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Abstract. This article investigates approaches in the field of oral health in
conjunction with Deep Learning. The goal is to develop methods for multilabel
classification, identifying the presence or absence of periapical lesions or
dehiscences caused by titanium and zirconia implants. The study employs an
adapted EfficientNet-B0 model in conjunction with the loss function, achieving
a 97% accuracy in overall label classification. Moreover, optimized selection
and segmentation of cuts in ”DICOM” files, sourced from cone-beam computed
tomographies, were carried out. This approach contributes to the creation of
a new dataset that will aid in the diagnosis made by healthcare professionals.
This new dataset attained an average Structural Similarity Index Measure (SSIM)
of 0.6 when compared with images selected by expert radiologists, signifying
substantial similarity between the generated images. Additionally, analyses on
the model’s explainability and the treatment of files originating from CBCT (Cone
Beam Computed Tomography), or Tomografia Computorizada de Feixe Cônico
in Portuguese, are conducted.

Resumo. Este artigo investiga abordagens na área de saúde bucal em conjunto
com Aprendizagem Profunda. O objetivo é desenvolver métodos para a
classificação multilabel, identificando a presença ou ausência de lesões
periapicais, ou deiscências ocasionadas por implantes de titânio e zircônio.
O estudo utiliza um modelo adaptado do EfficientNet-B0 combinado com a
função de perda, alcançando uma acurácia de 97% na classificação geral dos
rótulos. Além disso, foi realizada a seleção e segmentação otimizada de recortes
nos arquivos ”DICOM”, provenientes de tomografias computadorizadas de feixe
cônico. Essa abordagem contribui para a criação de um novo conjunto de
dados que auxiliará no diagnóstico realizado por profissionais da saúde. Esse
novo conjunto de dados obteve uma média de ”SSIM” (Structural Similarity
Index Measure) de 0,6, uma vez comparada com imagens selecionadas por
radiologistas especialistas, indicando uma ótima semelhança entre as imagens
geradas. Adicionalmente, são conduzidas análises de explicabilidade do modelo
e do tratamento dos arquivos oriundos do CBCT (Cone Beam Computed
Tomography), ou Tomografia Computorizada de Feixe Cônico em português.

1. Introdução
Perda de dentes é um problema bastante comum na nossa sociedade e pode acontecer
por meio de algum trauma ou doenças associadas [Gaviria et al. 2014], dessa maneira o



implante dentário é uma técnica extremamente utilizada na odontologia para a substituição
desses dentes perdidos, proporcionando tanto benefı́cios estéticos quanto mecânicos aos
pacientes. Esses implantes são principalmente compostos de estruturas de titânio ou
zircônio que são inseridas no osso maxilar ou mandibular, fornecendo uma base sólida
para a fixação de próteses dentárias de forma permanente.

No entanto, a prática de inserção de implantes dentários pode estar sujeita a
complicações ao paciente, como lesões periapicais (inflamações em torno da raiz), que
se manifestam em forma de: defeitos de fenestração (abertura inadequada da cortical
óssea) e deiscência (retração da gengiva em torno do implante), que podem levar à perda
do implante e à infecções generalizadas [Cionca et al. 2017]. Portanto, é de profunda
importância diagnosticar precocemente essas condições para evitar problemas futuros.

Assim podemos introduzir o uso da tomografia computadorizada de feixe cônico
(Cone Beam Computed Tomography, CBCT), que é uma técnica de imagem bastante
utilizada na odontologia para obter imagens tridimensionais detalhadas dos ossos maxilares
e mandibulares, fornecendo informações precisas sobre a arcada dentária e os implantes
dentários. Essa tecnologia permite uma visualização clara dos defeitos de fenestração
e deiscência, possibilitando um diagnóstico mais preciso. Essas tomografias produzem
vários recortes em três perspectivas de visualização: axial (recorte visto de cima), sagital
(recorte visto de lado), coronal (recorte visto de frente), e cada recorte pode ser armazenado
em arquivos do tipo ”DICOM” (Digital Imaging and Communications in Medicine), que
contêm todos os dados resultantes do processo.

No entanto, a interpretação manual das imagens de ”CBCT” pode ser
um procedimento demorado e suscetı́vel a erros, devido à grande quantidade de
informações, recortes e à complexidade do ruı́do gerado pelos artefatos na obtenção
de exames. Isso requer uma análise não trivial de um radiologista experiente. É
nesse contexto que algoritmos de Aprendizagem Profunda, especializados em análise de
imagens [Calazans et al. 2022], e algoritmos de segmentação [Kurt Bayrakdar et al. 2021,
Hegazy et al. 2019], são acionados desempenhando papeis importantes.

Os algoritmos de segmentação têm como objetivo identificar regiões de interesse em
uma imagem, permitindo a delimitação precisa dos implantes e das estruturas adjacentes,
como osso e gengiva, facilitando a análise e a detecção de lesões em volta do implante.
Um exemplo de ferramenta disponı́vel na indústria é o ”Segment-Anything”, desenvolvido
pela Meta, que oferece a capacidade de segmentar qualquer objeto de interesse em imagens
médicas [Kirillov et al. 2023a].

Além disso, as redes neurais convolucionais (CNNs), um tipo de algoritmo de
Aprendizagem Profunda, têm se destacado no campo da análise de imagens devido
à sua capacidade de aprender padrões complexos e extrair caracterı́sticas relevantes
automaticamente. As CNNs podem ser treinadas para aprender caracterı́sticas distintas
que distinguem os ossos dos artefatos metálicos, identificando e localizando os defeitos de
fenestração e deiscência em implantes dentários com alta precisão [Minnema et al. 2019].

1.1. Objetivos
O presente trabalho de graduação tem como objetivo desenvolver métodos para a
classificação da presença ou não de lesões periapicais ocasionadas por implantes utilizando
um modelo adaptado do EfficientNet-B0 disponibilizado pela biblioteca python ”PyTorch”,



juntamente com a implementação da seleção de melhores recortes nos arquivos ”DICOM”
obtidos por meio de tomografias computadorizadas de feixe cônico, ajudando na construção
de uma base de treinamento e avaliação dos algoritmos.

Essa abordagem permitirá uma análise mais eficiente e precisa das imagens,
otimizando o processo de detecção e classificação dos defeitos de deiscência utilizando
algoritmos de segmentação como o ”SAM” e de Aprendizagem Profunda especializados em
imagens. Espera-se que esse trabalho possa contribuir para o avanço no diagnóstico precoce
e no tratamento eficaz de complicações relacionadas a implantes dentários, proporcionando
maior segurança, planejamento e qualidade nos procedimentos odontológicos.

2. Fundamentação Teórica
Antes de adentrar no desenvolvimento da solução, este artigo vai se aprofundar nos
principais conceitos abordados, explicando sobre os termos odontológicos e materiais
associados, tecnologias utilizadas na realização das tomografias e um pouco da história da
inteligência artificial e algoritmos de visão computacional.

