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ABSTRACT 

 

Implementing an effective maintenance policy on industrial equipment is crucial to ensuring 

optimal performance. In particular, maintaining the optimal condition of centrifugal pumps, which 

play a critical role in various industrial processes such as the transportation of slurries and fluids, 

is of utmost importance. Hence, this thesis presents two studies related to the maintenance of 

centrifugal pumps used in the production of iron ore concentrates. The first study proposes a 

reinforcement learning approach for condition-based maintenance of the pumps, utilizing a 

variance gamma process degradation model to simulate the degradation process and recommend 

actions to minimize long-term maintenance costs. The study filled the gap in the literature by 

considering three performance features, namely pressure, temperature, and vibration, in modelling 

the state environment. The second study develops an integrated opportunistic maintenance policy 

for a cold-standby system consisting of a principal set of pumps and a standby set that is activated 

in the event of failure, utilizing the delay-time concept and defining two maintenance policies for 

combined optimization. The study’s major contribution to knowledge is in the integrated policy 

that considers actions for the principal system and for the standby system as well. A sensitivity 

analysis was performed on the two models. The results obtained justified the robustness of the 

policies, and demonstrated potential for improving maintenance strategies in the iron ore industry 

and other industries utilizing similar equipment. The two works therefore provide valuable insights 

into improving maintenance policies for centrifugal pumps and highlight the importance of 

developing maintenance strategies at reduced costs. 

 

Keywords: maintenance; reinforcement learning; delay-time; standby system; opportunistic 

maintenance; deterioration process 

  



 
 

RESUMO 

 

Implementar uma política de manutenção efetiva em equipamentos industriais é crucial para 

garantir o desempenho ideal. Em particular, manter a condição ótima de bombas centrífugas, que 

desempenham um papel crítico em vários processos industriais, como o transporte de lamas e 

fluidos, é de extrema importância. Por isso, esta tese apresenta dois estudos relacionados à 

manutenção de bombas centrífugas usadas na produção de concentrados de minério de ferro. O 

primeiro estudo propõe uma abordagem de aprendizado por reforço para manutenção baseada em 

condições das bombas, utilizando um modelo de degradação de processo gama variante para 

simular o processo de degradação e recomendar ações para minimizar os custos de manutenção a 

longo prazo. O estudo preencheu a lacuna na literatura ao considerar três características de 

desempenho, a saber, pressão, temperatura e vibração, na modelagem do ambiente de estado. O 

segundo estudo desenvolve uma política de manutenção oportunista integrada para um sistema de 

reserva frio composto por um conjunto principal de bombas e um conjunto reserva que é ativado 

em caso de falha, utilizando o conceito de delay-time e definindo duas políticas de manutenção 

para otimização combinada. A principal contribuição do estudo para o conhecimento está na 

política integrada que considera ações tanto para o sistema principal quanto para o sistema reserva. 

Uma análise de sensibilidade foi realizada nos dois modelos. Os resultados obtidos justificaram a 

robustez das políticas e demonstraram o potencial de melhoria das estratégias de manutenção na 

indústria de minério de ferro e outras indústrias que utilizam equipamentos semelhantes. Os dois 

trabalhos fornecem, portanto, insights valiosos para a melhoria das políticas de manutenção para 

bombas centrífugas e destacam a importância do desenvolvimento de estratégias de manutenção 

com custos reduzidos. 

 

Palavras-chave: manutenção; aprendizado por reforço; tempo de atraso; sistema de espera; 

manutenção oportunista; processo de deterioração. 
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1 INTRODUCTION 

Centrifugal pumps have a wide range of applications in the water distribution networks, 

mining, chemical and industrial plants (CHEN et al., 2022; MARTINUS et al., 2022). As part of 

their function in industrial plants, they play a very prominent role in the beneficiation of iron ore 

concentrates at the National Iron Ore Mining Company, (NIOMCO) Itakpe, located in Nigeria. 

They constitute about 20% of the cost of all equipment purchases in an industrial plant, they also 

consume about 80% electricity and account for approximately 40% of maintenance expenditure 

(HASHIM, HASSAN, HAMID, 2020). The importance of centrifugal pumps in an iron ore 

processing plant cannot be overemphasized. Their major function involves the transportation of 

slurries from one point of the production process to the other (TOIT, CROZIER, 2012). These 

pumps are very important that when there is a blockage in any part of the production line, the whole 

production line is affected and the entire line stops running.  

The production process line comprises of several pumps that need to be constantly monitored and 

maintained in order to reduce downtime and cost. The management of the company being studied 

expect the pumps to deliver at minimum cost. This means that production utilities must satisfy 

quantitative reliability requirements, while at the same time try to minimize their costs. The 

predominant expenditure for a utility is the cost of maintaining system assets, an example is through 

adopting maintenance measures (ALLAN et al., 1988). Research findings have shown that 

maintenance impacts on the reliability performance of a component, this will eventually reflect on 

the entire system since concentrate production process systems are made up of interconnected 

components (VRIGNAT, KRATZ, AVILA, 2022). 

The major equipment failure in the production of iron ore concentrate which can stop production 

process is the pump. McKee et al. (2011) outlines the major failure modes inherent in a centrifugal 

pump. These includes among others; hydraulic failures, pressure pulsation, radial and axial thrust, 

suction/discharge recirculation, mechanical failures, lubrication failure and excessive vibrations. 

All the aforementioned faults result in decreased pump efficiency that progressively reduce the 

working life of the equipment. Therefore, there is an utmost need to develop effective optimal 

maintenance policies to mitigate against this. 

Considering the aforementioned discussion, this thesis seeks to analyze some contributions towards 

deploying effective maintenance policy for centrifugal pumps in an iron ore concentrate production 
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industry.  The contributions analyzed involves studying how maintenance policies such as, 

condition-based maintenance based on the reinforcement learning algorithm, opportunistic 

maintenance based on the delay-time and inspection policies have on the centrifugal pump. In order 

to achieve this goal, the following problems and approach are solved in this thesis. 

The first approach is a thorough literature review captured in chapter 2 that details the key concepts 

in this research. This includes such topics as; the delay-time, opportunistic maintenance, standby 

system, preparedness systems. Also, the reinforcement learning coupled with the algorithms used 

in the field are extensively discussed. The degradation processes deployed in modelling pump 

failure is also discussed. 

Two major models are developed in this thesis so as to showcase the contributions of maintenance 

policies for centrifugal pump. The first work’s major contribution is building a reinforcement 

learning model for optimal CBM policy on the centrifugal pump. The idea is based on the premise 

that in developing a robust RL algorithm, it will assist in learning the best action to take on the 

pump at every time-step or interaction as the pump degrades. This will invariably increase the 

availability of the centrifugal pumps. The developed RL will also help in solving the problem that 

is noticed in the industry where auxiliary pumps are switched on when the main pumps fail. The 

disadvantage of this is that the failed pump’s life could be extended and repairs less costly if they 

were discovered prior to failure (MARTINUS et al., 2019). The impact of the degradation process 

on the pump was simulated by a variance gamma process on three health indicators (temperature, 

vibration and pressure) of the pump as against most works that considered only one health indicator 

(MITRA, MARWA, ESTELLE, 2022; SALEM, FOULADIRAD, DELOUX, 2021). Results 

showed that the agent was able to predict the optimal decision at each time step that will increase 

the availability of the equipment. 

The second work involves developing an integrated maintenance policy for a set of principal and 

cold standby system in a set of centrifugal pumps using the delay-time concept. The system consists 

of two sets of centrifugal pumps. It is a series of parallel system configuration. The principal system 

set are in series, each pump in the principal set is connected in parallel to its corresponding standby 

pump. If a pump in the principal system fails, its corresponding back up pump takes over its 

functionality. This study aims to contribute to the development of an opportunistic inspection 

policy for backup systems by considering actions taken in the principal system that are not taken 

into account by the standby system. This approach provides a more comprehensive maintenance 
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strategy that ensures that the backup pumps are always available for swap. The novelty of the work 

is in considering the relationship between the primary and backup systems using the delay time 

concept in modelling the system’s degradation. The timing of actions such as replacement, 

inspection, and failure are also considered. Another contribution to knowledge arises from the work 

of Sinisterra et al. (2023). The work has its central hypothesis on the failure process in two stages. 

This process was modeled on the concept of delay time. This same concept was fundamental for 

the development of the integrated inspection model, presented in chapter 4. In an evolutionary way, 

the model presented in chapter 4 promotes a scenario with less production interruptions than the 

model proposed in the article in Sinisterra et al. (2023), since there is a pump backup linked to each 

main pump. This aspect gave rise to a deeper investigation into the redundancy of critical items in 

job sequencing problems, which is already in full development. In this sense, a synergistic effect 

is observed in which the student's participation brought new perspectives to the ongoing research, 

and this, in turn, contributed to a significant evolution in the integrated inspection model proposed 

in the thesis. The author’s published work, Sinisterra et al. (2023) is linked to the two works in the 

thesis in the sense that 1) they are related to maintenance and optimization strategies for system or 

equipment in different industries, 2) they highlight the effectiveness and potential benefits of the 

proposed policies in terms of cost reduction, system performance improvement, and reduced 

downtime, 3) they contribute to the field of maintenance optimization by providing innovative 

strategies, mathematical frameworks, and simulation models, 4) they demonstrate the importance 

of considering degradation processes, inspection policies, and various optimization algorithms in 

developing effective maintenance strategies for different industrial systems and finally, in strong 

relation to the second work on this thesis, they bring the delay time as a central concept to build 

maintenance strategies. The two policies developed in the thesis are linked in the essence that they 

both deal with optimizing maintenance policies on centrifugal pumps and, where the first work 

deals mainly with the principal set of pumps, the second work considers both the principal set of 

pumps and the spare set of the same industry. 

From the foregoing discussion, it is sufficed to say that it was possible to have a holistic view of 

the contributions that some maintenance policies (RL and opportunistic maintenance) have on a 

centrifugal pump in the industry of study. 
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1.1 OVERVIEW OF THE GENERAL PROBLEM 

An equipment usually experiences aging and deterioration with time which has an impact on the 

finished product’s quality (KURNIATI, YEH, LIN, 2015). This deteriorating process is 

characterized by increased rejects, reworks which can lead to system failures (SINISTERRA et al., 

2023). From a modern solution to this problem, industry 4.0 aims to make connected production 

systems interact by using standard internet-based protocols to analyze equipment deteriorating 

behaviour by analyzing related data. This will help in predicting potential failure before they occur 

(SCHLICK et al., 2014; NAKAJIMA, 2014). The overview of the problem to be solved is hence 

related to the question of 1). As the centrifugal pump degrades, what decision can be made at each 

iteration to avoid an outright failure of the equipment? 2). If the pump’s degradation is modeled 

with the delay-time concept, what would be the number of optimal inspections, interval of 

inspections, opportunity window and time for preventive maintenance for the principal and spare 

pump?  Both questions are answered in the two works done in this thesis. Please note that the 

detailed problem statement for each work is given in chapter three and four. 

1.2 AIM 

The main aim of this thesis is to examine and propose some contributions of maintenance policy 

on centrifugal pumps in the iron ore process plant. 

1.3 SPECIFIC OBJECTIVES 

To achieve the above aim, the following specific objectives are pursued: 

• To present a comprehensive literature review of maintenance policies and reinforcement 

learning as applied to centrifugal pumps. 

• To develop an RL-based mode for optimal CBM in a centrifugal pump. 

• To develop an integrated opportunistic maintenance policy on a set of principal and standby 

system of centrifugal pumps. 
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1.4 MOTIVATION 

Although the literature is rich with papers and works that study the impact of various existing 

maintenance policies on equipment in a process plant (DROZYNER, 2020; JASIULEWICZ-

KACZMAREK, SANIUK, 2018; GOUIAA-MTIBAA et al., 2018), to the best of the author’s 

knowledge, none has studied the impact of policies (especially RL policies) coupled with 

deterioration processes on centrifugal pump used in an iron ore concentrate plant. Therefore, the 

motivation of this thesis comes in 2 folds. 

Firstly, RL has become the trending and modern technique where maintenance of single, multi-

state and multi-component systems can be optimally achieved because of its robustness, large state-

action space and the ability to deal with the stochastic behaviour of the system’s degradation 

process caused by uncertainty and external operating conditions (BARDE, YACOUT, SHIN, 2019; 

ZHANG, ZHU, XIE, 2021). This has brought about the motivation to develop RL algorithm for a 

CBM in a centrifugal pump. This would achieve the objective of optimal maintenance policy that 

results in minimum maintenance cost, and aids the maintenance manager in decision making. 

Secondly, it is interesting to observe how the delay-time concept can be used to optimize an 

opportunistic maintenance for a cold standby system which results in a minimum maintenance cost. 

1.5 RESEARCH METHOD 

This study is an example of applied research. In each case study, the modeling procedure serves as 

the research methodology. The modeling procedure in the issues is unique to each case study and 

numerical illustration. Each of the modelling procedures tries to identify methods for incorporating 

the components missing from the available literature regarding maintenance policies. The 

collection of data is vital to study. To achieve this, the author used computer simulation techniques. 

For the first work, the data involved the degradation process of the centrifugal pump. This data was 

simulated using the variance gamma process by Monte Carlo simulation. The second work 

involved data related to the delay-time. The data was also simulated using the Weibull and 

exponential distributions. This data was assessed and proved to be consistent with real-world 

conditions, allowing the proposed models' solutions to be analyzed and evaluated 
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1.6 OUTLINE OF THE THESIS 

The thesis is divided into five chapters. The first chapter is the introduction that outlines the synergy 

between all the problems solved, the main and specific objectives are also outlined. The knowledge 

gap and major contribution of each problem is well explained. 

Chapter 2 presents the literature review. In this chapter, the basic concepts that link all the problems 

are discussed in depth. This includes the delay-time and degradation models, RL maintenance and 

opportunistic maintenance policies and inspection policies. Different deterioration processes such 

as gamma, Brownian, Variance Gamma and Markov Decision Processes are explained in depth. 

The relationship in the literature among these processes are also discussed. A comprehensive 

literature review on RL and the relevance to maintenance policy optimization is also presented. 

Chapter 3 starts with a detailed description of the industry under study. The main focus of the 

chapter discusses the application of reinforcement learning for optimal CBM policy in a centrifugal 

pump. 

Chapter 4 contains the second work done by the author of this thesis that involves developing an 

integrated opportunistic maintenance policy for a principal and cold standby centrifugal pump 

system using delay-time concept. 

Chapter 5 presents the conclusion of the thesis which is drawn from highlighting how each of the 

problems discussed aid in achieving the aim of the thesis. The limitations of study and directions 

on future lines of research are also included. 
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2 LITERATURE REVIEW 

This chapter presents a comprehensive literature review about the topics that are interesting in 

this study. Maintenance polices are discussed, the delay-time concept and the related works on the 

topic are analyzed. The opportunistic maintenance and inspection policies are reviewed, literature 

on preparedness systems is also reviewed, carefully noting the gaps in literature. Finally, the 

reinforcement learning and its applications to pumps is studied. 

2.1 MAINTENANCE POLICIES 

A maintenance policy refers to a collection of administrative, technical, and managerial measures 

that are implemented throughout the lifecycle of a machine. These measures guide the decision-

making process of maintenance management, with the ultimate goal of maintaining specific 

operational standards or restoring a machine to those standards (IGI-GLOBAL, 2018). 

The aforementioned restoration process involves the organization of both human and material 

resources, aimed at rectifying faults, wear and tear, or breakdowns in machines, devices, or 

facilities. This process is designed to guide maintenance management decision-making, with the 

ultimate objective of ensuring uninterrupted facility operation, optimal availability, safety, and 

quality, while simultaneously minimizing maintenance costs (HSE, 2009). 

There exists 6 main broad classification of maintenance policies viz: reactive (run-to-failure), 

predetermined maintenance, preventive maintenance (PM) made up of time-based or condition-

based maintenance (CBM), opportunistic and predictive maintenance (JONATHAN, 2021). For a 

comprehensive review on maintenance policies classifications, please refer to (ERBE, et al., 2005). 

Based on the line of thought of this research, the literature review is based on maintenance policies 

on preventive (time-based, opportunistic, CBM) and predictive maintenance. 

2.1.2 Preventive maintenance 

According to Wang and Wenbin (2012), preventive maintenance can be subdivided to 2 types 

which are; time-based maintenance and CBM. Opportunistic maintenance also falls under 

preventive maintenance. A popular kind of time-based maintenance is the delay-time based 

maintenance. Preventive maintenance makes use of optimal schedule of inspections and tasks to 

find and fix issues before they have a chance to develop into big problems (ZHAO, WANG, PENG, 
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2015). Due to scheduled inspections, PM tends to allow opportunities and enough lead time to 

ensure that the inventory is at optimal delivery. The disadvantage of PM is on extra waste and 

added risk (KHAIRY, PRABHAKAR, 2008). Extra waste occurs when the equipment parts are 

changed before they fail or become defective. The later occurs when each inspection leads to an 

added risk of introducing defects. 

2.1.2.1  Delay-time Models 

The origins of PM's delay-time models can be traced back to Christer's work in 1976, where they 

were first introduced in the context of building maintenance (CHRISTER, 1976). Christer and 

Wailer subsequently applied the aforementioned concept to industrial maintenance problems 

(CHRISTER, WALLER, 1984). 

The delay-time concept (Figure 1) can be literarily defined as a failure process of an asset that falls 

from a point of new to the point that a hidden defect is detected (𝑢), and then a defective stage, 

defined as delay-time (ℎ), that is, from the point of defect identification to failure (𝑓)  (WANG, 

2008). The existence of this delay time provides the opportunity for preventive maintenance to be 

executed to remove or rectify the identified defect before failure (WANG, WENBIN, 2012). The 

major challenge is to design appropriate models that optimizes inspection intervals that optimize a 

certain function of interest. 

As stated earlier that the disadvantage of PM is the challenge of extra waste and added risk, several 

works on delay-time models have been done by researchers whose sole aim is to mitigate against 

these challenges (MAHMOUDI et al., 2017; NAZEMI, SHAHANAGHI, 2015; LIU et al., 2015; 

ZHAO, WANG, PENG, 2018). Apart from deploying delay-time models (DTM) to mitigate 

against the effect of waste and risk, DTMs have been applied to both single and multi-component 

systems. Delay-time models have also been found useful in modeling inspection policies for 

protection systems, as demonstrated in (CAVALCANTE, SCARF, BERRADE, 2019), where 

inspection outcomes provide imperfect information on the system's state. The novelty of their study 

lies in investigating the effect of imperfect inspection probabilities on the efficacy of inspection, 

and the results indicate that preventive replacement is an effective approach to mitigate the impact 

of low-quality inspection, and inspection remains cost-effective provided the probabilities of 

imperfect inspection are not too large. Another study, Berrade et al. (2013), explores the use of 

periodic inspections to check the system's state, where inspections are subject to errors. Other 
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studies, such as Santos, Cavalcante and Ribeiro (2021) on environmental sustainability Rodrigues, 

Cavalcante and Alberti (2023) on multicriteria modeling environments, demonstrate the diversity 

of industrial applications of delay-time models. These diverse applications of delay-time models 

suggest an interesting trend in the potential impact of such models on various industrial 

environments. 

 

Figure 1 - Delay-time concept 

 
Source: adapted from Werbinska-Wojciechowska (2019)  

2.1.2.1.1 Delay-time for Single-component systems 

A single-component system is a system that comprises of a unit or set of unit items whereby they 

are all subjected to the same failure process (BARLOW, HUNTER, 1961). Defining a single-

component system is associated with the way the system is seen.  This means that even though a 

complex system comprises of a component and its socket, whereby both provide an essential 

function such that if the component fails, the system fails, it is still a single-component system. A 

pure single-component system is therefore rare, many systems are complex systems with many 

components. Real-life systems are usually reduced to single-component systems so as to simplify 

the PM modelling process. Wang, Wang and Peng (2017) presented a 2-phase inspection schedule 

and an age-based replacement policy for a single plant item contingent on a 3-stage degradation 

process. Their line of thought was that multi-phase inspection schedule may be more applicable to 

a multi-stage deteriorating item, therefore their work encompasses the idea of a single-component 

system observing a multi-stage deterioration. The major contribution of their work is that the 

maintenance of the item could be delayed until when the time to the age-based replacement is 

greater than a threshold. The critic of their work is the assumption that, from the second inspection, 

all subsequent inspection intervals were assumed to be constant. Relaxing this assumption would 

result in a truly multi-phase inspection model.  In the work of Li et al. (2015), the delay-time 
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concept coupled with accumulative age is presented for a single-component system under the 

assumptions that failure modes are independent of each other, maintenance is imperfect, and all 

kinds of defects are dealt with in each maintenance task. The demerit of their work is that 

independence of the failure modes may not fully portray the ideal real-life case.  Zhao, Liu and 

Peng (2018) presented a periodic inspection policy for a single-component system based on a 3-

stage failure process. Their major contribution is the introduction of the human factor into the 

quality of repair activities.  The common practice in the foregoing mentioned works is that the 

maintenance policies are being optimized by minimizing the expected cost per unit time. In Scarf 

et al. (2009), a hybrid maintenance policy was examined for a single component in a heterogeneous 

population using the delay-time model. This study highlights the potential of delay-time models 

for hybrid maintenance policies, such as combining inspection and replacement policies. The 

results indicate that the hybrid policy yielded significant cost savings compared to standard age-

based replacement and pure inspection policies. A recent work by SINISTERRA et al. (2023) 

proposed a model that integrates the schedule of a sequence of resumable jobs and inspection policy 

in a single-component system using the delay-time concept. 

Most works in the literature assume a 3-stage degradation process i.e., from new to the arrival of 

defect, the delay-time and then the delay-time until inspection is performed or failure occurs 

(ZHAO, LIU, PENG, 2018; REDMOND et al., 1997; SHEN et al., 2021).  This enables the model 

to represent real-life scenarios. The 3-stage failure process is achieved by further dividing the delay 

time into minor and severe defect stages which can provide more maintenance decisions based on 

different defects (WANG, ZHAO, PENG, 2014; SANTOS et al., 2023). 

2.1.2.1.2 Delay-time for multi-component systems 

A multi-component system is one in which multiple maintenance decisions are to be made for each 

of its component. Delay-time models based on multi-component systems have been explored 

(CHRISTER, WALLER, 1984; LI, FANG, SHI, 2021; KANG, CATAL, TEKINERDOGAN, 

2021; PENG et al., 2022). The complexity of multi-component system failure process arises from 

the fact that each component will have its own unique failure mode which will give rise to its 

unique failure mechanism as well as a failure process (LI et al. 2015). Failure arrivals are usually 

modelled in homogenous Poisson process (HPP) or non-homogenous Poisson process (NHPP) 

(DOYEN, GAUDOIN, 2004; HONGZHOU, HOANG, 2006). NHPP are known to provide a good 



24 
 

 
 

first-order model to the real-world problems (HAROLD, 2008; ASCHER, 1992). When the number 

of components is large, a common practice is to model the inspection and failure process using a 

stochastic point process (HPP or NHPP) for defects arrival and a common delay-time distribution 

for the deviation between the arrival and failure of all defects (WENBIN, DRAGAN, MICHAEL, 

2010). 

 In the work of Christer and Wang (1995), a model of multi-component system subjected to both 

planned inspection and opportunity inspection at failure is constructed based on the delay-time 

concept. Their work however, considered the case of perfect inspections. The model was tested on 

maintenance data on infusion pumps used in a local hospital. Wenbin, Dragan and Michael (2010) 

proposed a multi-component-based delay-time model which considers several components 

individually but at the same time to form a subsystem. The model offered maintenance managers 

a useful tool for determining the optimal plant inspection intervals. The major contribution was 

found in the fact that they considered a case of more than one failure mode of a component, 

however, the inspection process was assumed to be perfect. Wang and Christer (2003) proposed 3 

algorithms for a multi-component system based on the delay-time concept. The first algorithm was 

developed for obtaining the system replacement time if the defect arrival process is non-

homogenous. The second algorithm determined the non-constant optimal inspection intervals and 

the third algorithm was a numerical algorithm for solving an integral equation arising within the 

model in the case of opportunistic inspection at failures. The task at hand presented a conventional 

multi-decision problem, characterized by a substantial number of decision variables. To address 

this, the authors proposed an algorithmic approach that employed recursive procedures to ascertain 

replacement times, thereby reducing the number of decision variables and simplifying the problem. 

