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RESUMO

Com o crescimento no número de incidentes que envolvem malware e o constante
desenvolvimento de novas ameaças por atores maliciosos, existe uma necessidade cada vez
maior de proteger sistemas informatizados e seus usuários. Neste trabalho, é apresentado um
estudo comparativo sobre a utilização de modelos de linguagem baseados em BERT para
classificar amostras de malware através da análise estática. Usando bases de dados destinadas
ao benchmarking de modelos de análise estática, oito transformers foram comparados usando
as métricas F1-Score, acurácia, área sob a curva ROC e coeficiente de correlação de
Matthews para determinar seu desempenho na execução dessas tarefas. Após os testes, foi
possível concluir que transformers possuem uma ligeira vantagem na separação entre as
diferentes classes quando comparados a modelos de inteligência artificial mais clássicos.

Palavras-chave: aprendizagem de máquina; malware; classificação; segurança da

informação; análise estática.



ABSTRACT

With the increasing number of malware incidents and the constant development of new
threats by malicious actors, there is an ever-increasing need to protect computer systems and
their users. This paper presents a comparative study of using language models based on BERT
in classifying malware samples by static analysis. Using databases intended for benchmarking
static analysis models, eight transformer models were compared using the metrics F1-Score,
accuracy, the area under the ROC curve, and Matthews’ correlation coefficient to determine
their performance in the execution of these tasks. After testing, it was found that transformers
have a slight advantage over others classic artificial intelligence models in separating the
different classes.

Keywords: machine learning; malware; classification; cybersecurity; static analysis.
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1 INTRODUÇÃO

A cada ano, o número de ameaças cibernéticas aumenta e coloca em risco

consumidores e empresas em todo o mundo. Novas famílias de malware surgem

constantemente e com elas novas estratégias para evitar mecanismos de detecção e

ferramentas de segurança. Embora sejam notáveis os esforços na identificação de ameaças,

como o compartilhamento de indicadores de comprometimento entre grandes entidades da

tecnologia, incidentes envolvendo malware são cada vez mais comuns. Em 2021, foram

detectados em média 380 mil novos arquivos maliciosos por dia, sendo a grande maioria deles

(91%) arquivos Portable Executable (PE) do Windows (KASPERSKY, 2022). Ainda segundo

a SonicWall (2022), apenas no primeiro semestre de 2022, foram detectados mais de 2.8

bilhões de incidentes envolvendo malware, um aumento de 11% em relação ao mesmo

período do ano anterior.

Embora seja difícil estimar o prejuízo exato causado por malware, uma vez que muitas

organizações não divulgam dados relacionados a incidentes cibernéticos (COULTER, 2019),

uma pesquisa da Cybersecurity Ventures estima que os prejuízos causados por crimes

cibernéticos sejam de US$ 8 trilhões em 2023, podendo chegar ao valor anual de US$ 10.5

trilhões em 2025 (MORGAN, 2022).

Ainda, segundo o Cybersecurity Workforce Study (INTERNATIONAL

INFORMATION SYSTEM SECURITY CERTIFICATION CONSORTIUM, 2022), desde

2022 o campo da cibersegurança tem um déficit de 3.4 milhões de cargos, apesar do

crescimento no número de profissionais no mesmo ano.

Existem diversos desafios para o futuro da detecção de malware, sendo um deles a

automação do processo de criação de novas amostras. Determinadas ferramentas, que grupos

criminosos podem alugar ou vender para atores menos treinados, são capazes de desenvolver

e distribuir milhares de novas amostras de malware todos os dias e permitir que mesmo

desenvolvedores com pouco conhecimento técnico criem seus próprios malwares (ARIFFIN,

OMAR e SIHWAIL 2018).

Além disso, as funcionalidades e estrutura de programas maliciosos continuam

mudando e se tornando cada vez mais complexas, com o emprego de novas técnicas de

ofuscação que visam dificultar o processo de análise e detecção de ameaças (ARIFFIN,

OMAR e SIHWAIL 2018).
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Sabendo dessa necessidade e tendo em mente que problemas de análise e classificação

de malwares podem ser encarados como problemas de classificação, este trabalho tem como

objetivo comparar modelos de transformers baseados em BERT na análise estática e

classificação de programas maliciosos

Os transformers emergiram como uma classe promissora de modelos de aprendizado

profundo para análise estática e classificação de programas maliciosos devido à sua

capacidade notável de entender e classificar sequências de dados. Sua arquitetura de atenção

permite que eles considerem todas as posições na entrada simultaneamente, permitindo um

processamento eficiente e uma representação mais rica do contexto. Além disso, transformers

pré-treinados possibilitam a transferência de conhecimento a partir de grandes conjuntos de

dados, o que contribui para uma detecção de malware mais precisa e generalizada e com base

nisso se tornaram alvo de estudo neste trabalho de graduação.

1.1 OBJETIVOS

1.1.1 GERAIS

Este trabalho tem como objetivo comparar o desempenho de diferentes modelos de

transformers baseados no Bert em tarefas de classificação estática de malware.

1.1.2 ESPECÍFICOS

● Definição de bases de dados para comparação dos modelos;

● Aplicação dos modelos na classificação das amostras que compõem as bases de dados;

● Comparação do desempenho dos modelos a partir das métricas de avaliação

escolhidas;
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2 REFERENCIAL TEÓRICO

Este capítulo tem como objetivo explicar os principais conceitos abordados neste

trabalho, assim como recapitular um pouco da história de sistemas do malware, de

mecanismos de detecção e da inteligência artificial e processamento de linguagem natural.

2.1 MALWARE

Malware, abreviação do inglês malicious software, é o termo que define qualquer

software que tem como objetivo causar problemas a computadores ou seus usuários (TAHIR,

2018). Os malwares são divididos em subcategorias a partir de suas capacidades e da forma

como atuam para prejudicar os sistemas que comprometem, dentre as categorias conhecidas

estão:

● Vírus: Gill (2022) descreve o vírus como um tipo de malware capaz de se espalhar

para outros computadores, comumente através de arquivos que, quando abertos, são

responsáveis por iniciar a execução do programa malicioso;

● Spyware: o spyware, abreviação do inglês spy software, é descrito por Gill (2022)

como um tipo de malware que tem como objetivo coletar informação do usuário através do

monitoramento do dispositivo. Esses programas podem ter alvos variados, dentre eles senhas,

arquivos sensíveis no dispositivo do usuário e números de cartão de crédito;

● Downloader: também chamados de “droppers”, downloaders são malwares projetados

para baixar e executar outros malwares no dispositivo da vítima, segundo TROJAN (2020).

