é suficiente trocarmos pelo campo author_batch_loader.
As queries SlowCompleta, IncludesCompleta, GraphqlBatchCom-
pleta e BatchLoaderCompleta apontadas estão presentes na Figura 8.

Em contraste, uma query Parcial é simplesmente uma versão
reduzida de uma query Completa em que omitimos intencional-
mente os comments associados a cada tweet. Assim, para cada query
Completa definida, também criamos uma query Parcial.

Por meio dessa abordagem, conseguimos investigar mais pro-
fundamente as soluções quanto ao desempenho, às vantagens e
possíveis limitações de cada solução, tanto em situações de alta
demanda de dados quanto em operações mais simplificadas.

5.5 Criação dos Scripts
Antes de criar os scripts, isolamos a etapa de execução do Schema
GraphQL, a parte do servidor que foi testada. Para isso, desen-
volvemos o BaseExecutor. Esta classe tem a responsabilidade de
executar uma query diretamente no Schema GraphQL, abstraindo
a etapa da requisição HTTP mostrada na Figura 4. A classe esta-
belece também uma assinatura padrão para um método, chamado
query_string. Aqueles que herdam dessa classe base têm a tarefa de
implementar este método. Adicionalmente, o BaseExecutor define
um método context, que provê informações sobre o usuário atual
do sistema, que é um simples dicionário contendo dados específicos
da aplicação, como o usuário autenticado por exemplo. Nele, ape-
nas passamos um mesmo usuário como usuário atual do sistema,

Igor Simões

1 query SlowCompleta {
2 viewer {
3 feed {
4 content
5 author {
6 nickname
7 avatar {
8 imageUrl
9 }
10 }
11 comments {
12 content
13 author {
14 nickname
15 avatar {
16 imageUrl
17 }
18 }
19 }
20 }
21 }
22 }

query IncludesCompleta {
viewer {

feedWithIncludes {
content
author {

nickname
avatar {

imageUrl
}

}
comments {

content
author {

nickname
avatar {

imageUrl
}

}
}

}
}

}

query GraphqlBatchCompleta {
viewer {

feed {
content
authorGraphqlBatch {

nickname
avatarGraphqlBatch {

imageUrl
}

}
commentsGraphqlBatch {

content
authorGraphqlBatch {

nickname
avatarGraphqlBatch {

imageUrl
}

}
}

}
}

}

query BatchLoaderCompleta {
viewer {

feed {
content
authorBatchLoader {

nickname
avatarBatchLoader {

imageUrl
}

}
commentsBatchLoader {

content
authorBatchLoader {

nickname
avatarBatchLoader {

imageUrl
}

}
}

}
}

}

Figura 8: Queries Completas

visando garantir o mesmo resultado entre execuções. A execução
de uma query, então, ocorre ao passar ambos a query_string e o
context como parâmetros no método execute do Schema GraphQL.

Construído esse alicerce,modelamos um Executor filho es-
pecífico para cada solução proposta, de modo que cada executor
tinha sua respectiva query Completa embutida em sua implementa-
ção do método query_string. Claro, não nos esquecemos de criar um
Executor adicional para o Cenário Slow. Dito isso, criamos as classes
SlowExecutor, IncludesExecutor, GraphqlBatchExecutor e
BatchLoaderExecutor, vistas na Figura 9.

Figura 9: Esquema de herança com cada Executor

Em seguida, para cada aspecto quantitativo mencionado na sub-
seção 4.1, criamos um script, cujo propósito é executar e medir as
execuções de cada Executor. O fluxo de execução dos scripts foi
meticulosamente determinado:

(1) Instanciação do Executor e Limpeza do Ambiente
(2) O Executor é então executado dentro de uma função anô-

nima, passada para o método de comparação adequado.
(3) Este ciclo de instanciação e limpeza do ambiente, seguido

pela execução de um Executor é feito na ordem: SlowExe-
cutor, IncludesExecutor, GraphqlBatchExecutor e BatchLo-
aderExecutor.

(4) Concluídas as execuções, realizamos a Limpeza da Cache
do BatchLoader.