2.1. CBCT
CBCT (a.k.a ”Cone Beam Computed Tomography” ou Tomografia Computorizada de
Feixe Cônico em português), é uma técnica de imagem bastante utilizada na odontologia
para obter imagens tridimensionais precisas e de alta qualidade dos elementos ósseos no
complexo maxilofacial [Antunes 2018] foi aprovada para o uso em Medicina Dentária
nos EUA no ano de 2000 onde sucedeu de ser adotada rapidamente nos ambientes
odontológicos, devido ao seu baixo custo e baixa exposição à radiação quando comparada
a outras técnicas [Venkatesh and Venkatesh Elluru 2017]. Suas aplicações variam entre
planejamento de implantes dentários, visualização de anomalias dentárias, avaliação
da estrutura óssea maxilofacial, diagnóstico de cárie dentária (cavidades) entre outros
[US - Food and Drug Administration 2020].

Essa técnica é aplicada em máquinas dos mais diversos estilos e que são conhecidas
atualmente como ”Máquinas CBCT”. Esses engenhos usam um feixe em forma de
cone e um detector de painel plano que rotaciona uma vez ao entorno do paciente
entre 180-360 graus, abrangendo a área maxilofacial ou alguma área periférica de
interesse, capturando em apenas uma rotação entre 180-1024 imagens cefalométricas
(Imagens do Crânio Detalhada) [Venkatesh and Venkatesh Elluru 2017]. Essas imagens
são reconstruı́das utilizando uma versão modificada do algoritmo de ”Feldkamp”,
gerando versões equivalentes distribuı́das em 3 planos anatômicos: Axial, Coronal e
Sagital; que são salvas no formato de ”DICOM”, para o uso de softwares de terceiros
[Venkatesh and Venkatesh Elluru 2017], como é explicitado na Figura 1.

2.2. Planos Anatômicos
Planos anatômicos, como mostrados na Figura 2, são planos hipotéticos que servem para
dividir o corpo humano em secções de maneira que ajudam na localização, descrição
e organização espacial de estruturas anatômicas, como órgãos e ossos. Nesses planos
especificados estão incluı́dos: Sagital, Coronal e Axial [Medicine LibreTexts 2023].

O plano sagital divide o corpo em duas metades: metade do lado esquerdo e metade
do lado direito, permitindo observar movimentos e estruturas de perfil dividindo-o em
metades exatamente iguais.



Figura 1. Fluxo da obtenção de imagens CBCT. (A) demonstra a ”Máquina CBCT”;
(B) demonstra o processo de coleta dos raios-X provenientes da máquina ao
crânio do paciente; (C) mostra a reconstrução das imagens em formato digital;
(D) geração das imagens distribuı́das nos planos anatômicos conhecidos; (E)
valores são coletados e salvos em padrão DICOM [Fan et al. 2023]

O plano coronal, também conhecido como plano frontal, divide o corpo em partes
anterior e posterior. Ele é perpendicular ao plano sagital e passa lateralmente, dividindo
o corpo em uma metade frontal (anterior) e uma metade posterior. Ao utilizar o plano
coronal, é possı́vel observar estruturas como ombros, braços e pernas, permitindo uma
visão completa da simetria e assimetria dessas áreas.

O plano axial, também chamado de plano transversal, é perpendicular ao eixo
longitudinal do corpo. Ele divide o corpo em partes superior e inferior. Ao utilizar o plano
axial, podemos observar secções horizontais do corpo, permitindo visualizar estruturas
internas em diferentes nı́veis. Isso é especialmente útil para a análise de órgãos e tecidos
internos, como os cortes em uma tomografia computadorizada ou ressonância magnética.

Figura 2. (A) Representação do recorte dos planos anatômicos; (B)
Exemplo de reconstrução dos planos anatômicos em tomografia computorizada
[Garib et al. 2007]

2.3. DICOM

Datado de 1993, DICOM (a.k.a Digital Imaging and Communications in Medicine) é o
padrão de comunicação mais utilizado e com suporte para imagens médicas atualmente
[Kahn et al. 2007]. É também uma extensão de arquivo que é utilizada por padrão



internacionalmente para armazenar, transmitir e processar imagens médicas, como
radiografias, tomografias e ressonâncias magnéticas.

O DICOM permite a integração e compartilhamento eficiente de informações
médicas entre diferentes sistemas e instituições de saúde. O DICOM é dividido em duas
principais estruturas, o DICOMDIR arquivo esse que contém informações sobre o paciente,
detalhes sobre a aquisição da imagem; e a segunda estrutura é uma série de imagens
codificadas de forma sequencial, onde cada uma delas contém informações detalhadas
sobre a anatomia daquela seção especı́fica do corpo em perspectiva axial. Quando essas
fatias axiais são organizadas na ordem correta e combinadas, elas formam a representação
tridimensional completa da estrutura em estudo, seja um órgão, um osso ou outra área
de interesse [Grauer et al. 2009]. Dessa forma, além de podermos ter uma representação
tridimensional, poderia também haver a conversão para outros planos anatômicos como
sagital e coronal, que são importantes para diagnosticar outros problemas.

2.4. Deiscência Óssea

A deiscência, como mostrado na Figura 3 refere-se à abertura ou separação de tecidos,
normalmente ossos, que deveriam estar adjacentes ou unidos.

No contexto odontológico, uma deiscência em torno de um implante é
caracterizada pela ausência de osso iniciando a partir da parte superior do implante dessa
maneira forma-se uma abertura que expõe o dente e áreas circundantes, tornando-os
vulneráveis a infecções bacterianas, podendo levar à perda do implante e dor associada
[Cionca et al. 2017]. Essa patologia pode levar à recessão gengival (recuo da área
gengival), expondo à doenças, interferindo na estética e na higiene bucal, causando
inflamação e destruição do osso adjacente, resultando em uma lesão periapical que requer
tratamento endodôntico ou cirúrgico para eliminar a infecção. Assim é de importância
a correção da deiscência e para promover a regeneração saudável dos tecidos afetados
[Chiapasco and Zaniboni 2009].

Figura 3. (A) Representação de um mandı́bula com presença de deiscência em
área peri-implantar; (B) Destaque do implante ultrapassando a área limite superior
de osso, indicando exposição do implante

2.5. Aprendizagem de Máquina

Aprendizagem de Máquina pode ser definida como a área de estudo que capacita o
Aprendizado de Máquina sem ser explicitamente programado [Shinde and Shah 2018].
Dessa maneira a máquina pode melhorar seu desempenho a partir de exemplos, ao receber
uma grande quantidade de informação precisa e juntamente com os algoritmos necessários,
o computador poderá aprender a partir dos dados, adquirindo novas habilidades, podendo
fazer previsões ou decisões dependendo do escopo da tarefa.



Na área de Aprendizagem de Máquina existem três tipos de aprendizado
amplamente utilizados: Supervisionado, Não Supervisionado e por Reforço
[Ludermir 2021].