Esse tipo de ameaça é comumente distribuído através de páginas e e-mails maliciosos;

● Ransomware: do inglês, ransom software. Segundo AL-HAWAWREH, HARTOG e

SITNIKOVA (2019), malwares do tipo ransomware têm como objetivo impedir um usuário de

acessar um dispositivo, sistema ou arquivos dentro de um sistema até que um valor de resgate,

comumente cobrado em criptomoedas, seja pago. A subcategoria mais conhecida desse

malware é o crypto-ransomware, que usa criptografia para corromper os arquivos da vítima.

● Backdoor: ou “porta dos fundos”, em português, são malwares desse tipo são

implementados para permitir que atacantes tenham acesso remoto ao sistema alvo,

comumente a partir da execução de comandos nos dispositivos comprometidos (GILL, 2022).
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2.1.2 DETECÇÃO DE MALWARE

Sistemas de detecção de malware, comumente chamados de antivírus, são, segundo

Koret e Bachaalany (2015), programas criados para impedir que um computador seja

infectado a partir da detecção de software malicioso [...] e, quando apropriado, remoção do

malware e desinfecção do computador (tradução nossa).

O primeiro malware que se tem registro, o Creeper, foi um malware do tipo worm

criado de forma experimental pelo pesquisador Bob Thomas em 1971, ele era capaz de se

propagar de forma autônoma pela ARPANET (CHEN e ROBERT, 2004), exibindo a

mensagem “eu sou o Creeper: pegue-me se for capaz” (MELTZER e PHILLIPS, 2009,

tradução nossa) nos terminais infectados. O surgimento desse malware foi acompanhado pela

criação do Reaper, um software que, de forma análoga ao Creeper, também se propagava de

forma autônoma, mas que tinha como função removê-lo dos dispositivos infectados

(MELTZER e PHILLIPS, 2009).

Embora o Reaper possa ser considerado o primeiro software antivírus de que se tem

registro (MELTZER e PHILLIPS, 2009), o termo se popularizou apenas na década de 80 com

o lançamento das primeiras soluções antivírus comerciais, como o G DATA AntiVirus Kit, um

dos primeiros softwares antivírus comerciais desenvolvido para proteção do Atari ST (G

DATA SOFTWARE, 2017) e e o Dr. Solomon's Anti-Virus Toolkit (JACKSON, 1989).

Desde então, os softwares antivírus evoluíram de simples scanners de linha de

comando que tentam identificar padrões maliciosos em arquivos para ferramentas complexas

capazes de monitorar quaisquer arquivos criados, modificados ou acessados pelo sistema

operacional, além de contar com firewalls que monitoram como programas usam a Internet

(KORET e BACHAALANY, 2015) e empregar as mais variadas técnicas de detecção que vão

desde regras heurísticas a modelos de inteligência artificial (PÉREZ-SÁNCHEZ e

PALACIOS, 2022).

Atualmente existem duas principais estratégias usadas na análise de arquivos

potencialmente maliciosos, são elas as análises estáticas e dinâmicas (CHAKKARAVARTHY,

SANGEETHA e VAIDEHI, 2019).
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2.1.2.1 ANÁLISE ESTÁTICA

A análise estática consiste na inspeção de programas potencialmente maliciosos sem

que eles sejam executados (ASLAN e SAMET, 2020). Técnicas de análise estática usam

características do arquivo executável, como strings presentes no código-fonte do programa,

sequências de bytes e importações de bibliotecas para determinar se um software é malicioso.

(GANDOTRA, BANSAL e SOFAT, 2014).

Para dificultar a análise estática, desenvolvedores de malware empregam técnicas de

encapsulamento e criptografia usando programas como crypters e packers (ABOAOJA et al,

2022), esses comumente, transformam os programas maliciosos em binários autocontidos,

ocultando informações como tamanhos das estruturas de dados e chamadas de API. Ainda

segundo Gandotra, Bansal e Sofat (2014), a constante evolução de técnicas de evasão sendo

adotadas por desenvolvedores de malware foi o que motivou o surgimento de técnicas de

análise dinâmica.

2.1.2.2 ANÁLISE DINÂMICA

A análise dinâmica, conhecida também como análise de comportamento, consiste na

execução do malware em um ambiente controlado, como uma máquina virtual ou em soluções

de sandbox, e observação de seu comportamento (GANDOTRA, BANSAL e SOFAT, 2014).

O comportamento de um malware é definido pelas ações executadas por ele durante sua

execução no sistema operacional (GRÉGIO, 2012). Dentre as técnicas usadas para análise

dinâmica estão o monitoramento de chamadas de funções e do fluxo de informação do

programa (GANDOTRA, BANSAL e SOFAT, 2014).

Embora a análise dinâmica seja mais efetiva que a estática, uma vez que é baseada no

comportamento natural do malware, ela demanda mais tempo e recursos computacionais para

ser executada, o que traz problemas para a escalabilidade dessas soluções, além das diferenças

entre os ambientes controlados onde os malwares são analisados e daqueles onde serão

executados o que podem levar a comportamentos artificiais e diferença de resultados de

análise segundo (GANDOTRA, BANSAL E SOFAT, 2014). Por esses motivos, os testes
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realizados neste trabalho possuem como foco a análise de características estáticas do malware,

como descrito adiante na subseção Dataset do capítulo Metodologia.

2.2 APRENDIZAGEM DE MÁQUINA

O termo “aprendizagem de máquina” foi criado em 1959 por Arthur Samuel e é

definido como um ramo da ciência da computação e inteligência artificial que tem como foco

principal o uso de dados e algoritmos para simular a forma como humanos aprendem,

melhorando gradualmente sua precisão (IBM, 2020).

Algoritmos de aprendizagem de máquina visam o reconhecimento de padrões a partir

de um conjunto de dados extraídos de um dado problema. Esses algoritmos são divididos

entre algoritmos de classificação, que visam a classificação de amostras desconhecidas

através de padrões aprendidos a partir dos dados conhecidos, e algoritmos de regressão, que

usam os padrões conhecidos para prever resultados de eventos relacionados ao problema.