O passo de Instanciação do Executor apenas cria uma nova
instância do Executor que está sendo executado no momento. Na
Limpeza do Ambiente, por sua vez, executamos manualmente
o Garbage Collector e em seguida o desabilitamos. Externos ao
método de comparação, fizemos esses passos para evitar impactos
nos resultados dos testes e apenas avaliarmos a execução de cada
query isoladamente. Ao final do processo, efetuamos a Limpeza
da Cache do BatchLoader, em que limpamos também a cache
específica da Solução BatchLoader. Isso normalmente seria feito
entre requisições HTTP, considerando a arquitetura da Figura 4.
Para garantir precisão e uma amostragem robusta, repetimos esse
processo inteiro em um loop, resultando em dez execuções
distintas para cada Executor.

Todo esse processo está ilustrado visualmente na Figura 10, facili-
tando a compreensão do fluxo de execução e das etapas envolvidas.
Por fim, coletamos os dados ao longo das execuções e os arma-
zenados meticulosamente em arquivos CSV, um para cada script.
Posteriormente, esses arquivos foram usados para gerar gráficos,
permitindo uma análise visual mais intuitiva dos resultados, apre-
sentados na Seção 6. No caso da avaliação da query Parcial, apenas
ajustamos manualmente as queries nos executores e agrupamos os
dados em um CSV distinto.

A execução de cada script foi realizada usando o comando rails
runner13, que permite a execução de código Ruby no contexto
de uma aplicação Rails. Especificamos o ambiente de produção
utilizando a flag -e. Vale mencionar que este ambiente manteve as
configurações padrão encontradas em um novo projeto Rails.

6 RESULTADOS
Após a execução de cada script, pudemos enfim realizar a análise
comparativa apontada na seção 4. Ressaltamos que aplicamos o

13Linha de Comando Rails https://guides.rubyonrails.org/command_line.html#bin-
rails-runner

Comparando soluções para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

Figura 10: Esquema de execução dos scripts

método Tukey14 para lidar com dados atípicos e os removemos dos
gráficos para que a visualização não fosse comprometida, para cada
uma das métricas.

6.1 IPS
Ao avaliar os resultados medianos das dez execuções em termos de
IPS, observamos diferenças notáveis entre as soluções propostas e
o Cenário Slow. Os resultados obtidos podem ser vistos lado a lado
para cada tipo de query na Tabela 1.

Para a query Completa, o Cenário Slow apresentou uma perfor-
mance mediana de 29 i/s, estabelecendo nosso padrão de referência.
Utilizando a Solução Includes, vemos um notável aumento para
14https://towardsdatascience.com/detecting-and-treating-outliers-in-python-part-1-
4ece5098b755

Tabela 1: Mediana aproximada do IPS para cada Executor e
tipo de query

Executor Query Completa Query Parcial

Slow 29 i/s 85 i/s
Includes 87 i/s 121 i/s

GraphQLBatch 79 i/s 170 i/s
BatchLoader 122 i/s 231 i/s

87 i/s, demonstrando uma melhoria considerável na eficiência. Já
a Solução GraphQLBatch apresentou um desempenho de 79 i/s,
ligeiramente abaixo da Solução Includes, mas ainda muito acima
do cenário base. A Solução BatchLoader destacou-se, alcançando
uma marca impressionante de 122 i/s, tornando-se a solução de
melhor performance para a query Completa. Apresentamos os re-
sultados de IPS da query Completa por meio de violin plots em
um gráfico geral na Figura 11. Para ter uma visão melhor de cada
solução individualmente, temos as Figuras 12, 13, 14 e 15, para as
classes SlowExecutor, IncludesExecutor, GraphqlBatchExecutor e
BatchLoaderExecutor respectivamente.

Figura 11: Gráfico com valores de IPS para cada solução -
query Completa

Para a query Parcial, o Cenário Slow registrou 85 i/s como me-
diana. Vemos que nessa query a Solução Includes, com resultado
de 121 i/s, foi ultrapassada pela Solução GraphqlBatch e suas 170
i/s. A Solução BatchLoader prevaleceu novamente com um desem-
penho de 231 i/s, solidificando sua posição como a solução mais
eficaz entre as testadas. Na Figura 16 temos os resultados de IPS
de forma abrangente para a query Parcial, também em violin plots.
Novamente, temos visões individuais nas Figuras 17, 18, 19 e 20.

