
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ELVYS ALVES SOARES

A Multimethod Study of Test Smells:
Cataloging, Removal, and New Types

Recife
2023

ELVYS ALVES SOARES

A Multimethod Study of Test Smells:
Cataloging, Removal, and New Types

Work presented to the Programa de Pós-graduação
em Ciência da Computação of the Centro de Infor-
mática da Universidade Federal de Pernambuco, as
a partial requirement to obtain the degree of Doctor
in Computer Science.

Concentration Area: Software Engineering and
Programming Languages

Supervisor: André Luis de Medeiros Santos

Co-supervisor: Márcio de Medeiros Ribeiro

Recife
2023

 Catalogação na fonte

Bibliotecária Nataly Soares Leite Moro, CRB4-1722

S676m Soares, Elvys Alves

A multimethod study of test smells: cataloging, removal, and new types /
Elvys Alves Soares – 2023.

 140 f.: il., fig., tab.

 Orientador: André Luis de Medeiros Santos.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2023.
 Inclui referências e apêndices.

 1. Engenharia de software e Linguagens de programação. 2. Teste de
software. 3. Test smells. I. Santos, André Luis de Medeiros (orientador). II. Título

 005.1 CDD (23. ed.) UFPE - CCEN 2023 – 130

Elvys Alves Soares

“A Multimethod Study of Test Smells: Cataloging, Removal, and New

Types”

 Tese de Doutorado apresentada ao Programa

de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Doutor em Ciência da

Computação. Área de Concentração:

Engenharia de Software e Linguagens de

Programação.

Aprovado em: 31/05/2023.

Orientador: Prof. Dr. André Luís de Medeiros Santos

BANCA EXAMINADORA

Prof. Dr. Paulo Henrique Monteiro Borba

Centro de Informática / UFPE

Prof. Dr. Leopoldo Motta Teixeira

Centro de Informática / UFPE

Prof. Dr. Breno Alexandro Ferreira de Miranda

Centro de Informática / UFPE

Prof. Dr. Fabiano Cutigi Ferrari

Departamento de Computação / UFSCar

Prof. Dr. Rohit Gheyi

Departamento de Sistemas e Computação / UFCG

You prepared me for the biggest challenges life can give. This one is for you too, mom,

there where you are.

ACKNOWLEDGEMENTS

Such an alone endeavor, yet so many people to thank. The results of so many years of
nonstop study and abdication could only be achieved with much dedication from the great
team I was lucky to be involved with, which is why do not dare to write this thesis in the
first person. Here, I reinforce my deepest thanks to all the contributors while take the chance
to paraphrase our late and accurate King Pele: “Success is no accident. It is hard work,

perseverance, learning, studying, sacrifice, and most of all, love of what you are doing or

learning to do.”

ABSTRACT

Test smells are symptoms in the test code that indicate possible design or implementation
problems. Their presence in automated test suites, along with their harmfulness, has already
been demonstrated by previous research. Although test smells have been the subject of much
gray and academic literature since their proposal in 2001, many questions regarding their ad-
herence in the industry are yet to be clarified: concerning test smells — proposed by numerous
studies and gray literature — no publicly available catalog aggregates them; considering the
evolution of test frameworks and programming languages, there is no correspondence between
the newly proposed features and their capability of refactoring or preventing test smells; finally,
considering that test automation requires a significant initial investment not always available
to software projects, little is known to the possibility of test smells’ existence in manual test
suites, as well as how to identify and remove them. This work presents a multimethod study
aimed at fulfilling these knowledge gaps in the test smells area, which comprises surveying
state of the art on test smells and refactoring actions, the use of manual and automatic anal-
yses of open-source repositories, the conduction of surveys with software testing professionals,
the study of new test framework features and the proposition of test smell refactoring actions,
and the submission of contributions to active and popular open-source software projects. The
results present: (i) a catalog that unifies 127 primary studies and 480 distinct test smells in a
previously unseen effort; (ii) the confirmation that new test framework features can refactor
and prevent test smells, where we propose and evaluate new refactorings based on 7 JUnit 5
features intended for 13 test smells; (iii) the proposition of a catalog containing 8 new test
smells specific to manual test suites, their identification strategies based on natural language
processing, and their frequency in important government, industry and open-source systems.
The findings of this work give directions for further development in various fronts of the test
smells study area.

Keywords: software engineering; software testing; test smells.

RESUMO

Test smells são sintomas no código de teste que indicam possíveis problemas de design ou
implementação. Sua presença em conjuntos de testes automatizados, juntamente com sua
nocividade, já foi demonstrada por pesquisas anteriores. Embora a área de test smells tenha
sido objeto de muita literatura acadêmica e cinzenta desde sua proposta em 2001, muitas
questões sobre a adesão dos test smells na indústria ainda precisam ser esclarecidas: com
relação aos tipos de test smells — propostas por vários estudos e literatura cinzenta — nenhum
catálogo publicamente disponível os agrega; considerando a evolução dos frameworks de teste
e linguagens de programação, não há correspondência entre os novos recursos propostos e sua
capacidade de refatoração ou prevenção de test smells; por fim, considerando que a automação
de testes requer um investimento inicial significativo nem sempre disponível para projetos de
software, pouco se sabe sobre a possibilidade da existência de test smells em suítes de testes
manuais, bem como como identificá-los e removê-los. Este trabalho apresenta um estudo
multimétodo que visa preencher essas lacunas de conhecimento na área de test smells, que
compreende o levantamento do estado da arte sobre test smells e ações de refatoração, o uso
de análises manuais e automáticas de repositórios de código aberto, a realização de pesquisas
com profissionais de teste de software, o estudo de novos recursos de estrutura de teste,
a proposição de ações de refatoração test smells e o envio de contribuições para projetos
de software de código aberto ativos e populares. Os resultados apresentam: (i) um catálogo
inédito que unifica 127 estudos primários e 480 test smells distintos; (ii) a confirmação de que
novos recursos de frameworks de teste podem refatorar e prevenir test smells, onde propomos e
avaliamos novas refatorações baseadas em 7 recursos JUnit 5 destinados a 13 test smells; (iii)
a proposição de um catálogo contendo 8 novos cheiros de teste específicos para suítes de teste
manual, suas estratégias de identificação baseadas no processamento de linguagem natural e
sua frequência em importantes sistemas governamentais, industriais e de código aberto. As
conclusões deste trabalho fornecem direções para um maior desenvolvimento em várias frentes
da área de estudo de test smells.

Palavras-chave: engenharia de software; teste de software; test smells.

LIST OF FIGURES

Figure 1 – Thesis fluxogram . 20

Figure 2 – The Eager Test name tree . 22

Figure 3 – Selection of primary studies . 29
Figure 4 – Distribution of selected primary studies per year 31
Figure 5 – Initial catalog screen . 39
Figure 6 – Search screen demonstration . 40
Figure 7 – Categories menu . 41
Figure 8 – Test smell card example . 42

Figure 9 – Example of the Assertion Roulette . 55
Figure 10 – Example of the Conditional Test Logic . 57
Figure 11 – Example of the Conditional Logic transformed using Repeated Tests 58
Figure 12 – Example of the Test Code Duplication rewritten with Repeated Tests . . . 60
Figure 13 – Example of Mystery Guest . 61
Figure 14 – Example of Exception Handling . 63
Figure 15 – Example of Test Run War . 65
Figure 16 – Online survey results . 68
Figure 17 – Steps for Pull Request Submission . 74

Figure 18 – Common test design found in the exploratory study 82
Figure 19 – Distribution of identified test smells per system 83
Figure 20 – Survey results . 91
Figure 21 – spaCy’s visualizer module example . 94
Figure 22 – Simplified UML class diagram of the developed NLP tool 95
Figure 23 – Distribution of test smells per system . 97
Figure 24 – Comparison between the exploratory study and the NLP tool results 100

LIST OF SOURCE CODES

Source Code 1 – The Conditional Test smell . 16
Source Code 2 – Motivating example presenting the Duplicate Assert 22
Source Code 3 – Refactoring the Duplicate Assert and causing Test Code Duplication 23
Source Code 4 – Refactoring the Test Code Duplication 23
Source Code 5 – Removing code duplication with JUnit 5 Parameterized Tests 24
Source Code 6 – JUnit 5 Grouped Assertions feature 51
Source Code 7 – JUnit 5 Execution Condition feature 51
Source Code 8 – JUnit 5 Repeated Tests feature . 52
Source Code 9 – JUnit 5 Temporary Directory feature 52
Source Code 10 – JUnit 5 Exception Verification feature 52
Source Code 11 – JUnit 5 Resource Lock feature 53
Source Code 12 – JUnit 5 Parameterized Tests feature 53

LIST OF TABLES

Table 1 – Steps of An Ubuntu OS test having conditions phrased in natural language . 25

Table 2 – The terminology in use by the selected sources 32
Table 3 – Test smells per category . 34
Table 4 – The 10 test smells with the most alternative names 35
Table 5 – The 20 most frequent test smells, including AKA occurrences 36

Table 6 – Total study numbers . 47
Table 8 – Distribution of new JUnit 5 features per project 47
Table 7 – Distribution of occurrences per new JUnit 5 feature 49
Table 9 – Test framework features and their applicable test smell refactorings 67
Table 10 – Improvements of the proposed transformations 67
Table 11 – Transformation opportunities . 72
Table 12 – Pull Requests per Transformation . 74
Table 13 – Submitted Pull Requests . 75

Table 14 – Analyzed sample set of tests per system. 82
Table 15 – Common test structure found in the exploratory study. 82
Table 16 – Cataloged test smells . 83
Table 17 – Ambiguous Test Identification . 85
Table 18 – Conditional Test Identification . 86
Table 19 – Eager Action Identification . 86
Table 20 – Misplaced Action Identification . 87
Table 21 – Test excerpt containing the Misplaced Action test smell 87
Table 22 – Misplaced Precondition Identification . 87
Table 23 – Test excerpt containing the Misplaced Precondition test smell 88
Table 24 – Misplaced Verification Identification . 88
Table 25 – Test excerpt containing the Misplaced Verification test smell 88
Table 26 – Tacit Knowledge Identification . 89
Table 27 – Test excerpt containing the Unverified Action test smell 90
Table 28 – Distribution of selected tests in the validation sample 96
Table 29 – Total NLP results . 97

Table 30 – Detailed NLP tool validation and metrics 98

Table 31 – Selected primary sources . 125

Table 32 – Cataloged test smells . 128

Table 33 – Test smell classification . 138

LIST OF ABBREVIATIONS AND ACRONYMS

GQM Goal Question Metric

MLM Multivocal Literature Mapping

MLR Multivocal Literature Review

NLP Natural Language Processing

SLR Sistematic Literature Review

SMS Systematic Mapping Study

CONTENTS

1 INTRODUCTION . 16

1.1 KNOWLEDGE GAPS . 17
1.2 RESEARCH QUESTIONS . 18
1.3 STRUCTURE . 20
2 MOTIVATING EXAMPLES . 21

2.1 INFORMATION . 21
2.2 REFACTORINGS . 22
2.3 SMELLS IN MANUAL TESTS . 25
3 FIRST THINGS FIRST: CATALOGING TEST SMELLS 26

3.1 A MULTIVOCAL LITERATURE REVIEW 26
3.1.1 Protocol . 27

3.1.2 Selection of Primary Studies . 29

3.1.3 Data Extraction . 31

3.1.4 Data Classification . 32

3.1.5 Data Correlation . 33

3.1.6 Summary . 35

3.1.7 Threats to Validity . 36

3.2 A CATALOG FOR EVERYONE . 37
3.2.1 Settings . 38

3.2.2 Overview . 38

3.2.3 Implications for Practice . 41

3.3 LESSONS LEARNED . 42
3.4 RESEARCH DIRECTIONS . 43
4 LATEST TEST FRAMEWORK FEATURES REMOVE SMELLS . . 45

4.1 SOFTWARE PROJECTS ARE NOT UP-TO-DATE 45
4.1.1 Settings . 46

4.1.2 Results . 46

4.1.3 Discussion . 48

4.1.4 Threats to Validity . 49

4.2 TRANSFORMING SMELLY TEST CODE 50

4.2.1 Background on New JUnit5 Features 51

4.2.2 Transformations . 53

4.2.2.1 Assertion Roulette . 54

4.2.2.2 Conditional Test Logic - Decision Structures 56

4.2.2.3 Conditional Test Logic - Repetition Structures 57

4.2.2.4 Test Code Duplication . 59

4.2.2.5 Mystery Guest . 60

4.2.2.6 Exception Handling . 62

4.2.2.7 Test Run War . 64

4.2.2.8 Duplicate Assert . 65

4.2.2.9 Discussion . 66

4.3 EVALUATION . 67
4.3.1 Online Survey . 67

4.3.2 Pull Requests . 71

4.3.3 Threats to Validity . 77

4.4 RESEARCH DIRECTIONS . 78
5 MANUAL TESTS ALSO SMELL . 79

5.1 EXPLORING MANUAL TESTS . 80
5.1.1 Settings . 80

5.1.2 Results . 81

5.1.3 Discussion . 83

5.1.4 Threats to Validity . 84

5.2 A CATALOG OF NATURAL LANGUAGE TEST SMELLS 84
5.2.1 Ambiguous Test . 85

5.2.2 Conditional Test . 85

5.2.3 Eager Action . 86

5.2.4 Misplaced Action . 86

5.2.5 Misplaced Precondition . 87

5.2.6 Misplaced Verification . 88

5.2.7 Tacit Knowledge . 89

5.2.8 Unverified Action . 89

5.3 CATALOG EVALUATION . 90
5.3.1 Planning . 90

5.3.2 Settings . 90

5.3.3 Results . 91

5.3.4 Discussion . 91

5.3.5 Threats to Validity . 93

5.4 DETECTING SMELLS IN MANUAL TESTS WITH NLP 94
5.5 TOOL EVALUATION . 95
5.5.1 Planning . 96

5.5.2 Settings . 96

5.5.3 Results . 96

5.5.4 Discussion . 98

5.5.5 Threats to Validity . 100

5.6 RESEARCH DIRECTIONS . 101
6 RELATED WORK . 102

6.1 TEST SMELLS . 102
6.2 SYSTEMATIC REVIEWS . 102
6.3 TEST SMELL REMOVAL . 104
6.4 DEVELOPERS PERCEPTIONS . 105
6.5 EVOLUTION OF TEST FRAMEWORKS 106
6.6 NATURAL LANGUAGE TEST SMELLS 107
7 CONCLUDING REMARKS . 109

7.1 REVIEW OF CONTRIBUTIONS . 110
7.2 LIMITATIONS . 111

REFERENCES . 112

APPENDIX A – SELECTED PRIMARY SOURCES 125

APPENDIX B – CATALOGED TEST SMELLS 128

APPENDIX C – TEST SMELL CLASSIFICATION 138

16

1 INTRODUCTION

The automation of testing tasks is a well-known activity, and the development of test
scripts is frequent in the software industry (DUSTIN; RASHKA; PAUL, 1999; KARHU et al., 2009).
It is a consensus that automated test suites with high internal quality facilitate maintenance
activities such as code understanding and regression testing. However, the development of test
code is tedious, requires a significant initial investment, and may suffer from design issues just
as source code does (BAVOTA et al., 2015).

Researchers coined the term test smells to indicate possible design problems in the test
code as an analogy to the symptoms carried by poorly designed source code (i.e., code

smells) (DEURSEN et al., 2001). Such symptoms may lead tests to present erratic behavior
(i.e., test flakiness, false positives, and false negatives), thus compromising software quality
due to limited defect-catching capabilities. Although the concept of test smells is not recent,
a handful of previous studies have demonstrated them to be frequent in practice, both in
open-source and industry projects, as well as their negative impact on code maintenance and
understanding activities (BAVOTA et al., 2015; ROMPAEY et al., 2007; PALOMBA et al., 2016;
PERUMA et al., 2019).

For instance, Source Code 1 presents a test code snippet extracted from the TestContain-
ers1 project on GitHub. One can notice the assertion method — which represents the test itself
— is inside a decision structure (line 6). According to Meszaros (2007), this is the Conditional

Test smell, where branching the execution order may cause the test to finish without executing
the intended assertion, possibly generating a false positive outcome.

Source Code 1 – The Conditional Test smell
1 @Test
2 void first_test () {
3 if (lastContainerId == null) {
4 lastContainerId = genericContainer.getContainerId ();
5 } else {
6 assertNotEquals(lastContainerId , genericContainer.getContainerId ());
7 }
8 }

Source: research data
1 <https://git.io/JtRpX>

https://git.io/JtRpX

17

1.1 KNOWLEDGE GAPS

Since the proposal of test smells, much research has been dedicated to their detection (RE-

ICHHART; GÎRBA; DUCASSE, 2007; NöDLER; NEUKIRCHEN; GRABOWSKI, 2009; BAVOTA et al.,
2012; GREILER; DEURSEN; STOREY, 2013; PALOMBA et al., 2014; BAVOTA et al., 2015), pre-
vention (DESIKAN, 2006; MEYER, 2008; S.M.K; FAROOQ, 2010; GREILER et al., 2013), and cor-
rection (DEURSEN et al., 2001; MESZAROS, 2007; PERUMA et al., 2019; GREILER; DEURSEN;

STOREY, 2013) with correlates in the gray literature (i.e., technical blogs and posts). However,
although all these studies and gray literature had to define test smells types before proposing
their detection, prevention, and correction, no study until today was dedicated to assembling
a publicly available catalog of test smells. Such a lack of centralized information represents
our first knowledge gap in the test smells area.

Concerning test smell correction, test code refactorings are the most commonly applied
operation. It is important to emphasize that although both test and code smells may present
correlation (TUFANO et al., 2016) and even share a few refactorings (MESZAROS, 2007), refac-
toring source code is generally different from refactoring test code (DEURSEN et al., 2001). The
proposition of test code refactorings is generally described in conceptual operations, for in-
stance, “Setup External Resource” (DEURSEN et al., 2001), leaving their implementation steps
to vary depending on the programming language and test automation framework version.
Despite generally keeping backward compatibility, test automation frameworks offer new and
improved features in every new version, and the use of such new features may represent an
optimization to implement such conceptual operations. In this context, the literature demon-
strates that JUnit 4 is the most used test automation framework for open-source Java projects
on GitHub (ZEROUALI; MENS, 2017), also stating that “from all considered libraries, projects

are very likely (97%) to use JUnit”. Taking the JUnit framework evolution into consideration,
another research found that, although a new framework version (JUnit 5) has been available
since late 2017, the migration of GitHub projects to this specific version “is done manually and

slowly,” and that “test developers are sometimes unaware of the features provided by testing

frameworks, and thus apply alternative sub-optimal solutions” (KIM et al., 2021a). Thus, we
identify our second knowledge gap concerning how developers use new test framework features
and whether these features could represent solutions to refactor existing test code to remove
test smells.

But test smells are not exclusive to automated tests. In fact, analyzing manual test de-

18

scriptions written in natural language from the point of view of test smells is not necessarily
a new idea. It is well known that manual tests are often of poor quality and written without
software engineering best practices in mind (HAUPTMANN et al., 2013). Similarly to known
issues with natural language requirements, the documentation of tests in natural language
often results in test cases that are incomprehensible, ambiguous, and difficult to maintain,
with problems such as translation and spelling errors, inconsistent wording, use of inconsistent
vocabulary, different description styles for similar test procedures, or excessive use of abbrevi-
ations (JUHNKE; NIKIC; TICHY, 2021). Hauptmann et al. (2013) were the first to study such
proposition and coined the term natural language test smells to represent the possible design
problems existing in manual software testing that may prejudice comprehension, execution and
maintenance activities in manual testing. However, after Hauptmann et al. (2013) publication,
we noticed a research gap of almost ten years concerning natural language test smells which
did not happen in the context of smells in automatic tests (GAROUSI; KÜÇÜK, 2018; PERUMA et

al., 2019; PANICHELLA et al., 2022). Such absence motivates a handful of questions concerning
the existence of additional natural language test smells, their frequency, the possible problems
they indicate, and since they are written in natural language, if their identification can be made
with Natural Language Processing (NLP) mechanisms. These questions, therefore, represent
our third knowledge gap.

1.2 RESEARCH QUESTIONS

To address our identified knowledge gaps and focusing on — but not being restrict to —
open-source software repositories as information source for this thesis, we propose a series of
studies aimed both at answering the presented research questions and providing directions for
future research, as follows:

• Regarding known test smells:

– RQ1: “What are the test smells found in literature?” We conduct a Multivocal
Literature Review (MLR), which is a form of Sistematic Literature Review (SLR)
that includes the gray literature (e.g., blog posts, videos and white papers) in
addition to the published literature (e.g., journal and conference papers) (GAROUSI;

FELDERER; MÄNTYLÄ, 2019). By combining both the formal and informal literature,
a MLR has the advantage to provide us with a better understanding of the state-of-

19

the-art as well as the state-of-practice in this topic. Moreover, from the performed
MLR, we derive an openly accessible and maintainable catalog of test smells and
lessons learned when proposing new test smells.

• Regarding test smell removal:

– RQ2: “To what extent do projects use new test framework features?” We
execute an empirical study considering 485 popular Java open-source projects —
which automate tests with JUnit — to identify how many of them use the latest
library and how they use its features.

– RQ3: “Can new test framework features help removing test smells?” We
carefully analyze the features introduced in JUnit 5 and identify that some might
help removing test smells. In particular, we list 13 test smells, such as Assertion

Roulette, Test Code Duplication, and Conditional Test Logic, that can be removed
from test code using our transformations.

– RQ4: “How do developers perceive our test code transformations to elimi-

nate smells?” We create an online survey where 212 developers from 39 countries
could choose (and comment) between an original (smelly) and our transformed test
code version and comment on their answers.

– RQ5: “To what extent do open-source developers accept our transfor-

mations in their projects?” We submit 38 Pull Requests, using our proposed
transformations. Our contributions reached a 94% acceptance rate among respon-
dents in this specific study.

• Regarding test smells in natural language tests

– RQ6:“What already proposed natural language test smells can be ob-

served?” We conduct an exploratory study to analyze a statistically relevant sam-
ple of manual test descriptions of three systems from different domains. We identify
the occurrence of two already proposed natural language test smells (i.e., Condi-

tional Test and Ambiguous Test).

– RQ7:“What new natural language test smells can be observed?” The ex-
ploratory study enabled us to identify six new smells (i.e., Unverified Action, Mis-

placed Precondition, Misplaced Verification, Misplaced Action, Eager Action, and
Tacit Knowledge) specific to manual tests in natural language.

20

– RQ8:“How frequent are these test smells?” The exploratory study also enabled
us to answer how frequent are both the already proposed and our newly proposed
test smells in the analyzed systems.

– RQ9:“How software testing professionals evaluate our proposed smells?”

We conduct an empirical study using an online survey to evaluate our catalog
of natural language test smells with 24 testing professionals. Our proposals had
an average acceptance of 80.7% and the test professionals also contributed with
additional concerns raised from poor test writing.

– RQ10:“How precise can the automated discovery of natural language test

smells be when using NLP?” We develop a NLP-based tool that reaches a
precision of 92%, recall of 95%, and f-measure of 93.5%, indicating a suitable
detection level for our proposals. Overall, the tool execution evidenced 13,169 test
smell occurrences in the 2,007 tests of the analyzed systems.

1.3 STRUCTURE

This section demonstrates how the presented studies relate. The first study, presented in
Chapter 3, serves as the foundation for all subsequent studies. It utilizes an MLR to organize
the test smells area. Our remaining contributions are divided into two sub-areas. First, we
show how our research eliminates test smells in automatic tests in Chapter 4. Second, in
Chapter 5, we highlight our contributions to the discovery of natural language test smells in
manual testing. To better understand the flow of our work, please refer to Figure 1.

Figure 1 – Thesis fluxogram

Source: research data

21

2 MOTIVATING EXAMPLES

This chapter presents examples that, together with the knowledge gaps and research ques-
tions, motivate the remainder of this thesis. We divide this chapter in three sections. The
current knowledge fragmentation in the test smells area inspires a central reference point bet-
ter detailed in Section 2.1. Also, the current test smell refactoring operations performed by
project maintainers do not benefit from the capabilities provided by new framework features,
as shown in Section 2.2. Finally, manual test descriptions written in natural language present
more indications of problems than anticipated by current research, as shown in Section 2.3.

2.1 INFORMATION

To characterize the current state of fragmentation of test smell definitions and its impli-
cations, we will further detail the case of the Eager Test smell. Defined by Deursen et al.
(2001) in the seminal study that initiated the test smells area as “When a test method checks

several methods of the object to be tested, it is hard to read and understand, and therefore

more difficult to use as documentation,” the Eager Test may appear under different names in
formal and informal literature.

The study by Garousi and Küçük (2018) states that the Eager Test (DEURSEN et al.,
2001) may appear in literature named as The Test It All (KUMMER, 2015) and Split Personal-

ity (KOSKELA, 2015), while Kummer (2015) adds Many Assertions (SCRUGGS, 2009), Multiple

Assertions (SCHMETZER, 2005), and The Free Ride (A, 2014) to the list. However, other liter-
ature items affirm that these alternative names, in turn, also have their own alternative names:
The Test It All may also be called The One (KUMMER, 2015) and The Free Ride may also
be called Piggyback (GAROUSI; KÜÇÜK, 2018). Figure 2 presents the — possibly not final —
Eager Test name tree. Even being one of the first proposed test smells, the Eager Test is not
free from having many alternative — and inventive — names that make, at least, learning and
researching on the topic less efficient.

Moreover, almost 50 formal and informal studies refer to the Eager Test directly, and at
least a dozen other studies present details of the Eager Test with an alternative name. Since
information when presenting a test smell is not standardized, someone interested in further
details like causes and effects, frequency of occurrence, and code examples, would need help

22

Figure 2 – The Eager Test name tree

Source: research data

selecting sources for study. In such a case, an organized and centralized source of information
that could give guidance on the available literature would improve efficiency in learning and
research on this test smell. Chapter 3 presents our proposal to address this issue.

2.2 REFACTORINGS

Turning our attention to test smell refactorings, Source Code 2 presents our motivating
example, committed in 04/2020 to GitHub’s Jenkins1 project, which had not migrated to JUnit
5 at the time. This example shows a unique test method with three distinct sections: lines 3–6,
8–11, and 13–16. Each section tests the same sequence of getRemote() and getParent()

methods from the FilePath class, varying only the parameter values after its instantiation.
The main fragility of this test design is related to the presence of code duplication, which
negatively impacts maintainability.

Source Code 2 – Motivating example presenting the Duplicate Assert
1 @Test
2 public void getParent () {
3 FilePath fp = new FilePath(null , "/abc/def");
4 assertEquals("/abc", (fp = fp.getParent ()).getRemote ());
5 assertEquals("/", (fp = fp.getParent ()).getRemote ());
6 assertNull(fp.getParent ());
7
8 fp = new FilePath(null , "abc/def\\ghi");
9 assertEquals("abc/def", (fp = fp.getParent ()).getRemote ());

10 assertEquals("abc", (fp = fp.getParent ()).getRemote ());
11 assertNull(fp.getParent ());
12
13 fp = new FilePath(null , "C:\\abc\\def");
14 assertEquals("C:\\abc", (fp = fp.getParent ()).getRemote ());
15 assertEquals("C:\\", (fp = fp.getParent ()).getRemote ());
16 assertNull(fp.getParent ());
17 }

Source: research data
1 <https://git.io/JuTCN>

https://git.io/JuTCN

23

Peruma et al. (2019) classify it as the Duplicate Assert test smell, defined as “when a

test method tests for the same condition multiple times within the same test method.” The
proposed refactoring states that new test methods should be created when the test method
needs to test the same condition multiple times with different values (PERUMA et al., 2019). The
refactored version is presented, as proposed, in Source Code 3, where the original getParent()
method is split into three different ones.

Source Code 3 – Refactoring the Duplicate Assert and causing Test Code Duplication
1 @Test
2 public void getParent_relativePath () {
3 FilePath fp = new FilePath(null , "/abc/def");
4 assertEquals("/abc", (fp = fp.getParent ()).getRemote ());
5 assertEquals("/", (fp = fp.getParent ()).getRemote ());
6 assertNull(fp.getParent ());
7 }
8
9 @Test

10 public void getParent_mixedPath () {
11 fp = new FilePath(null , "abc/def\\ghi");
12 assertEquals("abc/def", (fp = fp.getParent ()).getRemote ());
13 assertEquals("abc", (fp = fp.getParent ()).getRemote ());
14 assertNull(fp.getParent ());
15 }
16
17 @Test
18 public void getParent_absolutePath () {
19 fp = new FilePath(null , "C:\\abc\\def");
20 assertEquals("C:\\abc", (fp = fp.getParent ()).getRemote ());
21 assertEquals("C:\\", (fp = fp.getParent ()).getRemote ());
22 assertNull(fp.getParent ());
23 }

Source: research data

Splitting the original code improves the execution completeness, hence all tests will be
executed. However, the code duplication is now found across different test methods and still
negatively impacts the code maintainability. The result presents the Test Code Duplication
test smell, defined by Deursen et al. (2001) as when the test code presents duplicated steps,
either in the same test class or across test classes. Deursen et al. (2001) recommend applying
the Extract Method (FOWLER, 2018) refactoring, and Meszaros (2007) gives further details
on the creation of helper verification methods. The result of the Extract Method is shown in
Source Code 4, which now centralizes the duplicated code in a parameterized helper method
called by the test methods. The solution achieved by the Extract Method, in this case, solves
the execution completeness and avoids code duplication. However, the test of many different
conditions would generate a verbose test class that calls the helper method with different
values.

Source Code 4 – Refactoring the Test Code Duplication
1 @Test
2 public void getParent_relativePath () {

24

3 getParent("/abc/def", "/abc", "/");
4 }
5
6 @Test
7 public void getParent_mixedPath () {
8 getParent("abc/def\\ghi", "abc/def", "abc");
9 }

10
11 @Test
12 public void getParent_absolutePath () {
13 getParent("C:\\abc\\def", "C:\\abc", "C:\\");
14 }
15
16 public void getParent(String path , String parent , String subParent) {
17 fp = new FilePath(null , path);
18 assertEquals(parent , (fp = fp.getParent ()).getRemote ());
19 assertEquals(subParent , (fp = fp.getParent ()).getRemote ());
20 assertNull(fp.getParent ());
21 }

Source: research data

Available since JUnit 5.0.0 (09/2017), the ParameterizedTest annotation allows develop-
ers to test different values without the need to duplicate test steps, create helper methods, or
a verbose test class. It is also possible to define a variety of argument sources through specific
annotations to test for collections, as an example, without prejudice to execution completeness
or maintainability. Source Code 5 presents the motivating example rewritten with JUnit 5 Pa-
rameterized Tests. Beyond maintaining advantages of Source Code 4, the Parameterized Tests
feature brings additional benefits: less code is necessary, further improving its maintainability
and extensibility.

Source Code 5 – Removing code duplication with JUnit 5 Parameterized Tests
1 @ParameterizedTest
2 @CsvSource ({
3 "/abc/def , /abc , /",
4 "abc/def\\ghi , abc/def , abc",
5 "C:\\abc\\def , C:\\abc , C:\\"
6 })
7 void getParent(String path , String parent , String subParent) {
8 FilePath fp = new FilePath(null , path);
9 assertEquals(parent , (fp = fp.getParent ()).getRemote ());

10 assertEquals(subParent , (fp = fp.getParent ()).getRemote ());
11 assertNull(fp.getParent ());
12 }

Source: research data

The possibility and benefits of using test parameterization show the importance of assessing
(i) which new features or constructions are in use by developers, (ii) how these features could
be used towards removing test smells, and (iii) whether developers find these propositions
practical to their test automation activities. We address these questions in Chapter 4.

25

2.3 SMELLS IN MANUAL TESTS

In some cases, tight time and budget requirements make the initial investment for test
automation unfeasible and lead to the choice of manual tests in the project. However, since
they are usually written in natural language, these tests can also present several problems. As
an example, Table 1 shows an excerpt from a Ubuntu Operational System (OS) manual test2

that presents quality problems.

Table 1 – Steps of An Ubuntu OS test having conditions phrased in natural language

No Action Verification

1 Plug a USB device in and at-
tempt to use it

The device is correctly recognized
The software normally used with the device functions normally
The device behaves as expected
The USB device works in every port
You are able to disconnect and re-connect the USB device correctly
without errors

2 If the device is a USB 3.0 storage
device and you have a USB 3.0
port, transfer a large file between
the two

The transfer is above USB 2.0 speed

3 Repeat for each USB device you
have

Source: research data

In the test, the second action step presents two conditions, “USB 3.0 storage device” and
“USB 3.0 port,” that must be met prior to performing the action “transfer a large file”. At this
point, the test case contains a branch of the test flow formulated in natural language, which
can lead to two problems: first, since different hardware can present different USB ports, it is
unclear whether the condition for the branch is satisfied in the same way in each test run. This
step description can lead to nondeterministic test runs and unmatched test results. Second,
because of the condition expressed in natural language, it is not obvious for the tester how to
report the test outcome should the condition not be met. This lack of clarity can lead to test
cases that are difficult to understand or even misinterpreted, which negatively affects the test
case executability and maintainability. We address this and other quality problems in manual
test descriptions from the point of view of test smells in Chapter 5.