Uma vez que este trabalho tem como objetivo a classificação de amostras de malware,

a seção a seguir descreve de forma resumida os algoritmos de classificação e sua evolução.

Embora algoritmos de regressão e outras técnicas de aprendizagem de máquina também

possam ser usados na detecção de malware, este trabalho tem como objeto de estudo apenas

algoritmos de classificação, pois estão mais associados ao objetivo proposto e serão o foco

das análises.

2.2.1 CLASSIFICAÇÃO

Segundo Neelamegam e Ramaraj (2013), “a classificação é uma técnica de mineração

de dados que visa prever a quais grupos instâncias de dados pertencem”. Para o cumprimento

dessa tarefa são empregados algoritmos criados especialmente com esse objetivo. Segundo

Gama e Brazdil (1995), “é difícil identificar um algoritmo de classificação que tenha bom

desempenho em todas as tarefas”.

Em 1943, o Perceptron, base das redes neurais atuais, foi proposto pelos pesquisadores

Warren McCulloch e Walter Pitts (1943), embora tenha sido implementado pela primeira vez

apenas em 1958 por Frank Rosenblatt (1958). O Perceptron é um classificador binário que

recebe uma entrada e, a partir de uma função linear e um vetor de pesos, calcula se ela
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pertence a um dado grupo. Embora inicialmente tenha sido considerado promissor, o

Perceptron como foi inicialmente concebido foi deixado de lado por, dentre outros motivos,

sua incapacidade de solucionar problemas de classificação não-linearmente separáveis

(MINSKY e PAPERT, 1969).

Na década de 60 e início dos anos 70, as árvores de decisão se tornaram algoritmos

populares na resolução de problemas de classificação (RAO e MITRA, 1972). Ainda na

década de 60, algoritmos estatísticos mais antigos foram adotados na resolução de problemas

de classificação, como a Análise de Discriminante Linear, a Regressão Logística (BERKSON,

1944) e o algoritmo k-NN (do inglês. k-Nearest Neighbours) (COVER e HART, 1967).

Outros algoritmos de classificação populares até hoje são o algoritmo Naive Bayes,

que utiliza o teorema de Bayes para classificação (GOOD, Isidore Jacob, 1950) e o algoritmo

de Máquinas de Vetores de Suporte (do inglês, Support Vector Machine, ou SVM).

Nas décadas de 80 e 90, no entanto, o campo de aprendizagem de máquina redescobriu

as redes neurais com a introdução do algoritmo de backpropagation (RUMELHART,

HINTON e WILLIAMS, 1986). E, a partir dos anos 2000, o aumento do poder computacional

e o desenvolvimento de novos algoritmos de aprendizagem profunda levaram a avanços

significativos em tarefas de classificação de imagem, fala e texto, especialmente com a

recente introdução dos modelos de transformers (VASWANI et al, 2017), popularizados por

soluções de processamento de linguagem natural como o BERT (CHANG et al, 2018) e os

modelos GPT (NARASIMHAN et al, 2018), mas aplicados ao cumprimento de diversas

tarefas, como a classificação (YANG et al, 2022) e geração de imagens (CHEN et al, 2022).

2.2.2 APRENDIZAGEM DE MÁQUINA NA DETECÇÃO DE MALWARE

A detecção de malware tem sido uma preocupação desde o surgimento dos primeiros

vírus de computador nas décadas de 1970 e 1980. Embora inicialmente a detecção de malware

empregada por softwares antivírus tenha se baseado em regras simples, como a busca de

sequências de bytes específicas em arquivos (RAD, MASROM e IBRAHIM, 2011), os

primeiros experimentos envolvendo a detecção de malware a partir de técnicas de machine

learning são da década de 90 (GUINIER, 1991).

A aplicação de algoritmos de aprendizagem de máquina na detecção e classificação de

malware tem se popularizado na última década, sendo o surgimento de bases de dados de



18

malware públicas (BRIGUGLIO, ELMILIGI e SAAD, 2019), como VirusTotal e VirusShare,

e o aumento do poder de processamento dos computadores os principais motivos por trás

dessa popularização (GIBERT, MATEU e PLANES, 2020).

Desde então, soluções empregando os mais variados modelos vêm sendo

desenvolvidas por pesquisadores. Modelos como o de Carvalho, Chan e Hassen (2017), por

exemplo, que usam random forests, alcançam altos níveis de precisão na detecção de famílias

de malware a partir da análise de atributos estáticos das amostras, chegando a atingir 99.2%

de acurácia.

No campo de detecção por análise dinâmica, experimentos baseados na análise de

comportamento malicioso a partir de chamadas de API, modificações de registro e tráfego de

rede chegam a níveis de precisão de 98.0% (CAVAZOS, LA ROSA e KILGALLON, 2017).

Diversos modelos de detecção híbridos também foram propostos nos últimos anos. Estes

visam aumentar a qualidade e precisão de sistemas de detecção de malware combinando

técnicas de análise estática e dinâmica para criar sistemas de detecção mais robustos

(BRIGUGLIO, ELMILIGI e SAAD 2019).

Atualmente, os principais softwares antivírus comerciais empregam algoritmos de

aprendizagem de máquina na detecção de malware (SHIVANI, 2021).

2.3 PROCESSAMENTO DE LINGUAGEM NATURAL

Chopra, Prashar e Sain (2013) definem o Processamento de Linguagem Natural (NLP,

na sigla em inglês) como uma subárea da inteligência artificial e linguística dedicada ao

desenvolvimento de formas de os computadores entenderem a linguagem humana. A área tem

origem ainda em 1950, quando Alan Turing propôs o Jogo da Imitação, agora conhecido

como teste de Turing, como uma subárea da inteligência (TURING, 1950).

Ainda na década de 50, pesquisadores começaram a explorar a possibilidade de usar

computadores para traduzir textos entre idiomas (HUTCHINS, 2005). No entanto, as

primeiras tentativas de tradução automática eram limitadas e produziam resultados imprecisos

(CHAPMAN, MACHADO e NADKARNI, 2011).