Esses dados mostram que, embora todas as soluções otimizadas
proporcionem ganhos significativos em relação ao cenário padrão,
o BatchLoader consistentemente se destaca em termos de eficiência.

Igor Simões

Figura 12: Gráfico com valores de IPS para o Cenário Slow -
query Completa

Figura 13: Gráfico com valores de IPS para a Solução Includes
- query Completa

Figura 14: Gráfico com valores de IPS para a Solução Graphql-
Batch - query Completa

Figura 15: Gráfico com valores de IPS para a Solução Batch-
Loader - query Completa

6.2 Tempo Total de Execução
No tocante ao tempo total de execução, ao analisar os resultados
medianos das dez execuções é perceptível novamente que todas
as soluções propostas para otimização tiveram um impacto signi-
ficativo na melhoria do tempo de resposta em comparação com
o Cenário Slow. De forma similar ao IPS, podemos visualizar os
resultados obtidos na Tabela 2.

Quanto às queries Completas, o Cenário Slow mostrou um tempo
de 41 ms, servindo como uma linha base para as comparações. A

Figura 16: Gráfico com valores de IPS para cada solução -
query Parcial

Figura 17: Gráfico com valores de IPS para o Cenário Slow -
query Parcial

Figura 18: Gráfico com valores de IPS para a Solução Includes
- query Parcial

Solução Includes conseguiu reduzir esse tempo para 15ms, represen-
tando uma economia substancial. No entanto, a Solução GraphQL-
Batch mostrou-se ligeiramente mais lenta, com 16 ms, mas ainda
assim muito mais eficiente do que o Cenário Slow. A Solução Batch-
Loader teve o melhor tempo de resposta, com um tempo mediano
de apenas 14 ms, demonstrando ser a solução mais rápida para a
query Completa. A Figura 21 mostra os resultados das execuções
abrangentemente.

Quando olhamos para as queries Parciais, o Cenário Slow teve
um tempo mediano de 11 ms. O que identificamos aqui é a Solução

Comparando soluções para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

Figura 19: Gráfico com valores de IPS para a Solução Graphql-
Batch - query Parcial

Figura 20: Gráfico com valores de IPS para a Solução Batch-
Loader - query Parcial

Tabela 2: Mediana aproximada do tempo total de execução
em milissegundos para cada Executor e tipo de query

Executor Query Completa Query Parcial

Slow 41 ms 11 ms
Includes 15 ms 9 ms

GraphQLBatch 16 ms 7 ms
BatchLoader 14 ms 6 ms

Figura 21: Tempo total de execução - query Completa

Includes, com 9 ms, foi novamente excedida pela Solução Graphql-
Batch, com 7 ms. Mais uma vez, a Solução BatchLoader se destacou

como a solução mais eficaz, entregando a query em apenas 6 ms.
Esses números estão presentes na Figura 22.

Figura 22: Tempo total de execução - query Parcial

Esses resultados reiteram que, enquanto todas as soluções otimi-
zadas oferecem uma melhoria substancial em relação ao Soluçao
Slow e a Solução BatchLoader tem uma vantagem consistente, seja
em queries Completas ou Parciais. Além disso, podemos ver que
os resultados nos testes de IPS se traduziram para o tempo total de
execução, como o fato da Solução GraphqlBatch ter ultrapassado a
Solução Includes na query Parcial.

6.3 Memória Alocada
Em resumo, a memória alocada se refere ao espaço total de memória
solicitado durante a execução de um bloco de código. Notavelmente,
o script de análise de memória produziu resultados consistentes em
todas as dez execuções, mostrando o mesmo valor para cada um
dos executores. Novamente, os exibimos na Tabela 3.

Tabela 3: Memória alocada em MB para cada Executor e tipo
de query

Executor Query Completa Query Parcial

Slow 1.05 MB 0.35 MB
Includes 0.47 MB 0.36 MB

GraphQLBatch 0.53 MB 0.22 MB
BatchLoader 0.52 MB 0.21 MB

Com relação à memória alocada, no cenário da query Completa,
o Cenário Slow consumiu cerca de 1.05 MB. A Solução Includes
reduziu a alocação para 0.47 MB, enquanto as Soluções Graphql-
Batch e BatchLoader resultaram em alocações de 0.53 MB e 0.52 MB,
respectivamente. Este consumo mais elevado para as soluções base-
adas em lotes pode estar potencialmente relacionado à sobrecarga
introduzida por classes adicionais do GraphQL.