2 [Online]. “testcases\hardware\1476_USB Ports” test, available: <https://git.launchpad.net/ubuntu-man
ual-tests>

https://git.launchpad.net/ubuntu-manual-tests
https://git.launchpad.net/ubuntu-manual-tests

26

3 FIRST THINGS FIRST: CATALOGING TEST SMELLS

Our first study addresses the concerns originated from the increasing popularity of test
smells, followed by and the ever-rising proposition of new types both in formal and informal
literature. As detailed in Section 2.1, the first concern is related to the many names a test
smell may be given.

As a second concern, despite the large amount of academic and gray literature on test
smells, only some studies surveyed such sources of information. Any literature may become
unavailable. However, as gray literature is more prone to obsolescence (e.g., discontinued
websites or archived posts), this particular source of information is more endangered to be
lost without being cataloged. More than 20% of the gray literature referenced in the most
extensive study (GAROUSI; KÜÇÜK, 2018) is already unavailable.

The third concern is the lack of standardization on information across academic and gray
literature. While some sources may present definition, code example, refactoring proposal,
causes, effects, and other information, it is not a general practice to have all these description
items when proposing a new test smell. Hence, the selection of good sources of information
to study and research on test smells may be a challenging task which can be made simpler
with some guidance on the available literature.

The lack of centralized information about known test smells may negatively impact software
testing practices since no common ground has been established for learning, development, and
research. Therefore, this chapter presents a systematic identification and characterization of
test smells found in academic and gray literature, centralizing the collected data in a data set
and a catalog, both openly accessible. For this purpose, we conduct a MLR (OGAWA; MALEN,
1991; PATTON, 1991), which is “a form of SLR that includes the gray literature (e.g., blog

posts, videos, and white papers), in addition to the published literature (e.g., journal and

conference papers)” (GAROUSI; FELDERER; MÄNTYLÄ, 2019) of test smells.

3.1 A MULTIVOCAL LITERATURE REVIEW

This section details the execution of our MLR. After the defined settings (Section 3.1.1)
for the vocabulary used in the study, addressed research questions, search databases, keywords,
inclusion, exclusion and quality criteria, we proceed with the selection of primary studies (Sec-

27

tion 3.1.2). Then, details of the data extraction (Section 3.1.3), classification (Section 3.1.4),
and correlation (Section 3.1.5) processes are presented together with their results. Finally,
the threats to the validity of this study are presented (Section 3.1.7). For reproducibility and
findings verification, the results are publicly available in a data set (SOARES et al., 2022b).

3.1.1 Protocol

As the intent of this study is to analyze the literature aiming to identify and characterize
test code design and implementation issues with respect to their smell aspects, it is necessary
to present the definitions concerning the used vocabulary, research question, databases, search
string, selection and quality criteria. Concerning the vocabulary used in this study, we address
formal and informal literature as follows:

• Peer-reviewed academic studies (i.e., published journal papers and conference proceed-
ings) as formal studies;

• Scholarly but non-peer-reviewed content (i.e., bachelor’s and master’s theses and doc-
toral dissertations) and gray literature items (i.e., books, pre-prints, e-prints, technical
reports, lectures, data sets, videos, blogs, and web pages) as informal studies; and

• Formal and informal studies as primary studies.

In particular, this study aims to answer our first research question: RQ1: “What are

the test smells found in literature?” This question provides a basis for identifying and
characterizing the test smells and building the catalog. The combination of formal and informal
literature gives the MLR the advantage of providing a better understanding of the state-of-
the-art and state-of-practice in this topic (GAROUSI; FELDERER; MÄNTYLÄ, 2019).

Concerning the selected databases, while traditional SLR focus on formal studies, MLR
include informal items of information. Informal studies are relevant for a comprehension of
the state-of-the-practice. This study used academic databases, namely ACM Digital Library,
IEEEXplore, and Google Scholar for formal literature. For informal studies, Google and Bing
search engines were used.

In the planning of the MLR, a preliminary search process was performed before finalizing
the search scope and keywords. The main goal was to test and evaluate distinct search strings
to find a set of relevant literature items that could be used as a sanity check when conducting

28

the actual search for the studies. This activity used keywords such as “test smell” and “anti-
pattern”, understanding test smells as “a type of anti-pattern” (GAROUSI; KÜÇÜK, 2018). The
initial results from the formal and informal databases were carefully analyzed by looking for
keywords and synonyms that could be useful. The searched terms “test smell” and “anti-
pattern” were most frequently employed in primary studies and played an essential role in the
searches. In addition, “poor quality” was observed as a frequently associated term.

Since the aim was to identify and characterize as many test smells as possible, a string
focusing on the population (test code) and the intervention (test smells, anti-patterns, and
symptoms) was built. Thus, the following search string was used: “test code” AND (“test*

smell*” OR anti-pattern* OR “poor quality”). Note that the symbol “*” matches lexically
related terms such as plurals. The exact string was used in formal and informal databases, and
no filter was applied to the content. Thus, the search considered the whole text of the primary
studies.

The inclusion criteria establish the properties a primary study must accomplish to be
selected, and the exclusion criteria define its ineligibility after selection. Equation 3.1 presents
the selection of primary studies considering the statements 𝐼1 to 𝐼4 as inclusion criteria. As
exclusion criteria, primary studies not fully written in English were removed.

𝐼1 ∧ (𝐼2 ∨ 𝐼3 ∨ 𝐼4) (3.1)

• 𝐼1: Full-text accessible;

• 𝐼2: It discusses poor test quality aspects;

• 𝐼3: It identifies one or more test smells;

• 𝐼4: It defines or provides a reference in the literature that defines one or more test smells.

Apart from the selection criteria and in a non-excluding step, a quality assessment during
the selection of primary studies was also performed. This assessment had a dual purpose: (i)
measuring the completeness of each description given by a primary study, and (ii) gathering
indications of where to find fine-grained information and provide literature guidance in the
intended catalog. The quality criteria were formulated as yes or no items to ease the analysis.
For every test smell in every primary study, the quality criteria indicated the presence of the
following:

29

• 𝑄1: Example of the contextualized test smell;

• 𝑄2: Discussion of causes or effects;

• 𝑄3: Frequency of occurrence.

3.1.2 Selection of Primary Studies

Figure 3 presents the stages of the primary study selection process. The exact search
string was used as input and distinguished between a search on formal and informal databases.
Performed on April 14, 2022, the search retrieved 578 studies in the formal databases and over
one million web sources in the informal ones. The studies and web sources were submitted
to a filtering process until final selection. In the filtering process, the studies and web sources
were categorized into three categories of inclusion, namely, include, exclude, and uncertain.

Figure 3 – Selection of primary studies

Source: research data

The selection consisted of three filters in the formal databases. In the first filter, paper’s
title and abstract were read against the inclusion and exclusion criteria. From the total of
578 studies, 116 were included in the first filter. Continuing the second filter by reading the
introduction and conclusion of the resulting studies, 77 studies were included. In the third
filter, the full content of the studies were read against the inclusion criteria, and 10 studies
were excluded. The remaining 67 studies had the quality criteria assessed.

The amount of information retrieved by the search engines in the informal databases
(1,049,500 results) was far beyond our analysis capabilities. Following the guidelines of previous
studies that also used the MLR approach (KULESOVS, 2015; TOM; AURUM; VIDGEN, 2013),
the first 50 hits of each search engine were filtered to restrict the search space, resulting in
100 web sources. It is worth mentioning that these search engines have ranking algorithms
based on relevance, and as we observed, the most relevant results usually appear in the first

30

hits (KULESOVS, 2015; TOM; AURUM; VIDGEN, 2013). The exclusion criteria were applied in
the second filter, identifying duplicates retrieved in the search engines and web sources not
entirely written in English and selecting 31 informal studies. The third filter made no changes
to the selected sources list.

A snowballing was performed in a single iteration (WOHLIN, 2014) to find additional pri-
mary studies that the search string could not capture. Through this approach, the references
of the primary studies, related work, and citations were examined when available. Using back-
ward and forward snowballing, 5 formal studies and 30 informal studies we identified, in their
respective databases, totaling 35 primary studies. After applying the same filters used in formal
and informal databases, whether the study was formal or informal, one formal study and 5
informal ones were excluded in the third filter, resulting in 29 primary studies selected through
snowballing.

Within the results, 4 studies that conducted systematic mappings and reviews on test
smells were found. As these studies attend to our selection criteria (Section 3.1.2), we treated
them as primary studies — retrieving test smell definitions and quality criteria when provided
—, also submitting them to the snowballing process.

At the end of the primary studies selection process, 127 (63 formal and 64 informal) studies
were selected. Figure 4 shows the distribution of the selected formal and informal primary
studies. The year of publication of two informal primary studies could not be determined, so
they were placed in the bottom bar of Figure 4. Starting from 2019, a growth in the number
of formal production, when the total formal primary studies surpass the total informal ones, is
noticeable. A complete list of the selected primary is presented in Appendix A.

Concerning the informal databases, since their search engines weight results by relevance,
including clicks as relevance indicators (KULESOVS, 2015; TOM; AURUM; VIDGEN, 2013), some
older results may lose relevance. Hence, they would not be displayed in the first 50 results
and, consequently, not considered in our selection process. The snowballing process helped
select older but relevant informal studies from secondary studies like the one by Garousi and
Küçük (GAROUSI; KÜÇÜK, 2018), from which 19 informal studies issued before 2015 and un-
listed in the informal search results were retrieved. This result reinforces the importance of the
snowballing process.

31

Figure 4 – Distribution of selected primary studies per year

Source: research data

3.1.3 Data Extraction

Individual test smell data was extracted from each primary study. In the provided data set,
concerning the publications, we list the title, link, type (i.e., article, book, paper, webpage,
thesis/dissertation, technical paper/manuscript, and lecture/presentation video), and whether
the primary study uses the expressions “test smell” or “anti-pattern”; concerning the test smells
in each primary study, we list the name, Also Known As (AKA) names, definition and quality
criteria indications (e.g., code examples, causes and effects, and frequency of occurrence). In
total, 1,331 occurrences of 480 test smells from 127 selected primary studies were extracted.

We noticed the terms “test smells” and “anti-patterns” in use for the same concepts.
Table 2 presents the distribution of both terminologies in the selected primary studies and
the total number of primary studies considered in this study. The data extraction shows 40
test smells classified with both terminologies. For instance, the Slow Test is presented as anti-
pattern and test smell in the catalog references (HAMMERLY, 2013) and (MESZAROS, 2007),
respectively. Likewise, the Redundant Assertion is an anti-pattern in (SCHMETZER, 2005) and a
test smell in (KUMMER, 2015). The same happens to the Excessive Setup, also an anti-pattern
and a test smell in (KEMPF, 2016) and (KUMMER, 2015), respectively.

As stated in Chapter 1, test smells are analogous to code smells (ROMPAEY et al., 2007).
Many code smell publications refer to them jointly as smell or anti-pattern because they “reflect

design and/or implementation issues in software source code that could have a negative impact

on software quality” (TAHIR et al., 2020). The same rationale is used in this work when mapping

32

Table 2 – The terminology in use by the selected sources

Terminology Informal Formal Total

Anti-pattern 34 0 34 (26.8%)
Test Smell 30 63 93 (73.2%)

Total 64 (50.4%) 63 (49.6%) 127 (100%)

Source: research data

studies with both terminologies, as also performed by Garousi and Küçük (GAROUSI; KÜÇÜK,
2018) in their MLM. Nevertheless, Table 2 shows the lack of distinction to happen only in
the informal studies, practically dividing them into halves — 34 studies used “anti-pattern”,
whereas 30 studies used “test smell”. Meanwhile, no formal study used “anti-pattern.”

Regarding the amount of test smells described by each source, the top selected sources were
the thesis by Kummer (KUMMER, 2015) with 77 test smells, the blog post by Frieze (FRIEZE,
2018) with 70, and the paper by Aljedaani et al. (ALJEDAANI et al., 2021) with 65 test smell
definitions. Our set of selected sources has an average number of 10.5 test smells being
described per source, a median of 6 test smells, and a mode of 1 test smell — having 24
sources dedicated to a single smell.

In our data set, we chose not to indicate the specific technology for which the test smell
was originally intended. The reason for that choice is based upon studies dedicated to finding
test smells in specific languages; such studies end up demonstrating a previously proposed test
smell to also to occur in an additional programming language. Extreme examples are the test
smells identified in the study by Hauptmann et al. (HAUPTMANN et al., 2013), intended for
test smells in natural language tests, which verified — among others — the existence of the
Conditional Test smell, proposed initially by Meszaros (MESZAROS, 2007) and exemplified in
Java.

3.1.4 Data Classification

After extracting information from the selected primary studies, and using the gathered test
smell descriptions, we classified the 480 smells extracted from the selected primary studies
according to the classification proposed by Garousi and Küçük (GAROUSI; KÜÇÜK, 2018): (1)
smells related to test execution/behavior, (2) smells related to test semantic / logic, (3)
design-related test smells, (4) issues in test steps, (5) mock and stub-related smells, (6)

33

smells in association with production code, (7) code related smells, and (8) smells related
to dependencies. Their classification allowed us to classify the gathered test smells. Some
test smells may be classified in more than one type. Hence, the classification types are not
disjoint. For instance, the Goto Statement test smell described as “When a goto statement

is used” (NEUKIRCHEN; ZEISS; GRABOWSKI, 2008) may cause issues in test steps (type 4) due
to a (failing) manual control of the execution flow. However, its main problem is the use of
a code statement that should be avoided and, as such, this test smell is better classified as
code-related (type 7).

In this process, two independent researchers — the author and an assistant — classified
the gathered test smells using the available types, always respecting the already classified test
smells present in the test smell classification board proposed by Garousi and Küçük (2018).
Divergences in the classification were discussed in two meetings, where 87 test smells mostly
included in the “Other test logic related” and “Violating coding best practices” categories
were discussed. Each test smell was allowed to belong to one type only, and the researchers
decided on the most representative one. Table 3 shows the distribution of the 480 test smells
per category. One can notice almost 32% of test smells having relation to code (type 7)
and this percentile rises to almost 42% if we consider dependencies (type 8) and exception
handling smells, indicating their close relationship to code smells. We added the test smell
classification in our public data set and present the complete list of test smell names per
category in Appendix C.

3.1.5 Data Correlation

As a last activity, we identified test smells by using the alternative names — Also Known As

(AKA) — provided by the primary studies we selected. If a test smell had multiple alternative
names, we replaced all occurrences of those names with the original test smell as an AKA.
We also did this for alternative names that themselves had alternative names. As a result, we
consolidated all alternative names into the first occurrence of the test smell, and subsequent
occurrences were cross-referenced with the original test smell. Equation 3.2 formalizes this
activity considering test smells 𝑆1 to 𝑆𝑛 and an equality given by their AKA names:

34

Table 3 – Test smells per category

Category Test Smells %

1. Test execution/behavior
1.1 Performance 14 2.9%
1.2 Other test execution/behavior 15 3.1%

2. Test semantic/logic
2.1 Testing many things 14 2.9%
2.2 Testing many units 4 0.8%
2.3 Other test logic related 67 14.0%

3. Design related
3.1 Not using test patterns 15 3.1%

4. Issues in test steps
4.1 Issues in setup 34 7.1%
4.2 Issues in assertions 54 11.3%
4.3 Issues in teardown 14 2.9%
4.4 Issues in exception handling 10 2.1%

5. Mock and stub related
5.1 Mock and stub related 18 3.8%

6. In association with production code
6.1 In association with production code 29 6.0%

7. Code related
7.1 Code duplication 28 5.8%
7.2 Complex/hard to understand 41 8.5%
7.3 Violating coding best practices 84 17.5%

8. Dependencies
8.1 Dependencies among tests 20 4.2%
8.2 External dependencies 19 4.0%

Total 480 100%

Source: research data

(𝑆1 = 𝑆2) ∧ (𝑆2 = 𝑆3) ∧ ... ∧ (𝑆𝑛−1 = 𝑆𝑛)

=⇒

𝑆1 = {𝑆2, 𝑆3, ..., 𝑆𝑛−1, 𝑆𝑛} ∧ (𝑆2 = 𝑆1) ∧ (𝑆3 = 𝑆1) ∧ ... ∧ (𝑆𝑛−1 = 𝑆1) ∧ (𝑆𝑛 = 𝑆1)

(3.2)

Following the extraction of data, a total of 52 test smells were identified as having alter-
native names. After applying the identification method outlined in Equation 3.2, this number
increased to 82 test smells. However, we were not able to find references to every alternative
name. For instance, the Ugly Mirror (GAROUSI; KÜÇÜK, 2018) test smell may also be called
Tautological test, but we did not retrieve any source of information for the latter. In this
sense, accounting for the alternative names of a test smell as the original one, our catalog
of 480 test smell names would actually represent 447 different definitions. All in all, Table 4

35

provides an overview of the test smells with the most alternative names. Notably, the Eager

Test stands out with its alternative names, suggesting that more attention should be paid to
existing literature when proposing new test smells.

Table 4 – The 10 test smells with the most alternative names

Test smell AKA - Quantity AKA - Names

Eager Test 7 The Test It All, Split Personality, Many Assertions, Multiple
Assertions, The Free Ride, Silver Bullet, Piggyback

Excessive setup 6 Large Setup Methods, Inappropriately Shared Fixture, The
Mother Hen, The Stranger, The Distant Relative, The Cuckoo

Assertionless Test 3 Lying Test, The Line Hitter, No Assertions
Manual Intervention 3 Interactive Test, Manual Testing, Manual Test
Obscure Test 3 Long Test, Complex Test, Verbose Test
Anonymous Test 2 Unclear Naming, Naming Convention Violation
Conditional Test Logic 2 Indented Test Code, Guarded Test
Generous Leftovers 2 Wet Floor, Sloppy worker
Order Dependent Tests 2 Chained Tests, Chain Gang
Slow Test 2 Long Running Test, The Slow Poke

Source: research data

3.1.6 Summary

Table 5 presents the 20 most popular test smells after the data extraction, classification
and correlation activities, including the occurrences of their alternative names. The total occur-
rences of the listed test smells (i.e., 503) stand for roughly 38% of the total 1,331 occurrences
in this study. It is important to notice that, from the initial list of 10 test smells proposed by
van Deursen et al. (DEURSEN et al., 2001), only the For Testers Only — 22𝑛𝑑 position with 13
occurrences — and the Test Run War — 28𝑡ℎ position with 10 occurrences — do not appear
in Table 5. With a total of 336 occurrences, the smells proposed by the authors (i.e., Mystery

Guest, Resource Optimism, General Fixture, Eager Test, Lazy Test, Assertion Roulette, Indi-

rect Testing, For Testers Only, Sensitive Equality, and Test Code Duplication) stand for 25%
of all occurrences in formal and informal sources. The complete list of test smells and their
occurrences can be found in Appendix B.

36

Table 5 – The 20 most frequent test smells, including AKA occurrences

No Test Smell Sources

1 Eager Test 60
2 Assertion Roulette 48
3 Mystery Guest 41
4 General Fixture 40
5 Sensitive Equality 34
6 Resource Optimism 29
7 Conditional Test Logic 29
8 Obscure Test 25
9 Lazy Test 22
10 Test Code Duplication 20
11 Indirect Testing 19
12 Excessive setup 18
13 Empty Test 17
14 Redundant Assertion 16
15 Magic Number Test 15
16 Unknown Test 14
17 Sleepy Test 14
18 Ignored Test 14
19 Duplicate Assert 14
20 Constructor Initialization 14

Source: research data

3.1.7 Threats to Validity

As threats to the internal validity, we use the definition of test smells, anti-patterns, or
quality problems — or the indication of a study that does so — as a selection criterion for our
set of primary studies. Other selection criteria, reflected in the search string in the searched
bases, could generate different results. To minimize this threat, we conducted a preliminary
search to verify the terms most used by the intended studies for self-description. Moreover,
we used Google Scholar among the search engines for scientific bases. Although this search
engine indexes scientific databases and university repositories, we analyze all its results. A
search only in repositories of peer-reviewed works could bring different and narrower results
from those that might be found instead. Another threat is the potential error on the test
smell classification activity (Section 3.1.4). We address this second threat by performing the
classification in pairs and solving divergences in specific meetings, leading us to a reasonable
level of inter-rater reliability (percent agreement) of 81.9% (SKRONDAL; EVERITT, 2010).

Concerning the threats to the conclusion validity, with regards to the alternative names

37

raised in the Data Correlation activity (Section 3.1.5), there is a possibility of misclassification
of equivalent smells. We address this threat by cataloging AKA names only when indicated by
a selected source.

As threats to the construct validity, Section 3.1.3 mentions that 40 test smells were pre-
sented simultaneously as anti-patterns or test smells by different sources. Although there may
be a differentiation between such concepts in the literature, it was not considered in our results
and, to avoid missing test smell (or anti-pattern) occurrences, we included all the obtained re-
sults. Therefore, as some of the cataloged test smells may be anti-patterns — considering the
differentiation used for code smells and anti-patterns — we expect future studies to establish
the division of concepts better as we already provide a data set of both concepts.

Regarding the threats to dependability, which concern the consistency and repeatability
of the findings, we highlight that (i) the internal algorithms of the informal databases alter
the results of the first 50 results as new results are indexed and weighted and that (ii) we
carried out our search in the first quarter of 2022. Therefore, as there are differences between
our study and the systematic search performed by Garousi and Küçük (GAROUSI; KÜÇÜK,
2018), differences in the results of a new execution are expected. We mitigate this threat by
extensively including non-peer-reviewed — although scholar — content, which ensures future
peer-reviewed publications of such content are already included in our results.

Finally, regarding the external threats to validity, analyzing 50 results per informal search
engine is not enough to achieve generalization to the above 1 million results. We minimize this
threat by using recommendations of known literature on the topic which detail the ranking
algorithms used by search engines and inform the low probability of useful clicks after the 50𝑡ℎ

result (KULESOVS, 2015; TOM; AURUM; VIDGEN, 2013).

3.2 A CATALOG FOR EVERYONE

This section details the construction of the online catalog using the data set resultant
from the data extraction, classification and correlation activities (Section 3.1). We present the
catalog’s settings in Section 3.2.1, an overview of the catalog functionalities in Section 3.2.2,
and implications for practice in Section 3.2.3.

38

3.2.1 Settings

The catalog seeks to provide a visualization of the data set compiled in the MLR (Sec-
tion 3.1) as a quick reference guide for researchers and practitioners. We present all the 480
test smells with as much ease to use as possible and indicate the known formal and informal
literature, with per source quality attributes, for additional information. Also, as we intend to
extend the catalog maintenance to the software testing community, the catalog is actually an
open-source project and enables any community member to submit a contribution.

We chose Read the Docs,1 an “open-sourced free software documentation hosting plat-

form” that generates documentation written with the Sphinx documentation generator,2 to
create the catalog. While the Read the Docs platform hosts the documentation, compiling it
directly from the GitHub project where the source files are kept on, Sphinx enables us to write
simple markdown source files that can be exported to several formats (e.g., HTML, PDF, and
EPUB) and are easily maintained.

Finally, the catalog is permanently available online at <https://test-smell-catalog.readt
hedocs.io/>.

3.2.2 Overview

Here we present an overview of the created catalog and its options. Figure 5 presents
the initial catalog screen. After an introductory text explaining the catalog objectives, origin,
organization and basic functionalities, test smells are presented as clickable links and grouped
by category, which should be easily located by users who already know the intended test smell
by its name.

A search bar is available in the upper left panel of the main screen and works for any
content in the catalog, including test smell cards (e.g., name, description, AKA, code, and
bibliography). Figure 6 presents an example of search results.

Below the search bar, test smell categories are presented as an expansible menu contain-
ing the subcategories which, in turn, contain the grouped test smells. Figure 7 presents the
categories menu.

Below the test smell categories (Figure 7), a contribution guide page teaches contributors
1 <https://readthedocs.org/>
2 <https://github.com/sphinx-doc/sphinx>

https://test-smell-catalog.readthedocs.io/
https://test-smell-catalog.readthedocs.io/
https://readthedocs.org/
https://github.com/sphinx-doc/sphinx

39

Figure 5 – Initial catalog screen

Source: research data

how to submit new test smells — using a provided template —, modify any information or
report bugs in the catalog. At last, the bottom of the left panel — Read the Docs link on
Figure 6 —, users can visualize any catalog version and download it exported to PDF and
EPUB formats, as well as verify compilation details as changes are submitted to the project
hosted on GitHub.

An example of a test smell card is presented in Figure 8. Every test smell card contains
the following fields:

• Navigation: A sequence of clickable links providing current location among categories
and subcategories;

• Contribution: A link to edit the displayed page directly on the open-source project
hosted on GitHub;

40

Figure 6 – Search screen demonstration

Source: research data

• Name: The test smell name;

• Definition: A description text retrieved from a listed reference;

• Also known as: Alternative names of the currently displayed test smell, retrieved from
the references;

• Code Block Example: Code sample extracted from a reference, when available;

• References: All the identified (formal and informal) literature referring to the currently
displayed test smell with badges (icons) indicating whether they present additional code
examples, discussion of causes and effects, or frequency of occurrence;

• Navigation buttons: Meant to navigate sideways and see test smells’ individual pages.

41

Figure 7 – Categories menu

Source: research data

3.2.3 Implications for Practice

We now present two implications for practice of our catalog:

• Avoiding the proposition of new test smell names for already existing test

smells: Since test smells are grouped in categories and a search bar is available, re-
searchers and practitioners can now search in a centralized repository for existing test
smells — possibly with a different name — prior to proposing a new test smell.

• Common learning point for test smells and related bibliography: As a public cat-
alog with the most significant amount of compiled information on test smells, students,
practitioners, and researchers can learn about any test smell without having to blindly
search studies and web sources for specific information. The test smell card indicates
the primary studies where the test smell is discussed and which additional information
can be found in each study.

42

Figure 8 – Test smell card example

Source: research data

3.3 LESSONS LEARNED

As ending such an extensive study to organize hundreds of test smells without a few
observations is inevitable, we present our contributions:

Be as thorough as possible: It is important to provide thorough information to ensure
a clear understanding of the test smell you want to explain. Unfortunately, out of the 480
test smells analyzed in this study, only 46% (i.e., 221) have at least a description and a code
example. This lack of information can hinder comprehension and lead to the proposition of new
alternative names. Based on our experience, complete information should include definitions,
causes and effects, code examples, strategies for removal, and frequency of occurrence. These
topics provide a complete understanding of the problem and the necessary action.

Descriptive names are better than metaphorical ones: It is ineffective to obey some-
one to read the description of your test smell to get to understand the metaphor in its name.

43

Also, bad metaphors may incentive alternative names. For example, Anal Probe (KUMMER,
2015), X-Ray Specs (GAROUSI; KÜÇÜK, 2018), I wrote it like this (FRIEZE, 2018), You Do

Weird Things to Get at the Code Under Test (WILLIAMS; DIETRICH, 2017) are all related to
access modifiers on attributes and methods.

Use language-agnostic descriptions: The Assertion Roulette (DEURSEN et al., 2001)
exists in Java (BAVOTA et al., 2012; PERUMA et al., 2020; SANTANA et al., 2020), Scala (BLESER;

NUCCI; ROOVER, 2019a; BLESER; NUCCI; ROOVER, 2019b), JavaScript (JORGE; MACHADO; AN-

DRADE, 2021), Python (WANG et al., 2021), and C++
(BREUGELMANS; ROMPAEY, 2008). Likewise, the Conditional Test (MESZAROS, 2007) exists in
manual tests (HAUPTMANN et al., 2013). If the original works were restricted to a programming
language, other test smells with different names for the same problems could emerge in later
studies. As done in the work by van Deursen et al. (DEURSEN et al., 2001), we reinforce the
importance of using high-level descriptions, similar to design patterns (GAMMA et al., 1994),
to address test smells. By doing so, these descriptions can be applied to multiple contexts and
technologies, making them more useful and easier to reuse.

3.4 RESEARCH DIRECTIONS

Built upon our findings, research directions for cataloging test smells would involve:

• The data set containing the results of data extraction, classification, and correlation
activities can be a basis for developing automated information extraction mechanisms to
find new relationships between the cataloged test smells. The proposed catalog provides
a helpful resource for the software testing community members to better understand test
smells. More than a single point of consultation for definitions, examples, and related
studies, the catalog indicates relationships between test smells (AKA).

• Work to organize the available information on test smells is still necessary to provide a
basis for upcoming research. In this sense, as future work, the catalog can be extended
by adding the existing test smell refactorings as transformations (SOARES et al., 2023), as
we detail in the next chapter, to enable new automatic detection and refactoring tools.

• Having a corpus of test smell names and definitions enables further research on their
similarities, therefore automatically identifying additional AKA and grouping test smells

44

by subject-related keywords.

• Such corpus of test smell names, definitions and literature can also be used to pin-
point the smells for which there is empirical evidence that their existence can impact
readability/maintenance/test quality, therefore providing a ranking for the most harmful
cataloged test smells.

45

4 LATEST TEST FRAMEWORK FEATURES REMOVE SMELLS

Now that we have an initial organization of the test smells area, with definitions and refer-
ences to formal and informal primary studies, and the additional information they provide, we
can continue the contributions of this thesis. In particular, we focus on the currently available
implementations of refactoring operations versus the possibilities given by new versions of test
libraries. Because of its popularity and wide availability of open-software projects on public
repositories like the GitHub, we use the JUnit test framework as subject for the investigations
in this chapter, in which we present a mixed-study investigation consisting of three parts.

First (Section 4.1), we execute an empirical study considering 485 popular Java open-source
projects — which automate tests with JUnit — to identify how many of them use the JUnit 5
library and how they use its features. Second (Section 4.2), we carefully analyze the features
introduced in JUnit 5 and identify that some might help remove test smells. After our analysis,
we propose code transformations based on the studied new features. Third, to evaluate our
proposals (Section 4.3), we create two studies aimed at answering our next research questions:
an online survey with 212 developers and the submission of 38 pull requests to popular open-
source projects. We end this chapter by providing research directions for advancing smell
removal from test code based on new test framework features (Section 4.4).

4.1 SOFTWARE PROJECTS ARE NOT UP-TO-DATE

In this study, considering the Goal Question Metric (GQM) aproach (BASILI; CALDIERA;

ROMBACH, 1994), our goal is to analyze GitHub repositories of Java projects concerning the
imports of classes related to JUnit 5 from the viewpoint of test developers in the context of the
JUnit 5 framework adoption. In particular, we answer RQ2: “To what extent do projects

use new test framework features?” To do so, we automatically analyze test classes from
popular Java projects that use the JUnit 5 library and gather information about which of such
projects use JUnit 5 features. Hence, we can evaluate if features capable of preventing or
removing test smells are well adopted.

46

4.1.1 Settings

As there is no publicly available and maintained list of open-source projects that use the
JUnit 5 library, we relied on GitHub search to retrieve an initial list of Java projects. We
filtered the list by project popularity, considering that GitHub retains over 4.3 million Java
projects.1 As the popularity of projects in GitHub is measured in terms of the stars each one
receives, when configuring the search string to Java projects to have more than 3,000 stars
(language:Java stars:>3000), in January 19𝑡ℎ 2021, we retrieved a total of 767 projects.

We developed a tool to perform the analysis. After downloading the source code of each
project, always considering the latest production release, our tool detects the project test
classes and retrieves information from the imports section. Import statements from JUnit 4 and
below versions can be differentiated from JUnit 5. While the latter version can be identified
through matches for the “org.junit.jupiter” string, JUnit 4 and below versions have their
imports matching the “org.junit” string. With the help of the JUnit 5 User Guide (BECHTOLD

et al., 2020) and Javadoc, we related the imported classes to a feature they implement. For
instance, org.junit.jupiter.params.provider.CsvSource is a class of the Parameterized
Tests feature. Then we grouped the found classes per feature. As a final step to assemble
the results, we removed information about classes from features already available in previous
JUnit versions, e.g., Test, AssertEquals, and Fail, and the ones that merely replaced a
previous class with a more meaningful name while keeping the same behavior: BeforeAll

(replaces BeforeClass), AfterAll (replaces AfterClass), BeforeEach (replaces Before),
AfterEach (replaces After), Disabled (replaces Ignore), and Tag (replaces Category).

4.1.2 Results

We downloaded (cloned) each project, which meant over 1.1 million files and 98GB of
data, and submitted them to our tool. From the initial list of 767 projects, we found that
485 (i.e., 63.2%) use JUnit for test automation. The distribution of the JUnit library versions
among projects is 408 (i.e., 84.1%) for JUnit 4 and below versions, and 77 (i.e., 15.9%)
projects using JUnit 5. Concerning the domain of the latter projects, we had 37 applications,
8 example projects, 22 frameworks, and 10 libraries. As our tool performs the analysis only
considering the imports section of each test class, we may have a threat to validity, to be
1 From GitHub search, using language:Java as parameter

47

discussed in Section 4.1.4.
Table 6 presents the total numbers concerning projects using JUnit 5. Here, the total

Lines of Code (LOC) was calculated using the Browser Extension GLOC plugin,2 and the total
number of test files (classes) and unit tests (methods) were obtained using the TestFileDe-
tector3 (PERUMA et al., 2019) tool. Our tool detected 5,717 import occurrences of 65 JUnit 5
classes related to 17 newly introduced features, according to the JUnit 5 User Guide (BECH-

TOLD et al., 2020).