No Aprendizado Supervisionado, todos os exemplos são rotulados, ou seja têm
uma resposta esperada informando qual é sua classe de pertencimento; esse método é
bastante usado em problemas de classificação ou regressão, como por exemplo em um
problema de distinguir imagens ou inferir se um paciente é diabético ou não dado um
conjunto de informação sobre ele. Esses exemplos de entrada são sempre descritos como
uma sequência de dados, em formato de vetor de atributos, onde para cada vetor (exemplo)
há um rótulo associado. Nesse tipo de aprendizado, seu objetivo é construir rótulos para
exemplos ainda não rotulados.

No Aprendizado Não Supervisionado, exemplos são fornecidos ao algoritmo sem
rótulos. Ele agrupa os exemplos com base em similaridades de atributos, buscando formar
clusters. Depois, é necessário analisar os clusters para atribuir significado a cada grupo no
contexto do problema.

No Aprendizado por Reforço, o algoritmo recebe sinais de reforço (recompensa ou
punição) em vez da resposta correta. Ele tenta associar a melhor ação baseado nas suas
experiências passadas. É comum em jogos e foi utilizado no AlphaGo [Silver et al. 2016].

2.6. Aprendizagem Profunda

Aprendizagem Profunda ou ”Deep Learning” é um ramo da Aprendizagem de Máquina
que tem a capacidade de compreender e processar informações complexas de forma
autônoma. Esse método adota uma abordagem mais sofisticada se baseando em redes
neurais artificiais profundas, que são estruturas inspiradas no funcionamento do cérebro
humano. Essas redes consistem em camadas interconectadas de neurônios artificiais, cada
uma delas processando e transformando os dados de entrada, permitindo que modelos
computacionais compostos por várias camadas de processamento aprendam representações
de dados com múltiplos nı́veis de abstração, porém com uma diferença, na Aprendizagem
Profunda temos a abstração de inúmeras camadas ocultas de processamento, como na
Figura 4 onde em cada uma dessas camadas temos uma outra grande quantidade de
neurônios de processamento. Assim, esse método é o mais indicado para identificar
padrões mais complexos e/ou com um grande custo de poder computacional (volume de
dados) [Rusk 2015].

A habilidade de aprender representações de dados em diferentes nı́veis de abstração
é uma das razões pelas quais a Aprendizagem Profunda se destaca em áreas como Visão
Computacional, processamento de linguagem natural e muitas outras. Ela permite que as
máquinas entendam os dados de maneira mais profunda e, assim, tomem decisões mais
informadas e precisas em uma variedade de cenários.

2.7. Redes Neurais Convolucionais

As Redes neurais convolucionais (ou CNN a.k.a ”Convolutional Neural Network” do
original), são um tipo de algoritmo de inteligência artificial ”feed-foward” bastante
empregado na área de Visão Computacional, amplamente usado no contexto de
Aprendizagem Profunda pela maneira que consegue abstrair atributos complexos, e extrair
caracterı́sticas relevantes de acordo com a entrada [Alzubaidi et al. 2021].



Figura 4. Arquitetura do VGG-16, modelo de Aprendizagem Profunda

A estrutura das CNNs foi inspirada nos neurônios do córtex visual do reino animal,
de maneira semelhante a uma rede neural convencional, porém com uma diferença: detectar
estı́mulos em regiões especı́ficas. Isso permite atribuir três benefı́cios-chave às CNNs:
representações equivalentes, ou seja, se a entrada for modificada, a saı́da do algoritmo
também será modificada de maneira equivalente; interações esparsas, ou seja, com as
constantes diminuições da dimensionalidade da entrada empregadas pelo algoritmo da
CNN, já que uma imagem pode conter milhões ou milhares de pixels, o kernel consegue
detectar informações significativas que abrangem dezenas ou centenas de pixels, isso
implica que precisamos armazenar menos parâmetros, o que não apenas reduz o requisito
de memória do modelo, mas também aprimora a eficiência estatı́stica do modelo; por fim,
há o compartilhamento de pesos, garantindo que um peso utilizado para gerar um output
analisando um ponto qualquer é o mesmo utilizado em um outro na mesma interação,
garantindo o ponto das representações equivalentes.

Ao contrário das redes totalmente conectadas (redes FC ou ”Fully Connected
Networks” do original), pesos compartilhados e conexões locais na CNN são usados para
aproveitar plenamente as estruturas de dados de entrada 2D. Essa operação utiliza um
número extremamente pequeno de parâmetros, o que simplifica o processo de treinamento
e acelera a rede. É importante destacar que apenas pequenas regiões da entrada são
captadas por essas células, em vez de dela toda (ou seja, essas células extraem localmente
a correlação disponı́vel na entrada, como filtros sobre a entrada).

A estrutura geral de uma CNN se basea em três partes, como mostrado na Figura 5:
camadas de convolução, camadas de ”pooling” e as camadas totalmente conectadas (FC)
[Yamashita et al. 2018]. As camadas de convolução são responsáveis pela realização de
extração de caracterı́sticas, utilizando operações lineares e não-lineares, como a convolução,
filtros de kernel e a função de ativação associada. As camadas de ”pooling” realizam uma
redução da dimensionalidade em relação ao que é conhecido como sua entrada. Isso é
feito para introduzir invariância a pequenos ruı́dos, diminuindo parâmetros subsequentes
e extraindo as caracterı́sticas mais destacadas. E nas camadas totalmente conectadas é o
responsável por receber o vetor das caracterı́sticas extraı́das pelas camadas passadas, e
gerar uma saı́da desejada no modelo se for uma tarefa de classificação, é esperado que
essa camada gere as probabilidades para cada classe. A camada totalmente conectada
final geralmente possui o mesmo número de nós de saı́da que o número de classes. Cada



camada totalmente conectada é seguida por uma função não linear, como a ReLU.

Figura 5. Arquitetura geral de uma CNN, com as camadas de convolução, ”pooling”
e totalmente conectadas, que juntas realizam a saı́da de probabilidades da entrada
pertencer a alguma das classes associadas [K E, Swapna 2022]

2.8. Arquitetura EfficientNet

A EfficientNet [Tan and Le 2019], como mostrado na Figura 6, é uma arquitetura de
rede neural convolucional (CNN) projetada para alcançar um equilı́brio eficiente entre
desempenho e uso de recursos, como computação e memória. Ela alcança altos nı́veis de
desempenho com uma quantidade menor de parâmetros e operações em comparação com
muitas arquiteturas convolucionais tradicionais, tornando-o mais eficiente em termos de
recursos computacionais, em comparação as variações da ResNet.

O EfficientNet é excelente para ”transfer learning”, onde um modelo pré-treinado
em grandes conjuntos de dados pode ser ajustado para tarefas especı́ficas com conjuntos
de dados menores, economizando tempo e esforço no treinamento como é provado no seu
artigo.

E isso só foi possı́vel graças ao método de arquitetura ”compound scaling”, que
envolve o dimensionamento proporcional de várias dimensões do modelo, incluindo
largura, profundidade, tamanho da convolução e resolução de entrada. Esse escalonamento
equilibrado permite otimizar o desempenho da rede neural convolucional para diferentes
tarefas de visão computacional, garantindo que todos os componentes estejam ajustados
de maneira eficiente e coordenada. Dessa forma, a EfficientNet alcança um equilı́brio
entre eficiência e desempenho superior em comparação com abordagens convencionais de
escalonamento, permitindo também que novas versões sejam criadas, a partir da arquitetura
base da EfficientNet.