The proposed algorithms demonstrated efficacy in optimizing maintenance performance in multi-

component systems subject to non-homogeneous deterioration processes. The critic of their work 

is inherent in the assumption that defects are independent. It should be noted that failure of a 

component may lead to the failure of another component resident in the same multi-component 

system. They also assumed that both failure and inspection downtimes are negligible compared to 

the life-time of the system. The advantage of deploying DTM in multi-component system is that, 

during inspections, it may be possible to inspect other components of the system and remove 

identified defects as part of the repair (CHRISTER, WANG, 1995; WENBIN, DRAGAN, 

MICHAEL, 2010; WANG, CHRISTER, 2003). 
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It can be seen that from the above referenced works, the main aim of DTM is to serve as a PM 

model that optimizes inspection times. Therefore, it is sufficed to say that DTM is linked with 

inspection policies.  

2.1.3 Condition-based Maintenance 

Condition-based maintenance (CBM) was first introduced by Rio Grande railway company in the 

late 1940s and was initially called predictive maintenance (PRAJAPATI, BECHTEL, GANESAN, 

2012). Several authors have defined the term. CBM was defined by Bengstson (2004) as a 

preventive maintenance based on parameter monitoring and the subsequent actions. This definition 

is in line with what Prajapati, Bechtel and Ganesan (2012) called it. It is also referred to as on-

condition maintenance. According to US air force Prajapati, Bechtel and Ganesan (2012), CBM 

can be defined as a set of maintenance processes and capabilities derived from real-time assessment 

of weapon system condition obtained from embedded sensors and or external test and 

measurements using portable equipment. With regards to this definition, one can see that with the 

emerging technologies such as Radio Frequency Identification (RFID) and sensor systems, it has 

become easy to monitor the performance of equipment in real-time by gathering and analyzing 

data. Also, Michael (2001) defined CBM as a maintenance philosophy that involves the prediction 

of evolving failures and Remaining Useful Life (RUL) to optimally determine when to perform 

maintenance, it can be seen here that he extended the definition of CBM to cover not only the 

engineering field. CBM is defined by Caballe et al. (2015) as an extended version of predictive 

maintenance where automatic triggering alarms are activated before obtaining any breakdown. 

This ascertains the fact that CBM can also be treated as a predictive maintenance since it can be 

deployed for failure prediction (MICHAEL, 2001). Lastly in the definition, Dieulle et al. (2002) 

defined CBM as a maintenance strategy that collects and assesses real-time information, and 

recommends maintenance decisions based on the current condition of the system. 

Some interesting key points can be deduced from the aforementioned definitions; CBM can be seen 

as a tool for predictive/preventive maintenance, CBM is deployed in the presence of sensors 

monitoring devices and according to Shin and Jun (2015), CBM makes a diagnosis of an asset 

status based on wire or wireless monitored data, predicts the assets abnormality, and executes 

suitable maintenance actions such as repair and replacement before serious problem happens. 
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Several works have attempted to buttress the importance of CBM in modern engineering 

maintenance. For example, Shin and Jun (2015) leveraged on the advent of emerging ICT to 

improve the efficiency of asset operations by implementing a CBM approach to make diagnosis of 

the asset status. This predicted the asset’s abnormality, executes maintenance actions, repairs and 

replacement before serious problems happen. From their work, it showed that CBM focuses on the 

prediction of degradation process of the asset, which is based on the assumption that most 

abnormalities do not occur instantaneously (FU et al., 2004). Ana et al. (2018) extended CBM 

approaches by considering machine learning and augmented reality technologies to support 

maintenance technicians during the maintenance interventions by providing a guided intelligent 

decision support articulated by the use of human-machine interaction technologies. Their work 

aligned with industry 4.0 principles (ACHOUCH et al., 2022). Industry 4.0 provides that CBM 

predictive maintenance can be achieved by applying sensor technology in monitoring and they 

must be effective at predicting failures and also provide sufficient warning time for upcoming 

maintenance. 

There have been several models developed for CBM usage. These models range from those that 

can be used in discrete time such as Markov, Harrou, Sun and Madakyaru (2016) or semi-Markov 

decision processes Moura et al. (2008) to continuous time models and lately, models concerning 

data mining, data processing and artificial intelligence (AI). Data mining model includes such 

models as Bayesian models Ly et al. (2009), logical analysis of data Mortada, Yacout and Lakis 

(2011), genetic algorithm and fuzzy models (MORTADA et al., 2012). AI models is inclusive of 

neural networks Ogaji and Singh (2003), deep learning and reinforcement, Thais et al. (2022) 

learning to mention a few. All the above listed models are rarely used in isolation since their 

integration usually provides more advantageous results (LIU, DONG, PENG, 2012). For example, 

the genetic algorithm has been well used in combination with Monte-Carlo simulation for risk 

management associated with strategy selection (MARZIO, ENRICO, LUCA, 2002; CAMCI, 

2009). Another example is found in the work of Moura et al. (2015) where the authors proposed a 

coupling between a risk-based inspection methodology and multi-objective genetic algorithm for 

defining efficient inspection programs. In selecting an appropriate model, the type of model to use 

should be dependent on a proper comprehension of the degradation process of the system 

(QUATRINI et al., 2020). The degradation process describes the progressive deterioration of sub-

components over time, which serves as a crucial input for the development of a reliable Condition-
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Based Maintenance (CBM) algorithm, also known as the intervention model (FRANGOPOL, 

KALLEN, NOORTWIJK, 2004; KALLEN, 2007). As such, an effective CBM policy should 

encompass both a degradation model and an intervention model. Some other examples of CBM 

models are found in the work of Arismendi, Barros and Grall (2021) where they explored the 

application of a piecewise deterministic Markov process to encompass different modelling 

assumptions as non-negligible maintenance delays and inspection-based condition monitoring. 

This model employed a discrete-state stochastic deterioration. It allowed the study of problems in 

which condition monitoring is not continuous but inspection-based and there is an inherent delay 

for performing maintenance actions. Also, Ma et al. (2019) built a CBM based Random fuzzy 

accelerated degradation model and based their assumption on imperfect maintenance. 

The benefits of CBM include amongst others, reduced maintenance and logistics costs, improved 

equipment availability and protection against failure of mission critical equipment. Even with the 

aforementioned advantages enlisted above and in several works by researchers on CBM, some 

challenges of its adoption still exist. Scarf (2007) stated that CBM can be expensive to implement 

and return on investment in its technology are not guaranteed. Also, on the issue of cost, there 

exists the costs associated with integration of an intelligent system with the existing systems as 

well as with the reluctance of change from the human players. CBM has limitation in working in 

an integrated manner for collaboration with other stakeholders (SUN et al., 2012). Even with the 

effectiveness of monitoring historical data, modelling, simulations and failure probabilities to 

predict fault system deterioration and their useful life, certain unexpected situations may arise that 

are hard to predict. Despite the challenges mentioned earlier, Condition-Based Maintenance 

(CBM) continues to exert a significant influence in the present era of Industry 4.0. This is largely 

attributed to its reliance on novel technologies and data-centric methodologies that were previously 

unavailable in the earlier industrial epoch. CBM confers notable benefits over conventional 

maintenance strategies and has gained increasing prominence as enterprises strive to optimize their 

operations in the prevailing context (TEIXEIRA, LOPES, BRAGA, 2020; ZONTA et al., 2020; 

SILVESTRI, 2020; RAHMAN ET AL., 2020). 

  



28 
 

 
 

2.1.4 Opportunity Maintenance 

Opportunity maintenance (OM) is defined as a type of preventive maintenance strategy in which 

maintenance activities are performed whenever an opportunity arises, rather than according to a 

predetermined schedule. OM was introduced by Radner and Jorgenson (1963). It was first applied 

as a concept of dependency of the components as equipment in a system, i.e., maintenance is to be 

performed on a given part at a given time depending on the state of the rest of the system. It is the 

practice of taking an available opportunity to perform necessary maintenance tasks on a system or 

equipment. This type of maintenance often occurs when a system is already scheduled to be offline 

or in a dormant state, allowing maintenance workers to perform necessary tasks on other 

components of the system without causing any disruptions to the main system’s operation 

(BAKHTIARY, ZAKERI, MOHAMMADZADEH, 2021). Opportunistic maintenance is often 

used to minimize downtime and ensure that systems and equipment remain in good working 

condition (ZHANG, YANG, 2021). 

There is a significant amount of literature on opportunistic maintenance and its benefits for 

industries. Many studies have shown that opportunistic maintenance can help reduce downtime 

and improve the overall performance of systems and equipment (XIA et al., 2021; ZHANG, TEEA, 

2019; WANG, MAKIS, ZHAO, 2019; MOHAMED-SALAH, DAOUD, ALI, 1999). One study by 

Ab-Samat and Kamaruddin (2014) found out that opportunistic maintenance can help reduce 

downtime by up to 30% while also improving the overall reliability of systems and equipment. 

That study is in agreement with Sherwin (1999) who concluded in his work that OM is mostly 

useful and easily practiced in continuously run system that have high cost-rate of downtime or 

failure.  Another study by Sarker and Faiz (2016) found out that opportunistic maintenance can 

help industries reduce maintenance costs by up to 40%, while also improving the overall 

performance of systems. Kang and Guedes Soares (2020) proposed an OM policy for offshore wind 

farms. They considered imperfect maintenance and the weather widow effect. The wind turbine is 

viewed as a multi-component system, a failure of one component provides an opportunity to 

implement PM on the other. The most critical component in their work is the gearbox, they found 

out that by performing repairs on two 2 gearboxes together, the maintenance frequency was 

reduced by 15%. 
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In a literature review paper by Ab-Samat and Kamaruddin (2014) they agreed that OM is developed 

based on a combination of age replacement policy and block replacement policy. It should be noted 

that OM is better utilized in a multi-component environment than age replacement policy because 

if age replacement policy is considered in a multi-component setting, each component will suffer 

preventive replacement at different times. This creates a very complex maintenance problem 

making a myriad occasion of maintenance activities needing to be conducted. In the case of block 

replacement policies applied in multi-component environment, the downside is that there is a high 

possibility that newly replaced components will need to be replaced again whenever maintenance 

is due for the block (WANG, 2001). 

With the aforementioned discussions, several advantages of deploying OM in an industry can be 

summarized, such as; it saves setup costs Cui and Li (2006), guarantees the expected performance 

of the system Levrat, Thomas and Lung (2008), it optimizes maintenance activities and decision 

making Laggoune, Chateauneuf and Aissani (2009), and it improves equipment reliability and 

extend its lifetime (ZHOU, XI, LEE, 2009). It has been shown that inspections that are performed 

opportunistically may offer an economic advantage over scheduled maintenance (SCARF et al., 

2009). The principle of OM posits that during maintenance of a failed component, other 

maintenance-critical components with a propensity to fail imminently should also undergo 

inspection or preventive replacement. A key challenge in implementing this principle is the 

identification of the maintenance-critical component, as replacing a good component incurs 

unnecessary expenses on maintenance and spare parts (AB-SAMAT, KAMARUDDIN, 2014). 

This thesis surmounts this challenge by leveraging expert knowledge to pinpoint the critical 

component within the machine system. 

2.1.5 Inspection Policies and Opportunistic Inspection Policies 

Inspection policy has to do with the determination of inspection intervals of an equipment or group 

of equipment. This is one of the key decisions of a maintenance manager (CHRISTER, 1999). It is 

sometimes developed as a periodic inspection, known as inspection per calendar (TANG et al., 

2013). An optimal inspection policy is a sequence of inspection times which minimizes the average 

cost per inspection cycle relative to some cost model (MUNFORD, 1981). For most systems, 

whether single or multi-component, failures are not detected immediately they occur. These are 

noticed in cases where failure is not catastrophic and an inspection is required to reveal the fault 
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(KAIO et al., 1989). Establishing an optimal inspection policy becomes a necessity. The idea is to 

make sure that the system is ready whenever it is required. If too many inspections are executed, 

failure is detected more quickly, but at a high inspection cost. Likewise, if few inspections are 

executed, the interval between the failure and its detection increases and a high cost of failure is 

incurred. The optimal inspection policy therefore minimizes the total expected cost composed of 

cost for inspection and system failure (MUNFORD, 1977; TADIKAMALLA, 1979; 

NAKAGAWA, YASUI, 1980). 

Inspection policy by Barlow, Hunters and Proschant (1963) is the most famous in which a one-unit 

system is considered. The disadvantage of this policy is its complexity and difficulty in 

implementation due to the need for trial and error in determining the initial inspection time, as well 

as dealing with the constraints of failure time. This can make it challenging to execute in practice. 

Because of this, several inspection policies have been proposed (NAKAGAWA, 2005; KAIO et 

al., 1989; NAKAGAWA, MIZUTANI, CHEN, 2010; TRUONG-BA et al., 2021; MIZUTANI, 

ZHAO, NAKAGAWA, 2022). Inspection policies are either; periodic inspection Alaswas and 

Xiang (2017), scheduled inspection Li and Pham (2005), Remaining useful life-based inspection 

Do, Levrat and Lung (2015) and continuous inspection (HAITAO, ELSAYED, LING-YAU, 

2016). The concept of opportunistic inspection policy pertains to a methodical approach that entails 

undertaking collection, investigation, and pre-planning activities to generate a set of maintenance 

tasks that can be implemented when opportunities arise (DAY, GEORGE, 1981). Thus, the 

development of a robust opportunistic inspection policy holds paramount importance, as it enables 

managers to make informed decisions when opportunities arise (CAVALCANTE, LOPES, 2014). 

In this thesis, the major contribution in this regard is to develop an opportunistic inspection policy 

for a standby system, taking as opportunities, the actions in a principal system not assisted by the 

standby system. The work conducted by Cavalcante and Lopes (2014), underscores the 

significance of implementing an opportunistic inspection policy. Specifically, the researchers 

developed an opportunistic maintenance policy to aid in making maintenance decisions regarding 

an emergency system installed in a health facility that provides electricity in the event of primary 

system failure. The policy was designed with the assumption that failures within the emergency 

system are not readily observable and may lead to detrimental outcomes for the health unit. This 

formed the underlying motivation behind their study. Cavalcante, Lopes and Scarf (2018) 

conducted a study that involved modeling the impact of opportunities on a hybrid and replacement 
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policy. The policy in question comprised of two distinct phases, namely, an initial inspection phase 

that involved replacing the system in the event of any detected defects, and a wear-out phase that 

culminated in replacement despite the state (good or defective). The findings of their study 

indicated that the incorporation of opportunities in policy extension led to increased cost-

effectiveness compared to age-based inspection or preventive replacement. Moreover, the study 

underscored the significance of the delay-time concept in modeling opportunity inspection policies. 

Notably, the delay-time concept has been employed successfully over the years in modeling 

opportunistic inspection policies by researchers (BERRADE, SCARF, CAVALCANTE, 2015; 

WANG, CHRISTER, 2003). Using the delay-time, one can take advantage of the window of 

opportunity generated by it. Therefore, it is right to say that the delay-time concept can create a 

window of opportunity that can be utilized to establish an effective inspection policy 

(SINISTERRA et al., 2023). Latest research by Melo et al. (2022) entails the development of a 

maintenance policy featuring a fixed period structure that integrates elements of periodic and 

opportunistic replacement for a remote system. The study's novelty lies in the incorporation of key 

uncertainties such as early, cost-effective replacements, defaulting, and the varying quality of 

maintenance interventions. The research findings reveal that the utilization of opportunities can 

significantly impact the cost-rate of the optimal policy. The researchers also established that 

maintenance planning should remain flexible, particularly when external factors beyond a 

maintenance manager's control impact maintenance effectiveness. Additionally, they demonstrated 

the usefulness of capitalizing on opportunities during lockdown situations, particularly for 

equipment situated in remote locations. The crucial insights derived from the aforementioned 

studies highlight that an adeptly designed opportunistic inspection policy could streamline 

maintenance planning (CAVALCANTE, LOPES, SCARF, 2018). This is due to the fact that 

opportunities for replacements may arise with fewer uncertainties than scheduled or age-based 

replacements, rendering scheduled inspections and preventive replacements less necessary. Even 

if a company has to adopt scheduled preventive actions, opportunities can still be capitalized on in 

the interim (ROMMERT, ERIC, 1991). In general, opportunity inspection policies are deemed 

more pertinent as they enable more efficient resource utilization, resulting in heightened cost-

effectiveness (LI et al., 2020). 
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2.1.6 Preparedness System 

The discussion on OM cannot be exhausted without discussing what a preparedness system is and 

how it can benefit from opportunity maintenance. A preparedness system is a system that is used 

in special situations. Example of preparedness system are: standby, protection, alarm defense and 

etc., Specifically, a standby system is a backup system that is used to provide continuity of function 

in the event of a failure or disruption of the primary system. In a situation when the standby system 

may be in either the good or failed state, the purpose of inspection is to establish if the system 

would operate in the event of a demand for its function (ZHAO, NAKAGAWA, 2015). Therefore, 

OM inspections can be deployed on standby systems so as to increase their reliability. OM policies 

help the manager to make decisions with regards to the standby system in the occurrence of an 

opportunity (CAVALCANTE, LOPES, 2014). Preparedness systems are commonly used in critical 

infrastructures and other applications where reliability is of the utmost importance. Such 

applications are found in military defense systems, medical equipment, protection systems 

(MCCALL, JORGENSON, 1967). In some critical multi-component systems such as; aircrafts, the 

stochastic dependency of components to one another can be used to plan OM according to the 

component’s interactions (AB-SAMAT, KAMARUDDIN, 2014). In general, a preparedness 

system is designed to take over the functions of the primary system at a moment’s notice, ensuring 

the overall system continues to operate smoothly and without interruption. 

There are basically three groups of standby systems in maintenance engineering, they are enlisted 

as: 

a. Hot standby: The hot standby backup system operates continuously and collaboratively 

with the primary system to deliver its functions. As a result, the failure rate of the backup 

system remains equivalent to its operational failure rate (ZHANG, XIE, HORIGOME, 

2006). This configuration compromises the reliability of the standby unit but reduces its 

downtime, ultimately increasing the system's availability. The power industry provides an 

excellent illustration of this, where hot standby systems are deployed to prevent downtime 

in the event of a critical component failure (RIZWAN, KHUANA, TANEJA, 2010). Other 

examples of such systems can be found in audio/visual switches, network printers, network 

servers, computers, and hard drives (MARGARET, 2014; RIZWAN, KHUANA, 

TANEJA, 2010; PATOWARY, PANDA, DEKA, 2019).  
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b. Warm standby: A warm standby system operates with the backup system running at low 

power, enabling rapid deployment if necessary. As an intermediate state, this configuration 

results in a standby component failure rate between that of a cold standby and hot standby 

(ZHANG, XIE, HORIGOME, 2006). It is frequently employed in scenarios where a fast 

switch-over time from the failed component to the standby component is critical, such as 

in surgery with a shadow-less lamp. In such cases, the standby component is maintained in 

a low-charging state with a low and positive failure rate to allow immediate activation once 

the primary component fails (HAZRA, NANDA, 2015). Other examples demonstrating its 

use are found in the works of (JIA et al., 2022; JIA et al, 2017; LEVITIN, XING, LUO, 

2019). 

c. Cold standby: In this scenario, the backup system remains inactive and must be initiated 

manually in the event of a primary system failure or disruption. Consequently, the standby 

unit has a zero-failure rate and is incapable of failing while in standby mode Lin et al. 

(2023) thereby preserving its reliability. However, this configuration incurs longer 

downtime than hot standby since the standby unit must be powered up and brought online 

to a functional state (NI, 2022). As such, it is primarily utilized in settings that prioritize 

energy conservation (ZHANG, ZHANG, FANG, 2020). Other examples exist 

(BEHBOUDI et al., 2021; WANG, XIONG, XIE, 2016; WANG et al., 2018; LEVITIN, 

FINKELSTEIN, DAI, 2020). 

 

The cold standby seems to be the most popular area of research. This is evident because most 

industrial standby systems are usually dormant until called upon to carry out the auxiliary function. 

Works that studied cold standby systems include, in Jia and Wu (2009), they presented the model 

of the expected run cost per unit time for a cold-standby system composed of 2 identical 

components with perfect switching. They allowed the assumption that for cold-standby system, 

there exists a waiting time from the failure of the component to the start of repair, and real repair 

time which is the time between the start to repair and the completion of repair. Lu et al. (2012) 

studied a one-out-of-two cold standby system. The failure of the 2 components is modelled 

according to the delay-time concept. The inspection interval is optimized because the repair shop 

can only accommodate a single spare system at a given time. Qi and Zhou (2019) developed a 

novel preventive maintenance model for a cold standby system subjected to random and 
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deterioration failures. Results showed that PM plays a greater role than mean time to system failure 

in promoting the system availability of a cold standby system. They confirmed that the 

deterioration of a cold standby system can lead to its failure when demand arrives, therefore, it is 

imperative to investigate this. Berrade, Scarf and Cavalcante (2015) considered an inspection and 

preventive replacement policy for a cold standby system.  They considered imperfect inspections 

and a case of false positives and negatives. Their primary contribution was to measure the effect 

of quality of maintenance on the standby system. 

In summary for studies related to cold standby systems, it is noted that cold standby systems 

experience hidden failures. They are subject to false positives and negatives because of their 

redundant nature, and they can deteriorate naturally due to age. Therefore, these systems must 

undergo inspections at regular intervals to ensure their high availability (APOSTOLAKIS, 1977). 

2.1.7 Other works on preparedness systems 

Calvalcante, Scarf and Almeida (2011) considered an inspection policy for a single component 

preparedness system. This component comes from a heterogenous population. A heterogenous 

population allows one to inspect the impact of weak and strong components on inspection policies 

for a preparedness system (SCARF et al., 2009). Because a preparedness system must be available 

on-demand, it should undergo sequence of inspections. They therefore studied a 2-phase inspection 

policy. This policy anticipates a high inspection frequency in early life and low inspection 

frequency in later life. The decision criteria are availability, total cost per time, and maintenance 

cost per time, the decision variables are number of inspections until replacement time (also known 

as the inspection interval) and the time units taken. They deployed the delay-time concept to model 

the 3 component states (good, degraded and failed states). Their innovation in comparison to other 

works is noted in the assumption that failure is not detected as soon as it occurs, rather, the 

component is assumed to be in a dormant, failed state. With this assumption, they were able to 

show that inspection and replacement have different roles for improving system performance. For 

inspection, pure inspection for a component in defective state results in high availability since the 

component may most likely not fail. For replacement, replacement may not be planned because 

when a defective state is observed at inspection, that inspection will anticipate failure. They 

investigated the numerical case on a valve in a natural gas supply network. Results showed a 5% 

cost savings for the 2-phase inspection policy over the single-phase policy. 
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Neelakanteswara and Bhadury (2000) proposed an opportunity maintenance based on the 

classification of opportunities for a multi-equipment system where each of its components and 

subsystems are connected in series. In their work, five equipment (pulverizers) are required for full 

capacity operation. One serves as a standby. If one or more pulverizers is down, the efficiency of 

the system is reduced. The pulverizer has many subsystems connected in series. Data collected 

includes downtime for each of the equipment. The data showed the major equipment responsible 

for incessant shutdown. This agrees with the postulation of Ab-Samat and Kamaruddin (2014) and 

Kang and Guedes Soares (2020) which states that, in order to improve the overall condition of a 

system, efforts should be directed to reduce the frequent failures of the critical subsystem(s). In 

their results, they evaluated various OM policies using simulation modelling and found out that 

their policy performed better than existing OM policies. 