Table 6 – Total study numbers

Projects 77
LoC 49,075,700
Test files (classes) 48,709
Tests (methods) 229,577
JUnit 5 imports (occurrences) 5,717
JUnit 5 features in use 17

Source: research data

Concerning other test libraries coexisting with JUnit 5, we found that 72 projects did present
them. Mockito was the most frequent test library alongside JUnit 5 in 59 projects, followed
by Hamcrest (53), AssertJ (44), TestNG (5) and Serenity (1). The average test libraries per
project — including JUnit 5 — was 3.1.

Table 7 presents the distribution, considering the 77 analyzed projects jointly, of the 5,717
import occurrences per JUnit 5 feature and their percentage concerning the total imports.
The features we use in this study towards test code transformations to remove test smells
(Chapter 4.2) are also highlighted in Table 7. Finally, Table 8 presents the usage of the new
JUnit 5 features per project. Despite the presence of the JUnit 5 library, 14 projects did not
use any new features.

Table 8 – Distribution of new JUnit 5 features per project

Project (new JUnit 5 features in use)
Java and Spring Tutorials (15) MyBatis-Plus (4) LMAX Disruptor (1)
Neo4j (12) Zipkin (4) MinecraftForge (1)
Quarkus (12) Apache SkyWalking (3) MyBatis Generator (1)
Spring Framework (11) Apache ZooKeeper (3) Netty (1)

GoCD (10) Cucumber Common
Components (3)

Oracle OpenGrok (1)

Apache Camel (9) Micronaut (3) Sentinel (1)

2 Available at <https://github.com/artem-solovev/gloc>
3 Supplementary tool for the Test Smell Detector (tsDetect) tool (PERUMA et al., 2020)

https://github.com/artem-solovev/gloc

48

Apache Dubbo (8) OkHttp (3) Soul (1)
Eclipse Jetty (8) Vespa (3) Spring PetClinic (1)
Java Design Patterns (8) Checkstyle (2) spring-cloud-alibaba (1)
Spring Boot (8) Debezium (2) spring-cloud-netflix (1)
Aeron (7) JADX (2) spring-data-examples (1)
CAS (7) Mockito (2) Alibaba Arthas (0)
Graylog (7) Mybatis-3 (2) Apache Hadoop (0)
JanusGraph (7) Seata (2) Apache Ignite (0)

Apache JMeter (6) Simplify (2) AWS Code Examples
Repository (0)

Dropwizard (6) Spring Boot Admin (2) Distributed Transaction
Framework - LCN (0)

Reactor Core (6) spring-boot-demo (2) FlexibleAdapter (0)
Testcontainers (6) Activiti (1) Internet Architect (0)
Bisq (5) Apache Beam (1) Karate (0)
Cryptomator (5) Apache Hive (1) Mindustry (0)
Flowable (5) Apache Kafka (1) MyBatis Spring-Boot-Starter (0)
JavaParser (5) Apache Shiro (1) Onemall (0)
Jenkins (5) Data Transfer Project (1) RabbitMQ Tutorials (0)
Jodd (5) Halo (1) springboot-guide (0)
OWASP ZAP (5) Jsoup (1) XXL-JOB (0)
Lettuce (4) Keycloak (1)

Source: research data

4.1.3 Discussion

Our study verified that 77 out of 485 projects (i.e., 15.9%) use the JUnit 5 library. There-
fore, the high percentage of projects using previous versions of JUnit might represent sub-
optimal test case implementations, which could pave the way to the existence of test smells.
As explained in Section 4.1.1, the occurrences detailed in Table 7 represent imports related to
new (introduced) JUnit 5 features. Even considering every test class to have a single import
statement, it would represent a maximum of 11.7% of the total 48,709 test classes using new
features. One possible explanation for such low use is in the study performed by Kim et al.
(2021a), where the authors claim that test developers are sometimes unaware of the features
provided by test frameworks.

Table 7 shows that Custom Extensions, Exception Testing, and Parameterized Tests are the
most popular JUnit 5 features with more than 70% of the features utilization. The Custom
Extensions feature is the only form to extend the behavior of test classes and methods —
formerly provided by Runners and Rules — and the Exception Testing feature is the only way

49

Table 7 – Distribution of occurrences per new JUnit 5 feature

No Feature Occurrences %

1 Custom Extensions 2,336 40.9
2 Exception Testing 1,159 20.3
3 Parameterized Tests 676 11.8
4 Parallel Execution 263 4.6
5 Nested Tests 233 4.1
6 Test Execution Order 232 4.1
7 Temporary Directory 185 3.2
8 Conditional Test Execution 170 3.0
9 Display Names 141 2.5

10 Dynamic Tests 122 2.1
11 Dependency Injection 79 1.4
12 Migration Support 44 0.8
13 Timeout Assertions 37 0.6
14 Repeated Tests 23 0.4
15 Grouped Assertions 12 0.2
16 String List Assertions 3 0.0
17 Iterable Assertions 2 0.0

Total: 5,717 100%

Source: research data

to verify exceptions — formerly provided by Rules and the expected parameter of the @Test

annotation. Although the Grouped Assertions feature represents only 0.2% of the usages, it
is capable of removing the Assertion Roulette, which is the most frequent test smell in Java
projects (PERUMA et al., 2019). In this scenario, the popularization of the JUnit 5 features and
the introduction of test smell removal strategies that consider such features — presented in
Section 4.2 — are important goals towards improving test code quality.

4.1.4 Threats to Validity

As internal threats, selecting projects by popularity to analyze the use of current libraries
for test automation may not be a good choice criterion. The selected projects may not rep-
resent real software projects (i.e., sample repositories) or have no automated testing at all.
However, because they are popular in the GitHub community, we believe these projects have
their complete development cycle, including testing automation. Moreover, our search did not
consider projects’ activity frequency (last commit), which is as important as the popularity
metric. Adding this parameter to filter projects active since 01-01-2020 in a new search per-

50

formed in 10𝑡ℎ January 20224 resulted in 768 projects, from which 645 (84%) are present in
our original search. The 123 (16%) projects that could not be found in the new search may
have been discontinued during 2021 or have their last activity before 01-01-2020.

Also, analyzing the project’s dependency/build file would answer which JUnit framework
version is used, even when projects use more than one version (e.g., subprojects). However,
as we needed more fine-grained information about the utilization of features, we would need
to analyze the test classes and their import statements in any case. In this regard, there
is a threat to the correctness of our tool when analyzing imports. To minimize this threat,
we conducted a preliminary experiment. We selected two popular open-source projects: the
Checkstyle project5, which uses JUnit 5 and from which we manually analyzed the results of
100 test classes; and the Apache Cassandra project6, which uses a previous version of the
JUnit framework and we executed the tool in the whole project (750 test classes). The results
indicate our tool to correctly identify the JUnit 5 import in the analyzed test classes from
the first project, and no JUnit 5 imports were detected in the second project. The list of the
Checkstyle project’s validated test classes and the log from Apache Cassandra’s analysis are
on the companion website.

As external threats, in this study, we did not randomly select what projects to analyze in
the GitHub repository — we retrieved the projects list from the search engine with a popularity
bias. In this context, as we did not follow primary sampling rules as defined by II, Kotrlik and
Higgins (2001), we cannot make generalizations about the usage of the JUnit 5 library in
projects hosted in the entire GitHub base.

4.2 TRANSFORMING SMELLY TEST CODE

Here, we present our proposals to transform test code and remove test smells based on the
new features introduced in our subject test automation framework: JUnit. For that purpose,
before presenting a list of test smells and our proposed transformations, we present a brief
background on JUnit 5 features.
4 using (stars:=>3000 pushed:=>2020-01-01 language:Java) in GitHub search
5 <https://github.com/checkstyle/checkstyle>
6 <https://github.com/apache/cassandra>

https://github.com/checkstyle/checkstyle
https://github.com/apache/cassandra

51

4.2.1 Background on New JUnit5 Features

This section briefly introduces some of the JUnit 5 features, stable and experimental,7

which we consider potentially beneficial to remove test smells. We created this feature list
by carefully studying the JUnit 5 User Guide (BECHTOLD et al., 2020) and comparing feature
implementations with formal literature about test smell refactorings (DEURSEN et al., 2001;
MESZAROS, 2007; PERUMA et al., 2019).

As a general characteristic, the execution of a test method with many individual assertions
stops after the first failed one, which defines the failed test method outcome. The Grouped

Assertions feature — available since JUnit 5.0.0 (09/2017) — explicitly allows all assertions
to be executed independently, and a report containing all assertions and their individual results
is generated at the end of the test method execution. Source Code 6 presents this feature.

Source Code 6 – JUnit 5 Grouped Assertions feature
1 @Test
2 public void test() {
3 MyClass c = new MyClass ();
4 assertAll(
5 () -> assert(c.getPropertyA ()),
6 () -> assert(c.getPropertyB ()),
7 () -> assert(c.getPropertyC ()),
8 ...
9 () -> assert(c.getPropertyN ())

10);
11 }

Source: research data

Providing annotations describing conditions to systems, runtime and environment variables,
system properties, and even encapsulating custom condition verifications in a boolean method,
the Execution Condition API — since JUnit 5.0.0 (09/2017) — allows entire test containers,
or single test methods, to be executed only after a condition verification. Source Code 7
presents the usage of execution conditions, having a custom condition encapsulated in a
boolean method.

Source Code 7 – JUnit 5 Execution Condition feature
1 @Test
2 @EnableIf("isCondition")
3 public void test() {
4 MyClass c = new MyClass ();
5 assert(c.getProperty ());
6 }
7
8 public boolean isCondition () {
9 return ...;

10 }

7 An EXPERIMENTAL feature status means a new feature that can be promoted to MAINTAINED, STABLE, or
be discontinued according to community feedback(BECHTOLD et al., 2020).

52

Source: research data

The @RepeatedTest annotation — JUnit 5.0.0 (09/2017) — enables a test to be repeated
a specified number of times, removing method repetition structures from within the test
method body. Each repetition considers the execution of pre and post-condition methods
when defined. Source Code 8 presents the usage of the repeated tests feature.

Source Code 8 – JUnit 5 Repeated Tests feature
1 @RepeatedTest (2)
2 public void test() {
3 MyClass c = new MyClass ();
4 c.performTask ();
5 assert(c.isAnyStatus ());
6 }

Source: research data

An entire self-destroying temporary directory can be defined with the @TempDir annota-
tion, which has been experimentally available since JUnit 5.4 (02/2019). Unlike current JVM
implementation for temporary files — they are deleted after JVM stops — the JUnit 5 imple-
mentation deletes the temporary directory after every test method (or container) execution,
even in parallel scenarios. This feature is handy for preventing leftovers from previous unsuc-
cessful executions, specially shared file resources. Also, by delegating the cleanup steps to the
framework, the test maintainability is improved. Source Code 9 presents its usage.

Source Code 9 – JUnit 5 Temporary Directory feature
1 @Test
2 public void test(@TempDir Path tempDir) {
3 File myFile = tempDir.resolve("file.txt");
4 myFile.createNewFile ();
5 MyClass c = new MyClass ();
6 assert(c.performTask(myFile));
7 }

Source: research data

The assertThrows method — JUnit 5.0.0 (09/2017) — enables test methods to verify
exceptions more clearly and straightforwardly compared to previous exception verification JUnit
features. It dismisses the @expected annotation, rule objects, or Try/Catch blocks, improving
test code clarity and maintainability. Source Code 10 presents an example.

Source Code 10 – JUnit 5 Exception Verification feature
1 @Test
2 public void test() {
3 MyClass c = new MyClass ();
4 Exception e = assertThrows(ExpectedException.class , () -> c.throwExpectedException ());
5 assertEquals("Error Message", e.getMessage ());
6 }

Source: research data

53

The Resource Lock experimental feature — available since version 5.3.0 (09/2018) —
provides synchronized access to shared resources when test containers are in parallel execution
mode. The shared resource and the access mode required by each test are informed in the
@ResourceLock annotation, ensuring reliable test execution with no two tests that write to the
same resource being executed concurrently. An example of this feature is provided by Source
Code 11.

Source Code 11 – JUnit 5 Resource Lock feature
1 @Test
2 @ResourceLock(value = SYSTEM_PROPERTIES , mode = READ_WRITE)
3 public void test() {
4 System.setProperty (...);
5 assert (...);
6 }

Source: research data

As presented in our motivating example (see Chapter 2.2), the parameterization of test
methods — JUnit 5.0.0 (09/2017) — allows developers to test different values using a single
test method. Source Code 12 presents the Parameterized Tests feature. In this example, the
task parameter is instantiated to every value in the strings property of the @ValueSource

annotation. Optionally, it is possible to print the parameter values in use by adding them to the
name property of the @ParameterizedTest annotation(BECHTOLD et al., 2020), which helps
tracing failed test executions.

Source Code 12 – JUnit 5 Parameterized Tests feature
1 @ParameterizedTest
2 @ValueSource(strings = {"a","b","c", ... ,"n"})
3 void test(String task) {
4 assert(MyClass.performTask(task));
5 }

Source: research data

4.2.2 Transformations

Before proceeding, we present definitions and justify the terminology we adopted through-
out this work regarding test smell correction. As mentioned (Chapter 1), test code refactorings
are the most commonly applied operation for test smell correction. Differently from code refac-
toring, which focuses on observable behavior (FOWLER, 2018), Deursen et al. (2001) defines
test refactoring as “changes (transformations) of test code that: (1) do not add or remove

test cases, and (2) make test code better understandable/readable and/or maintainable.”

54

Considering (1), in JUnit, a test is implemented through an assertion and a test method
with many assertions naturally performs many tests. As the propositions we present in this
section do not add or remove assertions, they do not disrespect the definition of test code
refactoring. Regarding (2), although Deursen et al. (2001) definition focuses the test code
improvements on readability and maintainability, the literature shows that other improvements
are also desirable: Fowler (2011) explains that indeterminism (flakiness) in tests is a bad
characteristic which makes them “useless for their purpose” and Luo et al. (2014) shows
developers’ effort on eliminating indeterminism to increase tests reliability. Removing indeter-
minism, for instance, is one of the benefits of adopting our proposals. Even with some support
from the literature (GUERRA; FERNANDES, 2007; MURPHY-HILL; BLACK, 2008), as our proposals
do not strictly adhere to Deursen et al. (2001) definition, we will present them as test code
transformations.

We now present a list of test smells and, for every test smell, we provide definition, the
already existing refactoring(s), a template of the test smell transformation, an example of
smelly code found in the analyzed projects, other applicable test smells (if any), and the
improvements of the proposed approach.

4.2.2.1 Assertion Roulette

The Assertion Roulette is defined by Deursen et al. (2001) as a collection of unexplained
assertions in a single test method that, in the event of a test failure, challenge tracing which
exact assertion had a problem.

Existing Refactorings: (i) The “Add Assertion Explanation” (DEURSEN et al., 2001) op-
eration helps to identify the failed assertion but still lacks the execution result of the remaining
assertions, and (ii) The creation of “Single-Condition Tests” (MESZAROS, 2007) could gen-
erate test code duplication across test methods, concerning test fixtures, to less observant
developers.

Template: We propose Transformation 1 to the Assertion Roulette test smell. The left-
hand side (LHS) contains a public (or default access modifier) test 𝑇 , no return type, op-
tionally parameterized (parameters omitted for simplicity), annotated with @Test or any test
annotation variation. The test contains any optional set of statements 𝑠𝑡𝑚𝑡 followed by a set
of 𝑛 sequential assertions 𝐴, finalized by a set of optional statements 𝑠𝑡𝑚𝑡′. The right-hand
side (RHS) removes the test smell using the JUnit 5 Grouped Assertions.

55

Transformation 1 – Removing the Assertion Roulette

@Test
void 𝑇 () {

𝑠𝑡𝑚𝑡
𝐴1
...
𝐴𝑛

𝑠𝑡𝑚𝑡′

}

−→

@Test
void 𝑇 () {

𝑠𝑡𝑚𝑡
assertAll(

() -> 𝐴1
...
() -> 𝐴𝑛

);
𝑠𝑡𝑚𝑡′

}

Source: research data

Example: Figure 9a presents an example of the Assertion Roulette extracted from the
Spring Framework8 project. In this example, 𝑠𝑡𝑚𝑡 and 𝑠𝑡𝑚𝑡′ are empty. Moreover, we have
four assertions 𝐴1–𝐴4 related to lines 3–8, respectively. Figure 9b presents the original code
rewritten according to Transformation 1.

Figure 9 – Example of the Assertion Roulette

1 @Test
2 void aggregationOptionsShouldSetOptionsAccordingly () {
3 assertThat(aggregationOptions.isAllowDiskUse ()).isTrue ();
4 assertThat(aggregationOptions.isExplain ()).isTrue ();
5 assertThat(aggregationOptions.getCursor ()).contains(new Document("batchSize", 1));
6 assertThat(aggregationOptions.getHint ()).contains(dummyHint);
7 }

(a) Original

1 @Test
2 void aggregationOptionsShouldSetOptionsAccordingly () {
3 assertAll(
4 () -> assertThat(aggregationOptions.isAllowDiskUse ()).isTrue (),
5 () -> assertThat(aggregationOptions.isExplain ()).isTrue (),
6 () -> assertThat(aggregationOptions.getCursor ().get()).isEqualTo(new Document("

batchSize", 1)),
7 () -> assertThat(aggregationOptions.getHint ()).contains(dummyHint)
8);
9 }

(b) Refactored

Source: research data

Improvements: Before the transformation, a test containing the Assertion Roulette test
smell provides difficulties tracing the failed assertion. After the transformation, all assertions
in a test method will be executed, and their individual results (passed/failed) will be reported
together, eliminating the test smell.
8 <https://git.io/JLczX>

https://git.io/JLczX

56

4.2.2.2 Conditional Test Logic - Decision Structures

The Conditional Test Logic is defined as a test containing code that may or may not be
executed due to branching logic (decision and repetition structures) (MESZAROS, 2007). There
is a false impression that no further verification of a passed test containing branching logic
is necessary. However, the branching logic may cause the test to finish without executing the
intended assertion(s), which is a skipped test. In such a case, the “passed” test outcome is
unreliable.

Existing Refactorings: The “Add guarded assertion” (MESZAROS, 2007) operation fails
the test if there are no conditions to its execution, producing a false “failed” test outcome.
This false outcome prevents Continuous Integration and Continuous Delivery (CI/CD) tools
from successfully finishing their tasks.

Transformation 2 – Removing the Conditional Test Logic with Conditional Test Execution

@Test
void 𝑇 () {

if (𝐶) {
𝑠𝑡𝑚𝑡

}
}

−→

boolean is𝐶() {
return 𝐶;

}

@Test
@EnableIf ("is𝐶")
void 𝑇 () {

𝑠𝑡𝑚𝑡
}

Provided
1) Variables in 𝐶 do not appear in 𝑠𝑡𝑚𝑡;

Source: research data

Template: We propose Transformation 2 to the Conditional Test Logic test smell formed
by a decision structure. The LHS contains a public (or default access modifier), no return
type, unparameterized test 𝑇 , annotated with @Test, or any test annotation variation. The
test method contains condition a 𝐶 and a decision structure enclosing a set of statements
𝑠𝑡𝑚𝑡. Following the notation proposed by Borba et al. (BORBA; SAMPAIO; CORNÉLIO, 2003),
variables in 𝐶 must not appear in 𝑠𝑡𝑚𝑡. The RHS template removes the test smell using JUnit
5 Conditional Test Execution, enabling the condition to be verified in an external method,
assigned via the @EnabledIf annotation.

Example: Figure 10a presents an example of the Conditional Test Logic test smell observed
in the Dropwizard9 project. The example has condition 𝐶 found in line 3 and an enclosed set
9 <https://git.io/JtsMX>

https://git.io/JtsMX

57

of statements 𝑠𝑡𝑚𝑡 containing an assertion (lines 4–6). According to Transformation 2, the
example is transformed to the code presented in Figure 10b, which removes the test smell.

Figure 10 – Example of the Conditional Test Logic

1 @Test
2 void returnsASetOfErrorsForAnObject () throws Exception {
3 if ("en".equals(Locale.getDefault ().getLanguage ())) {
4 ...
5 assertThat(errors).containsOnly("outOfRange must be between 10 and 30 MINUTES");
6 }
7 }

(a) Original

1 @Test
2 @EnableIf("isEnglishLocale")
3 void returnsASetOfErrorsForAnObject () throws Exception {
4 ...
5 assertThat(errors).containsOnly("outOfRange must be between 10 and 30 MINUTES");
6 }
7
8 public boolean isEnglishLocale () {
9 return "en".equals(Locale.getDefault ().getLanguage ());

10 }

(b) Refactored

Source: research data

Improvements: Before the transformation, test methods with the Conditional Test Logic
smell can produce false “passed” results when the intended assertion is skipped. After the
transformation, skipped tests are correctly identified, which increases the reliability of test
outcomes and the separation of the conditional from the test improves the test code main-
tainability.

4.2.2.3 Conditional Test Logic - Repetition Structures

Some cases of the Conditional Test Logic test smell happen through repetition structures.
A failed assertion inside a repetition structure will exit the test method execution, but it could
make sense to keep testing the remaining values, for example, elements of a collection.

Existing Refactorings: Meszaros (MESZAROS, 2007) suggested encapsulating this test
logic in a Test Utility Method with an Intent-Revealing Name, which would still miss the
possibility of independent test method executions to collection elements.

Template: We propose Transformation 3 to the Conditional Test Logic test smell when
the test steps are within a repetition structure. The LHS contains a public (or default access
modifier), no return type, unparameterized test 𝑇 , annotated with @Test, containing a set of

58

statements 𝑠𝑡𝑚𝑡 enclosed in a repetition structure (here presented as a for loop). According
to the provided condition — shown below the LHS in Transformation 3 — the value 𝑛 must
not appear in 𝑠𝑡𝑚𝑡 (BORBA; SAMPAIO; CORNÉLIO, 2003). The RHS removes the test smell
using the JUnit 5 Repeated Tests feature.

Transformation 3 – Removing the Conditional Test Logic with Repeated Tests

@Test
void 𝑇 () {

for (𝑛) {
𝑠𝑡𝑚𝑡

}
}

−→
@RepeatedTest(𝑛)
void 𝑇 () {

𝑠𝑡𝑚𝑡
}

Provided
1) 𝑛 does not appear in 𝑠𝑡𝑚𝑡

Source: research data

Example: Figure 11 presents an example extracted from the Aeron10 project. Listing 11a
shows a repetition structure enclosing a set of statements in lines 3–7 and repeating the whole
test 100.000 times (𝑛 = 100000), which are transformed — according to Transformation 3
— to the code found in Figure 11b.

Figure 11 – Example of the Conditional Logic transformed using Repeated Tests

1 @Test
2 public void shouldNotExceedTmaxBackoff () {
3 for (int i = 0; i < 100000; i++) {
4 double delay = generator.generateNewOptimalDelay ();
5 assertThat(delay , lessThanOrEqualTo ((double) MAX_BACKOFF));
6 }
7 }

(a) Original

1 @RepeatedTest (100000)
2 void shouldNotExceedTmaxBackoff () {
3 double delay = generator.generateNewOptimalDelay ();
4 assertThat(delay , lessThanOrEqualTo ((double) MAX_BACKOFF));
5 }

(b) Refactored

Source: research data

Improvements: Before the transformation, test methods with the Conditional Test Logic
smell implemented through a repetition structure do not execute all the intended assertions
(fail-first design). After the transformation, all assertions will be independently executed.
10 <https://git.io/J3Uo0>

https://git.io/J3Uo0

59

4.2.2.4 Test Code Duplication

Already defined in the motivating example (Chapter 2.2), the Test Code Duplication smell
presents duplicated steps, either in the same test class or across test classes.

Existing Refactorings: When the duplicated code is in the same test class, it is common
to apply the “Extract Method” (FOWLER, 2018) refactoring.

Template: We propose Transformation 4 to remove the Test Code Duplication test smell.
The LHS contains a public (or default access modifier), no return type, unparameterized test
𝑇 , annotated with @Test. The test method contains 𝑛 groups of repeated statements 𝑠𝑡𝑚𝑡.
The RHS removes the test smell using JUnit 5 Repeated Tests.

Transformation 4 – Removing the Test Code Duplication

@Test
void 𝑇 () {

// Repetition 1
𝑠𝑡𝑚𝑡
...
// Repetition 𝑛
𝑠𝑡𝑚𝑡

}

−→
@RepeatedTest(𝑛)
void 𝑇 () {

𝑠𝑡𝑚𝑡
}

Source: research data

Example: Figure 12a presents an example extracted from the Dropwizard11 project. There
are 2 sets (𝑛 = 2) of statements 𝑠𝑡𝑚𝑡 (lines 3–6 and 8–11). Figure 12b presents the example
transformed according to Transformation 4.
11 <https://git.io/JtZmL>

https://git.io/JtZmL

60

Figure 12 – Example of the Test Code Duplication rewritten with Repeated Tests

1 @Test
2 public void multipleTestingOfSameClass () {
3 assertThat(ConstraintViolations.format(validator.validate(new CorrectExample ()))).

isEmpty ();
4 assertThat(TestLoggerFactory.getAllLoggingEvents ()).isEmpty ();
5
6 assertThat(ConstraintViolations.format(validator.validate(new CorrectExample ()))).

isEmpty ();
7 assertThat(TestLoggerFactory.getAllLoggingEvents ()).isEmpty ();
8 }

(a) Original

1 @RepeatedTest (2)
2 void multipleTestingOfSameClass () {
3 assertThat(ConstraintViolations.format(validator.validate(new CorrectExample ()))).

isEmpty ();
4 assertThat(TestLoggerFactory.getAllLoggingEvents ()).isEmpty ();
5 }

(b) Refactored

Source: research data

Improvements: Before the transformation, a test containing the Test Code Duplication
smell favors the introduction of errors due to the presence of duplicated code and the in-
complete execution of all assertions (fail-first). After the transformation, all assertions will be
independently executed, and the elimination of the duplicated test code improves its main-
tainability.

4.2.2.5 Mystery Guest

The Mystery Guest test smell is defined by van Deursen et al. (DEURSEN et al., 2001) as to
occur when a test is not self-contained due to the use of external resources. This use introduces
hidden dependencies to the state, consistency, and availability of the external resources. The
authors also state that the chances for this test smell increase as more tests use the same
resource.

Existing Refactorings: The “Setup External Resource” (DEURSEN et al., 2001) removes
hidden dependencies when the external resource is needed but does not prevent it from being
accessed in a multi-threaded context.

Template: We propose Transformation 5 to the Mystery Guest test smell when the mystery
guest is an external file. The LHS contains a public (or default access modifier) test 𝑇 , no
return type, unparameterized, annotated with @Test, or any test annotation variation. The
test contains a set of optional statements 𝑠𝑡𝑚𝑡, commands for file creation, which use a list

61

Transformation 5 – Removing the Mystery Guest

@Test
void 𝑇 () {

𝑠𝑡𝑚𝑡
File.createTempFile(𝑝𝑎𝑟𝑎𝑚𝑠)
𝑠𝑡𝑚𝑡′

}

−→

@Test
void 𝑇 (@TempDir File 𝐷) {

𝑠𝑡𝑚𝑡
𝐷.createTempFile(𝑝𝑎𝑟𝑎𝑚𝑠)
𝑠𝑡𝑚𝑡′

}

Source: research data

of parameters 𝑝𝑎𝑟𝑎𝑚𝑠 for temporary files creation, and another set of optional statements
𝑠𝑡𝑚𝑡′. The RHS side removes the test smell using the JUnit 5 Temporary Directory feature.
Note that the transformation annotates a temporary directory 𝐷 and considers its use in the
external file instantiation steps. Other analogous template declarations would consider new

File(𝐷,𝑛𝑎𝑚𝑒) and File.createNewFile() to instantiate the external resource, which we
omitted to avoid text from becoming fatiguing.

Example: Figure 13a presents an example extracted from Oracle’s OpenGrok12 project.
Lines 4 and 5 represent the set of statements 𝑠𝑡𝑚𝑡 that precede the external file instantiation
step declared in line 6, and the remaining steps represent the additional set of statements
𝑠𝑡𝑚𝑡′. Listing 13b shows the temporary directory created in line 2 and the temporary file
instantiation considering the temporary directory in line 6.

Figure 13 – Example of Mystery Guest

1 @Test
2 public void emptyingATryBlockWithTwoHandlers () throws IOException {
3 manipulator = OptimizerTester.getGraphManipulator(CLASS_NAME , "tryBlockWithTwoCatches ()"

);
4 File out = File.createTempFile("test", "simplify");
5 classManager.getDexBuilder ().writeTo(new FileDataStore(out));
6 out.delete ();
7 }

(a) Original

1 @Test
2 public void emptyingATryBlockWithTwoHandlers(@TempDir File tempDir) throws IOException {
3 manipulator = OptimizerTester.getGraphManipulator(CLASS_NAME , "tryBlockWithTwoCatches ()"

);
4 File out = tempDir.createTempFile("test", "simplify");
5 classManager.getDexBuilder ().writeTo(new FileDataStore(out));
6 }

(b) Refactored

Source: research data

Other applicable test smells: The Temporary Directory feature can also refactor the Re-
source Optimism, the Resource Leakage, and the Interacting Test Suites test smells (MESZAROS,
12 <https://git.io/JtZec>

https://git.io/JtZec

62

2007). The Resource Optimism test smell happens when test methods do not verify the exis-
tence, or the state, of external resources like files and databases. This optimistic absence of ex-
ternal resource verifications may cause non-deterministic behavior to a test outcome (DEURSEN

et al., 2001). A Resource Leakage happens whenever a unit test fails to acquire or release one
or more of its resources properly (MESZAROS, 2007). The Coupling Between Test Methods
is present when test methods are not isolated from each other, sharing maintenance activi-
ties (BUGAYENKO, 2015).

Improvements: Before applying Transformation 5, tests that manipulate external file
resources and present the Mystery Guest smell provide weak memory management since the
resources are cleaned only when the JVM stops. the transformation corrects this JVM behavior
by using test framework features, which improves the test code maintainability.

4.2.2.6 Exception Handling

Defined by Meszaros (MESZAROS, 2007) as the Expected Exception Test, this test smell
occurs when language-based structures lead test execution to error-handling code that man-
ually handles the final test outcome. Peruma et al. (PERUMA et al., 2019) define it as the
Exception Handling test smell.

Existing Refactorings: Both Meszaros (MESZAROS, 2007) and Peruma et al. (PERUMA

et al., 2019) suggest using framework-specific features to handle exception testing. JUnit 4
provides two features to that end: the @ExpectedException annotation and the Rule check.
Previous approaches (SOARES et al., 2020; KIM et al., 2021a) show developers find the first
feature unsafe — it is impossible to track which test step raises the exception — and unaware
of the second feature.

Template: We propose Transformation 6 to the Exception Handling test smell. The LHS
contains a public (or default access modifier), no return type, optionally parameterized,
annotated with @Test (or any test annotation variation) test 𝑇 . The test contains an optional
set of statements 𝑠𝑡𝑚𝑡 followed by a try/catch block containing a set of statements 𝑠𝑡𝑚𝑡′

and a manual call to the fail() method in the try block, and optional exception verification
steps 𝑒𝑣𝑠 in the catch block, followed by optional statements 𝑠𝑡𝑚𝑡′′. According to the provided
condition (illustrated below the LHS in Transformation 6), a statement 𝑠𝑡𝑚𝑡′

𝑖, from 𝑠𝑡𝑚𝑡′,
raises the expected exception 𝐸. The RHS eliminates the test smell using the JUnit 5 Exception
Handling feature.

63

Transformation 6 – Removing the Exception Handling

@Test
void 𝑇 () {

𝑠𝑡𝑚𝑡
try {

𝑠𝑡𝑚𝑡′

fail();
} catch (𝐸) {

𝑒𝑣𝑠
}
𝑠𝑡𝑚𝑡′′

}

−→

@Test
void 𝑇 () {

𝑠𝑡𝑚𝑡
𝑠𝑡𝑚𝑡′-𝑠𝑡𝑚𝑡′

𝑖

assertThrows(𝐸, () -> 𝑠𝑡𝑚𝑡′
𝑖);

𝑒𝑣𝑠
𝑠𝑡𝑚𝑡′′

}

Provided
𝑠𝑡𝑚𝑡′

𝑖 ∈ 𝑠𝑡𝑚𝑡′ and raises the exception 𝐸

Source: research data

Example: Figure 14 presents an example of the Exception Handling test smell extracted
from the JMeter13 project. In Figure 14a, line 3 represents the statements 𝑠𝑡𝑚𝑡, line 5 is both
the optional set of statements 𝑠𝑡𝑚𝑡′ and the exception raising step 𝑠𝑡𝑚𝑡′

𝑖, and the expected
exception 𝐸 is presented in line 7 with no optional exception verification (𝑒𝑣𝑠) or further
optional 𝑠𝑡𝑚𝑡′′ steps.

