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ABSTRACT

In the RoboCup Small Size League (SSL), there is the challenge of giving more autonomy to
the robots, so they can perform some tasks without receiving any external information. To
achieve this autonomy, the robot has to detect and estimate the position of other objects on
the field so it can score goals and move without colliding with other robots. Object detection
models often use monocular images as the input, but calculating the relative position of an
object given a monocular image is quite challenging as the image doesn’t have any information
on the object’s distance. The main objective of this work is to propose a complete system to
detect an object on the field and locate it using only a monocular image as the input. The first
obstacle to producing a model to object detection in a specific context is to have a dataset
labeling the desired classes. In RoboCup, some leagues already have more than one dataset
to train and evaluate a model. Thus, this work presents an open-source dataset to be used as
a benchmark for real-time object detection in SSL. Using this dataset, this work also presents
a pipeline to train, deploy, and evaluate Convolutional Neural Networks (CNNs) models to
detect objects in an embedded system. Combining this object detection model with the global
position received from the SSL-Vision, this work proposes a Multilayer Perceptron (MLP)
architecture to estimate the position of the objects giving just an image as the input. In the
object detection dataset, the MobileNet v1 SSD achieves 44.88% AP for the three detected
classes at 94 Frames Per Second (FPS) while running on a SSL robot. And the position
estimator for a detected ball achieves a Root Mean Square Error (RMSE) of 34.88𝑚𝑚.

Keywords: position estimation; deep learning; object detection; robotics; computer vision.



RESUMO

A categoria Small Size League (SSL) da RoboCup tem o desafio de aumentar o nível de
autonomia dos robôs para que eles possam realizar algumas tarefas sem receber nenhuma
informação externa. Para garantir essa autonomia o robô tem que ser capaz de detectar e
estimar a posição dos objetos no campo, para que ele possa marcar gols e se movimentar
sem colidir com outros robôs. Modelos para detecção de objetos geralmente utilizam imagens
monoculares como entrada, no entanto é desafiante calcular a posição relativa desses objetos,
já que a imagem monocular não tem nenhuma informação da distância. O principal objetivo
dessa dissertação é propor um sistema completo para detectar um objeto e calcular sua posição
relativa no campo, usando uma imagem monocular como entrada. O primeiro obstáculo para
treinar um modelo para detectar objetos em um contexto específico é ter um dataset de
treinamento com imagens anotadas. Outras categorias da RoboCup já possuem dataset com
imagens anotadas para treinar e avaliar um modelo. Assim, esse trabalho também propõe um
dataset para a categoria SSL para ser usado como referência de comparação para detecção de
objetos nessa categoria. Utilizando esse dataset, esse trabalho apresenta um fluxo para treinar,
avaliar e realizar a inferência de uma Convolutional Neural Networks (CNNs) para detecção de
objetos em um sistema embarcado. Combinando a detecção de objetos com a posição global
recebida do SSL-Vision, esse trabalho ainda propõe uma arquitetura baseada em Multilayer
Perceptron (MLP) para estimar a posição dos objetos usando somente a imagem monocular
como entrada. Na detecção de objetos, o modelo MobileNet v1 SSD alcançou 55.77% AP
para as três classes de interesse rodando a 94 Frames Per Second (FPS) em um robô de SSL.
O modelo para estimar a posição de um objeto da classe Bola atingiu um Root Mean Square
Error (RMSE) de 34.88𝑚𝑚.

Palavras-chave: estimação de posição; apredizado profundo; detecção de objetos; robótica;
visão computacional.
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1 INTRODUCTION

The Fourth Industrial Revolution, or Industry 4.0, focuses on increasing autonomy in the
industrial production chain (KAGERMANN; WAHLSTER; HELBIG, 2013). This evolution is pos-
sible via Cyber-Physical Systems (CPS), embedded systems capable of communicating and
cooperating, converging the virtual and physical worlds. Industry 4.0 has four design principles
(HERMANN; PENTEK; OTTO, 2016): Interconnection, Information Transparency, Decentralized
Decisions, and Technical Assistance.

Interconnection allows machines, devices, sensors, and people to communicate with each
other, Internet of Things (IoT) emerge from this principle. With this communication, they can
share all information they can access, achieving Information Transparency. Furthermore, having
access to all the environmental information allows Decentralized Decisions for better decision-
making. Thus, CPS can help humans perform unsafe tasks, implying Technical Assistance.

One technology that is a building block for Industry 4.0 is Autonomous Mobile Robot
(AMRs) (RÜSSMANN et al., 2015). AMRs relies in four pillars (SIEGWART; NOURBAKHSH; SCARA-

MUZZA, 2011): Perception, Localization, Cognition, and Motion Control. This concept means
that a robot must use its sensors to perceive the world and build its world model to locate
and understand the environment. With this information and its objective, the robot plans its
desired path to use its motion control algorithm to follow this path. Figure 1 shows these
pillars and steps.

To move this research field further, RoboCup was created in 1997 to focus on collaborative
mobile robots to solve dynamic problems (KITANO et al., 1997). This competition consists of

Figure 1 – Sensing and acting scheme for AMRs.

Source: Adapted from: (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011)
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Figure 2 – Examples of RoboCup leagues: (a) a typical SSL game. Image provided by the author; (b) a game
from Middle Size League (MSL). Source: (XIAO et al., 2017); (c) a NAO robot on the Standard
Platform League (SPL).

(a) (b) (c)

Source: (STANDARD PLATFORM LEAGUE TECHNICAL COMMITTEE, 2021)

a robot team autonomously playing soccer against another team and aims to win a game
against the FIFA World Cup champions of 2050 (BURKHARD et al., 2002). This competition
has some leagues, each trying to develop technologies such as design principles of AMRs,
real-time decision-making, computer vision, and sensor fusion.

Besides being important in robotics, those fields of study also have crucial contributions in
other areas. For instance, autonomous cars use computer vision to detect objects and plan the
best route without colliding with any obstacle. Besides those cross contributions, some leagues
on RoboCup aim to develop domestic robots to help the elderly and people with disability.

Small Size League (SSL) is one of the most traditional leagues in the RoboCup. In this
league, the robots are constrained to fit in a cylinder with a height of 15cm and a diameter
of 18cm (SMALL SIZE LEAGUE TECHNICAL COMMITTEE, 2021), making it possible to precisely
perform a wide range of dynamic plays every time moment during a game. The decision-making
process during each play needs to be fast due to the game speed, in which robots usually move
at 3𝑚/𝑠, and the ball reaches 6.5𝑚/𝑠. A typical SSL game occurs with two teams with eleven
robots each, using an orange golf ball in a field of 12𝑚 × 9𝑚 (SMALL SIZE LEAGUE TECHNICAL

COMMITTEE, 2021). Figure 2a shows a image from an SSL game.
The robots in SSL are semi-autonomous (FERREIN; STEINBAUER, 2016) due to the use of

an external global vision system, the SSL-Vision (ZICKLER et al., 2010). The SSL-Vison uses
a camera placed above the field to locate robots and balls using color segmentation, as each
robot has different color tags above it, and the ball is orange. For example, on Figure 2a, the
tag above the robot is visible, where the central tag indicates the team color, yellow or blue,
and the other four tags identify the robot. Figure 3 show an overview of the SSL-Vision.
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Figure 3 – Overview of SSL-Vision, the global vision system used in SSL.

Source: (WEITZENFELD et al., 2015)

In other RoboCup leagues, as MSL (MIDDLE SIZE LEAGUE TECHNICAL COMMITTEE, 2021)
and SPL (STANDARD PLATFORM LEAGUE TECHNICAL COMMITTEE, 2021) instead of using ex-
ternal information, each robot has its camera and vision system, limiting the information
to which they have access. Thus, they are considered a fully autonomous system because
each robot can perform a tactic without receiving external information. A MSL robot fits in
52 × 52 × 80𝑐𝑚, and a SPL uses the NAO Robot as the standard platform. Figure 2b shows
an example of a MSL robot and Figure 2c shows a NAO used in SPL.

The future of the SSL and MSL is to merge in one category as the research in robotics
advances (BURKHARD et al., 2002). Thus, a technical challenge (SMALL SIZE LEAGUE TECHNICAL

COMMITTEE, 2020) was introduced in 2019 to evolve the SSL to bring autonomy to a SSL
robot in a similar way to MSL and SPL. In this technical challenge, a SSL robot has to execute
four skills without receiving external information from the SSL-Vision. These skills are:

1. Grab a stationary ball somewhere on the field;

2. Score with the ball on an empty goal;

3. Score with the ball on a statically defended goal;

4. Move the robot to specific coordinates;

A SSL robot, to perform the first three steps of this challenge, has to detect a Robot,
a Ball, and a Goal autonomously and calculate their position relative to it. This technical
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challenge encourages the teams to develop and propose a local vision system following the
league’s requirements. As a result, it brings autonomy to an SSL robot in a similar way to
MSL and SPL. However, a MSL can equip a full-size computer, and a SPL robot can not be
modified since it uses a standard platform, and this challenge keeps all the size constraints,
except for the height restriction. So, robots can be taller than usual, creating a small room
for hardware improvements.

The straightforward option to detect these objects uses scan lines and color segmentation
to detect the ball (Seel, Fabio and Jut, Sabolc, 2019), as the league uses an orange golf ball.
However, this approach can not detect robots and goals because they do not have a unique
pattern. For instance, a team can use robots of any color, which makes it harder to use
this technique. Besides, the color segmentation approach must be re-calibrated on each slight
environment variation, as uneven illumination or field changes (NEVES et al., 2011).

The state-of-the-art object detection relies on Convolutional Neural Networks (CNNs)
(BOCHKOVSKIY; WANG; LIAO, 2020), which, given a labeled dataset, trains a model once
and does not need any other calibration or modification. Besides, this approach is robust to
deal with occlusion, scale transformation, and background switch (ZHAO et al., 2019), which
makes Convolutional Neural Networks (CNNs) strong candidates to use in the SSL. For other
RoboCup’s leagues, like SPL (ALBANI et al., 2016), and MSL (Luo et al., 2017), there are public
object detection datasets.

After detecting the objects on the field, a SSL robot has to add the detected object to its
world model to start planning its movements toward its objective. To do so, the robot needs a
reasonable estimation of each detected object’s relative position to itself. One possibility could
be adding a distance sensor as a Light Detection And Ranging (LiDAR) to combine with the
detected object and measure the object distance. However, the size constraints of a SSL robot
made it harder to add these sensors to the robot because it would have to be located near the
ground to use its full range and measure the distance of small objects as the ball. Although,
a SSL field has its global vision that could be used with the detected objects to train a model
to estimate those distances.

Therefore, given the SSL technical challenge, the league constraints, and the lack of an
open-sourced dataset, this work has as its main objective:

• Build a complete embedded system on a SSL robot, able to detect relevant objects on
this league and estimate the ball position, respecting the robot’s size constraints.
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To achieve this main objective, our work has the following specific objectives:

• Create a dataset for object detection to be a comparison baseline on SSL.

• Compare object detection models that could be able to run in real-time (24 Frames Per
Second (FPS)) on a SSL robot.

• Create a dataset for estimating the ball position on a SSL field.

• Evaluate the model to estimate the ball’s position using monocular vision.
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2 THEORETICAL BACKGROUND

This chapter will present some basic concepts that were used in this thesis. Section 2.1 will
explain the concepts of Neural Networks (NNs), including the basics of how a neuron work and
how this idea evolved while research advanced. Section 2.2 will present how the initial idea of
a neuron got more power using convolution operations and which applications took advantage
of this approach. Section 2.3 shows some of the classical CNNs models. Section 2.4 present
some metrics used to evaluate a Machine Learning (ML) model.