Figura 6. A arquitetura base da EfficientNet-B0 [Tan and Le 2019]



2.9. ”Segment Anything Model” por ”Meta AI”

”Segment Anything Model” (”SAM”) [Kirillov et al. 2023b] é uma abordagem eficiente
desenvolvida pela Meta AI para realizar segmentação semântica em imagens. Essa
abordagem visa identificar e separar diferentes objetos ou regiões em uma imagem,
atribuindo rótulos a cada pixel de acordo com a classe ou categoria à qual pertencem. A
segmentação semântica é fundamental em tarefas de visão computacional, como detecção
de objetos, navegação de veı́culos autônomos e análise de imagens médicas. Ela foi
treinada em um conjunto de dados próprio para o SA-1B, que continha 11 milhões de
imagens e mais de 1 bilhão de mascarás.

O ”SAM” é um sistema de segmentação com generalização de ”zero-shot”, significa
que no seu treinamento foi possı́vel atingir um conceito geral sobre o que são objetos,
generalizando objetos e imagens desconhecidos sem necessidade de treinamento adicional.

A arquitetura desse modelo é baseada em três frentes: um componente de
codificador de imagens, um codificador de prompts e um rápido decodificador de máscara,
como mostrado na Figura 7.

O Codificador de Imagens utiliza um ”Vision Transformer” (ViT), ajustado
minimamente para processar entradas de alta resolução. Essa etapa é crucial, pois fornece
representações importantes da imagem que serão usadas durante todo o processo de
segmentação.

O Codificador de Prompts considera dois conjuntos de instruções: esparsas (pontos,
caixas, texto) e densas (máscaras). A inclusão de instruções é alcançada por meio
de convoluções e soma elemento a elemento com a incorporação de imagem. Isso é
fundamental para incorporar informações de instruções que servirão de guia para a geração
das máscaras da segmentação.

O Decodificador de Máscara, é uma parte central do processo. Ele mapeia
eficientemente as representações de imagem, representações de prompt e um token de
saı́da em uma máscara. Esta parte utiliza uma modificação de um bloco decodificador
Transformer, e um bloco auxiliador de previsão de máscara. Após executar os dois blocos,
a representação da imagem é aumentada e um MLP (”Multilayer Perceptron”) mapeia o
token de saı́da para um classificador linear dinâmico, que calcula a probabilidade para cada
plano da máscara em cada local da imagem. Isso é essencial para gerar uma segmentação
precisa e detalhada, retornando todas um vetor de máscaras associadas, e dados detalhados
sobre o mapeamento de cada segmentação feita (taxa de confiabilidade, área segmentada,
pontos de seleção).

Figura 7. Visão geral do ”SAM” [Kirillov et al. 2023b]



3. Material

Para a realização desse artigo, o material usado no estudo foi fornecido por parceria com
especialistas do Centro de Odontologia da Universidade Federal de Pernambuco.

Foi utilizado três mandı́bulas humanas secas distintas como mostrado na Figura
8, combinadas aleatoriamente com um dos quatro implantes dentários causadores de
artefatos descritos: dois implantes de titânio (Straumann SLActive 3.3 mm x 8 mm, Institut
Straumann AG, Basel, Suı́ça) e dois implantes de zircônia (PURE Ceramic 3.3 x 8 mm;
Institut Straumann AG, Basel, Suı́ça). E com essa combinação também foram simulados
efeitos de deiscência na porção cervical do implante.

Em seguida cada mandı́bula foi submetida a exames de CBCT. O exame foi
realizado nos aparelhos OP300, Picasso e iCAT. Cada mandı́bula foi colocada dentro de
um recipiente cilı́ndrico de plástico e preenchido com água para simulação de tecidos
moles. As tomadas de aquisição foram feitas tanto sem auxı́lio ou com auxı́lio de uma
ferramenta que reduz artefatos (AR ou ”Artefact Reduction”).

Ao final, foram geradas 440 CBCT exclusivas, cada uma contendo em média 450
arquivos ”DICOM”, totalizando um armazenamento de 150 Gigabytes. E para cada um
dos 440 volumes foi também armazenado se cada um contêm deiscência vestibular e/ou
deiscência lingual.

Figura 8. Visão do recipiente e mandı́bula usada no conjunto de dados

4. Metodologia

O primeiro passo para iniciar o desenvolvimento do estudo foi fazer uma revisão literária
sobre implantes dentários, complicações relacionadas, CBCT, problemas de artefatos nas
CBCT e técnicas de análise de imagens odontológicas utilizando Aprendizagem Profunda
e outros métodos como segmentação. Nesse passo também foi possı́vel identificar que
existem estudos sobre segmentação utilizando CNNs em CBCT afetadas por artefatos
metálicos [Minnema et al. 2019], que performam com eficiência, centralizando o implante
da mandı́bula e conseguindo extrair as máscaras que diferenciam os dentes de ossos. A
partir dessa revisão, foi feito um fluxo de trabalho do desenvolvimento do projeto, descrito
na Figura 9.



Figura 9. Visão geral do fluxo do projeto

Conforme descrito na Figura 9, o fluxo de trabalho construı́do vai se basear em
quatro frentes.

A primeira foi construir as imagens que mostrem o implante aparecendo no
conjunto de dados. Essa etapa vai ser concluı́da apenas com uso de técnicas de
processamento de imagens como identificar os padrões luminosos gerados por interferência
com os implantes e auxı́lio da biblioteca ”pydicom” da linguagem de programação Python,
e ao fim vão ser salvas essas imagens com respeito aos planos coronais e sagitais. Por fim,
esses dados servirão de um conjunto de imagens prévios, podendo auxiliar no diagnóstico.

A segunda etapa compreende a segmentação semântica das imagens. Cada imagem
é submetida a um processo de processamento pelo ”SAM”, resultando na geração de
várias máscaras. Em sequência, cada uma destas máscaras é submetida a um procedimento
de heurı́stica de densidade de pixel, descrito no algoritmo da Figura 10 e da Figura 11.
Durante este processo, um novo vetor de valores é criado, e um vetor de threshold com
valores que variam entre 0 a 1 com passos entre 10−4, gerando 105 limitantes, no qual
apenas os valores de pixel que excedem um limite mı́nimo predefinido são inseridos. Ao
final deste procedimento, o vetor resultante deve atender a uma porcentagem mı́nima
em relação à quantidade de pixels contida na máscara original. Se o vetor satisfizer os
critérios mı́nimos, ele é selecionado como vetor de saı́da. Caso contrário, se nenhum vetor



ou dois ou mais vetores forem escolhidos, o algoritmo inicia um procedimento de busca
binária para determinar novos limites. Se nenhum vetor for escolhido, isso significa que o
recorte contêm muitos ruı́dos, incluindo no próprio implante, dificultando a delimitação da
resposta, logo o algoritmo vai diminuir tanto o limitante de valor de pixel e da porcentagem
de pixels. E se for maior ou igual a dois vetores de resposta, isso significa que podemos
aumentar os limitantes, já que a máscara do implante vai ser a mais luminosa, eliminando as
outras máscaras no processo. Essa abordagem é fundamental porque o objetivo primordial
do algoritmo é isolar especificamente a máscara com maior intensidade de preenchimento.
Essa máscara, por sua vez, representa a região onde o implante está presente. Isso é
particularmente crucial, já que, por definição, os implantes tendem a gerar uma intensidade
luminosa elevada durante a aquisição CBCT. Essa intensidade pode, em alguns casos, ser
confundida com outros artefatos ou ruı́dos resultantes de interferência metálica. Portanto, a
busca binária por valores além de agilizar o processo custoso de operação nessas máscaras
esparsas, delimita essa área segmentada que é de extrema importância para a precisão do
processo.

