Comparando solugoes para o problema de N+1 queries com APls
GraphQL em Ruby on Rails

Igor Simdes
ibps@cin.ufpe.br
Centro de Informatica da Universidade Federal de Pernambuco
Recife, Pernambuco, Brasil

RESUMO

Atualmente, APIs (Application Programming Interface) enfrentam
desafios comuns relacionados ao problema de N+1 queries, como
as APIs GraphQL escritas em Ruby on Rails (Rails). Este problema
pode impactar significativamente a eficiéncia e a performance das
aplicacdes. No entanto, existem diversas solu¢des que tém sido
exploradas para contornar essa questdo. Dentro do ecossistema
Rails, solugdes nativas sdo frequentemente adotadas.

O Active Record, um ORM (Object-Relational Mapping) utilizado
pelo Rails, possui um método chamado includes. Esse método pré-
carrega associagdes entre objetos, o que minimiza a quantidade de
queries ao banco de dados. Além disso, algumas gems tém ganhado
destaque no combate ao problema de N+I queries em GraphQL.
Gems, no contexto do Ruby, sdo pacotes de codigo que fornecem
funcionalidades especificas, funcionando como bibliotecas que po-
dem ser facilmente adicionados a projetos Ruby. Entre elas, pode-
mos destacar a graphql-batch e a batch-loader. Ambas oferecem
ferramentas poderosas para agrupar e resolver queries de maneira
mais eficiente, eliminando a necessidade de multiplas consultas
individuais ao banco de dados. Ao desenvolver ou otimizar APIs
GraphQL em Rails, é essencial considerar estas solucdes e avaliar
qual se encaixa melhor no contexto da aplicacdo, tendo em vista os
pros e contras de cada abordagem e a necessidade de performance
do sistema. Para aprofundar nossa compreensio, as solucdes fo-
ram implementadas e testadas considerando métricas quantitativas,
como o tempo total de execucio, e qualitativas, como flexibilidade
e usabilidade.

Em concluséo, enquanto cada solucdo pode ter suas vantagens
e desvantagens, a escolha ideal para abordar o problema de N+1
queries em APIs GraphQL em Rails deve levar em consideragio
as especificidades e necessidades de cada projeto. Neste estudo,
esperamos fornecer uma base solida para tomada de decisdo para
desenvolvedores e equipes que enfrentam desafios semelhantes.

ABSTRACT

Currently, APIs (Application Programming Interface) face common
challenges related to the N+1 queries problem, like GraphQL APIs
written in Ruby on Rails (Rails). This issue can significantly impact
the efficiency and performance of applications. However, several
solutions have been explored to address this matter. Within the
Rails ecosystem, native solutions are often adopted.

The Active Record, an ORM (Object-Relational Mapping) used by
Rails, has a method called includes. This method pre-loads associa-
tions between objects, which minimizes the number of queries to the
database. Moreover, some gems have gained prominence in tackling
the N+1 queries problem in GraphQL. Gems, in the context of Ruby,
are code packages that provide specific functionalities, acting as

libraries that can be easily added to Ruby projects. Notably among
them are graphql-batch and batch-loader. Both provide powerful
tools for batching and resolving queries more efficiently, elimi-
nating the need for multiple individual database queries. When
developing or optimizing GraphQL APIs in Rails, it’s crucial to
consider these solutions and evaluate which fits best within the
application’s context, considering the pros and cons of each ap-
proach and the system’s performance requirements. To deepen our
understanding, the solutions were implemented and tested, con-
sidering quantitative metrics, such as the total execution time in
milliseconds, and qualitative ones, like flexibility and usability.

In conclusion, while each solution may have its pros and cons,
the ideal choice for addressing the N+1 queries problem in GraphQL
APIs in Rails should take into account the specificities and needs of
each project. With this study, we hope to provide a solid founda-
tion for decision-making for developers and teams facing similar
challenges.

KEYWORDS
GraphQL, Ruby on Rails, APIs, N+1, Queries

1 INTRODUCAO

Servicos web compreendem um conjunto de protocolos e padrdes
adotados para a transferéncia de informacdes entre sistemas online.
Software, desenvolvidos em multiplas linguagens de programacéo e
operando em diferentes plataformas, recorrem a esses servigos para
compartilhar dados por meio de redes, como a Internet. Tais servi-
cos garantem a compatibilidade na comunicagio entre diferentes
sistemas[1].

Proposta publicamente em 2015 pelo Facebook, GraphQL foi
concebido como uma linguagem de consulta para facilitar a cons-
trucio de arquiteturas de servicos web, oferecendo sintaxe e sistema
flexiveis e intuitivos para detalhar suas demandas de dados[5]. O
GraphQL emergiu como uma alternativa promissora para resolver
problemas enfrentados por outros estilos arquiteturais populares
para a criagcdo de APIs web, como o REST (Representational Style
Transfer)[2-4]. Como resultado, a linguagem comecou a ganhar
forca e é atualmente suportada por APIs web de diversas empre-
sas e seus respectivos produtos, como Github, Airbnb, Netflix e
Twitter[1].

Dentre os problemas que GraphQL se propde a resolver, nds
temos o problema de under-fetching. Em geral, o under-fetching
ocorre quando uma API néo fornece todos os dados necessarios em
uma Unica solicitacéo, exigindo requisi¢des adicionais para obter
as informacoes desejadas, por exemplo [7].

No contexto das ORM, este problema pode se manifestar na forma
de N+1 queries, resultando em multiplas consultas ao banco de dados

quando apenas uma seria suficiente. Roksela et al[7] apontou um
cenario comum: a primeira query ao banco de dados retorna uma
lista de referéncias (1 query retorna N objetos), e depois N queries
sdo feitas para acessar cada um desses objetos, causando N+1 queries
ao banco de dados.

Em APIs GraphQL implementadas em Rails, o problema de N+1
queries é bastante comum no Active Record[13]. Neste artigo, nés fo-
camos em comparar solucdes para esse problema em APIs GraphQL
desenvolvidas em Rails, tanto de forma quantitativa, analisando
aspectos de performance vistos na Subsecdo 4.1, como de forma
qualitativa, investigando aspectos das implementag¢des apontados
na Subsecio 4.2. Dessa forma, visamos oferecer diretrizes valiosas
para a comunidade de desenvolvimento.

Para ilustrar esse problema, usamos um simples sistema clone do
Twitter, em que os usuarios podem criar varios tweets, armazenados
no banco de dados em suas respectivas tabelas. Na Listagem 1,
vemos uma consulta ao banco de dados usando o Active Record
para obter os tweets de id 5, 7 e 9. Ao tentar acessar o usuario para
cada um desses tweets, terdo sido feitas mais 3 queries, uma para
cada usuario, desse modo ocorrendo o problema de N+1 queries.
Ilustramos o problema na Figura 1.

Tweet.where(id:
tweet.user
;| end

[5, 7, 91).each do |tweet]|

Listagem 1: Consulta do Active Record para obter tweets por
ids

select * from tweets where id in (5, 7, 9)

|

Flser 16}
select * from users where id = 10
n

select * from users where id = 14
e]

ect * from users where id = 18
J

Figura 1: Demonstracio de N+1 queries ao acessar autores
dos tweets

A estrutura do trabalho esta descrita a seguir. A Sec¢éo 2 apresenta
os principais conceitos do GraphQL. A Secdo 3 explica a necessidade
de comparar as solugdes para o problema de N+1 queries e quais
solu¢des serdo comparadas. A Secdo 4 mostra como a comparacdo
é feita. A Secgdo 5 exibe todos os passos da comparagdo. A Secdo
6 compreende os resultados da comparacédo. A Segdo 7 trata dos
trabalhos relacionados na literatura. A Secio 8 conclui o artigo.

2 PRINCIPAIS CONCEITOS DO GRAPHQL

Nesta sessdo apresentamos os principais conceitos do GraphQL,
definidos de forma simples e eficaz por Gleison Brito e Marco
Valente[1].