Quando observamos a query Parcial, o Cenário Slow tem um con-
sumo de 0.35 MB. Sobre a Solução Includes, fica visível a influência
de pré-carregar todas as associações, ultrapassando até mesmo o

Igor Simões

cenário de referência e alocando 0.36MB. Já a Solução GraphqlBatch
teve 0.22 e de forma bem similar a Solução BatchLoader alocou 0.21
MB.

6.4 Análise Qualitativa
Esta análise proporciona entendimentos sobre as qualidades e po-
tenciais limitações de cada solução, considerando o contexto de
APIs GraphQL implementadas em Rails. A Figura 23 mostra essa
comparação visualmente de acordo com cada aspecto visto na Sub-
seção 4.2 para cada solução analisada.

Figura 23: Tabela de análises qualitativas com aspectos por
solução

6.4.1 Usabilidade. A integração direta fornecida pela Solução In-
cludes implica em alta usabilidade para desenvolvedores familiariza-
dos com Rails. Quanto à Solução GraphqlBatch, seu uso é intuitivo
quando já há um conhecimento com relação à gem graphql-ruby.
No entanto, aqueles sem experiência prévia com o GraphQL e seu
ecossistema enfrentarão uma curva de aprendizado. Por sua vez, a
Solução BatchLoader "é mais díficil de começar do que com algo
específico ao GraphQL, como graphql-batch"[13].

6.4.2 Flexibilidade. No tocante à flexibilidade, a Solução Includes
começa a ter dificuldades. É uma solução ótima para situações pa-
drão, em queriesmais diretas, porém não se adapta tão bem a queries
mais complexas, por exemplo quando pré-carregando associações
polimórficas. Esse caso é facilmente resolvido pela Solução Bat-
chLoader e está exemplificado em seu repositório Github. Isso é
apenas um dos pontos que mostra como a Solução BatchLoader é
flexível. A sua utilização pode ser facilmente customizada quando
queries mais compostas forem necessárias[6]. Além disso, ela ainda
pode ser utilizada de forma simples em situações que não tenham
envolvimento algum com GraphQL, como em APIs REST. Isso a
torna incrivelmente poderosa. A Solução GraphqlBatch também
oferece mais flexibilidade do que a solução nativa, entretanto menos
do que a Solução BatchLoader, justamente por ser específica para o
GraphQL.

6.4.3 Adição de Dependência Externa. A única solução dentre as
três que não exige a adição de uma dependência externa é a Solução
Includes, uma vez que é um recurso nativo do Rails. Para projetos
que desejam minimizar o número de dependências ou apenas em
busca de uma solução rápida para queries mais simples, ela pode ser
ideal. Apesar de ser uma dependência externa, a Solução Graphql-
Batch é focada em resolver o problema N+1 queries no contexto
da gem graphql-ruby, podendo ser vista como uma extensão natu-
ral. De forma similar, a Solução BatchLoader é uma dependência

externa. Apesar disso, sua flexibilidade pode evitar que outras de-
pendências venham a ser necessárias, já que sua aplicabilidade é
mais ampla.

6.5 Ameaças à Validade
Alguns aspectos merecem ser destacados ao comparar as soluções
para o problema N+1 queries, porque podem representar potenciais
ameaças à validade das conclusões extraídas:

O Schema Graphql e as entidades do banco de dados foram es-
truturados com o objetivo específico de simular o problema de N+1
queries. Também é valido apontar que apenas analisamos com res-
peito a duas queries ao Schema GraphQL. Embora isso seja essencial
para a reprodutibilidade do problema em um ambiente controlado,
pode não refletir a complexidade e variações encontradas em sis-
temas reais. Além disso, há cenários em aplicações do mundo real
que podem não ter sido totalmente capturados nesta configuração.

O estado do banco de dados ser consistente durante os testes é
uma vantagem, por eliminar variáveis indesejadas que poderiam in-
fluenciar os resultados. Porém, isso também pode ser uma limitação.
Em sistemas reais, a condição do banco de dados pode variar, por
exemplo em termos de volume de dados ou atividades simultâneas,
o que pode afetar o desempenho das soluções. Embora os resultados
sejam mais confiáveis com o estado consistente do banco de dados,
reconhecemos que diferentes estados podem produzir resultados
distintos.

