
Universidade Federal de Pernambuco
Centro de Informática

Graduação em Ciência da Computação

O uso de algoritmos emergentes na
criação de arte através de criatividade

computacional

Vitor Sousa Silva

Proposta de Trabalho de Graduação
Orientador: Prof. Dr. Filipe C. de A. Calegario

Área(s): Criatividade computacional

Recife
23 de maio de 2023

Universidade Federal de Pernambuco
Centro de Informática

Vitor Sousa Silva

O uso de algoritmos emergentes na criação de arte através de
criatividade computacional

Trabalho apresentado ao Programa de Graduação em Ci-
ência da Computação do Centro de Informática da Univer-
sidade Federal de Pernambuco como requisito parcial para
obtenção do grau de Bacharel em Ciência da Computação.

Orientador: Prof. Dr. Filipe C. de A. Calegario

Recife
23 de maio de 2023

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Silva, Vitor Sousa.
 O uso de algoritmos emergentes na criação de arte através de criatividade
computacional / Vitor Sousa Silva. - Recife, 2023.
 41p : il., tab.

 Orientador(a): Filipe Carlos de Albuquerque Calegario
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Ciências da Computação - Bacharelado,
2023.

 1. Algoritmos. 2. Autômatos. 3. Criatividade. 4. Geração procedural. 5. Jogos.
I. Calegario, Filipe Carlos de Albuquerque. (Orientação). II. Título.

 000 CDD (22.ed.)

O caos é uma ordem por decifrar
—JOSÉ SARAMAGO (Homem Duplicado)

Agradecimentos

Gostaria de agradecer primeiramente a minha família, que me deu todo o suporte necessário
para chegar até aqui. Agradeço a minha mãe, Sonali, que lutou muito para garantir que nada
me faltasse; a meu avô, Waldemir, por ter sido meu exemplo moral, minha avó, Dulce, por me
dar sempre os melhores conselhos. Aos meus tios (Waldemir e Rodrigo) e tias (Edna, Carol,
Juliana e Raquel) que ofereceram pilares para que eu pudesse me inspirar desde muito antes de
ingressar no curso. Aos caroneiros Breno e Fábio, pelas idas e vindas de Caruaru ao Recife.

Ao meu professor e orientador, Filipe Calegario, de quem tive a oportunidade de ser monitor-
chefe por dois anos na disciplina de Sistemas Inteligentes, atividade esta que me deu experiên-
cia, me ingressou ao tema e fundamentou este trabalho.

A minha turma, que durante esses seis anos de curso foram minha família em Recife. Foram
colegas como Lucas e Marvin, meus sócios, que me ajudaram em tantos projetos e trabalhamos
em tantas empreitadas trilhadas juntos. Parceiros como Josué, Kristian e Mendonça (que me
confiou a ser padrinho de casamento) e outros tantos que juntos tiramos do papel a ideia campeã
de projetão do Flora e nos rendeu um ingresso na E.S.T.U.F.A e premiação na SBESC. A manos
e manas como Teixeira, Bruno, Luana, Melissa e Íris por transmitirem alegria nos corredores
do centro (e jogando os piores jogos de navegador possível). Aos colegas de podcast: Rodrigo,
Ruy, Christian, Arthur, Adriano, Felipe e Berg por tornarem orgânico o ambiente e vivência
universitária. Aos amigos mais centrados, Leão e Pedro, que transmitiram a mim visões mais
equilibradas e sábias durante essa jornada. A pessoas como Luna, que me convenceram do
propósito do código open-source. Parceiros como Zé e Felipe, que me encorajaram a alcançar
a vaga de estágio no Google, quando nunca pensei que seria capaz. A JP, Hiro, Mari, Thamy,
Thalles e Tamae, meus melhores amigos e amigas que descobri lá, por me mostrarem que o
ambiente de trabalho perfeito se faz com as melhores pessoas.

Tudo isso não seria possível sem a existência da Universidade Federal de Pernambuco e
do Centro de Informática. Foi através desta instituição que consegui meu primeiro estágio (e
emprego), na Superintendência de Tecnologia da Informação, ao lado de Fernanda e Linaldo,
colegas incomparáveis.

A estrutura de ponta do centro e qualidade incomparável dos professores (Castor, Sílvio,
Sérgio, Santa Cruz, Ricardo, Eudes, Paguso, Gustavo, Ruy, Manoel, Carelli, Carlos, Adriano,
Pasg, Germano, Francisco, Ricardo, Márcio, Giordano, Borba, Mário, Cristiano, Luciano, Ge-
ber, Alex Sandro, Paulo, Henrique, Augusto, Robson, Fábio e Jaelson) e professoras (Anjolina,
Kátia, Carina, Renata, Patrícia, Teresa, Maíra) que me capacitaram durante essa jornada a ser
o profissional que sou hoje.

