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Abstract. This article investigates approaches in the field of oral health in
conjunction with Deep Learning. The goal is to develop methods for multilabel
classification, identifying the presence or absence of periapical lesions or
dehiscences caused by titanium and zirconia implants. The study employs an
adapted EfficientNet-BO model in conjunction with the loss function, achieving
a 97% accuracy in overall label classification. Moreover, optimized selection
and segmentation of cuts in "DICOM” files, sourced from cone-beam computed
tomographies, were carried out. This approach contributes to the creation of
a new dataset that will aid in the diagnosis made by healthcare professionals.
This new dataset attained an average Structural Similarity Index Measure (SSIM)
of 0.6 when compared with images selected by expert radiologists, signifying
substantial similarity between the generated images. Additionally, analyses on
the model’s explainability and the treatment of files originating from CBCT (Cone
Beam Computed Tomography), or Tomografia Computorizada de Feixe Conico
in Portuguese, are conducted.

Resumo. Este artigo investiga abordagens na drea de saiide bucal em conjunto
com Aprendizagem Profunda. O objetivo é desenvolver métodos para a
classificacdo multilabel, identificando a presenca ou auséncia de lesoes
periapicais, ou deiscéncias ocasionadas por implantes de titdnio e zirconio.
O estudo utiliza um modelo adaptado do EfficientNet-BO combinado com a
funcdo de perda, alcancando uma acurdcia de 97% na classificacdo geral dos
rotulos. Além disso, foi realizada a selecdo e segmentagdo otimizada de recortes
nos arquivos "DICOM”, provenientes de tomografias computadorizadas de feixe
conico. Essa abordagem contribui para a criagdo de um novo conjunto de
dados que auxiliard no diagndstico realizado por profissionais da satide. Esse
novo conjunto de dados obteve uma média de "SSIM” (Structural Similarity
Index Measure) de 0,6, uma vez comparada com imagens selecionadas por
radiologistas especialistas, indicando uma étima semelhanga entre as imagens
geradas. Adicionalmente, sdo conduzidas andlises de explicabilidade do modelo
e do tratamento dos arquivos oriundos do CBCT (Cone Beam Computed
Tomography), ou Tomografia Computorizada de Feixe Conico em portugués.

1. Introducao

Perda de dentes € um problema bastante comum na nossa sociedade e pode acontecer
por meio de algum trauma ou doencgas associadas [Gaviria et al. 2014], dessa maneira o



implante dentdrio é uma técnica extremamente utilizada na odontologia para a substituicao
desses dentes perdidos, proporcionando tanto beneficios estéticos quanto mecanicos aos
pacientes. Esses implantes sdo principalmente compostos de estruturas de titanio ou
zircOnio que sao inseridas no osso maxilar ou mandibular, fornecendo uma base sélida
para a fixagc@o de préteses dentdrias de forma permanente.

No entanto, a pratica de inser¢do de implantes dentdrios pode estar sujeita a
complicagdes ao paciente, como lesdes periapicais (inflamagdes em torno da raiz), que
se manifestam em forma de: defeitos de fenestragdo (abertura inadequada da cortical
Ossea) e deiscéncia (retracdo da gengiva em torno do implante), que podem levar a perda
do implante e a infec¢cdes generalizadas [Cionca et al. 2017]. Portanto, é de profunda
importancia diagnosticar precocemente essas condi¢des para evitar problemas futuros.

Assim podemos introduzir o uso da tomografia computadorizada de feixe conico
(Cone Beam Computed Tomography, CBCT), que é uma técnica de imagem bastante
utilizada na odontologia para obter imagens tridimensionais detalhadas dos ossos maxilares
e mandibulares, fornecendo informagdes precisas sobre a arcada dentaria e os implantes
dentarios. Essa tecnologia permite uma visualizacdo clara dos defeitos de fenestracao
e deiscéncia, possibilitando um diagndstico mais preciso. Essas tomografias produzem
varios recortes em trés perspectivas de visualizacdo: axial (recorte visto de cima), sagital
(recorte visto de lado), coronal (recorte visto de frente), e cada recorte pode ser armazenado
em arquivos do tipo "DICOM” (Digital Imaging and Communications in Medicine), que
contém todos os dados resultantes do processo.

No entanto, a interpretacdo manual das imagens de "CBCT” pode ser
um procedimento demorado e suscetivel a erros, devido a grande quantidade de
informagdes, recortes e a complexidade do ruido gerado pelos artefatos na obtengdo
de exames. Isso requer uma andlise ndo trivial de um radiologista experiente. E
nesse contexto que algoritmos de Aprendizagem Profunda, especializados em andlise de
imagens [Calazans et al. 2022], e algoritmos de segmentacao [Kurt Bayrakdar et al. 2021,
Hegazy et al. 2019], s@o acionados desempenhando papeis importantes.

Os algoritmos de segmentacdo t€ém como objetivo identificar regides de interesse em
uma imagem, permitindo a delimitacao precisa dos implantes e das estruturas adjacentes,
como 0sso e gengiva, facilitando a anélise e a deteccao de lesdes em volta do implante.
Um exemplo de ferramenta disponivel na industria € o ”Segment-Anything”, desenvolvido
pela Meta, que oferece a capacidade de segmentar qualquer objeto de interesse em imagens
médicas [Kirillov et al. 2023a].

Além disso, as redes neurais convolucionais (CNNs), um tipo de algoritmo de
Aprendizagem Profunda, t€ém se destacado no campo da andlise de imagens devido
a sua capacidade de aprender padrOes complexos e extrair caracteristicas relevantes
automaticamente. As CNNs podem ser treinadas para aprender caracteristicas distintas
que distinguem os ossos dos artefatos metélicos, identificando e localizando os defeitos de
fenestracdo e deiscéncia em implantes dentdrios com alta precisdo [Minnema et al. 2019].

1.1. Objetivos

O presente trabalho de graduagcdo tem como objetivo desenvolver métodos para a
classifica¢do da presencga ou ndo de lesdes periapicais ocasionadas por implantes utilizando
um modelo adaptado do EfficientNet-BO disponibilizado pela biblioteca python “PyTorch”,



juntamente com a implementacao da selecao de melhores recortes nos arquivos "DICOM”
obtidos por meio de tomografias computadorizadas de feixe conico, ajudando na constru¢do
de uma base de treinamento e avaliacao dos algoritmos.

Essa abordagem permitird uma andlise mais eficiente e precisa das imagens,
otimizando o processo de detec¢ao e classificacao dos defeitos de deiscéncia utilizando
algoritmos de segmentacdo como o "SAM” e de Aprendizagem Profunda especializados em
imagens. Espera-se que esse trabalho possa contribuir para o avanco no diagndstico precoce
e no tratamento eficaz de complicagdes relacionadas a implantes dentérios, proporcionando
maior segurancga, planejamento e qualidade nos procedimentos odontoldgicos.

2. Fundamentacao Teorica

Antes de adentrar no desenvolvimento da solugdo, este artigo vai se aprofundar nos
principais conceitos abordados, explicando sobre os termos odontologicos e materiais
associados, tecnologias utilizadas na realizacdo das tomografias e um pouco da histéria da
inteligéncia artificial e algoritmos de visdo computacional.