Em esséncia, o GraphQL da aos clientes a capacidade de fazer
consultas a um banco de dados representado por um Schema espe-
cifico. Esse banco de dados é modelado por um Schema que toma

Igor Simdes

a forma de um grafo direcionado, onde os nés séo objetos que de-
finem tipos e possuem um conjunto de campos. Cada campo, por
sua vez, possui um nome e um tipo. Esses objetos podem ser aces-
sados por meio do tipo Query, a porta de entrada da API GraphQL.
Considerando o mesmo sistema clone do Twitter apontado na se-
¢do anterior, mostramos a definigéo dos tipos Tweet, User e Query,
utilizando o GraphQL, na Listagem 2.

type Tweet {

id: Int!
content: String!
author: User!

}

type User {
id: Int!
nickname: String!

}

2| type Query {

feed: [Tweet!]

}

Listagem 2: Schema GraphQL exemplo

O GraphQL, além de propor um Schema, também fornece uma
linguagem de consulta para os clientes. Os resultados das consultas
sao retornados em formato JSON, facilitando a analise e processa-
mento pelos clientes. A Listagem 3 mostra um exemplo de query
nessa linguagem, enquanto a Listagem 4 exibe seu resultado.

query ViewerFeed {
feed {
id
content
author {
id
nickname
}
}
3

Listagem 3: Query GraphQL exemplo para obter tweets do
feed

Em um servidor GraphQL, os desenvolvedores estabelecem fun-
¢Oes resolver para cada tipo de consulta. Quando uma consulta é
realizada, estas func¢des sdo ativadas, buscando dados, comumente,
de um banco de dados. No cenario que tratamos, utilizamos um
banco relacional controlado pelo ORM do Rails. Na Listagem 5
temos a implementacédo do tipo Query em Rails. Nesse exemplo,
vemos um resolver definido para o campo feed (linhas 4-6). Esse
resolver garante o resultado visto na Listagem 4.

3 MOTIVACAO

Com a crescente taxa de adocdo do GraphQL em organizacdes, é
cada vez mais importante estar ciente de como as APIs baseadas
em GraphQL podem desempenhar [7].

A escolha da solucdo a ser adotada para tratar o problema de N+1
queries em APIs GraphQL desenvolvidas com Rails é um elemento
vital que pode influenciar a eficiéncia e viabilidade do sistema. Ha
tanto solugdes nativas do Active Record, quanto solu¢des open-
source desenvolvidas pela comunidade no formato de gems. Gems

Comparando solugdes para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

{
"data": {
"feed": [
{
"id": 5,
"content": "Vou atras do Sasuke custe o que
custar.",
"author" : {
"id": 10,
"nickname": "Naruto Uzumaki"
}
},
{
"id": 7,
"content": "Nao pertenco mais aqui nesta vila.",
"author" : {
"id": 14,
"nickname": "Sasuke Uchiha"
}
3},
{
"id": 9,
"content": "Serei a mais forte.",
"author" : {
"id": 18,
"nickname": "Sakura Haruno"
}
}
]
3
3

Listagem 4: Resultado em formato JSON da Query GraphQL
exemplo

class QueryType < Types::Base::0bject

field :feed, [TweetType], null: false
def feed
Tweet.where(id: [5, 7, 91)
end
end

Listagem 5: Implementacao exemplo em Ruby do resolver do
campo feed no tipo Query

sdo pacotes de software que contém uma aplicacdo ou biblioteca
Ruby empacotada, distribuidas pelo RubyGems [8]. Por sua vez,
RubyGems é o servi¢o de hospedagem de gems da comunidade
Ruby.

Quando falando de gems que resolvem um mesmo problema, é
muito importante escolher a mais adequada. Se houver arrependi-
mento em ter adicionado uma gem no sistema, é dificil voltar atras
depois do sistema ter evoluido e codigo ter sido escrito usando os
recursos da gem[12].

Embora existam muitos recursos e discussdes online! sobre como
tratar o problema de N+1 queries [11], em nosso entendimento, nota-
se a auséncia de estudos aprofundados que avaliem essas
solucdes de forma imparcial e acurada. Uma analise detalhada
é essencial para determinar qual delas é a mais adequada para as
necessidades especificas de um projeto. A falta de tais informacoes
pode culminar em escolhas que ndo atendem de forma 6tima as
demandas da aplicacéo.

Discussio no Github https://github.com/rmosolgo/graphql-ruby/issues/189

3.1 Solucoes Escolhidas

As solugdes podem ser categorizadas de acordo com seus respec-
tivos funcionamentos. Agrupamos as solu¢des em duas catego-
rias de acordo com a forma que acessam o banco de dados: pré-
carregamento de associagdes e carregamento em lote. Tendo em

vista uma query base a uma tabela do banco de dados, o pré-carregamento

de associages envolve a recuperacdo antecipada de entidades rela-
cionadas a essa tabela. Ja o carregamento em lote agrupa as varias
operacdes de acesso aos dados relacionados e somente os obtém
quando séo explicitamente necessarios. As Figuras 2 e 3 ilustram
essas categorias.

select * from tweets where id in (5, 7, 9)

select * from users where id in (10, 14, 18)

User 10
s]

User 14
[]

[]!

Figura 2: Estratégia de pré-carregamento de associacoes

select * from tweets where id in (5, 7, 9)

|
e
)
select * from users where id in (10, 14, 18) _1‘

[Crwe]

Figura 3: Estratégia de carregamento em lote

Assim, focamos a comparacéo entre as seguintes solucdes:
e Pré-carregamento de associacoes
Soluc¢ao Includes Método includes do Active Record
e Carregamento preguicoso em lote
Solucao GraphqlBatch Gem graphgl-batch
Soluc¢ao BatchLoader Gem batch-loader

Escolhemos a Solugéo Includes porque julgamos importante com-
parar pelo menos uma solucédo nativa do Active Record, uma vez
que ndo adiciona dependéncias externas ao projeto. Implementa-
mos o método includes como sugerido no guia oficial do Rails [10] e
néo utilizamos outros métodos por serem usados da mesma forma,
0 que sera um ponto de comparagéo qualitativa.

Quanto as gems escolhidas (Solu¢des GraphglBatch e BatchLo-
ader), elas sdo as mais populares na industria, de acordo com a
quantidade de downloads no RubyGems, que se propdem a resolver
esse problema, sendo utilizadas por grandes empresas

e Graphgql-batch? possui 14 milhdes de downloads e foi con-
cebida pelo Shopify, que continua fazendo amplo uso.

2Gem graphgl-batch https://rubygems.org/gems/graphql-batch

e Batch-loader® possui 21 milhdes de downloads e é utilizada
pelo Netflix, por exemplo.

Embora funcionem da mesma forma ao acessar o banco de da-
dos, é essencial destacar que as gems graphgl-batch e batch-loader
tem algumas diferencas relevantes entre si. A gem graphql-batch é
especifica ao GraphQL e utiliza promises* em sua implementacio
interna. No caso da gem batch-loader, ela é genérica e carrega os
lotes de forma lazy® (preguicosa).

4 METODO PROPOSTO

Analisamos e comparamos as solucdes apontadas na sec¢do 3.1 entre
si a fim de verificar tanto aspectos quantitativos como qualitativos,
como explicado nas subsecdes a seguir. Dentro do contexto de
nosso estudo, também avaliamos intencionalmente um cenario
onde o problema N+1 queries nio foi resolvido. Fizemos isso de
forma deliberada para nos permitir quantificar o impacto real dessas
solugdes. Chamamos esse ponto de referéncia como Cendrio Slow.

4.1 Aspectos Quantitativos

Para comparar os aspectos quantitativos, escolhemos algumas mé-
tricas e ferramentas frequentemente utilizadas na comunidade®’
para comparacéo de performance.

4.1.1 IPS (Iteragbes Por Segundo). Utilizamos a gem benchmark-
ips® para medir o IPS da solucéio. De forma simples, IPS se refere 4
quantidade de vezes que um pedaco de codigo pode ser executado
dentro de um segundo. Quanto maior o IPS, mais rapido o cédigo,
mostrando quédo mais rapida é uma solucdo em relagio a outra.

4.1.2 Tempo Total de Execugdo. Recorremos ao modulo Bench-
mark® para calcular o tempo total de execucio de cada solucio.
Quanto menor, melhor, o que indica que a solugéo levou menos
tempo para retornar um resultado.

4.1.3 Memoria Total Alocada. Langamos méao da gem memory-
profiler'® para calcular a memoéria total alocada de cada solucio.
Quanto menor, melhor, exibindo que a solugdo demanda menos
recursos do sistema para ser executada.