Por fim, agradeço a Deus por ter me dado tudo que agradeci e tudo que jamais poderei
agradecer.

1

Resumo

Algoritmos emergentes simulam interações entre agentes simples e o ambiente em que estão
contidos. Os resultados das interações entre agentes são naturais e muitas vezes imprevisíveis.
Podemos citar, por exemplo: agrupamentos espontâneos, criação de estruturas particulares e
interações com o ambiente de forma especial. Algoritmos como esses são úteis na simulação
de ecossistemas e na visualização de cenários complexos, tendo proximidade com tópicos re-
lativos à inteligência artificial e algoritmos bioinspirados. Além disso, técnicas empregadas
na construção de algoritmos emergentes podem ser utilizadas na criatividade computacional
na produção de arte em seus diversos formatos (músicas, imagens, jogos, animações, etc), de
simulações e de ambientes espontâneos. Este trabalho tem como objetivo realizar uma revisão
integrada sobre algoritmos emergentes e sua relação com a criatividade computacional, bem
como ilustrar uma através de implementação como podem ser utilizados autômatos celulares
na geração de conteúdo artístico.

Palavras-chave: Algoritmos emergentes, autômatos celulares, criatividade computacional,
geração procedural de conteúdo.

2

Sumário

Resumo 2

Lista de Figuras 4

Lista de Abreviações 7

Introdução 8

Revisão literária 9
2.1 Fundamentos teóricos 9

2.1.1 Informática Teórica 9
2.1.2 Autômatos 9

2.1.2.1 Autômatos celulares 9
2.1.3 Sistemas de Lindenmayer 9
2.1.4 Fractais 10

2.2 Implementações 11
2.2.1 Conway’s Game of Life 11
2.2.2 Lenia 12
2.2.3 Jogos de areia caindo 13

2.3 Aplicações em contextos distintos 14
2.3.1 Uso na arquitetura e urbanismo 14
2.3.2 Uso em produção sonora 15
2.3.3 Uso em simulações físicas 16
2.3.4 Uso em criptografia 16
2.3.5 Uso em predição de cenários 17

2.4 Aplicações em desenvolvimento de jogos 17

Objetivos 18

Metodologia 19

Desenvolvimento 20
5.1 Introdução e trabalhos relacionados 20
5.2 Sumário de objetivos 21
5.3 Métricas 22

5.3.1 Acessibilidade 22
5.3.2 Comprimento de borda 23

3

SUMÁRIO 4

5.4 Implementação dos objetivos 24
5.4.1 Regras de vizinhança 24
5.4.2 Estados do autômato 25
5.4.3 Modelo Contínuo 26

5.5 Experimentos e resultados 27
5.5.1 Experimento 1 29
5.5.2 Experimento 2 30
5.5.3 Experimento 3 33
5.5.4 Experimento 4 34
5.5.5 Experimento 5 35
5.5.6 Experimento 6 35

5.6 Conclusão e trabalhos futuros 37

Referências Bibliográficas 38

Lista de Figuras

2.1 Fractal semelhante a uma árvore, Wikipédia. 10
2.2 Captura de estado inicial aleatório do Conway Game of Life, autor. 11
2.3 Captura do Lenia após algumas iterações, autor. 12
2.4 Captura do Sandspiel simulando ecossistema, autor. 13
2.5 Silo 468 feito por Lighting Design Collective, Tapio Rosenius. 14
2.6 Captura das 100 primeiras iterações do autômato gerado pela regra 30, Wol-

framTones. 15
2.7 Captura do cenário Particles do Liquidfun [1], autor. 16

5.1 Ilustração dos tipos de vizinhança implementados, autor. 24
5.2 Captura de execução da ferramenta desenvolvida no Unity: mapa em 3 dimen-

sões, autor. 26
5.3 Evolução do autômato utilizando apenas uma camada, autor. 27
5.4 Escalonamento da imagem do último estado do autômato, autor. 27
5.5 Evolução do autômato utilizando apenas uma camada em tons de cinza, autor. 27
5.6 Escalonamento da imagem do último estado do autômato em tons de cinza, autor. 27
5.7 Mapa gerado no experimento número 1, autor. 30
5.8 Mapa gerado no experimento 2, autor. 30
5.9 Figura 19 retirada de Automatic evolution of programs for procedural gene-

ration of terrains for video games: Accessibility and edge length constraints,
[2]. 31