2.1. CBCT

CBCT (a.k.a ”Cone Beam Computed Tomography” ou Tomografia Computorizada de
Feixe Conico em portugués), € uma técnica de imagem bastante utilizada na odontologia
para obter imagens tridimensionais precisas e de alta qualidade dos elementos 6sseos no
complexo maxilofacial [Antunes 2018] foi aprovada para o uso em Medicina Dentaria
nos EUA no ano de 2000 onde sucedeu de ser adotada rapidamente nos ambientes
odontoldgicos, devido ao seu baixo custo e baixa exposicao a radiagdo quando comparada
a outras técnicas [Venkatesh and Venkatesh Elluru 2017]. Suas aplica¢es variam entre
planejamento de implantes dentérios, visualizacdo de anomalias dentdrias, avaliagdo
da estrutura 6ssea maxilofacial, diagnostico de cérie dentéria (cavidades) entre outros
[US - Food and Drug Administration 2020].

Essa técnica € aplicada em maquinas dos mais diversos estilos e que sao conhecidas
atualmente como “Mdéquinas CBCT”. Esses engenhos usam um feixe em forma de
cone e um detector de painel plano que rotaciona uma vez ao entorno do paciente
entre 180-360 graus, abrangendo a drea maxilofacial ou alguma area periférica de
interesse, capturando em apenas uma rotagao entre 180-1024 imagens cefalométricas
(Imagens do Cranio Detalhada) [Venkatesh and Venkatesh Elluru 2017]. Essas imagens
sdo reconstruidas utilizando uma versdo modificada do algoritmo de “Feldkamp”,
gerando versdes equivalentes distribuidas em 3 planos anatdmicos: Axial, Coronal e
Sagital; que sdo salvas no formato de "DICOM?”, para o uso de softwares de terceiros
[Venkatesh and Venkatesh Elluru 2017], como € explicitado na Figura 1.

2.2. Planos Anatomicos

Planos anatdomicos, como mostrados na Figura 2, sdo planos hipotéticos que servem para
dividir o corpo humano em seccdes de maneira que ajudam na localizacdo, descricdao
e organizacdo espacial de estruturas anatdomicas, como O0rgdos e 0ssos. Nesses planos
especificados estao incluidos: Sagital, Coronal e Axial [Medicine LibreTexts 2023].

O plano sagital divide o corpo em duas metades: metade do lado esquerdo e metade
do lado direito, permitindo observar movimentos e estruturas de perfil dividindo-o em
metades exatamente iguais.
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Figura 1. Fluxo da obtencao de imagens CBCT. (A) demonstra a "Maquina CBCT”;
(B) demonstra o processo de coleta dos raios-X provenientes da maquina ao
cranio do paciente; (C) mostra a reconstrucao das imagens em formato digital;
(D) geracao das imagens distribuidas nos planos anatomicos conhecidos; (E)
valores sao coletados e salvos em padrao DICOM [Fan et al. 2023]

O plano coronal, também conhecido como plano frontal, divide o corpo em partes
anterior e posterior. Ele € perpendicular ao plano sagital e passa lateralmente, dividindo
o corpo em uma metade frontal (anterior) e uma metade posterior. Ao utilizar o plano
coronal, € possivel observar estruturas como ombros, bracos e pernas, permitindo uma
visdo completa da simetria e assimetria dessas areas.

O plano axial, também chamado de plano transversal, € perpendicular ao eixo
longitudinal do corpo. Ele divide o corpo em partes superior e inferior. Ao utilizar o plano
axial, podemos observar sec¢des horizontais do corpo, permitindo visualizar estruturas
internas em diferentes niveis. Isso é especialmente util para a anélise de 6rgdos e tecidos
internos, como os cortes em uma tomografia computadorizada ou ressonincia magnética.
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Figura 2. (A) Representacao do recorte dos planos anatomicos; (B)
Exemplo de reconstrucao dos planos anatomicos em tomografia computorizada
[Garib et al. 2007]

2.3. DICOM

Datado de 1993, DICOM (a.k.a Digital Imaging and Communications in Medicine) € o
padrao de comunicac¢ao mais utilizado e com suporte para imagens médicas atualmente
[Kahn et al. 2007]. E também uma extensdao de arquivo que € utilizada por padrdo



internacionalmente para armazenar, transmitir € processar imagens médicas, como
radiografias, tomografias e ressonancias magnéticas.

O DICOM permite a integracdo e compartilhamento eficiente de informagoes
médicas entre diferentes sistemas e institui¢des de saide. O DICOM ¢ dividido em duas
principais estruturas, o DICOMDIR arquivo esse que contém informagdes sobre o paciente,
detalhes sobre a aquisicao da imagem; e a segunda estrutura ¢ uma série de imagens
codificadas de forma sequencial, onde cada uma delas contém informacdes detalhadas
sobre a anatomia daquela se¢ao especifica do corpo em perspectiva axial. Quando essas
fatias axiais s@o organizadas na ordem correta e combinadas, elas formam a representacao
tridimensional completa da estrutura em estudo, seja um 6rgdo, um 0sso ou outra area
de interesse [Grauer et al. 2009]. Dessa forma, além de podermos ter uma representagao
tridimensional, poderia também haver a conversdo para outros planos anatdmicos como
sagital e coronal, que sdo importantes para diagnosticar outros problemas.

2.4. Deiscéncia Ossea

A deiscéncia, como mostrado na Figura 3 refere-se a abertura ou separa¢do de tecidos,
normalmente o0ssos, que deveriam estar adjacentes ou unidos.

No contexto odontolégico, uma deiscéncia em torno de um implante é
caracterizada pela auséncia de osso iniciando a partir da parte superior do implante dessa
maneira forma-se uma abertura que expde o dente e areas circundantes, tornando-os
vulneraveis a infeccdes bacterianas, podendo levar a perda do implante e dor associada
[Cionca et al. 2017]. Essa patologia pode levar a recessdo gengival (recuo da éarea
gengival), expondo a doengas, interferindo na estética e na higiene bucal, causando
inflamacao e destrui¢do do osso adjacente, resultando em uma lesdo periapical que requer
tratamento endodontico ou cirdrgico para eliminar a infeccao. Assim € de importancia
a correcdo da deiscéncia e para promover a regeneracao saudavel dos tecidos afetados

[Chiapasco and Zaniboni 2009].

Figura 3. (A) Representacao de um mandibula com presenca de deiscéncia em
area peri-implantar; (B) Destaque do implante ultrapassando a area limite superior
de osso, indicando exposi¢cao do implante

2.5. Aprendizagem de Maquina

Aprendizagem de Maquina pode ser definida como a area de estudo que capacita o
Aprendizado de Maquina sem ser explicitamente programado [Shinde and Shah 2018].
Dessa maneira a maquina pode melhorar seu desempenho a partir de exemplos, ao receber
uma grande quantidade de informacao precisa e juntamente com os algoritmos necessdrios,
o computador poderd aprender a partir dos dados, adquirindo novas habilidades, podendo
fazer previsoes ou decisdes dependendo do escopo da tarefa.



Na area de Aprendizagem de Madquina existem trés tipos de aprendizado
amplamente utilizados:  Supervisionado, Nao Supervisionado e por Reforco
[Ludermir 2021].