2.1 NEURAL NETWORKS

2.1.1 Neuron Models

The human being is always trying to understand better how the body of a living creature
works. One of the most used approaches is mathematical models making it easy to replicate a
body’s behavior. For instance, a human arm’s joints are studied to create a kinematics model
of it and use it to control robotics arms (STROEVE, 1999; GOMI; OSU, 1998; NAKAMURA et

al., 2005). Another body system with a high interest in building mathematical models to help
replicate and understand how it works is the nervous system.

The nervous system is based on neurons, a type of cell that communicates with others by
electrical signals, known as synapse (BEAR; CONNORS; PARADISO, 2020). The first mathemat-
ical model of a biological neuron was proposed by MCCULLOCH; PITTS in 1943 (MCCULLOCH;

PITTS, 1943). This model considers a neuron with multiple Boolean inputs, 0 or 1, where
these inputs could be applied to a logical 𝑁𝑂𝑇 before entering the neuron. The output of this
neuron model is given by using logical operators 𝐴𝑁𝐷 and 𝑂𝑅 to the inputs. Then comparing
this result with a threshold, if this value is greater than the threshold, it outputs 1, otherwise
outputs 0.

This model was fundamental and inspired other models, but it has some main flawless, as
it does not accept real value inputs and uses the same importance for all inputs. To address
the problems of the MCCULLOCH; PITTS model, in 1958, the Perceptron model was proposed
by ROSENBLATT (ROSENBLATT, 1958). The Perceptron model is similar to the MCCULLOCH;

PITTS model, which has multiple inputs and only one output. However, the inputs and the
output are real values, and the inputs are multiplied by weights to have distinctive importance.
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Figure 4 – Perceptron model, where 𝑥0, 𝑥1 . . . 𝑥𝑛 are the inputs, 𝑤0, 𝑤1 . . . 𝑤𝑛 are the weight of each input
and 𝑏 is the bias.

Source: (FOUNTAS, 2021)

Thus, this model outputs the addition of the inputs and a bias. Figure 4 shows the Perceptron
model.

When using the MCCULLOCH; PITTS models, the output of a neuron can be thinking as
an output applied to a step function. The result of this function is always mapped to be 0
or 1, which limits this model to handle binary problems. Besides, the Perceptron model puts
an activation function before the output value. This activation function uses the previous
result to calculate the neuron output. These activation functions have the restriction of being
differentiable and monotonic. During the years, some functions were proposed to be used on
the perceptron model, such as Sigmoid, Rectified Linear Unit (ReLU), and Hyperbolic Tangent
(Tanh).

2.1.1.1 Sigmoid

The Sigmoid function is a non-linear function that is graphically similar to the step function
used in the MCCULLOCH; PITTS model. However, while the step function outputs 0 or 1, the
Sigmoid function outputs any real value between 0 and 1. This function is widely used in
neurons projected to output a probability. Figure 5 shows the graphical representation of the
Sigmoid function and given an input 𝑥. The Sigmoid function is defined as:

𝑓(𝑥) = 1
1 + 𝑒−𝑥

(2.1)
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Figure 5 – Sigmoid function.

Source: Collected from the internet. 1

Figure 6 – Hyperbolic Tangent function.

Source: Collected from the internet. 2

2.1.1.2 Tanh

The Tanh function has the same s-shape as the Sigmoid function, but it is slightly different
as its output is in the (-1, 1) range instead of (0, 1). This function is considered better than
the regular Sigmoid because it is centered in origin. Its derivative has bigger values than the
Sigmoid derivative, which will help the learning process (LECUN et al., 2012). Figure 6 shows
the Tanh graphical representation. The Tanh function is defined as:

𝑓(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(2.2)

1 <https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6>. Accessed July
14, 2021

2 <https://www.i2tutorials.com/explain-hyperbolic-tangent-or-tanh-relu-rectified-linear-unit>. Accessed
July 14, 2021

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.i2tutorials.com/explain-hyperbolic-tangent-or-tanh-relu-rectified-linear-unit
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Figure 7 – ReLU function.

Source: Collected from the internet. 3

2.1.1.3 ReLU

Sigmoid and Tanh were widely used, keeping the output in a well-defined range, but they
have two main problems. First, these functions are complex to implement because they use
exponential functions internally. Furthermore, these functions saturate when the input is large
or small, but they are sensitive to inputs close to 0. This saturation means that when the input
is too large or too small, any change in it does not change the output. However, any slight
difference in inputs close to 0 significantly impacts the output. Sigmoid and Tanh functions
also have some problems with the training process, which will be discussed later.

ReLU (NAIR; HINTON, 2010) emerges as an activation function to address these problems.
ReLU is defined as:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.3)

This function returns the input if the input is more significant than zero and returns zero
otherwise. Figure 7 shows the graphical representation of this function. This function is more
straightforward to implement than Sigmoid and Tanh, as they need to apply a threshold to
the neuron output. Besides, the linearity for values greater than zero avoids the saturation
problems from other activation functions.

ReLU started to be the most used activation function. Thus some variations of it started
to be used (MAAS et al., 2013) (KRIZHEVSKY; HINTON, 2010). One of those is the ReLU - 6
(KRIZHEVSKY; HINTON, 2010), which sets a maximum value of 6 to the output of the traditional
3 <https://www.programmersought.com/article/81614868733/>. Accessed July 14, 2021

https://www.programmersought.com/article/81614868733/
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Figure 8 – ReLU - 6 function.

Source: Collected from the internet. 4

one. This new restriction to ReLU made the neuron learn sparse features faster. Figure 8 shows
the graphical representation of ReLU - 6. ReLU - 6 is defined as:

𝑓(𝑥) = 𝑚𝑎𝑥(𝑚𝑎𝑥(0, 𝑥), 6) (2.4)

2.1.2 Multilayer Perceptron

The model presented by ROSENBLATT in 1958 was based on a single neuron, which limits
its application. In 1969, MARVIN; SEYMOUR stated in their book that a single Perceptron
only works for linear separable functions and wouldn’t work for complex functions (MARVIN;

SEYMOUR, 1969). For instance, this model does not handle simple non-linear functions such
as 𝑋𝑂𝑅. Figure 9 shows the differences between linear functions, such as 𝐴𝑁𝐷 and 𝑂𝑅,
and non-linear functions, such as 𝑋𝑂𝑅.

This book greatly impacted Artificial Intelligence research in the 1970s and early 1980s.
In these years, researchers stopped using connectionism approaches and focused on symbolic
models. However, this scenario started to change in the 1980s when some works began to prove
that the book from MARVIN; SEYMOUR had some problems not well described. For example,
CYBENKO proved that a NNs with at least one hidden layer could approximate any non-linear
function, such as 𝑋𝑂𝑅 (CYBENKO, 1989).

Multilayer Perceptron (MLP) is the idea of combining multiple layers of Percetrons, where
the output of one layer is the input of the next layer. A MLP consists of one Input Layer,
4 <https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7>. Accessed July 14, 2021
5 <https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neural-network-with-python/

>. Accessed July 14, 2021

https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7
https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neural-network-with-python/
https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neural-network-with-python/
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Figure 9 – Differences between 𝐴𝑁𝐷, 𝑂𝑅 that their outputs can be separable by a line, and 𝑋𝑂𝑅, that does
not exist such a line that can separate true and false outputs.

Source: Collected from the internet. 5

Figure 10 – MLP showing the Input Layer, the Hidden Layer, and the Output Layer. 𝑥1, 𝑥2. . . 𝑥𝑛 are the inputs
of the model, 𝑤11, 𝑤21. . . 𝑤4𝑛, 𝑤211. . . 𝑤2𝑚4 are the weights and 𝑦1. . . 𝑦𝑚 are the outputs.

Source: (MOKHTAR; MOHAMAD-SALEH, 2013)

multiple Hidden Layers, and one Output Layer (RUSSELL; NORVIG, 2002). The Input Layer has
many inputs as the problem need. For instance, if the input is an image of 32 × 32 × 3 pixes,
the model receives 3072 input signals. The Hidden Layers combine one or more hidden units
in multiple layers. The Output Layer is responsible for interpreting the signals received from
the Hidden Layers and outputs one or more values as output. Figure 10 shows a MLP model
with only one hidden layer.

MLP were proposed by ROSENBLATT together with the Perceptron work. However, it wasn’t
used at first because of the difficulty of updating the weight on the Hidden Layers (RUSSELL;

NORVIG, 2002). In 1986, it was proposed the usage of backpropagation algorithm (LINNAINMAA,
1970) to train MLP, giving new possibilities to Perceptron model (RUMELHART; HINTON;

WILLIAMS, 1986).
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2.1.3 Training

The most important thing about NNs is to learn a function from examples without any
given rule. This section will show how to train a NNs and uses the book from MITCHELL

as reference (MITCHELL, 1997). Then, it will start talking about the simplest way to train a
Perceptron, passing by more complete alternatives as Gradient Descent (GD) and Stochastic
Gradient Descent (SGD), to get on the Backpropagation algorithm used in MLP models.

Let’s consider a set of training examples 𝐷, where each is represented by the input −→𝑥 =

(𝑥1, . . . , 𝑥𝑛) and the target output 𝑡. The Perceptron training rule to update each weight
element of a given Perceptron 𝑖, given its weights vector −→𝑤 = (𝑤1, . . . , 𝑤𝑛) and the predicted
output 𝑜 is:

𝑤𝑖 = 𝑤𝑖 + Δ𝑤𝑖 (2.5)

where,

Δ𝑤𝑖 = 𝜂(𝑡 − 𝑜)𝑥𝑖 (2.6)

On (2.6), 𝜂 is the learning rate that regulates how much the weights are modified at each
step. Using these two equations, the training process of a Perceptron initialized with random
outputs converges in a finite number of steps under two circumstances: the training examples
are linearly separable, and the learning rate is sufficiently low (MARVIN; SEYMOUR, 1969).

Although Perceptron does not fit non-linear functions, it can be used to approximate such
functions. The previous training rule cannot be used for this task, as it does not converge.
However, the delta rule can be used to fit this approximation. The delta rule uses Gradient
Descent (GD) to find the best weight on the search space for the current step. This approach
is best understood considering a Perceptron neuron without a threshold, where the output is
given by:

−→𝑜 = −→𝑤 −→𝑥 (2.7)
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Besides this definition, the delta rule approach needs a measure of the training error of the
training set 𝐷, also called the loss function. Many errors functions can be used, one of them
is half of the sum of the squared difference of the expected output 𝑡 and the neuron output
𝑜, given by:

𝐸(−→𝑤 ) = 1
2

∑︁
𝑑∈𝐷

(𝑡𝑑 − 𝑜𝑑)2 (2.8)

This error function is just a function of −→𝑤 because the training examples and their output
remains the same during the training phase. So, the neuron output 𝑜 modifies when the weights
change. Thus, the GD will be used to find the global minimum value for the error function.
GD is an optimization method to find global minima for differentiable functions (CAUCHY et

al., 1847). In the case of training a neuron, it is desired to find the best weights to have the
predicted outputs close to the desired ones. So, the derivative of the error function defined in
(2.8) is

Δ𝐸(−→𝑤 ) =
[︃

𝛿𝐸

𝛿𝑤0
,

𝛿𝐸

𝛿𝑤1
, . . . ,

𝛿𝐸

𝛿𝑤𝑛

]︃
(2.9)

Where each 𝛿𝐸
𝛿𝑤𝑖

is the partial derivative of the error function for each weight, and it is a
component of the derivative error vector Δ𝐸(−→𝑤 ). This derivative error vector points towards
the direction to increase the error function, so the negative of this vector is used, as the delta
rule wants to decrease the error. The weight update using GD is

−→𝑤 = −→𝑤 + Δ−→𝑤 (2.10)

Where

Δ−→𝑤 = −𝜂Δ𝐸(−→𝑤 ) (2.11)