Já nas décadas de 60 e 70, as pesquisas em NLP passaram a focar na análise de textos

em inglês (WINOGRAD, 1971). A maioria desses primeiros sistemas usava regras

gramaticais codificadas manualmente para analisar a estrutura de frases e extrair informações
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significativas. Esses sistemas eram complexos e geralmente não conseguiam entender o

significado completo do texto (CHAPMAN, MACHADO e NADKARNI, 2011).

Ainda nesse período surgiram os primeiros chatbots, programas cuja função é simular

uma conversação entre o computador e um usuário, como o ELIZA (WEIZENBAUM, 1966).

Foi a partir do fim da década de 80 e início dos anos 90, com a introdução de

algoritmos de aprendizagem de máquina e de grandes corpos de texto (corpora), que surgiram

os primeiros modelos de NLP probabilísticos, sendo estes destinados a tradução automática

de texto (BROWN et al, 1988).

Nos anos 1990 e 2000, com o avanço do poder computacional e a disponibilidade de

grandes conjuntos de texto, viabilizaram o desenvolvimento de modelos de NLP mais

complexos e a realização de tarefas mais sofisticadas, como a análise de sentimentos

(TURNEY, 2002) e a extração de informações.

Nos últimos anos, com a popularização da aprendizagem profunda e a disponibilidade

de grandes conjuntos de dados, a ênfase no NLP mudou para o treinamento de modelos

pré-treinados baseados em Transformers (VASWANI, 2017) e transferência de aprendizado

(SINCLAIR, 2021). Modelos como o BERT (Bidirectional Encoder Representations from

Transformers) (CHANG et al, 2018) e o GPT (Generative Pretrained Transformer)

(NARASIMHAN et al, 2018) têm se tornado a base para uma ampla variedade de soluções

NLP personalizadas.

2.3.1 TRANSFORMERS

Propostas pela primeira vez em 2017, transformers são redes neurais que empregam

mecanismos de autoatenção (do inglês, self-attention) no processamento de sequências de

entrada (VASWANI et al, 2017). Esse mecanismo permite que o modelo se concentre nas

partes mais importantes da sequência de entrada, com base em sua relevância para a tarefa em

questão, para produzir uma saída mais precisa.

Essa arquitetura implementa camadas que atuam como modelos de encoders e

decoders, cada uma com seu próprio mecanismo de autoatenção (ALAMMAR, 2018), sendo

popularmente adotada em tarefas de tradução automática. A Figura 1 exemplifica a

arquitetura de um modelo Transformer.
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Figura 1 - exemplo de uma arquitetura Transformer aplicada a um problema de tradução automática, ilustrando

as etapas de processamento e a interação entre elas. A arquitetura inclui um encoder para capturar informações

contextuais da entrada e um decoder para gerar a tradução, trabalhando juntos para melhorar a qualidade do

resultado.

Fonte: Alammar, 2018.

Esses modelos são pré-treinados em grandes conjuntos de dados antes de passarem por

um processo de ajuste fino que visa prepará-los para desempenhar tarefas específicas. Isso

permite que a rede aprenda representações de alta qualidade dos dados, o que pode melhorar

significativamente o desempenho nessas tarefas (HENDRYCKS, LEE e MAZEIKA, 2019).

Graças a esse pré-treinamento, esses modelos podem ser usados para tarefas de classificação

específicas, mesmo quando os dados de treinamento são limitados. Essa capacidade é

conhecida como transferência de aprendizado (ou transfer learning) e pode ser útil em muitos

casos práticos (TORREY e SHAVLI, 2010).
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2.3.2 BERT

O BERT, sigla que significa "Bidirectional Encoder Representations from

Transformers", é um modelo de linguagem pré-treinado baseado em transformers que foi

projetado para realizar uma ampla variedade de tarefas de processamento de linguagem

natural (CHANG et al, 2018). O BERT é bidirecional, o que significa que, quando tenta

entender o significado de uma palavra, o modelo leva em consideração as palavras à esquerda

e à direita dela.

Diferente da arquitetura padrão de Transformers, descrita na seção anterior, o BERT

apenas utiliza a pilha de Encoders da arquitetura, o que significa que, ao receber uma

sequência de palavras como entrada, o BERT produz um vetor de saída que representa essa

sequência (ALAMMAR, 2018).

O processo de treinamento do BERT se deu através da tarefa de preenchimento de

lacunas, do inglês masked language modeling, que consiste em fornecer como entrada ao

modelo uma frase com uma das palavras ausentes e receber como saída a palavra que falta na

frase.

Segundo Alammar (2018), o objetivo mais simples que pode ser alcançado com o

BERT é o de classificação textual, isso pode incluir tarefas de análise de sentimento e

detecção de spam. Para isso, o modelo é usado em conjunto com um algoritmo de

classificação que recebe como entrada a saída do BERT, como demonstra a Figura 2.

Figura 2 - Exemplo de arquitetura de classificação usando o modelo BERT. A informação de entrada é

codificada usando os embeddings do modelo BERT e depois classificada de acordo com as classes usadas no

treinamento do modelo.

Fonte: O autor (2023)
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Além da classificação textual, o BERT é projetado para ser facilmente adaptável a

novas tarefas, permitindo que ele seja usado como base para a criação de outros modelos de

linguagem (ALAMMAR, 2018).

Devido a suas características únicas e capacidade de lidar com grandes volumes de

dados, o BERT é um candidato promissor para tarefas de classificação de malware. Sua

capacidade de processar sequências de dados e usar mecanismos de autoatenção para

identificar as relações entre os elementos da sequência é crucial para a análise de códigos

maliciosos. Além disso, a transferência de aprendizado permite que o BERT seja pré-treinado

em grandes conjuntos de dados não rotulados, tornando-o ideal para lidar com dados de

treinamento limitados e detecção de malware em tempo real. Essas vantagens tornam o BERT,

e demais transformers, uma das ferramentas mais promissoras para a detecção e classificação

de malware.
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3 TRABALHOS RELACIONADOS

Esta seção tem como objetivo apresentar outros trabalhos relacionados a detecção de

malware.