Zhang et al. (2017) proposed an OM for wind turbines considering imperfect maintenance schedule 

that is based on reliability. An interesting aspect in their work is the comparison of maintenance 

strategy with and without the use of opportunity maintenance. The average maintenance cost rate 

was used as the criteria for comparison and it was established that deploying OM performed better. 

Their results demonstrate the impact that various maintenance costs have on the economic benefit 

of OM strategy. However, their work did not take into cognizance the total time spent on 

maintenance for the consideration of the lifetime of the equipment. 

There have been the questions of what thresholds should be used for opportunity maintenance for 

preparedness systems, the popular thresholds are; degradation or risk rate and the operation time 

(DO et al., 2015; LIAO, PAN and XI, 2010; VAN et al., 2013). The delay-time has widely been 

used in literature to model these thresholds. For example, Liu et al. (2021) used delay-time to 

address and estimate the multi-stage deterioration process to determine multi-level maintenance 

actions for multi-component systems in series. Zhang (2019), Scarf, Cavalcante and Lopes (2019), 

Lu et al. (2012) and Yang et al. (2016) all made use of the delay-time concept to model the 

degradation of the equipment in their case study. However, Zhang (2019) improved on existing 

delay-time model that assumes that the normal and defective stages are independent. They 

considered the dependence between the normal and defective stages which is reflected in the fact 

that they share the same external shock process. 

In summary, it can be deduced that the common planning approaches for multi-component systems 

include block, group and OM policies. However, from the preceding analysis, OM policies are 
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better suited for multi-component systems (ZHANG, ZENG, 2015). It is pertinent to state that, the 

industrial benefits of OM far outweigh that of PM and CM in a high-volume, multi-component 

production firm.  In order to predict the impact of OM on system performance, a methodology was 

developed by Colledani, Magnanini and Tolio (2018) that estimated gains that can be generated by 

exploiting OM windows to perform PM tasks during production. Therefore, the analyzed literature 

on opportunistic maintenance suggests that this approach can provide significant benefits for 

organizations, including reduced downtime and improved reliability and performance of systems 

and equipment. 

2.2 MACHINE LEARNING ALGORITHMS 

Predictive maintenance (PdM) has evolved from ordinary visual inspection to automated methods 

using advanced signal processing techniques based on machine learning (ML) (HASHEMIAN, 

2011). Because of the abundance of data and its availability, machine learning approaches are 

viably used in predictive maintenance (PAOLANTI, 2017). Machine learning uses items from 

basic data processing, diagnostics and prognostics for predictive maintenance implementation. ML 

methods have emerged as a promising tool in PdM applications to prevent failures in equipment 

that make up the production lines in the factory floor (CARVALHO et al., 2019). Three approaches 

are distinguished in CBM, data-driven, model-based and hybrid approach. The data-driven 

approach, also called the data mining approach is the ML focus. The idea is to use historical data 

to learn the behaviour of the system. 

ML algorithms can be broadly classified into 2 main groups, supervised and unsupervised learning. 

In supervised learning, the information on the occurrence of failures is present in the modelling 

dataset. Supervised learning requires labelled and output data during the training phase of the ML 

iterations. This training data is often labelled by the data scientist in the preparation phase, before 

being used to train and test the model. Once the model has learned the relationship between the 

input and output data, it can be used to classify new and unseen datasets and predict outcomes. 

Examples of situations where supervised ML are used are in classification and regression problems. 

Unsupervised learning, on the other hand, is the training of models on raw and unlabeled data. It is 

often used to identify patterns and trends in raw datasets, or to cluster similar data into specific 

number of groups. Situation examples include; clustering, association and anomaly detection 
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problems. Although supervised ML models tend to give more accurate predictions, most real-life 

datasets come without labels. 

Carvalho et al. (2019) prepared a comprehensive systematic literature review on ML algorithms 

applied to PdM, showing which are being explored in the field and the performance of the current 

state-of-the-art ML techniques. They found out that the most employed ML algorithm are random 

forest, artificial neural networks (ANN), support vector machines (SVM) and k-means. 

Random forest (RF) is a collection of decision trees, it is a supervised learning algorithm for both 

classification and regression tasks. RF generates decision trees randomly, they avoid overfitting 

better than decision trees because they work with random subsets of features and build smaller 

trees from such subsets (BREIMAN, 2001; BIAU, SCORNET, 2016).  In Prytz et al. (2015), RF 

was used as a classification algorithm, the work developed a generic method for predicting repairs 

to various components of commercial vehicles. Paolanti et al. (2018) describes a RF approach for 

PdM. Data was collected by various sensors; machine PLCs and communication protocols were 

made available to a data analysis tool on the Azure cloud architecture. The idea of the work was to 

predict the different machine states with high accuracy. Other high quality PdM works based on 

the RF algorithm can be found in (DOS SANTOS et al., 2017; KULKARNI et al., 2018). RF has 

shown good performance of maintenance predictions when the number of variables considered is 

larger than the number of samples. It can also reduce variation and increase generalization. The 

demerit is that it is a complex algorithm and it requires more computational time when compared 

to other ML techniques. 

ANN is based on intelligent computational techniques which is inspired by biological neurons 

(BISWAL, SABAREESH, 2015). They have a relatively simple deployment due to several 

processing units comprising of nodes. The intelligence of ANNs comes from the interactions 

between these nodes. ANNs have been applied in the area of predictive control as classification 

models (SHIN, JUN, KIM, 2018; DUER, 2020; KANG, CATAL, TEKINERDOGAN, 2021; 

SAHU, PALEI, 2020). An example is found in Safoklov et al. (2022) that presented a designed 

model of maintenance repair and overhaul of an aircraft with a predictive maintenance unit. ANN 

was deployed as the maintenance tool in the work. The algorithm provided a controlled monitoring 

of aircraft components in order to avoid unscheduled maintenance and repair. In Daniyan et al. 

(2020), an ANN system was designed to train maintenance personnel on how to monitor and 

analyze data from the Internet of Things (IoT) and other sources to predict the state and potential 
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failure of a railcar wheel bearing. Other maintenance works where ANNs have been utilized 

include in prediction of remaining useful life (LIU, LI, WANG, 2021; TIAN, 2012, BEN ALI et 

al., 2015). ANN advantages lie in that it is not based on expert knowledge to make decisions, they 

suffer no degradation even if data is inconsistent and they are easily reusable. Disadvantages 

include the fact that training can be time consuming, they require huge amount of data and are 

usually black box models. 

SVM is widely used for performing classification and regression tasks. It is known to exhibit high 

accuracy and has a high precision in the separation of different classes of data. This leads to the 

accuracy of knowing the best point for separating classes of data (SUSTO, BEGHI, 2016). It is a 

supervised ML algorithm that performs regression analysis and pattern recognition. SVMs are used 

in identifying and diagnosing failures Praveenkumar et al. (2014) and Tuerxun et al. (2021), 

predictive control Li et al. (2014), Kang et al. (2020), Wang et al. (2020) and Gordon et al. (2020) 

and RUL (YAN et al., 2020; LI, FANG, SHI, 2021). Even with the high precision classification 

ability of SVMs, it has some disadvantages. These are; it finds difficulty in choosing a good kernel 

function for its model making the training time grow as the number of samples increases. It is also 

difficult to understand and interpret (a common disadvantage of most ML algorithms). 

In contrast to the above-mentioned ML algorithm used in predictive maintenance, K-means is a 

clustering algorithm that utilizes an unsupervised strategy to determine a set of clusters 

(DHALMAHAPATRA et al., 2019). The aim is to group data in such a way that each group is 

identified by the distance to their reference point. The K symbol represents the number of clusters 

or partitions possible. The K-means is easy to implement, provides good performance and handles 

large data sets (as long as the number of clusters k is small). It also has the advantage of minimizing 

interclass variance and increases the extra class distance. Most application of K-means in PdM is 

in the area of analysis, that is, to identify the characterization of each cluster class. Works in that 

regards include; Yoo et al. (2022), where K-means was used to identify error data in acceleration 

sensor data of a wafer transfer robot in a production firm. Failure mode clustering work 

(CHABANE, ADJERID, MEDDOUR, 2022). Health classification of hydraulic system and 

clustering the failure characteristics for predicting equipment failure (NOVA RIANTAMA et al., 

2020). Challenges inherent in k-means usage involves difficulty in determining the number of 

clusters required. Random seed use poses differentials in final results. The algorithm can also be 

scale sensitive, that is, data normalization will cause changes in the results. 
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The 3 commonest ML methods used for PdM (ANN, SVM, RF) are of supervised learning.  These 

methods come with their limitations. Therefore, research is shifting towards the use of a class of 

ML architecture known as Reinforcement Learning (RL). Though ML supervised learning 

algorithms converge faster than RL, RLs are known to perform critical decision making. Because 

of their capacity to create a simulation of an entire system, it becomes possible for an intelligent 

agent to test new actions or decisions, change course when failures occur, while building on 

successes (MAHMOODZADEH et al., 2020). Reinforcement learning algorithms have been used 

in a wide variety of application such as industrial robotic, business planning, healthcare diagnosis, 

natural language processing and maintenance planning (KOPRINKOVA-HRISTOVA, 2014; 

OROOJENI et al., 2015). These algorithms are useful to solve problems subject to uncertainty 

without specific instructions, determining the best course of actions that should be taken in order 

to optimize the long-term performance of the system. 

2.3 REINFORCEMENT LEARNING ALGORITHMS 

Reinforcement learning (RL) which was derived from neutral stimulus and response is basically a 

branch of machine learning algorithm which has become popular because it addresses the problem 

of sequential decision making (SUTTON, BARTO, 2018; FRANÇOIS-LAVET et al., 2018). It is 

an area of machine learning that explains how an agent might act in an environment in order to 

maximize some given reward. The agent either obtains a reward or gets a punishment from the 

action, as the case may be. Reinforcement learning algorithms study the behavior of subjects in 

such environments and learn to optimize that behavior, and they usually train their policy through 

sampling transitions in the state and action space with either experiments or simulations (HUANG, 

CHANG, ARINEZ, 2020). It is based on the reward/punishment system of trial-and-error learning 

founded on animal psychology (NIAN, LIU, HAUNG, 2020). Actions resulting in good outcomes 

are likely to be repeated, while actions with bad outcomes are muted. 

 

Reinforcement learning methods are generally classified into how the agent behaves in the 

environment. There are 3 basic classifications: 

Value-based: The agent learns the state or state-action value. It acts by choosing the best action in 

the state. 
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Policy-based: agent learns directly the stochastic policy function that maps state to action. It acts 

by sampling policy. 

Actor-critic: This is a hybrid of both value and policy-based methods. An ‘actor’ updates the policy 

distribution in the direction suggested by the critic and the ‘critic’ estimates the value function.  

The classification of RL methods is also according to the necessity of a model: 

Model-based: model-based methods learn the model of the environment, and then the agent plans 

using the model. The models need to be updated often. 

Model-free: The environment’s model is not built. The agent is allowed to choose an optimal way 

to behave according to an optimal policy or its optimal value-function. 

Figure 2 shows a reinforcement learning taxonomy that shows the interconnection of these 

classifications. 

 

Figure 2 - Reinforcement Learning Taxonomy 

 
Source: Odonkor and Lewis (2018)  

2.3.1  Elements of Reinforcement Learning 

2.3.1.1. States 

The state 𝑆𝑡 is defined in order to formulate the maintenance problem as a Markov Decision Process 

(MDP). All RL problems are needed to be modelled as an MDP (SUTTON, BARTO, 2018). For 

example, in a pump case, the state 𝑆𝑡 assembles all the pump-level and system-level information 

that are essential to make maintenance decisions (HUANG, CHANG, ARINEZ, 2020).  This is 
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represented as a vector with multiple entries that contain all information relevant to the decision 

such as, but not limited to: performance features, pump inventory (max capacity, feeding, 

receiving), preventive maintenance task frequency for each pump, task duration etc. 

For example, a system that is measured by its performance variables such as; vibration, 𝑉𝑡 , 

temperature, 𝑇𝑡   and pressure 𝑃𝑡   would have a state matrix definition as: 

𝑆𝑡=  

𝑉1 𝑇1 𝑃1

𝑉2 𝑇2 𝑃2

𝑉𝑡 𝑇𝑡 𝑃𝑡

 

The kind of system state is determined by the type of conditions the equipment is being subjected 

to. For example, in a pump with deteriorating quality states, the state could be grouped into 0 for 

operating, 1 for deteriorating and 2 for failed state (WANG et al., 2014). So, the matrix is shown 

to the algorithm as a combination of discrete state variables. 

2.3.1.2. Actions 

The type of environment presented to an agent will determine the set of actions on which the agent 

will choose from (SUTTON, BARTO, 2018). Based on state 𝑆𝑡 at time step 𝑡, an action 𝐴𝑡 would 

be selected according to some rules and implemented in the environment. The actions in the context 

of preventive maintenance involves decisions to make according to the followed policy. For 

example, in a typical order dispatching industry, the related actions could be which order to process 

next, which machine shall the order be assigned to, chosen by learning agents (STRICKER et al., 

2018). 

The action 𝑎𝑡 is a vector consisting of 𝑚 binary variables indicating the type of maintenance action 

to be taken on the pump in Equation (2.1). 

𝑎𝑡 = [𝑎1(𝑡), 𝑎2(𝑡) … . . 𝑎𝑚(𝑡)]                   (2.1) 

Where 𝑎𝑖(𝑡) 𝑐𝑜𝑢𝑙𝑑 𝑏𝑒: {
0,     𝐿𝑒𝑎𝑣𝑒 𝑝𝑢𝑚𝑝 𝑎𝑠 𝑖𝑡 𝑖𝑠  
1, 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 

 

Every time the state 𝑆𝑡 is visited, the action 𝑎𝑡 is selected among all available actions according to 

the 𝜖-greedy policy 𝜋. the learning agent selects exploitative actions (i.e., actions with the largest 

value, maximizing the expected future rewards) with probability 1- 𝜖, or exploratory actions, 

randomly sampled from the other feasible actions, with probability 𝜖 (ROCCHETTA et al., 2019). 

One thing to note in the operation of pumps is that the system spends most of the time in states of 

normal operation (FRANK, MANNOR, PRECUP, 2008), in order to reduce this possibility, it is 
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suggested that the agent’s exploration and interaction with the environment should be divided into 

episodes of fixed length (ROCCHETTA et al., 2019). In RL generally, PM actions are taken less 

frequently with a tendency to keep operating the equipment (ROCCHETTA et al., 2019). 

2.3.1.3. Agent 

The agent of an RL learns what action to take for each situation it encounters in order to maximize 

a cumulative reward, which responds to the agent’s objective (BARDE, YACOUT, SHIN, 2019). 

Many real-world applications require several agents, which makes learning more difficult, each 

agent sees a non-stationary environment and also reacts to other agents, increase in the number of 

agents causes an increase in the curse of dimensionality (VAZQUEZ, NAGY, 2019). The 

interaction of the components of an equipment leads to a large state space which becomes 

intractable with traditional based planning PM methods (HUANG, CHANG, ARINEZ, 2020). 

When failures are independent among components of an equipment, a single agent is needed. A 

multi agent RL algorithm is deployed where failures of the components are dependent. Multi-agent 

systems can perform better than a single agent or multiple agents sharing single knowledge base 

(BARTO, CRITES, 1996). A manufacturing control system using RL architecture consists of 

‘resource agents’ for the pumps, ‘part agents’ for the tanks containing oil and an ‘observer agent’ 

to control the process- this is a multi-agent case example (AISSANI, BELDJILALI, 

TRENTESAUX, 2009). 

2.3.1.4. Reward Function 

A reward function defines the goals in a RL problem. It maps perceived states or (state-action pair) 

of the environment to a single number, indicating the intrinsic desirability of the state 

(ABDULHAI, KATTAN, 2003). The reward signal or function of the agent is aligned to achieve 

the system’s objectives (STRIKER et al., 2018). A typical example of a reward function as it relates 

to an air-conditioning system could be determined by the viability of thermal comfort which can 

be mathematically estimated from the occupants, failing to meet the set threshold would lead to a 

negative reward. Rewards are being set by rules, in Hajgato, Paal and Gyires-Toth (2020), the 

reward r is given to an agent if it gets closer to the reference solution on a monotonous trajectory. 

They made the reward function depend upon the state value and some other parameters of the 

environment. Reaching a terminal state involves allowing the agent to run until a fixed number of 
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steps or the environment keeps track of the number of steps and this is terminated when an episode 

ends (HAJGATO, PAAL, GYIRES-TOTH, 2020). There is no restriction on the definition of a 

reward function but a well-suited reward function will help the agent converge faster to an optimal 

solution (SUTTON, BARTO, 2017). 

In a simple MDP, no rewards are assigned to most intermediate states except to the goal state 

whereas in complex MDP, which is composed of multiple sub-modules, the reward function 

combines several reward sub-functions that evaluate the different sub-tasks. 

The general framework for a reward function which reflects the goodness of the action 𝑎𝑡 in state 

𝑆𝑡  is in Equation 2.2 

𝐺𝑡 =  𝑟𝑡 + ∑ 𝛾𝑘𝑟𝑡+𝑘            ∞
𝑘=1         (2.2) 

Where, 𝛾 is a discount factor which is used to make a trade-off between immediate and future 

rewards. 

The reward for maintenance problems is negative because we seek to maximize the accumulated 

reward and equivalently the overall maintenance cost can be minimized. 

In discounting, immediate rewards contribute more to the sum, i.e. A dollar today is worth more 

than a dollar in a year’s time.  

𝛾 = 0, agent only cares about immediate reward 

𝛾 = 1, agent takes future rewards more strongly. 

2.3.1.5. Markov Decision Process  

The Markov property states that the future is independent on the past given the present. MDPs are 

a way that combines ML methods with dynamic programming, it sums up the basic framework of 

an RL learning process. 

A Markov Decision Process is a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) 

 𝑆 = finite set of states 

 𝐴 = finite set of actions 

 𝑃 = state probability matrix 

𝑅 = reward function 𝑅𝑠
𝑎 = ∈ [ 𝑅𝑡+1 ∣  𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] 

𝛾 = discount factor, 𝛾 ∈ (0,1) 

Maintenance modeling and Markov decision chains have a large joint history. For both areas the 

main research started in the fifties (DEKKER, NICOLAI, KALLENBERG, 2014). Maintenance 
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problems have been among the first applications of Markov decision chains, as the model both 

allows a modeling of the deterioration as well as the determination of the structure of optimal 

policies (SASIENI, 1956). 

MDP is particularly a common modelling method for maintenance problem in complex systems 

because maintenance is a sequential decision-making problem with multi-dimensional states and 

actions (HUANG, CHANG, ARINEZ, 2020). 

2.3.1.6 Bellman Equations 

The bellman equation is a central element of RL algorithms that is required to calculate the state-

value or state-action function. According to this equation, long-term reward in a given action is 

equal to the reward from the current action combined with the expected reward from the future 

actions taken at the next step. Its idea is to find the optimal solution of a complex problem by 

breaking it down to simpler, recursive subproblems and finding their optimal solutions. There are 

2 cases of using the Bellman equations. 

a) Value Function  

Value-function also known as the state-value function 𝑉(𝑠) measures how good it is to be in each 

state according to the return 𝐺 when following a policy 𝜋.This is the expected total discounted 

reward that is obtainable from the state as given in Equation (2.3): 

𝑉𝜋(𝑠) =  𝐸𝜋[𝐺𝑡|𝑆 =  𝑆𝑡] =  𝐸𝜋[∑ 𝛾𝑗𝑟𝑡+𝑗+1|𝑆 =  𝑆𝑡]𝑇
𝑗=0      (2.3) 

This describes the expected value of the total return 𝐺 ,at time step 𝑡 starting from state 𝑆 at time 𝑡 

and then following policy 𝜋 . The expectation 𝐸[. ] shows that the environment transition function 

might act in a stochastic way.  

Hence the Bellman equation for the state-value function is given as Equation (2.4): 

𝑉𝜋(𝑠) =  ∑ 𝜋(𝑎\𝑠). ∑ 𝑃𝑠𝑠′
𝑎 (𝑟(𝑠, 𝑎) +  𝛾𝑉𝜋(𝑠′))𝑠′𝑎       (2.4) 

Where, 𝑃𝑠𝑠′
𝑎   means the probability of taking an action 𝑎 , in state 𝑠 and ending up in state 𝑠′ with 

reward 𝑟 from the previous state 𝑠. 

The equation (2.4) shows how to compute the value of a state 𝑠 following a policy 𝜋. It recursively 

breaks down the value computation into an immediate expected reward from the next state, 𝑟(𝑠, 𝑎), 

plus the value of the successor state 𝑉𝜋(𝑠′), with the discount factor 𝛾. This is also useful in a 

stochastic environment. 
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b. State-action function 

The state-action function defines a value for the state-action pair, which is called the action-value 

function or the Q-function. It defines the value of taking action 𝑎 in state 𝑠 under a policy 𝜋, 

denoted by 𝑄𝜋(𝑠, 𝑎), as the expected return 𝐺 starting from 𝑠, taking the action 𝑎, and thereafter 

following policy 𝜋. 

This is written as in Equation (2.5): 

𝑄𝜋(𝑠, 𝑎) =  𝐸𝜋[𝐺𝑡|𝑆𝑡 =  𝑆, 𝐴𝑡 = 𝑎] =  𝐸𝜋[∑ 𝛾𝑗𝑟𝑡+𝑗+1|𝑆𝑡 =  𝑆|𝐴𝑡 = 𝑎 ]𝑇
𝑗=0   (2.5) 

The Bellman equation for the action-value function is as Equation (2.6): 

𝑄𝜋(𝑠, 𝑎) =  ∑ 𝑃𝑠𝑠′
𝑎 (𝑟(𝑠, 𝑎)𝑠′ + 𝛾 ∑ 𝜋(𝑎′\𝑠′).𝑎′  𝑄𝜋(𝑠′, 𝑎′))     (2.6) 

The equation 6 shows how to find recursively the value of the state-action pair following a policy 

𝜋. 

It is shown in Sutton and Barto (2012) that the state-value function 𝑉(𝑠′) is equivalent to the sum 

of the action-value functions 𝑄(𝑠′ , 𝑎′)  of all outgoing actions 𝑎′ multiplied by the policy 

probability of selecting each action, 𝜋(𝑎′\𝑠′) .This is exhibited in Equation (2.7): 

𝑉𝜋(𝑠′) =  ∑ 𝜋(𝑎′\𝑠′).𝑎  𝑄𝜋(𝑠′, 𝑎′)        (2.7) 

Substituting equation 7 in the right-hand side of the Bellman equation 2.6, we have, Equation (2.8): 

𝑄𝜋(𝑠, 𝑎) =  ∑ 𝑃𝑠𝑠′
𝑎 (𝑟(𝑠, 𝑎)𝑠′ +  𝛾𝑉𝜋(𝑠′))       (2.8) 

c. Optimal Policy  

The optimal policy is the policy that maximizes the total cumulative reward. This is the goal of an 

RL agent. The optimal value function is the one which yields maximum value compared to all other 

value function following using other policies.  

The optimal state-value function is mathematically expressed as Equation (2.9): 

𝑉∗(𝑠) =  max
𝜋

𝑉𝜋(𝑠)                 (2.9) 

 

With the same analogy, the optimal state-action value function indicates the maximum reward one 

can get if in state 𝑠 and taking action 𝑎 from there onwards. See Equation (2.10): 

𝑄∗(𝑠, 𝑎) =  max
𝜋

𝑄𝜋(𝑠, 𝑎)                 (2.10) 
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It is possible to define 𝑉(𝑠) through 𝑄(𝑠, 𝑎) so that the value of some state equals the value of the 

maximum action one can execute from this state, i.e., 

𝑉(𝑠) =  max
𝑎

𝑄(𝑠, 𝑎)                 (2.11) 

And,  𝑉∗(𝑠) =  max
𝑎

𝑄∗(𝑠, 𝑎)                (2.12) 

Armed with this knowledge of optimality, equations 2.4 and 2.6 can be re-written as Bellman 

equations of optimality for the state-value function and state-action function as shown in Equations 

(2.13) and (2.14) respectively. 