For each weight the update is the same as (2.5), but now Δ𝑤𝑖 is given by

Δ𝑤𝑖 = −𝜂
𝛿𝐸

𝛿𝑤𝑖

(2.12)
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With these equations to iterative update the weights, the remaining part of finalizing the
algorithm, the partial derivatives of the error function, has to be calculated. This last step is
the reason for choosing to error function as (2.8) that has a derivative easy to calculate, as:

𝛿𝐸

𝛿𝑤𝑖

= 𝛿

𝛿𝑤𝑖

1
2

∑︁
𝑑∈𝐷

(𝑡𝑑 − 𝑜𝑑)2

= 1
2

∑︁
𝑑∈𝐷

𝛿

𝛿𝑤𝑖

(𝑡𝑑 − 𝑜𝑑)2

= 1
2

∑︁
𝑑∈𝐷

2(𝑡𝑑 − 𝑜𝑑) 𝛿

𝛿𝑤𝑖

(𝑡𝑑 − 𝑜𝑑)

=
∑︁
𝑑∈𝐷

(𝑡𝑑 − 𝑜𝑑) 𝛿

𝛿𝑤𝑖

(𝑡𝑑 − −→𝑤 −→𝑥𝑑)

𝛿𝐸

𝛿𝑤𝑖

=
∑︁
𝑑∈𝐷

(𝑡𝑑 − 𝑜𝑑)(−𝑥𝑖𝑑)

(2.13)

Where 𝑥𝑖𝑑 is the 𝑖𝑡ℎ input component of the training example 𝑑. And 𝛿𝐸
𝛿𝑤𝑖

can be used in
(2.12) as

Δ𝑤𝑖 = 𝜂
∑︁
𝑑∈𝐷

(𝑡𝑑 − 𝑜𝑑)𝑥𝑖𝑑 (2.14)

Therefore the GD algorithm to train a Perceptron has three phases. The initialization,
where the weights are randomly initialized. The update step, where each training example
is used to update the weights using the equations presented above. And the stop condition,
which can be a maximum number of iterations or the smallest value to consider that the error
function converged.

Stochastic Gradient Descent (SGD) is one variation of the standard GD, but instead of
updating the weights after iterating over all training examples, it updates after each training
example. This modification on SGD sometimes helps the training algorithm avoid local minima,
a common problem on both algorithms when searching for global minima. On SGD, the weights
are updated using

Δ𝑤𝑖 = 𝜂(𝑡 − 𝑜)𝑥𝑖 (2.15)
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Table 1 – Sigmoid, Tanh, ReLU, and ReLU - 6 activation functions and their derivative.

Function Name Equation Derivative
Sigmoid 𝑓(𝑥) = 1

1+𝑒−𝑥
𝛿𝑓(𝑥)

𝛿𝑥
= 𝑓(𝑥)(1 − 𝑓(𝑥))

Tanh 𝑓(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
𝛿𝑓(𝑥)

𝛿𝑥
= 1 − 𝑓 2(𝑥)

ReLU 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 𝛿𝑓(𝑥)
𝛿𝑥

=

⎧⎨⎩0 if 𝑥 < 0
1 if 𝑥 ≥ 0

ReLU - 6 𝑓(𝑥) = 𝑚𝑎𝑥(𝑚𝑎𝑥(0, 𝑥), 6) 𝛿𝑓(𝑥)
𝛿𝑥

=

⎧⎨⎩0 if 𝑥 < 0 and 𝑥 > 6
1 if 0 ≤ 𝑥 ≤ 6

Source: Author

On Subsection 2.1.1 was stated that the activation functions of a neuron have to be
differentiable, and this is because of the learning algorithm. The third step on (2.13) assumed
the output as (2.7), but when it is used as an activation function, the output of a neuron is:

−→𝑜 = 𝜎 (−→𝑤 −→𝑥 ) (2.16)

Where 𝜎 is the activation function used on the neuron. Thus, the derivative of this output
is given by:

𝛿

𝛿𝑤𝑖

−→𝑜 = 𝛿𝜎 (−→𝑤 −→𝑥 )
𝛿𝑤𝑖

= 𝛿

𝛿𝑤𝑖

𝜎 (−→𝑤 −→𝑥 ) 𝛿

𝛿𝑤𝑖

(−→𝑤 −→𝑥 )

𝛿

𝛿𝑤𝑖

−→𝑜 = 𝑥𝑖
𝛿

𝛿𝑤𝑖

𝜎 (−→𝑤 −→𝑥 )

(2.17)

where 𝛿𝜎
𝛿𝑤𝑖

is the derivative of the activation function. Table 1 shows the activation functions
and their derivative.

Backpropagation is the generalization of SGD to train a MLP network. In Backpropagation,
the loss function is similar to (2.8), but summing error over the outputs units:

𝐸(−→𝑤 ) = 1
2

∑︁
𝑑∈𝐷

∑︁
𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠

(𝑡𝑘𝑑 − 𝑜𝑘𝑑)2 (2.18)

where 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 is the set of output units, 𝑡𝑘𝑑 is the calculated output of unit 𝑘 of training
example 𝑑 and 𝑜𝑘𝑑 is the ground truth output of unit 𝑘 of training example 𝑑. (2.18) denotes
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Figure 11 – Comparison between underfitted, overfitted, and perfect fitted function approximation.

Source: Collected from the internet. 6

the error for the network. This equation and its derivative can calculate the output units’
weights directly. Then the weights for the layers just before the output layer can be used to
propagate the error and its derivatives from the output units. The rule of calculating the error
using the next unit error can be repeated up to the input layer to calculate the weights for the
network.

Repeating the backpropagation steps over some iterations will approximate the network
into the desired function, but it will result in an approximation. The stop conditions have to
be well-defined to avoid overfitting or underfitting on the training set. Overfit occurs when the
network approximates too much to the desired function, losing the generalization, and underfit
is the opposite when the approximation generalizes too much, being a poor approximation.
For example, Figure 11 compares a perfect fit function approximation with an overfitted and
an under-fitted approximation.

2.2 CONVOLUTIONAL NEURAL NETWORKS

Since the beginning of studies in NNs in the 1950s and 1960s, those models were developed
to be used in tasks that seemed hard to humans, such as playing Chess or Go. Other functions
naturally done by humans, such as sight and processing natural language, didn’t have the
same attention because they seemed easy to reproduce. However, it turns out to be the
opposite. Models learned how to beat human champions on Go (SILVER et al., 2016) and Chess
(CAMPBELL; JR; HSU, 2002), and the human visual system was poorly understandable.

One measure that represents how complex is the human vision system is that the ability to
process visual information uses more than 50% of the cortex, the surface of the brain (HAGEN,
6 <https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html>.

Accessed October 4, 2021

https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html


32

2012). The vision system uses this processing power to be invulnerable to many highly invariant
competencies such as scaling, and translation (HAN et al., 2020). This invariance seems natural
to humans, as we can identify objects with different sizes or the same object resized and
rotated on the field of view. Unfortunately, this is one of the drawbacks not framed by the
early NNs researchers.

In 1982, MARR released a book focused on a framework to replicate the human vision
system (MARR, 1982). This framework didn’t consider the image representation only in a
neuron but in levels of representation. It was divided into 3 phases:

• Primal Sketch of the scene with low-level features such as lines, edges, curves, and
boundaries.

• 2.5D Sketch with information on orientation, shades, textures, and discontinuities to
provide information on image depth.

• 3D Sketch of the scene containing all the three-dimensional information.

Using this idea of different levels of representation, CNNs emerges as a field in Deep
Learning that tries to replicate the visual cortex. A CNNs model carries the framework presented
by MARR, the first layers of the network map the low-level features, and as the network
gets deeper, they map more complex features. After mapping all the crucial features, a Fully
Connected (FC) layer is commonly used to classify the detected features.

The first CNNs model was the LeNet introduced in 1989 by LECUN et al. to classify numbers
from hand-written numbers. In this model, instead of having neurons with weights multiplying
the input, the neurons are convolutional kernels. With this change, how the model interprets
the input image, as in the activation after a single layer, is a map of features of the output.

The feature extraction is done with concepts of image convolution, where a kernel passes
through the image matrix generating a new matrix of values. Two different layers are used
on CNNs. The first one is a simple convolution, where each value on the kernel is a trainable
parameter, Figure 16 shows an example of how the convolution layer work. After the convo-
lutional layer, it uses an activation function. Most of the time, ReLU or one of its variations
is used.

The second layer type is pooling, which downsamples a signal to reduce the image dimen-
sions. This idea is applied to avoid that slight movement on the image results in a different
feature map, making it harder to train a CNNs. Usually, a max pooling is used, which gets the
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Figure 12 – Example of convolution in an image matrix.

Source: (WICHT, 2018)

Figure 13 – Example result of a max pooling and average pooling layer.

Source: Collected from the internet. 7

higher pixel values in the kernel boundary, or an average pooling, which receives the average
value of the pixels. For example, Figure 13 shows an example of max pooling and average
pooling on a matrix.

There are two key advantages of this approach over NNs (LECUN et al., 1989), first a FC
network would have a lot of weights to input all the image pixels, and the number of weights
increases as much as the dimension of the image increases. And secondly, a FC architecture
ignores all the topology of the input. However, in image inputs, the pixel values are highly
7 <https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/>. Accessed

November 4, 2021

https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
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correlated with pixels near it.

2.2.1 Image Classification

The idea used by LeNet (LECUN et al., 1989) is to, given an input image, return a single
class that represents all the images. This is also called Image Classification. This model receives
as input an image of a handwritten digit from the US postal services and outputs the digit
value. Besides, each input only has a unique number from zero to nine. The input used in this
model was the start of a dataset of digits (LECUN; CORTES, 1998). This input type represents
an example of iconic images, with only a single class occupying most of the image area.

2009 presented the ImageNet dataset containing more than 14 million iconic images hand-
annotated in more than 20000 classes (DENG et al., 2009). This dataset was the core of the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (RUSSAKOVSKY et al., 2015), a
competition of image classification created in 2010. The idea of this competition was to use
this dataset as a benchmark for image classification models.

In the first years of competition, the proposed model didn’t use CNNs as a classifier. In
2012, AlexNet was the first to propose the use of CNNs on this competition (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012). This idea was a breakthrough in the competition and achieved a
classification error of 15.3%, 10.8 percentage points lower than the runner-up.

AlexNet used an architecture similar to LeNet with some improvements. First, it was deeper
than LeNet, making it possible for the model to learn finer features. Besides, it used ReLU
instead of Sigmoid as the activation function, which improved the gradient propagation. Lastly,
it used some optimizations, such as dropout and data augmentation. These improvements
showed that CNNs had more potential than it was explored.

Over the years, more models with different improvements showed better results. For exam-
ple, in 2015, the GoogLeNet presented the Inception block, which consists of small modules
with convolution kernels of different sizes (SZEGEDY et al., 2015). Those blocks took advantage
of various level of feature levels in the same layer. As a result, it achieved a 6.7% classification
error.

Another significant progress was the Residual Nets (ResNets) (HE et al., 2016), which first
used a residual block on CNNs, which allowed having deeper networks without having the
problem of vanishing gradient. These residual blocks bypass the input of a layer to a block
in the following few layers. So, with this bypass, the gradient has a shortcut to get on layers
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Figure 14 – Differences between classifying only one object on an image and detecting multiple objects on an
image.

Source: Collected from the internet. 8

where it was getting too small. As a result, the ResNets achieved 3.6% classification error.

2.2.2 Object Detection

CNNs was an excellent alternative to classify images. Still, the classification problem is
limited to classifying a single object on an image, but images commonly have more than one
object. In that case, only one class would be predicted in the image. Object detection is the
alternative to address this problem, as it can detect and locate multiple objects in an image.
An object detector outputs the class and a bounding box for the predicted objects in an image.
Figure 14 shows an example of an image classifier predicting only a cat in an image and an
object detector outputting multiple objects and their location in an image.