No Aprendizado Supervisionado, todos os exemplos sdo rotulados, ou seja tém
uma resposta esperada informando qual € sua classe de pertencimento; esse método é
bastante usado em problemas de classificagdo ou regressdo, como por exemplo em um
problema de distinguir imagens ou inferir se um paciente € diabético ou ndo dado um
conjunto de informagao sobre ele. Esses exemplos de entrada s@o sempre descritos como
uma sequéncia de dados, em formato de vetor de atributos, onde para cada vetor (exemplo)
ha um rétulo associado. Nesse tipo de aprendizado, seu objetivo € construir rétulos para
exemplos ainda ndo rotulados.

No Aprendizado Nao Supervisionado, exemplos sao fornecidos ao algoritmo sem
rétulos. Ele agrupa os exemplos com base em similaridades de atributos, buscando formar
clusters. Depois, € necessario analisar os clusters para atribuir significado a cada grupo no
contexto do problema.

No Aprendizado por Reforgo, o algoritmo recebe sinais de refor¢o (recompensa ou
puni¢cdo) em vez da resposta correta. Ele tenta associar a melhor acdo baseado nas suas
experiéncias passadas. E comum em jogos e foi utilizado no AlphaGo [Silver et al. 2016].

2.6. Aprendizagem Profunda

Aprendizagem Profunda ou "Deep Learning” é um ramo da Aprendizagem de Méaquina
que tem a capacidade de compreender e processar informag¢des complexas de forma
autonoma. Esse método adota uma abordagem mais sofisticada se baseando em redes
neurais artificiais profundas, que sao estruturas inspiradas no funcionamento do cérebro
humano. Essas redes consistem em camadas interconectadas de neurdnios artificiais, cada
uma delas processando e transformando os dados de entrada, permitindo que modelos
computacionais compostos por vdrias camadas de processamento aprendam representagdes
de dados com multiplos niveis de abstra¢do, porém com uma diferenca, na Aprendizagem
Profunda temos a abstracdo de inimeras camadas ocultas de processamento, como na
Figura 4 onde em cada uma dessas camadas temos uma outra grande quantidade de
neurdnios de processamento. Assim, esse método € o mais indicado para identificar
padrdes mais complexos e/ou com um grande custo de poder computacional (volume de
dados) [Rusk 2015].

A habilidade de aprender representacdes de dados em diferentes niveis de abstracao
¢ uma das razdes pelas quais a Aprendizagem Profunda se destaca em areas como Visao
Computacional, processamento de linguagem natural e muitas outras. Ela permite que as
maquinas entendam os dados de maneira mais profunda e, assim, tomem decisdes mais
informadas e precisas em uma variedade de cendrios.

2.7. Redes Neurais Convolucionais

As Redes neurais convolucionais (ou CNN a.k.a ’Convolutional Neural Network™ do
original), sd3o um tipo de algoritmo de inteligéncia artificial “feed-foward” bastante
empregado na area de Visdo Computacional, amplamente usado no contexto de
Aprendizagem Profunda pela maneira que consegue abstrair atributos complexos, e extrair
caracteristicas relevantes de acordo com a entrada [Alzubaidi et al. 2021].
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Figura 4. Arquitetura do VGG-16, modelo de Aprendizagem Profunda

A estrutura das CNNss foi inspirada nos neurdnios do cortex visual do reino animal,
de maneira semelhante a uma rede neural convencional, porém com uma diferenca: detectar
estimulos em regides especificas. Isso permite atribuir trés beneficios-chave as CNNs:
representacdes equivalentes, ou seja, se a entrada for modificada, a saida do algoritmo
também serd modificada de maneira equivalente; interagdes esparsas, ou seja, com as
constantes diminui¢cdes da dimensionalidade da entrada empregadas pelo algoritmo da
CNN, ja que uma imagem pode conter milhdes ou milhares de pixels, o kernel consegue
detectar informacdes significativas que abrangem dezenas ou centenas de pixels, isso
implica que precisamos armazenar menos parametros, o0 que nao apenas reduz o requisito
de memoria do modelo, mas também aprimora a efici€ncia estatistica do modelo; por fim,
ha o compartilhamento de pesos, garantindo que um peso utilizado para gerar um output
analisando um ponto qualquer ¢ o mesmo utilizado em um outro na mesma interagdo,
garantindo o ponto das representacdes equivalentes.

Ao contrario das redes totalmente conectadas (redes FC ou “Fully Connected
Networks” do original), pesos compartilhados e conexdes locais na CNN sao usados para
aproveitar plenamente as estruturas de dados de entrada 2D. Essa operacao utiliza um
nimero extremamente pequeno de pardmetros, o que simplifica o processo de treinamento
e acelera a rede. E importante destacar que apenas pequenas regides da entrada sdo
captadas por essas células, em vez de dela toda (ou seja, essas células extraem localmente
a correlacdo disponivel na entrada, como filtros sobre a entrada).

A estrutura geral de uma CNN se basea em trés partes, como mostrado na Figura 5:
camadas de convolugdo, camadas de ’pooling” e as camadas totalmente conectadas (FC)
[Yamashita et al. 2018]. As camadas de convolucdo sao responsaveis pela realizacdo de
extracao de caracteristicas, utilizando operacdes lineares e nao-lineares, como a convolucao,
filtros de kernel e a fun¢do de ativagcdo associada. As camadas de “’pooling” realizam uma
reducdo da dimensionalidade em relacdo ao que é conhecido como sua entrada. Isso é
feito para introduzir invariancia a pequenos ruidos, diminuindo parametros subsequentes
e extraindo as caracteristicas mais destacadas. E nas camadas totalmente conectadas é o
responsavel por receber o vetor das caracteristicas extraidas pelas camadas passadas, e
gerar uma saida desejada no modelo se for uma tarefa de classificacdo, € esperado que
essa camada gere as probabilidades para cada classe. A camada totalmente conectada
final geralmente possui 0 mesmo nimero de nos de saida que o nimero de classes. Cada



camada totalmente conectada € seguida por uma funcao nao linear, como a ReLU.
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Figura 5. Arquitetura geral de uma CNN, com as camadas de convolugao, ”pooling”
e totalmente conectadas, que juntas realizam a saida de probabilidades da entrada
pertencer a alguma das classes associadas [K E, Swapna 2022]

2.8. Arquitetura EfficientNet

A EfficientNet [Tan and Le 2019], como mostrado na Figura 6, é uma arquitetura de
rede neural convolucional (CNN) projetada para alcangar um equilibrio eficiente entre
desempenho e uso de recursos, como computagcdao e memoria. Ela alcanca altos niveis de
desempenho com uma quantidade menor de pardmetros e operagdes em comparagdo com
muitas arquiteturas convolucionais tradicionais, tornando-o mais eficiente em termos de
recursos computacionais, em comparagdo as variagdes da ResNet.

O EfficientNet é excelente para “transfer learning”, onde um modelo pré-treinado
em grandes conjuntos de dados pode ser ajustado para tarefas especificas com conjuntos
de dados menores, economizando tempo e esfor¢o no treinamento como € provado no seu
artigo.