4.2 Aspectos Qualitativos

Além da anélise quantitativa, também achamos relevante analisar
qualitativamente as solu¢des alternativas, levando em consideracéo
vantagens e desvantagens voltadas a escolha de adotar uma dessas
solucoes.

4.2.1 Usabilidade. Representa o nivel de esfor¢co necessario para
usar as solucdes. Quanto maior a usabilidade, menor o nivel de
esforco e mais facil é sua utilizagdo.

3Gem batch-loader https://rubygems.org/gems/batch-loader

4Promises/A+ https://promisesaplus.com/

SLazy Loading
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading

5Gem graphql-ruby public benchmark
https://github.com/rmosolgo/graphql-ruby/blob/master/benchmark/run.rb

7Gem ar_lazy_preload public benchmark
https://github.com/DmitryTsepelev/ar_lazy_preload/blob/master/benchmark/main.rb
8Gem benchmark-ips https://github.com/evanphx/benchmark-ips

“Médulo Benchmark https://ruby-doc.org/3.2.2/stdlibs/benchmark/Benchmark html
1°Gem memory-profiler https://github.com/SamSaffron/memory_profiler

Igor Simdes

4.2.2 Flexibilidade. A flexibilidade se concentra na capacidade de
lidar com diferentes condigdes ou requisitos, sem que grandes mu-
dangas sejam necessarias.

4.2.3 Adigdo de Dependéncia Externa. Trata-se da necessidade de
incluir bibliotecas ao projeto que nio sio fornecidadas nativamente
em um sistema. Apesar da adicdo de dependéncias poder fornecer
novas funcionalidades, implica também em fatores como manuten-
¢éo, potenciais vulnerabilidades e carga inicial de aprendizado para
usar tais funcionalidades.

5 DESENVOLVIMENTO

Para efetivamente analisar o problema das N+1 queries em APIs
GraphQL em Rails, adotamos a seguinte abordagem: inicialmente,
escolhemos uma aplicacdo base que serviria como nossa referéncia
para desenvolver a aplicacdo de teste. Com essa aplicacio em mente,
avancamos para a implementacio das entidades do banco de dados,
estabelecendo seus relacionamentos especificos no Rails.

Em seguida, desenvolvemos o Schema GraphQL da nossa aplica-
¢do Rails. Isso envolveu a defini¢do de cada tipo, juntamente com
seus campos e resolvers. Com o Schema GraphQL pronto, passamos
para a etapa de determinacio das queries usadas em nossos testes
quantitativos. Estas queries servem como nossos casos de teste para
avaliar a performance das solugdes.

Uma vez tendo as queries definidas, criamos scripts individuais
no Rails, cujo propésito é executar as analises quantitativas. Es-
tes scripts foram cuidadosamente projetados para garantir que os
testes fossem repetiveis e consistentes. Na fase subsequente, execu-
tamos estes scripts, realizando a analise quantitativa e capturando
os resultados para avaliacéo.

Finalmente, além da avaliagdo quantitativa, realizamos uma ana-
lise qualitativa seguindo os aspectos apontados na Subsecio 4.2.
Essa analise qualitativa complementou nossos resultados quantita-
tivos, oferecendo uma visdo abrangente do problema e das solugdes
propostas.

Definimos os seguintes passos a fim de atingir o objetivo de
comparar as trés solucdes:

(1) Escolher a aplica¢io base

(2) Implementar as entidades do banco de dados e seus respec-
tivos relacionamentos em Rails

(3) Desenvolver o Schema GraphQL da aplicacdo Rails, defi-
nindo cada tipo com seus respectivos campos e resolvers

(4) Determinar queries a serem efetuadas nos testes quantitati-
vos

(5) Criar scripts individuais para executar as analises quantita-
tivas em Rails

(6) Executar os scripts, efetuando a anélise quantitativa

(7) Fazer a anélise qualitativa

5.1 Escolha da Aplicacao Base

Nos baseamos em uma aplicagdo clone do Twitter!!. A nossa apli-
cagdo é um simples servidor GraphQL implementado em Rails se-
guindo a seguinte arquitetura: Cliente, GraphQL Controller, Schema
GraphQL e um banco de dados. Para implementar os elementos

" Aplicacio Clone do Twitter
https://gist.github.com/DmitryTsepelev/d0d4f52b1d0a0f6acf3c5894b11a52ca

Comparando solugdes para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

GraphQL, utilizamos a gem graphql-ruby'?, amplamente utilizada
na industria. O fluxo comum de uso é fazer uma query GraphQL por
meio de uma requisi¢io HTTP ao servidor, que sera tratada pelo
GraphQL Controller e por sua vez usara o Schema GraphQL para
executar a query recebida. Durante a execucio, o Schema GraphQL
é responsavel por obter os dados necessarios por meio de queries
ao banco de dados, utilizando o Active Record.

Essa aplicacdo permite consultarmos uma API GraphQL que
fornece o feed do usuario autenticado no sistema, exibindo tweets
de outros usuarios. Para cada tweet, podemos obter seu content
(conteudo), seu author (autor) e seus comments (comentarios). Cada
author possui um nickname (apelido) e um avatar. Por sua vez,
o avatar tem apenas a url da imagem de perfil do usuario. De
cada comment, podemos obter seu content e seu author, de forma
bem similar ao tweet. A arquitetura da aplicacdo pode ser vista na
Figura 4.

Cliente

Requisigdo HTTP

E Active H
! o toxt) Record H
! GraphQL | &xecute(query, contex Schema Queries H

- > —_— |
i Controller GraphQL '
i Banco de Dados
! Relacional |

Servidor GraphQL

Figura 4: Arquitetura da aplicaciao Rails

5.2 Implementacio das Entidades e
Relacionamentos em Rails

No esquema do banco de dados proposto, temos varias entidades
interconectadas para modelar o sistema clone do Twitter, ou seja,
um sistema tipico de rede social. Cada user tem um tnico avatar,
que representa seu perfil e tem como atributo a imagem do usuario.
Definimos a entidade avatar a parte porque ele pode, em uma
aplicacdo real, compreender outros atributos, como configuragdes
para o usudrio. Esse usuario pode criar tweets, que ndo passam de
mensagens, e também pode responder ou interagir com os tweets de
outros usuarios por meio de comments (comentarios). Na Figura 5,
temos o diagrama entidade-relacionamento do banco de dados.

Para aprofundar as relagdes sociais, o esquema permite que um
usudrio siga outros usuarios. Essas relacdes de follow (seguir séo
representadas na tabela user_connection (conexio do usuario), que
registra quem cada usuario decide seguir. Esta representagio per-
mite um fluxo de informagdes onde um usuario pode ver as atuali-
zagdes de quem ele decide seguir, simulando uma tipica dindmica
de rede social.

Cada tweet, além de pertencer a um usudrio, pode ser a base
para uma série de comentarios. Esses comentarios, assim como os
tweets, estdo vinculados a um usudrio especifico, indicando quem
0s escreveu.

12GraphQL Ruby https://graphgl-ruby.org/

user_connections

id g m

id

user_id —10-\

tweet_id _7,_‘
follower_id —1¢-\

(—01— user_id

created_at

content
updated_at

created_at

updated_at

id _1'4

nickname

created_at

updated _at

[
id _1.,4

id 1 userid

image_url created_at

user_id 3 updated_at
created_at

updated_at

Figura 5: Diagrama Entidade-Relacionamento do banco de
dados

Assim, capturamos as principais atividades e intera¢des em uma
plataforma de midia social: postar mensagens, comentar sobre elas,
representar-se por meio de um avatar e formar conexdes seguindo
outros usuarios.

Em Rails, as entidades sdo implementadas na forma de models
(modelos), classes que permitem o acesso ao banco de dados. Por sua
vez, os relacionamentos entre entidades sdo definidos por meio de
associations (associacdes) entre models, implementados de forma de-
clarativa em cada model[9]. Na Listagem 6 temos a implementacéo
dos seguintes relacionamentos:

User 1:1 Avatar
User 1 : N Tweet

User 1 : N Comment
User N : N User
Tweet 1: N Comment

Em nossa implementacéo, fizemos uso de 4 associa¢des diferentes.
A funcdo has_one estabelece uma relagdo um-para-um e foi usada
para definir que cada usuério tem apenas um avatar associado a
ele.