5.10 Gráfico do experimento 2 de Pa x Fitness resultante das dez mil execuções, autor. 32
5.11 Gráfico do experimento 3 de Pa x Fitness resultante das dez mil execuções, autor. 33
5.12 À esquerda: gráfico do melhor fitness do experimento 3; À direita gráfico de

um fitness pertercente a função quadrática observada no experimento 3, autor. 34
5.13 Gráfico do experimento 4 de Pa x Fitness resultante das dez mil execuções, autor 35
5.14 Gráfico agregado combinando dados das técnicas de Neumann, Diagonal e Mo-

ore, autor. 36

5

Lista de Tabelas

5.1 Uma iteração de experimento com vizinhança Neumann. 29
5.2 Uma iteração de experimento com vizinhança Neumann Limitada 31
5.3 Dez mil iterações com método de vizinhança Neumann Limitada 32
5.4 Dez mil iterações com método de vizinhança Diagonal 33
5.5 Dez mil iterações com método de vizinhança Diagonal Limitada 34
5.6 Tabela de desvio padrão, valores mínimo e máximo, quartis e tempo médio de

execução para as abordagens Neumann, Diagonal e Moore. 36

6

Lista de Abreviações

CA Cellular Automata: autômato celular.

GPU Graphics Processing Unit: placa de processamento grá-
fico utilizada em computadores.

PCG Procedural Content Generation: geração procedural de
conteúdo.

PRNG Pseudo Random Number Generator: gerador de número
pseudo randômico.

RGB Red Green Blue: Vermelho Verde Azul.
RPG Role-Playing Game: jogo de interpretação de papeis.
RTS Real Time Strategy: gênero de jogo de estratégia em

tempo real.

7

Introdução

Autômatos celulares são estruturas celulares organizadas em grades e que evoluem em etapas
discretas de acordo com um conjunto de regras baseado no estado de células vizinhas [3]. As
células por si só são implementadas de forma bastante simples e possuem apenas alguns tipos e
capacidades (como interação células vizinhas, funções de deslocamento ou ainda mudança de
seu estado atual). As interações entre autômatos e ambientes podem ser utilizadas para visua-
lizar o comportamento de algoritmos emergentes [4]. O termo “emergente” é adotado quando
as entidades observadas demonstram características particulares apenas após interagirem com
outras partes, isto é, os agentes não apresentam o mesmo comportamento quando isolados.
Neste trabalho são discutidas abordagens emergentes para criação de criatividade computa-
cional. É realizada uma revisão literária com propósito de situar o leitor sobre trabalhos e
ferramentas distintas (autômatos, sistemas de Lindenmayer, fractais e algoritmos genéticos)
usadas para alcançar objetivos particulares. Como forma de demonstração, será produzida uma
ferramenta autômata para auxiliar desenvolvedores de jogos na geração procedural de mapas
para videogames. Os objetivos foram traçados a partir dos trabalhos futuros identificados nos
trabalhos futuros do texto de Ziegler [5]. Os objetivos dessa técnica são comparados com outra
abordagem emergente semelhante que utiliza algoritmos genéticos [2], as métricas comuns são
fundamentadas através de estudos geomorfológicos de outro trabalho [6]. Por fim, são comen-
tadas as conclusões a respeito dos resultados (viabilidade, vantagens e desvantagens) e feitas
sugestões para explorar e complementar esse trabalho.

8

Revisão literária

2.1 Fundamentos teóricos

2.1.1 Informática Teórica

A informática teórica é um ramo da computação que estuda diversos campos relacionados a
aplicações matemáticas e lógicas na ciência da computação, alguns objetos de seu estudo são:
algoritmos (estudos de computabilidade e complexidade), estruturas de dados (modelagem de
sistemas complexos), criptografia (e temas voltados a segurança), teoria dos números, teoria
dos jogos; dentre outros tópicos. Um de seus objetos de estudo é a teoria dos autômatos.

2.1.2 Autômatos

O significado do termo autômato é de origem grega, significa "agindo por vontade própria",
e já foi historicamente atribuído a diversas invenções capazes de realizar ações automáticas.
Por vezes, estas criações são semelhantes a seres humanos ou outros organismos. No desen-
volvimento de jogos, autômatos são utilizados para simular comportamentos que enriquecem a
imersão em ambientes e agentes. Na computação, autômatos são fundamentais para entender
o comportamento lógico de uma máquina computacional: uma estrutura com capacidade de
interpretar um alfabeto pré-definido, estando organizada em um número finito de estados, e
que possui funções que permitem alternar o estado atual, podendo ou não, ao fim da entrada,
apresentar um resultado.