Figure 14 – Example of Exception Handling

1 @Test
2 public void test4() throws Exception {
3 ...
4 try {
5 xb.closeTag("abcd");
6 fail();
7 } catch (IllegalArgumentException e) {
8 }
9 }

(a) Original

1 @Test
2 void test4() throws Exception {
3 ...
4 assertThrows(IllegalArgumentException.class , () -> xb.closeTag("abcd"));
5 }

(b) Refactored

Source: research data

Improvements: Before the transformation, tests that present the Exception Handling
smell contain an error-handling code that manually defines the test outcome, which favors
the introduction of errors. This fragility is eliminated after applying Transformation 6, which
improves the test code maintainability.
13 <https://git.io/J3TiK>

https://git.io/J3TiK

64

4.2.2.7 Test Run War

According to van Deursen et al. (DEURSEN et al., 2001), this test smell arises when multiple
test execution threads cause resource interference between each other. Initially exemplified with
non-unique temporary files, the test run war can also be generalized to using and allocating
the system’s resources.

Existing Refactorings: “Make Resource Unique” (DEURSEN et al., 2001). However, this
operation is not possible when dealing with system properties. The cases where the shared
resources are system files or external resources can be analyzed and transformed according to
the Temporary Directory feature description, presented in Section 4.2.2.5.

Template: We propose Transformation 7 to the Test Run War test smell when the shared
resource is a system property. The LHS contains a class 𝐶 annotated to execute its tests
concurrently through the @Execution(CONCURRENT) annotation. The test class also contains
a public (or default access modifier) test 𝑇 , no return type, optionally parameterized —
parameters omitted for simplicity — and annotated with @Test or any other test annotation
variation, having any set of statements 𝑠𝑡𝑚𝑡 with at least one use of System.setProperty().
The RHS removes the test smell using the JUnit 5 Resource Lock feature.

Transformation 7 – Removing the Test Run War

@Execution(CONCURRENT)
Class 𝐶 {

...
@Test
void 𝑇 () {

𝑠𝑡𝑚𝑡
}
...

}

−→

@Execution(CONCURRENT)
Class 𝐶 {

...
@Test
@ResourceLock(value=SYS_PROPS , mode=READ_WRITE)
void 𝑇 () {

𝑠𝑡𝑚𝑡
}
...

}

Provided
𝑠𝑡𝑚𝑡 contains at least one System.setProperty(...)

Source: research data

Example: Figure 15a presents a partial example — it lacks the definition of parallel execu-
tion in the test class declaration — of the Test Run War test smell found in the Cryptomator14

project. Line 3 represents the instruction that sets a system property value, and the remaining
method contents are the set of statements 𝑠𝑡𝑚𝑡. Figure 15b declares the test to modify the
system properties in line 2, which prevents its parallel execution with other tests that also
modify the system properties.
14 <https://git.io/JLWby>

https://git.io/JLWby

65

Figure 15 – Example of Test Run War

1 @Test
2 public void testEmptyList () {
3 System.setProperty("test.path.property", "");
4 List <Path > result = env.getPaths("test.path.property").collect(Collectors.toList ());
5 MatcherAssert.assertThat(result , Matchers.hasSize (0));
6 }

(a) Original

1 @Test
2 @ResourceLock(value=SYSTEM_PROPERTIES , mode=READ_WRITE)
3 void testEmptyList () {
4 System.setProperty("test.path.property", "");
5 List <Path > result = env.getPaths("test.path.property").collect(Collectors.toList ());
6 MatcherAssert.assertThat(result , Matchers.hasSize (0));
7 }

(b) Refactored

Source: research data

Improvements: Before applying Transformation 7, tests with the Test Run War smell
present flaky behavior due to concurrent modification and access to shared resources. the
transformation eliminates the non-determinism (flakiness) without changing the original test
method content.

4.2.2.8 Duplicate Assert

The Duplicate Assert test smell is defined as “when a test method tests for the same

condition multiple times within the same test method” (PERUMA et al., 2019). This test smell
is detailed in our motivating example in Chapter 2.2.

Existing Refactoring: “Create new test methods with different values” (PERUMA et al.,
2019), also detailed in Chapter 2.2.

Template: We propose Transformation 8 to the Duplicate Assert test smell. The LHS
contains a public — or default access modifier — test 𝑇 , no return type, unparameterized,
annotated with @Test, containing 𝑚 sets of statements 𝑠𝑡𝑚𝑡1 to 𝑠𝑡𝑚𝑡𝑛 that make use of
parameterizable values lists 𝑃1..𝑊1 to 𝑃𝑚..𝑊𝑚. The RHS uses the JUnit 5 Parameterized
Tests, where the parameterizable values lists are declared in a specific annotation, and the test
method is executed 𝑚 independent times.

Example: Our motivating example in Source Code 2 presents an example of the Duplicate
Assert test smell. There are 3 sets (𝑚 = 3) of 4 statements 𝑠𝑡𝑚𝑡 (𝑛 = 4): lines 3–6, 8–12, and
14–18. The parameterizable values list is composed of three values: 𝑃1 is a String to represent

66

Transformation 8 – Removing the Duplicate Assert

@Test
void 𝑇 () {

𝑠𝑡𝑚𝑡1(𝑃1)
...

𝑠𝑡𝑚𝑡𝑛(𝑊1)
...
𝑠𝑡𝑚𝑡1(𝑃𝑚)

...
𝑠𝑡𝑚𝑡𝑛(𝑊𝑚)

}

−→

@ParameterizedTest
@CsvSource ({

"𝑃1, ... , 𝑊1",
...
"𝑃𝑚, ... , 𝑊𝑚"

})
void 𝑇 (𝑃 , ... , 𝑊) {

𝑠𝑡𝑚𝑡1(𝑃)
...

𝑠𝑡𝑚𝑡𝑛(𝑊)
}

Provided
∃𝑖 ∈ [1..𝑛] | 𝑠𝑡𝑚𝑡𝑖 contains an assertion

Source: research data

the file Path (lines 3, 8, and 14), a parameter 𝑄1 is a String to the parent directory (lines 4, 9,
and 15), and 𝑊1 is a String to the sub-parent directory (lines 5, 11, and 17). Source Code 5
presents the transformed test method, according to Transformation 8.

Other applicable test smells: The Parameterized Tests feature can also refactor the Test

Code Duplication and the Lazy Test smells. The latter happens when several test methods
use the same fixtures and call the same production method with variations only in the passed
parameters (DEURSEN et al., 2001).

Improvements: Before applying the transformation, tests having the Duplicate Assert
smell present code duplication, which facilitate the introduction of errors. Such fragilities
are corrected after applying the Transformation 8, which removes the code duplication, thus
improving the test code maintainability, and executes all assertions.

4.2.2.9 Discussion

In the previous section, we presented a non-exhaustive list of transformations based on
JUnit 5 features which helps removing 13 different test smells and brings several improvements
to both test cases and test code. We summarize the test smells that can benefit from our
transformations and the introduced JUnit 5 features in Table 9.

We divide the improvements brought by our transformations into test case and test code.
The test case improvements are related to test execution and results (run all assertions and
remove test flakiness); the test code improvements promote non-functional benefits (improving
readability and/or maintainability). Table 10 summarizes the improvements promoted by our
transformations.

67

Table 9 – Test framework features and their applicable test smell refactorings

Feature Test Smell

Grouped Assertions Assertion Roulette
Parameterized Tests Duplicate Assert, Test Code Duplication, Lazy Test
Conditional Test Execution Conditional Test Logic
Temporary Directory* Mystery Guest, Resource Optimism, Resource Leak, Interacting Test Suites,

Coupling between test methods
Repeated Tests Test Code Duplication, Conditional Test Logic
Exception API Exception Handling
Resource Lock* Test Run War

* Experimental Features

Source: research data

Table 10 – Improvements of the proposed transformations

Improvements
Test Case Test Code

Run All Assertions Remove Test Flakiness Improve Code Maintainability
T1
T2
T3
T4
T5
T6
T7
T8

Source: research data

4.3 EVALUATION

This section presents our evaluation studies: an online survey with developers and the
submission of contributions (Pull Requests) to popular open-source projects on GitHub. The
development of both studies aims to answer the research questions RQ4: “How do develop-

ers perceive our test code transformations to eliminate smells?” and RQ5: “To what

extent do open-source developers accept our transformations in their projects?”

4.3.1 Online Survey

This study planned to assess developers’ opinions about the transformations we proposed
in Chapter 4.2.2 through an online survey. By choosing between two code snippets, one initially
found in a current open-source project and the other transformed according to our proposals,

68

along with the developers’ comments on their answers, we would be able to validate whether
the respondents were aware of the benefits achieved by the transformations.

We assembled the survey with 11 questions: four concerning demographics and experience
and seven questions corresponding to the code samples they would evaluate. The code samples
were the original and transformed ones presented in Chapter 4.2 and the motivating example
from Chapter 2.2 (Source Codes 2 and 5).

Considering that side A was the original test code and side B the transformed one, we
presented developers with the following answering options (unique): “I strongly prefer A”,
“I prefer A”, “Indifferent”, “I strongly prefer B”, “I prefer B”, “I do not know”. Also, every
question had comments field. We published the survey invitation on open developers forums,
professional networks, and developer mailing groups.

We performed the survey in December 2021, achieving 212 responses. Concerning the
demographics, we had participants working in 39 countries, where 91% defined their primary
work area as the industry (over academia). Also, 66% of the respondents declared to have
10+ years of experience with software testing — and about 85% if we consider 5+ years. The
average of their daily time spent on testing activities is 40%. Figure 16 details the obtained
results concerning the developers’ preferences about the code samples.

Figure 16 – Online survey results

Source: research data

Both numeric and comment analyses are fundamental to interpret the obtained results.
The numeric results indicate whether developers prefer the original or the transformed test
code version, while the comment analysis answers if they are doing so because they correctly
recognize the proposition to fix the present test smell through a JUnit 5 feature.

The transformation based on the Grouped Assertions feature (Figure 9) divided developers’
opinions. While 69% of the respondents stated to prefer side A, to be indifferent or not knowing

69

how to answer the question, their comments’ analysis revealed that 26% did not know the
assertAll() method and its behavior. Other 45% affirmed the use of lambdas to make the
test code more verbose, thus hard to maintain. Such affirmatives can be found in developers’
comments like “Haven’t used assertAll, so I don’t know the differences, I suspect that all the

assertions are run with it even if one assertion fails, I will check this to add to my repertoire, so I

prefer B but mark it as I do not know.” and “B is way too complex for no good reason. So many

lambdas seems like a lot cognitive overhead.” Oppositely, the developers who preferred the
transformed version agreed to the benefits of reporting the results of the individual assertions
together. These advantages can be found in comments like “Reports all failures at once,

reducing time to feedback.” and “With the first implementation, one error can hide 3 others.”

Despite dividing developers, as 71% of the respondents who did not prefer the transformed
code version did so because they dislike the feature syntax or do not know its behavior, their
answers do not invalidate the benefits ratified by the developers who chose the transformed
test code.

The Execution Condition feature (Figure 10) was the choice of about 77% of the devel-
opers. Code reuse, separation of concerns, elimination of false positives, and readability were
positive comments. Such advantages can be found in comments like “Separation of concerns:

the ‘if‘-statement itself is not part of the test.” and “Much more readable, implementing other

test depending on the same property doesn’t require code duplication”. A frequent disadvan-
tage concerned the syntax of the execution condition feature, which includes declaring the
condition method name as a string parameter to an annotation, thus difficulting method re-
naming operations. This disadvantage is found in comments such as the following ones: “The

annotation binds a method using its name in a string, adding another source of error.” and
“A makes the intent clear. I prefer language syntax over annotation magic.”

Our third proposed transformation, which used the Repeated Test feature (Figure 12), was
also the choice of the majority of the respondents. Such respondents highlighted benefits like
ease of debugging, code clarity, and maintenance in comments like “Declarative is usually more

readable. Decouples data and logic.” and “Easier to adjust and avoids index errors.” There were
concerns about computational cost, single-threaded execution, and verbose output among the
respondents who did not prefer the transformed version. Such concerns are present in the
following comments: “In B the test-start, test-stop, record-results code may push so much

stuff out of CPU caches etc it may perform no better than 100 isolated runs would perform.”

and “Option B is more declarative, but I don’t believe it is likely useful or informative to report

70

100 repetitions of the test into the test results.”

The developers that agreed to Transformation 5 — Temporary Directory feature (Fig-
ure 13) — highlighted the advantages of cleaner code, separating concerns, and ensuring
environment clean up after every test execution independently of its result. Such informa-
tion is found in comments like “Avoids non-test boilerplate, ensures that the temporary file

is cleaned up directly after the test.” and “Making and cleaning up temporary files can be

annoying and tricky to get right, especially across different platforms. A delegates the work

to JUnit, which I prefer.”. The comments of the respondents who did not explicitly prefer
the transformed code evidenced unfamiliarity with the feature use, as seen in “A seems to be

trying to clean after itself so that the test is repeatable.” and “It’s not clear what this tests,

though test A gets a bonus point for cleaning itself up and preventing the test from failing on

a subsequent run.”.
The transformation based on the Exception Verification (Figure 14) feature was our most

popular proposal, reaching about 92% acceptance between respondents. Conciseness, better
readability, and using the framework features are positive comments. We present some of these
comments as follows: “B is a clearer and more concise, it makes use of the tools that JUnit

already provides.” and “A does not really test for the exception to be thrown. If the exception

is part of the contract it should be properly asserted.”. The use of lambdas is also a source
of criticism between the non-adherents, as seen in “Sometimes lambda turns the code more

confuse.” and “It’s all down to how easy it is to read the test. A is quite explicit that we are

expecting the Exception - B takes a bit more reading to understand what’s happening.”

The transformation based on the Resource Lock (Figure 15) contained the feature most
unknown to developers. About 40% of the respondents did not prefer the transformed code,
and their comments’ analysis revealed that 60% of them were unfamiliar with the feature.
Other concerns regard impact on runtime, as seen on “B feels safer, but it could also be a

performance bottleneck in the test codebase, since it seems to be obtaining an exclusive lock

on the Java system properties. I would default to B but be wary of the impact on test runtime.”.
Positive feedback received from about 60% of the respondents highlighted the benefit of safety
in parallel executions and synchronized access to shared resources, as in “Avoids flaky tests due

to concurrent system property changes; clearly indicates that shared/static state is modified.”

and “For tests running in parallel, synchronization of access to a shared resource is required.”.
The developers also agreed to the transformation of our motivating example, which uses

JUnit 5 Parameterized Tests (Source Code 5). Separation of concerns, avoidance of code

71

duplication, ease of maintenance, and improved readability are among the benefits stated by
the respondents, as in “Simpler, less repetition, test cases more easily identified, easier to

maintain, clearer intent.” and “B is DRYer and B runs all the test cases even if one of them

fails. It’s probably easier to tell which case has failed (A only gives the line number in addition

to actual/expect result).” Respondents who did not opt for the transformed code showed
unfamiliarity with the feature in their comments, also highlighting difficulties in its syntax, as
in “B is tidy but relies on annotations that I’ve never used. The less “magic”, the more clear my

test code, the better.” and “Setting breakpoints on a certain data row in B is cumbersome.

It’s not clear how the CSV is parsed, how are spaces and commas handled, or need to be

escaped. I don’t see on a single view what happens.”.
Summary: The online survey shows that developers mostly prefer our transformation pro-

posals to eliminate undesired test behavior and benefit the test code. Their comments show
several additional benefits such as separation of concerns, ease of maintenance, avoidance of
code duplication, improved readability, and the elimination of false positives. Among the high-
lighted disadvantages, most developers claim the verbose use of lambdas and the insecurity of
string-based parameters in annotations —– posed by Java syntax and therefore some JUnit 5
features —– challenging to adopt some transformations. Additionally, many developers are still
unfamiliar with some JUnit 5 features. As stated in their comments, the lack of knowledge on
the new features led them to prefer the non-transformed code side, abdicating the advantages
brought by the transformations.

4.3.2 Pull Requests

The overall planning of this study is to validate the transformations proposed in Chap-
ter 4.2. We will use the submission of Pull Requests as our second validation strategy. The
necessary steps to accomplish this planning are (i) to retrieve a list of GitHub projects that
use the JUnit 5 library, (ii) find test smells in such projects, (iii) refactor the identified test
smells according to our transformations presented in Chapter 4.2, (iv) submit Pull Requests,
and (v) collect the developers’ opinions.

To submit the Pull Requests, we first need to select projects hosted on GitHub. Here, we
consider the same 77 projects that used the JUnit 5 library at the time. Afterward, we need
to find test smells in such projects to refactor them and submit the Pull Requests. To find the
test smells, we rely on an existing tool named tsDetect (PERUMA et al., 2019), which has been

72

used in several previous works (SPADINI et al., 2020; KIM, 2020; PANICHELLA et al., 2020; KIM;

CHEN; YANG, 2021; SOARES et al., 2020).
After executing the tsDetect tool against the 77 projects, we have the potential number

of opportunities to apply our transformations. Notice, however, that the tsDetect might raise
cases where the code does not match the LHS of our proposals. Therefore, the number of
transformation opportunities we present in Table 11 represents an upper bound, noted as a
threat to validity presented in Chapter 4.3.3.

Table 11 – Transformation opportunities

Transformation Test Smells

Grouped Assertions 19,399 (Assertion Roulette)
Exception API 23,899 (Exception Handling)

Parameterized Tests 6,766 (Duplicate Assert)
6,222 (Lazy Tests)

Repeated Tests 6,766 (Duplicate Assert)
7,434 (Conditional Test Logic)

Conditional Test Execution 7,434 (Conditional Test Logic)

Temporary Directory 1,645 (Mystery Guest)
1,687 (Resource Optimism)

Source: research data

Our candidate selection criterion used the guidance of tsDetect logs. We manually searched
for test smells that fit our generic templates (LHS) in the test classes where tsDetect indicated
the presence of a test smell. We present our strategies to select cases from the tsDetect logs
as follows:

1) Grouped Assertions: We searched for test classes indicated as containing the Assertion
Roulette test smell.

2) Exception API: We searched for test methods containing try/catch blocks containing
assertions in the catch parts, or methods to specifically pass or fail the test method, indicated
as Exception Catching Throwing in tsDetect.

3) Parameterized Tests: Methods suitable for such transformation can be found indi-
cated in tsDetect as Duplicate Asserts and Lazy Tests.

4) Repeated Tests: Suitable methods normally contain repetition structures involving all
test method steps, named as Conditional Execution is tsDetect, or contain exclusively several
copies of the same specific assertion, which are named as Duplicate Asserts.

5) Conditional Test Execution: Indicated as Conditional Test Logic in tsDetect. We
selected the ones that conditioned all test method steps execution to a specific value or range.

73

6) Temporary Directory: Test classes indicated by tsDetect as to have the Mystery
Guest or the Resource Optimism test smells.

7) Resource Lock: We analyzed all 15 test classes our crawler engine indicated to use
the @Execution annotation in the downloaded projects. These test classes would also have
to posses test methods writing to system’s common resources. We were not successful in this
search.

Once a test smell was identified, we followed each project’s contribution guidelines to down-
load the project and its dependencies and executed the automated test suites before making
any changes. If this step were successful, we would perform the transformation according to
the LHS and RHS of the transformation to be applied. We noticed that when another test
automation framework is used in conjunction with JUnit, behavioral changes incompatible with
our proposed transformations may happen. For this reason, after applying the transformation,
we again execute the automated test suites as a final round check to assure that the test
code change would not cause a build failure. Lastly, we formalized the contribution in a Pull
Request.

We decided to submit only one contribution per project to minimize bias on Pull Request
acceptance from the same developer/maintenance team. We transformed only one test smell
in a single class in this contribution, even if other test smells were identified. As contributing
to open-source project repositories demands non-trivial and resource-consuming tasks (e.g.,
project-code deployment and the study of contribution guidelines per project), and considering
our available resources, we limited each of our proposed transformations in Table 12 to a
maximum of 7 Pull Requests.

In addition to sending the Pull Request, we also submitted a comment justifying the
transformation that, unless stated differently by specific projects submission rules, followed
the pattern of (i) presenting the problem definition, (ii) the description of the transformation
(proposed solution), and (iii) the before and after (code snippets) changes.

Finally, when necessary, we discussed with the developers to better explain our submission
before accepting or rejecting the submitted Pull Request. Figure 17 summarizes the steps we
performed for every Pull Request submission. In the figure, the are two unsuccessful paths: (i)
when tests could not be run after project deploy and (ii) when a test execution result was not
successful after applying the transformation. We were not able to correctly deploy 10 of the
77 projects identified using JUnit 5 due to problems in environment configuration and missing
external dependencies. Despite foreseen in Figure 17, no performed transformation failed a

74

previously passing test method.

Figure 17 – Steps for Pull Request Submission

Source: research data

We submitted a total of 38 Pull Requests. Unfortunately, our established submission rules
(one unique submission per project) provided us with only three examples that could be trans-
formed with Temporary Directory. Table 12 presents the distribution of Pull Requests per
transformation.

Table 12 – Pull Requests per Transformation

Transformation Submitted Accepted Integrated Rejected Submission Error

Grouped Assertions 7 6 5 0 0
Exception API 7 7 3 0 0
Parameterized Tests 7 5 4 0 1
Repeated Tests 7 5 5 0 1
Conditional Test Execution 7 6 5 1 0
Temporary Directory 3 2 2 1 0

Total 38 31 24 2 2

Source: research data

Some observations are necessary regarding the summation of those numbers. First, we
consider a Pull Request accepted when developers manifest concordance with the transfor-
mation, not always merging the code due to contribution rules. The latter cases happened
when a contribution, instead of transforming all opportunities throughout the project, solely
resolved one of them (as defined by our submission rules). Second, an integrated Pull Request
is an acceptance merged to the main repository code. Third, a rejected Pull Request happens
when developers disagree with the proposed transformation; and a submission error happens
when contributions are rejected due to inadequacy to submission guidelines.

75

Following every open-source project’s contribution guidelines and our transformations, we
managed to submit 38 Pull Requests. Here, we observed 2 submission errors and 3 submissions
had no response. From the 33 responded submissions and considering the 31 accepted and the
2 rejected ones, we achieved 94% of positive evaluations with little to no further discussions.
Many accepted contributions were merged (74% of accepted pull requests) to the projects’
actual test code, which leads us to conclude that developers agree that our propositions help
to produce code without the presence of specific test smells.

We applied our transformations to test methods of different complexity and size. For exam-
ple, the pull request submitted to the Eclipse Jetty15 project kept the same test functionality
substituting 10 LOC by 5 in a more straightforward code when applying Transformation 6
(JUnit 5 Exception Handling feature). The pull request submitted to the Oracle Opengrok16

project substituted 28 LOC by 22 and improved the detection of skipped tests with Transfor-
mation 2 (Conditional Test Execution).

Table 13 presents a summary of the pull requests we submitted in this study. It also
summarizes the developers’ comments. Considering the submissions per transformation action,
we achieved acceptance rates (among respondents) of 100% for Grouped Assertions, Exception
API, Parameterized Tests, and Repeated Tests, 86% acceptance rate for Conditional Test
Execution, and 67% for Temporary Directory.

Table 13 – Submitted Pull Requests

No Project Name Transformation Result Comments

1 JanusGraph Grouped Assertions Integrated
Dev1: Assertion code is lengthier.
Dev2: Grouping is benefitial
Dev3: Didn’t know this feature

2 Quarkus Grouped Assertions Integrated Thanks for your contribution
3 Halo Grouped Assertions Integrated Thanks for your contribution
4 Spring PetClinic Grouped Assertions Accepted Thanks for your contribution
5 Spring-Boot-Starter Grouped Assertions Open
6 Spring Boot Admin Grouped Assertions Integrated Thanks for your contribution

7 Cryptomator Grouped Assertions Integrated Mostly a matter of taste, but
thanks for your contribution

8 Apache JMeter Exception API Accepted Thanks for your contribution

9 OkHttp Exception API Accepted The use of this API promotes
boilerplate reduction

10 LMAX Disruptor Exception API Accepted Thanks for your contribution
11 Seata Exception API Integrated Looks good to me
12 Sentinel Exception API Integrated Looks good to me

15 <https://git.io/J3q6P>
16 <https://git.io/JsAiw>

https://git.io/J3qKi
https://git.io/J3qK7
https://git.io/J3q6e
https://git.io/J3q6J
https://git.io/J3q6k
https://git.io/J3q6Y
https://git.io/J3q6G
https://git.io/J3q6W
https://git.io/J3q64
https://git.io/J3q6u
https://git.io/J3q6w
https://git.io/J3q66
https://git.io/J3q6P
https://git.io/JsAiw

76

13 Eclipse Jetty Exception API Integrated Looks good to me
14 Lettuce Exception API Accepted N/A
15 jsoup Parameterized Tests Open

16 Jenkins Parameterized Tests Integrated The feature makes it easier to
read the test results

17 CAS Parameterized Tests Submission
Error

18 Checkstyle Parameterized Tests Accepted Thanks for your contribution
19 Jodd Parameterized Tests Integrated N/A
20 Mindustry Parameterized Tests Integrated Thanks for your contribution
21 OWASP ZAP Parameterized Tests Integrated Thanks for your contribution
22 Spring Framework Repeated Tests Integrated Thanks for your contribution
23 MyBatis-Plus Repeated Tests Integrated Thanks for your contribution
24 JavaParser Repeated Tests Submission

Error

25 Reactor Core Repeated Tests Integrated
Good way to repeat when the
iteration # doesn’t really
matter

26 Aeron Repeated Tests Integrated N/A
27 MyBatis Generator Repeated Tests Integrated Thanks. Nice improvement.
28 Dropwizard Repeated Tests Open
29 Oracle OpenGrok Conditional Test Execution Integrated Thanks for your contribution
30 Apache Camel Conditional Test Execution Integrated N/A
31 Apache Dubbo Conditional Test Execution Integrated Looks good to me
32 Java Design Pat-

terns
Conditional Test Execution Integrated Looks good to me

33 Apache Kafka Conditional Test Execution Accepted Thanks for your contribution
34 Flowable Conditional Test Execution Rejected Broader tests need if conditions
35 Mybatis-3 Conditional Test Execution Integrated Thanks for your contribution

36 Java & Spring Tuto-
rial

Temporary Directory Rejected As a tutorial, we prefer to focus
only on the File API

37 Simplify Temporary Directory Integrated Thanks for your contribution
38 Zookeeper Temporary Directory Integrated It simplifies test steps

Source: research data

We now discuss our results. First, regarding developers’ comments about the Pull Requests,
it is vital to notice that most of the merged and accepted ones ended with a simple “Thanks

for your contribution” message or no message at all, which we registered as “N/A”.
One developer of the Reactor Core17 project commented the following about repeated tests:

“that’s a good idea, since the iteration # doesn’t really matter even in the case one of the

iterations fails”, corroborating our proposition. As mentioned in literature (KIM et al., 2021a),
we could also observe the developer’s unawareness of new features, as in the JanusGraph18

17 <https://git.io/JsoWs>
18 <https://git.io/J3qKi>

https://git.io/J3q6P
https://git.io/J3q6M
https://git.io/J3q69
https://git.io/J3q67
https://git.io/J3q6F
https://git.io/J3q6A
https://git.io/JsrEW
https://git.io/J3q6j
https://git.io/JswXM
https://git.io/JsA4c
https://git.io/JsA4d
https://git.io/JsABf
https://git.io/JsoWs
https://git.io/J3qi4
https://git.io/J3qif
https://git.io/Jsaq2
https://git.io/JsAiw
https://git.io/J3qiY
https://git.io/J3qin
https://git.io/J3qiz
https://git.io/J3qiz
https://git.io/JsaYv
https://git.io/JsaYt
https://git.io/J3qiq
https://git.io/JsMlF
https://git.io/JsMlF
https://git.io/JsABN
https://git.io/JsMlj
https://git.io/JsoWs
https://git.io/J3qKi

77

project, where one of the project maintainers made the following statement: “Didn’t know this

feature”.
We had two rejected pull requests. In the Flowable19 project, one developer complained

about the use of parameterized tests: “It is not good approach. It is very compact and very

technological but VERY complicated and cryptic. We need easy to read tests and make them

as much as possible to be focused on human ability to read them easily”; the project they
were maintaining was migrating to specification through behavior-driven ideas, and maybe
that is why the developer quoted the importance of human readability. The second rejection
happened in the Java & Spring Tutorials20 project, where we transformed the test code using
the Temporary Directory feature and obtained the developer comment: “That would be the

better way to test this in a real-world scenario. In this case, the code is meant to support a

tutorial on working with files in Java, so we prefer to keep it simple and focus only on the File

API.”.
We had two submission errors. The first one, to the CAS21 project, happened due to a

lack of observance to project rules for Pull Requests, which was a constant risk and generated
a bad submission. The second submission error, submitted to the JavaParser22 project, was
caused due to a lack of understanding of the test behavior, which did not fit our proposed
transformation template (LHS) and was not supposed to be transformed.

The acceptance rates per transformation show the potential of our proposals. For instance,
all responded Grouped Assertions were accepted, and almost all Conditional Test Execution (6
accepted and 1 rejected) did too. We achieved only 67% for Temporary Directory. However, it
is essential to note that we submitted only 3 Pull Requests considering such transformation.

Summary: The 94% acceptance rate of our contributions demonstrates our transforma-
tions’ potential when considering developers’ opinions. Thus, RQ4.2 is positively answered.

4.3.3 Threats to Validity

As an internal threat to validity, the opportunities presented in Table 11 may be overesti-
mated to our transformations. Although the tsDetect (PERUMA et al., 2019) tool indicates test
smells, the test code may not match the LHS of our proposed transformations. Concerning
19 <https://git.io/JsaYt>
20 <https://git.io/JsMlF>
21 <https://git.io/J3q6F>
22 <https://git.io/JsABf>

https://git.io/JsaYt
https://git.io/JsMlF
https://git.io/J3q6F
https://git.io/JsABf

78

the submitted pull requests per test smell type, these may not be enough to generalize results
per studied test smell.

As an external threat to validity, and considering that our contributions (pull requests),
although made to popular projects, do not achieve statistical confidence (II; KOTRLIK; HIGGINS,
2001), our results may not remain consistent in an attempt to generalize beyond the selected
project list. Also, we gather answers from software developers of open-source projects only,
and this bias may influence the generalization of results to other audiences. We address this
threat by considering their experience and geographic distribution worldwide, whose variety
may bring better representation of different views to our results.

4.4 RESEARCH DIRECTIONS

Built upon our findings, research directions for test smell removal would involve:

• The number of transformation opportunities shown in Table 11 indicates that manual
refactoring is inefficient and suggests an automatic mechanism to be most necessary. In
this sense, an effort to extend our contributions both in creating more transformations
or implementing them in automatic tools, as already performed by Paula and Bonifácio
(2022), seems reasonable.

• The formalism we used to express the transformations in this work can be used, and
extended, to express current and further test transformations and refactorings, as already
performed by Martins, Costa and Machado (2023).

79

5 MANUAL TESTS ALSO SMELL

Despite the format differences, bad choices when implementing automatic tests or describ-
ing a manual test using natural language may pose similar threats to the testing activity, as
exemplified in our motivating example from Section 2.3 and generating the questions from the
third knowledge gap presented in Chapter 1.

In this chapter, we present the studies dedicated to the analysis of manual test descriptions
through test smells. We first conduct an exploratory study (Section 5.1) to analyze a statis-
tically relevant sample of manual test descriptions of three systems from different domains:
(i) the Ubuntu Operational System (OS), which is open-source; (ii) the Brazilian Electronic
Voting Machine, in an institutional partnership between the Federal University of Pernambuco
(UFPE) and the Superior Electoral Court (TSE); and (iii) a large smartphone manufacturer’s
UI — name omitted due to non-disclosure of proprietary information agreement —, also in
partnership. In this first study, we intend to answer the following research questions:

• RQ6:“What already proposed natural language test smells can be observed?”,

• RQ7:“What new natural language test smells can be observed?”, and

• RQ8:“How frequent are these test smells?”

In Section 5.2, we present our catalog of natural language test smells. In sequence, we
conduct an empirical study (Section 5.3) using an online survey to evaluate our catalog. We
recruited 24 testing professionals and presented them with our definitions and examples, asking
for their agreement level to our propositions. In this study, we answer the following research
question:

• RQ9:“How software testing professionals evaluate our proposed smells?”

We also contribute to developing an NLP-based tool to identify our catalog’s natural
language test smells automatically in Section 5.4. Our tool implements our defined rules
using spaCy,1 a “free, open-source library for industrial-strength Natural Language Processing

(NLP) in Python,”, and its capabilities concerning syntactic analysis (i.e., elements of the
sentences and their properties) like verification verbs and declarative sentences, which are
1 [Online]. Available: <https://spacy.io/>

https://spacy.io/

80

present in multiple languages and whose implementation can be mostly reused — as we do to
Portuguese, used in the tests of the Brazilian electronic voting machine. To evaluate our tool,
we conduct one last empirical study presented in Section 5.5 to answer the following research
question:

• RQ10:“How precise can the automated discovery of natural language test smells

be when using NLP?”

The survey dataset, tool logs, and tool validation records — the last two documents for
Ubuntu OS tests — can be downloaded at our online repository (SOARES et al., 2022a).

5.1 EXPLORING MANUAL TESTS

This section describes how we analyzed natural language test descriptions to prospect test
smells. Also, we give further detail on the selected systems, a sample set of tests, and the
distribution (frequency) of our findings. In particular, this exploratory study answers RQ6,
RQ7, and RQ8.