3.1 CLASSIFICAÇÃO DE MALWARE EM AMBIENTES WINDOWS

Alsmadi e Alqudah (2021), catalogaram diversas técnicas de detecção de malware,

dentre elas técnicas de detecção estáticas, dinâmicas e híbridas. Segundo sua pesquisa,

modelos de detecção baseados em imagens que usam técnicas de aprendizagem de máquina e

redes profundas possuem o melhor desempenho e eficiência computacional.

Essa é a abordagem usada no modelo desenvolvido por Huang et al. (2021), que se

baseia no VGG16 e usa redes neurais convolucionais para abordar a detecção de malware

como um problema de visão computacional. A partir da extração de características do

malware, como informações de frequência de bytes, e visualização dessas características

como canais RGB, o modelo foi capaz de alcançar valores de acurácia de 94.7%.

Por outro lado, Demetrio et al. (2021), analisaram um conjunto de ataques adversariais

que podem ser empregados por atores maliciosos para enganar algoritmos de detecção

baseados em aprendizagem de máquina. Neste trabalho, os pesquisadores conseguiram

dissuadir diversos algoritmos de detecção , dentre eles algoritmos baseados em redes neurais

convolucionais, conseguindo taxas de sucesso entre 60 e 100%, dependendo do algoritmo e

do ataque.

Já Santos et al. (2013), propõem um modelo de detecção que visa, a partir do código

assembly de um arquivo executável potencialmente malicioso, determinar sua legitimidade a

partir da frequência de códigos de operação (do inglês opcode) no arquivo. Essa abordagem,

no entanto, pode ser ineficiente frente ao uso de softwares packer (ALSMADI e ALQUDAH,

2021).

Azeez et al. (2021), por sua vez, propuseram um trabalho de classificação usando

comitês de classificações (do inglês, ensemble learning) a partir de uma base de dados

originalmente constituída por mais de 19 mil amostras de malware compostas por 77

características estáticas extraídas das amostras. Esses modelos foram capazes de obter níveis

de acurácia de 99.24% com 0.98 de F-1 Score.
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O modelo de detecção por assinatura usado pela ferramenta de código-aberto YARA,

segundo Jaramillo (2018), está presente em diversas soluções antivírus comerciais, como o

Nessus, ferramenta de detecção da Tenable.

3.1.1 CLASSIFICAÇÃO DE MALWARE A PARTIR DE CHAMADAS DE API

O modelo de classificação proposto por Nikolopoulos e Polenakis (2017), cria

estruturas em grafo a partir das chamadas de API feitas pelo malware e os classifica a partir

da semelhança entre essas estruturas. Esse modelo foi capaz de atingir uma taxa de detecção

de 94.7%.

Outro modelo, proposto por Assegie (2021), utiliza o algoritmo KNN para classificar

arquivos potencialmente maliciosos a partir de sequências de chamadas de API. Os

experimentos provaram que, com valor de k igual a 3, o modelo é capaz de atingir um nível de

acurácia de 98.17%.

Já a partir de uma abordagem de detecção dinâmica, experimentos com os algoritmos

de aprendizagem de máquina XG Boost e Random Forests, assim como com redes neurais

profundas, foram capazes de obter nível de acurácia de 96.3% (KANG e WON, 2020, apud

ALSMADI e ALQUDAH, 2021).

Galal, Mahdy e Atiea (2016), propuseram um modelo de extração de características

dos malwares a partir da observação em tempo de execução de chamadas feita a API do

Windows. Utilizando esse método de extração, foi possível atingir um nível de acurácia de

97.19% usando árvores de decisão. Essa técnica, no entanto, é ineficiente na análise de

amostras que dependam de eventos externos, como o contato com um servidor de comando e

controle.

Ye et al. (2018), por sua vez, adotou um modelo construído por um AutoEncoder e

camadas de máquinas de Boltzmann restritas (RBM, da sigla em inglês), para classificar

arquivos PE a partir das chamadas de API feitas por eles. Embora tenha sido capaz de atingir

98% de acurácia na tarefa de classificação binária de malware, isto é, se os arquivos são

maliciosos ou não, essa abordagem possui um custo computacional considerável, uma vez que

depende da extração dinâmica de chamadas de API.
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3.2 TRANSFORMERS E CLASSIFICAÇÃO DE MALWARE

Rahali e Akhloufi (2021), descrevem um modelo de classificação baseado no BERT

que visa diferenciar softwares maliciosos e benignos desenvolvidos para Android. Apelidado

de MalBERT, o modelo foi treinado a partir de características extraídas em programas

disponibilizados no Androzoo, uma base de dados pública de artefatos maliciosos para

Android. Neste trabalho, os pesquisadores trataram o problema tanto como um problema

binário de classificação de texto, quanto um problema de múltiplas categorias, atingindo

níveis de acurácia de cerca de 97% e 91%, nos respectivos problemas.

Ainda na voltado a detecção de malwares para Android, Seneviratne et al. (2022)

desenvolveram um modelo baseado no Visual Transformer (VIT) capaz de atingir um nível de

acurácia de 97% na classificação binária de amostras.

Já na classificação de malware para sistemas Windows, tópico deste trabalho, o

modelo desenvolvido por Ghourabi (2022), que combina a arquitetura do BERT com o Light

Gradient Boosting Machine (LightGBM), um framework de gradient boosting de código

aberto mantido pela Microsoft, foi usado na construção de um sistema de detecção de

malware, obtendo um nível de acurácia de 99% em tarefas de classificação binária.
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4 METODOLOGIA

Este trabalho foi conduzido a partir de uma estratégia de pesquisa experimental, uma

vez que seu objetivo é avaliar o desempenho de modelos Transformer na classificação de

amostras de malware, sendo ele dividido nas seguintes etapas: análise de dados, investigação

dos modelos e experimentação.

Os experimentos descritos neste trabalho foram conduzidos usando a base de dados

Benchmark Static API Call Datasets for Malware Family Classification (Düzgün et al, 2022),

disponibilizada pelo Center for Cybersecurity and Infrastructure Protection (CCIP) da

Universidade Kadir Has, na Turquia. A base é composta por listas de chamadas de API

coletadas a partir de análise estáticas de amostras de malware disponíveis nas plataformas

VirusSample e VirusShare, plataformas abertas que visam o compartilhamento de malware

malicioso para pesquisadores de segurança.