Jaafuncio has_many define uma relacio um-para-muitos. Como
visto na classe User, para estabeler que um usuario pode criar varios
tweets, mas cada tweet individual pertence a apenas um usuério.

class User < ApplicationRecord

has_one :avatar

has_many :tweets

has_many :comments

has_many :followers_connections,

class_name: "UserConnection",
foreign key: :user_id
has_many :followed_connections,
class_name: "UserConnection",
foreign_key: :follower_id

has_many :followers,
through: :followers_connections,
class_name: "User",
source: :follower

has_many :followed_users,
through: :followed_connections,
class_name: "User",
source: :user,

end

class Avatar < ApplicationRecord
belongs_to :user

end

class Tweet < ApplicationRecord

belongs_to :user
has_many :comments
end

class Comment < ApplicationRecord

belongs_to :user
belongs_to :tweet
end

class UserConnection < ApplicationRecord

belongs_to :user
belongs_to :follower, class_name: "User"
end

Listagem 6: Associacdes entre models

Estabelecemos a relagdo de pertencimento com o belongs_to. E
frequentemente a contraparte do has_one ou has_many. Sua decla-
racdo na classe Avatar afirma que um avatar esta associado a um e
apenas um usudrio.

E finalmente, ha o modificador through, que é frequentemente
usado com has_many para estabelecer associa¢cdes muitos-para-
muitos através de uma tabela intermediaria. Utilizamos para repre-
sentar as relagoes de follow entre usuarios.

5.3 Desenvolvimento do Schema GraphQL em
Rails

A construcéo e evolucdo do Schema GraphQL desempenhou um
papel crucial na comparacéo das solucdes. Inicialmente, adotamos
uma abordagem simplista, criando um Schema sem nenhuma solu-
cdo especifica para o problema, visando reproduzir o problema de
N+1 queries. Assim, tivemos o ponto de referéncia mencionado na
Secdo 4, o Cenario Slow. Vemos o Schema inicial na Figura 6.

No inicio, implementamos o tipo Viewer com apenas um campo
feed que utiliza o resolver FeedResolver para buscar e construir o
feed do usuario. Nele, utilizamos a funcéo for definida no médulo
FeedBuilder, cujo retorno sio os 10 primeiros tweets mais recentes
dos followed users (usuarios seguidos) pelo usuario recebido como
argumento. Na Listagem 7 vemos a implementacio desse modulo.

Igor Simdes

Root
Query

author avatar
|comments.

Figura 6: Schema GraphQL inicial

viewer

feed
CQiewer)=>

<

author
—

module FeedBuilder
module_function

def for(user)
[weet.where (user:
.order(created_at:
limit (10)

user.followed_users)
:desc)

end
end

Listagem 7: Modulo FeedBuilder responsavel pela query de
tweets

Os outros tipos do Schema foram desenvolvidos seguindo a abor-
dagem simplista, apenas definindo campos simples. Por meio da
Listagem 8 vemos as implementagdes iniciais do tipo Viewer men-
cionado e como exemplo da implementacdo dos outros tipos vemos
o tipo Comment.

class ViewerType < Types::Base::0bject
field :feed, resolver: Resolvers::FeedResolver
end

class CommentType < Types::Base::0Object
field :content, String, null: false
field :author, UserType, null: false,
end

method: :user

module Resolvers
class BaseFeedResolver < Base
type [Types::TweetTypel, null: false
def resolve
raise NotImplementedError
end
end

class FeedResolver < BaseFeedResolver
def resolve
FeedBuilder.for(current_user)
end
end
end

Listagem 8: Implementacao inicial do tipo GraphQL Viewer
e Comment

Na primeira evolucédo do Schema, acrescentamos um novo campo
chamado feed_with_includes no tipo Viewer, para compreender e
demonstrar a eficacia da Solucéo Includes. O resolver desse campo,
FeedResolverIncludes, incorporou a otimizagéo chamando o método

Comparando solugdes para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

includes para pré-carregar associa¢des e evitar multiplas queries.
Apontamos essa evolucédo na Listagem 9.

class ViewerType < Types::Base::0bject
field :feed, resolver: Resolvers::FeedResolver
field :feed_with_includes, resolver: Resolvers::
FeedResolverIncludes
end

module Resolvers
class FeedResolverIncludes < BaseFeedResolver
def resolve
user_includes = {user: :avatar}
FeedBuilder.for(current_user).includes(
user_includes, comments: user_includes)
end
end
end

Listagem 9: Implementacao final do tipo GraphQL Viewer

Para explorar as Solu¢des GraphqlBatch e BatchLoader, evolui-
mos o Schema incrementando os tipos como Tweet, User e Com-
ment com novos campos especificos para essas solugdes. Por exem-
plo, no tipo Comment, originalmente, tinhamos um simples campo
author que trazia o usuario associado ao comentario. Com a evo-
lucéo, adicionamos campos adicionais: author_graphql_batch e
author_batch_loader, que empregam respectivamente as Solu¢des
GraphgqlBatch e BatchLoader para resolver o problema de N+1 que-
ries. Essa alteracdo esta na Listagem 10.

class CommentType < Types::Base::0bject
field :content, String, null: false
field :author, UserType, null: false, method: :user

field :author_graphgl_batch, UserType, null: false
def author_graphqgl_batch
Loaders::AssociationLoader.for (Comment,
object)

:user).load(
end

field :author_batch_loader, UserType, null: false
def author_batch_loader
BatchLoader::GraphQL.for (object.user_id).batch do
user_ids, loader|
User.where(id: user_ids).each {
call (author.id, author) 3}

|author| loader.
end
end
end

Listagem 10: Implementacao final do tipo GraphQL Comment

O Schema final, apés as evolugdes mencionadas, é visto na Fi-
gura 7. Essa abordagem progressiva de desenvolver e evoluir o
Schema GraphQL permitiu uma comparacéo justa e detalhada entre
as varias solugdes, explicada na proxima subsecéo.

5.4 Queries Determinadas

O Schema GraphQL foi estrategicamente construido para permitir
testar cada solucdo de forma isolada e direta. A chave para essa
abordagem modular foi incorporar diferentes resolvers no Schema,
cada um implementando uma das solugdes. Dito isso, para obter

author avatar

avatarBatchLoader

authorBatchLoader

Root
Query

avatarGraphglBatch|

=

authorGraphglBatch

feed
-
—_S

feedWithIncludes

viewer

author
authorBatchLoader
authorGraphqlBatch

comments

commentsBatchLoader

commentsGraphglBatch >

Figura 7: Schema GraphQL completo

uma visdo mais abrangente na analise de performance e eficicia das
solucdes propostas, nao nos restringimos a uma unica abordagem
de consulta. Em nossos testes, definimos dois tipos distintos de
queries: Completa e Parcial.

Uma query Completa solicita todo o fluxo de dados apontado na
Subsec¢io 5.1. Como ponto de partida, definimos a query completa
SlowCompleta, padrdo, sem a aplicacido de qualquer solugio, ou
seja, simulando o Cendrio Slow. A partir da adaptacdo dessa query,
pudemos testar as diferentes implementagdes garantindo o mesmo
resultado, porém com diferentes performances.

Para testar a Solucdo Includes, definimos a query IncludesCom-
pleta, apenas solicitando o campo feed_with_includes ao invés do
campo feed. Do mesmo modo, para avaliar as Solu¢des Graphql-
Batch e BatchLoader, criamos as queries GraphqlBatchCompleta e
BatchLoaderCompleta, solicitando os campos especificamente adi-
cionados para cada uma dessas solugdes. Por exemplo, para avaliar
a Solucdo GraphglBatch, basta trocarmos na query o campo author
pelo campo author_graphql_batch, enquanto no caso da Solucgéo Bat-
chLoader, é suficiente trocarmos pelo campo author_batch_loader.
As queries SlowCompleta, IncludesCompleta, GraphqlBatchCom-
pleta e BatchLoaderCompleta apontadas estdo presentes na Figura 8.