2.1.2.1 Autômatos celulares

Autômatos celulares são um tipo de autômato organizado em uma grade (sem tamanho pré-
definido) dividida em unidades chamadas de células. Assim como um autômato tradicional,
cada célula possui um número finito de estados e funções que interagem com o estado atual,
porém, as funções exercem um papel fundamental na interação com as células vizinhas. A
execução de um CA não ocorre pela leitura de uma entrada (como um automato tradicional),
mas sim por sucessivas aplicações de uma função global fixa a um dado estado inicial, a partir
disso, o automato "ganha vida".

2.1.3 Sistemas de Lindenmayer

Sistemas de Lindenmayer, também conhecidos por sua abreviação em inglês L-systems, são sis-
temas gerados a partir de uma teoria axiomática elaborada pelo biólogo Aristid Lindenmayer

9

2.1 FUNDAMENTOS TEÓRICOS 10

em 1968 no artigo Mathematical models for cellular interactions in development II. Simple
and branching filaments with two-sided inputs, publicado no 18o volume do jornal de biologia
teórica. Os sistemas são baseados na aplicação de regras de escrita que produzem sequências
de estruturas multicelulares. As estruturas descritas por Lindenmayer começam a ser represen-
tadas através de caracteres atômicos e, a partir da aplicação das regras, vão moldando novas
cadeias, as quais serão suscetível a outras transformações. Lindenmayer desenvolve sua teoria
partindo de modelos gramaticais para lineares, à grafos, seguidos de um modelo bidimensional,
e por fim demonstrando representações tridimensionais.

2.1.4 Fractais

Figura 2.1 Fractal semelhante a uma árvore, Wikipédia.

Fractais são estruturas geométricas estudadas na matemática e que podem ser encontradas em
outras áreas, como: arte, biologia, arquitetura e tecnologia; tendo papel fundamental na teoria
do caos. A definição concreta do conceito matemático que identifica um fractal é complexa, po-
rém, suas características são bastante claras e únicas. A "auto-semelhança"é uma dessas parti-
cularidades: não são observadas mudanças em sua estrutura, não importa o quão for aumentado
o nível de detalhamento (zoom) em um fractal; isto resulta na característica de "nenhuma-parte-
diferenciável", pois normalmente, pode-se verificar o tamanho de uma estrutura analisando a
menor de suas partes, entretanto, por suas dimensões serem recursivamente infinitas, esse traço
não se aplica a um fractal. Na imagem acima, podemos verificar a repetição de um padrão se-
melhante a um "Y"(haste que se divide em duas) e resulta numa estrutura visualmente próxima
a uma árvore.

2.2 IMPLEMENTAÇÕES 11

2.2 Implementações

Algumas implementações que representam bem a utilização de autômatos e estruturas seme-
lhantes para produção de conteúdo criativo.

2.2.1 Conway’s Game of Life

Figura 2.2 Captura de estado inicial aleatório do Conway Game of Life, autor.

Game of life, em português: "jogo da vida", foi um jogo desenvolvido por John Horton Conway
em 1970, utilizando a linguagem de programação Pascal, sendo este o exemplo mais conhecido
de um automato celular [7]. O jogo consiste em uma grade dividida em quadrados (chamadas
de células) de mesma dimensão os quais possuem dois estados: desativados (identificados pela
cor branca), ou ativados (identificados pela cor preta). Cada célula pode interagir apenas com
as outras 8 células de sua vizinhança (isto é: vizinhos horizontais e verticais bem como as
diagonais). O jogo não necessita de um jogador para interagir com ele, sendo sua evolução
determinada somente pela sua configuração de estado inicial. Entretanto, existe a possibilidade
do jogador interagir com o jogo: ele pode modificar a configuração inicial ou em interferir em
qualquer iteração seguinte, o jogo então aplicará as regras, de forma idêntica a sua execução
automática. As regras gerais do Game of life podem ser sintetizadas como [8]:

• Subpopulação: qualquer célula viva com menos de dois vizinhos se tornará uma célula
morta.

• Qualquer célula viva com dois ou três vizinhos permanece viva (equilíbrio).

• Superpopulação: qualquer célula com mais de três vizinhos vivos se tornará uma célula
morta.

• Reprodução: qualquer célula morta com exatos três vizinhos se tornará uma célula viva.

2.2 IMPLEMENTAÇÕES 12

2.2.2 Lenia

Figura 2.3 Captura do Lenia após algumas iterações, autor.