A terceira etapa é acionada imediatamente após a seleção da máscara para cada
recorte. Neste ponto, é efetuada uma escolha restrita à área do implante, cujas dimensões
mı́nimas são de 299x299 pixels. Caso não seja viável realizar essa separação, a porção
remanescente da imagem é preenchida com zeros.

Logo a seguir, para cada volume, a seleção começa a partir do ponto médio, com
o objetivo de identificar um conjunto fixo de imagens coronais e sagitais que exibam a
melhor qualidade de imagem do implante. Essas imagens são então combinadas para
formar o conjunto de dados que irá auxiliar os profissionais de saúde em suas avaliações
diagnósticas.

Finalmente, na última etapa, ocorrerá a criação do conjunto de dados, incluindo as
divisões de treinamento, validação e teste, utilizando os recortes que foram previamente
selecionados. Esses conjuntos serão empregados para treinar e avaliar o desempenho de
um modelo modificado EfficientNet-B0, o qual já foi pré-treinado no conjunto de dados do
ImageNet e está disponı́vel por meio da biblioteca ”Pytorch”.

No processo de modificação do modelo importado, algumas alterações serão
implementadas. Primeiramente, haverá uma adaptação na quantidade de canais do kernel
da primeira camada de convolução, a fim de que esteja compatı́vel com as caracterı́sticas
do nosso conjunto de dados criado. Além disso, na camada de classificação, a saı́da do
modelo será ajustada para duas classes, a fim de se adequar a uma tarefa de classificação
multilabel. Esses rótulos incluem ”deiscência vestibular” e/ou ”deiscência lingual”. Para
isso, será inserida uma camada final do tipo Sigmoide. Esta escolha é motivada pela
capacidade da função sigmoide de produzir saı́das na faixa de 0 a 1, o que representa as
probabilidades de cada rótulo estar presente em uma dada entrada. Adicionalmente, a
função sigmoid é apropriada para lidar com situações em que múltiplos rótulos podem
estar presentes simultaneamente. Cada neurônio de saı́da associado a um rótulo especı́fico
calcula independentemente a probabilidade daquele rótulo estar presente, sem afetar as
previsões dos outros rótulos.

Uma vez que o treinamento e a avaliação do modelo tenham sido realizados, a
biblioteca ”Captum”, fornecida pela NVidia na linguagem Python, será empregada. Isso



Algorithm 1: DENSPIX
Data: Threshold Vetor de Inteiros de tamanho N, Masks

Vetor de Máscaras,value threshold Int,
is value threshold Bool

Result: Vetor de Máscara M’ ou Erro
1 left← 0 | right← N − 1 |M ′ ←− [ ];
2 while left <= right do
3 middle← (right− left)/2 + left;
4 masks←− [ ];
5 if is value threshold then
6 masks←−

DENSPIX(Threshold,Masks,middle, False);

7 else
8 masks←−

GENMASK(Masks, value threshold,middle);

9 masks.size() > 0?M ′.append(masks.size())

10 end
11 if masks.size() == 1 then
12 return masks;
13 else
14 if masks.size() == 0 then
15 right← middle− 1;
16 else
17 left← middle+ 1;
18 end
19 end
20 end
21 return M ′

Figura 10. Definição do Algoritmo de Densidade de Pixel

será feito para analisar o comportamento do modelo por meio do Gradiente Integrado,
permitindo identificar os pontos de interesse nos quais o modelo está convergindo quando
recebe um recorte especı́fico como entrada. Esse processo proporcionará insights valiosos
sobre a interpretação e as decisões do modelo, contribuindo para uma análise mais profunda
e confiável.

5. Resultados e Discussão
Nessa seção o trabalho vai discutir os resultados obtidos utilizando a metodologia explicada
anteriormente.

5.1. Aquisição de Imagens
Para criar as imagens que destacam o implante, foi necessário primeiramente determinar a
métrica adequada para delimitar os recortes. Optamos por usar o parâmetro ”HU” (unidade



Algorithm 2: GENMASK
Data: Masks Vetor de Máscaras,value threshold Int,

percentage threshold Int
Result: Vetor de Máscaras Masks’

1 M ′ ← [ ];
2 for mask in Masks do
3 pixels← mask.size();
4 good pixels← 0;
5 for pixel in mask do
6 if pixel >= value threshold then
7 good pixels← good pixels+ 1
8 else
9 end

10 if good pixels/pixels >= percentage threshold then
11 M ′.append(mask)
12 else
13 end
14 return M ′

Figura 11. Definição do Algoritmo de Geração de Máscaras utilizado na Figura 10

de Hounsfield), que é uma unidade de medida fundamental para descrever a radiodensidade
em imagens de CBCT. Essa medida é essencial para diferenciar áreas com densidades
variadas nas imagens, conforme ilustrado na Figura 12. No gráfico, o pico mais elevado
dos valores máximos de HU indica a presença de um elemento com alta radiodensidade
[Katsumata et al. 2006].

Entretanto, esse exemplo nem sempre é absoluto. Artefatos e ruı́dos podem surgir
com valores de HU extremamente elevados, e em recortes onde o implante não está
presente verificar apenas o valor máximo não é suficiente. Adicionalmente, a Figura 12
também demonstra que confiar somente na soma dos valores não é viável, já que a média
pouco varia. Isso se deve ao fato de que os implantes são consideravelmente pequenos em
relação ao recorte, o que resulta em uma diferença mı́nima na soma total.

Portanto, a abordagem de considerar apenas o valor máximo ou a soma bruta
é insuficiente para identificar de forma precisa a presença do implante. É necessário
empregar uma função adaptável primeiramente é necessário gerar um ruı́do multiplicando
os valores pelo seu quadrado, já que os valores do implante são altos, penalizando os
valores menores e depois implicando uma normalização min-max dos valores para ao fim
fazer uma soma, obtendo a Figura 13, que mostra três valores. O surgimento do primeiro
pico e do último indicam a presença de vários artefatos e ruı́dos menores que somados
chegam em um alto valor de HU.