Em contraste, uma query Parcial é simplesmente uma versao
reduzida de uma query Completa em que omitimos intencional-
mente os comments associados a cada tweet. Assim, para cada query
Completa definida, também criamos uma query Parcial.

Por meio dessa abordagem, conseguimos investigar mais pro-
fundamente as soluc¢des quanto ao desempenho, as vantagens e
possiveis limitacdes de cada solucéo, tanto em situagdes de alta
demanda de dados quanto em operac¢des mais simplificadas.

5.5 Criacido dos Scripts

Antes de criar os scripts, isolamos a etapa de execucdo do Schema
GraphQL, a parte do servidor que foi testada. Para isso, desen-
volvemos o BaseExecutor. Esta classe tem a responsabilidade de
executar uma query diretamente no Schema GraphQL, abstraindo
a etapa da requisicio HTTP mostrada na Figura 4. A classe esta-
belece também uma assinatura padrdo para um método, chamado
query_string. Aqueles que herdam dessa classe base tém a tarefa de
implementar este método. Adicionalmente, o BaseExecutor define
um método context, que prové informagdes sobre o usuario atual
do sistema, que é um simples dicionario contendo dados especificos
da aplicacgéo, como o usuario autenticado por exemplo. Nele, ape-
nas passamos um mesmo usudrio como usudario atual do sistema,

Igor Simdes

query SlowCompleta {
viewer {
feed {
content
author {
nickname
avatar {
imageUrl
}
}
comments {
content
author {
nickname
avatar {
imageUrl

query IncludesCompleta { query GraphglBatchCompleta {
viewer { viewer {
feedWithIncludes { feed {
content content
author { authorGraphqlBatch {
nickname nickname
avatar { avatarGraphqglBatch {
imageUrl imageUrl
3 }
3 }
comments { commentsGraphqlBatch {
content content
author { authorGraphglBatch {
nickname nickname
avatar { avatarGraphqglBatch
imageUrl imageUrl
} 3
3 }
3 }
3 }
3 }
} 3

query BatchLoaderCompleta {
viewer {
feed {
content
authorBatchLoader {
nickname
avatarBatchLoader {
imageUrl
}
3

commentsBatchLoader {
content
authorBatchLoader {
nickname
avatarBatchLoader {
imageUrl

visando garantir o mesmo resultado entre execucdes. A execucdo
de uma query, entdo, ocorre ao passar ambos a query_string e o
context como parametros no método execute do Schema GraphQL.

Construido esse alicerce, modelamos um Executor filho es-

Figura 8: Queries Completas

pecifico para cada solugio proposta, de modo que cada executor
tinha sua respectiva query Completa embutida em sua implementa-
¢do do método query_string. Claro, ndo nos esquecemos de criar um
Executor adicional para o Cendrio Slow. Dito isso, criamos as classes
SlowExecutor, IncludesExecutor, GraphqlBatchExecutor e

BatchLoaderExecutor, vistas na Figura 9.

BaseExecutor

execute(query, context)

GraphQL

Schema

T

SlowExecutor IncludesExecutor

™~

GraphQLBatchExecutor BatchLoaderExecutor

query query

SlowQuery IncludesQuery

query query

GraphgqlBatchQuery BatchLoaderQuery

Figura 9: Esquema de heranca com cada Executor

Em seguida, para cada aspecto quantitativo mencionado na sub-
secdo 4.1, criamos um script, cujo propoésito é executar e medir as
execucdes de cada Executor. O fluxo de execugdo dos scripts foi

meticulosamente determinado:

(1) Instanciagdo do Executor e Limpeza do Ambiente

(4) Concluidas as execugdes, realizamos a Limpeza da Cache
do BatchLoader.

O passo de Instanciacdo do Executor apenas cria uma nova

instancia do Executor que esta sendo executado no momento. Na
Limpeza do Ambiente, por sua vez, executamos manualmente
o Garbage Collector e em seguida o desabilitamos. Externos ao
método de comparacio, fizemos esses passos para evitar impactos
nos resultados dos testes e apenas avaliarmos a execucéo de cada
query isoladamente. Ao final do processo, efetuamos a Limpeza
da Cache do BatchLoader, em que limpamos também a cache
especifica da Solucdo BatchLoader. Isso normalmente seria feito
entre requisi¢des HT TP, considerando a arquitetura da Figura 4.
Para garantir precisdo e uma amostragem robusta, repetimos esse
processo inteiro em um loop, resultando em dez execucdes
distintas para cada Executor.

Todo esse processo esta ilustrado visualmente na Figura 10, facili-
tando a compreensdo do fluxo de execucio e das etapas envolvidas.
Por fim, coletamos os dados ao longo das execugdes e os arma-
zenados meticulosamente em arquivos CSV, um para cada script.
Posteriormente, esses arquivos foram usados para gerar graficos,
permitindo uma analise visual mais intuitiva dos resultados, apre-
sentados na Sec¢do 6. No caso da avaliacdo da query Parcial, apenas
ajustamos manualmente as queries nos executores e agrupamos os

dados em um CSV distinto.

A execucio de cada script foi realizada usando o comando rails
runner'3, que permite a execucio de cédigo Ruby no contexto
de uma aplicacgdo Rails. Especificamos o ambiente de producio
utilizando a flag -e. Vale mencionar que este ambiente manteve as
configuracdes padrdo encontradas em um novo projeto Rails.

6 RESULTADOS

(2) O Executor é entdo executado dentro de uma func¢io and-
nima, passada para o método de comparacdo adequado.
(3) Este ciclo de instanciagio e limpeza do ambiente, seguido

pela execugio de um Executor é feito na ordem: SlowExe-

cutor, IncludesExecutor, GraphqlBatchExecutor e BatchLo-

aderExecutor.

rails-runner

Apos a execucdo de cada script, pudemos enfim realizar a analise
comparativa apontada na secdo 4. Ressaltamos que aplicamos o

BLinha de Comando Rails https://guides.rubyonrails.org/command_line html#bin-

Comparando solugdes para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

Script de IPS Script de Tempo Script de Memodria
Método de Método de Método de
Comparagao Comparagéo Comparacgao
IPS Tempo Memodria

Repetido 10 vezes

| Instanciacao e Limpeza do Ambiente |

Método de Comparacgéo

Instanciagdo e Limpeza do Ambiente |

Método de Comparagao

Instanciagdo e Limpeza do Ambiente |

Método de Comparagao

Ll GraphQLBatchExecutor |

Instanciacao e Limpeza do Ambiente |

Método de Comparacgao

— ™M [BatchLoaderExecutor |
Limpeza da Cache do BatchLoader E

Figura 10: Esquema de execucao dos scripts

método Tukey!* para lidar com dados atipicos e os removemos dos
graficos para que a visualizagio ndo fosse comprometida, para cada
uma das métricas.

6.1 IPS

Ao avaliar os resultados medianos das dez execucdes em termos de
IPS, observamos diferencas notaveis entre as solu¢des propostas e
o Cenario Slow. Os resultados obtidos podem ser vistos lado a lado
para cada tipo de query na Tabela 1.

Para a query Completa, o Cenario Slow apresentou uma perfor-
mance mediana de 29 i/s, estabelecendo nosso padrao de referéncia.
Utilizando a Solug¢do Includes, vemos um notavel aumento para

https://towardsdatascience.com/detecting-and-treating-outliers-in-python-part-1-
4ece5098b755

Tabela 1: Mediana aproximada do IPS para cada Executor e
tipo de query

Executor Query Completa Query Parcial
Slow 29 i/s 851i/s
Includes 871i/s 1211i/s
GraphQLBatch 79 i/s 170 i/s
BatchLoader 122i/s 2311i/s

87 i/s, demonstrando uma melhoria consideravel na eficiéncia. Ja
a Solugdo GraphQLBatch apresentou um desempenho de 79 i/s,
ligeiramente abaixo da Soluc¢io Includes, mas ainda muito acima
do cenério base. A Solu¢do BatchLoader destacou-se, alcancando
uma marca impressionante de 122 i/s, tornando-se a solugdo de
melhor performance para a query Completa. Apresentamos os re-
sultados de IPS da query Completa por meio de violin plots em
um grafico geral na Figura 11. Para ter uma visao melhor de cada
solucdo individualmente, temos as Figuras 12, 13, 14 e 15, para as
classes SlowExecutor, IncludesExecutor, GraphqlBatchExecutor e
BatchLoaderExecutor respectivamente.

slow

includes
SlowExecutor graphgl-batch

batch-loader

IncludesExecutor

GraphqlBatchExecutor
oo
BatchLoaderExecutor

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105110 115 120 125
NUmero de Itera¢cdes por Segundo

Figura 11: Grafico com valores de IPS para cada solucio -
query Completa

Para a query Parcial, o Cenario Slow registrou 85 i/s como me-
diana. Vemos que nessa query a Solug¢do Includes, com resultado
de 121 i/s, foi ultrapassada pela Solugdo GraphglBatch e suas 170
i/s. A Solucdo BatchLoader prevaleceu novamente com um desem-
penho de 231 i/s, solidificando sua posi¢do como a solucdo mais
eficaz entre as testadas. Na Figura 16 temos os resultados de IPS
de forma abrangente para a query Parcial, também em violin plots.
Novamente, temos visdes individuais nas Figuras 17, 18, 19 e 20.