Alongside with object detection challenge, some datasets were presented. One most notable
is Common Objects in Context (COCO) dataset (LIN et al., 2014), which has annotations for
object detection, image segmentation, and key points detection. COCO dataset has been used
as a benchmark on object detection competitions since its launching. One model that had
become famous for its good accuracy and good inference time on COCO dataset was YOLO
(REDMON et al., 2016; BOCHKOVSKIY; WANG; LIAO, 2020).

The first YOLO model was released in 2016, and since then, some improvements have
been proposed to the original model. The core idea from YOLO is to divide the prediction into
a grid of cells, where which cell outputs a fixed number of bounding boxes centered on this
8 <https://www.kaggle.com/getting-started/169984>. Accessed November 9, 2021

https://www.kaggle.com/getting-started/169984
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Figure 15 – Example of a YOLO output containing the bounding boxes for each cell with its class probability
and the final predicted bounding box.

Source: (REDMON et al., 2016)

cell and the confidence of each predicted class confidence on this bounding box. Figure 15
shows an example of an output from YOLO divided into cells, with the predicted bounding
boxes, the predicted classes, and how this information is merged to give the final prediction.
Besides, YOLO continues to use a CNNs as the backbone of its detection.

2.3 OBJECT DETECTION MODELS

2.3.1 MobileNet v1

MobileNets are one of the most used classes of CNNs models used in embedded systems.
The MobileNet v1 was introduced in 2017 by HOWARD et al., aiming to reduce the number
of parameters and the number of operations to reduce inference time and network size. This
model relies on using Depthwise Separable Convolution (DSC), introduced by (SIFRE; MALLAT,
2014), which divides a regular convolution into two steps: a Depthwise Convolution and a 1×1

Pointwise Convolution.
A standard convolution layer is defined by 𝑁 filters of dimension 𝐷𝐾 × 𝐷𝐾 × 𝑀 , where

𝐷𝐾 is the spatial dimension of the squared filter and 𝑀 is the number of input channels.
While in the DSC, the Depthwise Convolution Filters use 𝑀 filters of 𝐷𝐾 × 𝐷𝐾 × 1, and the
Pointwise Convolutions use 𝑁 filters of 1 × 1 × 𝑀 . Figure 16 shows the difference between
these convolutions.
9 <https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/>. Accessed May 24, 2021

https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
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Figure 16 – Standard Convolution (a) replaced by Detphwise Convolution (b) and Pointwise Convolution(c).

(a) Standard convolution (b) Depthwise Convolution (c) Pointwise Convolution

Source: Collected from the internet. 9

Figure 17 – DSC block used in MobileNet v1.

Source: Collected from the internet. 10

The MobileNet v1 defines as a DSC block, where each Depthwise and Pointwise Convo-
lution are followed by a Batch Normalization Layer and a ReLU6, as the activation function.
In this block, the Depthwise Convolution filters the input, and Pointwise Convolution creates
a new set o features by combining the filtered layers. Figure 17 shows the DSC block used in
the MobileNet v1.

The authors of MobileNet v1 proposed a model with a standard convolution on the first
layer followed by thirteen blocks of DSC. After these convolutions layers, an input image of
224 × 224 × 3 is converted into 7 × 7 × 1024 feature maps. Those layers are the core idea
used in a MobileNet v1 model, and they can be used in different applications, such as image
classification, object detection, and semantic segmentation.

For instance, in an image classification model based on the MobileNet v1, those layers are
10 <https://machinethink.net/blog/mobilenet-v2/>. Accessed May 27, 2021

https://machinethink.net/blog/mobilenet-v2/
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Figure 18 – MobileNet v1 architecture to image classification.

Source: (HOWARD et al., 2017)

followed by an Average Pooling (Avg Pool) layer, a FC layers, and a Softmax to perform the
classification. In this approach, the trained model only outputs the most likely class for the
whole image. Figure 18 shows this architecture for image classification.

2.3.2 MobileNet v2

The use of DSC in MobileNets showed a significant reduction in the number of parameters
and the number of operations (HOWARD et al., 2017). However, in the MobileNet v1, the layers
in deeper filters increase to a 7×7×1024 on the last DSC layer. Therefore, in 2019, SANDLER

et al. proposed MobileNet v2, an improvement to optimize the v1, with fewer parameters and
fewer operations.

The MobileNet v2 (SANDLER et al., 2019) applies some of the improvements presented by
ResNets (HE et al., 2016). The main improvement of MobileNet v2 is based on a Inverted
Bottlenecks (IBNs) block that reduces the number of filters used in v1. Figure 19 shows the
block used in MobileNet v2. Compared with the convolution block used in v1, this new block
has a 1 × 1 convolution before the v1 convolutions and the residual connection.

The new block used in v2 aims to reduce the number of channels through the model.
11 <https://machinethink.net/blog/mobilenet-v2/>. Accessed May 27, 2021

https://machinethink.net/blog/mobilenet-v2/
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Figure 19 – Bottleneck Residual block used in MobileNet v2.

Source: Collected from the internet. 11

This reduction occurs because of a change in how the 1 × 1 layers are used. In MobileNet
v1, the 1 × 1 Pointwise Convolution only increases the number of channels to the next layer.
However, in v2, there are two types of 1 × 1 convolutions, the Expansion Layer and the
Projection Layer. The Projection Layer compresses the information to the next block reducing
the number of channels, while the Expansion Layer uncompresses this data to input in the
Depthwise Convolution. The Expansion Layer expands its input by the expansion factor of a
given layer. Besides the IBNs, MobileNet v2 also uses the residual connection, as the residual
block in ResNets (HE et al., 2016), that avoid gradient from vanishing.

These ideas reduce the input size for the next IBNs, thus shrinking the number of param-
eters in the model. MobileNet v2 has 18 layers, where the first layer is a standard convolution
layer, followed by 17 IBNs blocks. This network converts a 224×224×3 image in a 7×7×320

feature map. For instance, the image classification version of MobileNet v2 uses this backbone
followed by a standard 1×1 convolution layer, an Avg Pool layer, and a 1×1 convolution layer,
used as a classifier. Figure 20 shows the MobileNet v2 architecture for image classification,
using an input of 224 × 224 × 3 image.

2.3.3 MobileNets SSD

MobileNets models presented in subsections 2.3.1 and 2.3.2 were described as image clas-
sifiers due to the output of only one class for the whole image. However, this work aims to
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Figure 20 – MobileNet v2 architecture to image classification. 𝑡 is the expansion factor, 𝑐 is the number of
output channels, 𝑛 is the number of layers using this configuration, and 𝑠 is the stride of each
layer.

Source: (SANDLER et al., 2019)

detect multiple objects in an image, which can be used to achieve that. As stated before, what
makes the classification step in these models are the last layers, the Avg Pool layer, FC layer,
and Softmax layer. In comparison, the convolutions layers extract features from the image.

MobileNets can detect multiple objects in an image by using these models as a backbone to
the Single Shot Detection (SSD) framework (LIU et al., 2015). The SSD framework proposed
adding extra convolutions layers to use VGG16 (SIMONYAN; ZISSERMAN, 2014), an image
classification model as an object detection model. These additional layers make the model
predict multiple bounding boxes for various classes instead of a class for the entire image.

This idea can be extended to use SSD framework on MobileNet v1 and v2. To use Mo-
bileNet v1 as a backbone of SSD framework, the last three layers of the image classification
model (Avg Pool, FC, and Softmax) are removed. While in the MobileNet v2, the Avg Pool
and last convolution layer are removed. After that, the SSD framework is attached to the last
three DSC layers. Figure 21 show the last of remaining layers of MobileNet v1 connected to
the SSD framework and Figure 22 does it similar to MobileNet v2 as backbone to the SSD
framework.
12 <https://aditya-kunar-52859.medium.com/object-detection-with-ssd-and-mobilenet-aeedc5917ad0>.

Accessed June 9, 2021
13 <https://machinethink.net/blog/mobilenet-v2/>. Accessed May 27, 2021

https://aditya-kunar-52859.medium.com/object-detection-with-ssd-and-mobilenet-aeedc5917ad0
https://machinethink.net/blog/mobilenet-v2/
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Figure 21 – MobileNet v1 architecture for object detection using SSD framework.

Source: Collected from the internet. 12

Figure 22 – MobileNet v2 architecture for object detection using SSD framework.

Source: Collected from the internet. 13

2.3.4 MobileDets

MobileDets (XIONG et al., 2020) emerges in the increasing number of embedded applica-
tions using NNs and the rise of dedicated processors to CNNs frameworks. Thus, work from
MobileDets investigates the latency-accuracy trade-off of using regular convolutions and DSC
in mobile network architectures. This comparison is made by using TuNAS (BENDER et al.,
2020), a Neural Architecture Search (NAS) that uses Reinforcement Learning to find the best
hyper-parameters without using the manual tune.

In MobileDets work, the authors consider that DSC reduce the number of parameters in
the network. Still, the latency might not be shortened in dedicated processors such as Edge
TPUs. Therefore, they presented two new convolution blocks to be used together with the
IBNs block in the search space. The Fused Inverted Bottleneck layer fuses the first Pointwise
and the Depthwise convolution of the IBNs to behave as an expansion layer, 𝑠 > 1. Figure 23
shows this Fused Inverted Bottleneck layer. The Tucker Layer is similar to the IBNs, but the
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Figure 23 – Fused Inverted Bottleneck layer, where the first Pointwise and the Depthwise convolution were
fused on a 𝐾 × 𝐾 regular convolution. This regular convolution expands the 𝐻1 × 𝑊1 × 𝐶1 input
by the expansion factor, 𝑠 > 1, and outputs a 𝐻2 × 𝑊2 × 𝐶2 block.

Source: (XIONG et al., 2020)

Figure 24 – Tucker Layer similar to DSC, but the first Pointwise convolution reduces the input size by the
input compression factor 𝑠 < 1 and the 𝐾 × 𝐾 regular convolution instead of the Depthwise
convolution. This regular convolution changes the number of filters from 𝑠 × 𝐶1 to 𝑒 × 𝐶2, with
an output compression factor 𝑒 < 1.

Source: (XIONG et al., 2020)

first Pointwise convolution has a compression ratio 𝑠 < 1. Figure 24 shows the Tucker Layer.
Besides the types of convolution used in each layer, MobileDets work proposes searching

the hyper-parameters of the architecture, such as the input and the output size of each layer
(𝐶1 and 𝐶2 in Figure 23 and Figure 24), the size of filters (𝐾 in Figure 23 and Figure 24),
and the expansion and compression factors (𝑠 and 𝑒 in Figure 23 and Figure 24). The reward
function used in this work was the following:

𝑅(𝑀) = 𝑚𝐴𝑃 (𝑀) + 𝜏

⃒⃒⃒⃒
⃒𝑐(𝑀)

𝑐0
− 1

⃒⃒⃒⃒
⃒ (2.19)

Where 𝑚𝐴𝑃 (𝑀) denotes the mean average precision of the model 𝑀 , 𝑐(𝑀) is the inference
time of the model 𝑀 , 𝑐0 is the maximum inference time, and 𝜏 < 0 regulates the trade-off
between precision and inference time of the model.

Figure 25 shows the best architecture found by the work to the EdgeTPU, using the three
kinds of layers. This architecture is used as the backbone of a SSD-Lite framework, which
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Figure 25 – Best MobileDet architecture to EdgeTPU. 𝑠 refers to the stride, 𝑒 refers to the expansion factor,
and 0.25 − 0.75 on the Tucker layer refers to the input and output compression factors.

Source: (XIONG et al., 2020)

is similar to the approach presented on Subsection 2.3.3, but it uses DSC instead of regular
convolutions.