Esta base de dados foi escolhida por ter sido desenvolvida visando a avaliação de

desempenho de modelos de detecção estáticos. A pesquisa de Düzgün et al. (2022) traz

métricas comparativas de modelos de classificação quando aplicados aos dados da base. Estas

métricas, por sua vez, são utilizadas para comparar o desempenho dos modelos avaliados

neste experimento, como descreve a subseção Diretrizes dos experimentos, adiante.

4.1 TRATAMENTO DOS DADOS

Ao todo, a base contém dados de 9.795 amostras de malware da plataforma

VirusSample e 14.616 da plataforma VirusShare, classificados como um de 15 possíveis tipos

de malware distribuídos de acordo com a tabela a seguir:
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Tabela 1 - Distribuição de amostras por categoria

Malware Family VirusShare VirusSample

Trojan 8.919 6.153

Vírus 2.490 2.367

Adware 908 222

Undefined 577 N/A

Worms 524 441

Backdoor 510 447

Downloader 218 31

Agent 165 102

Ransomware 115 10

Riskware 85 4

Spyware 45 11

Dropper 40 4

Crypt 10 2

Keylogger 7 1

Rootkit 3 N/A

Fonte: Düzgün et al, 2022.

A primeira etapa da fase de tratamento de dados seguiu os passos de regularização

propostos por Düzgün et al. (2022). Isto inclui a remoção de amostras sem classificação

definida da base de dados, isto é, marcadas com o rótulo Undefined. Em seguida, houve

também a remoção de amostras de malware pertencentes a categorias com menos de 100

representantes na base, resultando na distribuição apresentada na tabela a seguir:

Tabela 2 - distribuição das amostras após regularização das base de dados

Malware Family VirusShare VirusSample

Trojan 8.919 6.153

Vírus 2.490 2.367

Adware 908 222

Worms 524 441

Backdoor 510 447

Downloader 218 N/A

Agent 165 102

Ransomware 115 N/A

Fonte: Düzgün et al, 2022.
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Como proposto por Düzgün et al. (2022), cada um dos modelos foi testado em duas

versões de ambas as bases de dados, sendo uma delas a versão representada pela distribuição

na Tabela 2 e a outra uma versão balanceada por subamostragem, apresentada na Tabela 3,

que consistiu em limitar o máximo de amostras por classe em 300.

Tabela 3 - distribuição de amostras nas versões balanceadas da base de dados

Malware Family VirusShare VirusSample

Trojan 300 300

Vírus 300 300

Adware 300 222

Worms 300 300

Backdoor 300 300

Downloader 300 N/A

Agent 165 102

Ransomware 115 N/A

Fonte: Düzgün et al, 2022.

As bases foram então divididas em conjuntos de treinamento, teste e validação,

compostos por 80%, 10% e 10% das amostras, respectivamente.

4.2 DIRETRIZES DOS EXPERIMENTOS

Conforme detalha a seção 2.3.2 deste trabalho, modelos de classificação que usam o

BERT podem ser construídos a partir da adição de uma camada linear de classificação ao

modelo. Essa camada recebe como entrada a saída produzida pelo BERT, produzindo por sua

vez um vetor de probabilidades de aquela amostra pertencer a cada um dos possíveis grupos

de malware a partir da função de ativação Softmax. Para cálculo de perda, foi escolhida a

função de entropia cruzada (cross entropy), uma vez que é a mais adequada para tarefas de

classificação com múltiplas classes (BROWNLEE, 2019). A figura a seguir resume a

arquitetura adotada para os modelos usados nos experimentos deste trabalho:



29

Figura 3 - Exemplo de arquitetura dos modelos de classificação adotados neste trabalho usando uma camada

linear para classificação dos outputs dos Transformers.

Fonte: O autor (2023)

Com esses critérios em mente, foi realizada uma busca por modelos de transformer

usando os seguintes critérios:

● O trabalho que descreve o modelo deveria estar em português ou inglês;

● Apenas trabalhos disponibilizados de forma gratuita foram selecionados;

● Trabalhos cujos código-fonte não foram disponibilizados não foram incluídos pois não

permitiriam uma comparação justa entre eles.

Os oito modelos de linguagem escolhidos para comparação nos experimentos a partir

dessa busca foram: BERT, ALBERT, DistilBERT, RoBERTa, XLNet, SecBERT,

SecRoBERTa e cyBERT.

Cada um desses modelos oferece características únicas e aprimoramentos em relação

aos seus antecessores. O RoBERTa, por exemplo, traz melhorias no processo de treinamento

em relação ao BERT (LIU et al, 2019). ALBERT e DistilBERT, por sua vez, focam na

redução de recursos computacionais sem comprometer significativamente a precisão (LAN et

al, 2019; SANH et al., 2019). Já o XLNet aborda as limitações do BERT com a modelagem de

linguagem permutada (YANG et al, 2019). Por sua vez, SecBERT e SecRoBERTa são

adaptações específicas dos modelos BERT e RoBERTa para o domínio da segurança

cibernética (SECBERT, 2020), o que pode trazer um impacto na sua capacidade para lidar

com malwares. Por fim, como o cyBERT é projetado especificamente para a detecção de
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anomalias em logs (RICHARDSON, 2019), acaba por ser um candidato promissor a essa

tarefa. Avaliar o desempenho desses modelos em análise estática e classificação de malwares

permite identificar qual deles apresenta a melhor combinação de precisão, escalabilidade e

eficiência computacional para enfrentar o cenário em constante evolução das ameaças

cibernéticas. A seguir uma breve descrição sobre cada um deles:

● BERT: O BERT é um modelo de aprendizado profundo baseado em Transformers,

desenvolvido pelo Google AI Language. Sua principal inovação é o uso da atenção

bidirecional, permitindo que ele considere o contexto de palavras à esquerda e à direita

em uma frase. Isso melhora a capacidade do modelo de entender e gerar linguagem

natural (CHANG et al, 2018). Mais detalhes sobre o modelo podem ser encontrados

na seção Referencial Teórico.

● DistillBERT: Em 2019, pesquisadores da Hugging Face em 2019 apresentaram o

DistilBERT, uma versão menor e mais leve do BERT criada a partir da técnica de

destilação de conhecimento, do inglês knowledge distillation (SANH et al, 2019).

Embora seja 40% menor, o DistilBERT é 60% mais rápido que o BERT e retém 97%

de seu entendimento de linguagem, sendo ideal para computação on device (SANH et

al., 2019).