5.1.1 Settings

This exploratory study aims to prospect a set of manual tests from different systems and
gather the identified occurrences of test smells. To increase the representativeness of our
results, we selected manual tests written in natural language from important systems of three
distinct domains: open-source, government, and industry. Considering the limits imposed by
the agreements for non-disclosure of confidential information, we detail the obtained tests as
follows:

• Ubuntu OS: As open-source software (LTD., 2023), the Ubuntu OS manual tests are
available in a public repository.2 In the repository, test descriptions are written in English
(natural language) and XML format, with standardized tags for test suites, test cases,
and action and verification steps. In total, 305 test files containing 973 tests are available.

• Brazilian Electronic Voting Machine (BEVM): An open-source web-based test
management and test execution system manages the manual test descriptions of the

2 [Online]. Available: <https://git.launchpad.net/ubuntu-manual-tests>

https://git.launchpad.net/ubuntu-manual-tests

81

BEVM. In the ecosystem, test descriptions are in Portuguese. In total, we had access to
133 tests exported to HTML format.

• Large Smartphone Manufacturer (LSM): The manual test descriptions of this in-
dustry partner are managed by a proprietary issue-tracking product that allows bug
tracking and agile project management. Manual test descriptions for this system are in
English. In total, 898 test descriptions were made available for our analysis and exported
to spreadsheet format.

Three independent researchers — the author and two assistants — manually analyzed a
randomly selected subset of test descriptions to perform the exploratory study. Using their
know-how on test smells for automatic and manual tests, the researchers quoted every ques-
tionable description and indicated the possible smell, discussing results in follow-up meetings.
It is important to emphasize that access to BEVM and LSM tests was controlled and accessed
by cleared researchers only. As to the analysis procedure, all researchers involved in this activity
started with the Ubuntu manual tests to achieve standardization of actions, continuing the
analysis in the remaining systems according to their access grants.

Concerning the already proposed smells for tests written in natural language, from the
existing list of seven test smells (HAUPTMANN et al., 2013), five are identified using metrics
from an automatic analysis (JONES, 1972): Badly Structured Test Suite, Inconsistent Wording,
Hard-Coded values, Long Test Steps, and Test Clones. As we intended to manually read test
descriptions and take notes of the identified problems, using any tool to generate such metrics
was out of scope.

Finally, to make our manual analysis effort feasible and guarantee the best generalization
possible, we used Cochran’s Sample Size Formula (II; KOTRLIK; HIGGINS, 2001) to calculate the
sample needed to obtain an 80% confidence level with a 5% margin of error for each system
individually. Table 14 presents the analyzed sample test set per system.

5.1.2 Results

We found similarities in all systems regarding the structure of their manual tests. Although
Ubuntu’s team does not use a specific test managing tool, they describe their tests as the
other two systems, which use open-source and proprietary software for such activities. Figure 18

82

Table 14 – Analyzed sample set of tests per system.

System Manual tests Sample size

Ubuntu OS 973 141
BEVM 136 75
LSM 898 139

Total 2,007 355

Source: research data

presents a test visualization. Table 15 details the test section’s writing, regarding the sentence
types, with examples from the Ubuntu OS tests.

Figure 18 – Common test design found in the exploratory study

Source: research data

Table 15 – Common test structure found in the exploratory study.

Section Sentence type Example

Objective Declarative This test checks that Audio project menu Works

Preconditions Declarative VMWare Player version ≥ 4.0 is required
Imperative Ensure that your system has no Internet access before proceeding

Action Imperative Click the ‘Restart now’ button

Verification Declarative An ‘Installation Complete’ dialog appears
Imperative Verify the system upgraded correctly

Source: research data

The exploratory study identified eight test smells, briefly defined in Table 16 and further
detailed in Section 5.2. From this list, two smells (i.e., Ambiguous Test and Conditional Test)
are proposals from the literature on natural language test smells (HAUPTMANN et al., 2013),
and the remaining ones are contributions from our study. Also, we manually accounted for 447
occurrences of the identified test smells, and Figure 19 presents their distribution per system.

As, in the exploratory study, BEVM and LSM tests were analyzed by one author only, we
present the inter-rater reliability concerning the Ubuntu OS tests only, which was the only

83

Table 16 – Cataloged test smells

Test Smell Brief definition

Ambiguous Test Test steps leaving room for interpretation
Conditional Test Conditional logic phrased in natural language
Eager Action Single action steps that group multiple actions
Misplaced Action Action steps written as verification steps
Misplaced Precondition Preconditions as action steps
Misplaced Verification Verification steps written as action steps
Tacit Knowledge Unexplained terms and abbreviations
Unverified Action Action steps without corresponding verifications

Source: research data

Figure 19 – Distribution of identified test smells per system

Source: research data

system analyzed by all authors. From the 447 occurrences found in this study, 114 belonged
to Ubuntu OS tests. From these occurrences, authors initially rated 91 classifications in agree-
ment, which lead us to 79.8% of initial inter-rated reliability (percent agreement (SKRONDAL;

EVERITT, 2010)) in the exploratory study. As stated, the divergences were solved in two meet-
ings, reaching a consensus in the classifications.

5.1.3 Discussion

The structural test pattern found in the analyzed systems (Section 5.1.2) enabled us to
propose the test smells presented in Section 5.2. Moreover, the distribution of such smells
demonstrates the analysis of natural language test descriptions from the point of view of test
smells to present promising results. The manual analysis offers some insights whose reality is
precisely shown in Section 5.4. These insights, for now, indicate that:

84

• Most observed test smells are common to all analyzed systems (e.g., Eager Action);

• There are test smells unique to a single system (e.g., Tacit Knowledge);

• Each system has its own test smell trend (e.g., Ubuntu tests suffer more from Unverified

Action).

Answering RQ5, we could observe two already proposed natural language test smells in the
analyzed systems. In addition, six new test smells are observed, which answers RQ6. Answering
RQ7, the test smells are frequent throughout the analyzed systems. In particular, Eager Action
and Tacit Knowledge tend to be the most and the least frequent ones.

5.1.4 Threats to Validity

Concerning the conclusion threats, our identified test smells relate to the common test
structure in all three analyzed systems. However, it is important to notice that BEVM and
LSM tests are managed by well-adopted software solutions throughout the industry, leading
us to understand the found pattern as generally widespread, possibly minimizing this threat.

In the internal threats, as the accuracy of the exploratory study (i.e., 80%) is not ideal for
generalizations in the analyzed systems (II; KOTRLIK; HIGGINS, 2001), the distribution of test
smells presented in Figure 19 may not be precise. We minimized this problem by modeling and
validating a Natural Language Processing (NLP)-based tool, further detailed in Section 5.4,
to provide the exact distribution of the presented test smells.

As external threats, analyzing a few software systems may not be enough to identify relevant
or well-spread test smells. We minimize this probability by using systems representative of
different domains and spoken languages and finding test smells common to such systems.

5.2 A CATALOG OF NATURAL LANGUAGE TEST SMELLS

We now present our catalog, the main product of our exploratory study. We show the
identified test smells in terms of their names, definition, problem, and identification rules
for their detection with examples — when applicable — from the analyzed Ubuntu OS test
descriptions.

85

5.2.1 Ambiguous Test

Definition: Originally proposed by Hauptmann et al. (HAUPTMANN et al., 2013), this smell
indicates an “under-specified test that leaves room for interpretation” in integration tests.

Problem: It negatively impacts test comprehension and execution, since the aim needs to
be clarified and multiple test executions are not comparable (HAUPTMANN et al., 2013).

Identification: The original detection rule was the occurrence of any word from a fixed list
of “vague words.”3 As Hauptmann et al.’s (HAUPTMANN et al., 2013) keyword list originated
from occurrences in their analyzed test suites and we found a slightly different list in our
exploratory study (e.g., some, other, and any), we noticed such keywords to be common in
their semantics (syntactic analysis). We propose a more general set of detection rules which
consider keyword semantics instead of a fixed list, and examples, in Table 17.

Table 17 – Ambiguous Test Identification

Rule Example

Verb + indefinite determiner Open any application and suspend machine
Indefinite pronouns At “Write changes to disks”, verify that everything is right and select YES
Comparative adjectives Is the performance similar or better with no graphical display issues?
Superlative adjectives The root filesystem uses most of the SD card.
Adverbs of manner Does fast user switching work quickly?
Comparative adverbs Does everything function better than the stable version?

Source: research data

5.2.2 Conditional Test

Definition: Tests containing conditional logic phrased in natural language.
Problem: The Conditional Test turns tests very complex and difficult to maintain, nega-

tively impacting test comprehension and correctness since it is hard to understand the intention,
and complex tests are more likely to have errors (HAUPTMANN et al., 2013).

Identification: Originally, Hauptmann et al. (HAUPTMANN et al., 2013) proposed a fixed list
of words for its detection.4 As the list is non-exhaustive concerning subordinating conjunctions,
3 similar, better, similarly, worse, having in mind, take into account, take into consideration, clear, easy,

strong, good, bad, efficient, useful, significant, adequate, fast, recent, far, close
4 if, whether, depending, when, in case

86

we propose any subordinating conjunction, as in Table 18, to identify this smell as a more
robust detection rule.

Table 18 – Conditional Test Identification

Rule Example

Subordinating conjunctions If you have a USB drive, plug it in.

Source: research data

5.2.3 Eager Action

Definition: Single action steps that group multiple actions.
Problem: This test smell may hide implementation problems when any action lacks veri-

fication, negatively affecting test effectiveness.
Identification: Imperative verbs represent actions. Example in Table 19.

Table 19 – Eager Action Identification

Rule Example

Multiple imperative verbs Change some sound settings or other settings (night mode, call history, SMS,
etc.) and display them on the phone, download some applications, etc.

Source: research data

5.2.4 Misplaced Action

Definition: Indicative of a structurally malformed test, the Misplaced Action smell arises
when action steps are written as results.

Problem: It negatively impacts test maintainability, since the test structure is not consis-
tent.

Identification: Imperative verbs, excluding verification verbs,5 present in verification steps.
Example in Table 20. A test except containing the Misplaced Action test smell is shown in
Table 21.
5 Verification verbs identified in use: check, verify, observe, recheck

87

Table 20 – Misplaced Action Identification

Rule Example

Imperatives, excluding verification verbs,
as verification steps

Give a name to the directory and add files to it as you did in
the previous step

Source: research data

Table 21 – Test excerpt containing the Misplaced Action test smell

N Action Verification

1 Press the "Add" button (+) A new window asking for files appears
2 Click on "Create Directory" Give a name to the directory and add files to it as you

did in the previous step
3 Select several files The files are added to the project. All information about the

files is displayed: Contents, Size, Local Path. The size bar will
contains information now.

Source: research data

5.2.5 Misplaced Precondition

Definition: Also an indicative of structurally malformed tests, here, preconditions are
written as action steps.

Problem: Difficulties in test correctness, since the incorrect placement of preconditions
may influence the tester to report test failure should a precondition be unattended.

Identification: When the first action step declares the SUT state. The common format
of SUT state is a noun (subject) followed by an auxiliary verb, followed by a past participle

verb or adjective in the same sentence (Table 22). A test except containing the Misplaced

Precondition test smell is shown in Table 23.

Table 22 – Misplaced Precondition Identification

Rule Example

Subject followed by an auxiliary verb followed by another verb
on the past participle

The monitor is not connected, and the
PC is not paired

Source: research data

88

Table 23 – Test excerpt containing the Misplaced Precondition test smell

No Action Verification

1 Make sure auto-hide is enabled.
2 Move the mouse on the edge and continue pushing to

the left (as if you want to put the mouse offscreen)
until the launcher reveal

The launcher should appear

3 Put the mouse outside of the launcher area The launcher should disappear again after
around a second

Source: research data

5.2.6 Misplaced Verification

Definition: Another indicative of structurally malformed tests, this smell arises when ver-
ification steps written as action steps.

Problem: It negatively impacts test maintainability, since the test structure is not consis-
tent.

Identification: Sentences containing verification verbs written as or along with action
steps. Example in Table 24. A test except containing the Misplaced Verification test smell is
shown in Table 25.

Table 24 – Misplaced Verification Identification

Rule Example

Verification in or as an action step Close flip and check app continuity

Source: research data

Table 25 – Test excerpt containing the Misplaced Verification test smell

No Action Verification

1 Open the dash and launch rhythmbox by pressing the
super key, and then entering ‘rhythmbox’

rhythmbox should launch

2 Plug a music player device containing MP3 files into
your system and check whether rhythmbox imports
the music correctly.

A new entry Devices appears

3

Source: research data

89

5.2.7 Tacit Knowledge

Definition: This test smell is related to the use of unexplained terms and abbreviations
presuming the tester’s familiarity to domain-specific definitions.

Problem: It negatively impacts test comprehension and execution.
Identification: Abbreviations and domain-specific terms not explained in the test descrip-

tion or external reference document (i.e., glossary). A hypothetical example, since we are not
authorized to disclose BEVM tests, is in Table 26.

Table 26 – Tacit Knowledge Identification

Rule Example

Unexplained terms and abbreviations Check for reported residual votes

Source: research data

5.2.8 Unverified Action

Definition: Action steps that miss corresponding verification steps.
Problem: Absent verification steps negatively affect test execution and correctness since

there is no instruction on how the system should behave, leaving room for the testers’ inter-
pretation.

Identification: Action steps with no corresponding verification steps. A test except con-
taining the Unverified Action test smell is shown in Table 27.

90

Table 27 – Test excerpt containing the Unverified Action test smell

No Action Verification

1 Click on the Plugins tab and Click "Add"’ The Plugins window opens
2 Choose a plugin Synth and Click "OK" The plugin synth shows in the Plugins

tab and a window opens with the plu-
gin in it

3 Right Click on the plugin synth and choose Activate
4 In the plugin window choose a patch name and Click "Send

Test Note"
A sound plays through the speakers

5 Click on the Track tab of the track window
6 In the MIDI/Instrument Panel choose the Plugin as an

instrument
7 Click "OK" in the Track window
8 Click on the "Play" icon The midi track plays using the chosen

sound of the plugin instrument

Source: research data

5.3 CATALOG EVALUATION

In this section, we present the online survey performed to evaluate our proposals. This
activity, in particular, answers RQ9:“How software testing professionals evaluate our

proposed smells?”

5.3.1 Planning

This study planned to assess the opinions of software testing professionals (e.g., engineers,
analysts, and managers) about the manual test smells we proposed in Section 5.2 through an
online survey. By stating their agreement with our definitions and examples and comment-
ing on their answers, the software testing professionals would validate whether our proposals
represented valid test smells in theory and practice.

5.3.2 Settings

We assembled an online survey with questions corresponding to the given definition and
example, same as presented in Section 5.2. Respondents were presented with the following
answering options (unique): “I strongly agree”, “I agree”, “Indifferent”, “I disagree”, and “I

strongly disagree”. Also, every question had an optional comment field.

91

We recruited participants through individual email invitations, using emails from our indus-
try partner. The invitations were sent to participants of manual test teams, quality assurance
professionals, and test managers, none of whom had compensation or obligation to respond
to the survey.

5.3.3 Results

We performed the survey in March 2023, achieving 24 responses. Concerning the demo-
graphics, we had participants from Brazilian teams, where 83.3% defined their primary work
area as the industry — over academia — and their average declared experience with software
testing was 4.3 years. Figure 20 details the results concerning the participants’ opinions on our
proposals. Considering the extent of agreement between respondents (i.e., Kendall’s Coeffi-
cient of Concordance (LEGENDRE, 2005)), the obtained results achieve an inter-rater reliability
of 80.73%.

Figure 20 – Survey results

Source: research data

5.3.4 Discussion

Regarding the proposed test smells (Section 5.2), the opinion of experienced test pro-
fessionals active in the market (industry partner) served as validation that obtained a high
acceptance rate (Figure 20). We present the details in the following paragraphs.

Already present in the literature, the Ambiguous Test smell (Section 5.2.1) definition was
ratified by 83% of the respondents. Among the agreeing comments, the ambiguity may indeed
cause tests to be poorly performed depending on the tester experience, as in “My experience

92

can improve the test coverage, however for a beginner tester is not be clear the ways to

test an interruption, and this can induce he/she to repeat the same procedure/routine or

try few different ways to suspend the app.” Among the testers that disagree with the test
smell definition, the variance allowed by non-deterministic terms is beneficial to test different
scenarios, as seen in “I would say that exploratory test cases use a similar approach and it has

been working”.
Known in automatic and manual testing, the Conditional Test (Section 5.2.2) smell def-

inition and example had the acceptance of 83% of the respondents. Concerns about the
conditionals being able to improve the test coverage on features not always available arise in
both sides, as in the agreeing opinion “The only part I would not agree is if it is related to

a feature that the product may not actually have implemented, for example, NFC.”, and the
disagreeing opinion “The test writer attempted to cover more possible verifications. If a step

or accessory can’t be verified all the test is not blocked, and the test becomes applicable to

different kinds of product”.
As the first proposal of our work, the Eager Action (Section 5.2.3) test smell definition

was ratified by 87.5% of respondents, with no disagreeing opinion. Among the comments,
difficulties in the test execution and concerns about the verifications can be found in “it seems

rather confusing and not pointing to any settings overall, it is covering multiple scenarios” and
in “There isn’t a guarantee that the tester checked all configurations available”.

Ratified by 75% of the respondents, the Misplaced Action (Section 5.2.4) test smell had
supporters that manifested concerns about test structure, as in “Verification steps should be

in the end of test cases. Preconditions at the beginning, and actions in the middle.” Testers
that do not agree with the given definition manifest no concern to test structure, since they
comprehend the test objective, as in “If the action keeps the step valid as a single one, it

makes sense to be written”.
The concerns described by the Misplaced Precondition (Section 5.2.5) test smell definition

were accepted by 87.5% of the respondents. Unfortunately, as that was not a mandatory task
in this survey, the respondents provided no comments to this test smell description.

The Misplaced Verification (Section 5.2.6) test smell was our least accepted proposal, even
though counting with 62.5% agreeing opinions. Testers claim the test clarity to benefit from
the separation into action and verification steps, as in “I agree because I think that is more

clear and organized for the test have it in separated (verification) steps”. On the opposite
hand, testers that did not agree also claimed maintainability benefits of keeping action and

93

verification steps written together, as in “these actions help to avoid too many steps in a script

and reduces the effort in test maintenance”.
Our most accepted proposal, the Tacit Knowledge test smell (Section 5.2.7) definition

had the support of 91.6% respondents. The excessive use of abbreviations and unexplained
domain-specific terms is indeed a concern to agreeing respondents, as in “In my experience,

I have faced many new testers and interns having problems knowing abbreviations in test

cases”. Disagreeing opinions call attention to test maintainability, as in “I would say it is a

case by case scenario where it could be bad either way. I could have overly long texts due to

unnecessary repetition that could be solved by Basic Glossary before the TCs (test cases). Or

a inverse scenario where the tester is not provided with edge information to that test.”

Our last proposal, the Unverified Action test smell (Section 5.2.8) had the approval of
75% respondents. No agreeing respondent gave further details on their answer. Disagreeing
respondents manifested concern about the verification steps to every action, as in “Not every

action, in a sequence of actions, generates a relevant result to be verified.” and “In some

situations the expected result is too obvious and can be dispensed. I believe that this helps to

not tire the reader.”

The online survey shows that software testing professionals mostly agree with our proposals.
In addition to positively answering RQ9, the provided comments show additional concerns, such
as test reproducibility, length, maintainability, and coverage, all originated from doubts raised
by poor test writing.

5.3.5 Threats to Validity

Concerning the internal results, some respondents made the same claim for better or-
ganization when a test has action and verification steps written together or separated, for
instance, both representing agreeing and disagreeing opinions. However, the wide acceptance
of our proposals votes in favor of our interpretation of the possible prejudices, minimizing the
threat.

As external threats, we used responses from software testing professionals who work for
our industrial partner, and this bias may influence the generalization of results to other audi-
ences. We minimize this probability through the respondents’ experience, of about 4.3 years
of experience on average (Section 5.3.3), and whose answers tend to be similar to experienced
professionals who test software in other domains. However, even with an average inter-rated

94

reliability for agreeing opinions of 80.73%, the amount of obtained responses (i.e., 24) advises
generalizations as formally impossible.

5.4 DETECTING SMELLS IN MANUAL TESTS WITH NLP

We present the development of an NLP-based tool, which we call Manual Test Sensei, to
detect the natural language test smells we described in Section 5.2. This effort shows how
implementing our rules for natural language test smells identification is feasible using the
current state of the NLP technology.

We use Python and spaCy (HONNIBAL; MONTANI, 2023), a commercial open-source soft-
ware released under the MIT license (SALTZER, 2020), to implement the NLP tool containing
our rules for discovering natural language test smells. SpaCy features convolutional neural net-
work models for part-of-speech (POS) tagging (MARCUS; SANTORINI; MARCINKIEWICZ, 1993),
dependency parsing(NIVRE et al., 2016), text categorization, and named entity recognition
(NER) (HONNIBAL; MONTANI, 2017). Figure 21 shows a visualization of the dependency pars-
ing — arrows above the sentence — and the POS tagging — labels beneath each sentence
element — for the Conditional Test example of Section 5.2.2.

The motivation for choosing this combination of programming language and NLP library
were (i) using market tools focused on results and performance to analyze industrial-scale
software and (ii) the availability of language models beyond English since BEVM tests are in
Portuguese.

Figure 21 – spaCy’s visualizer module example

Source: research data

The chosen strategy enabled us to implement most of our identification proposals. However,
identifying the Tacit Knowledge (Section 5.2.7) requires a more comprehensive solution. To
perform it, one would consider (i) external documentation (e.g., glossaries and execution
manuals) — non-existent in Ubuntu and not provided in the BEVM and LSM — and (ii) a list
of standard terms used in manual software testing and considered tacit in every manual testing

95

scenario, where every outsider term would characterize the Tacit Knowledge test smell if not
clarified. To the best of our knowledge, the proposition of such a list is yet to be performed
and requires a formal study.

Also, we had to consider the different test file formats according to each analyzed project:
XML for the Ubuntu OS, HTML for the BEVM tests, and spreadsheet for LSM tests. To
that end, specific parsers were created for each system’s test file format. Figure 22 presents a
simplified UML class diagram of the Manual Test Sensei tool, where the parsers — responsible
for transforming a test file into several test objects — and the test smell matchers are shown.
Finally, the tool produces a CSV file as output containing the test file name, the identified test
smell, the specific words or sentence span that characterize the test smell, and the analyzed
(action or verification) step.

Figure 22 – Simplified UML class diagram of the developed NLP tool

Source: research data

The tool source code is available in an online repository at <https://github.com/easy-s
oftware-ufal/manual-test-sensei>.

5.5 TOOL EVALUATION

Once the proposition and development of the Manual Test Sensei tool — implement-
ing our natural language test smell identification rules — proved possible using current NLP
technology (Section 5.4), in this last study, we present the tool results and validation, there-
fore demonstrating how precise is the tool performance. This activity, in particular, answers
RQ10:“How precise can the automated discovery of natural language test smells be

when using NLP?”

https://github.com/easy-software-ufal/manual-test-sensei
https://github.com/easy-software-ufal/manual-test-sensei

96

5.5.1 Planning

This study planned to execute the Manual Test Sensei tool against the entire test set of
the three analyzed systems and validate the results. Therefore, we could verify whether the
distribution found in the exploratory study (Section 5.1) is maintained in the Manual Test
Sensei execution results, as well as the accuracy — in terms of precision, recall, and f-measure
metrics (RIJSBERGEN, 1974; POWERS, 2020) — of such results.

5.5.2 Settings

Although we executed our tool against the entire test set of the three systems, manually
validating the tool’s output of 13,169 smells would be infeasible. Therefore, we randomly
selected 101 tests — so that the division results in whole numbers — distributed in proportion
to the number of tests available in every analyzed system.

For every selected test, an author would first analyze it manually and indicate the found
test smells, then verify the tool results for that test, and finally indicate the results that
were correct or true positives (TP), incorrect or false positives (FP), and the missed or false
negatives (FN) test smells. Table 28 presents the distribution of the randomly selected tests
per system:

Table 28 – Distribution of selected tests in the validation sample

System Total tests Sample size

Ubuntu OS 973 49
BEVM 136 7
LSM 898 45

Total 2,007 101

Source: research data

5.5.3 Results

A total of 2,007 test descriptions were analyzed by the Manual Test Sensei tool. The tool
indicated 13,169 test smells, with an average of 6.5 test smells per analyzed test, noticeably
higher than the 1.2 test smells found in the exploratory study (Section 5.1). Considering the

97

analyzed systems individually, we obtained an average of 8.5 test smells per Ubuntu OS test,
5.8 test smells per BEVM test, and 4.5 test smells per LSM test. Table 29 presents the results
per test smell and system. Finally, a distribution of the found test smells per analyzed system
is presented in Figure 23.

Table 29 – Total NLP results

Test Smell Ubuntu BEVM LSM Total

Ambiguous Test 2,627 185 1,776 4,588
Conditional Test 277 110 193 580
Eager Action 2,664 299 1,191 4,154
Misplaced Action 318 19 124 461
Misplaced Precondition 45 3 74 122
Misplaced Verification 428 161 513 1,102
Unverified Action 1,967 11 184 2,162

Total 8,326 788 4,055 13,169

Source: research data

Figure 23 – Distribution of test smells per system

Source: research data

Three authors performed the verification as defined in Section 5.5.2. Table 30 presents the
detailed validation totals per system and the precision, recall, and f-measure metrics achieved
by the tool in this validation activity.

98

Table 30 – Detailed NLP tool validation and metrics

System TP FP FN Precision Recall F-measure

Ubuntu OS 384 43 18 0.9 0.96 92.64
BEVM 25 0 0 1 1 1
LSM 213 13 12 0.94 0.95 94.46

Total 622 56 30 0.92 0.95 93.53

Source: research data

5.5.4 Discussion

The impressive number of 13,169 test smells found in 2,007 is only justifiable due to the
nature of the analyzed tests. As mentioned, these are integration and system tests, which
are long ones by nature. In our analysis, test descriptions having 30 or more steps were com-
mon. Also, our tool accounted for each test smell occurrence in a test, regardless of previous
detections of the same smell in previous steps of the same test.

The high expressiveness of the adopted technology, either in the identification of depen-
dency relationships (e.g., subject + auxiliary verb + participle verb) or in the identification
of the Part of Speech (POS) (e.g., indefinite pronouns), enabled us to implement most of
the detection rules as defined in Section 5.2. Only one identification rule could not be imple-
mented entirely, which was the Conditional Test, identified through subordinating conjunctions
(SCONJ) at the beginning of a dependent clause in a sentence. As spaCy does not natively
support splitting sentences into clauses, which varies from language to language, identifying
SCONJ in a dependent clause in the middle of a sentence results in many identification prob-
lems by the pre-trained models. This problem resulted in 8 false negatives identified in the
validation activity, representing approximately 27% of the test smells not identified by the tool.

We analyzed tests written in different languages (i.e., English for Ubuntu OS and LSM, and
Portuguese for BEVM). As our identification rules were specified in terms of syntactical (POS
tagging) and morphological (dependency parsing) analyses, changing the analyzed language
is a task of as low effort as informing spaCy which language model (they dispose pre-trained
models for more than 20 languages) should be used. We simplified this task by informing the
tool, in its command line, which language (English or Portuguese) should be used for test
analysis. Further execution details are presented in the tool documentation.

We encountered various formatting, spelling, and character encoding conversion issues

99

in the test descriptions. Using numbered and unnumbered lists, parentheses, and the lack
of correct punctuation impaired the NLP engine classification in some cases reported as false
positives and false negatives. For example, the implemented mechanism was not able to identify
a subordinate clause in the sentence “(If on a ‘laptop’) Is plugged to a power source,” nor
in “Type in your user name and press Enter (you can accept the default if you wish),” and
could not differentiate the link label in the sentence “Click the Choose Payment Method link,”

which lacked quotes, and was erroneously classified as multiple actions.
However, even with the implementation challenges and some test malformations men-

tioned, the result obtained in the metrics of precision, recall, and f-measure for the tool can
still be considered expressive. The results remain promising even when using a trained model
for a different idiom and executing the same rules — except for the list of verification verbs
used in the Misplaced Verification detection, which needed a partner in Portuguese for BEVM
tests — as seen in the metrics presented by Table 30.

According to Table 29, the most frequent test smells detected were the Ambiguous Test

(i.e., 34.8%) and Eager Action (i.e., 31.5%). An interesting distribution noticed is that, from
the 4,588 occurrences of the Ambiguous Test, we accounted for 2,225 (i.e., 48.5%) occurring in
action steps and 2,363 (i.e., 51.5%) occurrences in verification steps, meaning that ambiguous
tests have an almost equal probability of presenting testers with difficulties in “what to perform

in the test” and “what to verify as a result.” However, being less frequent may not mean less
harm to the testing activity. It is important to remember that a Misplaced Precondition can
induce the tester to declare the test failed if the precondition is not met and the test cannot
be executed (SOARES et al., 2020; SOARES et al., 2023).

Comparing the distribution of test smells found in the exploratory study (Section 5.1)
and the one found by the NLP tool (Section 5.5.3), shown in Figure 24, we noticed that
some test smells had a different percentage result between the two activities, which was the
case of the Ambiguous Test and the Conditional Test. This expressive difference was due
to the more precise identification of the tool in cases of undefined determinants, which may
escape the most attentive — or not sufficiently trained in the exploratory study — eyes.
Still, the precision difference in the exploratory study (Section 5.1) and the tool validation
(Section 5.5.3), necessary for this study to be feasible, influenced the found deviation.

Furthermore, we noticed that test smells not found in the exploratory study for specific
systems, such as the Misplaced Precondition for the BEVM tests, are now among the results of
the NLP tool (Table 29), even with few occurrences (i.e., 3). This result is also expected and

100

Figure 24 – Comparison between the exploratory study and the NLP tool results

Source: research data

included in the exploratory study’s 5% margin of error (Section 5.1.1). Finally, the proportional
distribution of test smells per system shown in Figure 23 shows that although the tests of the
analyzed systems suffer from the test smells found, they do so in different proportions.

The results obtained in the tool validation show that our detection rules are effective in
identifying the considered test smells. In particular, we achieved a f-measure of 93.53%, which
answers RQ10.

5.5.5 Threats to Validity

As internal threats, the tool’s results may contain errors. We manually analyzed 101 tests
to minimize this threat, which meant more than 700 results, according to Table 30. This
amount of results was enough to guarantee statistical validity (II; KOTRLIK; HIGGINS, 2001) for
the 13,169 results generated by the tool.

As external threats, despite the promising results, the generalization of the results obtained
for other systems is impossible with the sample of three systems. We minimize this threat
by choosing highly expressive systems from different domains to analyze. Nevertheless, an
exploratory study would confirm whether our results indicate some degree of probability to the
analysis of other systems.

101

5.6 RESEARCH DIRECTIONS

Built upon our findings, research directions for natural language test smells would involve:

• Enabling the implementation of the Tacit Knowledge test smell by performing a formal
study to define common terms in software testing terminology that may be considered
tacit in any manual execution of software tests;

• Executing the manual test sensei tool analysis in other candidate systems whose test
management is performed using the same tools as BEVM and LSM tests to verify the
generalization of our results; and

• Aggregating tests — and test file formats — from uncovered systems in the results.

102

6 RELATED WORK

6.1 TEST SMELLS

The study performed by Bavota et al. (BAVOTA et al., 2015) demonstrated test smell distri-
bution in software systems and whether their presence is harmful. As part of the investigation,
they performed a controlled experiment involving 61 participants among students (freshers,
bachelors, and masters) and industrial developers, which were asked to perform maintenance
activities on smelly and refactored test code of two software systems. The study demonstrated
the negative impact of test smells in program comprehension during maintenance activities.
Our study uses both open-source developers and projects to survey on test smells perceptions.

Tufano et al. (2016) investigation aimed at analyzing when test smells occur in source code,
what their survivability is, and whether their presence is associated with the presence of design
problems in production code (code smells). They collected the developers’ perception of test
smells in a study with 19 developers from Apache and Eclipse ecosystems. They demonstrated
that (i) test smells have a long life cycle in software systems, and (ii) there are correlations
between test and code smells. Our study extends the surveyed public in order to improve the
accuracy of developers’ perception.

A recent list of test smells descriptions can be found in Aljedaani et al. (2021) work, which
provides a detailed study of test smell detection tools designed to work with Java, Scala,
Smalltalk, and C++ test suites. The tools are described in terms of their characteristics, type
of smells, target language, and availability. As findings, they could demonstrate that most
tools overlap in detecting specific smell types, such as General Fixture (DEURSEN et al., 2001),
and that four techniques used by the cataloged tools to detect test smells. Their test smells
list presents the definition of 66 ones detected by the analyzed tools. As a characteristic of
their study, they limit the test smells information only to their definition and only cataloged
the test smells detected by the corresponding tools.