E isso s6 foi possivel gracas ao método de arquitetura compound scaling”, que
envolve o dimensionamento proporcional de vérias dimensdes do modelo, incluindo
largura, profundidade, tamanho da convolucio e resolu¢do de entrada. Esse escalonamento
equilibrado permite otimizar o desempenho da rede neural convolucional para diferentes
tarefas de visao computacional, garantindo que todos 0os componentes estejam ajustados
de maneira eficiente e coordenada. Dessa forma, a EfficientNet alcanca um equilibrio
entre eficiéncia e desempenho superior em comparacao com abordagens convencionais de
escalonamento, permitindo também que novas versdes sejam criadas, a partir da arquitetura
base da EfficientNet.
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2.9. ’Segment Anything Model” por ”"Meta AI”

”Segment Anything Model” ("SAM”) [Kirillov et al. 2023b] € uma abordagem eficiente
desenvolvida pela Meta Al para realizar segmentacdo semantica em imagens. Essa
abordagem visa identificar e separar diferentes objetos ou regides em uma imagem,
atribuindo rétulos a cada pixel de acordo com a classe ou categoria a qual pertencem. A
segmentacao semantica é fundamental em tarefas de visao computacional, como detec¢cao
de objetos, navegacdo de veiculos autonomos e andlise de imagens médicas. Ela foi
treinada em um conjunto de dados proprio para o SA-1B, que continha 11 milhdes de
imagens e mais de 1 bilhdo de mascaras.

7z

O ”SAM” € um sistema de segmentacdo com generalizag¢ao de “’zero-shot”, significa
que no seu treinamento foi possivel atingir um conceito geral sobre o que sdao objetos,
generalizando objetos e imagens desconhecidos sem necessidade de treinamento adicional.

A arquitetura desse modelo € baseada em trés frentes: um componente de
codificador de imagens, um codificador de prompts e um rapido decodificador de mascara,
como mostrado na Figura 7.

O Codificador de Imagens utiliza um “Vision Transformer” (ViT), ajustado
minimamente para processar entradas de alta resolu¢c@o. Essa etapa € crucial, pois fornece
representacdes importantes da imagem que serdo usadas durante todo o processo de
segmentacao.

O Codificador de Prompts considera dois conjuntos de instru¢des: esparsas (pontos,
caixas, texto) e densas (mascaras). A inclusdo de instrugdes € alcangcada por meio
de convolugdes e soma elemento a elemento com a incorporagdo de imagem. Isso é
fundamental para incorporar informagdes de instrucdes que servirdo de guia para a geracao
das mdscaras da segmentacao.

O Decodificador de Mascara, € uma parte central do processo. Ele mapeia
eficientemente as representacdes de imagem, representacdes de prompt e um token de
saida em uma méscara. Esta parte utiliza uma modificacdo de um bloco decodificador
Transformer, e um bloco auxiliador de previsdo de médscara. Apds executar os dois blocos,
a representacao da imagem € aumentada e um MLP ("Multilayer Perceptron”) mapeia o
token de saida para um classificador linear dindmico, que calcula a probabilidade para cada
plano da mascara em cada local da imagem. Isso é essencial para gerar uma segmentacao
precisa e detalhada, retornando todas um vetor de mascaras associadas, e dados detalhados
sobre o mapeamento de cada segmentacdo feita (taxa de confiabilidade, area segmentada,
pontos de selecdo).

. 4%9-‘ mask decoder
image
encoder I ' 1 t

conv prompt encoder

image

embedding mask  points box text
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Figura 7. Visao geral do "SAM” [Kirillov et al. 2023b]



3. Material

Para a realizacdo desse artigo, o material usado no estudo foi fornecido por parceria com
especialistas do Centro de Odontologia da Universidade Federal de Pernambuco.

Foi utilizado trés mandibulas humanas secas distintas como mostrado na Figura
8, combinadas aleatoriamente com um dos quatro implantes dentarios causadores de
artefatos descritos: dois implantes de titanio (Straumann SLActive 3.3 mm x 8§ mm, Institut
Straumann AG, Basel, Suica) e dois implantes de zirconia (PURE Ceramic 3.3 x 8 mm;
Institut Straumann AG, Basel, Suica). E com essa combinag¢do também foram simulados
efeitos de deiscéncia na porcao cervical do implante.

Em seguida cada mandibula foi submetida a exames de CBCT. O exame foi
realizado nos aparelhos OP300, Picasso e iCAT. Cada mandibula foi colocada dentro de
um recipiente cilindrico de pléstico e preenchido com 4gua para simulacao de tecidos
moles. As tomadas de aquisicdo foram feitas tanto sem auxilio ou com auxilio de uma
ferramenta que reduz artefatos (AR ou ”Artefact Reduction”).

Ao final, foram geradas 440 CBCT exclusivas, cada uma contendo em média 450
arquivos "DICOM?”, totalizando um armazenamento de 150 Gigabytes. E para cada um
dos 440 volumes foi também armazenado se cada um contém deiscéncia vestibular e/ou
deiscéncia lingual.

Figura 8. Visao do recipiente e mandibula usada no conjunto de dados

4. Metodologia

O primeiro passo para iniciar o desenvolvimento do estudo foi fazer uma revisio literdria
sobre implantes dentdrios, complicacdes relacionadas, CBCT, problemas de artefatos nas
CBCT e técnicas de andlise de imagens odontoldgicas utilizando Aprendizagem Profunda
e outros métodos como segmentacao. Nesse passo também foi possivel identificar que
existem estudos sobre segmentacdo utilizando CNNs em CBCT afetadas por artefatos
metélicos [Minnema et al. 2019], que performam com eficiéncia, centralizando o implante
da mandibula e conseguindo extrair as mascaras que diferenciam os dentes de ossos. A
partir dessa revisao, foi feito um fluxo de trabalho do desenvolvimento do projeto, descrito
na Figura 9.
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Figura 9. Visao geral do fluxo do projeto

Conforme descrito na Figura 9, o fluxo de trabalho construido vai se basear em
quatro frentes.

A primeira foi construir as imagens que mostrem o implante aparecendo no
conjunto de dados. Essa etapa vai ser concluida apenas com uso de técnicas de
processamento de imagens como identificar os padrdes luminosos gerados por interferéncia
com os implantes e auxilio da biblioteca ’pydicom” da linguagem de programacdo Python,
e ao fim vao ser salvas essas imagens com respeito aos planos coronais e sagitais. Por fim,
esses dados servirdo de um conjunto de imagens prévios, podendo auxiliar no diagndstico.