2.3.5 Training MobileNets and MobileDets

TensorFlow Object Detection API (HUANG et al., 2017) was used to train MobileNets and
MobileDets models, making modifying and adjusting some hyper-parameters easy. Further-
more, the training process of these models was improved using data augmentation techniques
such as Horizontal Flip, Image Crop, Image Scale, Brightness Adjustment, Contrast Adjust-
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Table 2 – Hyperparameters modifications on Mobilenet v1 SSD, MobileNet v2 SSD and MobileDet models.

Hyperparameter Used Values
Input Size 224 × 224
Batch Size 32
Data Augmentation Horizontal Flip, Image Crop, Image

Scale, Brightness Adjustment, Con-
trast Adjustment, Saturation Adjust-
ment, and Black Patches

Source: Author

ment, Saturation Adjustment, and Black Patches. Table 2 shows the modifications made to
the training parameters in these models.

2.3.6 YOLO v4 tiny

YOLO v4 tiny is a shallow version of the YOLO v4 (BOCHKOVSKIY; WANG; LIAO, 2020), de-
signed to run in an embedded system. It already uses CutMix, Mosaic, Class Label Smoothing,
and Self-Adversarial Training, so this architecture does not need any extra data augmentation
technique. Furthermore, due to limitations of the portability process for Google Coral Edge
TPU, the YOLO v4 tiny uses ReLU rather than Leaky ReLU as an activation function.

2.4 METRICS

In ML, there are several ways to measure how well a model performs a task. Two of the
most simple and efficient metrics are precision and recall. Precision measures the percentage
of correct predictions that matches a ground truth, and recall measures the probability of a
correct prediction. Those metrics can be calculated as follow:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
(2.20)
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3 RELATED WORK

Object detection has been one of the most studied fields in computer vision since the first
use of CNNs (LECUN et al., 1989). Over the years, datasets were released alongside competitions
to encourage new approaches and techniques to detect objects in an image, pushing the state-
of-the-art further. Section 3.1 will present other datasets for object detection, such as the
state-of-the-art COCO for a diverse set of objects. Section 3.3 will show datasets and object
detection techniques used on RoboCup leagues. Section 3.2 presents some approaches to
estimate the distance and the relative position using monocular images.

3.1 GENERAL PURPOSE DATASETS

One of the first publicly released image datasets was the ImageNet (DENG et al., 2009),
together with a yearly competition, to push forward image classification techniques initially.
This dataset contains over 14 million labeled images distributed over 21,000 categories. Be-
fore ImageNet, most image datasets were relatively small and focused on a small number of
categories. ImageNet changed this by providing a much larger and more diverse dataset that
covers a wide range of object categories and visual concepts. In 2017 this competition was
considered a solved problem since the best model achieved an error of 2.3%.

The most famous and used dataset for object detection is COCO (LIN et al., 2014), re-
leased in 2014. This dataset contains 328.000 images collected from Flickr to avoid getting
iconic-object images containing a single object centered in the image. Thus, the COCO dataset
focuses on non-iconic images, meaning images with multiple categories in a diverse context.
This strategy helps trained models to generalize objects instances, given the numerous con-
texts.

The classes used in the COCO dataset were chosen among 255 candidates given by children
from 4 to 8 years old. The authors then voted on these categories based on how often each
category occurred, and the most voted ones were selected, resulting in 80 classes. This dataset
consists of 2.5 million instances, and as a result, each image averages 7.7 instances per image.
It took 77.000 working hours to label all of these instances.
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3.2 RELATIVE POSITION ESTIMATION

Relative position estimation using a monocular image is a problem related to distance
estimation since having the relative position, it is possible to calculate the distance, and the
way around is possible to calculate the relative angle using the camera angle range. Estimating
the distance of detected objects is a typical task for autonomous cars. For example, in the
autonomous car environment, the KITTI dataset (GEIGER; LENZ; URTASUN, 2012) has more
than 200 thousand detected objects with their relative distance.

One of the most traditional methods to estimate the distance using a monocular image
is to use Inverse Perspective Mapping (IPM) (REZAEI; TERAUCHI; KLETTE, 2015). The IPM
method is based on transforming the image on a bird’s-eye view so it can estimate the distance
based on the distance in pixels from the bottom of the image to the bottom of the detected
bounding box. However, this method has a confidence interval of 60𝑐𝑚, which wouldn’t be
feasible in SSL context since this is ten times bigger than the ball diameter.

Some other works use a trainable model, so given the detected bounding box, it outputs
the distance for this object. One approach used on small drones is using a Support Vector
Regression (SVR) to estimate the distance of other drones using the bounding box information,
such as width and height (GöKçE et al., 2015). This approach has a median error of 18𝑐𝑚 for
the distance estimation, but a SVR can only be used to distance since it just outputs one
value. In this approach, it is used a dataset of 8876 images collected from embedded videos.
Therefore, using a trainable model to estimate the distance shows a better result than IPM.

Another work proposes a new MLP architecture called DisNet (HASEEB et al., 2018) to
estimate the distance using bounding box information. This work uses a 2000 bounding box
dataset focused on detecting four classes Person, Bicycle, Car, and Truck. To find the best
network architecture, it divides the dataset into 80% for training, 10% for validation, and
10% for testing. It found that the best MLP architecture has 3 hidden layers containing 100

neurons each. This architecture achieved a distance accuracy close to 90%. This search for
hyperparameters idea could be an excellent solution to check the trade-off between the model
evaluation and the inference time.

Another option to predict the distance using monocular vision would be to use the same
CNNs outputting the detected bounding box with the calculated distance. (ZHU et al., 2019)
proposes adding a key point on each bounding box and changing the final layers of a CNNs
model adding 3 new FC layers that have the last feature maps as the input and outputting the
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object distance. This work used almost 1500 images containing 48000 objects from the KITTI
dataset. This work tested this approach using a ResNets and a VGG and achieved the best
result, a Root Mean Square Error (RMSE) of 6.8𝑚. However, it had to use a large dataset
annotated with the distance to all the objects to make this approach possible.

There is also the possibility of a model predicting the depth for all the points in the image.
This work (MASOUMIAN et al., 2021) combines the result of a DepthNet (KUMAR; BHANDARKAR;

PRASAD, 2018) to predict the distance o all the points in the image and a YOLO to have the
bounding boxes. It used the DepthNet already trained with the KITTI dataset and the YOLO
trained with the COCO dataset and tested with 100 new images collected from them, achieving
a RMSE of 0.20𝑚.

In the RoboCup SSL, a work proposes a method to locate a detected object based on a
monocular camera (MELO; BARROS, 2022). In this work, the author presents an approach to
calculate the position in two steps. First, it finds the point where the detected ball touches
the ground, and then it uses this point and the camera’s intrinsic parameters to estimate the
position.

(MELO; BARROS, 2022) creates a dataset of 30 images and manually marks the pixel where
the detected ball touches the ground. To have the ground-truth position, it uses a measuring
tape to have the actual position of each point. Using this dataset, fit a Linear Regression
model inputting the bounding box position and outputting the pixel where the ball touches
the ground. Then it finds the camera pose to estimate its intrinsic parameters and calculates
the object position using the ground point. This work achieved a RMSE of 67.32𝑚𝑚.

3.3 OBJECT DETECTION IN ROBOCUP

The SPL has an open-source tool to create and share datasets for object detection
(FIEDLER; BESTMANN; HENDRICH, 2018) that has several images labeling Robot, Ball, and
Goalpost. This dataset shows the critical classes that need to be detected on a RoboCup
league. However, those datasets couldn’t be used on SSL context as those classes are repre-
sented differently. For instance, SSL uses an orange golf ball, the robot is a cylinder with a
15𝑐𝑚 height, and the goalpost has an area of 100𝑐𝑚 × 16𝑐𝑚, while the SPL uses a black
and white ball with a diameter of 10𝑐𝑚, the robot is a humanoid, and the goalpost has
150𝑐𝑚 × 80𝑐𝑚.

In other RoboCup leagues, some promising approaches to detect and locate objects. For
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instance, on MSL, there is a work (Luo et al., 2017) that presents a pipeline to locate other
robots in the field. They propose a new dataset for MSL annotating only robot instances and
use this dataset to train a CNNs. After detecting the robots, they combine this image with a
depth point cloud to estimate the position of those robots.

They collected and annotated 1456 images to construct the dataset, dividing them into
70% for the training set and 30% for the testing set. This dataset uses pictures from two
sources, pictures taken from the robot camera and images taken from outside of the field from
different competitions, to increase the variety of the dataset. Therefore this work gives a good
direction for collecting photos and creating a dataset for a league in RoboCup. It reasonably
estimates how many images a new dataset should have.

For object detection, they proposed a CNNs architecture of 9 convolutional layers, of
which only the first 6 have the pooling operation. They presented this architecture to run
the inference for this network on a Jetson TX2. They achieved a Average Precision (AP) of
70.65% with an inference time of 58𝑚𝑠, close to 17 Frames Per Second (FPS). This result
shows that achieving a good AP is possible while keeping the detection close to real-time
inference for embedded devices.

In this work, the image used to detect objects is combined with the depth point cloud from
a Kinect v2 sensor to locate the detected objects. Thus, they get the distance of the central
point of the bounding box and use it to estimate the detected robot position. Therefore, using
this point cloud approach, they achieved a mean error of 30.57𝑚𝑚, which is expected since
this cloud sensor is close to 20𝑚𝑚 and gives a baseline to the localization error. However, it
is impossible to fit a sensor like the one used in this work on a SSL robot, as it wouldn’t fit
the size requirements.
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4 PROPOSED APPROACH

This work is constructed having the central objective of estimating the position of an object
relative to a SSL robot without receiving any external information. To achieve that, a camera
was attached to the robot to capture the input images. Figure 26 shows the pipeline it was
used. First, the camera placed on the robot captures an image from the field, and this image
is used as input on a CNNs model trained to detect the relevant objects on a SSL game. Then
the bounding boxes’ positions from the detected objects are used on a MLP model to estimate
the object position relative to the robot with the camera.

Figure 26 – Pipeline for the proposed approach followed on this work.

Source: Author

On Figure 26, two boxes need to be filled, the model to detect the objects and the model
to estimate the object position. Figure 27 shows the pipeline this work followed to build the
model to detect objects. First, a dataset annotating the relevant objects to SSL context was
annotated. The creation of this dataset is detailed on Section 4.1. Next, CNNs models were
trained using this dataset to detect the relevant objects. Section 4.2 presents the approach
to train those models. Section 4.3 shows how those models were evaluated and Section 4.4
explains how the environment on the robot runs those models’ inferences.

Figure 27 – Pipeline for the proposed approach to building a model to detect SSL relevant objects.

Source: Author

Figure 28 shows how the model to estimate the object’s position was trained and deployed
to fill the second box on Figure 26. Section 4.5 shows hows the dataset for estimating object
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position was created using the object detection model and the global position from SSL-Vision.
Section 4.6 shows how the MLP models were trained using this dataset. Section 4.7 presents
how the models were evaluated and which metrics were used.

Figure 28 – Pipeline for the proposed approach to building a model to estimate SSL relevant objects position.

Source: Author

4.1 OBJECT DETECTION DATASET

This chapter will present the proposed dataset for training and validating models to detect
objects in SSL. Subsection 4.1.1 will detail how the dataset was created and Subsection 4.1.2
will present some statistics about this dataset. Although this work uses SSL as a study case,
the presented approach can be used to create datasets used to object detection.

4.1.1 Dataset Creation

The methodology used to create the dataset used in this work has four steps: collect
unlabeled public images, resize the images, add the desired label to the images, and divide the
images into train and test sets. Figure 29 shows this sequence of steps.

Figure 29 – Pipeline used to create the dataset.