6.2 SYSTEMATIC REVIEWS

Garousi and Küçük (GAROUSI; KÜÇÜK, 2018) performed the most comprehensive survey
so far as a Multivocal Literature Mapping (MLM) — a study that aims to gather quality
attributes from previous research papers and gray literature on a topic (OGAWA; MALEN, 1991)

103

— to classify the body of knowledge on formal and gray literature about test smells. They
collected quality attributes from the selected sources like demographics, literature type, if
new test smells are proposed, contribution facet, paper type, research questions, approach
type, if the paper presents correction techniques, language, and System Under Test (SUT)
specificities, making the compiled information publicly available. The authors also proposed a
public test smell classification board for 196 test smells extracted from 166 sources (120 gray
literature and 46 formal). Their study “lays the foundation for a follow-up, in-depth review

study.” We propose this study by renewing the search for academic and gray literature —
including the studies and web references published in the last five years since their mapping
— raising the number of mapped test smells to 480. Going beyond literature mappings, in our
review, we extract test smell data from the retrieved sources and publicize our dataset along
with a catalog of 480 test smells as an open-source project intended for the software testing
community use and maintenance.

Intended for test smells in System User Interactive Tests (SUITs), Rwemalika et al. (RWE-

MALIKA et al., 2021) performed an MLR on 38 references and proposed a catalog of 35 SUIT-
specific test smells. The authors also proposed an automated approach for detecting diffusion
and refactoring for 16 cataloged test smells and demonstrated their findings in industrial and
open-source projects. Despite raising 79 test smell sources in their searches, the authors used
a minor group due to the scope of their research. In our study, as we do not limit the scope
of test smells, we include their proposals and references that meet our inclusion criteria by
defining or referencing studies that define test smells (Chapter 3).

An SLR is also present in the study performed by Wang et al. (WANG et al., 2021), who
proposed a Python-specific test smell detection tool. The authors presented a “small-scale sys-

tematic mapping study on test smells to curate a list of test smells discussed in the literature.”

Their study listed 33 test smells encountered in Java, Scala, and Android systems, extracted
from 29 peer-reviewed studies published between 2006 and 2020, that exclusively mentioned
the keyword “test smells.” As our study has a broader search string — including the keyword
“test smell” (Section 3.1) —, we include their references and smells in our MLR.

Aljedaani et al. (ALJEDAANI et al., 2021) performed a Systematic Mapping Study (SMS)
to identify, categorize, and analyze literature that proposed test smell detection tools. They
mapped 47 studies and, although not directly intended for test smells, their work listed 66
test smells — detected by the analyzed tools — by their names, descriptions and references.
Our study also considers their references that, despite being intended for test smell detection

104

tools, meet our inclusion criteria.

6.3 TEST SMELL REMOVAL

Concerning the discovery of test smell refactoring operations, Peruma et al. (PERUMA et al.,
2020) used a mining tool to detect such refactorings from an existing dataset of unit test files
and smells in 250 open-source Android Apps. Among the results, they could demonstrate that
the types of refactorings applied to test and non-test files in Android apps are different and that
there exist test smells and refactoring operations that co-occur frequently. Also, Lambiase et
al. (LAMBIASE et al., 2020) presented the DARTS (Detection And Refactoring of Test Smells)
tool, which detects instances of three test smell types (General Fixture, Eager Test, and Lack
of Cohesion of Test Methods) at the commit-level and enables their automated refactoring
using the refactoring techniques defined by Meszaros (MESZAROS, 2007).

Peruma et al. (2020) used a mining tool to detect refactoring operations from an existing
dataset of unit test files and smells in 250 open-source Android Apps. Among the results, they
could demonstrate that the types of refactorings applied to test and non-test files in Android
apps are different and that there exist test smells and refactoring operations that co-occur
frequently. More importantly, and following the results of our study, they could verify that
developers apply refactorings for reasons other than the correction of smells, making the fixing
of smells merely a byproduct.

In the study performed by Aljedaani et al. (2021), three test smell detection tools were
capable of refactoring the identified test smells. The first one is an Intellij plug-in proposed
by Lambiase et al. (2020) and is called DARTS (Detection and Refactoring of Test Smells).
Their work focuses on the Eager Test, General Fixture, and Lack of Cohesion of Test Methods
test smells, which are not in the scope of our work. The second is the RTj framework proposed
by Martinez et al. (2020), where the authors propose the concept, identification, and refac-
toring of Rotten Green Test Cases — passing tests with at least one unexecuted assertion —
which are also out of the scope of our work. Nevertheless, their refactoring actions are limited
to substituting an intentionally failing assertion to a call to the fail method and adding a
TODO comment to the problematic code element. The third tool is an open-source and IDE
integrated tool proposed by Santana et al. (2020), called RAIDE, that works with the Assertion
Roulette and Duplicated Assert test smells in Java projects. The refactoring actions they im-
plement are the “Add Assertion Explanation” (DEURSEN et al., 2001) to the Assertion Roulette

105

test smell and the separation of duplicated assertions in several test methods (PERUMA et al.,
2019).

6.4 DEVELOPERS PERCEPTIONS

The developer’s awareness and perception to test smells are also some studies’ aims. Bleser,
Nucci and Roover (2019a) assessed the diffusion and developer’s perception of test smells in
SCALA projects. Their results show the low diffusion of test smells across SCALA test classes
and that many developers cannot correctly identify most of the smells, even though they
perceive a design issue. A work proposed by Peruma et al. (2019) investigated test smells
in open-source Android applications. When surveying developers, they confirmed the author’s
proposed smells as bad programming practices in unit test files for most proposed cases and
systems. In a similar line of work, Junior et al. (2020) investigated the causes of test smell
introduction by developers. Their results indicate that experienced professionals introduce test
smells during their daily programming tasks, even when using standardized practices from their
companies, not only for their assumptions. Another study, performed by Spadini et al. (2020),
aimed at investigating the severity rating for four test smells and their perceived impact on test
suite maintainability by the developers. The authors found that developers consider current
detection rules for specific test smells too strict and verified that their newly defined severity
thresholds align with the participants’ perception of how test smells impact the maintainability
of a test suite. Our work uses the developers’ opinions to validate our propositions, which
presumes their understanding of test smells effects and test code refactorings.

Palomba et al. (PALOMBA et al., 2014) performed a survey on the developer’s perception
of bad code smells. They showed production code snippets from three software systems to
original and outside (students and industry) developers, asking them to indicate if they found
any potential design problems and what nature and severity level they would classify the
possible problems. As a result, they could divide the investigated code smells into categories
related to code complexity and coding good-practices. Our study offers a similar perception
by open-source developers, this time concerning test smells.

A work in progress performed by Schvarcbacher et al. (SCHVARCBACHER et al., 2019) aimed
to assess the perception of developers on test smells in their codebase and which ones they
would consider being more important. They present the developers’ reactions to various in-
stances of test smells pointed out by their detection tool, based on the TSDetect (PERUMA et

106

al., 2019), in integration with the Better Code Hub (BCH).1 Their results show that developers
are only willing to remove a small portion of the found test smells, but did not present them
with refactored alternatives to measure their acceptance.

Investigating the extent of developers acceptance to test smells existence and refactoring
operations, our previous research (SOARES et al., 2020) consisted of a mixed-method study with
two parts: (i) a survey with 73 experienced open-source developers to assess their preference
and motivation to choose between 10 different smelly test code samples, found in 272 open-
source projects, and their refactored versions, and the submission of 50 pull requests to assess
developers’ acceptance of the proposed refactorings. As results, most surveyed developers
preferred the refactored proposal for 78% of the investigated test smells, and the pull requests
had an average acceptance of 75% among respondents. In this previous study, it is important
to quote that we validated refactoring operations already presented in the literature of the Test
Smells area (DEURSEN et al., 2001; MESZAROS, 2007) and always considered the test library
version used by each project when submitting a contribution.

A study performed by Spadini et al. (SPADINI et al., 2020) aimed at investigating the
severity rating for four test smells and their perceived impact on test suite maintainability
by the developers. They collected test smells from 1,500 open-source projects and used in-
company developers’ perceptions to calibrate the established severity thresholds for test smells.
As results, they found that current detection rules for certain test smells are considered too
strict by the developers and verified that their newly defined severity thresholds are in line with
the participants’ perception of how test smells impact the maintainability of a test suite.

6.5 EVOLUTION OF TEST FRAMEWORKS

The evolution of test frameworks is the focus of the empirical study performed by Kim
et al. (2021a), which investigated the evolution of testing practices after the introduction of
annotations in Java 5. The authors found that test annotation changes are more frequent
than rename and type change refactorings, bringing empirical evidence on the evolution and
maintenance of test annotations. Our work focuses on the evolution and proposal of new
framework features presented as annotations, new test methods, or new API in JUnit 5.

Aiming to pave the way for recommendation tools that allow project developers to choose
the most appropriate library for their needs and inform better alternatives, the empirical study
1 <https://bettercodehub.com/>

https://bettercodehub.com/

107

performed by Zerouali and Mens (2017) analyzed the usage of eight testing-related libraries in
4,532 open-source Java projects hosted on GitHub. Among their findings, they found that some
libraries are considerably more popular than their competitors, while some libraries become
more popular over time. From the analyzed test libraries, they found that JUnit was by far the
most popular (97%), and that the version 4 of this library was the most popular one.

The book authored by Garcia (2017) proposes a presentation of the available framework
features, showcasing usage examples. At the time of the book issue, no experimental features
like Temporary Directory and Resource Lock were already available. The book finishes pre-
senting a description list of 27 test anti-patterns, but with no correlation between the newly
introduced features and when to prevent such anti-patterns.

6.6 NATURAL LANGUAGE TEST SMELLS

Hauptmann et al. (HAUPTMANN et al., 2013) presented possible problems in manual test
descriptions performed in natural language from the point of view of test smells. Together with
coining the term Natural Language Test Smells, the authors propose a set of seven smells:
Hard-Coded Values, Long Test Steps, Conditional Tests, Badly Structured Test Suites, Test

Clones, Ambiguous Tests, and Inconsistent Wording. Also, the authors present identification
strategies for their proposals that rely on keyword lists and complimentary metrics (i.e., number

of words) and the frequency of the proposed test smells in nine industrial test suites. In our
work, we extend the current catalog by adding six new test smells, their discovery strategies
and frequency, and providing updates for the discovery of two of Hauptmann et al.’s list, which
we base on broader definitions focused on morphological and syntactical language analysis,
thus exploring the capabilities of current Natural Language Processing mechanisms.

Rajkovic and Enoiu presented a tool called NALABS to detect bad smells in natural lan-
guage requirements and test specifications (RAJKOVIC; ENOIU, 2022). Similarly to Hauptmann
et al. (HAUPTMANN et al., 2013), the proposed tool uses keyword lists to measure vagueness,
referenceability, optionality, subjectivity, and weakness metrics. They also used Automated
Readability Index (ARI) to measure readability and the number of words and conjunctions to
measure test complexity. Again, our work differentiates from Rajkovic and Enoiu’s work be-
cause we use current NLP mechanisms to identify words using morphological and syntactical
language analysis.

Transferring the concept of code smells to requirements engineering, Femmer et al. (FEM-

108

MER et al., 2017) introduced a lightweight static requirements analysis approach that allows
for quick checks when requirements are written down in natural language. In another work,
Femmer et al. (FEMMER et al., 2014) derived a set of smells from the natural language criteria
of the ISO/IEC/IEEE 29148 standard, showing that lightweight smell analysis can uncover
many practically relevant requirements defects. Like our work, they also use tool support to
analyze text in natural language descriptions.

Previous works presented test smells in test code. Some of these smells are related to
ours, although we focused on natural language test smells. Meszaros et al. (MESZAROS, 2007)
and Peruma et al. (PERUMA et al., 2019) studied test smells in test code, such as Conditional

Test and Conditional Test Logic, which are related to Hauptmann et al. (HAUPTMANN et al.,
2013) natural language test smell. Aljedaani et al. (ALJEDAANI et al., 2021) also listed the
Assertionless Test smell, defined by the absence of assertions, which is similar to our idea of
natural language tests having no verification steps (Unverified Action).

109

7 CONCLUDING REMARKS

Test smells are a subject of interest in both industry and academia, which motivates the
existence of much literature on the subject. Despite the literature, there is still much to be
learned, researched and practiced on test smells. Considering this thesis, a broader question
we can use to unify our contributions is “how we advance current knowledge on test smells?”
whose possible short answer can be “organize the area, then dive both into the evolution of
test frameworks and manual testing.” For that consolidated answer, we perform a series of
contributions made with a mixed-method approach.

Our first and foremost contribution is the massive effort to provide organized and central-
ized information to leverage common ground for further, significant, and extensive study on
an area that suffers from fragmented information. In this sense, providing a basis for which
test smells exist and how to obtain more profound knowledge is a most needed starting point
for any development in the area, and this demand had yet to be addressed.

Secondly, of course programming languages and their byproducts (i.e., frameworks and
applications) are constantly evolving due to the continuous increase in customer and developer
needs. Therefore, it makes sense to consider this evolution when studying strategies to remove
the test smells presence and it became a natural result of our study, which is this work’s
second and equally significant contribution. The successful validation of our propositions with
the developers’ community members was an encouraging task once it enhanced the probability
of spreading our contributions in practical means.

At last, we venture with the sense of contributing to developing an important area within
software testing (manual testing) that was apparently dormant on being explored by test
smells. The results of using NLP in discovering test smells in manual tests reinforce previous
researches on the topic and encourage the development of new research fronts.

We go further and not only answer our broad question with our contributions, but also
provide research directions for the areas we boldly dove in this thesis. Now, finally, we believe
to have completed our aim to build on existing research and explore essential aspects of test
smells in greater depth.

110

7.1 REVIEW OF CONTRIBUTIONS

Here, we pinpoint our contributions in this thesis:

• We conduct an MLR on 127 selected formal and informal studies to systematically
identify and characterize test smells (Section 3.1);

• We create a data set with 1,331 occurrences of 480 test smells extracted from the
selected references (Section 3.1.3);

• We create a publicly available and maintainable catalog with 480 test smells contain-
ing their names, definitions, AKA, code examples — when available — and related
bibliography (Section 3.2);

• We analyze 485 popular Java open-source projects to evaluate the extent of their usage
of the JUnit 5 library (Section 4.1.3);

• We propose test code transformations based on 7 JUnit 5 features to remove test smells
Section 4.2);

• We survey 212 developers for their opinions and preferences about our proposed trans-
formations, raising community feedback on JUnit 5 features (Section 4.3.1);

• We submit 38 Pull Requests using our transformations to the test suite of popular
GitHub Java projects, reaching a 94% acceptance rate; (Section 4.3.2).

• We conduct an exploratory study for natural language test smells on systems of different
domains: open-source, government, and industry (Section 5.1);

• We present a catalog of natural language test smells, with six new contributions from our
study, along with detection rules that use syntactic and morphological language analysis,
representing a novel approach enabled by current NLP technology (Section 5.2);

• We evaluate our catalog with 24 in-company test engineers (Section 5.3);

• We introduce a NLP-based tool to identify the proposed test smells (Section 5.4);

• We evaluate our tool by analyzing a sample of its results concerning the before-mentioned
systems (Section 5.5).

111

7.2 LIMITATIONS

1. Implementation of data collection method. We acknowledge that our data col-
lection experience may be limited, making the process fragile. We focus on collecting data
from works written in English that include the research questions’ terms. However, we are
unsure about the scope of data collection in works written in other languages or if this topic is
discussed in those languages. Nonetheless, the probability of this being an issue is low because
academic production related to computing is predominantly in English.

2. Sample size. We utilized various samples throughout our studies, which may not always
be statistically significant enough to generalize our findings. For instance, in our manual tests,
we based our results on the systems we searched, and due to the high number of tests analyzed,
we did not use sampling with statistical relevance to generalizations in our exploratory study.
Additionally, even though each system analyzed has its importance within its operating context,
it is impossible to generalize our findings to other systems.

3. Lack of previous studies in the research area. Literature review findings serve as
the basis for researchers to achieve their research objectives. However, in the case of test
smells, there is limited prior research, resulting in a weak foundation to identify the scope of
this work. This may lead to a focus on less important research topics related to test smells,
despite making significant contributions.

4. Scope of discussions. The scope and depth of discussions in this work can be compro-
mised on many levels compared to the works of experienced scholars. For instance, discussions
on test code transformations were based on features currently available in the latest JUnit li-
brary, and some of these features are experimental. There is no warranty that such features will
continue in the following distributions, therefore invalidating our propositions and whether they
exist — with some sort of equality — in other less established test automation frameworks.

112

REFERENCES

A, J. R. Testing Anti-patterns: How to Fail With 100% Test Coverage. 2008. Available
at: <https://jasonrudolph.com/blog/testing-anti-patterns-how-to-fail-with-100-test-
coverage/>. Accessed on: 2022-04-21.

A, M. A. TDD Antipatterns: The Free Ride. 2014. Available at:
<https://semaphoreci.com/blog/2014/06/24/tdd-antipatterns-the-free-ride.html>.
Accessed on: 2022-04-21.

AL2O3CR. Hacker News on: Software Testing Anti-patterns. 2018. Available at:
<https://news.ycombinator.com/item?id=16895784>. Accessed on: 2022-04-21.

ALJEDAANI, W.; PERUMA, A.; ALJOHANI, A.; ALOTAIBI, M.; MKAOUER, M. W.; OUNI,
A.; NEWMAN, C. D.; GHALLAB, A.; LUDI, S. Test smell detection tools: A systematic
mapping study. In: 25th International Conference on Evaluation and Assessment in Software
Engineering (EASE). [S.l.: s.n.], 2021. (EASE), p. 170–180.

ARANEGA, V.; DELPLANQUE, J.; MARTINEZ, M.; BLACK, A. P.; DUCASSE, S.; ETIEN,
A.; FUHRMAN, C.; POLITO, G. Rotten green tests in java, pharo and python. Empir. Softw.
Eng., v. 26, n. 6, p. 130, 2021.

ARCHER, M. How test automation with Selenium can fail. 2010. Available at:
<https://mattarcherblog.wordpress.com/2010/11/29/how-test-automation-with-selenium-o
r-watir-can-fail/>. Accessed on: 2022-04-21.

ATHANASIOU, D.; NUGROHO, A.; VISSER, J.; ZAIDMAN, A. Test code quality and its
relation to issue handling performance. IEEE Transactions on Software Engineering, v. 40,
n. 11, p. 1100–1125, 2014.

B, J. R. Testing anti-patterns: The ugly mirror. 2008. Available at: <https://jasonrudolph.c
om/blog/2008/07/30/testing-anti-patterns-the-ugly-mirror/>. Accessed on: 2022-06-17.

B, M. A. TDD Antipatterns: Local Hero. 2014. Available at: <https://semaphoreci.com/bl
og/2014/07/10/tdd-antipatterns-local-hero.html>. Accessed on: 2022-06-17.

BARRAK, A.; EGHAN, E. E.; ADAMS, B.; KHOMH, F. Why do builds fail?—a conceptual
replication study. J. Syst. Softw., v. 177, p. 110939, 2021.

BASILI, V. R.; CALDIERA, G.; ROMBACH, H. D. The goal question metric approach.
Encyclopedia of Software Engineering, v. 1, p. 528–532, 1994.

BAVOTA, G.; QUSEF, A.; OLIVETO, R.; LUCIA, A. D.; BINKLEY, D. An empirical analysis
of the distribution of unit test smells and their impact on software maintenance. In: 2012 28th
IEEE international conference on software maintenance (ICSM). [S.l.: s.n.], 2012. (ICSM), p.
56–65.

BAVOTA, G.; QUSEF, A.; OLIVETO, R.; LUCIA, A. D.; BINKLEY, D. Are test smells really
harmful? an empirical study. Empir. Softw. Eng., v. 20, n. 4, p. 1052–1094, 2015.

BECHTOLD, S.; BRANNEN, S.; LINK, J.; MERDES, M.; PHILIPP, M.; RANCOURT,
J. de; STEIN, C. JUnit 5 User Guide. 2020. Accessed on Feb 2021. Available at:
<https://junit.org/junit5/docs/current/user-guide/>.

https://news.ycombinator.com/item?id=16895784
https://mattarcherblog.wordpress.com/2010/11/29/how-test-automation-with-selenium-or-watir-can-fail/
https://mattarcherblog.wordpress.com/2010/11/29/how-test-automation-with-selenium-or-watir-can-fail/
https://jasonrudolph.com/blog/2008/07/30/testing-anti-patterns-the-ugly-mirror/
https://jasonrudolph.com/blog/2008/07/30/testing-anti-patterns-the-ugly-mirror/
https://semaphoreci.com/blog/2014/07/10/tdd-antipatterns-local-hero.html
https://semaphoreci.com/blog/2014/07/10/tdd-antipatterns-local-hero.html
https://junit.org/junit5/docs/current/user-guide/

113

BISANZ, M. Pattern-based smell detection in TTCN-3 test suites. Master’s Thesis (Master’s
Thesis) — Institute for Informatics, Universität Göttingen, Germany, Dec 2006.

BLESER, J. D.; NUCCI, D. D.; ROOVER, C. D. Assessing diffusion and perception of test
smells in Scala projects. In: IEEE/ACM 16th International Conference on Mining Software
Repositories. [S.l.: s.n.], 2019. (MSR), p. 457–467.

BLESER, J. D.; NUCCI, D. D.; ROOVER, C. D. SoCRATES: Scala radar for test smells. In:
Proceedings of the Tenth ACM SIGPLAN Symposium on Scala. [S.l.: s.n.], 2019. (Scala), p.
22–26.

BORBA, P.; SAMPAIO, A.; CORNÉLIO, M. A refinement algebra for object-oriented
programming. In: European Conference on Object-oriented Programming. [S.l.: s.n.], 2003.
(ECOOP), p. 457–482.

BRANDES, R. A workbook repository of example test smells and what to do about them.
2021. Available at: <https://github.com/testdouble/test-smells>. Accessed on: 2022-04-21.

BREUGELMANS, M.; ROMPAEY, B. V. Testq: Exploring structural and maintenance
characteristics of unit test suites. In: WASDeTT-1: 1st International Workshop on Advanced
Software Development Tools and Techniques. [S.l.: s.n.], 2008. (WASDeTT), p. 1–16.

BUFFARDI, K.; AGUIRRE-AYALA, J. Unit test smells and accuracy of software engineering
student test suites. In: Proceedings of the 26th ACM Conference on Innovation and
Technology in Computer Science Education. [S.l.: s.n.], 2021. (ITiCSE), p. 234–240.

BUGAYENKO, Y. A Few Thoughts on Unit Test Scaffolding. 2015. Available at:
<https://www.yegor256.com/2015/05/25/unit-test-scaffolding.html>. Accessed on:
2022-04-21.

BUGAYENKO, Y. Unit Testing Anti-Patterns, Full List. 2018. Available at: <https:
//www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html>. Accessed on:
2022-04-21.

BURNS, B. Anti-Patterns In Unit Testing. 2021. Available at: <https://completedeveloperp
odcast.com/anti-patterns-in-unit-testing/>. Accessed on: 2022-06-17.

BUWALDA, H. Test Design for Automation: Anti-Patterns. 2015. Available at: <https:
//www.techwell.com/techwell-insights/2015/09/test-design-automation-anti-patterns>.
Accessed on: 2022-06-17.

CAMARA, B.; SILVA, M.; ENDO, A.; VERGILIO, S. On the use of test smells for prediction
of flaky tests. In: Proceedings of the 6th Brazilian Symposium on Systematic and Automated
Software Testing. [S.l.: s.n.], 2021. (SAST), p. 46–54.

CAMPOS, D.; ROCHA, L.; MACHADO, I. Developers perception on the severity of test
smells: an empirical study. ArXiv:2107.13902. 2021.

CAR, J. Test-Driven Development: TDD Anti-Patterns. 2009. Available at: <https:
//bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/>. Accessed on:
2022-04-21.

https://github.com/testdouble/test-smells
https://www.yegor256.com/2015/05/25/unit-test-scaffolding.html
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://www.techwell.com/techwell-insights/2015/09/test-design-automation-anti-patterns
https://www.techwell.com/techwell-insights/2015/09/test-design-automation-anti-patterns
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/

114

CHAMBERLAIN, N. How to Compare Object Instances in your Unit Tests Quickly and Easily.
2017. Available at: <https://buildplease.com/pages/testing-deep-equalilty/>. Accessed on:
2022-04-21.

CHEN, W.-K.; WANG, J.-C. Bad smells and refactoring methods for GUI test scripts. In:
2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing. [S.l.: s.n.], 2012. (SNPD), p. 289–294.

CROAK, D. Mystery Guest. 2009. Available at: <https://thoughtbot.com/blog/mystery-gue
st>. Accessed on: 2022-06-17.

DESIKAN, S. Software testing: principles and practice. [S.l.]: Pearson Education India, 2006.

DEURSEN, A. van; MOONEN, L.; BERGH, A. van D.; KOK, G. Refactoring test code.
In: Proceedings of the 2nd international conference on extreme programming and flexible
processes in software engineering (XP2001). [S.l.: s.n.], 2001. (XP), p. 92–95.

DIFALCO, R. Subclass To Test Anti Pattern. 2011. Available at: <https://wiki.c2.com/?S
ubclassToTestAntiPattern>. Accessed on: 2022-04-21.

DUSTIN, E.; RASHKA, J.; PAUL, J. Automated software testing: introduction, management,
and performance. [S.l.]: Addison-Wesley Professional, 1999.

ENGLAND, T. Cucumber anti-patterns (part one). 2016. Available at: <https:
//cucumber.io/blog/bdd/cucumber-antipatterns-part-one/>. Accessed on: 2022-06-17.

FEMMER, H.; FERNáNDEZ, D. M.; JUERGENS, E.; KLOSE, M.; ZIMMER, I.; ZIMMER,
J. Rapid requirements checks with requirements smells: Two case studies. In: Proceedings of
the 1st International Workshop on Rapid Continuous Software Engineering. [S.l.: s.n.], 2014.
(RCoSE 2014), p. 10–19.

FEMMER, H.; FERNÁNDEZ, D. M.; WAGNER, S.; EDER, S. Rapid quality assurance with
requirements smells. Journal of Systems and Software, Elsevier, v. 123, p. 190–213, 2017.

FERNANDES, D.; MACHADO, I.; MACIEL, R. Handling test smells in python: Results from
a mixed-method study. In: Proceedings of the XXXV Brazilian Symposium on Software
Engineering. [S.l.: s.n.], 2021. (SBES), p. 84–89.

FERRIS, J. Let’s Not. 2012. Available at: <https://thoughtbot.com/blog/lets-not>.
Accessed on: 2022-04-21.

FOWLER, M. Eradicating non-determinism in tests. 2011. Accessed on Feb 2022. Available
at: <https://martinfowler.com/articles/nonDeterminism.html>.

FOWLER, M. Refactoring: improving the design of existing code, 2nd edition. [S.l.]:
Addison-Wesley Professional, 2018.

FRIEZE, A. Test Smells - The Coding Craftsman. 2018. Available at: <https:
//codingcraftsman.wordpress.com/2018/09/27/test-smells/>. Accessed on: 2022-04-21.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Elements of Reusable Object-Oriented
Software. [S.l.]: Addison-Wesley Professional, 1994.

GARCIA, B. Mastering Software Testing with JUnit 5: Comprehensive guide to develop high
quality Java applications. [S.l.]: Packt Publishing Ltd, 2017.

https://buildplease.com/pages/testing-deep-equalilty/
https://thoughtbot.com/blog/mystery-guest
https://thoughtbot.com/blog/mystery-guest
https://wiki.c2.com/?SubclassToTestAntiPattern
https://wiki.c2.com/?SubclassToTestAntiPattern
https://cucumber.io/blog/bdd/cucumber-antipatterns-part-one/
https://cucumber.io/blog/bdd/cucumber-antipatterns-part-one/
https://thoughtbot.com/blog/lets-not
https://martinfowler.com/articles/nonDeterminism.html
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

115

GAROUSI, V.; FELDERER, M.; MÄNTYLÄ, M. V. Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Information and
Software Technology, Elsevier, v. 106, p. 101–121, 2019.

GAROUSI, V.; KÜÇÜK, B. Smells in software test code: A survey of knowledge in industry
and academia. J. Syst. Softw., v. 138, p. 52–81, 2018.

GAROUSI, V.; KUCUK, B.; FELDERER, M. What we know about smells in software test
code. IEEE Software, v. 36, n. 3, p. 61–73, 2018.

GAWINECKI, M. Anti-patterns in test automation. 2019. Available at: <https:
//www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz>.
Accessed on: 2022-06-17.

GISHU. Unit testing Anti-patterns catalogue. 2014. Available at: <https://stackoverflow.co
m/questions/333682/unit-testing-anti-patterns-catalogue>. Accessed on: 2022-06-17.

GONZALEZ, D.; RATH, M.; MIRAKHORLI, M. Did you remember to test your tokens?
In: Proceedings of the 17th International Conference on Mining Software Repositories. [S.l.:
s.n.], 2020. (MSR), p. 232–242.

GRANO, G.; IACO, C. D.; PALOMBA, F.; GALL, H. C. Pizza versus pinsa: On the perception
and measurability of unit test code quality. In: 2020 IEEE international conference on software
maintenance and evolution (ICSME). [S.l.: s.n.], 2020. (ICSME), p. 336–347.

GRANO, G.; PALOMBA, F.; NUCCI, D. D.; LUCIA, A. D.; GALL, H. C. Scented since the
beginning: On the diffuseness of test smells in automatically generated test code. J. Syst.
Softw., v. 156, p. 312–327, 2019.

GREILER, M.; DEURSEN, A. V.; STOREY, M.-A. Automated detection of test fixture
strategies and smells. In: 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation. [S.l.: s.n.], 2013. (ICST), p. 322–331.

GREILER, M.; ZAIDMAN, A.; DEURSEN, A. V.; STOREY, M.-A. Strategies for avoiding
text fixture smells during software evolution. In: 2013 10th Working Conference on Mining
Software Repositories (MSR). [S.l.: s.n.], 2013. (MSR), p. 387–396.

GUERRA, E. M.; FERNANDES, C. T. Refactoring test code safely. In: International
Conference on Software Engineering Advances. [S.l.: s.n.], 2007. (ICSEA), p. 44–44.

HALLEUX, P. de; TILLMANN, N. Parameterized test patterns for effective testing with Pex.
2010. Available at: <https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0
52fc4a27b6e928a4a65f57aee3e4fb9081410f5>. Accessed on: 2022-04-21.

HAMMERLY, A. Going on a Testing Anti-Pattern Safari. 2013. Available at: <https:
//www.youtube.com/watch?v=VBgySRk0VKY>. Accessed on: 2022-04-21.

HAUPTMANN, B.; EDER, S.; JUNKER, M.; JUERGENS, E.; WOINKE, V. Generating
refactoring proposals to remove clones from automated system tests. In: 2015 IEEE 23rd
International Conference on Program Comprehension. [S.l.: s.n.], 2015. (ICPC), p. 115–124.

HAUPTMANN, B.; JUNKER, M.; EDER, S.; HEINEMANN, L.; VAAS, R.; BRAUN, P.
Hunting for smells in natural language tests. In: 2013 35th International Conference on
Software Engineering (ICSE). [S.l.: s.n.], 2013. (ICSE), p. 1217–1220.

https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz
https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=052fc4a27b6e928a4a65f57aee3e4fb9081410f5
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=052fc4a27b6e928a4a65f57aee3e4fb9081410f5
https://www.youtube.com/watch?v=VBgySRk0VKY
https://www.youtube.com/watch?v=VBgySRk0VKY

116

HEDAYATI, A.; EBRAHIMZADEH, M.; SORI, A. A. Investigating into automated test
patterns in erratic tests by considering complex objects. Int. J. Inf. Technol. Comput. Sci.,
v. 7, n. 3, p. 54–59, 2015.

HONNIBAL, M.; MONTANI, I. spacy 2: Natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing. To appear, v. 7, n. 1, p.
411–420, 2017.

HONNIBAL, M.; MONTANI, I. spaCy – Industrial-strength Natural Language Processing in
Python. 2023. Available at: <https://spacy.io/>. Accessed on: 2023-05-02.

II, J. E. B.; KOTRLIK, J. W.; HIGGINS, C. C. Organizational research: Determining
appropriate sample size in survey research appropriate sample size in survey research.
Information Technology, Learning, and Performance Journal, v. 19, n. 1, p. 43–50, 2001.

JONES, A. 7 ways to tidy up your test code. 2019. Available at: <https://techbeacon.com
/app-dev-testing/7-ways-tidy-your-test-code>. Accessed on: 2022-06-17.

JONES, K. S. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, MCB UP Ltd, v. 28, n. 1, p. 11–21, 1972.

JORGE, D.; MACHADO, P.; ANDRADE, W. Investigating test smells in javascript test code.
In: 6th Brazilian Symposium on Systematic and Automated Software Testing. [S.l.: s.n.],
2021. (SAST), p. 36–45.

JUHNKE, K.; NIKIC, A.; TICHY, M. Clustering natural language test case instructions as
input for deriving automotive testing dsls. The Journal of Object Technology, v. 20, n. 3, p.
1–14, 2021.

JUNIOR, N. S.; ROCHA, L.; MARTINS, L. A.; MACHADO, I. A survey on test practitioners’
awareness of test smells. 2020. Accessed on: arXiv:2003.05613.

KACZANOWSKI, T. Bad Tests, Good Tests. [S.l.]: Tomasz Kaczanowski, 2013.

KAPELONIS, K. Software Testing Anti-patterns. 2018. Available at: <http://blog.codepipes
.com/testing/software-testing-antipatterns.html>. Accessed on: 2022-04-21.