Entretanto, é importante notar que esses artefatos e ruı́dos gerados raramente
se aproximam da área total do implante, pois eles tendem a ser muito pequenos em
comparação. Portanto, optamos por incorporar outra métrica para análise, baseada na
distribuição dos valores de HU. Se esses valores forem maiores do que a metade do valor
máximo de HU, eles são incluı́dos no cálculo da soma. Em seguida, é aplicada uma nova



Figura 12. Exemplo de Valores máximos e médios do HU em um volume CBCT

normalização aos dados.

Com base nas curvas resultantes desse processo, focamos naquelas que demonstram
preenchimento igual ou superior a 50%, indicando a formação de um objeto retangular.
Essas curvas são então consideradas para a seleção dos novos recortes, como podemos ver
na Figura 14 o gráfico gerado e na Figura 15 o exemplo de imagens que foram selecionadas.

Essa abordagem mais abrangente considera tanto a magnitude dos valores de HU
quanto a disposição dos mesmos, permitindo uma análise mais precisa e adaptável. Isso
é particularmente relevante para lidar com a presença de artefatos, ruı́dos e pequenas
variações nas imagens, proporcionando maior confiabilidade na seleção dos recortes que
contêm informações relevantes sobre o implante.

Após a conclusão desse procedimento, a quantidade original de 150 Gigabytes foi
significativamente reduzida, resultando em um novo conjunto de dados de apenas 300
Megabytes. Essa redução equivale a uma economia de 99% de espaço de armazenamento.
Como resultado, a média é de aproximadamente 8 recortes por volume CBCT, totalizando
3520 imagens no conjunto de dados resultante, o qual será utilizado em nossas análises
subsequentes.

5.2. Segmentação Semântica
Durante esse estágio, foi usado o ”SAM” para criar máscaras correspondentes a cada
imagem contida no conjunto de dados gerado na etapa anterior. Entretanto, ao utilizá-lo,
foi notado que o processo de segmentação também incluı́a ruı́dos e artefatos indesejados,
como ilustrado na Figura 16. Adicionalmente, como é possı́vel observar na Figura 17, não
era possı́vel discernir um padrão claro para selecionar a máscara ideal, uma vez que a área
de pixels relacionada aos implantes apresentava considerável variabilidade.

Essa complexidade na segmentação destacou a necessidade de um método mais



Figura 13. Exemplo da Soma da Normalização do quadrado do máximo do HU
Value em um volume CBCT

refinado para isolar de forma precisa a área de interesse, ou seja, o implante. Portanto, foi
crucial adotar abordagens mais sofisticadas que considerassem as caracterı́sticas intrı́nsecas
dos implantes e minimizassem a inclusão de artefatos e ruı́dos indesejados nas máscaras
resultantes.

No entanto, baseando-nos na etapa anterior e na própria definição, os implantes
feitos de zircônio e titânio possuem valores elevados de HU. Poderia-se então considerar a
identificação dos segmentos com os maiores valores de HU. Entretanto, essa abordagem
também se mostrou inadequada, conforme evidenciado na Figura 18. Nela, fica claro que
artefatos ou ruı́dos, especialmente quando o implante está presente, tendem a ser maiores e
mais frequentes. Porém, esses artefatos ainda exibem uma luminosidade que não segue
uma relação linear. Como resultado, optamos por empregar a heurı́stica de densidade de
valores de pixels para delimitar todas as máscaras geradas.

No caso em que não fosse viável delimitar uma única máscara, essa situação
acarretaria em um erro que interromperia o experimento. Contudo, obtivemos sucesso ao
delimitar com precisão todas as máscaras em uma única entidade, o primeiro e segundo
quartil dos valores escolhidos como limitantes finais, ficaram entre 50% e 50%, para o
limitante de valor e de porcentagem, indicando que a máscara do implante na maioria dos
casos é facilmente delimitada e se não fossem a aleatoriedade dos artefatos, nem precisaria
da construção do algoritmo. Além disso, todas essas máscaras representavam pixels com
valores altos de HU, o que indicava a presença do implante, conforme evidenciado na
Figura 19.

Uma vez que a área de interesse foi identificada, procedemos à seleção de um
recorte de 299x299 pixels, centrado no implante, gerando assim um novo conjunto de
imagens. Em seguida, a partir desse novo conjunto, optamos por escolher 2 recortes



Figura 14. Exemplo da Soma da Normalização do quadrado do máximo do
HU Value com formato retangular em um volume CBCT. Desse gráfico foram
selecionados os recortes 266 até o 271

Figura 15. Exemplo da criação de um conjunto de imagens sob perspectiva
coronal e sagital com o implante em destaque

de perspectiva coronal e 3 de perspectiva sagital. Essas imagens foram selecionadas
de maneira estratégica, sendo escolhidas do centro em direção às extremidades, com o
propósito de formar um conjunto de dados que será utilizado como apoio para diagnósticos
e pegar os recortes onde o implante aparece mais nitidamente.

Esse processo, conforme ilustrado na Figura 19, permitiu com precisão a
identificação da localização dos implantes de zircônio e titânio, mesmo em cenários
complexos e variáveis, nos quais artefatos e ruı́dos estavam presentes.

5.3. Classificação multilabel

A partir do último estágio, geramos um conjunto de dados final que consiste em 5 imagens
por volume CBCT, totalizando 2220 imagens. Todas essas imagens foram padronizadas
para o tamanho de 299x299 pixels. Esse conjunto foi projetado para servir como entrada
para um modelo de Aprendizagem de Máquina.

Paralelamente, foi realizada uma pesquisa quantitativa e qualitativa com
especialistas em odontologia da UFPE, utilizando uma amostra de 20 imagens previamente
recortadas da região de interesse, geradas na etapa anterior, em comparação às 20
melhores imagens da mesma amostra gerada pela equipe de especialistas da UFPE. Na



Figura 16. Exemplo da geração de máscaras pelo ”SAM”, gerando 7 máscaras
distintas para um recorte do conjunto de dados

Figura 17. Exemplo do gráfico de caixa sobre a área das máscaras do implante
geradas pelo ”SAM”

pesquisa quantitativa, os especialistas foram questionados se as imagens geradas continham
informações suficientes para auxiliar no diagnóstico de deiscência, e todas as 20 imagens
geradas pelo algoritmo do artigo receberam a aprovação dos especialistas, indicando a
escolha dos melhores recortes para construção do banco de dados. Na pesquisa qualitativa,
comparamos as imagens geradas utilizando o Índice de Similaridade Estrutural (SSIM)
[Nilsson and Akenine-Möller 2020], que é uma métrica que avalia a semelhança entre
duas imagens, levando em consideração a estrutura, textura e informações de luminosidade
das imagens para determinar o quão similar elas são, com valores entre -1 e 1, onde 1
indica que as imagens são idênticas e -1 indica que são totalmente diferentes.