A definição de uma ordem constante para a chamada dos exe-
cutores visou minimizar variáveis externas que possam afetar os
resultados. No entanto, mesmo que os testes tenham sido projetados
para serem o mais isolados possível, a ordem de execução, em teo-
ria, poderia influenciar os resultados devido a aspectos como cache
ou alocação de recursos do sistema. Embora a probabilidade seja
mínima, não podemos desconsiderar completamente essa variável.

Utilizamos de uma única aplicação toy (um sistema sem utilização
prática de fato projetado principalmente para fins experimentais ou
didáticos) como base para os testes pode não refletir completamente
a realidade de aplicações empresariais ou em produção. Aplicações
do mundo real podem ter esquemas mais complexos, conjuntos
de dados maiores e interações mais entrelaçadas, o que poderia
influenciar o desempenho das soluções testadas.

A análise qualitativa foi conduzida por um único indivíduo, o
que pode introduzir um viés subjetivo. Diferentes desenvolvedores
podem ter diferentes percepções e experiências, possivelmente le-
vando a diferentes conclusões ou ênfases na análise das soluções.
Idealmente, poderíamos tornar a avaliação mais robusta conside-
rando múltiplos avaliadores para garantir uma visão mais diversifi-
cada.

A relevância do estudo não é diminuída ao reconhecer essas ame-
aças, no entanto destaca áreas em que futuras pesquisas podem se
aprofundar para oferecer uma compreensão mais completa quanto
ao problema de N+1 queries em APIs GraphQL em Rails.

7 TRABALHOS RELACIONADOS
Antes de finalizar esta análise, consideramos pertinente citar estu-
dos relacionados ao GraphQL, visando demonstrar o quanto sua
relevância acadêmica vem crescendo.

Comparando soluções para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

O GraphQL é frequentemente comparado à arquitetura REST,
de forma quantitativa. Gleison Brito e Marco Valente[1] realizaram
um experimento controlado para comparar ambas tecnologias em
aspectos quantitativas e qualitativos. Sobre a análise qualitativa,
diferentemente da nossa abordagem em que apenas tivemos as vi-
sões de uma única pessoa, eles entrevistaram 38 desenvolvedores
de software, funcionários do Github. Na perspectiva quantitativa,
apesar de não fazermos nenhuma comparação com REST, é valido
mostrar que eles não eliminaram as requisições HTTP ao investi-
gar a performance de ambas as tecnologias. Em nossa visão, isso
pode gerar ruídos devido aos aspectos de redes inerentes à essas
requisições.

No trabalho de Roksela et al[7], uma aplicação para simular
o ambiente de uma API web foi desenvolvida para comparar as
diferentes estratégias de execução de queries GraphQL. Um dos
objetivos desse estudo foi avaliar a resistência de cada estratégia ao
problema N+1. Por exemplo, no trabalho mencionado estratégias
de cache e carregamento em lote foram comparadas entre si e não
tiveram diferenças significativas quanto ao tempo total de execução.
Em nossos testes, o uso de caches foi explicitamente eliminado, ou
seja, nem chegamos a comparar esse cenário.

Estes estudos, quando somados às nossas observações, propor-
cionam uma visão mais abrangente sobre o GraphQL como uma
tecnologia cada vez mais relevante no mercado de desenvolvimento
de software.

8 CONCLUSÃO
O problema N+1 pode ocorrer de formas diferentes em vários siste-
mas e diversas tecnologias, como emAPIs REST, não se restringindo
apenas ao problema de N+1 queries. Neste estudo, comparamos de
forma específica três soluções distintas para abordar o problema
de N+1 queries em APIs GraphQL implementadas em Rails: a So-
lução Includes, a Solução GraphqlBatch e a Solução BatchLoader.
A motivação para tal comparação deriva da prevalência deste pro-
blema em muitos projetos que utilizam GraphQL e da necessidade
de otimização para melhorar a eficiência e a experiência do usuário.

Por meio da implementação e teste dessas soluções, consegui-
mos avaliar aspectos quantitativos, por meio da medição do tempo
total de execução, do IPS e do consumo de memória, mas também,
qualitativos, como a adição de dependências externas, usabilidade
e flexibilidade.