KARHU, K.; REPO, T.; TAIPALE, O.; SMOLANDER, K. Empirical observations on software
testing automation. In: Second International Conference on Software Testing Verification and
Validation. [S.l.: s.n.], 2009. (ICST), p. 201–209.

KEMPF, W. E. Anti-Patterns - Digital Tapestry. 2016. Available at: <https:
//digitaltapestry.net/testify/manual/AntiPatterns.html>. Accessed on: 2022-04-21.

KHALILI, M. Maintainable Automated UI Tests. 2013. Available at: <https://code.tutsplus.
com/articles/maintainable-automated-ui-tests--net-35089>. Accessed on: 2022-04-21.

KHALILI, M. Tips to Avoid Brittle UI Tests. 2013. Available at: <https://code.tutsplus.co
m/tutorials/tips-to-avoid-brittle-ui-tests--net-35188>. Accessed on: 2022-04-21.

KHORIKOV, V. Code pollution. 2018. Available at: <https://enterprisecraftsmanship.com/
posts/code-pollution/>. Accessed on: 2022-04-21.

https://spacy.io/
https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
http://blog.codepipes.com/testing/software-testing-antipatterns.html
http://blog.codepipes.com/testing/software-testing-antipatterns.html
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://code.tutsplus.com/articles/maintainable-automated-ui-tests--net-35089
https://code.tutsplus.com/articles/maintainable-automated-ui-tests--net-35089
https://code.tutsplus.com/tutorials/tips-to-avoid-brittle-ui-tests--net-35188
https://code.tutsplus.com/tutorials/tips-to-avoid-brittle-ui-tests--net-35188
https://enterprisecraftsmanship.com/posts/code-pollution/
https://enterprisecraftsmanship.com/posts/code-pollution/

117

KIM, D. An empirical study on the evolution of test smell. In: IEEE/ACM 42nd
International Conference on Software Engineering: Companion Proceedings. [S.l.: s.n.], 2020.
(ICSE-Companion), p. 149–151.

KIM, D. J.; CHEN, T.-H. P.; YANG, J. The secret life of test smells-an empirical study on
test smell evolution and maintenance. Empir. Softw. Eng., v. 26, n. 5, p. 100, 2021.

KIM, D. J.; TSANTALIS, N.; CHEN, T.-H. P.; YANG, J. Studying test annotation
maintenance in the wild. In: IEEE/ACM 43rd International Conference on Software
Engineering. [S.l.: s.n.], 2021. (ICSE), p. 62–73.

KIM, D. J.; YANG, B.; YANG, J.; CHEN, T.-H. P. How disabled tests manifest in test
maintainability challenges? In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering.
[S.l.: s.n.], 2021. (ESEC/FSE), p. 1045–1055.

KING, T. Test::Class Hierarchy Is an Antipattern. 2018. Available at: <https:
//medium.com/cultured-perl/test-class-hierarchy-is-an-antipattern-391c6ef1e491>.
Accessed on: 2022-04-21.

KIRKBRIDE, J. Testing Anti-Patterns. 2014. Available at: <https://medium.com/@jamesk
bride/testing-anti-patterns-b5ffc1612b8b>. Accessed on: 2022-06-17.

KOSKELA, L. Developer Test Anti-Patterns. 2015. Available at: <https://www.youtube.co
m/watch?v=3Fa69eQ6XgM>. Accessed on: 2022-06-17.

KULESOVS, I. ios applications testing. In: Proceedings of the International Scientific and
Practical Conference. [S.l.: s.n.], 2015. (ISPC, v. 3), p. 138–150.

KUMMER, M. Categorising Test Smells. Master’s Thesis (Master’s Thesis) — University of
Bern, Switzerland, Mar 2015.

KUNDRA, G. Enhancing developers’ awareness on test suites’ quality with test smell
summaries. Master’s Thesis (Master’s Thesis) — Lappeenranta University of Technology,
Finland, Nov 2018.

LAMBIASE, S.; CUPITO, A.; PECORELLI, F.; LUCIA, A. D.; PALOMBA, F. Just-in-time
test smell detection and refactoring: The DARTS project. In: Proceedings of the 28th
international conference on program comprehension. [S.l.: s.n.], 2020. (ICPC), p. 441–445.

LANUBILE, F.; MALLARDO, T. Inspecting automated test code: A preliminary study.
In: Agile Processes in Software Engineering and Extreme Programming: 8th International
Conference. [S.l.: s.n.], 2007. (XP), p. 115–122.

LEGENDRE, P. Species associations: the kendall coefficient of concordance revisited. Journal
of agricultural, biological, and environmental statistics, Springer, v. 10, p. 226–245, 2005.

LEWIS, E. How to write good tests. 2019. Available at: <https://github.com/mockito/moc
kito/wiki/How-to-write-good-tests>. Accessed on: 2022-06-17.

LTD., C. Ubuntu Operational System. 2023. Available at: <https://ubuntu.com/download>.
Accessed on: 2023-05-02.

https://medium.com/cultured-perl/test-class-hierarchy-is-an-antipattern-391c6ef1e491
https://medium.com/cultured-perl/test-class-hierarchy-is-an-antipattern-391c6ef1e491
https://medium.com/@jameskbride/testing-anti-patterns-b5ffc1612b8b
https://medium.com/@jameskbride/testing-anti-patterns-b5ffc1612b8b
https://www.youtube.com/watch?v=3Fa69eQ6XgM
https://www.youtube.com/watch?v=3Fa69eQ6XgM
https://github.com/mockito/mockito/wiki/How-to-write-good-tests
https://github.com/mockito/mockito/wiki/How-to-write-good-tests
https://ubuntu.com/download

118

LUO, Q.; HARIRI, F.; ELOUSSI, L.; MARINOV, D. An empirical analysis of flaky tests. In:
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering. [S.l.:
s.n.], 2014. (FSE), p. 643–653.

MARABESI, M. TDD Anti-Patterns. 2021. Available at: <https://marabesi.com/tdd/2021/
08/28/tdd-anti-patterns.html>. Accessed on: 2022-04-21.

MARABESI, M. TDD anti patterns - Chapter 1. 2021. Available at: <https:
//www.codurance.com/publications/tdd-anti-patterns-chapter-1>. Accessed on:
2022-06-17.

MARCUS, M. P.; SANTORINI, B.; MARCINKIEWICZ, M. A. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, MIT Press, Cambridge,
MA, v. 19, n. 2, p. 313–330, 1993.

MARTINEZ, M.; ETIEN, A.; DUCASSE, S.; FUHRMAN, C. RTj: A java framework for
detecting and refactoring rotten green test cases. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Companion Proceedings. [S.l.: s.n.], 2020.
(ICSE), p. 69––72.

MARTINS, L.; BEZERRA, C.; COSTA, H.; MACHADO, I. Smart prediction for refactorings
in the software test code. In: Proceedings of the XXXV Brazilian Symposium on Software
Engineering. [S.l.: s.n.], 2021. (SBES), p. 115–120.

MARTINS, L.; COSTA, H.; MACHADO, I. On the diffusion of test smells and their
relationship with test code quality of java projects. Journal of Software: Evolution and
Process, Wiley Online Library, p. e2532, 2023.

MATHEW, D.; FOEGEN, K. An analysis of information needs to detect test smells. In:
Full-scale Software Engineering/Current Trends in Release Engineering. [S.l.]: RWTH Aachen
University, 2016. p. 19–24.

MESZAROS, G. xUnit test patterns: Refactoring test code. [S.l.]: Pearson Education, 2007.

MESZAROS, G. Obscure Test. 2009. Available at: <http://xunitpatterns.com/Obscure%20
Test.html>. Accessed on: 2022-06-17.

MEYER, B. Seven principles of software testing. Computer, v. 41, n. 8, p. 99–101, 2008.

MOONEN, L.; DEURSEN, A. van; ZAIDMAN, A.; BRUNTINK, M. On the interplay between
software testing and evolution and its effect on program comprehension. In: Softw. Evolution.
[S.l.]: Springer, 2008. p. 173–202.

MURPHY-HILL, E.; BLACK, A. P. Refactoring tools: Fitness for purpose. IEEE Software,
v. 25, n. 5, p. 38–44, 2008.

NERY, E.; LIMA, M. Test Artifacts. 2020. Available at: <https://damorimrg.github.io/prac
tical_testing_book/goodpractices/artifacts.html>. Accessed on: 2022-06-17.

NEUKIRCHEN, H.; BISANZ, M. Utilising code smells to detect quality problems in TTCN-3
test suites. In: International Workshop on Formal Approaches to Software Testing. [S.l.: s.n.],
2007. (TestCom), p. 228–243.

https://marabesi.com/tdd/2021/08/28/tdd-anti-patterns.html
https://marabesi.com/tdd/2021/08/28/tdd-anti-patterns.html
https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
http://xunitpatterns.com/Obscure%20Test.html
http://xunitpatterns.com/Obscure%20Test.html
https://damorimrg.github.io/practical_testing_book/goodpractices/artifacts.html
https://damorimrg.github.io/practical_testing_book/goodpractices/artifacts.html

119

NEUKIRCHEN, H.; ZEISS, B.; GRABOWSKI, J. An approach to quality engineering of
TTCN-3 test specifications. Int. J. Softw. Tools Technol. Transf., v. 10, n. 4, p. 309–326,
2008.

NIVRE, J.; MARNEFFE, M.-C. de; GINTER, F.; GOLDBERG, Y.; HAJIČ, J.; MANNING,
C. D.; MCDONALD, R.; PETROV, S.; PYYSALO, S.; SILVEIRA, N.; TSARFATY, R.;
ZEMAN, D. Universal Dependencies v1: A multilingual treebank collection. In: Proceedings
of the Tenth International Conference on Language Resources and Evaluation (LREC’16).
[S.l.: s.n.], 2016. p. 1659–1666.

NURKIEWICZ, T. Java: code duplication in classes and their Junit test cases. 2012. Available
at: <https://stackoverflow.com/questions/10781050/java-code-duplication-in-classes-and-t
heir-junit-test-cases>. Accessed on: 2022-06-17.

NöDLER, J.; NEUKIRCHEN, H.; GRABOWSKI, J. A flexible framework for quality assurance
of software artefacts with applications to Java, UML, and TTCN-3 test specifications. In:
Second International Conference on Software Testing Verification and Validation. [S.l.: s.n.],
2009. (ICST), p. 101–110.

OGAWA, R. T.; MALEN, B. Towards rigor in reviews of multivocal literatures: Applying the
exploratory case study method. Rev. Educ. Res., v. 61, n. 3, p. 265–286, 1991.

OSHEROVE, R. Chapter 8. The pillars of good unit tests. 2016. Available at:
<https://apprize.best/c/unit/8.html>. Accessed on: 2022-04-21.

PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R.; LUCIA, A. D. Do they really
smell bad? a study on developers’ perception of bad code smells. In: 30th IEEE International
Conference on Software Maintenance and Evolution. [S.l.: s.n.], 2014. (ICSME), p. 101–110.

PALOMBA, F.; NUCCI, D. D.; PANICHELLA, A.; OLIVETO, R.; LUCIA, A. D. On
the diffusion of test smells in automatically generated test code: An empirical study. In:
Proceedings of the 9th international workshop on search-based software testing. [S.l.: s.n.],
2016. (SBST), p. 5–14.

PALOMBA, F.; ZAIDMAN, A.; LUCIA, A. D. Automatic test smell detection using
information retrieval techniques. In: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). [S.l.: s.n.], 2018. (ICSME), p. 311–322.

PANICHELLA, A.; PANICHELLA, S.; FRASER, G.; SAWANT, A. A.; HELLENDOORN, V. J.
Revisiting test smells in automatically generated tests: Limitations, pitfalls, and opportunities.
In: 2020 IEEE international conference on software maintenance and evolution (ICSME).
[S.l.: s.n.], 2020. (ICSME), p. 523–533.

PANICHELLA, A.; PANICHELLA, S.; FRASER, G.; SAWANT, A. A.; HELLENDOORN,
V. J. Test smells 20 years later: detectability, validity, and reliability. Empirical Software
Engineering, Springer, v. 27, n. 7, p. 170, 2022.

PATTON, M. Q. Towards utility in reviews of multivocal literatures. Rev. Educ. Res., v. 61,
n. 3, p. 287–292, 1991.

PAULA, E.; BONIFáCIO, R. Testaxe: Automatically refactoring test smells using junit 5
features. In: Anais Estendidos do XIII Congresso Brasileiro de Software: Teoria e Prática.
[S.l.: s.n.], 2022. p. 89–98.

https://stackoverflow.com/questions/10781050/java-code-duplication-in-classes-and-their-junit-test-cases
https://stackoverflow.com/questions/10781050/java-code-duplication-in-classes-and-their-junit-test-cases
https://apprize.best/c/unit/8.html

120

PAVLENKO, A. Quality defects detection in unit tests. Ukrainian Eng. Softw. J., v. 6, n. 2,
p. 24–28, 2011.

PECORELLI, F. Test-related factors and post-release defects: An empirical study. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. [S.l.: s.n.], 2019.
(ESEC/FSE), p. 1235–1237.

PECORELLI, F.; PALOMBA, F.; LUCIA, A. D. The relation of test-related factors to software
quality: A case study on apache systems. Empir. Softw. Eng., v. 26, n. 2, p. 18, 2021.

PERUMA, A.; ALMALKI, K.; NEWMAN, C. D.; MKAOUER, M. W.; OUNI, A.; PALOMBA,
F. On the distribution of test smells in open source android applications: An exploratory
study. In: Proceedings of the 29th Annual International Conference on Computer Science and
Software Engineering. [S.l.: s.n.], 2019. (CASCON), p. 193–202.

PERUMA, A.; ALMALKI, K.; NEWMAN, C. D.; MKAOUER, M. W.; OUNI, A.; PALOMBA,
F. TsDetect: An open source test smells detection tool. In: Proceedings of the 28th ACM joint
meeting on european software engineering conference and symposium on the foundations of
software engineering. [S.l.: s.n.], 2020. (ESEC/FSE), p. 1650–1654.

PERUMA, A.; MKAOUER, M. W.; ALMALKI, K.; NEWMAN, C. D.; OUNI, A.; PALOMBA,
F. Software Unit Test Smells. 2019. Available at: <https://testsmells.org/>. Accessed on:
2022-04-21.

PERUMA, A.; NEWMAN, C. D. On the distribution of “simple stupid bugs” in unit test files:
An exploratory study. In: 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). [S.l.: s.n.], 2021. (MSR), p. 525–529.

PERUMA, A.; NEWMAN, C. D.; MKAOUER, M. W.; OUNI, A.; PALOMBA, F. An
exploratory study on the refactoring of unit test files in android applications. In: Proceedings
of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. [S.l.:
s.n.], 2020. (ICSEW), p. 350–357.

PERUMA, A. S. A. What the smell? an empirical investigation on the distribution and
severity of test smells in open source android applications. Master’s Thesis (Master’s Thesis)
— Rochester Institute of Technology, USA, Apr 2018.

PONTILLO, V.; PALOMBA, F.; FERRUCCI, F. Toward static test flakiness prediction: A
feasibility study. In: Proceedings of the 5th International Workshop on Machine Learning
Techniques for Software Quality Evolution. [S.l.: s.n.], 2021. (MaLTESQuE), p. 19–24.

POWERS, D. M. Evaluation: from precision, recall and f-measure to roc, informedness,
markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

QUSEF, A.; ELISH, M. O.; BINKLEY, D. An exploratory study of the relationship between
software test smells and fault-proneness. IEEE Access, v. 7, p. 139526–139536, 2019.

RAJKOVIC, K.; ENOIU, E. P. NALABS: Detecting Bad Smells in Natural Language
Requirements and Test Specifications. 2022. Available at: <http://www.es.mdu.se/publicat
ions/6382->. Accessed on: 2023-05-02.

REICHART, S. Assessing test quality - TestLint. Phd Thesis (PhD Thesis) — Universitat
Bern, Switzerland, Dec 2007.

https://testsmells.org/
http://www.es.mdu.se/publications/6382-
http://www.es.mdu.se/publications/6382-

121

REICHHART, S.; GÎRBA, T.; DUCASSE, S. Rule-based assessment of test quality. J. Object
Technol., v. 6, n. 9, p. 231–251, 2007.

RIJSBERGEN, C. J. V. Foundation of evaluation. Journal of documentation, MCB UP Ltd,
v. 30, n. 4, p. 365–373, 1974.

RODRIGUES, M. TDD Anti-patterns: The Free Ride / Piggyback. 2018. Available at:
<https://matheus.ro/2018/04/30/tdd-antipatterns-the-free-ride-piggyback/>. Accessed
on: 2022-06-17.

ROMPAEY, B. V.; BOIS, B. D.; DEMEYER, S. Characterizing the relative significance of a
test smell. In: 2006 22nd IEEE International Conference on Software Maintenance. [S.l.: s.n.],
2006. (ICSME), p. 391–400.

ROMPAEY, B. V.; BOIS, B. D.; DEMEYER, S.; RIEGER, M. On the detection of test smells:
A metrics-based approach for general fixture and eager test. IEEE Transactions on Software
Engineering, v. 33, n. 12, p. 800–817, 2007.

RWEMALIKA, R. On the Maintenance of System User Interactive Tests. Phd Thesis (PhD
Thesis) — University of Luxembourg, Luxembourg, Sep 2021.

RWEMALIKA, R.; HABCHI, S.; PAPADAKIS, M.; TRAON, Y. L.; BRASSEUR, M. Smells in
System User Interactive Tests. 2021. Accessed on: arXiv:2111.02317.

SALTZER, J. H. The origin of the “mit license”. IEEE Annals of the History of Computing,
IEEE, v. 42, n. 4, p. 94–98, 2020.

SANTANA, R.; MARTINS, L.; ROCHA, L.; VIRGÍNIO, T.; CRUZ, A.; COSTA, H.;
MACHADO, I. RAIDE: A tool for assertion roulette and duplicate assert identification and
refactoring. In: Proceedings of the XXXIV Brazilian Symposium on Software Engineering.
[S.l.: s.n.], 2020. (SBES), p. 374–379.

SCHMENGLER, F. Test Smell: Hard Coded Values. 2018. Available at: <https:
//www.integer-net.com/test-smell-hard-coded-values/>. Accessed on: 2022-06-17.

SCHMETZER, J. JUnit Anti-patterns. 2005. Available at: <https://exubero.com/junit/anti
-patterns/>. Accessed on: 2022-04-21.

SCHVARCBACHER, M.; SPADINI, D.; BRUNTINK, M.; OPRESCU, A. Investigating
developer perception on test smells using better code hub-work in progress. In: Seminar
Series on Advanced Techniques & Tools for Software Evolution (SATTOSE 2019). [S.l.: s.n.],
2019. (CEUR Workshop Proceedings), p. 1–6.

SCOTT, A. Five automated acceptance test anti-patterns. 2015. Available at:
<https://alisterbscott.com/2015/01/20/five-automated-acceptance-test-anti-patterns/>.
Accessed on: 2022-04-21.

SCRUGGS, J. Smells of Testing (signs your tests are bad). 2009. Available at:
<https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html>.
Accessed on: 2022-04-21.

SILVA, L. P. d.; VILAIN, P. Lccss: A similarity metric for identifying similar test code. In:
Proceedings of the 14th Brazilian Symposium on Software Components, Architectures, and
Reuse. [S.l.: s.n.], 2020. (SBCARS), p. 91–100.

https://matheus.ro/2018/04/30/tdd-antipatterns-the-free-ride-piggyback/
https://www.integer-net.com/test-smell-hard-coded-values/
https://www.integer-net.com/test-smell-hard-coded-values/
https://exubero.com/junit/anti-patterns/
https://exubero.com/junit/anti-patterns/
https://alisterbscott.com/2015/01/20/five-automated-acceptance-test-anti-patterns/
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

122

SILVA, T. A. Rails Testing Antipatterns: Fixtures and Factories. 2021. Available at: <https://
semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html>.
Accessed on: 2022-04-21.

SKRONDAL, B. E. A.; EVERITT, A. The Cambridge Dictionary of Statistics. [S.l.]:
Cambridge University Press Cambridge, 2010.

S.M.K, Q.; FAROOQ, S. U. Software testing – goals, principles, and limitations. International
Journal of Computer Applications, v. 6, n. 9, p. 7–10, 2010.

SOARES, E.; ARANDA, M.; OLIVEIRA, N.; RIBEIRO, M.; SOUZA, E.; MACHADO, I.;
SANTOS, A.; FONSECA, B.; BONIFáCIO, R. Do They Smell the Same? Cataloging Natural
Language Test Smells in Open-Source, Government, and Industry Systems - Files. 2022.
Available at: <https://figshare.com/s/5661004111cbdcb785d3>.

SOARES, E.; COSTA, J. A. da; TERCEIRO, M.; ROMãO, D.; RIBEIRO, M.; GHEYI,
R.; FERRARI, F.; SANTOS, A.; MACHADO, I.; BONIFáCIO, R.; FONSECA, B. A
Multivocal Literature Review of Test Smells - Replication Package. 2022. Available at:
<https://doi.org/10.6084/m9.figshare.22806092>.

SOARES, E.; RIBEIRO, M.; AMARAL, G.; GHEYI, R.; FERNANDES, L.; GARCIA, A.;
FONSECA, B.; SANTOS, A. Refactoring test smells: A perspective from open-source
developers. In: Proceedings of the 5th Brazilian Symposium on Systematic and Automated
Software Testing. [S.l.: s.n.], 2020. (SAST), p. 50–59.

SOARES, E.; RIBEIRO, M.; GHEYI, R.; AMARAL, G.; SANTOS, A. Refactoring test smells
with JUnit 5: Why should developers keep up-to-date? IEEE Transactions on Software
Engineering, v. 49, n. 3, p. 1152–1170, 2023.

SOARES, L. Anti-patterns of automated testing. 2020. Available at: <https://medium.com/s
wlh/anti-patterns-of-automated-software-testing-b396283a4cb6>. Accessed on: 2022-04-21.

SPADINI, D.; PALOMBA, F.; ZAIDMAN, A.; BRUNTINK, M.; BACCHELLI, A. On the
relation of test smells to software code quality. In: 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). [S.l.: s.n.], 2018. (ICSME), p. 1–12.

SPADINI, D.; SCHVARCBACHER, M.; OPRESCU, A.-M.; BRUNTINK, M.; BACCHELLI,
A. Investigating severity thresholds for test smells. In: Proceedings of the 17th International
Conference on Mining Software Repositories. [S.l.: s.n.], 2020. (MSR), p. 311–321.

SPITZER, D. Is duplicated code more tolerable in unit tests? 2008. Available at: <https:
//stackoverflow.com/questions/129693/is-duplicated-code-more-tolerable-in-unit-tests>.
Accessed on: 2022-04-21.

SWETT, J. Test smell: Obscure Test. 2018. Available at: <https://www.codewithjason.co
m/test-smell-obscure-test/>. Accessed on: 2022-06-17.

TAHIR, A.; COUNSELL, S.; MACDONELL, S. G. An empirical study into the relationship
between class features and test smells. In: 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC). [S.l.: s.n.], 2016. (APSEC), p. 137–144.

TAHIR, A.; DIETRICH, J.; COUNSELL, S.; LICORISH, S.; YAMASHITA, A. A large scale
study on how developers discuss code smells and anti-pattern in stack exchange sites.
Information Software Technology, v. 125, p. 106333, 2020.

https://semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html
https://semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html
https://figshare.com/s/5661004111cbdcb785d3
https://doi.org/10.6084/m9.figshare.22806092
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6
https://stackoverflow.com/questions/129693/is-duplicated-code-more-tolerable-in-unit-tests
https://stackoverflow.com/questions/129693/is-duplicated-code-more-tolerable-in-unit-tests
https://www.codewithjason.com/test-smell-obscure-test/
https://www.codewithjason.com/test-smell-obscure-test/

123

TANIGUCHI, M.; MATSUMOTO, S.; KUSUMOTO, S. JTDog: a gradle plugin for dynamic
test smell detection. In: 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). [S.l.: s.n.], 2021. (ASE), p. 1271–1275.

TOM, E.; AURUM, A.; VIDGEN, R. An exploration of technical debt. Journal of Systems
and Software, v. 86, n. 6, p. 1498–1516, 2013.

TOOMEY, C.; FERRIS, J. Testing Antipatterns. 2022. Available at: <https://thoughtbot.c
om/upcase/videos/testing-antipatterns>. Accessed on: 2022-06-17.

TUFANO, M.; PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R.; LUCIA, A. D.;
POSHYVANYK, D. An empirical investigation into the nature of test smells. In: Proceedings
of the 31st IEEE/ACM international conference on automated software engineering. [S.l.:
s.n.], 2016. (ASE), p. 4–15.

TUFANO, M.; PALOMBA, F.; BAVOTA, G.; PENTA, M. D.; OLIVETO, R.; LUCIA, A.
D.; POSHYVANYK, D. Towards Automated Tools for Detecting Test Smells: An Empirical
Investigation into the Nature of Test Smells. 2019. Accessed on: 2022-06-17.

VIRGÍNIO, T.; SANTANA, R.; MARTINS, L. A.; SOARES, L. R.; COSTA, H.; MACHADO,
I. On the influence of test smells on test coverage. In: Proceedings of the XXXIII Brazilian
Symposium on Software Engineering. [S.l.: s.n.], 2019. (SBES), p. 467–471.

WANG, T.; GOLUBEV, Y.; SMIRNOV, O.; LI, J.; BRYKSIN, T.; AHMED, I. Pynose: A test
smell detector for python. In: 2021 36th IEEE/ACM international conference on automated
software engineering (ASE). [S.l.: s.n.], 2021. (ASE), p. 593–605.

WIGENT, Z. Test Naming Failures. An Exploratory Study of Bad Naming Practices in Test
Code. Master’s Thesis (Master’s Thesis) — Rochester Institute of Technology, USA, Dec
2021.

WILLIAMS, R.; DIETRICH, E. Unit Testing Smells: What Are Your Tests Telling You? 2017.
Available at: <https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-y
o>. Accessed on: 2022-04-21.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings of the 18th international conference on evaluation and
assessment in software engineering. [S.l.: s.n.], 2014. (EASE), p. 1–10.

WOOD, J. ABAP Assertion Anti-Patterns. 2013. Available at: <https://blogs.sap.com/2013
/02/14/abap-assertion-anti-patterns/>. Accessed on: 2022-04-21.

XIE, T.; ZHAO, J.; MARINOV, D.; NOTKIN, D. Detecting redundant unit tests for aspectj
programs. In: 2006 17th International Symposium on Software Reliability Engineering. [S.l.:
s.n.], 2006. (ISSRE), p. 179–190.

ZEISS, B. A refactoring tool for TTCN-3. Master’s Thesis (Master’s Thesis) — Institute for
Informatics, Universität Göttingen, Germany, Mar 2006.

ZEROUALI, A.; MENS, T. Analyzing the evolution of testing library usage in open source
Java projects. In: IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering. [S.l.: s.n.], 2017. (SANER), p. 417–421.

https://thoughtbot.com/upcase/videos/testing-antipatterns
https://thoughtbot.com/upcase/videos/testing-antipatterns
https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-yo
https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-yo
https://blogs.sap.com/2013/02/14/abap-assertion-anti-patterns/
https://blogs.sap.com/2013/02/14/abap-assertion-anti-patterns/

124

ZHI, J.; GAROUSI, V. On adequacy of assertions in automated test suites: An empirical
investigation. In: 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation Workshops. [S.l.: s.n.], 2013. (ICSTW), p. 382–391.

125

APPENDIX A – SELECTED PRIMARY SOURCES

Table 31 – Selected primary sources

Author Title

Deursen et al. (2001) Refactoring Test Code
Schmetzer (2005) JUnit Anti-patterns
Zeiß (2006) A Refactoring Tool for TTCN-3
Rompaey, Bois and Demeyer (2006) Characterizing the Relative Significance of a Test Smell
Xie et al. (2006) Detecting redundant unit tests for AspectJ programs
Bisanz (2006) Pattern-based Smell Detection in TTCN-3 Test Suites
Reichart (2007) Assessing test quality - TestLint
Lanubile and Mallardo (2007) Inspecting Automated Test Code: A Preliminary Study
Rompaey et al. (2007) On The Detection of Test Smells: A Metrics-Based Approach for General Fix-

ture and Eager Test
Reichhart, Gîrba and Ducasse (2007) Rule-based Assessment of Test Quality
Neukirchen and Bisanz (2007) Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites
Meszaros (2007) xUnit test patterns: Refactoring test code
Neukirchen, Zeiss and Grabowski
(2008)

An approach to quality engineering of TTCN-3 test specifications

Spitzer (2008) Is duplicated code more tolerable in unit tests?
Moonen et al. (2008) On the interplay between software testing and evolution and its effect on

program comprehension
A (2008) Testing anti-patterns: How to fail with 100% test coverage
B (2008) Testing anti-patterns: The ugly mirror
Breugelmans and Rompaey (2008) TestQ: Exploring Structural and Maintenance Characteristics of Unit Test

Suites
Croak (2009) Mystery Guest
Scruggs (2009) Smells of Testing (signs your tests are bad)
Car (2009) Test-Driven Development: TDD Anti-Patterns
Archer (2010) How test automation with selenium can fail
Halleux and Tillmann (2010) Parameterized Test Patterns For Effective Testing with Pex
Meszaros (2009) Obscure Test
Pavlenko (2011) Quality defects detection in unit tests
DiFalco (2011) Subclass To Test Anti Pattern
Bavota et al. (2012) An empirical analysis of the distribution of unit test smells and their impact

on software maintenance
Chen and Wang (2012) Bad smells and refactoring methods for GUI test script
Nurkiewicz (2012) Java: code duplication in classes and their junit test cases
Ferris (2012) Let’s not
Hammerly (2013) A testing anti-pattern safari
Wood (2013) Abap assertion anti-patterns
Greiler, Deursen and Storey (2013) Automated Detection of Test Fixture Strategies and Smells
Kaczanowski (2013) Bad tests, good tests
Osherove (2016) Chapter 8. The pillars of good unit tests
England (2016) Cucumber anti-patterns (part one)
Hauptmann et al. (2013) Hunting for smells in natural language tests
Khalili (2013a) Maintainable automated ui tests
Zhi and Garousi (2013) On adequacy of assertions in automated test suites: an empirical investigation
Greiler et al. (2013) Strategies for avoiding text fixture smells during software evolution
Khalili (2013b) Tips to avoid brittle ui tests
A (2014) Tdd antipatterns: Local hero
B (2014) Tdd antipatterns: The free ride
Athanasiou et al. (2014) Test code quality and its relation to issue handling performance
Kirkbride (2014) Testing anti-patterns
Gishu (2014) Unit testing Anti-patterns catalogue
Bugayenko (2015) A few thoughts on unit test scaffolding

126

Bavota et al. (2015) Are test smells really harmful? An empirical study
Kummer (2015) Categorising Test Smells
Koskela (2015) Developer test anti-patterns by lasse koskela
SCott (2015) Five automated acceptance test anti-patterns
Hauptmann et al. (2015) Generating refactoring proposals to remove clones from automated system

tests
Hedayati, Ebrahimzadeh and Sori
(2015)

Investigating into Automated Test Patterns in Erratic Tests by Considering
Complex Objects

Buwalda (2015) Test design for automation: Anti-patterns
Mathew and Foegen (2016) An analysis of information needs to detect test smells
Tufano et al. (2016) An empirical investigation into the nature of test smells
Tahir, Counsell and MacDonell
(2016)

An Empirical Study into the Relationship Between Class Features and Test
Smells

Kempf (2016) Anti-Patterns - Digital Tapestry
Palomba et al. (2016) On the diffusion of test smells in automatically generated test code: an empir-

ical study
Chamberlain (2017) How to Compare Object Instances in your Unit Tests Quickly and Easily
Williams and Dietrich (2017) Unit Testing Smells: What Are Your Tests Telling You?
Palomba, Zaidman and Lucia (2018) Automatic Test Smell Detection Using Information Retrieval Techniques
Khorikov (2018) Code pollution
Kundra (2018) Enhancing developers’ awareness on test suites’ quality with test smell sum-

maries
al2o3cr (2018) Hacker News on: Software Testing Anti-patterns
Spadini et al. (2018) On the Relation of Test Smells to Software Code Quality
Garousi and Küçük (2018) Smells in software test code: A survey of knowledge in industry and academia
Kapelonis (2018) Software Testing Anti-patterns
Rodrigues (2018) TDD Anti-patterns: The Free Ride / Piggyback
Schmengler (2018) Test Smell: Hard Coded Values
Swett (2018) Test smell: Obscure Test
Frieze (2018) Test Smells - The Coding Craftsman
King (2018) Test::Class Hierarchy Is an Antipattern
Bugayenko (2018) Unit Testing Anti-Patterns, Full List
Peruma (2018) What the Smell? An Empirical Investigation on the Distribution and Severity

of Test Smells in Open Source Android Applications
Garousi, Kucuk and Felderer (2018) What We Know About Smells in Software Test Code
Qusef, Elish and Binkley (2019) An exploratory study of the relationship between software test smells and fault-

proneness
Gawinecki (2019) Anti-patterns in test automation
Bleser, Nucci and Roover (2019a) Assessing diffusion and perception of test smells in scala projects
Lewis (2019) How to write good tests
Peruma et al. (2019) On the distribution of test smells in open source Android applications: an

exploratory study
Virgínio et al. (2019) On the influence of Test Smells on Test Coverage
Grano et al. (2019) Scented since the beginning: On the diffuseness of test smells in automatically

generated test code
Bleser, Nucci and Roover (2019b) SoCRATES: Scala radar for test smells
Peruma et al. (2019) Software Unit Test Smells
Pecorelli (2019) Test-related factors and post-release defects: an empirical study
Jones (2019) Writing good gherkin
Junior et al. (2020) A survey on test practitioners’ awareness of test smells
Peruma et al. (2020) An Exploratory Study on the Refactoring of Unit Test Files in Android Appli-

cations
Soares (2020) Anti-patterns of automated testing
Gonzalez, Rath and Mirakhorli
(2020)

Did You Remember To Test Your Tokens?