Lenia é um projeto inspirado no Conway’s Game of Life, ele foi desenvolvido em 2015 origi-
nalmente com o nome de Primordia, utilizando da linguagem de programação JavaScript [9].
A principal diferenciação entre Lenia e sua inspiração original é o uso de espaços contínuos.
No novo ambiente em questão os autômatos não habitam mais a grade celular definida discre-
tamente. Isso expande as possibilidades de interação e organização entre os autômatos, bem
como permite a visualização de simulações mais ricas em detalhes gráficos. O projeto já foi
portado, re-escrito e expandido para outras linguagens de programação como MathLab, Python
(onde versões 3D e 4D foram desenvolvidas e outras particularidades descobertas), WebGL
(versão otimizada para lidar com processamento feito por placas de processamento gráfico de-
dicado (GPUs) e que está ilustrada na imagem acima).

2.2 IMPLEMENTAÇÕES 13

2.2.3 Jogos de areia caindo

Figura 2.4 Captura do Sandspiel simulando ecossistema, autor.

Jogos de areia caindo, mais facilmente identificados pelo termo em inglês, falling-sand games,
são implementações que simulam ecossistemas utilizando autômatos. A representação da areia
é feita em pixels que podem ser controlados pelo usuário. De forma semelhante às células
utilizadas no Conway’s Game of Life, ao adicionar ou remover grãos ocorrem interações com
seus vizinhos, sendo o grande diferencial a quantidade distinta de interações e tipos de grãos
(identificados cada classe por sua cor). Essa forma criativa de demonstração de um ambiente
é sem dúvidas mais atrativa que as anteriores por ser visualmente agradável e dar ao usuário o
controle do ambiente de forma intuitiva. Na imagem acima está uma captura do jogo Sandspiel,
desenvolvido no fim de 2018 pelo artista computacional Max Bitkker. O jogo foi programado
utilizando JavaScript, Rust e WebAssembly e está disponível gratuitamente para navegadores.
Um de seus diferenciais é possuir 20 elementos que interagem entre si e permitem ao jogador
simular um ecossistema com bastante riqueza criativa. Como descrito em publicação que ex-
plica sua trajetória artística e detalhes de desenvolvimento do Sandspiel, este é o terceiro (ou
quarto) projeto de Bittker envolvendo a temática falling-sand, o primeiro foi desenvolvido em
2015 [10]. Algumas interações de autômatos e seus resultados que ocorrem em Sandspiel são:
queima quando óleo, gás, madeira, plantas, sementes ou fungos entram em contato com lava,
fogo; disseminação de gelo, plantas, fungos ou sementes quando entram em contato com água;
formação de pedra a partir do contato de lava e água, dentre outras interações. O código do
projeto é aberto e continua sendo mantido por Max no seu GitHub.

2.3 APLICAÇÕES EM CONTEXTOS DISTINTOS 14

2.3 Aplicações em contextos distintos

2.3.1 Uso na arquitetura e urbanismo

Figura 2.5 Silo 468 feito por Lighting Design Collective, Tapio Rosenius.

A aplicação de algoritmos emergentes utilizando sensores para promoção da criatividade na ilu-
minação pública criativa foi um dos tema explorado no artigo Design possibilities of emergent
algorithm for adaptive lighting system, desenvolvido em conjunto por universidades e arquite-
tos de países nórdicos. O estudo envolveu analisar o uso de algoritmos emergentes, sistemas
de Lindenmayer e algoritmos de enxame com o objetivo de otimizar recursos da iluminação
pública. A proposta de iluminação urbana adaptativa do artigo, através da observação dos al-
goritmos citados, visa criar formas criativas de proporcionar experiências artísticas e estéticas
além de poupar recursos elétricos, mas sem deixar pessoas no escuro [11]. Para realizar este
trabalho foi proposto utilizar da ubiquidade e da computação penetrante para desenvolver esta
ambiente inteligente. Dentre os requisitos funcionais, foi necessário elencar a necessidade de
reservar uma interface para que designers e arquitetos interfiram no comportamento dos algorit-
mos de forma a atingir comportamentos artísticos esperados. A imagem acima é uma captura
do Silo 468: uma peça arquitetônica localizada em Helsinque, Finlândia, que utiliza da tec-
nologia de enxames para controlar sua iluminação. O velho silo foi reformado para servir de
estrutura decorativa, ele possui 2012 aberturas (450 com espelhos de metal com posição contro-
lada pelo vento) e sua pintura de cor discreta possibilita uma maior apreciação visual das luzes
controladas por um algoritmo. O controle é feito utilizando o framework OpenFrameworks
feito em C++, arcabouço (framework) o qual é otimizado para desenvolvimento de criatividade
computacional [12].