Em relação à performance, observamos que a Solução BatchLoa-
der apresentou a melhor performance, no que diz respeito ao IPS
e tempo total de execução. Em termos de memória, quando com-
parada às outras soluções, no cenário de maior volume de dados
ela por pouco não teve o pior desempenho. Quando avaliamos uma
menor exigência de dados, a situação se inverteu e ela se sobressaiu
em relação as outras soluções.

No contexto qualitativo, cada solução tem seus méritos. A Solu-
ção Includes se beneficia por ser nativa do Rails, proporcionando
uma integração mais suave e uma curva de aprendizado menos
íngreme. Por outro lado, as Soluções GraphqlBatch e BatchLoader
possuem vantagens específicas, com o primeiro sendo mais oti-
mizado para o contexto GraphQL e o segundo oferecendo maior
versatilidade.

Concluindo, apesar de todos os aspectos analisados, o Cenário
Slow, ou seja, sem uso de nenhuma das soluções, pode ser suficiente.
Se muitos dos models do banco de dados não forem associados
ou as associações existentes não estiverem presentes no Schema
GraphQL, não há necessidade de empregar nenhuma das soluções.

Em contrapartida, se queries mais frequentes do sistema sempre
requisitarem essas associações, a Solução Includes pode ser a mais
recomendada, já que não requer nenhuma alteração no projeto
Rails. Além disso, ainda que consuma mais recursos que as outras
soluções, se não houver necessidade de otimizar esse consumo, seja
por excesso de recurso, seja por não haver impacto suficiente no
sistema, ela também pode ser a solução mais indicada.

Se não pudermos dispor desse gasto, teremos que recorrer às
Soluções GraphqlBatch e BatchLoader. No contexto em que o time
é menos experiente ou apenas há APIs GraphQL na aplicação, a
Solução GraphqlBatch pode ser suficiente, uma vez que exige menor
entendimento inicial e somente trata do problema N+1 no contexto
do GraphQL.

Por fim, se a experiência do time for suficientemente balanceada
e a aplicação estiver em contato com outros serviços em que o pro-
blema N+1 pode acontecer, como APIs REST, a Solução BatchLoader
fornece a maior flexibilidade de uso. Além disso, se o requisito de
performance for extremamente necessário, essa solução também é
a mais adequada.

AGRADECIMENTOS
Agradeço aos meus pais da Terra, Simone e Gilson, aos meus irmãos,
Ítalo, Lucas e Pedro, e à minha terceira mãe, Fátima.

Agradeço também ao meu pai Telêmaco, que com certeza está
me olhando crescer, de onde estiver.

Agradeço também aos meus amigos do peito, Pedro e Tiago, pre-
sentes em todas as minhas conquistas. Embora não compartilhemos
o mesmo sangue, vocês são irmãos para mim em todos os sentidos
que realmente importam.

Agradeço também à Ottony e Juliana, com quem aprendi tudo o
que sei sobre Ruby on Rails durante minha jornada na Incognia.

Agradeço também à minha namorada, Camila Cunha, por todo
amor, carinho e companheirismo durante esse ano tão incrível.

Agradeço também aos amigos que fiz na faculdade, por ilumina-
rem minha jornada a cada dia.

Agradeço também ao Centro de Informática e seus professores,
que me concederam tantas oportunidades durante a graduação.

Agradeço por fim, ao meu orientador Paulo Borba, pelo suporte
e orientação tão necessários para o desenvolvimento deste trabalho.

REFERÊNCIAS
[1] Gleison Brito and Marco Tulio Valente. 2020. REST vs GraphQL: A Controlled

Experiment. arXiv:2003.04761 [cs.SE]
[2] Roy Thomas Fielding and Richard N. Taylor. 2000. Architectural Styles and the

Design of Network-Based Software Architectures. Ph. D. Dissertation.
[3] Roy T. Fielding and Richard N. Taylor. 2000. Principled Design of the Modern

Web Architecture. In Proceedings of the 22nd International Conference on Software
Engineering (ICSE ’00). 407–416. https://doi.org/10.1145/337180.337228