Spadini et al. (2020) Investigating Severity Thresholds for Test Smells
Lambiase et al. (2020) Just-In-Time Test Smell Detection and Refactoring: The DARTS Project
Silva and Vilain (2020) LCCSS: A Similarity Metric for Identifying Similar Test Code
Grano et al. (2020) Pizza versus Pinsa: On the Perception and Measurability of Unit Test Code

Quality

127

Santana et al. (2020) RAIDE: a tool for Assertion Roulette and Duplicate Assert identification and
refactoring

Soares et al. (2020) Refactoring Test Smells: A Perspective from Open-Source Developers
Panichella et al. (2020) Revisiting Test Smells in Automatically Generated Tests: Limitations, Pitfalls,

and Opportunities
Martinez et al. (2020) RTj: a Java framework for detecting and refactoring rotten green test cases
Nery and Lima (2020) Test Artifacts — The Practical Testing Book
Peruma et al. (2020) tsDetect: an open source test smells detection tool
Burns (2021) A workbook repository of example test smells and what to do about them
Campos, Rocha and Machado (2021) Anti-Patterns In Unit Testing
Fernandes, Machado and Maciel
(2021)

Developers perception on the severity of test smells: an empirical study

Kim et al. (2021b) Handling Test Smells in Python: Results from a Mixed-Method Study
Jorge, Machado and Andrade (2021) How disabled tests manifest in test maintainability challenges?
Taniguchi, Matsumoto and
Kusumoto (2021)

Investigating Test Smells in JavaScript Test Code

Peruma and Newman (2021) JTDog: a Gradle Plugin for Dynamic Test Smell Detection
Rwemalika (2021) On the Distribution of "Simple Stupid Bugs" in Unit Test Files: An Exploratory

Study
Camara et al. (2021) On the Maintenance of System User Interactive Tests
Wang et al. (2021) On the use of test smells for prediction of flaky tests
Silva (2021) PyNose: A Test Smell Detector For Python
Aranega et al. (2021) Rails Testing Antipatterns: Fixtures and Factories
Martins et al. (2021) Rotten green tests in Java, Pharo and Python
Rwemalika et al. (2021) Smart prediction for refactorings in the software test code
Marabesi (2021b) Smells in System User Interactive Tests
Brandes (2021) TDD anti patterns - Chapter 1
Marabesi (2021a) TDD anti-patterns - the liar, excessive setup, the giant, slow poke
Wigent (2021) Test Naming Failures. An Exploratory Study of Bad Naming Practices in Test

Code
Aljedaani et al. (2021) Test Smell Detection Tools: A Systematic Mapping Study
Pecorelli, Palomba and Lucia (2021) The Relation of Test-Related Factors to Software Quality: A Case Study on

Apache Systems
Kim, Chen and Yang (2021) The secret life of test smells-an empirical study on test smell evolution and

maintenance
Pontillo, Palomba and Ferrucci
(2021)

Toward static test flakiness prediction: a feasibility study

Buffardi and Aguirre-Ayala (2021) Unit Test Smells and Accuracy of Software Engineering Student Test Suites
Barrak et al. (2021) Why do builds fail?—A conceptual replication study
Toomey and Ferris (2022) Rails Testing Antipatterns
Tufano et al. (2019) Towards Automated Tools for Detecting Test Smells: An Empirical Investiga-

tion into the Nature of Test Smells
Source: Research data

128

APPENDIX B – CATALOGED TEST SMELLS

Table 32 – Cataloged test smells

Name Sources AKA Example C/E Frequency

7 Layer Testing 1
Abnormal UTF-Use 2
Absence of why 1
Accidental test framework 1
Activation Asymmetry 3
Ambiguous Tests 1
Anal Probe 3
Anonymous Test 4 Unclear Naming, Naming Con-

vention Violation
Anonymous test case 1
Army of Clones 2
ASSERT 1 = 2 1
Assert the world 1
Asserting Pre-condition and Invari-
ants

1

Assertion Chorus 1 Missing custom assertion method
Assertion diversion 1
Assertion Roulette 48
Assertion-free 1
Assertionless Test 6 Lying Test, The Line Hitter, No

Assertions
Assertions should be Merciless 1
Asynchronous Code 1
Asynchronous Test 1
Autogeneration 1
Bad Comment Rate 3
Bad Documentation Comment 3
Bad Naming 5
Badly Structured Test Suite 1
Badly Used Fixture 1 General Fixture
Behavior Sensitivity 2
Blethery prefixes 1
Blinkered assertions 1
Boilerplate hell 1
Branch To Assumption Anti-Pattern 1
Brittle Assertion 1
Brittle Test 2 Fragile Test
Brittle UI Tests 1
Broad Assertion 1
Bumbling assertions 1
Bury The Lede 1
Calculating expected results on the
fly

1

Catching Unexpected Exceptions 2
Celery data 1
Chafing 1
Chain Gang 3 Order Dependent Tests
Changing implementation to make
tests possible

1

Chatty logging 1
Circumstantial evidence 1
Code Pollution 1

129

Code Run Only by Tests 1
Commented Code in the Test 2 Under-the-carpet Failing Asser-

tion
Commented Test 1
Comments 1
Comments Only Test 2
Complex Assertions 1
Complex Conditional 3
Complex Teardown 1
Complicated set up scenarios within
the tests themselves

1

Conditional assertions 4
Conditional Logic 1
Conditional Logic Test 1
Conditional Test Logic 24 Indented Test Code, Guarded

Test
Conditional Tests 1
Conditional Verification Logic 1
Conditionals in tests 1
Conspiracy of silence 1
Constant Actual Parameter Value 3
Constrained test order 1
Constructor Initialization 14
Contaminated Test Subject 1
Context Logic in Production Code 1
Context Sensitivity 2
Context-Dependent Rotten Green
Assertion Test

2

Contortionist testing 1
Control Logic 2
Counting on spies 1
coupling between test methods 1
Curdled Test Fixtures 1
Cut-and-Paste Code Reuse 1
Data Sensitivity 2
Data-Ja Vu 1
Dead Field 3
Default Test 10
Dependent test 3
Directly executing JavaScript 1
Disabled Test 1
Disorder 3
Doppelgänger 2
Duplicate Alt Branches 3
Duplicate Assert 14
Duplicate code 1
Duplicate Component Definition 3
Duplicate In-Line Templates 3
Duplicate Local Variable/Constant/-
Timer

3

Duplicate Statements 3
Duplicate Template Fields 3
Duplicate test code 1
Duplicated Actions 1
Duplicated code 5
Duplicated Code in Conditional 3

130

Eager Test 49 The Test It All, Split Personality,
Many Assertions, Multiple Asser-
tions, The Free Ride, Silver Bul-
let, Piggyback

Early Returning Test 2
Easy Tests 1 The Dodger
Embedding implementation detail in
your features/scenarios

1

Empty Method Category 2
Empty Shared-Fixture 2
Empty Test 17
Empty Test-Method Category 1
Equality Pollution 2
Equality Sledgehammer Assertion 1
Erratic test 2
Erratic Tests 1
Everything is a property 1
Evolve or . . . 1
Exception Catch/Throw 1
Exception Catching Throwing 1
Exception Handling 11
Excessive Inline Setup 2
Excessive Mocking 2
Excessive setup 7 Large Setup Methods, Inappropri-

ately Shared Fixture, The Mother
Hen, The Stranger, The Distant
Relative, The Cuckoo

Expected Exceptions and Verification 1
Expecting Exceptions Anywhere 1
External Data 1 Mystery Guest
External Dependencies 2
External shared-state corruption 1
Factories depending on database
records

1

Factories pulling too many dependen-
cies

1

Factories that contain unnecessary
data

1

Factories with random data instead
of sequences

1

Fantasy Tests 2
Feature Envy 1
Fire And Forget 3 Plate-Spinning
Flaky locator 1
Flaky test 2
Flexible Test 1
For Testers Only 13
Fragile Fixture 2
Fragile Test 7 Brittle Test
Frequent Debugging 4 Manual Debugging
Fully Rotten Green Test 2
Fully-Parameterized Template 3
Fuzzy assertions 1
General Fixture 39 Badly Used Fixture
Generative 1
Generous Leftovers 4 Wet Floor, Sloppy worker
Get really clever and use random
numbers in your tests

1

Goto Statement 3
Ground zero 1

131

Guarded Test 3 Conditional Test Logic
Half a helper method 1
Happenstance testing 1
Happy Path 6
Hard-Coded Test Data 2
Hard-Coded Values 2
Hard-to-Test Code 5
hard-to-write test 1
Hardcoded environment 2
Hardcoded environment configura-
tion

1

Hardcoded test data 1 Magic Strings
Having flaky or slow tests 1
Herp Derp 1
Hidden Complexity 1
Hidden Dependency 6
Hidden Integration Test 1
Hidden Meaning 1
Hidden test call 1
Hidden Test Data 2
Hooks everywhere 1 Testing Causes an Abstraction

Virus
I wrote it like this 1
I’ll believe it when I see some flashing
GUIs

2

Identity Dodgems 1
Idle PTC 3
Ignored Test 14
Improper clean up after tests have
been run

1

Improper Test Method Location 1
Inadequate Assertion 1
Inappropriate Assertions 1 Wrong Assert
Inappropriately Shared Fixture 2 Excessive Setup
Incidental coverage 1
Incidental details 1
Inconsistent Hierarchy 1
Inconsistent Wording 1
Indecent exposure 1
Indecisive 1
Indented Test 2
Indirect Testing 19
Inefficient waits 1
Insufficient Grouping 3
Integration test, masquerading as
unit test

1

Interacting Test Suites 2
Interacting Tests 3
Interactive Test 1 Manual Intervention
Interface Sensitivity 2
Intermittent Test Failures 1
Invalid test data 1
Invasion Of Privacy 2
Invisible Assertions 1
Irrelevant Information 2
Is Mockito Working Fine? 1
Is There Anybody There? 1
Isolated PTC 2
Issues in Exception Handling 1 The Secret Catcher

132

It looks right to me 1
It was like that when I got here 1
Lack of Cohesion of Test Cases 1
Lack of Cohesion of Test Methods 5
Lack of Encapsulation 3
Lack of Macro Events 1
Large Fixture 1
Large Macro Component 1
Large Module 1 Large Class
Large Test File 1
Lazy Test 22
Likely ineffective Object-Comparison 2
Line hitter 2 Assertionless Test
Literal Pollution 1
Litter Bugs 1 Test pollution
Lonely Test 2
Long class 1
Long Function 1 Long Method
Long Macro Event 1 Long Keyword
Long method 1 Long Function
Long Parameter List 5
Long Running Tests 1 Slow Test
Long Statement Block 3
Long Test 5 Obscure Test
Long Test Steps 3
Long/complex/verbose/obscure test 1
Lost Test 1
Magic Number 2
Magic Number Test 15
Magic Values 3
Making a mockery of design 1
Manual Assertions 1
Manual Event Injection 2
Manual Fixture Setup 2
Manual Intervention 3 Interactive Test, Manual Testing,

Manual Test
Manual Result Verification 2
Many Assertions 1 Eager Test
Martini Assertion 1
Max Instance Variables 2
Messy Test 1
Middle Man 3
Missed fail rotten green test 2
Missed skip rotten green test 1
Missing Assertion Message 2
Missing Assertions 4
Missing Log 3
Missing parameterised test 1
Missing test data factory 1
Missing Variable Definition 3 UR data flow anomaly
Missing Verdict 3
Mistaken identity 1
Mixed Selectors 3
Mixing Production and Test Code 1
Mock everything 1
Mock Happy 3 The Mockery
Mock madness 1
Mock’em All! 1

133

Mockers Without Borders 1
Mocking a Mocking Framework 1
Mocking what you don’t own 2
Mockito any() vs. isA() 1
Multiple Assertions 1 Eager Test
Multiple points of failure 1
Multiple Test Conditions 1
Multiple tests testing the same or
similar things

1

Mystery Guest 40 External Data
Name-clashing Import 1
Narcissistic 2
Nested Conditional 3
Neverfail Test 1
No Assertions 3 Assertionless Test
No clear structure within the test 1
No structure when creating test cases 1
No traces left 1
Noisy Logging 2
Noisy setup 1
Nondeterministic Test 2
Not Idempotent 2 Interacting Test With High De-

pendency,
Not using page-objects 1
Obscure In-Line Setup 4
Obscure Test 13 Long Test, Complex Test, Ver-

bose Test
On the Fly 2
Only Easy Tests 1
Only Happy Path Tests 1
Optimizing DRY 1
Order Dependent Tests 3 Chained Tests, Chain Gang
Over exertion assertion 1
Over refactoring of tests 1
Over-Checking 3
Over-eager Helper 1
Over-specific Runs On 3
Overcommented Test 4
Overly Complex Tests 1
Overly Dry Tests 2
Overly elaborate test code 1
Overmocking 1
Overreferencing 3
Oversharing on setup 1
Overspecification 1
Overspecified Software 2 Overcoupled Test
Overspecified Tests 1
Overuse of abstractions 1 it’s too DRY
Paranoid 1
Parsed Data 1
Piggybacking on existing tests 1
Plate Spinning 1
Premature Assertions 1
Primitive Assertion 1
Print Statement 2
Production Logic in Test 1
Proper Organization 2
Quixotic 1

134

Redundant Assertion 16
Redundant Print 12
Refused Bequest 2
Reinventing the Wheel 1
Remote Control Mocking 1
Require External Resources 1
Requires Supervision 1
Resource Leakage 2
Resource Optimism 29
Returning Assertion 2
Rewriting private methods as public 1
Rotten Green Test 3
Second Class Citizens 3 Test Code Duplication
Second guess the calculation 1
Self Important Test Data 1
Self-Test 1
Sensitive Equality 33 The Butterfly
Sensitive Locators 2
Share the world 1
Shared-state corruption 1
Short Template 3
Shotgun Surgery 1
Singular Component Variable/Con-
stant/Timer Reference

3

Singular Template Reference 3
Skip Rotten Green Test 1
Skip-Epidemic 1
Sleeping for arbitrary amount of time 1
Sleepy Test 14
Sloppy Worker 1 Generous Leftovers
Slow Component Usage 1
Slow Running Tests 1
Slow Test 6 Long Running Test, The Slow

Poke
Sneaky Checking 3
So the Automation Tool Wrote This
Crap

1

Split Logic 1
Split Personality 1 Eager Test
Stinky Synchronization 2
Stinky synchronization syndrome 1
Stop in Function 3
Subclass To Test 1
Success Against All Odds 3 The Liar
Superfluous Setup Data 1
Surreal 1
Taking environment state for granted 1
Tangential 1
Teardown Only Test 2
Test body is somewhere else 1
Test By Number 1
Test cases are concerned with more
than one unit of code

1

Test Clones 2
Test Code Duplication 17 Second Class Citizen
Test Dependency in Production 1
Test Envy 2
Test Hook 1

135

Test Hooks 1
Test Logic in Production Code 3
Test Maverick 4
Test Pollution 1 Litter Bugs
Test Redundancy 1
Test Run War 10
Test setup is somewhere else 1
Test tautology 1
Test-Class Name 2
Test-Method Category Name 2
Test-per-Method 1
Test::class Hierarchy 1
Testing business rules through UI 1
Testing for a specific bug 1
Testing internal implementation 1
Testing the Authentication Frame-
work

1

Testing the Framework 1
Testing The Internal Monologue 1
Tests Are Difficult to Write 1
Tests cluttered with business logic 1
Tests depend on something outside of
the test suite

1

Tests require too much intimate
knowledge of the code to run

1

Tests that Can’t Fail 1
Testy testy test test 1
The Bandwidth Demander 1
The Butterfly 1 Sensitive Equality
The Conjoined Twins 2
The Cuckoo 4 Excessive Setup
The Dead Tree 2 Process Compliance Backdoor
The Dodger 3 Easy Tests
The Enumerator 4 Test With No Name
The Environmental Vandal 1 The Local Hero
The First and Last Rites 1 Oops I Forgot the Setup
The Flickering Test 2
The Forty Foot Pole Test 3
The Free Ride 7 Eager Test
The giant 8
The Greedy Catcher 4
The Inhuman Centipede 1
The Inspector 5
The Leaky Cauldron 1
The liar 7 Evergreen Tests, Success Against

All Odds
The Local Hero 7 Wait and See, The Environmental

Vandal
The Loudmouth 4 Transcripting Test
The Mockery 4 Mock Happy, Mock-Overkill
The Mother Hen 2 Excessive Setup
The Nitpicker 3
The One 3 Eager Test
The Operating System Evangelist 3
The painful clean-up 1
The Parasite 1
The Peeping Tom 3 The Uninvited Guests
The Secret Catcher 5 The Silent Catcher, Issues in Ex-

ception Handling

136

The Sequencer 4
The Silent Catcher 3 The Secret Catcher
The Sleeper 3 Mount Vesuvius
The slow poke 6 Slow Test
The Soloist 1
The Stepford Fields 1
The Stranger 3 The Cuckoo
The telltale heart 1
The Temporal Tip Toe 1
The Test It All 1 Eager Test
The Test With No Name 3 The Enumerator
The Turing Test 1
The ugly mirror 5 Tautological tests
There is too much setup to run the
test cases

1

Time Bomb Data 1
Time Bombs 2
Time Sensitive Test 1
Too Many Tests 1
Transcripting Test 3 The Loudmouth
Treating test code as a second class
citizen

2

Two for the price of one 1
Unclassifi
ed Method Category

2

Under-the-carpet Assertion 1
Under-the-carpet Failing Assertion 4 Commented Code in the Test
Underspecification 1
Unknown Test 14
Unnecessary Navigation 1
Unreachable Default 3
Unrepeatable Test 2
Unrestricted Imports 3
Unsuitable Naming 1
Untestable Test Code 1
Unused Definition 3
Unused Imports 3
Unused Inputs 1
Unused Parameter 3
Unused Shared-Fixture Variables 2
Unused Variable Definition 3 DU data flow anomaly
Unusual Test Order 2
Unworldly test data 1
Use Smart Values 1
Using Assertions as a Substitute for
all Class-Based Exceptions

1

Using Assertions as a Substitute
for all Defensive Programming Tech-
niques

1

Using complicated x-path or CSS se-
lectors

1

Using fixtures 1
Using the word “and” when describ-
ing a test

1

Using the Wrong Assert 1
Vague Header Setup 3
Verbless and Noun-full 1
Verbose Test 7 Obscure Test
Very similar test cases 1

137

Wait and See 2 The Local Hero
Wasted Variable Definition 3 DD data flow anomaly
Web-Browsing Test 1
Well, My Setup Works 1
Wet Floor 3 Generous leftovers
What are we Testing? 1
Wheel of fortune 1
Where Does This One Go? 1
X-Ray Specs 2
You Do Weird Things to Get at the
Code Under Test

1

Source: Research data

138

APPENDIX C – TEST SMELL CLASSIFICATION

Table 33 – Test smell classification

Category Sub-Category Name

Performance
Sleepy Test, Slow Test, The Slow Poke, Asynchronous Test, Factories pulling
too many dependencies, Long Running Tests, Slow Component Usage, Slow
Running Tests, Too Many Tests, Inefficient waits, Sleeping for arbitrary amount
of time, The Bandwidth Demander, The Temporal Tip Toe, Wait and See

Test
execution/
behavior

Other test
execution/be-
havior

Redundant Print, Frequent Debugging, The Loudmouth, Manual Event Injec-
tion, Manual Fixture Setup, Manual Intervention, Manual Result Verification,
Print Statement, Transcripting Test, Abnormal UTF-Use, Interactive Test,
Manual Assertions, Requires Supervision, Unnecessary Navigation, Chatty Log-
ging

Test
semantic/logic

Testing many
things

Eager Test, Assertion Roulette, The Free Ride, Many Assertions, Multiple
Assertions, The One, The Giant, Missing Assertion Message, Assert the world,
Piggybacking on existing tests, Split Logic, Split Personality, Test cases are
concerned with more than one unit of code, The Test It All

Testing many
units Indirect Testing, Test Envy, The Stranger, Feature Envy

Other test
logic related

Conditional Test Logic, Lazy Test, The Liar, Happy Path, The Inspector, The
Sequencer, Anal Probe, Complex Conditional, Guarded Test, Indented Test,
Insufficient Grouping, Invasion Of Privacy, Nested Conditional, Rotten Green
Test, Success Against All Odds, The Dodger, X-Ray Specs, ASSERT 1 =
2, Asynchronous Code, Branch To Assumption Anti-Pattern, Chafing, Con-
ditional Tests, Conditional Verification Logic, Conditionals in tests, Contami-
nated Test Subject, Context-Dependent Rotten Green Assertion Test, Control
Logic, Easy Tests, Embedding implementation detail in your features/scenar-
ios, Factories with random data instead of sequences, Flexible Test, Generative,
Get really clever and use random numbers in your tests, Inconsistent Wording,
Indecisive, Multiple Test Conditions, Only Easy Tests, Only Happy Path Tests,
Paranoid, Parsed Data, Quixotic, Skip Rotten Green Test, Skip-Epidemic, Tan-
gential, Test-per-Method, Testing internal implementation, Testing the Au-
thentication Framework, Untestable Test Code, Using the word “and” when
describing a test, You Do Weird Things to Get at the Code Under Test, Test By
Number, Overprotective Tests, Testing private methods, Fully Rotten Green
Test, Neverfail Test, Incidental Details, Underspecification, Conditional Asser-
tions, Conditional Logic, Conditional Logic Test, Evolve or . . . , Ground zero,
I wrote it like this, Invalid test data, Rewriting private methods as public,
Sneaky Checking, Tests that Can’t Fail, Use Smart Values, Wheel of fortune

Design related Not using test
patterns

Constructor Initialization, Unknown Test, Disorder, Missing Log, No clear
structure within the test, Not using page-objects, Test Hierarchy, Testing busi-
ness rules though UI, Autogeneration, Contortionist Testing, I’ll believe it when
I see some flashing GUIs, Narcissistic, No structure when creating test cases,
So the Automation Tool Wrote This Crap, The Turing Test

Issues in test
steps

Issues in setup

General Fixture, Excessive Setup, Obscure In-line Setup, Test Maverick, Vague
Header Setup, Excessive Inline setup, Fragile Fixture, Idle PTC, Irrelevant
Information, Isolated PTC, Refused Bequest, The Cuckoo, Unused Definition,
Badly Used Fixture, Bury The Lede, Complicated set up scenarios within the
tests themselves, Empty Shared-Fixture, Factories that contain unnecessary
data, Inappropriately Shared Fixture, Max Instance Variables, Mother Hen,
Noisy setup, Using fixtures, Curdled Test Fixtures, Hidden Test Data, Large
Fixture, Noisy Logging, Oversharing on setup, Share the world, Superfluous
Setup Data, Taking environment state for granted, Test setup is somewhere
else, There is too much setup to run the test cases, Where Does This One
Go?

139

Issues in test
steps

Issues in asser-
tions

Sensitive Equality, Redundant Assertion, Assertionless Test, Under-the-carpet
Failing Assertion, Commented Code in the Test, Fantasy Tests, Inappropriate
assertions, Missing Assertions, No Assertions, The Nitpicker, Assertion-free,
Brittle Assertion, Calculating expected results on the fly, Complex Assertions,
Early Returning Test, Inadequate Assertion, Incidental coverage, Invisible As-
sertions, Likely Ineffective Object-Comparison, Line hitter, Missed Fail Rotten
Green Test, Premature Assertions, Returning Assertion, Using Assertions as
a Substitute for all Class-Based Exceptions, Using Assertions as a Substitute
for all Defensive Programming Techniques, Using the Wrong Assert, Fragile
Test, Brittle Tests, Primitive Assertion, Bitwise Assertions, Assertions should
be Merciless, 7 Layer Testing, Asserting Pre-condition and Invariants, Shotgun
Surgery, Assertion Diversion, Blinkered Assertions, Broad Assertion, Bumbling
Assertions, Celery Data, Circumstantial Evidence, Commented Test, Conspir-
acy of silence, Equality Sledgehammer Assertion, Fuzzy assertions, Happen-
stance testing, Martini Assertion, No traces left, On the Fly, Over exertion
assertion, Over-Checking, Second guess the calculation, Self-Test, Testing The
Internal Monologue, The Butterfly, Under-the-carpet Assertion

Issues in tear-
down

Not Idempotent, Complex Teardown, Sloppy Worker, Teardown Only Test, Wet
Floor, Generous Leftovers, Unrepeatable Test, Activation Asymmetry, External
shared-state corruption, Shared-state corruption, Improper clean up after tests
have been run, It was like that when I got here, The painful clean-up, The
Soloist

Issues in
exception
handling

Exception Handling, The Secret Catcher, Catching Unexpected Exceptions,
The Greedy Catcher, Exception Catch/Throw, Exception Catching Throwing,
Issues in Exception Handling, The Silent Catcher, Expecting Exceptions Any-
where, Expected Exceptions and Verification

Mock and stub
related

Mock Happy, Excessive Mocking, The Mockery, Mockers Without Borders,
Mocking a Mocking Framework, Mocking what you don’t own, Subclass To
Test, Testing the Framework, Mocking everything, Is Mockito Working Fine?,
Mockito any() vs. isA(), The Dead Tree, Surreal, Making a mockery of de-
sign, Mock everything, Mock Madness, Mock’em All!, Overmocking, Remote
Control Mocking

In associ-
ation with
production
code

For Testers Only, Behavior Sensitivity, Fire And Forget, Interface Sensitiv-
ity, Overspecified Software, Test Logic in Production Code, The ugly mirror,
Changing implementation to make tests possible, code pollution, Code Run
Only by Tests, Context Logic in Production Code, Mixing Production and
Test Code, overly elaborate test code, Production Logic in Test, Test De-
pendency in Production, Plate Spinning, Overspecification, Equality Pollution,
Test Hook, Hooks Everywhere, Overly elaborate test code, Overspecified Tests,
Test tautology, Tests cluttered with business logic, Tests require too much inti-
mate knowledge of the code to run, The telltale heart, Well, My Setup Works,
Indecent exposure, Multiple points of failure

Code duplica-
tion

Test Code Duplication, Duplicate Assert, Duplicated code, Duplicate Alt
Branches, Duplicate Component Definition, Duplicate In-Line Templates, Du-
plicate Local Variable/Constant/Timer, Duplicate Statements, Duplicate Tem-
plate Fields, Duplicated Code in Conditional, Code Duplication, Cut-and-Paste
Code Reuse, Duplicate test code, Duplicated Actions, Reinventing the Wheel,
Test Clones, Test Redundancy, Very similar test cases, Second Class Citizens,
Army of Clones, Assertion Chorus, Data-Ja Vu, Duplicate Code, Half a helper
method, Missing Parameterised Test, Missing Test Data Factory, Multiple tests
testing the same or similar things, The First and Last Rites, Two for the price
of one

Code related

Complex/
Hard to under-
stand

Magic Number Test, Obscure Test, Hard-to-Test Code, Long Test, Verbose
Test, Bad Comment Rate, Long Statement Block, Magic Values, Overly Dry
Tests, Hard-to-Write Test, Hidden Complexity, Large Macro Component, Large
Module, Large Test File, Long Function, Long Macro Event, Long Test Steps,
Long/complex/verbose/obscure test, Magic Number, Optimizing DRY, Overly
Complex Tests, Self Important Test Data, Tests Are Difficult to Write, Using
complicated x-path or CSS selectors, Overcommented Test, Hard-Coded Test
Data, Hard-Coded Values, Comments, Absence of why, Boilerplate Hell, Hard-
coded environment, Hardcoded environment configuration, Hardcoded test
data, Herp Derp, It looks right to me, Over refactoring of tests, Overuse of
abstractions, What are we Testing?, Long Method, Long Class

140

Code related
Violating cod-
ing best prac-
tices

Empty Test, Ignored Test, Default Test, Long Parameter List, Anonymous
Test, Bad Naming, Dead Field, Bad Documentation Comment, Constant Ac-
tual Parameter Value, Fully-Parameterized Template, Goto Statement, Missing
Variable Definition, Missing Verdict, Mixed Selectors, Nondeterministic Test,
Over-specific Runs On, Overreferencing, Short Template, Singular Compo-
nent Variable/Constant/Timer Reference, Singular Template Reference, Stop
in Function, Time Bombs, Unreachable Default, Unrestricted Imports, Unused
Imports, Unused Parameter, Unused Variable Definition, Wasted Variable Def-
inition, Ambiguous Tests, Badly Structured Test Suite, Comments Only Test,
The Conjoined Twins, Directly executing JavaScript, Empty Method Category,
Empty Test-Method Category, Erratic Test, Flaky test, The Forty Foot Pole
Test, Having flaky or slow tests, Hidden Test Call, Improper Test Method
Location, Inconsistent Hierarchy, Intermittent Test Failures, Lack of Encap-
sulation, Lack of Macro Events, Literal Pollution, Lost Test, Name-clashing
Import, Proper Organization, Test-Class Name, Test-Method Category Name,
The Sleeper, The Test With No Name, Unclassified Method Category, Un-
suitable Naming, Unused Inputs, Unused Shared-Fixture Variables, Treating
test code as a second class citizen, The Enumerator, Accidental test frame-
work, Blethery Prefixes, Disabled Test, Doppelgänger, Everything is a property,
Flaky locator, Hidden Meaning, Integration test, masquerading as unit test,
Is There Anybody There?, Missed Skip Rotten Green Test, Mistaken identity,
Over-eager Helper, Sensitive Locators, Test body is somewhere else, Testing
for a specific bug, Testy testy test test, The Flickering Test, The Stepford
Fields, Time Bomb Data, Time Sensitive Test, Unworldly test data, Verbless
and Noun-full

Dependencies
among tests

Lack of Cohesion of Test Methods, Dependent Test, Interacting Test Suites,
Interacting Tests, Order Dependent Tests, The Peeping Tom, Constrained test
order, coupling between test methods, Litter Bugs, Test Pollution, Chain Gang,
Lonely Test, Unusual Test Order, Constrained Test Order, Identity Dodgems,
Test Run War, Lack of Cohesion of Test Cases, The Environmental Vandal,
The Inhuman Centipede, The Leaky Cauldron, The Parasite

Dependencies

External
dependencies

Mystery Guest, Resource Optimism, The Local Hero, Context Sensitivity, Data
Sensitivity, External Dependencies, Resource Leakage, The Operating System
Evangelist, Counting on spies, External Data, Factories depending on database
records, Middle Man, Stinky synchronization syndrome, Web-Browsing Test,
Hidden Dependency, Hidden Integration Test, Require External Resources,
Stinky Synchronization, Tests depend on something outside of the test suite

Source: Research data

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Listing
	List of Tables
	Contents
	Introduction
	Knowledge Gaps
	Research Questions
	Structure

	Motivating Examples
	Information
	Refactorings
	Smells in Manual Tests

	First Things First: Cataloging Test Smells
	A Multivocal Literature Review
	Protocol
	Selection of Primary Studies
	Data Extraction
	Data Classification
	Data Correlation
	Summary
	Threats to Validity

	A Catalog for Everyone
	Settings
	Overview
	Implications for Practice

	Lessons Learned
	Research Directions

	Latest test framework features remove smells
	Software projects are not up-to-date
	Settings
	Results
	Discussion
	Threats to Validity

	Transforming smelly test code
	Background on New JUnit5 Features
	Transformations
	Assertion Roulette
	Conditional Test Logic - Decision Structures
	Conditional Test Logic - Repetition Structures
	Test Code Duplication
	Mystery Guest
	Exception Handling
	Test Run War
	Duplicate Assert
	Discussion

	Evaluation
	Online Survey
	Pull Requests
	Threats to Validity

	Research Directions

	Manual Tests Also Smell
	Exploring Manual Tests
	Settings
	Results
	Discussion
	Threats to Validity

	A Catalog of Natural Language Test Smells
	Ambiguous Test
	Conditional Test
	Eager Action
	Misplaced Action
	Misplaced Precondition
	Misplaced Verification
	Tacit Knowledge
	Unverified Action

	Catalog Evaluation
	Planning
	Settings
	Results
	Discussion
	Threats to Validity

	Detecting smells in manual tests with NLP
	Tool Evaluation
	Planning
	Settings
	Results
	Discussion
	Threats to Validity

	Research Directions

	Related Work
	Test Smells
	Systematic Reviews
	Test Smell Removal
	Developers Perceptions
	Evolution of Test Frameworks
	Natural Language Test Smells

	Concluding Remarks
	Review of contributions
	Limitations

	REFERENCES
	Selected primary sources
	Cataloged test smells
	Test smell classification