𝑉∗(𝑠) =  max
𝑎

∑ 𝑃𝑠𝑠′
𝑎 (𝑟(𝑠, 𝑎) +  𝛾𝑉∗(𝑠′))𝑠′        (2.13) 

Equation 2.13 proves that the optimal state-value function in a state 𝑠 is equal to the action 𝑎, which 

gives the maximum possible expected immediate reward, plus the discounted long-term rewards 

for the next state 𝑠′. 

𝑄∗(𝑠, 𝑎) =  ∑ 𝑃𝑠𝑠′
𝑎 (𝑟(𝑠, 𝑎)𝑠′ + 𝛾 max

𝑎
𝑄∗(𝑠′, 𝑎′))      (2.14) 

Equation 2.14 proves that the optimal state-action value function for selecting an action 𝑎 in state 

𝑠 gives the reward in the previous state plus the discounted maximum Q-function of selecting action 

in the succeeding state-action pairs.  

The solutions to the above equations (2.13 and 2.14) are the motivation for solving the RL MDP 

problem. 

2.3.1.7 Exploration and Exploitation 

In an RL environment, the decision for the agent to exploit an action 𝑎 in state 𝑠 enables making 

the best decision given the current information. However, by always making that same decision in 

the current state may lead to neglecting other rewards possible in unexplored states. Exploration is 

the process of gathering more information from other states. A very specific challenge for RL is 

the trade off between these two processes (exploration and exploitation) (WUEST et al., 2016). 

In other to solve the above challenge, several methods have been proposed, amongst them are 

random exploration and information state space. 

Random exploration is a situation where the agent explores random actions. Notable is the greedy 

method. 
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Information state space is where one considers the agent’s information as part of the state and look-

ahead to see how information helps in maximizing reward. This is the most theoretically correct 

method but it is not being explored in literature due to its computational expense. 

In terms of the greedy method, there are 3 techniques: 

a. Strictly greedy: the strictly greedy algorithm selects actions with the highest value, i.e., 

𝐴𝑡 =  argmax
𝑎 ∈𝐴

𝑄𝑡(𝑎). It has the disadvantage of locking itself to suboptimal action forever. 

It also has a linear total regret. 

 

b.  Epsilon greedy (𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦): The epsilon greedy method selects actions according to the 

following probabilities: 

 

{
𝐴𝑡 =  argmax

𝑎 ∈𝐴
𝑄𝑡(𝑎)       1 − 𝜀

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛        𝜀
 

 

The  𝜀 -greedy explores too much because even when one action seems to be optimal, the method 

keeps allocating a fixed percentage of the time for exploration. Thus, missing opportunities and 

increasing total regret. 

c. Decaying  𝜀 -greedy: for the decaying 𝜀 -greedy, it picks a decay schedule for 

𝜀1, 𝜀2, 𝜀3 … . 𝜀𝑛. 

This method has logarithmic asymptotic total regret which gives a much better result than the two 

aforementioned. The major challenge is being able to perform the right decaying processes by 

choosing the right parameters. 

2.4 REINFORCEMENT LEARNING APPLICATIONS ON PUMPS 

In the literature, there are several strategies based on artificial intelligence methods for improving 

pump’s availability. For instance, the availability of a pump can be improved by forecasting the 

remaining useful life (RUL) using machine learning techniques (TSE, CHOLETTE, TSE, 2019; 

GUO et al., 2020). When pump maintenance procedures are optimized, they lead to lower 

maintenance cost which can also increase the availability of pumps (KIMERA, NANGOLO, 2020; 



48 
 

 
 

ADAZEH et al., 2013).  One of the objectives of the reinforcement learning work done in this 

thesis is aimed at lowering maintenance cost. 

However, most of the reinforcement learning applications on pumps in the literature are centered 

on developing a control system Urieli and Stone (2013) and Ruelens et al. (2015), lowering energy 

consumption Vázquez-Canteli, Kämpf and Nagy (2017), Candelieri, Perego, and Archetti (2019), 

YongXiu et al. (2021), Jiahui et al (2021) and Huang et al. (2021), developing optimal operational 

schedules Correa-Jullian, López Droguett, and Cardemil (2020)  and Donâncio,  Vercouter, and 

Roclawski, (2022), and improving demand response (VAZQUEZ, NAGY, 2019;  PATYN, 

RUELENS,  DECONINCK, 2018).  In the aforementioned works, the heat pumps or Heat, 

Ventilation and Air conditioning (HVAC) systems. To the best of the author’s knowledge, none 

was based on centrifugal pumps. 

2.4.1 Reinforcement Learning Algorithms on Pumps 

The RL algorithms applied to pumps as reviewed in the literature (years 2013-2022) are shown in 

Table 1 

Table 1 - RL algorithms applied to Pumps 

Reinforcement learning method  References 
Q-learning (OROOJENI et al., 2015; YANG et al., 

2015; ZHU, ELBEL, 2018; QIU et al., 

2020; ABE, OH-HARA, UKITA, 2022; 

WU et al. 2022)   

Proximal Policy Optimization (PPO) (FILIPE et al., 2019; SHAO et al., 2020; 

JIAHUI et al., 2021; GHANE et al., 2021; 

SEO et al., 2021; DING et al., 2022) 

Fitted Q-iteration (FQI) (RUELENS et al., 2015; RUELENS et al., 

2017; VÁZQUEZ-CANTELI, KÄMPF, 

NAGY, 2017; PEIRELINCK, RUELENS, 
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DECNONINCK, 2018; MBUWIR et al., 

2020; SOARES et al., 2020).    

Deep Deterministic Policy Gradient (DDPG) (LIU et al. 2019; CHRISTENSEN, 

ERNEWEIN, PINSON, 2020; SALIBA et 

al., 2020; WANG et al., 2020; LI, YU, 

2021a; LI, YU ,2021b) 

Deep Q-networks (DQN) (WU et al., 2018; WANG, XUAN, 2021; 

MULLAPUDI et al., 2020; AHN, PARK, 

2020; SEO et al., 2021; FU et al., 2022; 

DANIEL, MARTIN, 2022; CHO, PARK, 

2022) 

Double Deep Q-Networks (HUANG et al., 2021; AMIRREZA, 

FRANCOIS, DOLAANA, 2021).  

Soft Actor-critic (SAC) (VAZQUEZ-CANTELI, HENZE, NAGY, 

2020; PINTO, DELTETTO, CAPOZZOLI, 

2021; ANDERSON, STEWARD, 2021)  

Integral reinforcement learning (IRL)  (JINGREN, QINGFENG, TAP, 2019) 

Dueling Deep Q-networks  (HAJGATÓ, PAÁL, GYIRES-TÓTH, 

2020) 

Parallel learning  (FU et al., 2022) 

Transfer learning (PAULO et al., 2021) 

Behavioral cloning (LEE, ZHANG, 2021) 
Source: This Research (2023) 
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As seen in table 1, the Deep Q-Networks (DQNs) have been most explored as RL application to 

pumps. It is more powerful than the Q-learning because it uses a neural network to perform q-value 

function approximation (SUTTON, BARTO, 2012).  Because of this reason, the author of this 

thesis used the DQN in his work described in chapter 3. 

2.5 DEGRADATION PROCESSES 

An effective maintenance policy requires an appropriate model that can replicate the degradation 

of a system and thereby provide a better maintenance prediction (MITRA et al., 2022). It is 

therefore necessary to study the degradation process of such system. The author limits the literature 

review to degradation processes of centrifugal pumps. 

Several models have been deployed to model a pump’s degradation in literature. Such models 

include, the gamma process Duan, Li and Liu (2020) and Omar et al. (2018), the wiener process 

Omar et al. (2018) and the variance gamma (VG) process (SALEM, FOULADIRAD, DELOUX, 

2021a; MITRA et al., 2022). These models are all stochastic because they are capable of integrating 

the temporal uncertainty associated to the evolution of degradation.  The above listed models will 

be discussed in this review. 

2.5.1 The Gamma Process 

Gamma process is a stochastic process with an independent non-negative gamma distribution 

increment with identical scale parameter monotonically increasing over time in one direction which 

is suitable to model gradual damage such as wear, fatigue, corrosion and erosion (ZHANG, TEEA, 

2019). 

It is defined as a time-independent stochastic process, {𝑋(𝑡), 𝑡 ≥ 0}  where, 𝑋(𝑡)  is a random 

quantity for all 𝑡 ≥ 0. 

According to Edirisinghe, Setunge, and Zhang, (2013), the  gamma process consists of these three 

main conditions ? :  

a. 𝑋(𝑡) = 0 with probability of 1 

b. 𝑋(𝑡)  has independent increments 

c. 𝑋(𝑡) − 𝑋(𝑠)~ 𝐺𝑎(𝑉(𝑡 − 𝑠), 𝑢) for all 𝑡 > 𝑠 ≥ 0. 

The probability distribution function in Equation (2.15) 
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𝐺𝑎(𝑋\𝑉, 𝑢) =  
𝑢𝑉

𝛤(𝑉)
𝑋𝑉−1𝑒−𝑢𝑋𝐼(0,∞)(𝑥)       (2.15) 

Where, 𝑉 is the shape parameter, 𝑢 is the scale parameter, and 𝐼(0,∞)(𝑥) = 1  for 𝑋 ∈ (0, ∞). 

𝐼(0,∞)(𝑥) =  {
1    𝑥 ∈ (0, ∞)
0    𝑥 ∈ (0, ∞)

 

The complete gamma function for 𝛤(𝑉) for 𝑉 ≥ 0  is defined as in Equation (2.16) 

𝛤(𝑉) =  ∫ 𝑋𝑉−1𝑒−𝑥𝑑𝑥
∞

0
         (2.16) 

Some studies that have considered the gamma process for modelling the degradation process in 

pumps include; Wang, Scarf and Smith (2000) who modelled the failure rate of water pumps at a 

large soft drinks manufacturing plant by a non-stationary gamma process. In Nabila et al. (2019), 

it was determined that the degradation path of a motor pump follows a gamma process model with 

covariates. Therefore, they introduced a covariate parameter in the degradation model of the pump 

in order to predict maintenance action and improve the Remaining Useful Life (RUL) of the motor 

pump. In Duan, Li and Liu (2020), a CBM policy with stochastic maintenance quality was proposed 

for ship pumps by characterizing the degradation of the pumps using a non-homogeneous gamma 

process.  

The gamma process is a good candidate to model a monotonic trend degradation in the presence of 

tractable mathematical computation (SALEM, FOULADIRAD, DELOUX, 2021a; MITRA et al., 

2022). However, degradation of a centrifugal pump is complex and follows a non-monotonic 

behaviour. Hence, researchers sought better methods to model the degradation of these complex 

behaviours.  

2.5.2 The Wiener Process 

The wiener process is a real-valued continuous-time stochastic process. It is a constant random 

process keeping the variance per time a constant. It is also referred to as a Brownian process.  

For a wiener process, suppose {𝑋(𝑡)/ 𝑡 ≥ 0}  is a Wiener stochastic degradation process, which is 

expressed in Equation (2.17) 

𝑋(𝑡) =  𝑋0 +  𝜇𝑡 +  𝜎𝐵(𝑡)         (2.17) 

Where, 𝑋0 is the initial degradation, 𝜇 and 𝜎 represent the drift and diffusion coefficient 

respectively. 𝐵(𝑡) is the standard Brownian motion, which is used to describe the uncertainty of 

degradation on the time axis (WANG, MA, ZHAO, 2019). 
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The degradation increments ∆𝑋(𝑡) of the wiener process are independent and identically 

distributed, following a normal distribution, written as Equation (2.18) (LI et al., 2022). 

∆𝑋(𝑡) = 𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡)~ 𝑁(𝜇∆𝑡,  𝜎2∆𝑡)       (2.18) 

The probability distribution function of ∆𝑋(𝑡) is shown in Equation (2.19) and its density function 

𝑓(∆𝑥) = 𝑓(𝑢) of ∆𝑋(𝑡)  is shown in Equation (2.20) 

𝑃{∆𝑋(𝑡) < 𝑥} = 𝑃(𝜇 < 𝑥) =  
1

√2𝜋𝜎2∆𝑡
∫ exp (−

(𝜇−𝜇∆𝑡)2

2𝜎2∆𝑡
)𝑑𝑢

𝑥

−∞
    (2.19) 

𝑓(𝑢) =  
1

√2𝜋𝜎2∆𝑡
 exp (−

(𝜇−𝜇∆𝑡)2

2𝜎2∆𝑡
)        (2.20) 

 

Some works on application of the wiener process are found in Li et al., (2019) where a random 

effect wiener process was developed to model the de-noised degradation data of airborne fuel pump 

in order to predict its RUL. Omar et al. (2018) modelled a non-monotonic feature of the degradation 

process for a motor pump using the wiener process. An aviation hydraulic axial pump degradation 

process was modelled using the wiener process in order to predict its RUL (WANG et al., 2016). 

The wiener process is noted to account for random and uncertain characteristics of the wear 

process. 

Though a wiener process can model a non-monotonic degradation process, the degradation path of 

a centrifugal pump consists of high frequency deterioration followed by phase of where the 

deterioration intensity is comparably low which results in a skewed or large tail increment 

deterioration distribution that a wiener process cannot handle. Another disadvantage of using a 

wiener process is that its randomness moves in a too uniform way over time (RALF, ELKE, 

GERALD, 2010). Because of the above reasons, the variance gamma process becomes a preferable 

option to model the deterioration of a centrifugal pump additionally by the fact that it is non-

monotonic, it accounts for a skewed behaviour and its increments are independent (MITRA et al., 

2022). This is discussed next. 

2.5.3 The variance gamma process 

The Variance Gamma (VG) is a stochastic process, also known as a Laplace motion determined by 

a random time change. The characteristic features include: 

a. It has finite moments that distinguishes it from many levy processes. 

b. It is a pure jump process 
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c. The increments are independent and they follow a VG distribution. 

For history of the evolution of the variance gamma process, please refer to Seneta and Madan 

(1990). 

A VG process can be defined a Levy process (continuous-time analogue of a random walk) which 

can be written as a Brownian motion 𝑤(𝑡) with drift 𝜃𝑡 subjected to a random time change that 

follows a gamma process ᴦ(𝑡;  𝜇, 𝑣) in Equation (2.21) 

This is written as 𝑋𝑉𝐺(𝑡;  𝜎, 𝑣, 𝜃) ≔  𝜃ᴦ(𝑡;  𝜇, 𝑣) +  𝜎𝑤ᴦ(𝑡;  𝜇, 𝑣)        (2.21) 

  

Where,  𝜎 defines the volatility and 𝜃 defines the drift.  

𝜇 and 𝑣 are defined as the mean and variance of the gamma process with 𝜇2 𝑣⁄  as the shape 

parameter and  𝜇  𝑣⁄  as the scale parameter with 𝜇 > 0 and 𝑣 > 0. 

As can be seen from Equation 2.21, there are four parameters involved in the transition probability. 

The volatility of the time changes process and the drift parameter permit the control of the Kurtosis 

and skewness (MITRA et al., 2022).   

The characteristic function of the VG is given by Equation (2.22) 

ɸ𝑋(𝑢; 𝑡)= (
1

1−𝑖𝜃𝑢𝑣+(𝜎2𝑣 2)𝑢2⁄
)𝑡/𝑣               (2.22) 

The VG can be represented in several ways (RALF, ELKE, GERALD, 2010).  Two of such ways 

are by subordination and by differences of two gamma processes. The presentation of the later 

proves an advantage of a VG being used as a degradation model of a centrifugal pump because the 

first part of the model presents the increase in degradation and the second part presents the 

decreases (MITRA et al., 2022).    

Some popular works on centrifugal pump using the VG process includes works by Salem, 

Fouladirad, Deloux, (2021a) where the non-monotonic degradation of a centrifugal pump system 

in the dynamic environment was considered and modelled using the VG stochastic process. Salem, 

Fouladirad, Deloux, (2021b) by the same authors modelled the degradation of a water tank 

centrifugal pump using the VG process. Mitra et al. (2022) used the VG process to model the 

degradation of a centrifugal pump by considering the real data of its rate of leakage.  
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2.6 FINAL REMARKS ON THE CHAPTER 

This chapter provides a comprehensive overview of various maintenance policies and the existing 

literature on this subject. The delay-time model is well explained, and different authors who have 

contributed to this area are cited. The chapter discusses the major challenge of designing 

appropriate models that optimize inspection intervals, and it establishes the link between the delay-

time and inspection policy. 

Opportunistic maintenance is also explained in detail, with evidence from the literature showing 

that it is better suited for a multi-component environment than age-based or block replacement 

policies. However, the challenge of finding the best combination of corrective maintenance (CM) 

and preventive maintenance (PM) activities that optimize the total opportunistic maintenance (OM) 

cost is presented as a research opportunity. The importance of deploying an OM policy in a standby 

system is also discussed using relevant literature. 

The chapter also explores machine learning algorithms, particularly the branch of reinforcement 

learning, and how this field can be adopted to improve equipment maintenance, using a pump as a 

case study. 

Finally, various degradation processes used to model equipment failure processes in the literature 

are discussed. Special attention is given to the variance gamma degradation process model, which 

is currently considered the best option for modeling a pump's degradation process due to the non-

monotonic nature of its behavior. 
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3 APPLICATION OF REINFORCEMENT LEARNING FOR OPTIMAL CONDITION 

BASED MAINTENANCE POLICY IN A CENTRIFUGAL PUMP 

In this chapter, a condition-based maintenance reinforcement learning approach was proposed for 

centrifugal pumps used in the production of iron ore concentrates. These pumps play a crucial role 

in the transportation of slurries from one point of production to another but they are prone to 

incessant stoppages that halt the production process. The proposed framework recommends actions 

to be taken based on its temperature, pressure, and vibration performance features. A variance 

gamma process degradation model was developed to simulate the degradation process of the pump. 

The recommended actions aim to minimize maintenance costs over the long-term. The model was 

compared to a corrective maintenance policy and results indicated that it significantly 

outperformed the corrective policy in terms of average maintenance costs. A sensitivity analysis 

was carried out to assess the resilience of the trained reinforcement learning agent. The analysis 

demonstrated the agent's effectiveness by revealing that a pump with slower degradation would 

result in lower maintenance costs and fewer stoppages during a designated period. The results of 

this study demonstrate the potential of the proposed approach for improving maintenance strategies 

of centrifugal pumps used in the iron ore industry. 

Following is a detailed description of the study area and the process unit of an iron ore mining 

company in Nigeria that lays the foundation for the works in this chapter and chapter 4. 

3.1 STUDY AREA OF NATIONAL IRON ORE MINING COMPANY 

The study area is an Iron ore producing industry located in Nigeria. The major focus of the research 

in this industry is at the beneficiation plant. Beneficiation is the process of improving the quality 

of an iron ore deposit from a lower grade (typically less than 36 per cent iron) to the 63-68 per cent 

iron concentration required by steel companies. 

The Beneficiation line comprises of Reclaimer, Repartition bins, grinding mills wet screening 

plant, Beneficiation plant and its annex building, thickener, concentrate storage and loading station. 

The focus is in the beneficiation plant, and specifically in the filtration unit (see Figure 3).  

Centrifugal pumps are one of the world's most commonly used devices in a process plant (SAM, 

1996). Apart from this, they also account for about 20% of the world’s total energy consumption 

(ARUN SHANKAR et al., 2016). Ultimately, in the plant we studied, these pumps make up about 
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40% of the total equipment involved in the production process. The degradation of these pumps is 

linked to the productivity of the beneficiation line. If they are well maintained, they guarantee a 

continuous flow of ore in the line. A centrifugal pump is a mechanical device that is mainly used 

in industrial applications to increase the energy content of a fluid flowing through it (GEVORKOV 

et al., 2018). The impeller converts the energy of the prime mover into the pressure energy of the 

working fluid. The brief description of the process of iron ore production is explained in section 

3.2. 

3.2  BRIEF DESCRIPTION OF IRON ORE BENEFICIATION PROCESS DESCRIBING THE 

ROLE OF PUMPS 

Several components make up the beneficiation plant (Figure 3). Iron ore from run-off mines is 

delivered to a crushing machine with gigantic crushers with a capacity of 2000 tons per hour (TPH). 

The ore is crushed to sizes from 1m to about 1mm to 200mm. The crushed ore is transported to a 

blending yard, where it is reclaimed using a wheel reclaimer situated on a bridge. Convey belts 

transfer the ore to a 2,500-ton repartition bin (not depicted in the Figure). The repartition bin is 

divided into three divisions, each of which links to one of three identical production lines that can 

be used at any moment. The ore is extracted from the bin (through one of the production lines) and 

fed into a 300 TPH Autogenous Grinding Mill- one for each production line (shown in Figure 4). 

Water is introduced at the AGM, and the slurry is handled by centrifugal pumps. 

The AGM grinds the ore from the particle size of 0- 6mm to sizes of 0-1.6mm, (called undersize). 

This undersize is sent to the screening unit by centrifugal pumps. Some ore escapes the required 

grinding size (0-1.6mm) from the AGM and is pumped back to the AGM for refined grinding. The 

slurry from the screens is pumped into the hydro-cyclone classification unit. The hydro-cyclone 

produces two separate slurries: overflow (OF), which is silica-rich trash, and underflow (UF), 

which is a substance high in iron ore concentrate. The overflow is directed to the Low-Intensity 

Magnetic Separator (LIMS), where the magnetite is recovered and processed through another 

hydro-cyclone before being delivered to the spiral feed. The thickening unit receives the 

unrecovered flow and processes the tailings (also known as rejects). Stationed centrifugal pumps 

carry the underflow into the spiral unit. The material is subjected to a gravity separation procedure 

during the spiral (roughening, cleaning, and recleaning) phases, which is used to extract more iron 

ore concentrates. The material is delivered into the top feed of the spirals using heavy-duty 
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centrifugal pumps. The material, which is now iron ore concentrate rich, is filtered and sent to a 

storage yard for sale. Spiral rejects are also processed through another set of LIMSs for the possible 

recovery of iron ore-rich products, unrecovered or final rejects from this stage are transported to 

the tailings storage yard. The centrifugal pumps being used in NIOMCO are mainly of the Warman 

model (WARMAN PUMPS, 1999). The unit of concentration in this work is highlighted in red in 

Figure 3. As can be observed from the description, centrifugal pumps are of immense importance 

in this industry. 

 

Figure 3 - Beneficiation Plant Flow Chart 

 
Source: adapted from Chinedu and Nwaeto (2018)  
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Figure 4 - Autogenous Grinding Mills 

 
Source: The author, 2023 

3.3 THE PROBLEM STATEMENT 

The company currently practices corrective maintenance on the centrifugal pumps when they are 

degraded. Studies have shown that the practice of corrective maintenance leads to higher cost and 

decrease in a system’s reliability (MARTINUS et al., 2019). On the issue of maintenance costs, 

Hydraulic Institute (2001) proved that maintenance costs contribute about 30 – 45% of the total 

life cycle of industrial pumps, therefore, research has been ongoing in seeking optimal ways of 

reducing these costs to the bearable minimum. In order to reduce these costs, one of such suggested 

ways is to reduce maintenance activities (MARTINUS et al., 2019).  The industry performs this 

reduction of maintenance activities by installing auxiliary centrifugal pumps which are switched 

on only when the primary pump fails, the demerit of this is that in the long run, it becomes a costly 

solution since the failed pump’s life could have been extended and repairs could have been less 

costly if they were caught prior to failure. It can therefore be said that corrective practice on the 

pumps is not efficient to guarantee a continuous flow of production. 