2.3 APLICAÇÕES EM CONTEXTOS DISTINTOS 15

2.3.2 Uso em produção sonora

Figura 2.6 Captura das 100 primeiras iterações do autômato gerado pela regra 30, WolframTones.

No artigo: Interactive sonification exploring emergent behavior applying models for biological
information and listening, é proposta a criação de um framework que possibilite a transforma-
ção de dados em som. O processo, descrito como sonificação, é um esforço para produzir e
captar as nuances envolvidas no ambiente sonoro. Para testes são utilizados duas ferramentas
capazes conhecidas por sua capacidade de emergir resultados inesperados algoritmo de enxame
e um circuito elétrico do tipo de de Chua (Chua circuit). Um diferencial desta implementação
frente às abordagens citadas anteriormente é a maior possibilidade de exploração dessa dimen-
são. A dimensão sonora tem características que permitem várias configurações únicas: altura,
sonoridade, qualidade do tom, duração, silêncio, repetição e padrão [13].
WolframTones é uma aplicação desenvolvida pelo instituto Wolfram Research a partir das des-
cobertas do homônimo, Stephen Wolfram, compiladas em seu livro A New Kind of Science,
publicado em 2002. Em seus experimentos na década de 1980, Wolfram trabalhou com autô-
matos unidimensionais. Para explorar o potencial generativo desses autômatos, ele observou
que, a partir de regras de geração de padrões, era possível gerar estruturas regulares e outras
nem tanto. Das 256 chamadas regras elementais, a regra número 30 é a primeira a apresen-
tar comportamento irregular [14]. Os fundamentos da produção musical do WolframTones
utilizam da capacidade emergente dessas regras únicas: os estados do autômato atuam como
identificadores de notas musicais e suas alturas. O procedimento de adaptação da representação
do autômato em som consiste em: fatiar as laterais figura do autômato a partir do meio para
obter largura 12 (número que representa quantidade de tonalidades musicais); rotacionar em
90 graus as figuras geradas pelo autômato; adicionar as estruturas fatiadas uma após a outra, a
partir da primeira (desta forma é preservada a regularidade do autômato, e portanto, a musical).
Após isto, a leitura feita pelo sintetizador deve tratar a figura como uma partitura, onde a célu-
las ativas indicam presença de um respectivo tom. O site permite que o usuário personalize o
tipo de regra, a altura, instrumentos, escala, ritmo e duração. O WolframTones também mostra
o autômato e regras que geraram a composição (como a da figura ilustrada acima), a qual pode
ir até 30 segundos de duração, sendo possível salvar a melodia.

2.3 APLICAÇÕES EM CONTEXTOS DISTINTOS 16

2.3.3 Uso em simulações físicas

Figura 2.7 Captura do cenário Particles do Liquidfun [1], autor.

Capacidade emergentes podem ser utilizadas na experimentação de interação de partículas e
seus comportamentos físicos resultantes. Liquidfun é um projeto implementado em várias lin-
guagens de programação (C++, Java e JavaScript) de código aberto fornecido pelo Google que
possibilita simulações de partículas em situações distintas [1]. Neste cenário, as partículas
são os elementos que induzem comportamento emergente. Em algumas das simulações de de-
monstração é possível o usuário adicionar partículas e/ou interagir com objetos. As interações
entre partículas permitem observar propriedades físicas como elasticidade, tensão, gravidade,
empuxo, dentre outras. Na imagem acima, a captura foi realizada após o pentágono cinza ser
solto (em queda livre) e entrar em contato com partículas vermelhas triangulares, ocasionando
na transmissão da energia potencial gravitacional em energia cinética. Essa interação provoca
pressão e contato elástico das partículas do sistema (agregado de triângulos), causando impul-
são e transbordamento de alguns triângulos.
Os autômatos também podem ser utilizados para simular situações como modelos de evacu-
ação de ambientes, que visam simular fluxo, comportamento e potenciais riscos envolvendo
deslocamento de pessoas em ocasiões distintas. De forma semelhante, o comportamento no
trânsito veicular também pode ser simulado, onde fatores ímpares como limites de velocidade
e sinalização distinguem esse ambiente do citado anteriormente. A passividade do agente pe-
rante o ambiente é verificada no artigo que discute o impacto (positivo ou negativo) do vento e
das marés na trajetória marítima de um navio.