A segunda etapa compreende a segmentacdo semantica das imagens. Cada imagem
¢ submetida a um processo de processamento pelo "SAM”, resultando na geracdo de
vdrias mdscaras. Em sequéncia, cada uma destas mascaras é submetida a um procedimento
de heuristica de densidade de pixel, descrito no algoritmo da Figura 10 e da Figura 11.
Durante este processo, um novo vetor de valores € criado, e um vetor de threshold com
valores que variam entre 0 a 1 com passos entre 10~%, gerando 10° limitantes, no qual
apenas os valores de pixel que excedem um limite minimo predefinido sdo inseridos. Ao
final deste procedimento, o vetor resultante deve atender a uma porcentagem minima
em relacdo a quantidade de pixels contida na mdscara original. Se o vetor satisfizer os
critérios minimos, ele € selecionado como vetor de saida. Caso contrario, se nenhum vetor



ou dois ou mais vetores forem escolhidos, o algoritmo inicia um procedimento de busca
bindria para determinar novos limites. Se nenhum vetor for escolhido, isso significa que o
recorte contém muitos ruidos, incluindo no préprio implante, dificultando a delimitacdo da
resposta, logo o algoritmo vai diminuir tanto o limitante de valor de pixel e da porcentagem
de pixels. E se for maior ou igual a dois vetores de resposta, isso significa que podemos
aumentar os limitantes, ja que a mascara do implante vai ser a mais luminosa, eliminando as
outras mdscaras no processo. Essa abordagem € fundamental porque o objetivo primordial
do algoritmo € isolar especificamente a mascara com maior intensidade de preenchimento.
Essa méascara, por sua vez, representa a regido onde o implante estd presente. Isso é
particularmente crucial, ja que, por defini¢do, os implantes tendem a gerar uma intensidade
luminosa elevada durante a aquisi¢do CBCT. Essa intensidade pode, em alguns casos, ser
confundida com outros artefatos ou ruidos resultantes de interferéncia metalica. Portanto, a
busca bindria por valores além de agilizar o processo custoso de operagao nessas mascaras
esparsas, delimita essa drea segmentada que € de extrema importancia para a precisao do
processo.

A terceira etapa € acionada imediatamente apds a selecdo da mdscara para cada
recorte. Neste ponto, é efetuada uma escolha restrita a area do implante, cujas dimensdes
minimas sdao de 299x299 pixels. Caso ndo seja vidvel realizar essa separacio, a porcao
remanescente da imagem € preenchida com zeros.

Logo a seguir, para cada volume, a selecdo comega a partir do ponto médio, com
o objetivo de identificar um conjunto fixo de imagens coronais e sagitais que exibam a
melhor qualidade de imagem do implante. Essas imagens sdo entdo combinadas para
formar o conjunto de dados que ird auxiliar os profissionais de saide em suas avaliagdes
diagndsticas.

Finalmente, na ultima etapa, ocorrera a criacao do conjunto de dados, incluindo as
divisdes de treinamento, validacdo e teste, utilizando os recortes que foram previamente
selecionados. Esses conjuntos serdo empregados para treinar e avaliar o desempenho de
um modelo modificado EfficientNet-B0, o qual ja foi pré-treinado no conjunto de dados do
ImageNet e esta disponivel por meio da biblioteca "Pytorch”.

No processo de modificacdo do modelo importado, algumas alteracdes serao
implementadas. Primeiramente, haverd uma adaptacio na quantidade de canais do kernel
da primeira camada de convolugdo, a fim de que esteja compativel com as caracteristicas
do nosso conjunto de dados criado. Além disso, na camada de classificacao, a saida do
modelo serd ajustada para duas classes, a fim de se adequar a uma tarefa de classificacao
multilabel. Esses rétulos incluem “deiscéncia vestibular” e/ou “deiscéncia lingual”. Para
isso, serd inserida uma camada final do tipo Sigmoide. Esta escolha € motivada pela
capacidade da funcao sigmoide de produzir saidas na faixa de O a 1, o que representa as
probabilidades de cada rétulo estar presente em uma dada entrada. Adicionalmente, a
fungdo sigmoid € apropriada para lidar com situa¢des em que multiplos rétulos podem
estar presentes simultaneamente. Cada neur6nio de saida associado a um rétulo especifico
calcula independentemente a probabilidade daquele rétulo estar presente, sem afetar as
previsoes dos outros rétulos.

Uma vez que o treinamento e a avaliacdo do modelo tenham sido realizados, a
biblioteca "Captum”, fornecida pela NVidia na linguagem Python, serd empregada. Isso



Algorithm 1: DENSPIX
Data: Threshold Vetor de Inteiros de tamanho N, Masks
Vetor de Mascaras,value_threshold Int,
is_value_threshold Bool
Result: Vetor de Mascara M’ ou Erro

1 left <~ 0| right < N —1| M «—[];

2 while le ft <= right do

3 | middle < (right — left)/2 + left;

4 | masks <—[];

5 if is_value_threshold then

6 masks <—

DENSPIX(Threshold, Masks, middle, False);

7 else

8 masks <—

GENMASK (Masks,value_threshold, middle);

9 masks.size() > 07 M’ .append(masks.size())
10 end

11 if masks.size() == 1 then

12 ‘ return masks;

13 else

14 if masks.size() == 0 then

15 ‘ right <— middle — 1;

16 else

17 ‘ left < middle + 1;

18 end

19 end
20 end

21 return M’

Figura 10. Definicao do Algoritmo de Densidade de Pixel

sera feito para analisar o comportamento do modelo por meio do Gradiente Integrado,
permitindo identificar os pontos de interesse nos quais o modelo esta convergindo quando
recebe um recorte especifico como entrada. Esse processo proporcionara insights valiosos
sobre a interpretacdo e as decisdes do modelo, contribuindo para uma andlise mais profunda
e confidvel.

5. Resultados e Discussao

Nessa sec¢ao o trabalho vai discutir os resultados obtidos utilizando a metodologia explicada
anteriormente.

5.1. Aquisicao de Imagens

Para criar as imagens que destacam o implante, foi necessario primeiramente determinar a
métrica adequada para delimitar os recortes. Optamos por usar o parametro "HU” (unidade



Algorithm 2: GENMASK
Data: Masks Vetor de Mascaras,value_threshold Int,
percentage_threshold Int
Result: Vetor de Mascaras Masks’
1 M+~ ];
2 for mask in Masks do

3 | pizels < mask.size();

4 good_pizels < 0;

5 for pixel in mask do

6 if pizel >= value_threshold then
7 ‘ good_pixels < good_pizels + 1
8 else

9 end

10 if good_pizels/pixels >= percentage_threshold then
11 ‘ M’ .append(mask)

12 else
13 end

14 return M’

Figura 11. Definicao do Algoritmo de Geracao de Mascaras utilizado na Figura 10

de Hounsfield), que € uma unidade de medida fundamental para descrever a radiodensidade
em imagens de CBCT. Essa medida € essencial para diferenciar areas com densidades
variadas nas imagens, conforme ilustrado na Figura 12. No gréfico, o pico mais elevado
dos valores méximos de HU indica a presenca de um elemento com alta radiodensidade
[Katsumata et al. 2006].

Entretanto, esse exemplo nem sempre € absoluto. Artefatos e ruidos podem surgir
com valores de HU extremamente elevados, e em recortes onde o implante ndo esta
presente verificar apenas o valor médximo nao é suficiente. Adicionalmente, a Figura 12
também demonstra que confiar somente na soma dos valores ndo € viavel, ja que a média
pouco varia. Isso se deve ao fato de que os implantes sdo consideravelmente pequenos em
relacdo ao recorte, o que resulta em uma diferenga minima na soma total.

Portanto, a abordagem de considerar apenas o valor médximo ou a soma bruta
é insuficiente para identificar de forma precisa a presenca do implante. E necessirio
empregar uma fun¢do adaptavel primeiramente € necessario gerar um ruido multiplicando
os valores pelo seu quadrado, ja que os valores do implante sdo altos, penalizando os
valores menores e depois implicando uma normalizacdo min-max dos valores para ao fim
fazer uma soma, obtendo a Figura 13, que mostra trés valores. O surgimento do primeiro
pico e do ultimo indicam a presenca de varios artefatos e ruidos menores que somados
chegam em um alto valor de HU.