In order to solve this problem and strike a balance between reducing maintenance cost and 

maintenance activities, a good solution is a condition-based maintenance (CBM). It is a predictive 

maintenance technique. Predictive maintenance is based on the inspection and condition 

monitoring of machine conditions, operating frequency, and other indicators of in-service 

equipment on a regular basis (OPREA, POPA, ONESCU, 2014). According to CBM, maintenance 
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should only be done when specific indicators indicate that performance is deteriorating or that 

breakdown is imminent. Non-invasive measures, visual examination, performance indicators, and 

planned testing can all be used to check a machine for these indicators. Data on the condition can 

then be collected at predetermined intervals or continuously (as is done when a machine has 

internal sensors). CBM/predictive maintenance are fast becoming the preferred maintenance 

technique because of the advent of faster processing CPUs, remote sensors, database software, 

computerized maintenance procedures which utilize expert as well as algorithmic decisions (JAY 

et al., 2014). 

The pump undergoes degradation as a result of usage, and this degradation can be monitored by 

observing various variables, such as temperature, pressure, and vibration. These variables provide 

insights into the condition of the system, but a conclusive assessment can only be achieved through 

inspections. Consequently, the maintenance of the system is contingent upon its condition, which 

is evaluated during periods of stoppage. Understanding the failure process of the pump proves 

challenging due to uncertainties arising from operational conditions, demand fluctuations, and 

environmental factors (CANDELIERI, PEREGO, ARCHETTI, 2018; TANAKA, TSUKAMOTO, 

2018). Although certain machine learning (ML) techniques may perform well in scenarios devoid 

of these uncertainties, addressing this challenge necessitates the adoption of a more adaptable and 

flexible approach. Reinforcement Learning (RL) has demonstrated its efficacy as a valuable 

machine learning technique in the realm of maintenance decision-making and optimization. RL 

possesses the capability to strike a balance between short- and long-term implications, namely the 

immediate effects of maintenance actions as opposed to the overall benefits in terms of 

maintenance and operational costs. This characteristic renders RL particularly suitable for 

application within the maintenance domain (HAMED et al., 2021). Moreover, the iterative nature 

of the agent's learning process, characterized by trial-and-error and direct interaction with the 

environment, bestows the RL approach with enhanced adaptability and flexibility in 

accommodating process modifications (MEINDL, LEHMANN, SEEL, 2022). Therefore, the 

present study employs reinforcement learning (RL) technique. RL has demonstrated effectiveness 

in maintenance optimization and decision-making (SIRASKAR et al., 2023; HAMED et al., 2021). 

It is a model-free strategy that does not require probability transition matrices of the system to 

converge towards an optimal maintenance policy (DOODY, VAN SWIETEN, MANOHAR, 2022; 
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SINAN, MELTEM, 2019). By observing the system's variables, the RL agent acquires knowledge 

about its failure behavior and dynamically recommends the most opportune time for stoppages. 

3.4 MAJOR CONTRIBUTION(S) 

The recent studies, Mitra et al., (2022), Salem, Fouladirad, Deloux, (2021a) and Salem, Fouladirad, 

Deloux, (2021b) considered the leakage rate due to a centrifugal pump seal failure as the 

degradation data. Although they all modeled this degradation using the variance gamma process, 

this work is different from these because health indicators such as pressure, temperature and 

vibration as performance data of the pump are considered. These indicators are used for the 

degradation model which is based on the variance gamma process. The justification of using these 

performance indicators is explained in section 3.7.1. 

Another contribution of this study is to develop a reinforcement learning agent on a centrifugal 

pump used in an iron ore process plant. The RL agent learns the best action (do nothing or stop the 

pump) to take at each time step. This involves the online continuous monitoring of the performance 

of the pump. At each time step, the operator can be notified about the best time to stop the pump 

for maintenance activities. These actions are performed at an optimal reduced maintenance cost 

developed as the reward function.  

3.5 METHODOLOGY 

To propose an optimal condition-based maintenance policy for centrifugal pump used in the 

company of study, the application of reinforcement learning (RL) specifically a Deep Q- Network 

(DQN) technique was explored. The basic reason of using a RL to solve this problem is so as to 

cater for the uncertainties inherent in the environment of the working pump. These uncertainties 

are related to varying operating conditions such as; temperature, pressure and vibration. The RL 

technique has found applications in literature to pumps (URIEL, STONE, 2013; HAJGATO, 

PAAL, GYIRES-TOTH, 2020; SOARES et al., 2020). In many of the papers, an RL agent is 

developed in order to maintain, reduce energy consumption and optimize their performances. 

Introduction to the technique of RL with its area of application can be found at Sutton and Barto 

(2018). Centrifugal pumps, even though usually have an estimated service life of about 20 years, 

will degrade over time (HASHIM, HASSAN, HAMID, 2020). It becomes necessary to study the 

degradation pattern of the pumps in the company, model and simulate it to be presented as the 
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states of the RL algorithm. This degradation is based on the performance indicators or features that 

determine the condition of the pump at each time step. The reinforcement learning (RL) agent 

receives input derived from degradation data, as illustrated in Table 5, consisting of continuous 

variables. In order to enhance the agent's learning process, the continuous variables associated with 

pump degradation have been organized into distinct categories (refer to Table 6). These discretized 

categories establish ranges that indicate whether the pump is in a state of good condition, 

degradation, or failure.  The discretized ranges are determined based on the industrially acceptable 

operational range or predefined thresholds for each performance feature, as outlined in the Weir 

Group report of 2022 (THE WEIR GROUP, 2022). The primary objective for the RL agent is to 

acquire knowledge of these thresholds to optimize maintenance and make informed decisions 

regarding the pump's operation, deciding whether to stop or continue running at each iteration step 

of the algorithm. 

3.6 DESCRIPTION OF THE PUMP 

The type of pump in the industry is the Warman centrifugal horizontal slurry pump (THE WEIR 

GROUP, 2022). The function involves the transport of material known as slurry to different units 

for production process of iron ore concentrate.  The slurry pumps (Warman 8/6AH) are of different 

sizes. They are used to feed material to the primary and secondary cyclone, the roughening and 

cleaning spirals of the beneficiation plant. The selected pump’s specification for this study is shown 

in Table 2 and Table 3 shows the notations used in this work. 

 

Table 2 - Pump description parameters 

Pump function Primary cyclone feed 

Impeller diameter 510mm 

Motor power rating 110KW 

Type 8/6 AH 

Materials High chrome iron, natural rubber, 

polyurethane, corrosion resistant 

alloys 

Size range/ dimensions Discharge size 25mm to 450mm 

Source: Warman Pumps (1999) 
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Table 3 - Notations and definitions 

Notation Definition 

𝑡 Simulation time 

𝜃 Drift parameter of a Brownian motion  

𝜎 Volatility parameter of a Brownian motion 

𝜇 Mean parameter of the gamma process 

𝑣 Variance parameter of the gamma process 

ɸ𝑋(𝑢; 𝑡) Characteristic function of the variance gamma process 

𝜇𝑝 Mean parameter of the gamma process representing the positive 

component  

𝑣𝑝 variance parameter of the gamma process representing the positive 

component 

𝜇𝑛 Mean parameter of the gamma process representing the negative 

component 

𝑣𝑛 variance parameter of the gamma process representing the negative 

component 

𝛼+(𝑡) Positive component of the gamma process which is distributed as 

ᴦ(𝑡;  𝜇𝑝, 𝑣𝑝) 

𝛼−(𝑡) Negative component of the gamma process which is distributed as 

ᴦ(𝑡;  𝜇𝑛, 𝑣𝑛) 

𝑋(𝑡) The variance gamma distribution given as the difference of the gamma 

representations 𝛾+(𝑡) − 𝛾−(𝑡)  

𝑆𝑃𝑡𝑖
, 𝑆𝑇𝑡𝑖

, 𝑆𝑉𝑡𝑖
 Pressure, temperature, and vibration levels of the pump at time 𝑡𝑖 

𝑎𝑛𝑡 Maintenance action at time 𝑡 

𝑅𝑡 Reward quantity at time 𝑡 

𝐶𝑒 Energy cost 

𝐶𝑟 Repair cost 

𝐶𝑚 Maintenance cost 

𝐶𝑝 Penalty cost. 
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𝐶𝑓 Failure cost 

Source: The author (2023) 

3.7 MODELLING THE DEGRADATION PROCESS OF THE CENTRIFUGAL PUMP 

As explained in chapter 2, section 2.5.3, the gamma and wiener process are good candidates to 

model the degradation of centrifugal pumps. However, the gamma process is only used when the 

system degradation shows a monotonic trend and its mathematical computations are tractable 

(ABDEL-HAMEED, 2010; LING, NG, TSUI, 2019). The Wiener process may not fit in 

degradation paths with skewed or large tail increment distribution (GUO et al., 2018). Therefore, 

the degradation process of the centrifugal pump in this work was modelled using the variance 

gamma (VG) process. The VG is represented as a case of the difference of two gamma processes.  

The two independent gamma processes are defined as 𝛼+(𝑡):= ᴦ(𝑡; 𝜇𝑝, 𝑣𝑝) and 𝛼−(𝑡):= ᴦ(𝑡;  𝜇𝑛, 

𝑣𝑛) with 𝜇𝑝 =  ƞ𝑝/𝑣,   𝜇𝑛 =  ƞ𝑛/𝑣,   𝑣𝑝 =  𝜇𝑝
2𝑣,  𝑣𝑛 =  𝜇𝑛

2𝑣, 

With reference to the characteristic function of a VG (Equation 2.22), it can be split as Equation 

(3.1): 

ɸ𝛾+(𝑢; 𝑡). ɸ𝛾−(𝑢; 𝑡) = (
1

1−𝑖ƞ𝑝𝑢
)𝑡/𝑣(

1

1+𝑖ƞ𝑛𝑢
)𝑡/𝑣      (3.1) 

Where we have, ƞ𝑝- ƞ𝑛= 𝜃𝑣, ƞ𝑝ƞ𝑛 =  
1

2
𝜎2𝑣. 

And the link between the parameters of the VG process and those of the difference between the 

gamma process parameters are represented by: 

ƞ𝑝= 
𝜃𝑣

2
+  √

𝜃2𝑣2

4
+  

𝜎2𝑣

2
       ƞ𝑛= - 

𝜃𝑣

2
+  √

𝜃2𝑣2

4
+  

𝜎2𝑣

2
        

Therefore, the difference of gamma representation becomes: 

𝑋(𝑡)= 𝛼+(𝑡) - 𝛾−(𝑡) 

Where, 𝛼+(𝑡) ~ ᴦ(𝑡/𝑣, 𝜇𝑝𝑣),   𝛼−(𝑡) ~ ᴦ(𝑡/𝑣, 𝜇𝑛𝑣),    

3.7.1 Features for the deterioration model 

It is possible to sense the operational status of a centrifugal pump, examine and evaluate its health 

status, by measuring physical quantities such as vibration and temperature (CHEN et al., 2022). 

Unnecessary increases in temperature and vibration accelerate degradation. The gland seal is the 

most significant function in the slurry pump that requires to separate the slurry from the external 
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environment when the process pressure and temperature are high in the industry under 

investigation. This demonstrates that when temperature and pressure rise above a particular point, 

the gland seal can collapse (RIDGWAY et al., 2009). The most crucial condition for establishing 

gland life, according to Weir (2009), is the availability of gland flush water at the proper pressure. 

in the work of Mele, Guzzomi and Pan (2014), they investigated the correlation between pump 

vibration and unsteady flow at different pump speeds. Flow-induced vibration increases with pump 

speed which is invariably linked to pump efficiency; therefore, pump’s performance can be 

deduced from its pressure and vibration levels, more energy is fed into the system and a greater 

amount of pressure can induce vibration responses. Excessive vibrations, are classified, according 

to ISO 10816, to have amplitudes larger than 2.80mm/s for small machines, 4.5mm/s for medium 

machines, 7.10mm/s for large machines with rigid foundations and 11.2mm/s for large machines 

with soft foundations (MCKEE et al., 2011). Vibration results from unbalanced moving parts found 

within the pump system, interactions of the fluid and its particles with the pump and the connecting 

pipes, and movements of the pipelines themselves. Beebe (2004) has published a list of vibration 

frequencies that can be found in a centrifugal pump, and the possible causes of each vibration. In 

addition, he published a table that contains the stages of bearing degradation and the vibration 

associated with each stage. 

As a result of these, the author chose to study the pressure, temperature, and vibration performance 

data in order to model the pump's deterioration. The state of the reinforcement learning algorithm 

is determined by the combination of these factors. 

The variance gamma process has four parameters, (𝜃, 𝑣, 𝜇, 𝜎). It is a flexible stochastic model that 

is capable of fitting to different time series with independent increments and non-monotonic paths. 

The parameters of the model are adapted to the work of Mitra et al. (2022) that also deals with the 

maintenance of centrifugal pumps (see Table 4). The degradation data was simulated by developing 

a Monte Carlo simulation in python so as to generate large data using the model’s estimated 

parameters as shown in the pseudocode in section 3.7.1.1. 
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Table 4: Degradation model parameters 

Performance 
feature 

Theta 𝜽 v 𝝁 𝝈 

Temperature 0.077 0.5 0.5 0.01 

Pressure 1.8 0.5 0.5 1.5 

Vibration 0.0033 0.5 0.5 0.01 

Source: The author (2023) 

According to Mitra et al. (2022), the 𝑣 and 𝜇 parameters do not have substantial impact on the 

degradation path trend, so they are kept constant at a value of 0.5 for all the three parameters. 

Instead, the values of 𝜃 and 𝜎 are noticed to affect the degradation path substantially. 

Figures 5-7 shows the degradation path generated for each of the performance features. The red 

line indicates the start of degradation point. A snapshot of the degradation data generated is shown 

in Table 5. 

Table 5 - Degradation data generated 

Time Vibration Pressure Temperature 

1 3.98169174 288.8487682 30.03367903 

2 3.983151725 294.604602 30.22461677 

3 3.990086895 296.1360064 30.22193995 

4 4.020296436 299.5239951 30.33781184 

5 3.969380173 305.7219827 30.32858942 

6 4.019620087 297.2013179 30.46524777 

7 4.030546113 295.0971958 30.71748131 

8 3.981904217 302.3701405 30.47947516 

9 3.981960703 299.1000298 30.40389265 

10 4.041807458 308.7555821 30.71096781 

11 4.041893353 302.4518426 30.89565092 

12 4.050312707 309.4125866 31.19613261 

13 4.091938564 307.1383892 31.14060045 

14 3.982217127 305.9876902 31.08357869 

_ _ _ _ 

_ _ _ _ 

_ _ _ _ 
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9997 35.63352717 18058.74032 804.9773486 

9998 39.70433407 18294.08196 802.1708394 

9999 37.95958325 18352.73953 792.4277949 

Source: The author (2023) 

3.7.1.1 Monte Carlo simulation pseudocode for variance gamma model 

1. 𝑋(0) = 0 

2. For 𝑖 = 1 𝑡𝑜 𝑛 

Generate the independent gamma process 𝛼𝑖
+(𝑡), 𝛼𝑖

−(𝑡),  

𝑋(𝑡𝑖) =  𝛼𝑖
+(𝑡) −  𝛼𝑖

−(𝑡),  

𝑋(𝑡) =  𝑋(𝑡𝑖−1) for all 𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖). 

Figure 5 - Vibration Degradation Plot 

 
Source: The author (2023) 

 

Figure 6 - Pressure Degradation Plot 

 
Source: The author (2023) 
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Figure 7 - Temperature Degradation Plot 

 
Source: The author (2023) 

 

The gamma, Wiener, and variance gamma processes Wang et al. (2021), Ye, Chen and Shen (2015) 

and Mitra et al. (2022) are commonly employed for modeling degradation processes in mechanical 

systems. The linear distribution trend observed in Figures 5, 6, and 7 can be attributed to the 

specific parameter selections made. Different parameter sets would yield distinct behaviors. 

Nevertheless, it is noteworthy that certain systems employing the variance gamma process for 

degradation also exhibit a linear distribution trend, as evidenced in the works of Mitra et al. (2022), 

Shat and Schwabe (2019), Mahmoodian and Alani (2013) and Qidong and Dan (2014). 

3.7.2 Development of the Reinforcement learning algorithm 

General assumptions: 

1. Periodic inspections of the pump are not considered, the pump can only be inspected 

whenever the RL agent makes a decision to stop it. 

2. The cost of maintenance actions is constant and known- this determines the reward function 

3. Each of the time step are defined as the interactions of the agent with the system 

4. When all the performance indicators are in ‘good’ state, i.e., state ‘0’ then only the constant 

energy cost 𝐶𝑒  is consumed.  

5. In the case where the pump is in state 1, i.e., at least one of the performance indicators is in 

the degrading state, the energy cost becomes 𝐶𝑒𝑚. The maintenance cost, 𝐶𝑚, is accrued if 

the agent chooses to stop the pump for maintenance action.  
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6. If the pump is in state 2, i.e., at least one of the performance indicators is in the failed state, 

an imminent corrective action should therefore be performed. There is accrued the failure 

cost 𝐶𝑓. 

7. In all cases, 𝐶𝑝 > 𝐶𝑓 > 𝐶𝑚 > 𝐶𝑟 

Reinforcement learning involves an agent solving an MDP problem which interacts with a 

simulated environment and acquires experience progressively to comprehend the long-term 

consequence of the actions and the value of visiting specific states. Therefore, before one can solve 

an RL problem, it has to be modelled as an MDP in respect to its state, action and reward spaces.  

 

i. State space 

The state space 𝑆𝑡 comprises of the combination of the range in which the pressure 𝑆𝑃𝑡𝑖
 temperature 

𝑆𝑇𝑡𝑖
,  and vibration 𝑆𝑉𝑡𝑖

 levels of the pump present at each time step 𝑡𝑖 … . . 𝑡𝑛. This is inscribed as 

discrete variables as represented by: 

𝑆𝑡=  

𝑆𝑉𝑡1
𝑆𝑇𝑡1

𝑆𝑃𝑡1

𝑆𝑉𝑡2
−
−

𝑆𝑇𝑡2
𝑆𝑃𝑡2

𝑆𝑉𝑡𝑛
𝑆𝑇𝑡𝑛

𝑆𝑃𝑡𝑛

 

Where for example, 𝑆𝑉𝑡1
… . . 𝑆𝑉𝑡𝑛

 represents the discrete state of the pump’s vibration at time 

𝑡𝑖 until 𝑡𝑛. 

The acceptable range of operation for each state of the pump is depicted in each of the features as 

highlighted in Table 6, this determines the state space for the model 

 

Table 6 - Thresholds for pump’s state 

Performance 
feature 

Good state 
𝑺𝑽𝒕, 𝑺𝑻𝒕, 𝑺𝑷𝒕 = 𝟎 

Degrading state 
𝑺𝑽𝒕, 𝑺𝑻𝒕, 𝑺𝑷𝒕 = 𝟏 

Failed state 
𝑺𝑽𝒕, 𝑺𝑻𝒕, 𝑺𝑷𝒕 = 𝟐 

Temperature 30oC – 100oC 101oC – 105oC > 105oC 

Pressure 280kPa – 2020kPa 2021kPa – 2100kPa > 2100kPa 

Vibration 4.0mm/s – 7.1mm/s 7.2mm/s – 7.5mm/s > 7.5mm/s 

Source: The Weir Group (2022)  

ii Action space 

The action space 𝑎𝑛𝑡 is a vector consisting of 𝑛 binary variables that indicate the type of 

maintenance action to be taken on the pump at each time step 𝑡. 



69 
 

 
 

This is expressed as: 

𝑎𝑛𝑡 = [𝑎1(𝑡), 𝑎2(𝑡) … . . 𝑎𝑛(𝑡)]            

Where, 𝑛 refers to the number of possible actions in the set 

In the case of this work, two actions are considered: 

𝑎𝑛𝑡 =  {
0, 𝑘𝑒𝑒𝑝 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝  

1, 𝑠𝑡𝑜𝑝 𝑓𝑜𝑟 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒
 

 

iii Reward function 

In order to allow the RL algorithm to learn well, a robust reward function for the agent must be 

modeled. This reward function will be in terms of cost and will be made up of the following 

components.  

1. Energy cost (𝐶𝑒): this is the cost incurred by energy consumption of the pump. It is the 

predicted cost for system operation, pump driver, controls and any auxiliary services. 

2. Repair cost (𝐶𝑟): this is the cost incurred by checking the pump if the agent decides to stop 

the pump even though it is in a functional state. Note: This cost is expected to be accrued 

in the beginning of training, as the agent learns more about the environment, such scenario 

to warrant this cost should not arise. 

3. Maintenance cost (𝐶𝑚): this is the cost incurred by a degrading pump. 

4. Penalty cost (𝐶𝑝 ): This is the cost incurred due to a wrong decision taken by the agent. This 

cost is accrued for a pump in state 2 wherein the agent chooses to continue its operation 

nevertheless. This cost is necessary to train the agent to make right decisions. 

5. Failure cost (𝐶𝑓): This is the cost incurred when the pump is stopped due to failure (made 

up of corrective maintenance cost, cost of lost time due to stoppage of production process) 

Assumptions for the reward cost function 

a. For a normal working pump, it consumes a constant unit of electricity for the time that the 

pump’s vibration is within normal working limits. 

b. When the pump’s vibration exceeds a certain threshold, the energy consumption changes. 

c. All other costs 𝐶𝑚. 𝐶𝑟 , 𝐶𝑝, 𝐶𝑓 are constant and fixed.  

iv Energy Cost 

The effect of pump motor vibration on power quality and energy consumption has been studied. 

According to the work of Fetyan and El_Gazzar (2014), they studied the effect of motor vibration 
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on the dynamic performance and electrical power quality of water pump stations comprising of 

axial flow pumps. Their results showed that the total harmonic distortion (THD) increases by about 

1-2% due to the effect of bad motor vibration. The 5th and 7th harmonic contents also increased by 

about 0.5 – 1%. It was noted that the vibration above acceptable range causes dynamic troubles 

and some power quality problems for the electric feeder which results in flickers and variable 

energy consumption.  

The summation of all harmonics in a system is known as THD. Associated Power Technologies 

(2012) explained the concept of THD and its effect on powered equipment. The harmonic contents 

and THD can be calculated by measuring the voltage and current signal and their values represent 

the status of power quality (FETYAN, EL_GAZZAR, 2014). 

THD is given by Equation (3.2): 

𝑇𝐻𝐷 =  
√𝑉2

2+ 𝑉3
2+𝑉4

2+⋯𝑉𝑛
2  

𝑉𝑠
         (3.2) 

Where, 𝑉𝑠 = signal amplitude (RMS volts) 

 𝑉2= second harmonic amplitude (RMS volts) 

 𝑉𝑛 = 𝑛𝑡ℎ harmonic amplitude (RMS volts) 

Non-linear loads such as found in pumps are known to affect the power quality of a system. this is 

because they can draw current that is not perfectly sinusoidal, causing voltage waveform 

distortions. These unwanted distortions result usually erupt from an unfavorable increase in 

vibration levels (EBERSBACH, PENG, KESSISSOGLOU, 2006). 

From the foregoing discussion, this work therefore assumes that when the pump’s vibration 

exceeds the upper limit, for every 1% rise in the vibration level, the THD increases by 2% and 

results in an increase of energy consumption of 1%. Simulated data was generated and was fitted 

using the exponential distribution for the parameters. The power consumption 𝑃𝑐 at a vibration 

level 𝑉𝑡 above the acceptable limit is given by Equation (3.3): 

𝐶𝑒𝑚 = [0.0144𝑒0.2677𝑉𝑡] ∗  𝑢         (3.3) 

Where, 𝑢 is the unit cost of electricity. 