2.3.4 Uso em criptografia

Por possuírem características que permitem dispersão e criação de aleatoriedade, autômatos
podem ser utilizados na encriptação de imagens. A aplicação, descrita no artigo RGB Image
Encryption through Cellular Automata, S-Box and the Lorenz System faz uso da regra número
30 (a mesma descoberta por Wolfram, citada e usada na subseção: "Uso em produção sonora"),
que segundo o artigo, pode ser considerada uma geradora de números pseudoaleatório (em

2.4 APLICAÇÕES EM DESENVOLVIMENTO DE JOGOS 17

seu acrônimo em inglês, PRNG). A observação que se faz é relacionada a criptografia: para
calcular-se o estado do autômato da regra 30 a partir do estado inicial é uma tarefa simples;
entretanto, encontrar o passo anterior a partir de um dado estado qualquer é uma atividade
complexa. Essa complexidade computacional inerente permite utilizar o autômato da regra 30
como cifra de uma das chaves públicas usada para codificar a imagem [15].

2.3.5 Uso em predição de cenários

Autômatos celulares contribuem em pesquisas relacionadas a predição e modelagem de cená-
rios futuros. Alimentados com dados de séries temporais e auxiliados por abordagens especí-
ficas relativas ao campo de estudo, autômatos servem de ferramenta para geração de possíveis
desfechos. No Brasil, trabalhos como Previsão da demanda hídrica de Fortaleza por meio
de autômatos celulares ou ainda Simulação de cenários urbanos por autômato celular para
modelagem do crescimento de Campinas – SP , Brasil, utilizam de séries temporais para com-
preensão da evolução do ambiente estudado. O processo de início lida com a transformação
de cada mapa em uma matriz, então, cada célula da matriz é atribuída a uma classe estudada;
logo, a partir da evolução celular observada e da verificação estatísticas relacionadas ao objeto
de estudo (para calibração do modelo), o autômato é capaz de gerar novos estados (predições)
do que foi modelado.

2.4 Aplicações em desenvolvimento de jogos

A geração procedural é uma técnica antiga e que foi bastante utilizada em períodos onde as
capacidades de hardware (principalmente memória/armazenamento) eram limitadas. Seu ob-
jetivo é possibilitar uma maior variabilidade de: ambiente, agentes, equipamento, ou outros
componentes de um jogo. No passado, a solução encontrada foi explorar da capacidade de pro-
cessamento (que também era escassa) para adicionar conteúdo gerado em tempo de execução.
As abordagens mais comuns incluem o uso de seeds (sementes, em tradução livre), valores
normalmente numéricos que, aplicadas em algoritmos matemáticos, implementam diversidade
através de aleatoriedade ao conteúdo jogado. Atualmente, os componentes eletrônicos de com-
putadores, smartphones e consoles (dispositivos para jogatina) não carecem mais do uso de ge-
ração procedural para otimização de recursos, dado os robustos hardwares disponíveis a baixo
custo no mercado. Entretanto, a geração procedural tem um papel importante na indústria de
jogos, pois permite que desenvolvedores de menor porte (popularmente conhecidos como in-
dies) consigam expandir a duração da jogatina e quantidade cenários. Essa técnica os coloca,
de certa forma, em pé de igualdade em comparação com desenvolvedoras de médio-grande
porte, pois reduz o tempo de desenvolvimento e, portanto, os impactos no orçamento. Alguns
exemplos de jogos e seu uso da geração procedural são:

• Minecraft Dungeons e No Man’s Sky (geração de mapa)

• Binding of Isaac (posicionamento de itens e inimigos no mapa)

• Borderlands 2 (randomização de equipamento)

Objetivos

Neste trabalho serão apresentados conceitos de autômatos celulares e projetos existentes na
área de criatividade computacional que foram realizados utilizando os mesmos. Através da
elaboração de uma biblioteca de geração de mapas para jogos com auxílio de autômatos celu-
lares, será demonstrado como é o processo de implementação de um automato celular visando
aplicação na área de criatividade computacional (geração procedural de mapas para jogos do
estilo RTS). Esta biblioteca será implementada utilizando fundamentos e sugestões de trabalhos
futuros descritos num trabalho criado e validado através de partidas disputadas entre jogado-
res em mapas gerados usando autômatos [5]. Para quantificar os resultados atingidos e poder
compará-los com outras implementações, são utilizadas métricas abordadas por um artigo que
estuda o mapas gerados por algoritmos genéticos [2]. O objetivo de ambas as obras utilizadas
como fundamento (e também deste trabalho) é o mesmo: gerar mapas de qualidade que des-
pertem interesse e retenham jogadores ao jogo. Este exemplo será construído após pesquisa
e estudo da literatura existente, sendo abordados também alguns tópicos tangentes, como: in-
formática teórica e algoritmos genéticos. Também é de interesse desse trabalho enriquecer a
literatura dessas áreas ao compilar técnicas utilizadas na produção criatividade computacional.