A utilização do SSIM na comparação dos recortes resultou em uma média de 0,6
para as imagens geradas. Isso indica fortes indı́cios de semelhança entre as imagens,
validando a eficácia do algoritmo de geração de imagens, como indicando na Figura 20,
que inclusive tem menos artefatos e mais nitidez no destaque da estrutura óssea.

Voltando ao conjunto de entrada gerado, todas as suas 5 imagens por volume foram
concatenadas, resultando em um novo dado com dimensões de 5x299x299. Em outras
palavras, as 5 imagens são tratadas como se fossem 5 canais distintos de informações.
Como saı́da, temos um vetor de duas posições. Na primeira posição, o valor 0 indica a
presença de deiscência vestibular, enquanto o valor 1 indica a ausência da mesma. Na
segunda posição, o valor 0 indica a presença de deiscência lingual, enquanto o valor 1
indica a ausência.

Uma análise da distribuição das classes de saı́da do modelo também foi conduzida,
como demonstrado na Figura 21. De maneira geral, não se observou um desequilı́brio
acentuado entre as classes. Embora haja mais volumes contendo problemas de deiscência
do que aqueles sem, essa disparidade não é tão pronunciada a ponto de requerer a



Figura 18. Exemplo de recorte do novo conjunto de dados, que demonstra
artefatos na área inferior central

Figura 19. Fluxo da Segmentação Semântica Gerada

intervenção de algoritmos de balanceamento de dados. É notável que a distribuição
se mantém similar para ambos os tipos de deiscência.

Adicionalmente, ao observar a combinação de rótulos, percebemos que o novo
conjunto de dados apresenta a seguinte composição: cerca de 35% das imagens contêm
ambos os tipos de deiscência, 40% exibem algum tipo de deiscência e 25% não apresentam
qualquer tipo de deiscência. Em geral, a distribuição dos rótulos está bem equilibrada, o
que contribui para a robustez e confiabilidade do conjunto de dados e, consequentemente,
para o desempenho do modelo de Aprendizagem de Máquina.

Assim, esse conjunto de dados final, composto por informações de imagem
concatenadas e vetores de saı́da com rótulos de presença ou ausência de deiscência
vestibular e lingual, está pronto para ser utilizado como entrada em um modelo de
Aprendizagem de Máquina.

Utilizando a biblioteca ”Pytorch”, construı́mos um DataLoader com as seguintes
dimensões: 440x(5x299x299, 2). Na primeira dimensão da tupla, temos as dimensões de
cada volume CBCT de entrada, enquanto a segunda dimensão representa os rótulos que
serão inferidos durante o treinamento, como é visto na Figura 22.



Figura 20. Comparação de um exemplo do melhor recorte gerado pelo profissional
e pelo algoritmo

A partir disso, esse DataLoader foi dividido em três conjuntos distintos:
treinamento, validação e teste. As proporções foram estabelecidas como 70%, 15%
e 15%, respectivamente. A criação do conjunto de validação serve como uma medida
preventiva para evitar overfitting do modelo, ou seja, para garantir que o modelo não
se ajuste excessivamente ao conjunto de treinamento, mas seja capaz de generalizar o
problema. Essa abordagem ajuda a melhorar a capacidade do modelo de lidar com novos
dados e de obter resultados mais confiáveis.

Essa divisão foi realizada utilizando a técnica de divisão por rótulo. Isso significa
que a separação dos conjuntos foi feita de forma aleatória e garantindo que as proporções
dos rótulos fossem respeitadas. Essa abordagem foi empregada para reduzir as chances
de criar inadvertidamente um conjunto de dados desbalanceado ou com vazamento de
informações entre os diferentes conjuntos. Dessa forma, a integridade e a validade dos
conjuntos de treinamento, validação e teste são preservadas.

Em seguida, realizamos o treinamento do modelo adaptado do EfficientNet-B0,
disponibilizado pelo ”Pytorch”, utilizando o conjunto de treinamento especificado. Não
foi definido um número máximo de épocas; em vez disso, utilizou-se um critério de parada
antecipada com uma paciência de 10 em uma versão inicial. A função de perda escolhida
foi a ”Binary Cross Entropy” para classificação multirrótulo, especificada pela fórmula:
BCEmultilabel(y, p) = −∑

i = 1N (yi · log(pi) + (1− yi) · log(1− pi)), onde N é o
número de classes, yi representa o rótulo verdadeiro para a classe i, e pi é a probabilidade
prevista pelo modelo para a classe i.

A opção pela ”BCE” é feita porque o objetivo pode representar simultaneamente
múltiplas classes. A entropia cruzada binária é calculada separadamente para cada classe
e, em seguida, os valores são somados para obter a perda total. Ao fim de cada época é
salvo o melhor modelo em relação a taxa de erro do conjunto de validação, inclusive essa
mesma taxa é a utilizada para diminuir ou reiniciar a paciência do modelo.

Ao final do treinamento, o modelo demonstrou uma acurácia de 100% para o rótulo
de deiscência vestibular e 98% para o rótulo de deiscência lingual no conjunto de validação,
o que resultou em um pequeno número de falsos positivos. Ao avaliarmos o desempenho



Figura 21. Distribuições das classes de saı́da

Figura 22. Exemplo de entrada do DataLoader, onde as duas primeiras imagens
são da perspectiva coronal e as outras três são da sagital, e cada uma das
imagens representam um canal de imagem, e os rótulos indicam a presença dos
dois tipos de deiscência

do modelo no conjunto de teste, obtivemos uma acurácia de 100% para o rótulo de
deiscência vestibular e 97% para o rótulo de deiscência lingual, com apenas dois casos
de falso positivo. Esses resultados indicam que o modelo, com base no conjunto de dados
fornecido, alcançou uma performance excelente, conforme ilustrado na Figura 23.

Para uma análise aprofundada dos resultados obtidos, foi realizada uma projeção
da distribuição geral do conjunto de dados usando o UMAP (”Uniform Manifold
Approximation and Projection”). Essa projeção permitiu mapear os dados em um espaço
de dimensão inferior, criando um gráfico bidimensional que facilita a compreensão e
interpretação da distribuição dos dados. O objetivo era identificar agrupamentos, padrões
ou anomalias nos dados.

A Figura 24 ilustra a distribuição gerada pelo UMAP para o Dataloader do projeto.
Vale lembrar que o conjunto de dados original em formato ”DICOM” foi gerado a partir
de três mandı́bulas diferentes, nas quais foram aleatoriamente dispostos diferentes tipos de
implantes, bem como a presença ou ausência de lesões.



Figura 23. Matrix de confusão gerada na performance sobre o conjunto de teste

No entanto, é notável que o modelo foi capaz de generalizar exatamente a estrutura
óssea especı́fica dessas três mandı́bulas distintas. Isso é evidenciado pelos três clusters
bem definidos no gráfico UMAP. O modelo conseguiu delinear padrões de deiscência
vestibular e lingual para cada uma das mandı́bulas, identificando caracterı́sticas especı́ficas
que contribuem ou não para a saı́da do modelo.