Entretanto, é importante notar que esses artefatos e ruidos gerados raramente
se aproximam da 4rea total do implante, pois eles tendem a ser muito pequenos em
comparacdo. Portanto, optamos por incorporar outra métrica para andlise, baseada na
distribui¢do dos valores de HU. Se esses valores forem maiores do que a metade do valor
méximo de HU, eles sdo incluidos no cédlculo da soma. Em seguida, € aplicada uma nova
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Figura 12. Exemplo de Valores maximos e médios do HU em um volume CBCT

normaliza¢do aos dados.

Com base nas curvas resultantes desse processo, focamos naquelas que demonstram
preenchimento igual ou superior a 50%, indicando a formacao de um objeto retangular.
Essas curvas sdo entdo consideradas para a selecao dos novos recortes, como podemos ver
na Figura 14 o gréfico gerado e na Figura 15 o exemplo de imagens que foram selecionadas.

Essa abordagem mais abrangente considera tanto a magnitude dos valores de HU
quanto a disposi¢do dos mesmos, permitindo uma anélise mais precisa e adaptavel. Isso
€ particularmente relevante para lidar com a presenga de artefatos, ruidos e pequenas
variagdes nas imagens, proporcionando maior confiabilidade na sele¢ao dos recortes que
contém informacdes relevantes sobre o implante.

Ap6s a conclusdo desse procedimento, a quantidade original de 150 Gigabytes foi
significativamente reduzida, resultando em um novo conjunto de dados de apenas 300
Megabytes. Essa reducdo equivale a uma economia de 99% de espaco de armazenamento.
Como resultado, a média é de aproximadamente 8 recortes por volume CBCT, totalizando
3520 imagens no conjunto de dados resultante, o qual serd utilizado em nossas anélises
subsequentes.

5.2. Segmentacio Semantica

Durante esse estagio, foi usado o ”"SAM” para criar mascaras correspondentes a cada
imagem contida no conjunto de dados gerado na etapa anterior. Entretanto, ao utiliza-lo,
foi notado que o processo de segmentacao também incluia ruidos e artefatos indesejados,
como ilustrado na Figura 16. Adicionalmente, como € possivel observar na Figura 17, ndo
era possivel discernir um padrao claro para selecionar a méscara ideal, uma vez que a drea
de pixels relacionada aos implantes apresentava considerdvel variabilidade.

Essa complexidade na segmentacao destacou a necessidade de um método mais
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Figura 13. Exemplo da Soma da Normalizagao do quadrado do maximo do HU
Value em um volume CBCT

refinado para isolar de forma precisa a drea de interesse, ou seja, o implante. Portanto, foi
crucial adotar abordagens mais sofisticadas que considerassem as caracteristicas intrinsecas
dos implantes e minimizassem a inclusao de artefatos e ruidos indesejados nas mdscaras
resultantes.

No entanto, baseando-nos na etapa anterior e na propria defini¢do, os implantes
feitos de zirconio e titanio possuem valores elevados de HU. Poderia-se entdo considerar a
identificacdo dos segmentos com os maiores valores de HU. Entretanto, essa abordagem
também se mostrou inadequada, conforme evidenciado na Figura 18. Nela, fica claro que
artefatos ou ruidos, especialmente quando o implante estd presente, tendem a ser maiores e
mais frequentes. Porém, esses artefatos ainda exibem uma luminosidade que nao segue
uma relacao linear. Como resultado, optamos por empregar a heuristica de densidade de
valores de pixels para delimitar todas as mascaras geradas.

No caso em que ndo fosse vidvel delimitar uma Unica méscara, essa situagao
acarretaria em um erro que interromperia o experimento. Contudo, obtivemos sucesso ao
delimitar com precisdo todas as mdscaras em uma unica entidade, o primeiro e segundo
quartil dos valores escolhidos como limitantes finais, ficaram entre 50% e 50%, para o
limitante de valor e de porcentagem, indicando que a mascara do implante na maioria dos
casos € facilmente delimitada e se ndo fossem a aleatoriedade dos artefatos, nem precisaria
da construcao do algoritmo. Além disso, todas essas mascaras representavam pixels com
valores altos de HU, o que indicava a presenca do implante, conforme evidenciado na
Figura 19.

Uma vez que a area de interesse foi identificada, procedemos a selecdo de um
recorte de 299x299 pixels, centrado no implante, gerando assim um novo conjunto de
imagens. Em seguida, a partir desse novo conjunto, optamos por escolher 2 recortes
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Figura 14. Exemplo da Soma da Normalizagdo do quadrado do maximo do
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Figura 15. Exemplo da criacao de um conjunto de imagens sob perspectiva
coronal e sagital com o implante em destaque

de perspectiva coronal e 3 de perspectiva sagital. Essas imagens foram selecionadas
de maneira estratégica, sendo escolhidas do centro em direcao as extremidades, com o
propdsito de formar um conjunto de dados que serd utilizado como apoio para diagndsticos
e pegar os recortes onde o implante aparece mais nitidamente.

Esse processo, conforme ilustrado na Figura 19, permitiu com precisdo a
identificacdo da localizacdo dos implantes de zircOnio e titanio, mesmo em cenarios
complexos e varidveis, nos quais artefatos e ruidos estavam presentes.

5.3. Classificacao multilabel

A partir do dltimo estdgio, geramos um conjunto de dados final que consiste em 5 imagens
por volume CBCT, totalizando 2220 imagens. Todas essas imagens foram padronizadas
para o tamanho de 299x299 pixels. Esse conjunto foi projetado para servir como entrada
para um modelo de Aprendizagem de Maquina.

Paralelamente, foi realizada uma pesquisa quantitativa e qualitativa com
especialistas em odontologia da UFPE, utilizando uma amostra de 20 imagens previamente
recortadas da regido de interesse, geradas na etapa anterior, em comparacdao as 20
melhores imagens da mesma amostra gerada pela equipe de especialistas da UFPE. Na



Figura 16. Exemplo da geracao de mascaras pelo "SAM”, gerando 7 mascaras
distintas para um recorte do conjunto de dados
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Figura 17. Exemplo do grafico de caixa sobre a area das mascaras do implante
geradas pelo "SAM”

pesquisa quantitativa, os especialistas foram questionados se as imagens geradas continham
informacdes suficientes para auxiliar no diagnostico de deiscéncia, e todas as 20 imagens
geradas pelo algoritmo do artigo receberam a aprovacdo dos especialistas, indicando a
escolha dos melhores recortes para constru¢ao do banco de dados. Na pesquisa qualitativa,
comparamos as imagens geradas utilizando o Indice de Similaridade Estrutural (SSIM)
[Nilsson and Akenine-Mdller 2020], que € uma métrica que avalia a semelhanca entre
duas imagens, levando em consideracdo a estrutura, textura e informacodes de luminosidade
das imagens para determinar o quao similar elas sdao, com valores entre -1 e 1, onde 1
indica que as imagens sdo idénticas e -1 indica que sdo totalmente diferentes.