● RoBERTa: Por sua vez, também em 2019, pesquisadores do Facebook AI

apresentaram o RoBERTa (Robustly Optimized BERT Pretraining Approach), um

modelo baseado no BERT que, além de ter sido treinado em um conjunto de dados

maior do que o usado para o treinamento do BERT, usa a técnica de dynamic masking

nesse processo (LIU et al., 2019). Essas melhorias permitiram que o RoBERTa

alcançasse um desempenho superior ao BERT em várias tarefas de processamento de

linguagem natural, incluindo a classificação de texto (LIU et al, 2019).

● XLNet: Ainda em 2019, pesquisadores do Google AI apresentaram o XLNet, um

modelo de linguagem criado para suprir limitações identificadas pelos pesquisadores

no BERT (YANG et al, 2019). Diferente do BERT, o XLNet o foi treinado na tarefa de

modelagem de linguagem permutada, do inglês Permutation Language Modeling, que

visa ajustar o modelo para a predição de palavras, assim como no preenchimento de

lacunas, mas seguindo uma ordem aleatória, ao invés de realizar uma predição

sequencial (PUROHIT, 2019). Esse modelo conseguiu superar o BERT no
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cumprimento de 20 tarefas, dentre elas a análise de sentimentos e a resposta a

perguntas.

● ALBERT: Também em 2019, pesquisadores da Google AI disponibilizaram o

ALBERT (A Lite BERT). Assim como o DistilBERT, o ALBERT foi projetado para

ser menor e mais leve do que o BERT a partir do uso das técnicas de Factorized

Embedding Parameterization e Cross-layer parameter sharing, que visam a redução

de parâmetros do modelo a partir do compartilhamento desses parâmetros entre as

suas diversas camadas (LAN et al, 2019).

● Diversas outras soluções de NLP foram criadas a partir do ajuste fino dos modelos

listados na seção anterior. Para este trabalho foram escolhidas soluções voltadas para a

segurança de informação, como o cyBERT, por exemplo, uma versão do BERT

pré-treinada para a detecção de anomalias em logs (RICHARDSON, 2019).

● Outros dois modelos avaliados neste trabalho foram, o SecBERT e o SecRoBERTa,

versões do BERT e do RoBERTa, respectivamente, treinados em artigos do domínio

de cibersegurança (SECBERT, 2020).
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5 RESULTADOS

A escolha das métricas para comparação dos modelos foi feita com base nos

experimentos de Düzgün et al. (2022), que usa o F1-Score e a Área sob a curva ROC como

métricas comparativas entre os modelos estado da arte testados. Além dessas, a Acurácia e o

Coeficiente de Correlação de Matthews também foram usados para comparação.

Este capítulo apresenta a comparação do desempenho dos modelos nas diferentes

bases de dados com base nos experimentos descritos no capítulo anterior. Para melhor

visualização dos resultados, gráficos gerados a partir dos valores obtidos para cada métrica

em cada modelo serão apresentados adiante.

Os gráficos a seguir comparam o desempenho dos modelos com base em sua acurácia,

métrica esta que visa medir a parcela de predições corretas feitas pelo modelo. Os gráficos em

cada figura representam o desempenho dos modelos no dataset balanceado e no dataset não

balanceado, respectivamente, estando os modelos ordenados do melhor ao pior desempenho.

Figura 4 - gráfico de acurácia dos modelos no dataset VirusSample.

Fonte: O autor (2023).
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Figura 5 - gráfico de acurácia dos modelos no dataset VirusShare.

Fonte: O autor (2023).

Os gráficos a seguir, por sua vez, comparam os modelos com base no Coeficiente de

Correlação de Matthews, do inglês Matthews Coefficient Correlation, ou MCC, que visa

medir a qualidade das predições feitas pelo modelo e produz resultados mais confiáveis,

especialmente para bases sem balanceamento (CHICCO e JURMAN, 2020).
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Figura 6 - gráfico de desempenho dos modelos no dataset VirusSample a partir do Coeficiente de Correlação de

Matthews.

Fonte: O autor (2023).
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Figura 7 - gráfico de desempenho dos modelos no dataset VirusShare a partir do Coeficiente de Correlação de

Matthews.

Fonte: O autor (2023).

Com base nas métricas acurácia e MCC, o ALBERT possui maior desempenho na

versão balanceada da base de dados VirusSample, enquanto na versão original, o DistilBERT

é o modelo com melhor desempenho. Por sua vez, o DistilBERT supera os demais modelos na

versão balanceada da base VirusShare, enquanto o SecBERT se sai melhor que os demais na

versão original dessa base.

Já os próximos gráficos visam diferenciar os modelos com base na métrica F1-Score,

que representa a média harmônica ponderada entre a precisão, medida que avalia a proporção

de exemplos classificados corretamente como positivos em relação ao número total de

exemplos classificados como positivos, e a evocação, do inglês recall, a proporção de

exemplos positivos que foram classificados corretamente como positivos em relação ao

número total de exemplos positivos reais.
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Figura 8 - medida F1 dos modelos quando aplicados ao dataset VirusSample.

Fonte: O autor (2023).
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Figura 9 - medida F1 dos modelos quando aplicados ao dataset VirusShare.

Fonte: O autor (2023).

Com relação a métrica F1, o modelo ALBERT possui o maior desempenho entre todos

os modelos testados em ambas as versões da base de dados VirusSample. Já na base de dados

VirusShare, o DistilBERT e o cyBERT foram os modelos com maior desempenho nas versões

balanceada e original da base de dados, respectivamente.

Por fim, os próximos gráficos comparam o desempenho dos modelos tendo como

referência a métrica de Área sob a curva ROC, que visa medir o quão capaz os modelos são

de distinguir entre as classes do dataset.
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Figura 10 - medida de Área sob a curva ROC dos modelos avaliados no dataset VirusSample.

Fonte: O autor (2023).
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Figura 11 - medida de Área sob a curva ROC dos modelos avaliados no dataset VirusShare.

Fonte: O autor (2023).