Essa capacidade de generalização e discernimento entre diferentes padrões é crucial
para a eficácia do modelo na detecção e classificação das condições de interesse. Os
resultados do UMAP fornecem insights valiosos sobre como o modelo está aprendendo e
interpretando as caracterı́sticas anatômicas relevantes para a identificação das deiscências.
Porém como falta mais variabilidade de mandı́bulas, não fica claro se o modelo apenas
conseguiu identificar as três mandı́bulas ou se poderia generalizar para uma quantidade
maior de mandı́bulas.

Aprofundando na explicabilidade do modelo, incorporamos a biblioteca ”Captum”
e utilizamos a função Gradiente Integrado, a qual tem como propósito entender como
o modelo toma decisões com base nas caracterı́sticas das entradas. Essa técnica foi
desenvolvida para oferecer insights acerca da importância relativa das diferentes partes de
uma imagem (ou entrada) na decisão final do modelo. Sua ideia fundamental consiste em
calcular o gradiente da saı́da do modelo em relação à entrada (ou seja, os gradientes parciais
em relação a cada pixel da imagem) e, posteriormente, integrar esses gradientes ao longo de
um percurso suave entre uma linha de base (imagem inicial, geralmente preta ou branca) e
a imagem de entrada real. Tal procedimento é executado para cada pixel, resultando em um
conjunto de valores que representam a contribuição de cada pixel para a previsão do modelo.
Essa técnica é formalizada pela seguinte fórmula: IntegratedGradients(x,x′) = (x−
x′)×

∫ 1
α=0

∂F (x′+α×(x−x′))
∂x

, dα [Sundararajan et al. 2017].

Ao examinarmos os resultados gerados pelo Gradiente Integrado da biblioteca
”Captum”, juntamente com a avaliação de uma especialista em odontologia, identificamos
um aspecto importante. Além de analisar a parte superior do implante, que é crucial
para identificar exposição do implante conforme a definição de deiscência, o modelo
também está detectando outros orifı́cios que foram criados na estrutura óssea da mandı́bula,
e os orifı́cios que foram também levados em consideração são da mesma natureza do
rótulo previsto, como visto na Figura 25. Isso ocorre porque a mesma mandı́bula foi
utilizada em múltiplas instâncias. Essa descoberta é um indı́cio promissor de que o modelo
está aprendendo a generalizar as caracterı́sticas da lesão. Entretanto, devido à limitada



Figura 24. UMAP do conjunto de dados gerado após a seleção da área de interesse

variabilidade no conjunto de dados, essa constatação permanece como uma oportunidade
futura e uma hipótese interessante para investigações subsequentes no projeto.

Até o momento, o modelo está demonstrando um desempenho excelente na
classificação multilabel do problema. Além disso, o desenvolvimento do novo conjunto
de dados para auxiliar no diagnóstico de profissionais de saúde tem se mostrado uma
contribuição valiosa. Essa combinação de resultados positivos e a exploração de
possibilidades futuras destacam o potencial e a importância desse projeto no contexto da
saúde bucal.

6. Considerações finais
Este trabalho de graduação representa um esforço significativo e promissor no campo da
saúde bucal e diagnóstico de deiscências mandibulares. Ao longo de sua execução, uma
série de etapas foi realizada, desde a transformação dos dados no formato ”DICOM” para
imagens até a adaptação e treinamento do modelo EfficientNet-B0 para a classificação
multilabel das deiscências vestibular e lingual. A abordagem inovadora de utilizar o
Gradiente Integrado da biblioteca ”Captum” para explicar as decisões do modelo acrescenta
uma camada de transparência e interpretabilidade ao processo.

A metodologia empregada para seleção e preparação dos dados, incluindo a
segmentação semântica, a heurı́stica de densidade de pixel e a geração de conjuntos de
treinamento, validação e teste, gerando uma grande diminuição no total de armazenamento



Figura 25. Aplicação do Gradiente Integrado em uma imagem do conjunto de teste,
importante observar os pontos em destaque indicando que o modelo observou
para a parte superior do implante e para orifı́cios da estrutura mandibular

das tomografias computorizadas, auxiliando também na transferência desses arquivos,
demonstra um compromisso com a qualidade dos resultados e a validade das análises. A
projeção via UMAP revela a Aprendizagem Profunda do modelo sobre as caracterı́sticas
especı́ficas das mandı́bulas e das deiscências, apontando para sua capacidade de
generalização, mesmo em um conjunto de dados com limitada variação.

As taxas de acurácia alcançadas na validação e teste validam a eficácia do modelo
na classificação multilabel. A identificação de padrões além do esperado pelo Gradiente
Integrado reforça a importância de uma abordagem constante para a análise e interpretação
dos resultados.

7. Trabalhos Futuros

Este projeto aponta para inúmeras oportunidades de investigação e aprimoramento, com o
objetivo de expandir ainda mais o impacto e a eficácia da abordagem proposta. Algumas
áreas sugeridas para desenvolvimentos futuros incluem:

Expansão do Conjunto de Dados: Embora o modelo tenha demonstrado excelentes
resultados com o conjunto de dados atual, obtendo um valor de acurácia geral de 97% sob
o conjunto de teste, como o atual trabalho apenas usa três mandı́bulas distintas, nas quais
as três foram reutilizadas durante a construção do primeiro conjunto de dados obtido em
parceria com os especialistas de Odontologia da UFPE, se levanta uma hipótese na qual o
modelo proposto não performe bem em outros tipos de mandı́bulas, logo precisa-se de uma
maior diversidade das mesmas, e também de mais tipos de implantes, assim ampliando a
capacidade de generalização do modelo e validar ou não a hipótese levantada.A expansão
do conjunto de dados pode reforçar a robustez do modelo e sua aplicabilidade em situações
mais complexas do mundo real, permitindo a utilização deste modelo como auxı́lio para
diversos profissionais da área de saúde.

Aplicação em Outras Áreas Médicas: Agora que se constatou que o projeto atual
consegue identificar com precisão uma área importante da saúde bucal, a metodologia



desenvolvida pode ser adaptada e aplicada em outros domı́nios da medicina e radiologia.
A detecção automática de diferentes patologias, como tumores, cistos ou fraturas, poderia
ser investigada, ampliando a utilidade da abordagem para além das deiscências.

Desenvolvimento de Pipeline completo para o profissional: Criar uma interface de
usuário na qual o profissional pode iniciar um fluxo apenas fazendo o upload dos arquivos
”DICOM” e receber as imagens que aparecem o implante, com a explicabilidade do modelo
em cada uma delas, aumentando sua acessibilidade e utilidade.

Este projeto, com seus resultados, estabelece uma base sólida para futuros
avanços. A convergência entre a tecnologia de Aprendizagem Profunda e o conhecimento
médico demonstra ser uma ferramenta poderosa para aprimorar o diagnóstico médico
e, potencialmente, transformar a abordagem a diversas condições médicas. Com um
olhar voltado para a colaboração contı́nua e a inovação, este projeto oferece perspectivas
empolgantes para o futuro da medicina e radiologia.
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Tomografia computadorizada de feixe cônico (cone beam): entendendo este novo
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