The reward function is the addition of all the accumulated costs at each training time (𝑡). The 

reward is negative because the agent is trying to minimize the cost. This is given in Equation 

(3.4) 

𝑅(𝑡) =  −[𝐶𝑒(𝑡) + 𝐶𝑟(𝑡) + 𝐶𝑚(𝑡) + 𝐶𝑓(𝑡) + 𝐶𝑝(𝑡)]     (3.4) 
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Where, 𝐶𝑒(𝑡) = {
𝐶𝑒 ,       𝑃𝑢𝑚𝑝 𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑛 𝑔𝑜𝑜𝑑 𝑠𝑡𝑎𝑡𝑒
𝐶𝑒𝑚        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                    

 

 

3.7.3 Training the RL algorithm 

The steps in training the Reinforcement learning algorithm involves two algorithms, the first 

algorithm is the Deep Q-Network (DQN) machine (shown in appendix A) and the second algorithm 

is the maintenance environment (shown in appendix B). It is noteworthy to mention that these 2 

algorithms are interconnected. The DQN machine basically comprises of the deep neural network 

(DNN) and it is responsible for choosing the action in every time-step based on the observed state 

of the environment. The maintenance environment algorithm is responsible for simulating the 

behaviour of the system, such as the degradation process, the expected cost for each action, and 

calculating the rewards for the DQN algorithm. The DQN interacts with the environment to 

perform an offline training.  

In the beginning, the DNN is randomly initialized.  The maintenance environment starts by first 

expressing the features of the environment in their states. The performance features (vibration, 

temperature, and pressure) presented as continuous variables and then discretized to represent the 

state 𝑆𝑡 at time 𝑡. The combination(s) of these features as states presents as the input to the learning 

interface.  

These states are passed to the DNN in order to output the q value comprising of the state and the 

predicted action 𝑎𝑡 as 𝑞(𝑆𝑡, 𝑎𝑡). The agent’s experiences at each time step are stored in a replay 

memory where the agent’s experience at time 𝑡 is 𝑒𝑡 defined as a tuple: 

𝑒𝑡 = (𝑆𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑆𝑡+1) 

Where, 𝑆𝑡 is the state of the environment, and action 𝑎𝑡  taken from state 𝑆𝑡. The reward 𝑟𝑡+1 is 

gotten as a result of the previous state-action pair (𝑆𝑡, 𝑎𝑡). The next environment state presented to 

the agent is denoted as 𝑆𝑡+1.The replay memory is set to a finite size limit 𝑁 which is allowed at 

time 𝑡. A batch size is randomly sampled from the replay memory data known as experience replay. 

A key reason for using replay memory is to break the correlation between consecutive samples in 

order to avoid inefficient learning (BASU, 2020).  

The input state data (batch) then propagates through the network and outputs an estimated q value 

for each possible action from the given state; the loss is calculated by comparing the q value output 
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from the network in the experience tuple and the corresponding optimal q value or target q value 

for the same action in Equation (3.5). 

  𝑞∗(𝑆, 𝑎)      −    𝑞(𝑆, 𝑎)    =         𝑙𝑜𝑠𝑠 

𝐸[𝑅𝑡+1+ 𝛾 max
𝑎′

𝑞𝜋(𝑠′, 𝑎′)] − 𝐸[∑ 𝛾𝑘𝑅𝑡+𝑘+1]  = 𝑙𝑜𝑠𝑠∞
𝑘=0                    (3.5) 

 Target Q value     -    Output value      = loss 

The actions are initially chosen at random according to the epsilon parameter 𝜀. The epsilon greedy 

(𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦) method is deployed which is used to determine the agent’s exploitation versus 

exploration trade-off. Rewards accumulated are subjected to rules guiding the action selected by 

the agent. These rules are highlighted on line 16 -29 of the pseudocode in the appendix. Each of 

the state transition per time step is governed by the variance gamma process degradation of the 

centrifugal pump. The agent is expected to make accurate action prediction as it is presented with 

the environment’s next states. It is interesting to note that, because the initial actions of the agent 

are randomly chosen, wrong decisions may be taken, these are penalized with a penalty cost so as 

to train the agent in order to learn to take precise actions.  

This training executes until the minimum epsilon is reached according to the decay rate. At the end 

of training, it is believed that the optimal policy must have been learned.  

 

3.7.4 Parameter information 

The parameter of the reward function costs is shown in Table 7. 

Table 7: Parameter values for reward function 

Parameter Value 

Repair cost 𝐶𝑟 10 Rs 

Maintenance cost 𝐶𝑚 25 Rs 

Failure cost 𝐶𝑓 50 Rs 

Penalty cost 𝐶𝑝 100 Rs 

Electricity consumption cost when 

operating within normal vibration limits 

𝐶𝑒 

0.05 Rs/unit 

Source: The author (2023) 
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The hyperparameter information for the DQN machine and training stage is shown in Table 8 

Table 8: Hyperparameters for DQN machine 

Hyperparameter value 

Batch size 𝐵𝑠 200 

*State size 𝑆𝑠 3 

**Number of actions  𝐴𝑠 2 

Learning rate  𝐿𝑟   0.0001 

Epsilon decay 𝜖𝜎 0.9993 

Minimum epsilon 𝜖𝑚   0.0001 

Gamma 𝛾 0.95 

Target steps 𝑇𝑠   10 

Number of iterations  10000 

Total time/iteration 1000 

Source: The author (2023) 

Note: * and ** are not hyperparameters for the training algorithm, they are determined according 

to the environment and problem to be solved respectively.  

The training process was performed with 10,000 iterations each with 1000 time-steps. The RL-

based CBM framework and decision environment were modelled in python 7.0 using Keras API.  

3.7.5 Results and Discussions 

Because RL algorithms seek to predict and control the effect of future value of taking an action or 

sequence of actions, it is pertinent to evaluate the results by analyzing the effect of the long-term 

accumulated rewards. Figure 8 shows the average accumulated reward over time. 

 

Figure 8: Average Reward 

 
Source: The Author (2023) 
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The simulation findings demonstrate that apart from the fact that the agent learnt the optimum 

policy over time, the accumulated reward over time exhibited a continuous improvement over the 

10000 iterations initiated (fig 8). As the agent starts performing steps according to a random 

strategy epsilon = 1, it starts exploring the environment but gradually deploys the greedy strategy 

with a decay rate = 0.9993 until it performs exploitation after it learns more about its environment, 

this explains why the attained reward is minimal at the beginning of training. The initial reward 

was -56569, this improved over time to -1849. There is nevertheless a saturation at the end of the 

epochs (shown in the zoomed portion) which implies that the DQN cannot be improved anymore, 

this shows that the optimal policy has been learnt.  

 

3.7.5.1 Sensitivity analysis 

Due to the inadequacy of evaluating a trained agent solely on the reward received, a sensitivity 

analysis is necessary to ascertain the impact of changes in specific variables on the performance of 

the system as a whole. Bose et al. (2021) and Yao, Olson and Yoon (2021) employed sensitivity 

analysis in the field of RL to look at how the system can adapt to changes in the performance 

indicators of the goal function. A sensitivity analysis has eliminated the dependency on the 

possibility of an agent deploying a false policy by examining how an agent would respond to minor 

changes in its unpredictably changing environment. 

To undertake the sensitivity analysis, the pump is simulated to degrade at 20% faster (20%++) and 

also at 20% slower (20%--) than the base degradation process. Each optimal policy for the different 

cases was saved. The optimal policies were deployed under an assumed time frame of 30days. The 

results were recorded and compared with the base degradation process. The comparison is done on 

the basis of the accumulated total cost and number of times the agent suggested a stoppage of the 

pump for inspection within the 30days.  

The results of the sensitivity analysis are shown in Table 9 
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Table 9:  Sensitivity Analysis Results 

Case  

parameters 

feature parameters values Result 

    𝜃   𝑣 𝜇   𝜎 

Total 

cost stoppages 

Base 

case 

Temperature 0.077 0.5 0.5 0.01 

319 2 Pressure 1.8 0.5 0.5 1.5 

Vibration 0.0033 0.5 0.5 0.01 

          

20%++ 

Temperature 0.0924 0.5 0.5 0.012 

366 

 

5 
Pressure 2.16 0.5 0.5 1.8 

Vibration 0.00396 0.5 0.5 0.012 

          

20%-- 

Temperature 0.0616 0.5 0.5 0.008 

273 1 Pressure 1.44 0.5 0.5 1.2 

Vibration 0.00264 0.5 0.5 0.008 

Source: The Author (2023) 

 

From table 9, it can be observed that, by increasing the degradation rate of the pump with 20%, the 

total cost accrued was 366 reais and the number of inspections predicted for the period of 30 days 

was 5. This result clearly shows that more maintenance cost and inspection is expected as the pump 

degrades faster. Similarly, a lower cost (273 reais) and one inspection is predicted for a slower 

degrading pump.  

3.7.5.2 Benchmarking 

The effectiveness of the proposed model was evaluated using a corrective policy as the benchmark. 

The performance of the corrective policy in each of the case scenarios presented in Table 9 was 

assessed based on the costs associated with operating the pump until it reaches failure. These costs 

were then compared to the total cost incurred by the reinforcement learning model under the same 

case scenarios. The comparative results are documented in Table 10.  
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Table 10: Reinforcement Learning and Corrective Maintenance cost comparison 

Case RL model 

cost 

Corrective 

maintenance cost 

Percentage 

performance 

Base case 319 1043.2 69.4% 

20%++ 366 1143.2 68.0% 

20%-- 273 944.1 71.1% 
Source: The Author (2023) 

 

As depicted in Table 9, the analysis of the three scenarios reveals that the reinforcement learning 

policy yields cost savings of more than 68% compared to the corrective maintenance policy. This 

observation substantiates the superiority of the proposed policy in terms of cost effectiveness. The 

achieved improvements strongly indicate the successful adaptation of the maintenance policy for 

the centrifugal pump by the RL agent. 

3.8 FINAL REMARKS ON THE CHAPTER 

A new approach was introduced for optimizing the condition based-maintenance policy of a 

centrifugal pump used to transport slurry in an iron ore processing plant. The method's 

distinctiveness lies in the use of vibration, pressure and temperature features in the RL algorithm's 

environment state. Additionally, the system can function as an online control and monitoring tool 

for the pump's operation, allowing operators to anticipate potential failures. The proposed RL 

model was evaluated through sensitivity analysis to examine the influence of various variables on 

the system's performance. The results revealed the model's robustness, as it performed well under 

varying conditions of a faster or slower degrading pump. Comparison to a corrective maintenance 

strategy showed that the model can significantly lower maintenance costs. The model can therefore 

provide suggestions for immediate maintenance, predict future failures, and predict the number of 

pump stoppages in a specific time period. Future work will explore the application of the model to 

centrifugal pumps that operate in series or parallel, increasing the complexity of the system but still 

being feasible to achieve. 
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4 AN INTEGRATED OPPORTUNISTIC MAINTENANCE POLICY FOR A SET OF 

PRINCIPAL AND COLD STANDBY SYSTEM OF CENTRIFUGAL PUMPS USING 

THE DELAY-TIME CONCEPT 

 

In this chapter an integrated opportunistic maintenance policy was developed. The system is 

composed of a principal set of pumps that operate continuously and a standby set that is activated 

in the event of failure from a pump in the principal set. To model the pump's degradation, the delay-

time concept was utilized. An inspection and replacement policy (called KDM policy) was adopted 

for the principal system and an opportunistic and replacement (called ST policy) was developed 

for the standby set. The two policies were integrated as a KDMST policy, and their relationship 

and combined optimization were defined as the innovative aspect of this work. Simulation and 

sensitivity analysis results demonstrated a strong alignment with results from existing studies. 

Additionally, the proposed policy can be readily applied to other industries that utilize similar 

equipment. 

 

4.1 PRIMARY AND BACKUP SYSTEM 

A cold standby system is a sort of backup that is not actively in use but is kept in a ready state so 

that it can be triggered rapidly in the event of a primary system failure or disruption (WANG, 

XIONG, XIE, 2016). The primary functions of a cold standby system are to provide an alternative 

method for executing mission-critical tasks and to assure production continuity in the case of an 

unplanned failure (BEHBOUDI, MOHTASHAMI, ASADI, 2021). Due to these functions, its 

opportunistic maintenance is of the utmost importance. In standby systems, opportunistic 

maintenance is preferable over periodical maintenance because checks that are performed 

opportunistically rather than scheduled periodically may offer a financial advantage if 

opportunities are frequent and convenient (SCARF et al., 2009). This maintenance is crucial to 

guarantee proper redundancy, operating continuity, risk management, and compliance with 

industry rules and regulations (WANG et al., 2018). In a framework for a production system, the 

primary and backup systems can each take a configuration of either in series, parallel, or hybrid 

series-parallel. Each of these configurations adds a unique level to the system's reliability. A mixed 
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arrangement utilizes the benefits of both the series and parallel configurations, although its 

implementation can be more difficult than any of the other two configurations (NANDA, KUNDU, 

NANDA, 2017). This work investigates the mixed arrangement i.e., (a series of parallel pumps) 

structure.  

 

4.2 THE DELAY-TIME AS A METHOD FOR OPPORTUNISTIC MAINTENANCE ON 

STANDBY SYSTEMS 

There are a variety of methods for performing opportunity maintenance on standby systems. These 

techniques are utilized to model the equipment's deterioration to optimize the maintenance policy. 

Notable among these techniques include the Semi-Markov process, Weiner process, Laplace 

Stieltjes transforms Mokaddis, Tawfek and Elhssia (1997), as well as the generative point 

technique Goel and Mumtaz (1994), which was used to predict the mean time to system breakdown, 

availability, and busy period for a cold standby system. The Weiner technique was utilized to 

characterize the system's degradation pattern (MA et al., 2020). Markov chains are often used to 

define the probability of transitioning between various system states and the costs associated with 

each transition (HAJEEH, 2014; MENDES, RIBEIRO, COIT, 2017; MENDES, RIBEIRO, 2017; 

ALEBRANT, COIT, DUARTE, 2014). In the literature, the delay-time concept is regarded as a 

more flexible and accurate model for predicting the degradation and failure of equipment (LIU et 

al., 2015). In addition to its adaptability and simplicity, the delay-time model takes into account 

the possibility that the rate of degradation of a system or component may not be constant over time 

(CRESPO, SA ANCHEZ HEGUEDAS, 2002). Contrary to this, the Markov chain model assumes 

that the rate of deterioration is constant (JOHN, MELVIN, 1997). The delay-time approach permits 

the incorporation of external factors that may affect the probability of failures, such as component 

maintenance, repair, or replacement (NAZEMI, 2018). Finally, it can estimate the time to failure 

of a system or component with greater accuracy than the Markov chain model, which simply 

provides probabilities of failure at certain time intervals. Examples of works employing the delay-

time idea in opportunistic maintenance models are Lu et al. (2012), Scarf et al. (2009) and Wang, 

(2011). 
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4.3 MAJOR CONTRIBUTION AND KNOWLEDGE GAP 

Although studies have developed opportunistic maintenance on primary and standby systems 

separately using the delay-time concept systems (JIA et al., 2022; JIA et al., 2017; LEVITIN, 

FINKELSTEIN, DAI, 2020). To the best of the author’s knowledge none have proposed an 

integrated policy for these two systems, which is how the innovation of this study is described. 

Therefore, this study distinguishes itself by proposing an integrated maintenance policy that 

considers actions for the principal system and for the standby system as well. The timing of actions, 

such as replacement, inspection, and failure times, is taken into consideration in the delay time 

model used to model the system's degradation. This is necessary in order to build a robust 

opportunistic maintenance policy. The numerical case is applied to two series-connected sets of 

centrifugal pumps, one of which is the primary system and the other the backup system.  

 

4.4 THE DETAILED PROBLEM STATEMENT 

The production line of the company is composed of several equipment which receives slurry 

through centrifugal pumps. Please see Figures 9-11 for pictorial views of the pump arrangements 

in the industry. There exist two (2) sets of centrifugal slurry pumps as shown in the block diagram 

in Figure 12 as part of the process plant. The principal pumps are in series. This means that if any 

of the principal pump fails, the production system is halted. Each of the principal pump is connected 

to its spare pump in a parallel configuration, therefore, the system is a series of parallel system. 

The first set is referred to as the principal system (set A) and the second set is called the standby 

(set B). The ‘set A’ comprises of the main functional pumps that run at all time to enable smooth 

production. The main components of these sets of pumps that causes frequent stoppages are the 

internal components such as; the gland seal, packing seal and the wear rings (FLSMIDTH, 2020).  

These internal components perform significant function in the slurry pump because they separate 

the slurry from the external environment when the process pressure and temperature are high in the 

industry under investigation. This demonstrates that when temperature and pressure rise above a 

particular point, any of these components can collapse (RIDGWAY et al., 2009). In the 

arrangement of the set of pumps, when the pump in a set fails, it triggers a demand with rate 𝜇 on 

the corresponding alternate pump. Considering a simple case, if pump A1 fails, pump B1 takes 
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over its functionality (see figure 14). Hence, the failure of pump A1 creates a demand for pump 

B1. Also, all preventive actions for pump A2 will create an opportunity with rate 𝜆 to perform 

inspection on pump B1. Because of this incident, pump B1 should always be available for swap as 

long as its conditions for functionality are favourable. This defines a typical preparedness system. 

A preparedness system is a system that is required to function only on-demand as in the case of an 

emergency (CAVALCANTE, SCARF, ALMEIDA, 2011). It is assumed that, at any point in time 

after a threshold S, an action on pump A2 provides an opportunity to inspect pump B1. The 

functional pump A2 should provide an opportunistic inspection (OI) to access the functionality of 

the spare pump B1. Therefore, there is the dire need to develop an inspection policy that will assist 

in identifying the state of the critical component of the spare system, determine the maximum 

number of inspections and interval between inspections for the principal system and also, determine 

the window of opportunity for inspection on the gland seal for the spare system. Therefore, there 

is the need to develop two maintenance policies. One focused on main systems and the other on 

spare systems. The integration of these two policies being of paramount importance. A more 

detailed description of these policies is provided in the next section. 

 

Figure 9: Pictorial view of pumps arrangement 

 
Source: The Author (2023) 
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Figure 10: Pictorial view of pumps (spare taken for repairs) 

 
Source: The Author (2023) 

 

 

Figure 11: Pictorial view of pump arrangement (on equipment) 

 
Source: The Author (2023) 

 

 

 

Figure 12: Setup of Centrifugal Pumps (Block diagram) 

 
Source: The Author (2023) 
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Figure 13: Internal components (gland seal, packing seal and wear rings) 

 
Source: The Author (2023) 

 

 

Figure 14: Simple case problem definition 

 
Source: The Author (2023) 

4.5 SYSTEM DESCRIPTION 

Table 11 presents the notation used in this chapter 

Table 11: Notations 

X Age of spare part at defect arrival 
H Delay-time from arrival of defect until subsequent failure 

L Mean delay-time 

s 
Parameter of mixture, s=weak spare parts; (1-s) = strong spare 

parts 

K Number of inspections in a renewal cycle for principal system 



83 
 

 
 

D Interval between inspections for principal system 

M Time until preventive maintenance for principal system.  

𝑇𝑅 Time required for preventive replacement on principal system 

𝑇𝑖 Time required for inspection on principal system 

𝑇𝐹 Time required for corrective replacement on principal system 

W Opportunity arrival for spare system 

S Window of opportunity for spare system 

T Time until preventive replacement for spare system 

z Arrival of demand in the spare system 

𝜇 Rate of demand for the spare system 

𝜆 Rate of opportunity for spare system 

 𝜏1, 𝜏2 
Characteristic life for spare part from sub-population, 1= weak 

spares, 2= strong spares 

𝛽1, 𝛽2 
Shape parameter of probability distribution function (pdf) from 

sub-population.  

f(x) pdf of X 

f(h) Pdf of H 

𝐹𝐻 Cumulative distribution function (cdf) of H 

f(z) pdf of z 

𝐹𝑧 cdf of z 

f(w) pdf of w 

𝐹𝑤 cdf of w 

𝐶𝐼 The cost of inspection 

𝐶𝑅 The cost of preventive replacement 

𝐶𝐹 The cost of corrective replacement 

𝐶𝑈𝐷 The cost of unmet demands 

𝐶𝑂 The cost of opportunity maintenance 

EL Expected length of a renewal cycle 

EC Expected cost of a renewal cycle 
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𝐶∞𝑝  
Cost-rate (expected cost per unit of time in the long-run) for 

principal system 

𝐶∞𝑠 
Cost-rate (expected cost per unit of time in the long-run) for 

spare system 

Source: The Author (2023) 

 

4.5.1 Numerical case 

Consider a simple case of a centrifugal pump. This pump is defined as a single component, which 

provides an operational function for smooth production process. According to Sinisterra et al. 

(2023) and Christer (1999), it is postulated that an equipment can exist in one of three possible 

states: namely, good, defective, or failed. The pump operates in either the good or defective state, 

which requires an inspection to distinguish between the two. This differentiation is established 

using the delay-time concept, as defined by Christer (1999). Two random variables, sojourn 𝑋 in a 

good state and 𝐻 in a defective state, exist and are distributed according to a known distribution. 

Additionally, it is presumed that the spare part requirement, i.e., the internal components can 

originate from a mixed population of products, consisting of a sub-population relating to the 

proportion of good spares (𝑠) and the remainder comprising bad spares (1 − 𝑠). The mixed 

population is defined as 𝐹𝑥(𝑥) = 𝑠𝑓𝑎(𝑥) − (1 − 𝑠)𝑓𝑏(𝑥), where, 𝑓𝑎(𝑥) and 𝑓𝑏(𝑥) respectively 

follow Weibull distribution with characteristic lives 𝜏1, 𝜏2  and shape 𝛽1, 𝛽2 .We consider a time 

of actions for replacement of spare parts 𝑇𝑅, inspection of the pump 𝑇𝑖,  and the down time due to 

failure 𝑇𝐹, in the delay time model for the principal system. Each of these times of actions 

eventually affects the expected life of the system. Periodic inspections are assumed to be perfect. 

The gland seal is replaced instantaneously with a cost of 𝐶𝑅. A preventive replacement of this spare 

occurs at the critical replacement age 𝑇 with a cost of 𝐶𝐹, where, 𝐶𝑅 <  𝐶𝐹. 

In the case of the set of spare pumps (cold standby system), we assume that the failure of an 

alternate pump in the principal set presents a demand 𝜇 for its corresponding spare pump in the 

spare set. This demand is only met if the spare pump is in the good, or defective state. Which means 

that the spare pumps can be in the good, defective or failed state, where the failure is not self-

announced. There exists a rate of opportunity 𝜆, to verify the alternate spare pump’s condition. At 

any replacement (corrective or opportunity maintenance), the system is renewed to as-good-as-
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new. Therefore, inspections are perfect, and in the case of the spare system, maintenance action 

times are neglected. The cost of preventive replacement, opportunity maintenance, unmet demands 

and corrective replacement are given as 𝐶𝑅, 𝐶𝑂, 𝐶𝑈𝐷, and 𝐶𝐹 respectively. Where, 𝐶𝑂 <  𝐶𝑅 < 𝐶𝐹 <

𝐶𝑈𝐷. 

 

4.6 MODEL  

For the principal system, the model follows the established model of Scarf et al. (2009) for a 

replacement policy for heterogeneous components. For this model, it is called a 𝐾𝐷𝑀 model. 

𝐾, 𝐷, 𝑎𝑛𝑑 𝑀 are the decision variables, where, 𝐾 represents the number of inspections in a renewal 

cycle, 𝐷 represents the interval between inspections and 𝑀 gives the time until a preventive 

maintenance is required. The details of the systems’ equations for the probabilities for each case 

scenario, expected life and expected cost are explained below. Please note, for all cases, the length 

h is always denoted as the distance between the arrival of defect x and the failure. 