[4] Roy T. Fielding and Richard N. Taylor. 2002. Principled Design of the Modern
Web Architecture. ACM Trans. Internet Technol. 2, 2 (may 2002), 115–150. https:
//doi.org/10.1145/514183.514185

[5] Facebook Inc. 2023. GraphQL specification (draft). Retrieved September 23, 2023
from https://spec.graphql.org/draft/

[6] Nick Keuning. 2021. Solving Complex N+1 Queries in GraphQL Ruby with
BatchLoader. Retrieved September 23, 2023 from https://spin.atomicobject.com/

https://arxiv.org/abs/2003.04761
https://doi.org/10.1145/337180.337228
https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/514183.514185
https://spec.graphql.org/draft/
https://spin.atomicobject.com/2021/02/22/complex-n1-queries-graphql-ruby/
https://spin.atomicobject.com/2021/02/22/complex-n1-queries-graphql-ruby/

Igor Simões

2021/02/22/complex-n1-queries-graphql-ruby/
[7] Piotr Roksela, Marek Konieczny, and Slawomir Zielinski. 2020. Evaluating

execution strategies of GraphQL queries. In 2020 43rd International Conference
on Telecommunications and Signal Processing (TSP) (LAC ’10). 640–644. https:
//doi.org/10.1109/TSP49548.2020.9163501

[8] RubyGems.Org. [n. d.]. Learn how RubyGems works, and how to make your
own. Retrieved September 23, 2023 from https://guides.rubygems.org/

[9] RubyOnRails.Org. 2021. Active Record Associations. Retrieved September 23,
2023 from https://guides.rubyonrails.org/association_basics.html

[10] RubyOnRails.Org. 2021. Active Record Query Interface. Retrieved September
23, 2023 from https://guides.rubyonrails.org/active_record_querying.html

[11] Dmitry Tsepelev. 2020. How to GraphQL with Ruby, Rails, Active Record, and no
N+1. Retrieved September 23, 2023 from https://evilmartians.com/chronicles/
how-to-graphql-with-ruby-rails-active-record-and-no-n-plus-one

[12] Justin Weiss. 2014. A Guide to Choosing the Best Gems for Your Ruby Project. Re-
trieved September 23, 2023 from https://www.justinweiss.com/articles/a-guide-
to-choosing-the-best-gems-for-your-ruby-project/

[13] Justin Weiss. 2021. Automatically avoiding GraphQL N+1s. Retrieved September
23, 2023 from https://www.aha.io/engineering/articles/automatically-avoiding-
graphql-n-1s

https://spin.atomicobject.com/2021/02/22/complex-n1-queries-graphql-ruby/
https://doi.org/10.1109/TSP49548.2020.9163501
https://doi.org/10.1109/TSP49548.2020.9163501
https://guides.rubygems.org/
https://guides.rubyonrails.org/association_basics.html
https://guides.rubyonrails.org/active_record_querying.html
https://evilmartians.com/chronicles/how-to-graphql-with-ruby-rails-active-record-and-no-n-plus-one
https://evilmartians.com/chronicles/how-to-graphql-with-ruby-rails-active-record-and-no-n-plus-one
https://www.justinweiss.com/articles/a-guide-to-choosing-the-best-gems-for-your-ruby-project/
https://www.justinweiss.com/articles/a-guide-to-choosing-the-best-gems-for-your-ruby-project/
https://www.aha.io/engineering/articles/automatically-avoiding-graphql-n-1s
https://www.aha.io/engineering/articles/automatically-avoiding-graphql-n-1s

	Resumo
	1 introdução
	2 principais conceitos do graphql
	3 Motivação
	3.1 Soluções Escolhidas

	4 Método Proposto
	4.1 Aspectos Quantitativos
	4.2 Aspectos Qualitativos

	5 Desenvolvimento
	5.1 Escolha da Aplicação Base
	5.2 Implementação das Entidades e Relacionamentos em Rails
	5.3 Desenvolvimento do Schema GraphQL em Rails
	5.4 Queries Determinadas
	5.5 Criação dos Scripts

	6 Resultados
	6.1 IPS
	6.2 Tempo Total de Execução
	6.3 Memória Alocada
	6.4 Análise Qualitativa
	6.5 Ameaças à Validade

	7 Trabalhos Relacionados
	8 Conclusão
	Agradecimentos
	Referências