A partir da métrica de área sob a curva ROC, os modelos voltados ao domínio de

segurança de informação alcançam maiores valores, com o SecBERT obtendo o melhor

desempenhona versão não balanceada da base de dados VirusSample e em ambas as versões

da base de dados VirusShare e com o cyBERT obtendo o melhor desempenho na versão

balanceada da base de dados VirusSample.

As tabelas a seguir visam comparar os valores obtidos pelos modelos avaliados neste

trabalho com os resultados dos modelos avaliados por Düzgün, et al. (2022). Os melhores

valores obtidos em cada uma das métricas estão destacados em negrito.
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Tabela 4 - Benchmark da base de dados VirusSample

Original Version Balanced Version

Model F1-Score AUC Score F1-Score AUC Score

Düzgün, et al. (2022)

Random Forest 0.55100 0.8962 0.8391 0.9688

SVM 0.7331 0.964 0.8975 0.99782

XGBoost 0.7351 0.9816 0.9031 0.9941

HGBoost 0.715 0.9776 0.8802 0.9841

LSTM 0.7788 0.9682 0.84 0.9478

BERT 0.7253 0.959 0.8948 0.9708

CANINE 0.7182 0.9621 0.9086 0.9828

Modelos avaliados neste trabalho

ALBERT 0.8945 0.9878 0.9334 0.9965

BERT 0.8751 0.9884 0.904 0.9904

DistilBERT 0.8524 0.9912 0.9136 0.9894

RoBERTa 0.7442 0.9874 0.9308 0.9915

SecBERT 0.7784 0.9917 0.915 0.9902

SecRoBERTa 0.8139 0.9907 0.8999 0.9937

XLNet 0.7472 0.9855 0.9186 0.9952

cyBERT 0.8618 0.9795 0.9293 0.9966

Fonte: O autor a partir dos dados de Düzgün, et al. (2022).
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Tabela 5 - Benchmark da base de dados VirusShare

Original Version Balanced Version

Model F1-Score AUC Score F1-Score AUC Score

Düzgün, et al. (2022)

Random Forest 0.60200 0.9334 0.6609 0.9304

SVM 0.7343 0.9226 0.7581 0.9404

XGBoost 0.7178 0.9666 0.8525 0.9577

HGBoost 0.6952 0.9582 0.747 0.9477

LSTM 0.7007 0.9359 0.7007 0.9359

BERT 0.7068 0.9432 0.7447 0.8843

CANINE 0.6955 0.9261 0.7284 0.9045

Modelos avaliados neste trabalho

ALBERT 0.7512 0.9829 0.8585 0.98

BERT 0.7532 0.9766 0.8491 0.9781

DistilBERT 0.7494 0.9831 0.9155 0.9901

RoBERTa 0.7386 0.9757 0.7991 0.9739

SecBERT 0.8051 0.9899 0.9009 0.9938

SecRoBERTa 0.7946 0.988 0.888 0.9888

XLNet 0.781 0.9877 0.8923 0.9869

cyBERT 0.8221 0.9748 0.8939 0.9911

Fonte: O autor a partir dos dados de Düzgün, et al. (2022)

Modelos baseados em transformers, como ALBERT, BERT, cyBERT, DistilBERT,

RoBERTa, SecBERT, SecRoBERTa e XLNet, apresentam desempenho geralmente superior

aos métodos tradicionais, como Random Forest, SVM, XGBoost, HGBoost e LSTM, em

termos de F1-Score e AUC Score, demonstrando sua eficácia na análise de malwares.

É importante notar que a versão balanceada do conjunto de dados tende a resultar em

um desempenho melhor em comparação com a versão original, indicando que o

balanceamento das classes pode ser crucial para aprimorar a precisão e a generalização dos

modelos em tarefas de classificação.
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6 CONCLUSÃO

Considerando os resultados obtidos, é possível concluir que tanto os modelos com

menos parâmetros, como o ALBERT e DistilBERT, como os modelos maiores ajustados ao

domínio de cibersegurança foram capazes de obter resultados superiores aos de modelos de

detecção estática no estado da arte.

Entre os modelos de transformers avaliados, o DistilBERT e o ALBERT se destacam

pelo tamanho reduzido de parâmetros e pelo bom desempenho na classificação. Isso sugere

que esses modelos podem ser particularmente adequados para a análise estática e classificação

de malwares, graças à sua combinação de desempenho e eficiência computacional.

Os modelos específicos para o domínio de cibersegurança, cyBERT, SecBERT e

SecRoBERTa, também apresentam resultados promissores, ressaltando a importância de

adaptar e otimizar modelos de linguagem para domínios específicos.

O desempenho do XLNet, apesar de ser um modelo permutado e treinado de forma

diferente em comparação ao BERT, apresenta um F1-Score e AUC Score comparáveis aos de

outros modelos de transformers. Isso indica que abordagens alternativas de treinamento,

como a permutação, podem ser uma área interessante para futuras pesquisas na detecção e

classificação de malwares.

A variação no desempenho entre os diferentes modelos de transformers sugere que a

escolha da arquitetura e a configuração dos hiperparâmetros podem ter um impacto

significativo na eficácia da classificação de malwares. Portanto, a experimentação e a

otimização desses aspectos são cruciais para alcançar melhores resultados na prática.

Embora os modelos baseados em transformers apresentem um desempenho geralmente

superior, é importante considerar trade-offs entre precisão, eficiência computacional e

complexidade do modelo ao selecionar o método mais adequado para uma aplicação

específica de análise de malwares.
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7 TRABALHOS FUTUROS

Com base nos resultados obtidos neste trabalho, trabalhos futuros podem focar na

classificação usando uma base de dados binária, isto é, contendo amostras de arquivos

maliciosos e não maliciosos. Isto permitirá a avaliação dos modelos como software antivírus.

Outra possível abordagem é o ajuste fino de diferentes arquiteturas em documentos do

domínio de cibersegurança voltados especificamente ao campo da detecção de malwares.

Existem diversas dificuldades para a detecção estática de malware, como a constante

evolução dos modelos e o surgimento de novas técnicas de ofuscação, além dos já conhecidos

softwares de ofuscação executáveis, como packers e crypters (ABOAOJA et al, 2022). Uma

vez que as bases de dados são compostas por amostras de malware de um período de tempo

específico, é possível que amostras mais recentes apresentem características diferentes

daquelas usadas pelas bases de dados adotadas neste trabalho.
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