Source: Author

The proposed dataset’s images come from three sources using images taken under different
conditions and angles. The first set of images consists of 259 pictures taken outside of the SSL
field, obtained from public image repositories of league teams. This set contains a variety of
robot models and images taken under various light conditions. The second set has 516 brand-
new pictures taken for this dataset from a smartphone camera inside a university laboratory
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field. Furthermore, the remaining 156 images were collected using a camera placed on the SSL
robot. The combination of those sets results in a dataset of 931 images.

After collecting the images, they were resized to a standard resolution of 224 × 224 pixels
as used by (HOWARD et al., 2017; SANDLER et al., 2019). This resizing allows the models to
have fewer pixels to process and be faster running the inference. Figure 30 shows some labeled
examples from this dataset. Each column of this set of images has two examples of each
collected source. This figure also shows the ground truth class labels.

Figure 30 – Sample images from the dataset, showing ground-truth detection. The leftmost column (a) has
images from public SSL images, the middle column (b) has images collected from a smartphone
inside the field, and the rightmost column (c) has images taken in a camera placed in the robot.

(a) (b) (c)

Source: Author

The next step of creating the proposed dataset was to add labels to the objects in images.
The proposed dataset defined three objects class to label: Robot, Ball, and Goal. These classes
are the distinctive and relevant ones to detect in an SSL game. Each image on this dataset
can contain multiple labels, including none in the image. To annotate those labels, a tool,
LabelImg (Tzutalin, 2015), was used to add the ground-truth bounding boxes on the images.
This tool outputs the ground-truth detection in YOLO and Pascal VOC format.

After labeling the images, they were randomly divided into a train and a test sets using
the 70/30 proportion as in other robotics’ object detection works (Luo et al., 2017), Table 3
shows the final result of this division. This creation process took 160 working hours, most of
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them manually adding labels to each image. The proposed dataset is available on the author’s
GitHub 1.

Table 3 – Number of images divided into train and test set.

Number of images
Train 651 (69,92%)
Test 280 (30,08%)
Dataset size 931

Source: Author

4.1.2 Dataset Statistics

One crucial factor used to analyze a dataset is class balancing. As the proposed dataset
detects multiple instances in one image, there will have more instances than images. Table 4
shows the instance division on the proposed dataset. For example, the Goal class has fewer
examples than Robot and Ball classes because not all images have a Goal instance, and when
it appears, there is only one instance per image. However, this would state a problem, since
the goal instances are very similar. Besides, the COCO dataset (LIN et al., 2014) also have
some imbalanced classes and this didn’t present a problem. The dataset has 4182 instances,
averaging 4.5 instances per image, which helps mitigate the low number of images.

Table 4 – Number of instances of each class in the dataset.

Object Class Instances per class
Robot 1886
Ball 1711
Goal 585
Number of instances 4182

Source: Author

When creating an image dataset, the images can be grouped into iconic and non-iconic
images (BERG; BERG, 2009). Iconic images are the ones that have only one big object repre-
sented per image, and they are usually used for image classification. In comparison, non-iconic
images have multiple objects in a non-uniform background. In addition, iconic images can
represent all the details of one object. However, these images make it harder for the model
1 <https://github.com/bebetocf/ssl-dataset>

https://github.com/bebetocf/ssl-dataset
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to generalize and identify a class in multiple contexts (TORRALBA; EFROS, 2011). Figure 31
shows some examples of iconic and non-iconic images in the dataset.

Figure 31 – Exemples of (a) iconic images and (b) non-iconic images present in the proposed dataset.

(a) (b)

Source: Author

Some dataset statistics, such as the number of categories per image, instances per image,
and object size, are used to analyze the presence of iconic and non-iconic images. Figure 32
shows the dataset’s number of categories per image. It is noticeable that more than 80% of
the images have more than two categories per image, which helps the dataset to have multiple
representations of a class in different images.

Figure 32 – Number of categories per image.

Source: Author

Another factor that represents iconic images is the number of instances per image. Usually,



54

this type of image has only one example per image. However, as the proposed dataset’s main
objective is to detect objects in distinct game situations that could have multiple objects, it
is crucial to have multiple instances in each image. Figure 33 shows the number of cases per
image. It is possible to see that most images have more than one instance, so there are more
class instances than images. This increases the variability of the classes, helping the models
to generalize the objects information.

Figure 33 – Number of instances per image.

Source: Author

The objects in the proposed dataset are classified by their area, Small, Medium, and Large,
similarly to COCO (LIN et al., 2014). Small objects have an area less than 32×32 (1024) pixels.
Medium objects have an area between 32 × 32 (1024) pixels and 96 × 96 (9216). Moreover,
Large objects are bigger than 96×96 (9216) pixels. The dataset has 2919 Small objects, 1225
Medium objects, and the remaining 38 objects are Large. The low number of Large objects
wouldn’t be a problem since the input image has 224 × 224 pixels and most objects aren’t
that close to the camera.

Table 5 summarizes this division per object size. Most objects concentrate in the Small
area class, approximately 70% of all objects, due to the low-resolution images. The bigger
presence of Small objects is beneficial to the dataset because these objects help a model to
generalize.
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Table 5 – Number of each instance size in the dataset.

Object Size Instances per object size
Small 2919
Medium 1225
Large 38
Number of instances 4182

Source: Author

Figure 34 shows each instance’s division by the class and their area size. It is possible to see
that almost all of the Ball instances are Small due to their size. More than half of the Robots’
examples are Small due to images from the first set taken from outside the field, where robots
are far from the camera. Furthermore, most of the Goals’ samples are in the Medium class.

Figure 34 – Instance division per class and size. Small objects have less than 32 × 32 (1024) pixels, medium
objects have a size between 32 × 32 (1024) pixels and 96 × 96 (9216) pixels, and large objects
are bigger than 96 × 96 (9216) pixels.

Source: Author

4.2 TRAINING OBJECT DETECTION MODELS

The pipeline to train, run and evaluate any model follows the same standards for each
approach. This pipeline has four steps. First, the considered model is trained with the dataset.
This trained model is quantized and compiled to infer using Google Coral USB Accelerator.
This USB Accelerator is an Edge TPU coprocessor that enables MAchine Learning high-speed
inference. Then, the model is deployed on the robot to be evaluated. Figure 35 shows this
pipeline’s steps.
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Figure 35 – Pipeline used to train a model and validate the robot.

Source: Author

The models were optimized using Integer Quantization, which reduces the inference time
in 50% while reducing network precision in 1.8% (JACOB et al., 2017). This method converts
the network weight from floating-point numbers to integer values. After training, the models
were quantized and converted to a TensorFlow Lite compatible model, which is required to
compile the model to run on a Google Coral Edge TPU accelerator.

Instead of training the CNNs model with random weights, transfer learning was used. This
method uses a pre-trained model with other datasets as a training start point, which helps solve
problems that don’t have much training data available (Pan; Yang, 2010). To detect objects
in SSL context, there isn’t enough data to train a detection model from scratch, so transfer
learning was used to speed up the training and keep the learned low-level features. In this
work, all the tested models were pre-trained using the COCO dataset before starting training
with the SSL dataset.

The proposed dataset was evaluated using MobileNet v1 SSD (HOWARD et al., 2017),
MobileNet v2 SSD (SANDLER et al., 2019), MobileDet (XIONG et al., 2020), and YOLO v4 Tiny
(WANG; BOCHKOVSKIY; LIAO, 2021), which are state-of-the-art embedded object detection
models.

During the tests it was perceived poor results on small objects, trying to make them better,
some modifications were tested. First, the three classes were divided into nine classes. Those
classes were created by dividing each class by their instance size, small, medium, or large. For
an object instance to be considered small, it needs to have an area less than 32 × 32(1024)

pixels, more than that but less than 96 × 96(9216) the instance is considered medium, and
the remaining are considered large.

Another test conducted aiming to increase the AP for all the classes was modifying the
anchors’ configuration on the training. Anchors are the windows used on the bounding box
search during the training. The MobileNets and MobileDet models use a fixed amount of
anchors and a fixed aspect ratio, which would better cover the bounding boxes configuration
on a specific dataset.
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On the first test, it was used a general configuration of anchors. However, each dataset has
its own type of bounding box. For instance, objects from the Goal class are usually rectangular
and displayed horizontally, while Ball instances are small squares and Robot instances are
medium or large squares. By default, the MobileNets and MobileDet models use aspect ratios
of 0.33, 0.5, 1.0, 2.0, 3.0, where 1 the bounding box is a perfect square, values less than 1 are
vertical rectangular and bigger than 1 are horizontal rectangular.

4.3 RUNNING AND EVALUATING

When using a trained model on an SSL robot, the primary constraint is inferring in real
time. A model has to run in at least 24 FPS to be considered a real-time inference. This frame
rate is acceptable with the league’s objects’ speed since a ball, the fastest object in the field,
with a maximum speed of 6.5𝑚/𝑠 (SMALL SIZE LEAGUE TECHNICAL COMMITTEE, 2021), would
move only 27𝑐𝑚 between inferences.

Object detection uses the Intersection over Union (IoU) between a predicted bounding
box and a ground truth bounding box to consider it correct. The IoU value ranges from 0 to
1, where 0 means no overlap between the bounding boxes, whereas 1 means the bounding
boxes perfectly match. Therefore, it is set a threshold value to consider a prediction correct.
Figure 36 shows how IoU is calculated using two bounding boxes areas.

Figure 36 – Graphical representation on how to calculate IoU of two bounding boxes.

Source: Collected from the internet. 2

Tuning the IoU threshold, it is possible to increase or decrease the precision and the
recall of a trained model. For instance, the model will have better but fewer predictions when
2 <https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/>. Ac-

cessed November 12, 2021

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
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increasing the IoU threshold. Thus the precision will increase, and the recall will decrease.
Likewise, lowering the threshold will reduce the precision and improve the recall.

So, different IoU thresholds will imply different values on precision and recall, and the
better way to measure this trade-off is to plot the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 curve. This curve plots
the precision on the y-axis and the recall on the recall on the x-axis for different values of IoU
threshold.

The models were evaluated using the metrics as the COCO dataset, which are AP and
Average Recall (AR). Those metrics aim to measure the weighted mean of precisions at each
IoU threshold for detecting objects in an image.

The AP for an IoU is calculated considering the area under the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙 curve, and
there are several ways to calculate this area. AP is calculated using a 101-point interpolation
introduced by the COCO dataset (LIN et al., 2014). This interpolation consists of discretizing
the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙 curve in 101 points and getting those points to estimate the area under
the curve. Besides that, the AP presented on the COCO dataset uses the mean of the AP
calculated over 10 IoU threshold, from 0.5 to 0.95 at a step frequency of 0.05.

AR describes the area doubled under the 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝐼𝑜𝑈 curve. This 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝐼𝑜𝑈 curve
plots the recall values for each IoU value from 0.5 to 1.0. Finally, the evaluation is made using
an open-source tool (PADILLA et al., 2021), which outputs the COCO metrics to compare each
model’s result, given the ground-truth labels and predictions.

4.4 INFERENCE ENVIRONMENT

One of the main drawbacks of using a CNNs is the requirement of a Graphical Process-
ing Units (GPUs) to infer achieving a frequency to use in real-time detection (WANG; WEI;

BROOKS, 2019). Besides, GPUs are too big to use in an SSL robot, and they have a high
power consumption for the battery that fits in one of these robots. However, improvements
in dedicated processors, such as the Google Coral Edge TPU, are making it possible to run
inference in an embedded system with a low inference time.

The primary constraint to this work is the environment delimitation due to the league’s
size restrictions (SMALL SIZE LEAGUE TECHNICAL COMMITTEE, 2021). A SSL has to fit in a
cylinder with a height of 15𝑐𝑚 and a diameter of 18𝑐𝑚 but the technical challenge does not
have a height restriction, making it possible to add another floor to the robot to fit additional
hardware.
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The robot used to test was a modified version of the RobôCIn v2020 (SILVA et al., 2020).
All the additional modifications should have low power consumption, as the robot uses a LiPo
2200mah 4S 35C battery. This battery is enough to supply four brushless motors of 50W each
and all the other robot’s necessities without any modification.