Case A: The defect arrives in the 𝑖𝑡ℎ interval between inspections and it is identified at the next 

inspection (Figure 15). The probability of the renewal cycle is given in Equation (4.1) 

𝑃1(𝐾, 𝐷, 𝑀) = ∑ ∫ 𝑓(𝑥)(1 − 𝐹𝐻(𝑖∆ − 𝑥))𝑑𝑥
𝑖∆

(𝑖−1)∆
𝐾
𝑖=1      (4.1) 

The expected length of the renewal cycle is associated with 𝑇𝑅 and 𝑖𝑇𝑖. This is shown in Equation 

(4.2) 

𝐸𝐿1(𝐾, 𝐷, 𝑀) = ∑ 𝑖∆ + 𝑇𝑅 + 𝑖𝑇𝑖 ∫ 𝑓(𝑥)(1 − 𝐹𝐻(𝑖∆ − 𝑥))𝑑𝑥
𝑖∆

(𝑖−1)∆
𝐾
𝑖=1    (4.2) 

The expected cost is associated with the cost of inspection and cost of preventive replacement 

(Equation 4.3) 

𝐸𝐶1(𝐾, 𝐷, 𝑀) = (𝑖𝐶𝐼 + 𝐶𝑅) ∗ 𝑃1(𝐾, 𝐷, 𝑀)       (4.3) 

Figure 15: KDM model-Case A 

 
Source: Adapted from Scarf et al. (2009) 

 

Case B: The defect and failure occur in the 𝑖𝑡ℎ interval between inspections (Figure 16). This is 

why the first integral is in the range of 𝑖∆ and (𝑖 − 1)∆ as shown in Equation (4.4) of the 

probability of the renewal cycle.  
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𝑃2(𝐾, 𝐷, 𝑀) = ∑ ∫ ∫ 𝑓(ℎ)𝑓(𝑥)𝑑ℎ𝑑𝑥
𝑖∆−𝑥

0

𝑖∆

(𝑖−1)∆
𝐾
𝑖=1       (4.4) 

The expected length of renewal cycle is given in Equation (4.5) 

𝐸𝐿2(𝐾, 𝐷, 𝑀) = ∑ (𝑇𝐹 + (𝑖 − 1)𝑇𝑖 ∫ ∫ (𝑥 + ℎ)𝑓(ℎ)𝑓(𝑥)𝑑ℎ𝑑𝑥
𝑖∆−𝑥

0

𝑖∆

(𝑖−1)∆
𝐾
𝑖=1    (4.5) 

The expected cost is given in Equation (4.6) 

𝐸𝐶2(𝐾, 𝐷, 𝑀) = ((𝑖 − 1)𝐶𝐼 + 𝐶𝐹) ∗ 𝑃2(𝐾, 𝐷, 𝑀)      (4.6) 

 

Figure 16: KDM model – case B 

 
Source Adapted from Scarf et al. (2009) 

 

Case C: in case C, the defect and failure occur after 𝐾∆ and before T (Figure 17). The probability 

of the renewal cycle is given in Equation (4.7) and the expected length of the renewal cycle is in 

Equation (4.8) 

𝑃3(𝐾, 𝐷, 𝑀) = ∑ ∫ ∫ 𝑓(ℎ)𝑓(𝑥)𝑑ℎ𝑑𝑥
𝑇−𝑥

0

𝑇

𝐾∆
𝐾
𝑖=1       (4.7) 

𝐸𝐿3(𝐾, 𝐷, 𝑀) = ∑ (𝐾𝑇𝑖 + 𝑇𝐹) ∫ ∫ (𝑥 + ℎ)𝑓(ℎ)𝑓(𝑥)𝑑ℎ𝑑𝑥
𝑇−𝑥

0

𝑇

𝐾∆
𝐾
𝑖=1     (4.8) 

The expected cost becomes Equation 4.9 

𝐸𝐶3(𝐾, 𝐷, 𝑀) = (𝐾𝐶𝐼 + 𝐶𝐹) ∗ 𝑃3(𝐾, 𝐷, 𝑀)       (4.9) 

Figure 17: KDM model – case C 

 
Source: Adapted from Scarf et al. (2009) 

 

Case D: here, the defect arrives after 𝐾∆ and it is identified at T (Figure 18). The probability of 

the renewal cycle is given in Equation (4.10) 

𝑃4(𝐾, 𝐷, 𝑀) = ∑ ∫ 𝑓(𝑥)(1 − 𝐹𝐻(𝑇 − 𝑥))𝑑𝑥
𝑇

(𝐾∆
𝐾
𝑖=1       (4.10) 

Equation (4.11) depicts the expected length of the renewal cycle 

𝐸𝐿4(𝐾, 𝐷, 𝑀) = ∑ 𝑇 + 𝑇𝑅 + 𝐾𝑇𝑖 ∫ 𝑓(𝑥)(1 − 𝐹𝐻(𝑖∆ − 𝑥))𝑑𝑥
𝑇

𝐾∆
𝐾
𝑖=1     (4.11) 

The expected cost is in Equation 4.12 

𝐸𝐶4 = (𝐾𝐶𝐼 + 𝐶𝑅) ∗ 𝑃4(𝐾, 𝐷, 𝑀)                                                                          (4.12) 
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Figure 18: KDM Model- case D 

 
Source: Adapted from Scarf et al. (2009) 

 

Case E: In this case, there is no defect and the system is replaced preventatively at T (Figure 19). 

This is why the outer boundary integral in the probability equation is infinity (Equation 4.13). 

The expected length of the renewal cycle is given in Equation 4.14 

𝑃5(𝐾, 𝐷, 𝑀) = ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑇
         (4.13) 

𝐸𝐿5(𝐾, 𝐷, 𝑀) = ∑ 𝑇 + 𝑇𝑅 + 𝐾𝑇𝑖 ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑇
𝐾
𝑖=1       (4.14) 

And the expected cost is given in Equation (4.15) 

𝐸𝐶5 = (𝐾𝐶𝐼 + 𝐶𝑅) ∗ 𝑃5(𝐾, 𝐷, 𝑀)        (4.15) 

Figure 19: KDM Model- case E 

 
Source: Adapted from Scarf et al. (2009) 

 

The long-run cost per life is minimized as given in Equation (4.16): 

𝐶∞(𝐾, 𝐷, 𝑀) =
∑ 𝐸𝐶𝑖(𝐾,𝐷,𝑀)5

𝑖=1

∑ 𝐸𝐿𝑖(𝐾,𝐷,𝑀)5
𝑖=1

         (4.16) 

According to Scarf et al. (2009), the probability that a cycle ends in failure, 𝑟ℎ𝑜, is given by 

Equation (4.17) 

𝑟ℎ𝑜 = 𝑃1(𝐾, 𝐷, 𝑀) + 𝑃3(𝐾, 𝐷, 𝑀)        (4.17) 

And the mean time between failures (MTBOF) for the gland seals (Equation 4.18) becomes: 

𝑀𝑇𝐵𝑂𝐹 =  
∑ 𝐸𝐿𝑖(𝐾,𝐷,𝑀)5

𝑖=1

𝑟ℎ𝑜
         (4.18) 

For the spare system called the ST policy, 20 scenario cases were modelled. Each of these 20 cases 

are described as follows. 

Case 1: The defect and failure arrive before S. There is no demand between (𝑥 + ℎ) and T, no 

opportunity until a corrective replacement at T (Figure 20). The probability of the renewal cycle is 

given as Equation (4.19): 

𝑃1(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ)
𝑆−𝑥

0

𝑆

0
[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑ℎ𝑑𝑥

𝑇

𝑥+ℎ
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]

𝑇

𝑠
  (4.19) 
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The expected life is the product of the time until preventive maintenance and the probability is 

𝐸𝐿1(𝑆, 𝑇) = 𝑇 ∗ 𝑃1(𝑆, 𝑇).  

The expected cost is associated with the cost of failure, since a failure existed in the cycle, 

 𝐸𝐶1(𝑆, 𝑇) = 𝐶𝐹 ∗ 𝑃1(𝑆, 𝑇). 

 

Figure 20: ST model – case 1 

 
Source: This research (2023) 

 

Case 2: In case 2, there is a defect before S and a failure between S and T. There is no demand 

between (𝑥 + ℎ) and T, no opportunity until a corrective replacement at T (Figure 21). Hence the 

probability of a renewal cycle follows in Equation (4.20) 

𝑃2(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ)
𝑇−𝑥

𝑆−𝑥

𝑆

0
[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑ℎ𝑑𝑥

𝑇

𝑥+ℎ
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]

𝑇

𝑠
  (4.20) 

The length of the cycle is 𝐸𝐿2(𝑆, 𝑇) = 𝑇 ∗ 𝑃2(𝑆, 𝑇), and the expected cost is 𝐸𝐶2(𝑆, 𝑇) = 𝐶𝐹 ∗

𝑃2(𝑆, 𝑇) 

Figure 21: ST Model- case 2 

 
Source: This research (2023) 

 

Case 3: Defect and failure exist between S and T. there is no demand between (𝑥 + ℎ) and T. No 

opportunity until corrective replacement at T (Figure 22). Equation (4.21) shows the probability 

of the renewal cycle. 

𝑃3(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ)
𝑇−𝑥

0

𝑇

𝑆
[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑ℎ𝑑𝑥

𝑇

𝑥+ℎ
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]

𝑇

𝑠
  (4.21) 

The expected length of the renewal cycle and its associated cost are given as 𝐸𝐿3(𝑆, 𝑇) = 𝑇 ∗

𝑃3(𝑆, 𝑇) and 𝐸𝐶3(𝑆, 𝑇) = 𝐶𝐹 ∗ 𝑃3(𝑆, 𝑇) respectively.  
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Figure 22: ST Model- case 2 

 
Source: This research (2023) 

 

Case 4: In case 4; there is a defect before S. No opportunity and failure. Preventive replacement 

at T. In a case like this, demand may arrive, but it does not change anything as the defective state 

meets demand (Figure 23). The cycle’s probability is given in Equation 4.22 

𝑃4(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ)𝑑ℎ𝑑𝑥
∞

𝑇−𝑥

𝑆

0
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]

𝑇

𝑠
     (4.22) 

The expected length of the renewal cycle is 𝐸𝐿4 = 𝑇 ∗ 𝑃4(𝑆, 𝑇) and its associated cost is given as 

𝐸𝐶4 = 𝐶𝐹 ∗ 𝑃4(𝑆, 𝑇). 

Figure 23: ST Model- case 2 

 
Source: This research (2023) 

 

Case 5: In case 5; there is a defect between S and T. there is no demand, opportunity or failure. 

But there is a preventive replacement at T (Figure 24). Equation (4.23) shows the probability of 

the renewal cycle 

𝑃5(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ)𝑑ℎ𝑑𝑥
∞

𝑇−𝑥

𝑇

𝑆
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]

𝑇

𝑠
     (4.23) 

The length of the renewal cycle is 𝐸𝐿5(𝑆, 𝑇) = 𝑇 ∗ 𝑃5(𝑆, 𝑇) and the expected cost is 

𝐸𝐶5(𝑆, 𝑇) = 𝐶𝑅 ∗ 𝑃5(𝑆, 𝑇). 

Figure 24: ST model – case 5 

 
Source: This research (2023) 

 

Case 6: In case 6; there is no defect arrival in the cycle, except a preventive replacement at T 

(Figure 25). Its cycle’s probability is given as Equation (4.24) 

𝑃6(𝑆, 𝑇) = ∫ 𝑓(𝑥)
∞

𝑇
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]

𝑇

𝑠
       (4.24) 
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The expected length is 𝐸𝐿6(𝑆, 𝑇) = 𝑇 ∗ 𝑃6(𝑆, 𝑇). Also, the expected cost is 𝐸𝐶6(𝑆, 𝑇) = 𝐶𝑅 ∗

𝑃6(𝑆, 𝑇) 

Figure 25: ST model – case 6 

 
Source: This research (2023) 

 

Case 7: In case 7; there is defect and failure before S. Demand between (𝑥 + ℎ)  and S (Figure 

26). No opportunity until a corrective replacement at z. The probability of the renewal cycle is 

given in Equation (4.25) 

𝑃7(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑓(𝑧)
𝑆

𝑥+ℎ

𝑆−𝑥

0

𝑆

0
𝑑𝑧𝑑ℎ𝑑𝑥      (4.25) 

The expected length of cycle in this case is given as Equation (4.26) 

𝐸𝐿7(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑧𝑓(𝑧)
𝑆

𝑥+ℎ

𝑆−𝑥

0

𝑆

0
𝑑𝑧𝑑ℎ𝑑𝑥      (4.26) 

The expected cost is associated with the cost of unmet demand, 𝐸𝐶7(𝑆, 𝑇) = 𝐶𝑈𝐷 ∗ 𝑃7(𝑆, 𝑇) 

because the demand was not met before the cycle ended.  

Figure 26: ST model – Case 7 

 
Source: This research (2023) 

 

Case 8: In case 8; there is defect and failure before S. Demand between S and T. No opportunity 

between S and z until a corrective replacement at z (Figure 27). The probability of the renewal 

cycle and its length are shown in Equation (4.27) and (4.28) respectively 

𝑃8(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑓(𝑧)
𝑇

𝑆

𝑆−𝑥

0

𝑆

0
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]𝑑𝑧𝑑ℎ𝑑𝑥

𝑧

𝑠
   (4.27) 

𝐸𝐿8(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑧𝑓(𝑧)
𝑇

𝑆

𝑆−𝑥

0

𝑆

0
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]𝑑𝑧𝑑ℎ𝑑𝑥

𝑧

𝑠
   (4.28) 

The expected cost is given as 𝐸𝐶8(𝑆, 𝑇) = 𝐶𝑈𝐷 ∗ 𝑃8(𝑆, 𝑇). 

Figure 27: ST model – case 8 

 
Source: This research (2023) 
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Case 9: In case 9; there is defect and failure after S. Demand also exists between (𝑥 + ℎ) and T. 

however, there is no opportunity between S and z until a corrective replacement at z (Figure 28). 

Hence the probability of the renewal cycle is given as Equation (4.29) 

𝑃9(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑓(𝑧)
𝑇

𝑥+ℎ

𝑇−𝑥

0

𝑇

𝑆
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]𝑑𝑧𝑑ℎ𝑑𝑥

𝑧

𝑠
   (4.29) 

And the expected length is shown as Equation (4.30) 

𝐸𝐿9(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑧𝑓(𝑧)
𝑇

𝑥+ℎ

𝑇−𝑥

0

𝑇

𝑆
[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]𝑑𝑧𝑑ℎ𝑑𝑥

𝑧

𝑠
   (4.30) 

The expected cost is 𝐸𝐶9(𝑆, 𝑇) = 𝐶𝑈𝐷 ∗ 𝑃9(𝑆, 𝑇). 

Figure 28: ST model – case 9 

 
Source: This research (2023) 

Case 10: In case 10; there is defect and failure before S. No demand between (𝑥 + ℎ) and w but 

there is corrective replacement due to an opportunity at w (Figure 29). The probability of cycle 

renewal and the expected length of the renewal cycle is written in Equation (4.31) and (4.32) 

respectively 

𝑃10(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑇

𝑆

𝑆−𝑥

0

𝑆

0
[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑𝑤𝑑ℎ𝑑𝑥

𝑤

𝑥+ℎ
     (4.31) 

𝐸𝐿10(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)𝑇

𝑆

𝑆−𝑥

0

𝑆

0
[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑𝑤𝑑ℎ𝑑𝑥

𝑤

𝑥+ℎ
    (4.32) 

The expected cost is associated with the cost of opportunity as 𝐸𝐶10(𝑆, 𝑇) = 𝐶𝑂 ∗ 𝑃10(𝑆, 𝑇). 

Figure 29: ST model – case 10 

 
Source: This research (2023) 

 

Case 11: In case 11; there is a defect before S but an opportunity prevents failure between S and T 

(Figure 30). The renewal’s cycle probability is given in Equation (4.33) 

𝑃11(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑥+ℎ

𝑆

𝑇−𝑥

𝑆−𝑥

𝑆

0
     (4.33) 

And the expected length is shown in Equation (4.34) below 

𝐸𝐿11(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑥+ℎ

𝑆

𝑇−𝑥

𝑆−𝑥

𝑆

0
    (4.34) 

The expected cost is associated with the cost of opportunity as, 𝐸𝐶11(𝑆, 𝑇) = 𝐶𝑂 ∗ 𝑃11(𝑆, 𝑇). 
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Figure 30: ST model – case 11 

 
Source: This research (2023) 

 

Case 12: In case 12; there is defect arrival before S, however the failure occurs between S and T. 

An opportunity at 𝑤 prevents an unmet demand. There is no demand between (𝑥 + ℎ) and w. 

(Figure 31). The probability of renewal cycle is modelled in Equation (4.35). 

𝑃12(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑𝑤𝑑ℎ𝑑𝑥
𝑤

𝑥+ℎ

𝑇

𝑥+ℎ

𝑇−𝑥

𝑆−𝑥

𝑆

0
   (4.35) 

And the cycle’s expected length is given in Equation 4.36 

𝐸𝐿12(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑𝑤𝑑ℎ𝑑𝑥
𝑤

𝑥+ℎ

𝑇

𝑥+ℎ

𝑇−𝑥

𝑆−𝑥

𝑆

0
  (4.36) 

Hence, the associated expected cost becomes 𝐸𝐶12(𝑆, 𝑇) = 𝐶𝑂 ∗ 𝑃12(𝑆, 𝑇). 

 

Figure 31: ST model – case 12 

 
Source: This research (2023) 

 

Case 13: in case 13; there is an opportunity after S, but before the defect and failure. In this case, 

however, since there is no defect present, there is no replacement. However, since the arrival 

distribution of defects is exponential, it is similar to a renewal on opportunity (Figure 32). The 

probability of cycle renewal is given in Equation (4.37). 

𝑃13(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑥

𝑆

𝑇−𝑥

0

𝑇

𝑆
     (4.37) 

The expected length of cycle is in Equation xx 

𝐸𝐿13(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑥

𝑆

𝑇−𝑥

0

𝑇

𝑆
    (4.38) 

The expected cost is associated with the cost of opportunity as 𝐸𝐶13(𝑆, 𝑇) = 𝐶𝑂 ∗ 𝑃13(𝑆, 𝑇). 

Figure 32: ST model – case 13 

 
Source: This research (2023) 
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Case 14:  In case 14, there is a defect after S but the arrival of an opportunity an opportunity at 𝑤 

prevents the failure (Figure 33). Equation (4.39) shows the probability of a renewal cycle 

𝑃14(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑥+ℎ

𝑥

𝑇−𝑥

0

𝑇

𝑆
     (4.39) 

The expected length of the cycle is written in Equation (4.40) 

𝐸𝐿14(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑥+ℎ

𝑥

𝑇−𝑥

0

𝑇

𝑆
    (4.40) 

The expected cost is given as 𝐸𝐶14(𝑆, 𝑇) = 𝐶𝑂 ∗ 𝑃14(𝑆, 𝑇). 

Figure 33: ST model – case 14 

 
Source: This research (2023) 

 

Case 15:  In case 15; there is defect and failure after S. An opportunity at 𝑤 prevents an unmet 

demand, also, there is no demand between (𝑥 + ℎ) and w (Figure 34). The probability of the 

renewal cycle is given in Equation (4.41) 

𝑃15(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑𝑤𝑑ℎ𝑑𝑥
𝑤

𝑥+ℎ

𝑇

𝑥+ℎ

𝑇−𝑥

0

𝑇

𝑆
   (4.41) 

Its expected length of the renewal cycle is in Equation (4.42) 

𝐸𝐿15(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)[1 − ∫ 𝑓(𝑧)𝑑𝑧]𝑑𝑤𝑑ℎ𝑑𝑥
𝑤

𝑥+ℎ

𝑇

𝑥+ℎ

𝑇−𝑥

0

𝑇

𝑆
  (4.42) 

The expected cost is associated with the cost of opportunity and written as, 𝐸𝐶15(𝑆, 𝑇) = 𝐶𝑂 ∗

𝑃15(𝑆, 𝑇). 

Figure 34: ST model – case 15 

 
Source: This research (2023) 

 

Case 16: In case 16; there is a defect before S which does not lead to a failure. Therefore, there is 

a preventive replacement due to an opportunity (Figure 35). The probability of the renewal cycle 

is given in Equation (4.43) 

𝑃16(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑇

𝑆

∞

𝑇−𝑥

𝑆

0
     (4.43) 

The expected length is given in Equation (4.44). 

𝐸𝐿16(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑇

𝑆

∞

𝑇−𝑥

𝑆

0
     (4.44) 
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The expected cost is 𝐸𝐶16(𝑆, 𝑇) = 𝐶𝑂 ∗ 𝑃16(𝑆, 𝑇). 

Figure 35: ST model – case 16 

 
Source: This research (2023) 

 

Cases 17 and 18 depicts the arrival of an opportunity before and after a defect respectively, and 

also the defect in both cases arriving after S (Figures 36 and 37 respectively). The probabilities of 

the renewal cycle are shown in Equation (4.45) and (4.46) for cases 17 and 18 respectively.  

𝑃17(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑥

𝑆

∞

𝑇−𝑥

𝑇

𝑆
     (4.45) 

 

𝑃18(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑇

𝑥

∞

𝑇−𝑥

𝑇

𝑆
     (4.46) 

 

The corresponding expected lengths of the renewal cycle are depicted in Equation (4.47) for case 

17 and Equation (4.48) for case 18.  

𝐸𝐿17(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑥

𝑆

∞

𝑇−𝑥

𝑇

𝑆
     (4.47) 

𝐸𝐿18(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑ℎ𝑑𝑥
𝑇

𝑥

∞

𝑇−𝑥

𝑇

𝑆
     (4.48) 

The expected costs are both associated with the cost of opportunity given as, 𝐸𝐶17(𝑆, 𝑇) = 𝐶𝑂 ∗

𝑃17(𝑆, 𝑇) for case 17 and 𝐸𝐶18(𝑆, 𝑇) = 𝐶𝑂 ∗ 𝑃18(𝑆, 𝑇) for case 18. 

Figure 36: ST model – case 17 

 
Source: This research (2023) 

 

Figure 37: ST model – case 18 

 
Source: This research (2023) 

 

Case 19: Case 19 shows the scenario of the arrival of no defect, but a negative inspection due to 

an opportunity (Figure 38). Its probability of renewal cycle is given in Equation (4.49) 
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𝑃19(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑𝑥
𝑇

𝑆

∞

𝑇
       (4.49) 

The expected length of the renewal cycle is given in Equation (4.50) 

𝐸𝐿19(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑤 ∗ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤𝑑𝑥
𝑇

𝑆

∞

𝑇
      (4.50) 

The expected cost therefore becomes, 𝐸𝐶19(𝑆, 𝑇) = 𝐶𝑂 ∗ 𝑃19(𝑆, 𝑇). 

 

Figure 38: ST model – case 19 

 
Source: This research (2023) 

 

Finally, in case 20, there is a defect before S. Failure comes between S and T. There is the arrival 

of a demand between (𝑥 + ℎ) and T and no opportunity between S and z (Figure 39). The 

probability of renewal cycle is as in Equation (4.51) 

𝑃20(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑓(𝑧)[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]𝑑𝑧𝑑ℎ𝑑𝑥
𝑧

𝑆

𝑇

𝑥+ℎ

𝑇−𝑥

𝑆−𝑥

𝑆

0
   (4.51) 

The associated expected length of renewal cycle is given in Equation (4.52) 

𝐸𝐿20(𝑆, 𝑇) = ∫ 𝑓(𝑥) ∫ 𝑓(ℎ) ∫ 𝑧 ∗ 𝑓(𝑧)[1 − ∫ 𝜇𝑒−𝜇(𝑤−𝑠)𝑑𝑤]𝑑𝑧𝑑ℎ𝑑𝑥
𝑧

𝑆

𝑇

𝑥+ℎ

𝑇−𝑥

𝑆−𝑥

𝑆

0
  (4.52) 

And the expected cost is a function of the cost of unmet demand, 𝐸𝐶20(𝑆, 𝑇) = 𝐶𝑈𝐷 ∗ 𝑃20(𝑆, 𝑇). 

Figure 39: ST model – case 20 

 
Source: This research (2023) 

 

The integrated optimized cost rate (Equation 4.53) is given as the ratio of the total expected costs 

of the two policies (KDM) and (ST) to their total expected life.  