Esses dados mostram que, embora todas as solucdes otimizadas
proporcionem ganhos significativos em relacio ao cenario padrao,
o BatchLoader consistentemente se destaca em termos de eficiéncia.

SlowExecutor

ha. 4

T

28 29 30
NuUmero de Iteracdes por Segundo

Figura 12: Grafico com valores de IPS para o Cendrio Slow -
query Completa

IncludesExecutor

(S |

T :

85 86 87 88
NUmero de Iteragdes por Segundo

Figura 13: Grafico com valores de IPS para a Solu¢iao Includes
- query Completa

GraphQLBatchExecutor

M

_ . [

78 80

79
NUmero de Iteracdes por Segundo

Figura 14: Grafico com valores de IPS para a Soluc¢io Graphgql-
Batch - query Completa

BatchLoaderExecutor
g \,,_/\v// —
120 121 122 123 124 125

NUmero de Iteracdes por Segundo

Figura 15: Grafico com valores de IPS para a Solucao Batch-
Loader - query Completa

6.2 Tempo Total de Execucio

No tocante ao tempo total de execugdo, ao analisar os resultados
medianos das dez execugdes é perceptivel novamente que todas
as solucdes propostas para otimizacéo tiveram um impacto signi-
ficativo na melhoria do tempo de resposta em comparagdo com
o Cenario Slow. De forma similar ao IPS, podemos visualizar os
resultados obtidos na Tabela 2.

Quanto as queries Completas, o Cendrio Slow mostrou um tempo
de 41 ms, servindo como uma linha base para as comparacgdes. A

Igor Simdes

slow
includes
SlowExecutor graphgl-batch
batch-loader
4]
5 IncludesExecutor
ul
GraphglBatchExecutor i

BatchLoaderExecutor

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240
NuUmero de Iteragdes por Segundo

Figura 16: Grafico com valores de IPS para cada solucio -
query Parcial

SlowExecutor

oy

—t T

83 86 87

84 85
Namero de Iteragdes por Segundo

Figura 17: Grafico com valores de IPS para o Cenario Slow -
query Parcial

IncludesExecutor

119 120 121 122 123
NUmero de Iteracdes por Segundo

Figura 18: Grafico com valores de IPS para a Solucao Includes
- query Parcial

Solucdo Includes conseguiu reduzir esse tempo para 15 ms, represen-
tando uma economia substancial. No entanto, a Solu¢do GraphQL-
Batch mostrou-se ligeiramente mais lenta, com 16 ms, mas ainda
assim muito mais eficiente do que o Cendrio Slow. A Solugéo Batch-
Loader teve o melhor tempo de resposta, com um tempo mediano
de apenas 14 ms, demonstrando ser a soluc¢do mais rapida para a
query Completa. A Figura 21 mostra os resultados das execugdes
abrangentemente.

Quando olhamos para as queries Parciais, o Cendrio Slow teve
um tempo mediano de 11 ms. O que identificamos aqui é a Solugdo

Comparando solugdes para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

GraphQLBatchExecutor
A [+—
166 167 168 169 170 171 172

NuUmero de Iteracdes por Segundo

Figura 19: Grafico com valores de IPS para a Solu¢io Graphgql-
Batch - query Parcial

BatchLoaderExecutor

228 229 230 231 232
NUmero de Iteragdes por Segundo

Figura 20: Grafico com valores de IPS para a Solucao Batch-
Loader - query Parcial

Tabela 2: Mediana aproximada do tempo total de execucio
em milissegundos para cada Executor e tipo de query

Executor Query Completa Query Parcial
Slow 41 ms 11 ms
Includes 15 ms 9 ms
GraphQLBatch 16 ms 7 ms
BatchLoader 14 ms 6 ms
oo [o
A
H I—
HTH
slow
AV includes
I graphgl-batch

batch-loader

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Tempo Total em Milissegundos

Figura 21: Tempo total de execucdo - query Completa

Includes, com 9 ms, foi novamente excedida pela Solugdo Graphgl-
Batch, com 7 ms. Mais uma vez, a Solu¢do BatchLoader se destacou

como a solucdo mais eficaz, entregando a query em apenas 6 ms.
Esses numeros estdo presentes na Figura 22.

[
{.1] $e
H e
o -
T P
slow
[N includes
W3 ¢ ' graphgl-batch

batch-loader

7 8 9 10 11 12 13 14 15
Tempo Total em Milissegundos

Figura 22: Tempo total de execucio - query Parcial

Esses resultados reiteram que, enquanto todas as solucdes otimi-
zadas oferecem uma melhoria substancial em rela¢do ao Solucao
Slow e a Solucdo BatchLoader tem uma vantagem consistente, seja
em queries Completas ou Parciais. Além disso, podemos ver que
os resultados nos testes de IPS se traduziram para o tempo total de
execugdo, como o fato da Solucdo GraphqlBatch ter ultrapassado a
Solucéo Includes na query Parcial.

6.3 Memoria Alocada

Em resumo, a memoria alocada se refere ao espago total de memoéria
solicitado durante a execugéo de um bloco de coédigo. Notavelmente,
o script de analise de memoria produziu resultados consistentes em
todas as dez execug¢des, mostrando o mesmo valor para cada um
dos executores. Novamente, os exibimos na Tabela 3.

Tabela 3: Memoria alocada em MB para cada Executor e tipo
de query

Executor Query Completa Query Parcial
Slow 1.05 MB 0.35 MB
Includes 0.47 MB 0.36 MB
GraphQLBatch 0.53 MB 0.22 MB
BatchLoader 0.52 MB 0.21 MB

Com relagio a memoria alocada, no cenario da query Completa,
o Cenario Slow consumiu cerca de 1.05 MB. A Solugio Includes
reduziu a alocacéo para 0.47 MB, enquanto as Solucdes Graphgl-
Batch e BatchLoader resultaram em alocagdes de 0.53 MB e 0.52 MB,
respectivamente. Este consumo mais elevado para as solucdes base-
adas em lotes pode estar potencialmente relacionado a sobrecarga
introduzida por classes adicionais do GraphQL.

Quando observamos a query Parcial, o Cendrio Slow tem um con-
sumo de 0.35 MB. Sobre a Solu¢io Includes, fica visivel a influéncia
de pré-carregar todas as associacdes, ultrapassando até mesmo o

cenario de referéncia e alocando 0.36MB. Ja a Soluc¢do GraphqlBatch
teve 0.22 e de forma bem similar a Solucdo BatchLoader alocou 0.21
MB.

6.4 Analise Qualitativa

Esta analise proporciona entendimentos sobre as qualidades e po-
tenciais limitacdes de cada solucgio, considerando o contexto de
APIs GraphQL implementadas em Rails. A Figura 23 mostra essa
comparagio visualmente de acordo com cada aspecto visto na Sub-
secdo 4.2 para cada solucgdo analisada.