A utilizacdo do SSIM na comparagdo dos recortes resultou em uma média de 0,6
para as imagens geradas. Isso indica fortes indicios de semelhanca entre as imagens,
validando a eficacia do algoritmo de geracao de imagens, como indicando na Figura 20,
que inclusive tem menos artefatos e mais nitidez no destaque da estrutura dssea.

Voltando ao conjunto de entrada gerado, todas as suas 5 imagens por volume foram
concatenadas, resultando em um novo dado com dimensdes de 5x299x299. Em outras
palavras, as 5 imagens sdo tratadas como se fossem 5 canais distintos de informacdes.
Como saida, temos um vetor de duas posi¢des. Na primeira posi¢ao, o valor 0 indica a
presenca de deiscéncia vestibular, enquanto o valor 1 indica a auséncia da mesma. Na
segunda posi¢ao, o valor 0 indica a presenga de deiscéncia lingual, enquanto o valor 1
indica a auséncia.

Uma andlise da distribui¢c@o das classes de saida do modelo também foi conduzida,
como demonstrado na Figura 21. De maneira geral, ndo se observou um desequilibrio
acentuado entre as classes. Embora haja mais volumes contendo problemas de deiscéncia
do que aqueles sem, essa disparidade ndao é tdo pronunciada a ponto de requerer a



Figura 18. Exemplo de recorte do novo conjunto de dados, que demonstra
artefatos na area inferior central
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Figura 19. Fluxo da Segmentacao Semantica Gerada

intervencio de algoritmos de balanceamento de dados. E notdvel que a distribui¢io
se mantém similar para ambos os tipos de deiscéncia.

Adicionalmente, ao observar a combinag¢do de rétulos, percebemos que o0 novo
conjunto de dados apresenta a seguinte composi¢ao: cerca de 35% das imagens contém
ambos os tipos de deiscéncia, 40% exibem algum tipo de deiscéncia e 25% ndo apresentam
qualquer tipo de deiscéncia. Em geral, a distribui¢do dos rétulos esta bem equilibrada, o
que contribui para a robustez e confiabilidade do conjunto de dados e, consequentemente,
para o desempenho do modelo de Aprendizagem de Mdaquina.

Assim, esse conjunto de dados final, composto por informagdes de imagem
concatenadas e vetores de saida com rétulos de presenca ou auséncia de deiscéncia
vestibular e lingual, estd pronto para ser utilizado como entrada em um modelo de
Aprendizagem de Maquina.

Utilizando a biblioteca ’Pytorch”, construimos um DatalLoader com as seguintes
dimensodes: 440x(5x299x299, 2). Na primeira dimensao da tupla, temos as dimensdes de
cada volume CBCT de entrada, enquanto a segunda dimensao representa os rotulos que
serdo inferidos durante o treinamento, como € visto na Figura 22.
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e pelo algoritmo

A partir disso, esse Datal.oader foi dividido em trés conjuntos distintos:
treinamento, validacdo e teste. As propor¢cdes foram estabelecidas como 70%, 15%
e 15%, respectivamente. A criacao do conjunto de validacdo serve como uma medida
preventiva para evitar overfitting do modelo, ou seja, para garantir que o modelo nao
se ajuste excessivamente ao conjunto de treinamento, mas seja capaz de generalizar o
problema. Essa abordagem ajuda a melhorar a capacidade do modelo de lidar com novos
dados e de obter resultados mais confidveis.

Essa divisao foi realizada utilizando a técnica de divisao por rétulo. Isso significa
que a separacdo dos conjuntos foi feita de forma aleatdria e garantindo que as propor¢des
dos rétulos fossem respeitadas. Essa abordagem foi empregada para reduzir as chances
de criar inadvertidamente um conjunto de dados desbalanceado ou com vazamento de
informacdes entre os diferentes conjuntos. Dessa forma, a integridade e a validade dos
conjuntos de treinamento, validacdo e teste sdo preservadas.

Em seguida, realizamos o treinamento do modelo adaptado do EfficientNet-BO,
disponibilizado pelo ”Pytorch”, utilizando o conjunto de treinamento especificado. Nao
foi definido um nimero maximo de épocas; em vez disso, utilizou-se um critério de parada
antecipada com uma paciéncia de 10 em uma versao inicial. A funcdo de perda escolhida
foi a ”Binary Cross Entropy” para classificagdo multirrétulo, especificada pela férmula:
BCEmultilabel(y,p) = — > i =1V (y; - log(p:) + (1 — y;) - log(1 — p;)), onde N é o
numero de classes, y; representa o rotulo verdadeiro para a classe i, e p; € a probabilidade
prevista pelo modelo para a classe 1.

A opcdo pela "BCE” € feita porque o objetivo pode representar simultaneamente
multiplas classes. A entropia cruzada bindria € calculada separadamente para cada classe
e, em seguida, os valores sdo somados para obter a perda total. Ao fim de cada época é
salvo o melhor modelo em relacao a taxa de erro do conjunto de validacgdo, inclusive essa
mesma taxa € a utilizada para diminuir ou reiniciar a paciéncia do modelo.

Ao final do treinamento, o0 modelo demonstrou uma acurdcia de 100% para o rétulo
de deiscéncia vestibular e 98% para o rétulo de deiscéncia lingual no conjunto de validacgao,
0 que resultou em um pequeno numero de falsos positivos. Ao avaliarmos o desempenho
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Figura 21. DistribuicGes das classes de saida
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Figura 22. Exemplo de entrada do DatalLoader, onde as duas primeiras imagens
sao da perspectiva coronal e as outras trés sao da sagital, e cada uma das
imagens representam um canal de imagem, e os rotulos indicam a presenca dos
dois tipos de deiscéncia

do modelo no conjunto de teste, obtivemos uma acuracia de 100% para o rotulo de
deiscéncia vestibular e 97 % para o rotulo de deiscéncia lingual, com apenas dois casos
de falso positivo. Esses resultados indicam que o modelo, com base no conjunto de dados
fornecido, alcancou uma performance excelente, conforme ilustrado na Figura 23.

Para uma anélise aprofundada dos resultados obtidos, foi realizada uma projecao
da distribui¢do geral do conjunto de dados usando o UMAP (”Uniform Manifold
Approximation and Projection”). Essa projecao permitiu mapear os dados em um espaco
de dimensao inferior, criando um grafico bidimensional que facilita a compreensado e
interpretacdo da distribui¢do dos dados. O objetivo era identificar agrupamentos, padroes
ou anomalias nos dados.

A Figura 24 ilustra a distribuicao gerada pelo UMAP para o Dataloader do projeto.
Vale lembrar que o conjunto de dados original em formato "DICOM?” foi gerado a partir
de trés mandibulas diferentes, nas quais foram aleatoriamente dispostos diferentes tipos de
implantes, bem como a presenca ou auséncia de lesoes.
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Figura 23. Matrix de confusao gerada na performance sobre o conjunto de teste

No entanto, é notavel que o modelo foi capaz de generalizar exatamente a estrutura
Ossea especifica dessas trés mandibulas distintas. Isso € evidenciado pelos trés clusters
bem definidos no grifico UMAP. O modelo conseguiu delinear padrdes de deiscéncia
vestibular e lingual para cada uma das mandibulas, identificando caracteristicas especificas
que contribuem ou ndo para a saida do modelo.