𝐶∞(𝐾, 𝐷, 𝑀, 𝑆, 𝑇) =  
∑ 𝐸𝐶𝑖(𝐾,𝐷,𝑀)+5

𝑖=1 ∑ 𝐸𝐶𝑖(𝑆,𝑇)20
𝑖=1

∑ 𝐸𝐿𝑖(𝐾,𝐷,𝑀)+5
𝑖=1 ∑ 𝐸𝐿𝑖(𝑆,𝑇)20

𝑖=1

      (4.53) 

It is considered that the internal component of the centrifugal pump has a characteristic life 𝜏2 of 5 

years for the strong spares (WEIR, 2000). The mean time between failures (MTBOF) of the seal 

component was retrieved from the result of the optimized decision variables of the principal system 

(KDM) and used to calculate the rate of demand as (𝜇 =
1

𝑀𝑇𝐵𝑂𝐹
).  
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The KDM model yields an MTBOF value of 8.0908, implying an anticipated failure rate of the 

gland seal approximately once every 8 years. To enhance the realism of the model, an assumption 

was made that the implementation of preventive actions on any number of centrifugal pumps, 

denoted as '𝑛', can facilitate the opportunity to conduct inspections on the spare pump. This rate of 

opportunity is denoted as  𝑛λ given as 𝜇 + (
1

𝑀
), where, 𝑀 is the optimized time for preventive 

maintenance of the principal system. Therefore, 𝜇 and λ becomes the additional parameters for the 

combined (principal and spare) system. In the case study of this thesis, 𝑛 is taken as 1 (see Figure 

14). The rate of opportunity to inspect the spare pump is a factor dependent on the number of 

centrifugal pumps present in the principal system. 

 Both systems’ cases consist of 5 decision variables (𝐾, 𝐷, 𝑀, 𝑆, 𝑇) which were optimized together. 

The analytical and optimal analysis was done in Python 3.7 installed on a computer with Intel(R) 

Core (TM) i7-8565U, CPU @1.80GHz 1.99GHz, 7.69GB of usable RAM, 64bit operating system, 

and x64-based processor. 

 

4.7 PARAMETER INFORMATION 

Table 12 shows the values of each parameter for the base case 

Table 12: Parameter values for base case 

Parameter Value 

𝜏1 1.5 years 

𝜏2 5 years 

𝛽1 2  

𝛽2 3  

𝑠 0.1 

𝐿 0.5 year 

𝐶𝐼 0.05 Rs 

𝐶𝑅 1 Rs 

𝐶𝐹 10 Rs 

𝐶𝑈𝐷 100 Rs 

𝐶𝑂 0.3 Rs 

𝑇𝑅 0.003 year 

𝑇𝐼 0.00091 year 

𝑇𝐹 0.0082 year 

*𝜇 0.125/year 

**λ 0.254/year 

Source: This research (2023) 
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Where, * and ** are derived parameters from the KDM model.  

The value of 𝐶𝑈𝐷is the highest because it is related to the logic that a big consequence is associated 

with unmet demands (RODRIGUES, CAVALCANTE, ALBERTI, 2023). 𝐶𝑂 is always less than 

𝐶𝑅 (MELO et al., 2022). Also, corrective actions are logically more expensive than other actions, 

hence, 𝐶𝑂 <  𝐶𝑅 < 𝐶𝐹 (SINISTERRA et al., 2023). 

 

4.8 RESULT PRESENTATION 

For the principal system (KDM) policy, Figures 40 and 41 show the behaviour of the long run 

cost rate versus D and M respectively.  

 

Figure 40: Cost rate Versus D 

 
Source: This research (2023) 

 

In fig 40 above, for each value of K (6-10), the values of D were varied between 0.2 and 2 at the 

optimal value for M, for instance, at K=6, M*=2.637. The parameter values follow that of table 11.  

Observing figure 41, the policy for the principal system suggests that at D (i.e., interval between 

inspections) at 0.5years (6 months), the best K is 7. For D values above 1.5 years, independently 

on the chosen K, the long run cost becomes expensive. Therefore, for the manager, the policy 

suggests performing inspections every 6 months. 
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Figure 41: Cost rate Versus M 

 
Source: This research (2023) 

 

In fig 41 above, for each value of K (6-10), the values of M were varied between 2 and 12 at the 

optimal value for D, for instance, at K=6, D*=0.2996. The parameter values follow that of table 

12.  

Observing fig 42, the model recommends that the best time for preventive maintenance for the 

principal system is 4 years for any value of K. If, for any reason, the manager decides to perform 

preventive maintenance before 4 years, the best K is 6 (which could be seen by the doted blue line 

on the graph), whereas, if he decides to perform a preventive maintenance after 4 years, the best K 

is 10 (which could be seen by the purple line on the graph). 

 For the integrated system (KDMST) policy, Figures 42 and 43 shows the behaviour of the long 

run cost rate versus S and T respectively 

Figure 42: Cost rate versus S 

 
Source: This research (2023) 
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In fig 42 above, for each value of K (6-10), the values of S were varied between 0.05 and 0.4 at the 

optimal value for D, M, and T. For instance, at K=6, D*=0.5588, M*=3.717 and T*=8.0374. The 

parameter values follow that of table 12.  

Observing fig 42, it can be seen that the best K value that gives the minimum cost rate is 8. 

Independently on the value of K, the optimal S is approximately 0.2 years.  

 

Figure 43: Cost rate versus T 

 
Source: This research (2023) 

 

In fig 43 above, for each value of K (6-10), the values of T were varied between 2 and 12 at the 

optimal value for D, M, and S. For instance, at K=6, D*=0.5588, M*=3.7208 and S*=0.0676. The 

parameter values follow that of table 12.  

The observed behavior of the K values in the figure is intriguing. It is evident that the cost rate 

exhibits limited sensitivity to variations in the K values. This can be attributed to the adaptive 

nature of D, M, and S, which collectively ensure the attainment of the lowest cost rate. However, 

it is noteworthy that the optimal cost rate, regardless of the K value, is consistently achieved within 

the time frame of 6 to 8 years. Hence, according to the integrated policy, it is advisable to schedule 

preventive maintenance for the spare system within this timeframe. Performing maintenance prior 

to this range may lead to increased cost rates irrespective of the K value, while maintenance 

conducted after 8 years could similarly result in elevated cost rates, irrespective of the K value. 
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Table 13: Simulation Results for the Integrated Policy 

s L K D M S T

Base 1.5 5 2 3 0.1 0.5 0.05 1 10 0.3 100 8 0.4631 4.006 0.2046 8.0317 1.9945 0

1 1.5 4 2 3 0.1 0.5 0.05 1 10 0.3 100 7 0.426 3.2581 0.1741 6.7272 2.3883 19.74429682

2 1.5 6 2 3 0.1 0.5 0.05 1 10 0.3 100 9 0.4923 4.7506 0.2422 10.068 1.7044 -14.54499875

3 1.5 5 1.5 3 0.1 0.5 0.05 1 10 0.3 100 8 0.4621 3.997 0.2047 8.0453 1.9969 0.12033091

4 1.5 5 3 3 0.1 0.5 0.05 1 10 0.3 100 8 0.4634 4.009 0.2062 8.008 1.9891 -0.270744548

5 1.5 5 2 2 0.1 0.5 0.05 1 10 0.3 100 10 0.4244 4.5652 0.1857 10.8956 2.1993 10.26823765

6 1.5 5 2 4 0.1 0.5 0.05 1 10 0.3 100 6 0.571 3.7695 0.2182 7.5577 1.8666 -6.412634746

7 1.5 5 2 3 0 0.5 0.05 1 10 0.3 100 0 NA 2.9443 0.2362 7.8994 1.7526 -12.12835297

8 1.5 5 2 3 0.2 0.5 0.05 1 10 0.3 100 10 0.4005 4.2794 0.1799 8.1973 2.2387 12.24367009

9 1 5 2 3 0.1 0.5 0.05 1 10 0.3 100 8 0.4641 4.0159 0.1981 8.1687 2.0471 2.637252444

10 2.5 5 2 3 0.1 0.5 0.05 1 10 0.3 100 7 0.4993 3.8127 0.2178 7.8858 1.9078 -4.346954124

11 1.5 5 2 3 0.1 0.5 0.01 1 10 0.3 100 10 0.3662 3.9213 0.2047 8.0249 1.8939 -5.043870644

12 1.5 5 2 3 0.1 0.5 0.1 1 10 0.3 100 7 0.5614 4.3328 0.185 10.9545 2.3039 15.51265981

13 1.5 5 2 3 0.1 0.5 0.05 0.8 10 0.3 100 7 0.4848 3.7124 0.2051 8.0444 1.9354 -2.963148659

14 1.5 5 2 3 0.1 0.5 0.05 1.2 10 0.3 100 9 0.4432 4.2754 0.2048 8.0302 2.0506 2.812735021

15 1.5 5 2 3 0.1 0.5 0.05 1 8 0.3 100 7 0.5354 4.0929 0.2122 6.509 1.8607 -6.708448233

16 1.5 5 2 3 0.1 0.5 0.05 1 12 0.3 100 9 0.4092 3.9519 0.2033 11.2012 2.054 2.98320381

17 1.5 5 2 3 0.1 0.5 0.05 1 10 0.2 100 8 0.4631 4.0069 0.1405 8.0317 1.9731 -1.072950614

18 1.5 5 2 3 0.1 0.5 0.05 1 10 0.4 100 8 0.4632 4.0071 0.2413 8.0254 2.0155 1.052895463

19 1.5 5 2 3 0.1 0.5 0.05 1 10 0.3 80 8 0.4627 4.0024 0.2471 11.0121 1.7463 -12.44422161

20 1.5 5 2 3 0.1 0.5 0.05 1 10 0.3 120 8 0.4629 4.0053 0.1824 6.7011 2.1741 9.004763099

21 1.5 5 2 3 0.1 0.1 0.05 1 10 0.3 100 4 1.1235 5.2295 0.2455 10.8754 1.0211 -48.80421158

22 1.5 5 2 3 0.1 1 0.05 1 10 0.3 100 9 0.3606 3.4826 0.1675 6.609 2.4236 21.51416395

ParametersCase Variables Cost rate percentage 

change in base
𝜏1 𝜏2 𝛽1 𝛽2 𝐶𝐼 𝐶𝑅 𝐶𝐹 𝐶𝑂 𝐶𝑈𝐷
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4.8.1 Discussions of Results for the integrated policy 

Referring to Table 13, showing the integrated optimization, actions that increase the impact of 

accelerate the wear and tear of the gland seal as analyzed in case 1 by decreasing the 

characteristic life parameter of the strong sub-population, leads to a significant increase in costs 

and decreasing related to all decision variables associated  to the inspection/replacement actions 

of the principal and spare system. On the other hand, increasing the characteristic life of the 

strong sub-population can have the opposite effect, resulting in a lower cost rate. 

In Case 7, the zero chance of a weak item being used in the heterogeneous population suggests 

that no maintenance inspections are necessary. This underscores the critical role of high-quality 

maintenance practices. Moreover, the absence of substandard spare parts results in a marked 

reduction in cost rates. In case 8, the increase of a percentage of weak item in the population 

showed a huge number of inspections and an increased cost-rate. This shows that the time until 

a preventive maintenance could be delayed.  

The optimal policy and cost rate are significantly affected by the variability of several costs, as 

evidenced by Cases 11-20. Notably, Cases 11-20 reflect an increase in cost parameters that may 

arise from outsourcing maintenance personnel. To mitigate these costs, assigning inspections 

to the operations team aligns with the autonomous maintenance principle of Total Productive 

Maintenance (TPM). Additionally, enhancing defect visibility for operators would expedite and 

reduce the cost of maintenance actions. 

In cases 11 and 12, when it is cheaper to do inspections (case 11), the model recommends more 

inspections. In contrast, in Case 12, the cost of inspection exceeds the base case cost, resulting 

in a reduced recommendation for inspections. 

For cases 13 and 14, In Case 14, where the cost of replacement is higher, the model suggests 

for the principal system, performing preventive maintenance later (M=4.27). On the other hand, 

in Case 13, where the cost of replacement is lower, the model recommends earlier (M=3.71) 

preventive maintenance.  

In cases 15 and 16, the model predicts different inspection frequencies and preventive 

replacement timing depending on the cost of failure. Specifically, in Case 16, where the cost of 

failure is higher, the model recommends more frequent inspections compared to the base case. 

Conversely, in Case 15, where the cost of failure is lower, the model suggests performing fewer 

inspections. Additionally, the model recommends earlier preventive replacement timing in 

situations where the cost of failure is bigger (M=3.95).  
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For cases 17 and 18, when the cost of opportunity is cheaper, (case 17), the model recommends 

a wider window of opportunity, but when the cost of opportunity is more expensive (case 18), 

it recommends a shorter window of opportunity than the base case. Hence, the length of the 

window of opportunity is indirectly proportional to the cost of opportunity.  

For cases 19 and 20, when the cost of unmet demand is cheaper, the model predicts a shorter 

window of opportunity, but when the cost of unmet demand is more expensive (case 20), it 

predicts a wider window of opportunity. 

Case 22 serves to illustrate the effect of increasing the mean (L) of the exponential distribution 

of delay time, which results in a decrease in delay time (1/L). The study found that as the time 

spent in the defective state decreases, an increase in the frequency of inspections is required to 

detect defects earlier. This observation is also evident in the work of Sinisterra et al. (2023) 

where, when the mean sojourn of the machine in the defective state is shorter, their model 

suggested an increase in the frequency of inspection. 

 

4.9 FINAL REMARKS ON THE CHAPTER 

An integrated opportunistic maintenance policy was developed for a principal and standby 

system of centrifugal pumps used in the mining industry. The KDM policy was adopted for the 

principal system. An ST model was developed for the spare system. The MTBOF result from 

the principal system for the gland seal component was used to calculate the additional 

parameters (µ and λ) for the ST model. Results from the KDM policy were observed. Both 

models (KDM and ST) were then combined as a KDMST integrated policy which was 

optimized with the objectives of determining the optimal number of inspections, inspection 

intervals, window of opportunity, and optimal times for preventive maintenance of the primary 

and standby system. A numerical case study of the policy on centrifugal pumps was analyzed 

by investigating its behavior for various parameter values such as the characteristic life and 

shape for both strong and weak spares following a Weibull distribution, inspection costs, 

preventive and failure replacement costs, opportunity costs, and unmet demand costs. The 

proposed policy suggests increasing the window of opportunity for inspecting the spare system 

when the cost of unmet demand is high. This recommendation is based on the premise that 

conducting more inspections is less expensive than facing unmet demand and also by 

performing more inspections, the manager can ascertain that the spare system is always readily 

available to perform its intended function. Similarly, when the cost of opportunity decreases, 
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the policy suggests increasing the window of opportunity for inspection. This framework can 

be applied to industries with similar equipment in similar environments. Future studies could 

focus on exploring the relationship between the window of opportunity and the optimal cost 

rate for different types of pumps under varying operating conditions. 
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5 CONCLUSIONS OF THE THESIS 

The primary objective of this thesis is to discuss some contributions of maintenance policies for 

centrifugal pump in an iron ore concentrate process plant. To achieve this goal, the author 

developed two models. The equipment of interest for this study is the centrifugal pump utilized 

in the production of iron ore concentrates in a Nigerian mining industry. The reason for selecting 

this particular equipment is that the author has significant industrial experience working in this 

industry and has identified several issues caused by sub-optimal maintenance policies. These 

sub-optimal policies are often attributed to inadequate maintenance data, poorly timed 

maintenance schedules, or a failure to utilize optimal opportunities for maintenance, resulting 

in substandard product quality. Thus, it is crucial to propose maintenance policies that can 

address these issues. In this thesis, we propose two model frameworks to achieve this aim.  

The first study proposed a reinforcement learning approach for condition-based maintenance of 

centrifugal pumps used in the production of iron ore concentrates. A variance gamma process 

degradation model is developed to simulate the degradation process of the pump, and actions 

are recommended based on performance features to minimize long-term maintenance costs. 

This solved the first problem of deciding the actions to take to avoid an outright failure of the 

pump. The approach outperforms a corrective maintenance policy and is effective in predicting 

lower maintenance costs and fewer stoppages for slower degrading pumps. 

The second study developed an integrated opportunistic maintenance policy for a cold-standby 

system consisting of a principal set of pumps and a standby set that is activated in the event of 

failure. The principle of the model developed is based on the delay-time concept. One 

maintenance (KDM) policy was adopted. The other (ST) policy was developed. The two 

policies were integrated as a (KDMST) policy. The separate and combined optimization are 

defined. This solved the second general problem of determining the optimal number of 

inspections, opportunity window and time for preventive replacement for the principal and 

spare pump. Simulation and sensitivity analysis show a strong correlation with existing studies, 

and the proposed policy can be readily applied to other industries that utilize similar equipment. 

In summary, this thesis has discussed the contributions of maintenance policies for centrifugal 

pumps, demonstrating that the reinforcement learning approach for condition-based 

maintenance and the integrated opportunistic maintenance policy for a cold standby system 

offer effective solutions for minimizing long-term maintenance costs 
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5.1 LIMITATIONS AND FUTURE LINES OF RESEARCH 

The limitations of the study are  

1. The study area for the models is restricted to an Iron ore company based in Nigeria 

2. The simple case of the second model could be expanded to include more centrifugal pumps 

involved in the spare system. 

The works presented in the studies above suggest several avenues for future research. Here are 

some potential directions:  

1 Expanding the physical model of the centrifugal pump: Further development of the 

physical model can be conducted to generate additional feature data for machine-learning 

algorithms. This can include incorporating more degradation factors or analyzing the effects of 

different types of faults on the pump's performance. 

 

2 Enhancing the reinforcement learning approach: The reinforcement learning approach 

proposed in the first study can be further enhanced by applying the approach to more 

sophisticated environment such as, in complex equipment arrangement where there is a 

dependency of the pumps on one another.  

 

3 Developing optimal opportunistic maintenance policies for different types of systems: 

The second study provides a framework for developing optimal opportunistic maintenance 

policies for cold-standby systems. Future research can apply this concept to other types of 

systems, such as hot-standby or warm-standby systems. The effectiveness of the policies can 

be compared to other maintenance strategies, and the impact of different system parameters can 

be evaluated. 

 

4 Applying the proposed approaches to other industries: The studies above focus on the 

mining industry and the centrifugal pump, but the proposed approaches can be applied to other 

industries and equipment types. Future research can investigate the feasibility and effectiveness 

of applying these approaches to different industries, such as the oil and gas industry, and 

different types of equipment, such as turbines or compressors. 

 

5 Evaluating the economic impact of the proposed maintenance policies: While the studies 

above focus on improving maintenance strategies that reduce maintenance costs, the economic 
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impact of these policies on the overall profitability of the organization should also be evaluated. 

Future research can assess the impact of the proposed policies on the organization's revenue, 

profitability, and return on investment. 
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APPENDIX A - PSEUDOCODE FOR THE DQN MACHINE 

 

1 Import necessary libraries 

2 Initialize replay memory 𝐷 to size 𝑁 

3 Input hyperparameters: state size 𝑆𝑠 , action size 𝐴𝑠 , gamma 𝛾 , target steps 𝑇𝑠  , Batch size 

𝐵𝑠  epsilon 𝜖 , epsilon decay 𝜖𝜎 , learning rate 𝐿𝑟  , epsilon minimum 

𝜖𝑚  .  

4 Build neural network model: 

5 Initialize the neural network with random weights 

6 For each iteration=1 to j, do: 

7  Initialize 𝑆𝑡  as starting state 

8  Generate random numbers (randN) 

9  If randN  ≤ 𝜖 

10  Select action 𝑎𝑡 via exploration 

11  Else:  exploit 

12  Execute 𝑎𝑡 in emulator and observe  𝑅𝑡+1 and  𝑆𝑡+1 

13  Store experience 𝑒[𝑆𝑡, 𝑎𝑡, 𝑅𝑡+1, 𝑆𝑡+1] as experience relay 𝑒 

14  Sample random batch from 𝑒 memory 

15  For  𝑆𝑡, 𝑎𝑡, 𝑅𝑡+1, 𝑆𝑡+1  in batch, 

16   Pass batch of preprocessed states to policy network 

17  Calculate loss by comparing the Q-value output from the network in 𝑒       

 and the corresponding target Q-value of the same action according to: 

18                                   𝐸[𝑅𝑡+1+ 𝛾 max
𝑎′

𝑞𝜋(𝑠′, 𝑎′)] − 𝐸[∑ 𝛾𝑘𝑅𝑡+𝑘+1]  = 𝑙𝑜𝑠𝑠∞
𝑘=0                  

19 Update weight in neural network with gradient descent to minimize loss 

20   Do until  𝜖 =  𝜖𝑚 

21  End 

22 End iteration 

23 Save model 
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APPENDIX B - PSEUDOCODE FOR THE MAINTENANCE ENVIRONMENT 

 

1 Import necessary libraries 

2 Input state variable parameters: minimum value for vibration = 𝑉𝑚 , and 𝑉𝜃, 𝑉𝑣, 𝑉𝜇, 𝑉𝜎 

     Minimum value for temperature = 𝑇𝑚, and 𝑇𝜃, 𝑇𝑣, 𝑇𝜇, 𝑇𝜎 

     Minimum value for pressure = 𝑃𝑚, and 𝑃𝜃 , 𝑃𝑣, 𝑃𝜇 , 𝑃𝜎 

3 Input repair cost 𝐶𝑟  , maintenance cost 𝐶𝑚, failure cost 𝐶𝑓, electricity consumption cost 𝐶𝑒, 

penalty    cost 𝐶𝑝   

4 Initialize actual time, running time, reward 

5 Initialize state of pump: 

 0 = operational, 1= degrading, 2= failed 

 Generate the difference of two gamma processes parameters ƞ𝑝 and ƞ𝑛: 

  ƞ𝑝= 
𝜃𝑣

2
+  √

𝜃2𝑣2

4
+  

𝜎2𝑣

2
       ƞ𝑛= - 

𝜃𝑣

2
+  √

𝜃2𝑣2

4
+  

𝜎2𝑣

2
        

6 Degrade pump according to variance gamma process: 

7 For 𝑡 <  𝑡𝑁 ( 𝑡𝑁 = maximum simulation time) 

8  Generate Random gamma number (𝑟𝑎𝑛𝑑ᴦ ) 

9  Vibration transition = 𝑉𝑚 + [𝑟𝑎𝑛𝑑ᴦ (
𝑡

𝑉𝑣
, ƞ𝑝)] - [𝑟𝑎𝑛𝑑ᴦ (

𝑡

𝑉𝑣
, ƞ𝑛)] 

10  Classify vibration transition to states of pumps, 0, 1, 2 

11  Pressure transition = 𝑃𝑚 + [𝑟𝑎𝑛𝑑ᴦ (
𝑡

𝑃𝑣
, ƞ𝑝)] - [𝑟𝑎𝑛𝑑ᴦ (

𝑡

𝑃𝑣
, ƞ𝑛)] 

12  Classify pressure transition to states of pumps, 0, 1, 2 

13  Temperature transition=𝑇𝑚 + [𝑟𝑎𝑛𝑑ᴦ (
𝑡

𝑇𝑣
, ƞ𝑝)] - [𝑟𝑎𝑛𝑑ᴦ (

𝑡

𝑇𝑣
, ƞ𝑛)] 

14  Classify temperature transition to states of pumps, 0, 1, 2 

15 End 

16 Action selection rules: 

17 If action selected = 0 and pump is in operational state: 

18  Add the electricity consumption cost  𝐶𝑒 

19 If action selected = 0, but pump is degrading: 

20  𝐶𝑒𝑚 =  [0.0144𝑒0.2677𝑉𝑡] 
21 Elseif action selected = 0 and the pump is not operational: 

22  Add penalty cost 𝐶𝑝 for wrong decision 

23 End  

24 If action selected = 1 but pump is operational and not degrading: 

25  Add repair cost 𝐶𝑟  : pump is already stopped 

26  Penalize the agent for wrong decision with 𝐶𝑝   

27 Elseif action selected = 1 but pump is operational and degrading: 

28  Add maintenance cost 𝐶𝑚 

29 Else:  

30  Add the failure cost 𝐶𝑓 

31 End 

32 Create brain 

33 Train agent 

34 End 

 