Solugédo
Aspecto ¢
Usabilidade H +
Flexibilidade + +H+
Adicéo de
Dependéncia Externa A

Figura 23: Tabela de analises qualitativas com aspectos por
solucao

6.4.1 Usabilidade. A integragio direta fornecida pela Solucéo In-
cludes implica em alta usabilidade para desenvolvedores familiariza-
dos com Rails. Quanto a Solu¢do GraphqlBatch, seu uso é intuitivo
quando j4 ha um conhecimento com relacdo a gem graphql-ruby.
No entanto, aqueles sem experiéncia prévia com o GraphQL e seu
ecossistema enfrentardo uma curva de aprendizado. Por sua vez, a
Solucéo BatchLoader "é mais dificil de comecar do que com algo
especifico ao GraphQL, como graphql-batch"[13].

6.4.2 Flexibilidade. No tocante a flexibilidade, a Solucio Includes
comeca a ter dificuldades. E uma solucéio 6tima para situaces pa-
drio, em queries mais diretas, porém nio se adapta tdo bem a queries
mais complexas, por exemplo quando pré-carregando associa¢des
polimorficas. Esse caso é facilmente resolvido pela Solu¢do Bat-
chLoader e esta exemplificado em seu repositorio Github. Isso é
apenas um dos pontos que mostra como a Solucdo BatchLoader é
flexivel. A sua utilizagdo pode ser facilmente customizada quando
queries mais compostas forem necessarias[6]. Além disso, ela ainda
pode ser utilizada de forma simples em situa¢des que nao tenham
envolvimento algum com GraphQL, como em APIs REST. Isso a
torna incrivelmente poderosa. A Solucdo GraphglBatch também
oferece mais flexibilidade do que a solucéo nativa, entretanto menos
do que a Solucéo BatchLoader, justamente por ser especifica para o
GraphQL.

6.4.3 Adicdo de Dependéncia Externa. A Unica solugio dentre as
trés que néo exige a adicdo de uma dependéncia externa é a Solugéo
Includes, uma vez que é um recurso nativo do Rails. Para projetos
que desejam minimizar o nimero de dependéncias ou apenas em
busca de uma solucéo rapida para queries mais simples, ela pode ser
ideal. Apesar de ser uma dependéncia externa, a Solu¢do Graphql-
Batch é focada em resolver o problema N+1 queries no contexto
da gem graphql-ruby, podendo ser vista como uma extensdo natu-
ral. De forma similar, a Solugio BatchLoader é uma dependéncia

Igor Simdes

externa. Apesar disso, sua flexibilidade pode evitar que outras de-
pendéncias venham a ser necessarias, ja que sua aplicabilidade é
mais ampla.

6.5 Ameacas a Validade

Alguns aspectos merecem ser destacados ao comparar as solugoes
para o problema N+1 queries, porque podem representar potenciais
ameacas a validade das conclusdes extraidas:

O Schema Graphq]l e as entidades do banco de dados foram es-
truturados com o objetivo especifico de simular o problema de N+1
queries. Também ¢é valido apontar que apenas analisamos com res-
peito a duas queries ao Schema GraphQL. Embora isso seja essencial
para a reprodutibilidade do problema em um ambiente controlado,
pode néo refletir a complexidade e variagdes encontradas em sis-
temas reais. Além disso, hé cenérios em aplica¢des do mundo real
que podem néo ter sido totalmente capturados nesta configuragao.

O estado do banco de dados ser consistente durante os testes é
uma vantagem, por eliminar variaveis indesejadas que poderiam in-
fluenciar os resultados. Porém, isso também pode ser uma limitacéo.
Em sistemas reais, a condi¢do do banco de dados pode variar, por
exemplo em termos de volume de dados ou atividades simultaneas,
o que pode afetar o desempenho das solugdes. Embora os resultados
sejam mais confiaveis com o estado consistente do banco de dados,
reconhecemos que diferentes estados podem produzir resultados
distintos.

A definigdo de uma ordem constante para a chamada dos exe-
cutores visou minimizar variaveis externas que possam afetar os
resultados. No entanto, mesmo que os testes tenham sido projetados
para serem o mais isolados possivel, a ordem de execucéo, em teo-
ria, poderia influenciar os resultados devido a aspectos como cache
ou alocacdo de recursos do sistema. Embora a probabilidade seja
minima, ndo podemos desconsiderar completamente essa variavel.

Utilizamos de uma tnica aplicagédo toy (um sistema sem utilizacdo
pratica de fato projetado principalmente para fins experimentais ou
didaticos) como base para os testes pode néo refletir completamente
a realidade de aplicagdes empresariais ou em producdo. Aplicagdes
do mundo real podem ter esquemas mais complexos, conjuntos
de dados maiores e interacdes mais entrelacadas, o que poderia
influenciar o desempenho das solucdes testadas.

A analise qualitativa foi conduzida por um tnico individuo, o
que pode introduzir um viés subjetivo. Diferentes desenvolvedores
podem ter diferentes percepgdes e experiéncias, possivelmente le-
vando a diferentes conclusdes ou énfases na analise das solugdes.
Idealmente, poderiamos tornar a avaliacdo mais robusta conside-
rando multiplos avaliadores para garantir uma visdo mais diversifi-
cada.

A relevéancia do estudo néo é diminuida ao reconhecer essas ame-
acas, no entanto destaca areas em que futuras pesquisas podem se
aprofundar para oferecer uma compreensio mais completa quanto
ao problema de N+1 queries em APIs GraphQL em Rails.

7 TRABALHOS RELACIONADOS

Antes de finalizar esta analise, consideramos pertinente citar estu-
dos relacionados ao GraphQL, visando demonstrar o quanto sua
relevéncia académica vem crescendo.

Comparando solugdes para o problema de N+1 queries com APIs GraphQL em Ruby on Rails

O GraphQL é frequentemente comparado a arquitetura REST,
de forma quantitativa. Gleison Brito e Marco Valente[1] realizaram
um experimento controlado para comparar ambas tecnologias em
aspectos quantitativas e qualitativos. Sobre a analise qualitativa,
diferentemente da nossa abordagem em que apenas tivemos as vi-
sOes de uma Unica pessoa, eles entrevistaram 38 desenvolvedores
de software, funcionarios do Github. Na perspectiva quantitativa,
apesar de ndo fazermos nenhuma compara¢iao com REST, é valido
mostrar que eles ndo eliminaram as requisi¢des HTTP ao investi-
gar a performance de ambas as tecnologias. Em nossa viséo, isso
pode gerar ruidos devido aos aspectos de redes inerentes a essas
requisicdes.

No trabalho de Roksela et al[7], uma aplicagdo para simular
o ambiente de uma API web foi desenvolvida para comparar as
diferentes estratégias de execu¢io de queries GraphQL. Um dos
objetivos desse estudo foi avaliar a resisténcia de cada estratégia ao
problema N+1. Por exemplo, no trabalho mencionado estratégias
de cache e carregamento em lote foram comparadas entre si e ndo
tiveram diferencas significativas quanto ao tempo total de execucio.
Em nossos testes, o uso de caches foi explicitamente eliminado, ou
seja, nem chegamos a comparar esse cenario.

Estes estudos, quando somados as nossas observagdes, propor-
cionam uma visao mais abrangente sobre o GraphQL como uma
tecnologia cada vez mais relevante no mercado de desenvolvimento
de software.

8 CONCLUSAO

O problema N+1 pode ocorrer de formas diferentes em varios siste-
mas e diversas tecnologias, como em APIs REST, néo se restringindo
apenas ao problema de N+1 queries. Neste estudo, comparamos de
forma especifica trés solucdes distintas para abordar o problema
de N+1 queries em APIs GraphQL implementadas em Rails: a So-
lucéo Includes, a Solucdo GraphqlBatch e a Solucdo BatchLoader.
A motivacio para tal comparacéo deriva da prevaléncia deste pro-
blema em muitos projetos que utilizam GraphQL e da necessidade
de otimizagéo para melhorar a eficiéncia e a experiéncia do usuario.

Por meio da implementagéo e teste dessas solucdes, consegui-
mos avaliar aspectos quantitativos, por meio da medi¢do do tempo
total de execucao, do IPS e do consumo de memoria, mas também,
qualitativos, como a adi¢do de dependéncias externas, usabilidade
e flexibilidade.

Em relagéo a performance, observamos que a Solu¢io BatchLoa-
der apresentou a melhor performance, no que diz respeito ao IPS
e tempo total de execu¢do. Em termos de memoria, quando com-
parada as outras solucdes, no cenario de maior volume de dados
ela por pouco nio teve o pior desempenho. Quando avaliamos uma
menor exigéncia de dados, a situagéo se inverteu e ela se sobressaiu
em relacdo as outras solugdes.