Essa capacidade de generalizacdo e discernimento entre diferentes padroes € crucial
para a eficicia do modelo na detecgdo e classificagdo das condicdes de interesse. Os
resultados do UMAP fornecem insights valiosos sobre como o modelo esta aprendendo e
interpretando as caracteristicas anatdmicas relevantes para a identificagdo das deiscéncias.
Porém como falta mais variabilidade de mandibulas, ndo fica claro se o modelo apenas
conseguiu identificar as trés mandibulas ou se poderia generalizar para uma quantidade
maior de mandibulas.

b

Aprofundando na explicabilidade do modelo, incorporamos a biblioteca "Captum’
e utilizamos a fun¢do Gradiente Integrado, a qual tem como propdsito entender como
o modelo toma decisdes com base nas caracteristicas das entradas. Essa técnica foi
desenvolvida para oferecer insights acerca da importancia relativa das diferentes partes de
uma imagem (ou entrada) na decisd@o final do modelo. Sua ideia fundamental consiste em
calcular o gradiente da saida do modelo em relacdo a entrada (ou seja, os gradientes parciais
em relacdo a cada pixel da imagem) e, posteriormente, integrar esses gradientes ao longo de
um percurso suave entre uma linha de base (imagem inicial, geralmente preta ou branca) e
a imagem de entrada real. Tal procedimento € executado para cada pixel, resultando em um
conjunto de valores que representam a contribuicao de cada pixel para a previsdo do modelo.
Essa técnica é formalizada pela seguinte formula: IntegratedGradients(x,x’) = (x —

x') x [l W, do [Sundararajan et al. 2017].

Ao examinarmos os resultados gerados pelo Gradiente Integrado da biblioteca
”Captum”, juntamente com a avaliagdo de uma especialista em odontologia, identificamos
um aspecto importante. Além de analisar a parte superior do implante, que € crucial
para identificar exposi¢ao do implante conforme a defini¢do de deiscéncia, o0 modelo
também estd detectando outros orificios que foram criados na estrutura 6ssea da mandibula,
e os orificios que foram também levados em consideracdo sdo da mesma natureza do
rétulo previsto, como visto na Figura 25. Isso ocorre porque a mesma mandibula foi
utilizada em multiplas instancias. Essa descoberta € um indicio promissor de que o modelo
esta aprendendo a generalizar as caracteristicas da lesdo. Entretanto, devido a limitada
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Figura 24. UMAP do conjunto de dados gerado apos a selecao da area de interesse

variabilidade no conjunto de dados, essa constatacdo permanece como uma oportunidade
futura e uma hipétese interessante para investigacdes subsequentes no projeto.

Até o momento, o modelo estd demonstrando um desempenho excelente na
classificacdo multilabel do problema. Além disso, o desenvolvimento do novo conjunto
de dados para auxiliar no diagndstico de profissionais de saide tem se mostrado uma
contribuicdo valiosa. Essa combinacdo de resultados positivos e a exploracdo de
possibilidades futuras destacam o potencial e a importancia desse projeto no contexto da
saude bucal.

6. Consideracoes finais

Este trabalho de graduacdo representa um esfor¢o significativo e promissor no campo da
saude bucal e diagndstico de deiscéncias mandibulares. Ao longo de sua execu¢do, uma
série de etapas foi realizada, desde a transformacao dos dados no formato "DICOM” para
imagens até a adaptacdo e treinamento do modelo EfficientNet-BO para a classificagdo
multilabel das deiscéncias vestibular e lingual. A abordagem inovadora de utilizar o
Gradiente Integrado da biblioteca "Captum” para explicar as decisdoes do modelo acrescenta
uma camada de transparéncia e interpretabilidade ao processo.

A metodologia empregada para selecdo e preparacdo dos dados, incluindo a
segmentacdo semantica, a heuristica de densidade de pixel e a geracdo de conjuntos de
treinamento, validagdo e teste, gerando uma grande diminuicao no total de armazenamento



L T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Figura 25. Aplicagao do Gradiente Integrado em uma imagem do conjunto de teste,
importante observar os pontos em destaque indicando que o modelo observou
para a parte superior do implante e para orificios da estrutura mandibular

das tomografias computorizadas, auxiliando também na transferéncia desses arquivos,
demonstra um compromisso com a qualidade dos resultados e a validade das andlises. A
projecdo via UMAP revela a Aprendizagem Profunda do modelo sobre as caracteristicas
especificas das mandibulas e das deiscéncias, apontando para sua capacidade de
generalizagdo, mesmo em um conjunto de dados com limitada variag@o.

As taxas de acurdcia alcancadas na validagdo e teste validam a eficdcia do modelo
na classificagdo multilabel. A identificacdo de padroes além do esperado pelo Gradiente
Integrado reforca a importancia de uma abordagem constante para a andlise e interpretacao
dos resultados.

7. Trabalhos Futuros

Este projeto aponta para intimeras oportunidades de investigacdo e aprimoramento, com o
objetivo de expandir ainda mais o impacto e a eficicia da abordagem proposta. Algumas
areas sugeridas para desenvolvimentos futuros incluem:

Expansdo do Conjunto de Dados: Embora o modelo tenha demonstrado excelentes
resultados com o conjunto de dados atual, obtendo um valor de acuricia geral de 97% sob
o conjunto de teste, como o atual trabalho apenas usa trés mandibulas distintas, nas quais
as trés foram reutilizadas durante a constru¢c@o do primeiro conjunto de dados obtido em
parceria com os especialistas de Odontologia da UFPE, se levanta uma hipétese na qual o
modelo proposto ndo performe bem em outros tipos de mandibulas, logo precisa-se de uma
maior diversidade das mesmas, e também de mais tipos de implantes, assim ampliando a
capacidade de generaliza¢dao do modelo e validar ou ndo a hipétese levantada.A expansao
do conjunto de dados pode reforcar a robustez do modelo e sua aplicabilidade em situagdes
mais complexas do mundo real, permitindo a utilizacao deste modelo como auxilio para
diversos profissionais da drea de satde.

Aplicagio em Outras Areas Médicas: Agora que se constatou que o projeto atual
consegue identificar com precisdo uma drea importante da saude bucal, a metodologia



desenvolvida pode ser adaptada e aplicada em outros dominios da medicina e radiologia.
A deteccdo automdtica de diferentes patologias, como tumores, cistos ou fraturas, poderia
ser investigada, ampliando a utilidade da abordagem para além das deiscéncias.

Desenvolvimento de Pipeline completo para o profissional: Criar uma interface de
usudrio na qual o profissional pode iniciar um fluxo apenas fazendo o upload dos arquivos
"DICOM?” e receber as imagens que aparecem o implante, com a explicabilidade do modelo
em cada uma delas, aumentando sua acessibilidade e utilidade.

Este projeto, com seus resultados, estabelece uma base sélida para futuros
avancgos. A convergéncia entre a tecnologia de Aprendizagem Profunda e o conhecimento
médico demonstra ser uma ferramenta poderosa para aprimorar o diagndstico médico
e, potencialmente, transformar a abordagem a diversas condigdes médicas. Com um
olhar voltado para a colaboragdo continua e a inovagao, este projeto oferece perspectivas
empolgantes para o futuro da medicina e radiologia.
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