The modifications on this robot consist of adding a Raspberry Pi 4 Model B, a Google
Coral Edge TPU accelerator, and a camera module to the robot, composing the vision system.
The camera can capture images up to 90 FPS in a resolution of 640 × 480 pixels. These
new components tackle the lack of computational power in the main microcontroller, an
STM32F767ZI. The power consumption of a Raspberry Pi 4 with the camera module is up to
7.5W, and the Google Coral is 4.5W, which fits the power supply of the robot’s battery.

The vision system’s inclusion is desirable to avoid modifying the architecture and data flow
of the current robot. In the current robot, the microcontroller controls the motors to operate
at the desired speeds. In the new system, the Raspberry Pi receives the camera’s captured
frames and uses them as the input of the inference model running on the Google Coral Edge
TPU. After the inference, the model outputs the detected objects to the Raspberry Pi, which
computes where the robot should go and sends this position to the microcontroller. Figure 37
shows the new system architecture of the robot.

Figure 37 – Modifications on the architecture and data flow of the new robot.

Source: Author

4.5 DATASET TO ESTIMATE THE POSITION

The first three steps of the SSL technical challenge depend on finding and going to the
ball, so this work validated the position estimation focusing only on balls. The Position Dataset
needs to be constructed by having the position of the bounding boxes in a monocular image
and the position from this object relative to the point where the camera is. To achieve that,
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a modified SSL robot was positioned on a field with an active SSL-Vision sending the global
position of the objects on the field.

Figure 38 shows the pipeline to create the dataset for position estimation. First, a SSL
robot using a camera is placed on the field. This robot is actively receiving the global position
of the objects on the field from the SSL-Vision. This global position is converted to a local
position relative to this robot. Then, this robot takes several photos from the field while logging
this data to create the dataset.

Figure 38 – Pipeline for creating the dataset for position estimation.

Source: Author

In this dataset, the bounding box position is represented by 4 values, 2 representing the
bottom-left corner, and 2 representing the top-right corner. So, those points are an integer
value representing a pixel. The robot and ball global positions given by the SSL-Vision are
expressed in millimeters, and they are relative to the field central point. The direction in which
the robot is looking is also provided in radians.

After setting the robot, the robot was placed in a static position on the field to collect
the data. Each data from this dataset was compiled by putting the ball in several different
positions and saving the information of that moment. The valuable information for this dataset
is the bounding box position, the ball’s global position, and the robot position.

The first procedure on this dataset is to transform the ball’s global position to the position
relative to the robot. Thus, it needs to apply two transformations on the ball position, first,
moving the origin to the robot position and then rotating the axis, having the X-axis pointing
in the same direction as the front of the robot.
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The first transformation uses (4.1) where (𝑥𝑏𝑎𝑙𝑙, 𝑦𝑏𝑎𝑙𝑙) is the detected global ball posi-
tion, (𝑥𝑟𝑜𝑏𝑜𝑡, 𝑦𝑟𝑜𝑏𝑜𝑡) is the detected robot global position, and (𝑥′

𝑏𝑎𝑙𝑙, 𝑦′
𝑏𝑎𝑙𝑙) is the ball position

dislocating the origin to match the robot position.

⎧⎪⎪⎨⎪⎪⎩
𝑥′

𝑏𝑎𝑙𝑙 = 𝑥𝑏𝑎𝑙𝑙 − 𝑥𝑟𝑜𝑏𝑜𝑡

𝑦′
𝑏𝑎𝑙𝑙 = 𝑦𝑏𝑎𝑙𝑙 − 𝑦𝑟𝑜𝑏𝑜𝑡

(4.1)

The coordinates rotation uses (4.2) where 𝜃𝑟𝑜𝑏𝑜𝑡 is the robot angle, and (𝑥𝑏𝑎𝑙𝑙𝑟𝑜𝑏𝑜𝑡
, 𝑦𝑏𝑎𝑙𝑙𝑟𝑜𝑏𝑜𝑡

)

is the ball position relative to the robot.

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑏𝑎𝑙𝑙𝑟𝑜𝑏𝑜𝑡

= 𝑥′
𝑏𝑎𝑙𝑙𝑐𝑜𝑠(𝜃𝑟𝑜𝑏𝑜𝑡) + 𝑦′

𝑏𝑎𝑙𝑙𝑠𝑖𝑛(𝜃𝑟𝑜𝑏𝑜𝑡)

𝑦𝑏𝑎𝑙𝑙𝑟𝑜𝑏𝑜𝑡
= −𝑥′

𝑏𝑎𝑙𝑙𝑠𝑖𝑛(𝜃𝑟𝑜𝑏𝑜𝑡) + 𝑦′
𝑏𝑎𝑙𝑙𝑐𝑜𝑠(𝜃𝑟𝑜𝑏𝑜𝑡)

(4.2)

This dataset has 76 examples of different ball positions, which were collected using this
procedure. Furthermore, Figure 39 shows examples of images and bounding boxes used on this
dataset. Finally, Figure 40 shows the position of each point on this dataset relative to where
the camera is located.

Figure 39 – Some examples of the dataset containing detected balls

Source: Author
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Figure 40 – Ball’s relative position to the robot with the camera. Consider the robot located on position (0, 0)
and having looking to the same direction as the X-axis

Source: Author

Besides those 76 training points, it was also gathered the same 30 examples used (MELO;

BARROS, 2022), so it would be possible to compare the results for the approach presented in
this work to it.

4.6 TRAINING EVALUATING POSITION MODEL

The Position Dataset defines the bounding box position as the input and the position
relative to the robot as the output, so the model to estimate the object’s position it would
have four integer values as input and two real values as the output. As this problem doesn’t
have the same complexity as detecting an object on an image, this work fixed the desired
model as MLP and used a hyperparameter search to find the best network architecture.

Other works such as DisNet (HASEEB et al., 2018) used a similar approach of searching the
best MLP architecture. In the DisNet work, it only searched the number of hidden layers and
how many neurons each layer should have, and it found the best architecture for their context
with 3 hidden layers, each having 100 neurons.

For the proposed approach, besides searching for the number of hidden layers and how
many neurons are in each layer, it was also added the learning rate on the search. This
hyperparameter was also added to avoid the model being stuck in a sub-optimal solution.
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The dataset proposed by us is divided into a training set having 76 examples and a test
set with 30 instances, close to a 70/30 widely used on ML context. Besides, the dataset must
have a validation set to search for the best architecture. This is needed to avoid overfitting
in the test set on the validation. So, in the training phase, a K-Fold cross-validation strategy
divided the training set into 5 folds.

After that, it is necessary to define the hyperparameter to search and their range on the
search. The plan for this model is to run the inference embedded in a robot, so one of the
parameters it has to be optimized is the number of hidden layers and how many neurons each
layer would have. Another optimized parameter was the learning rate to avoid the model being
stuck on an early solution or not learning enough from the data.

As the training and validation dataset has only 76 instances, this model doesn’t need to
be that deep, as it wouldn’t learn much. So, in the parameters search, a network with 2, 3,
or 5 hidden layers was used, and 10, 30, 50, or 100 neurons per layer. For the learning rate, it
was used 0.01 and 0.001 on the search. The search strategy was a grid search since it searches
for 3 hyperparameters, and the search space is small. Table 6 summarizes all the parameters
used on the MLP architecture search and the fixed parameters.

Table 6 – Hyperparameters used on the Grid search to find the best MLP architecture.

Hyperparameter Searched Values
Number of Hidden Layers 2, 3, 5
Neurons per Hidden Layers 10, 30, 50, 100
Learning Rate 0.01, 0.001
Solver Adam
Maximum iterations 50000

Source: Author

The image used on the object detection has 224 × 224 pixels, so the input is in that
range. The output distance is given in millimeters and could be in the range of the field size
9000𝑚𝑚 × 6000𝑚𝑚. It is noticeable that the input and the output have a range that could
impact the training process. So, one of the tests used in this work was to normalize only the
input or normalize the input and the output before training and evaluation. The normalization
method uses normalized values to the training set minimum and maximum values.
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4.7 EVALUATING POSITION DATASET

This work used the RMSE metric to evaluate the trained models. This metric measures
the mean error between a ground truth instance and a predicted output. This metric is useful
when the model wants to keep a low error in all predicted samples. RMSE is defined as (4.3)
where 𝑁 is the number of samples, 𝑦𝑖 is the predicted value, and 𝑦𝑖 is the desired value. This
metric is the right one for this context because the best model needs to have the slightest
error in estimating the position.

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (4.3)
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5 RESULTS

This chapter is divided into two sections. Section 5.1 details the results achieved on the ob-
ject detection models trained with the proposed object detection dataset. Section 5.2 presents
the result for the position estimation models.

5.1 OBJECT DETECTION RESULTS

Table 7 shows the AP for the four models separated by IoU threshold and object area. AP
for Medium and Large objects shows how powerful these models can be in less challenging
scenarios where the object is much closer to the robot. However, the results for Small objects
are worse than for Medium and Large objects, which indicates a high false-positive rate. This
error occurs due to the low information on objects of Small size.

Table 7 – Average Precision (AP) for each model by Intersection over Union (IoU) threshold, in AP50 the
threshold used is 0.5 and AP75 is 0.75, and detected object area, where AP𝑆 , AP𝑀 , and AP𝐿

stands for the result by each detection size, Small, Medium or Large.

Method AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿

MobileNet v1
SSD

55.77% 84.67% 59.66% 32.51% 78.61% 89.62%

MobileNet v2
SSD

43.41% 74.39% 44.14% 23.18% 64.35% 86.27%

MobileDet 36.37% 66.54% 36.83% 16.60% 60.67% 81.53%
YOLOv4 Tiny 42.17% 62.24% 54.09% 27.34% 69.05% 58.84%

Source: Author

From the AP perspective, the MobileNet v1 SSD had the best result overall and for Large
objects. However, the AP for Large objects on the YOLO v4 tiny model was worse than for
Medium objects, which is a peculiar behavior since the other models achieve better AP when
detecting Large objects. This result can indicate that YOLO v4 tiny needs more labeled data
with a large size, as there are only 38 objects with this size on the proposed dataset.

Table 8 shows the result for the detection dataset separating the AP by each object class.
Based on these results, it can be seen that all three classes had a good result overall, achieving
a AP greater than 80% on the MobileNet v1 model. The classes Ball and Robot had a worse
result than the Goal class, and this can be explained by the fact that those classes has more
small objects.
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Table 8 – Average Precision (AP) for each model by classes, where AP𝐵𝑎𝑙𝑙, AP𝑅𝑜𝑏𝑜𝑡 and AP𝐺𝑜𝑎𝑙 is the Average
Precision for each of class Ball, Robot and Goal respectively.

Method AP𝐵𝑎𝑙𝑙 AP𝑅𝑜𝑏𝑜𝑡 AP𝐺𝑜𝑎𝑙

MobileNet v1 SSD 83.54% 80.20% 94.40%
MobileNet v2 SSD 69.61% 67.38% 90.14%
MobileDet 63.32% 64.62% 75.88%

Source: Author

Table 9 shows the AR results separated by maximum detection per image and detected
object size. A high AR is important for Robot and Goal classes because the robot uses it
to avoid colliding with another robot when navigating and helps the robot identify the Goal
faster. The Robot and Goal classes’ represents all of the Large objects and 95% of Medium
objects, as shown in Figure 34.

Table 9 – Average Recall (AR) for each model by maximum detection per image, AR1 for at most 1 object
per image and AR10 for 10 objects per image, and detected object area, where AR𝑆 , AR𝑀 , and
AR𝐿 stands for the result by each detection size, Small, Medium or Large.