No contexto qualitativo, cada solugio tem seus méritos. A Solu-
cdo Includes se beneficia por ser nativa do Rails, proporcionando
uma integracdo mais suave e uma curva de aprendizado menos
ingreme. Por outro lado, as Solu¢des GraphqlBatch e BatchLoader
possuem vantagens especificas, com o primeiro sendo mais oti-
mizado para o contexto GraphQL e o segundo oferecendo maior
versatilidade.

Concluindo, apesar de todos os aspectos analisados, o Cendrio
Slow, ou seja, sem uso de nenhuma das solucdes, pode ser suficiente.
Se muitos dos models do banco de dados ndo forem associados
ou as associagdes existentes nio estiverem presentes no Schema
GraphQL, nao ha necessidade de empregar nenhuma das solugdes.

Em contrapartida, se queries mais frequentes do sistema sempre
requisitarem essas associagdes, a Solucgdo Includes pode ser a mais
recomendada, ja que ndo requer nenhuma alteragdo no projeto
Rails. Além disso, ainda que consuma mais recursos que as outras
solugdes, se ndo houver necessidade de otimizar esse consumo, seja
por excesso de recurso, seja por ndo haver impacto suficiente no
sistema, ela também pode ser a solu¢do mais indicada.

Se ndo pudermos dispor desse gasto, teremos que recorrer as
Solucdes GraphglBatch e BatchLoader. No contexto em que o time
é menos experiente ou apenas ha APIs GraphQL na aplicacio, a
Solugdo GraphqlBatch pode ser suficiente, uma vez que exige menor
entendimento inicial e somente trata do problema N+1 no contexto
do GraphQL.

Por fim, se a experiéncia do time for suficientemente balanceada
e a aplicacdo estiver em contato com outros servi¢os em que o pro-
blema N+1 pode acontecer, como APIs REST, a Solugdo BatchLoader
fornece a maior flexibilidade de uso. Além disso, se o requisito de
performance for extremamente necessario, essa solugao também é
a mais adequada.

AGRADECIMENTOS

Agradeco aos meus pais da Terra, Simone e Gilson, aos meus irmaos,
ftalo, Lucas e Pedro, e 4 minha terceira mae, Fatima.

Agradeco também ao meu pai Telémaco, que com certeza esta
me olhando crescer, de onde estiver.

Agradeco também aos meus amigos do peito, Pedro e Tiago, pre-
sentes em todas as minhas conquistas. Embora nio compartilhemos
0 mesmo sangue, vocés sdo irmaos para mim em todos os sentidos
que realmente importam.

Agradeco também a Ottony e Juliana, com quem aprendi tudo o
que sei sobre Ruby on Rails durante minha jornada na Incognia.

Agradec¢o também a minha namorada, Camila Cunha, por todo
amor, carinho e companheirismo durante esse ano tao incrivel.

Agradeco também aos amigos que fiz na faculdade, por ilumina-
rem minha jornada a cada dia.

Agradego também ao Centro de Informatica e seus professores,
que me concederam tantas oportunidades durante a graduagéo.

Agradeco por fim, ao meu orientador Paulo Borba, pelo suporte
e orientacdo tdo necessarios para o desenvolvimento deste trabalho.

REFERENCIAS

[1] Gleison Brito and Marco Tulio Valente. 2020. REST vs GraphQL: A Controlled
Experiment. arXiv:2003.04761 [cs.SE]

[2] Roy Thomas Fielding and Richard N. Taylor. 2000. Architectural Styles and the
Design of Network-Based Software Architectures. Ph.D. Dissertation.

[3] Roy T. Fielding and Richard N. Taylor. 2000. Principled Design of the Modern
Web Architecture. In Proceedings of the 22nd International Conference on Software
Engineering (ICSE "00). 407-416. https://doi.org/10.1145/337180.337228

[4] Roy T. Fielding and Richard N. Taylor. 2002. Principled Design of the Modern
Web Architecture. ACM Trans. Internet Technol. 2, 2 (may 2002), 115-150. https:
//doi.org/10.1145/514183.514185

[5] Facebook Inc. 2023. GraphQL specification (draft). Retrieved September 23, 2023
from https://spec.graphql.org/draft/

[6] Nick Keuning. 2021. Solving Complex N+1 Queries in GraphQL Ruby with
BatchLoader. Retrieved September 23, 2023 from https://spin.atomicobject.com/

https://arxiv.org/abs/2003.04761
https://doi.org/10.1145/337180.337228
https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/514183.514185
https://spec.graphql.org/draft/
https://spin.atomicobject.com/2021/02/22/complex-n1-queries-graphql-ruby/
https://spin.atomicobject.com/2021/02/22/complex-n1-queries-graphql-ruby/

(71

(8]

[10]

2021/02/22/complex-n1-queries-graphgl-ruby/

Piotr Roksela, Marek Konieczny, and Slawomir Zielinski. 2020. Evaluating
execution strategies of GraphQL queries. In 2020 43rd International Conference
on Telecommunications and Signal Processing (TSP) (LAC ’10). 640-644. https:
//doi.org/10.1109/TSP49548.2020.9163501

RubyGems.Org. [n.d.]. Learn how RubyGems works, and how to make your
own. Retrieved September 23, 2023 from https://guides.rubygems.org/
RubyOnRails.Org. 2021. Active Record Associations. Retrieved September 23,
2023 from https://guides.rubyonrails.org/association_basics.html
RubyOnRails.Org. 2021. Active Record Query Interface. Retrieved September
23, 2023 from https://guides.rubyonrails.org/active_record_querying.html

Igor Simdes

[11] Dmitry Tsepelev. 2020. How to GraphQL with Ruby, Rails, Active Record, and no

N+1. Retrieved September 23, 2023 from https://evilmartians.com/chronicles/
how-to-graphql-with-ruby-rails-active-record-and-no-n-plus-one

[12] Justin Weiss. 2014. A Guide to Choosing the Best Gems for Your Ruby Project. Re-

trieved September 23, 2023 from https://www.justinweiss.com/articles/a-guide-
to-choosing-the-best- gems-for-your-ruby-project/

[13] Justin Weiss. 2021. Automatically avoiding GraphQL N+1s. Retrieved September

23, 2023 from https://www.aha.io/engineering/articles/automatically-avoiding-
graphql-n-1s

https://spin.atomicobject.com/2021/02/22/complex-n1-queries-graphql-ruby/
https://doi.org/10.1109/TSP49548.2020.9163501
https://doi.org/10.1109/TSP49548.2020.9163501
https://guides.rubygems.org/
https://guides.rubyonrails.org/association_basics.html
https://guides.rubyonrails.org/active_record_querying.html
https://evilmartians.com/chronicles/how-to-graphql-with-ruby-rails-active-record-and-no-n-plus-one
https://evilmartians.com/chronicles/how-to-graphql-with-ruby-rails-active-record-and-no-n-plus-one
https://www.justinweiss.com/articles/a-guide-to-choosing-the-best-gems-for-your-ruby-project/
https://www.justinweiss.com/articles/a-guide-to-choosing-the-best-gems-for-your-ruby-project/
https://www.aha.io/engineering/articles/automatically-avoiding-graphql-n-1s
https://www.aha.io/engineering/articles/automatically-avoiding-graphql-n-1s

	Resumo
	1 introdução
	2 principais conceitos do graphql
	3 Motivação
	3.1 Soluções Escolhidas

	4 Método Proposto
	4.1 Aspectos Quantitativos
	4.2 Aspectos Qualitativos

	5 Desenvolvimento
	5.1 Escolha da Aplicação Base
	5.2 Implementação das Entidades e Relacionamentos em Rails
	5.3 Desenvolvimento do Schema GraphQL em Rails
	5.4 Queries Determinadas
	5.5 Criação dos Scripts

	6 Resultados
	6.1 IPS
	6.2 Tempo Total de Execução
	6.3 Memória Alocada
	6.4 Análise Qualitativa
	6.5 Ameaças à Validade

	7 Trabalhos Relacionados
	8 Conclusão
	Agradecimentos
	Referências