Method AR1 AR10 AR𝑆 AR𝑀 AR𝐿

MobileNet v1
SSD

37.75% 62.87% 40.62% 82.18% 91.00%

MobileNet v2
SSD

34.76% 50.60% 29.28% 66.21% 87.00%

MobileDet 30.62% 43.66% 22.96% 65.41% 85.00%
YOLOv4 Tiny 36.72% 45.36% 30.41% 74.16% 64.00%

Source: Author

The obtained result of AR for Medium and Large objects sizes shows a high detection
rate, with the Mobilenet v1 SSD as the best AR results overall. However, it was also observed
that YOLO v4 tiny had worse results for Large objects, which supports the necessity of more
samples of Large objects for this model.

Table 10 shows each model’s inference frequency, where the MobileNet v1 SSD had the
best FPS overall, but MobileNet v2 SSD and MobileDet had a rate that fits the requirement
of at least 24 FPS. However, the YOLO v4 Tiny had a bad result with only 10 FPS, which
is caused by the lack of architectural optimizations on the network compared with the other
evaluated models. As the YOLO v4 Tiny showed a bad FPS, it was removed for further tests
since none of them aimed to improve the inference speed.
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Table 10 – Mean inference frequency in Frames Per Second (FPS) for each tested model.

Method FPS
MobileNet v1 SSD 94
MobileNet v2 SSD 78
MobileDet 87
YOLOv4 Tiny 10

Source: Author

Table 11 shows the AP results for the dataset with the objects instances separated by size.
Comparing these results with the ones on Table 7 shows that for MobileNet v1 and MobileDet
improved the AP for the small objects, showing that division could help the model to detect
objects by their size. However, this approach hurt the AP for all tested models’ medium and
large objects detection. This happened since those type of objects has fewer instances to learn.
Furthermore, this approach also decreases the AP for small objects in MobileNet v2.

Table 11 – Average Precision (AP) for each model using the dataset dividing the instances by size.

Method AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿

MobileNet v1
SSD

50.40% 68.30% 54.66% 48.58% 68.30% 56.93%

MobileNet v2
SSD

36.06% 57.46% 40.79% 10.92% 49.33% 51.71%

MobileDet 50.47% 68.86% 55.52% 35.81% 67.36% 63.76%

Source: Author

To find the best anchor configuration, this work used the bounding box on the training set
as input for k-means to group the bounding boxes by their aspect ratio. Before running the
k-means, the number of groups has to be defined. The proposed approach runs the k-means
using 3, 5, 7, 9 groups.

Table 12 shows the result for each of the number of groups. Diving the anchors in nine
aspect ratios showed the best accuracy to fit the bounding box in the training dataset. Based
on these results, the horizontally rectangular goal instances represented large values of aspect
ratio, 3.2 and 3.87. Moreover, as this dataset has no vertical rectangular, the k-means didn’t
find any centroid with low aspect ratios.
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Table 12 – K-Means results to find the best aspect ratio configuration for the anchors.

# of clusters Accuraccy Aspect Ratio Centroids
3 65.46% 0.9, 1.0, 1.87
5 74.71% 0.89, 0.91, 0.92, 1.0, 3.87
7 77.85% 0.89, 0.92, 0.92, 1.0, 1.0, 1.09, 3.87
9 80.91% 0.87, 0.89, 0.92, 0.94, 1.0, 1.0, 1.06, 3.2, 3.87

Source: Author

Table 13 shows the AP results for the dataset using the best anchors values using the nine
aspect ratios found using the k-means on the anchors’ configuration. Comparing this result
with the ones on Table 7, it only shows a slight improvement on the MobileDet model. In the
other two MobileNets, it didn’t change the AP significantly.

Table 13 – Average Precision (AP) for each model using the best anchors aspect ratio using k-means.

Method AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿

MobileNet v1
SSD

50.18% 79.27% 54.22% 31.98% 70.65% 91.98%

MobileNet v2
SSD

35.70% 63.13% 36.29% 22.76% 48.47% 77.54%

MobileDet 48.65% 77.23% 52.51% 34.39% 64.41% 86.55%

Source: Author

Table 14 shows the AP results for the dataset combining the objects separated by size and
the anchors’ aspect ratio found using k-means. Combining those approaches showed to be the
worst option since it hurts the AP for all the models.

Table 14 – Average Precision (AP) for each model using the dataset dividing the instances by size and the
best anchors aspect ratio using k-means.

Method AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿

MobileNet v1
SSD

46.03% 66.48% 50.61% 34.35% 62.61% 44.62%

MobileNet v2
SSD

30.81% 50.10% 32.99% 29.50% 39.21% 40.94%

MobileDet 40.79% 61.00% 45.17% 36.56% 49.89% 54.53%

Source: Author

Table 15 sumarrizes the AP results for all the approaches tested on this work. The Mo-
bileNet using the raw dataset had the best result overall, but adjusting the dataset to separate
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Table 15 – Average Precision (AP) for each model separated by all the approaches tested on this work.

Method AP AP50 AP75 AP𝑆 AP𝑀 AP𝐿

MobileNet v1
Raw Dataset 55.77% 84.67% 59.66% 32.51% 78.61% 89.62%
Dataset by
size

50.40% 68.30% 54.66% 48.58% 68.30% 56.93%

Anchor
Kmeans

50.18% 79.27% 54.22% 31.98% 70.65% 91.98%

Dataset by
size + Anchor
Kmeans

46.03% 66.48% 50.61% 34.35% 62.61% 44.62%

MobileNet v2
Raw Dataset 43.41% 74.39% 44.14% 23.18% 64.35% 86.27%
Dataset by
size

36.06% 57.46% 40.79% 10.92% 49.33% 51.71%

Anchor
Kmeans

35.70% 63.13% 36.29% 22.76% 48.47% 77.54%

Dataset by
size + Anchor
Kmeans

30.81% 50.10% 32.99% 29.50% 39.21% 40.94%

MobileDet
Raw Dataset 36.37% 66.54% 36.83% 16.60% 60.67% 81.53%
Dataset by
size

50.47% 68.86% 55.52% 35.81% 67.36% 63.76%

Anchor
Kmeans

48.65% 77.23% 52.51% 34.39% 64.41% 86.55%

Dataset by
size + Anchor
Kmeans

40.79% 61.00% 45.17% 36.56% 49.89% 54.53%

YOLOv4 Tiny
Raw Dataset 42.17% 62.24% 54.09% 27.34% 69.05% 58.84%

Source: Author

the instances by size, showed that it could improve the detection of small objects.

5.2 POSITION ESTIMATOR RESULTS

The position estimator results will be divided into two parts, without any normalization
on the data, with a normalization just on the input and normalizing both the input and the
output.
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Figure 41 – Predicted and ground truth positions for MLP architecture without using normalization

Source: Author

The best model without normalizing the data had only two hidden layers, with 10 neurons
in each layer, using a learning rate of 0.001. This model achieved a RMSE of 109.48𝑚𝑚.
Figure 41 shows the ground-truth position for the test set and the predicted position for this
model.

Normalizing just the input achieved a RMSE of 35.17𝑚𝑚, and the best architecture found
was having 5 hidden layers with 50 neurons each and a learning rate of 0.001. This improved
the result from the model without normalization because the normalization made it easy for
the model to train since the variation on the input is much smaller. Figure 42 shows the
ground-truth position for the test set and the predicted position for this model.

Using the normalization in the input and the output, the best architecture found was with
a learning rate of 0.001 and 5 hidden layers with 100 neurons each. This best model achieved
a RMSE of 34.88𝑚𝑚. This improvement is due to the output being in millimeters, and it is
sensitive to any small change. Figure 43 shows the ground-truth position for the test set and
the predicted position for this model.

Table 16 compares our result to the result presented by (MELO; BARROS, 2022). It shows
that the results normalizing the data are close to 50% better than those presented by (MELO;

BARROS, 2022). Besides that, the construction of the dataset presented in our work is much
simpler because their work had to hand annotate the points where the ball touched the ground
in each image.
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Figure 42 – Predicted and ground truth positions for MLP architecture normalizing the input

Source: Author

Figure 43 – Predicted and ground truth positions for MLP architecture normalizing the input and the output

Source: Author

Table 16 – RMSE for the proposed architecture compared with the results from (MELO; BARROS, 2022)

Method RMSE
(MELO; BARROS, 2022) 67.32𝑚𝑚

MLP with raw data (ours) 109.48𝑚𝑚

MLP normalizing the input (ours) 35.17𝑚𝑚

MLP normalizing the input and the output (ours) 34.88mm

Source: Author
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Table 17 – Inference time for the proposed architecture

Method Inference time
MLP with raw data (ours) 0.385𝑚𝑠

MLP normalizing the input (ours) 0.055𝑚𝑠

MLP normalizing the input and the output (ours) 0.069𝑚𝑠

Source: Author

Table 17 presents the inference time for the tested architectures to estimate the ball
position using MLP. It shows that all the proposed approaches can be considered real-time
since real-time would be run in less than 41.67𝑚𝑠. Besides, normalizing the data will give a
faster than just use the raw data.
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6 CONCLUSION

This work had as the main objective to give the ability to a SSL robot to detect nearby
objects and estimate their position. It was divided into two phases, first, detect the objects on
a field and then use those detected objects to estimate their position. To detect the objects, it
presented an open-source labeled dataset and a benchmark for object detection for SSL. The
proposed dataset guarantees its variety with images extracted from different sources under
distinct lighting conditions and camera configurations. The labeled objects are Robot, Ball,
and Goal, which are the essential objects found during an SSL game. The dataset’s images
can contain multiple instances of these objects, including no objects per image.

It also presented a pipeline to train a CNNs and deploy it on an embedded device with
limited computational power. The results show that CNNs are robust to variable light condi-
tions and can detect robots with different structures. This result contrasts with using color
segmentation with scan lines. Color segmentation can be easily disturbed by these circum-
stances since it needs fine-tuning parameters that rely on image saturation and brightness.
This thesis uses the proposed dataset to evaluate AP, AR, and FPS of four different CNNs
models on constrained hardware. Furthermore, this paper highlights the importance of model
architectural optimizations.

The presented dataset has a similar size as other datasets used on other RoboCup leagues.
However, it is smaller than the general proposed object detection datasets. So, data augmen-
tation techniques were applied to increase diversity and model generalization. A future dataset
improvement is adding images from game situations and different field configurations. Besides,
increasing the number of distinctive robots’ instances and the number of Large images will
boost the dataset’s robustness.

Using the trained model, a new dataset was created to estimate the object’s position
relative to the robot. This dataset combined the detected bounding boxes with the global
position from SSL-Vision. Furthermore, the position estimator used a technique to search the
best hyperparameters of a MLP based on the strategy already used on the DisNet. Besides
that, this approach also improved the RMSE on the other approach in the same context.

Besides all the contributions stated above, the object detection dataset and the evaluation
baseline were published at the RoboCup 2021 Symposium (FERNANDES; RODRIGUES; BARROS,
2022). Object detection and position estimation were also used by the RobôCIn team on the
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RoboCup 2022 SSL Vision Blackout Challenge, where the team achieved second place on this
challenge.

Future work from this thesis would be:

• Improve the detection of small objects in the first phase.

• Expand the position estimation for all relevant classes in the context of the SSL.

• Create a complete dataset to detect an object and estimate its position using only one
model.

• Uses the idea from the position estimator to have an automatic tool to create a dataset
on a SSL game.

• Improve the position estimation on objects far from the robot.

• Improve the hyperparameter search strategy for the position estimation model.

• Add a tracking system to predict the objects’ positions, keeping the detected objects’
position when the detection fails.

• Use better data augmentation strategies to balance the detection dataset and make it
more robust to different environments and different conditions.

• Analyze and compare the results from the different methods to create the detection
dataset.
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