18

Metodologia

A implementação presente neste artigo é resultado da pesquisa e revisão da literatura existente.
A ferramenta e métodos empregados tentam atingir, através das métricas de qualidade apresen-
tadas, um gerador de mapas quantitativo para ser reutilizado por desenvolvedores de jogos. Em
princípio o domínio específico do mapa é para jogos RTS, pois foi fundamentado utilizando
literatura descrita para tal. As amostras de mapas foram geradas pela ferramenta, assim como
o cálculo das métricas estarão implementadas junto à ferramenta. A análise da qualidade de
um mapa gerado é feita com base em métodos descritos em artigos pré-existentes (a descrição
aprofundada do método está na seção de desenvolvimento). Algumas das limitações existentes
são: falta de coleta de opinião de desenvolvedores de jogos e a falta de revisão de especialistas
sobre os padrões implementados em Unity e C#. Não existem conflitos de interesse relaciona-
dos a este trabalho. O cerne do método visa produzir uma ferramenta que siga os princípios
validados com o público de Ziegler [5] e competitiva em relação a implementação baseada
em algoritmos genéticos de Frade [2]. Então, a confiabilidade da ferramenta desenvolvida é
baseada em alguns de seus requisitos (funcionais e não funcionais):

• Possuir poucos requisitos de hardware para ser utilizada: sendo idealmente executada
num desktop tradicional;

• Possuir funcionalidades simples de serem executadas: levar poucos passos para usuário
conseguir gerar mapa desejado;

• Permitir exportação seus resultados (mapas) em formatos (de imagem ou de dados) livres
e universais: para poderem ser utilizados por outros softwares, como Blender, Unity,
Godot;

• Permitir personalização de parâmetros;

• Capacidade de apresentar/exportar resultados: para garantir confiabilidade ao usuário;

• Ser open-source e permissiva a modificações;

19

Desenvolvimento

Neste capítulo é descrito o processo de desenvolvimento da ferramenta. Partindo da introdu-
ção (onde são descritos os objetivos e as tomadas de decisão que impactaram no código a ser
desenvolvido), para análise do código (onde o código é exposto e comentado em seus por-
menores) que serve de fundamento para compreensão aprofundada das variáveis do capítulo
de resultados. Durante o desenvolvimento, para exemplificar de forma direta e não restritiva
quanto a implementação concreta, as sugestões de pseudocódigo foram feitas numa linguagem
semelhante a Python.

5.1 Introdução e trabalhos relacionados

Após realizar a leitura e revisão da literatura existente, foram analisados projetos concluídos, a
fim de ser compreendido o contexto em que se encontra o estado da arte. A ideia e motivação
inicial era elaborar uma ferramenta para geração de mapas no estilo de dungeons (arcabouços
ou masmorras) utilizando CAs. Esse tipo de mapa é bastante popular em jogos de RPG, sua
estrutura normalmente simula aparência de minas: tem organização labiríntica, podendo conter
áreas largas interligadas por conexões estreitas (que representam túneis). Entretanto, já exis-
tem abordagens na literatura que exploraram muitas possibilidades utilizando esse modelo de
geração e esta mesma aplicação [16].

O foco da minha proposta de exploração e desenvolvimento foi definido após leitura dos tra-
balhos futuros do artigo Generating Real-Time Strategy Heightmaps using Cellular Automata
(em tradução contextualizada: "geração de mapas de altura para jogos de estratégia em tempo
real utilizando autômatos celulares"), pois há uma diferenciação na implementação do autô-
mato tradicionalmente utilizado (os autores geram vários mapas a partir de autômatos e cada
mapa é sobreposto para geração de um mapa final). As sugestões dos autores para trabalhos
futuros são baseadas em modificações do que foi realizado no artigo. Tendo essas propostas
em mente, foi necessário adaptar os critérios avaliativos da implementação deles: o artigo em
questão utiliza como métrica de seus experimentos a satisfação de jogadores do jogo Supreme
Commander para com o mapa gerado. Não houve como avaliar empiricamente os mapas gera-
dos pela minha implementação com jogadores, então, para não tornar um fator limitante para
outras pesquisas, decidi sair do escopo do jogo utilizado por este artigo. Ainda assim, minha
proposta de avaliação parte da conclusão de uma das respostas coletadas no artigo: mapas com
tipo de terreno diverso e balanceado (proporcionalidade entre áreas de biomas e acessibilidade
de terrenos) são fatores bem avaliados pelos jogadores. Entretanto, nenhuma métrica para ava-
liação deste fator é descrita no artigo, então, para avaliar a qualidade de um mapa foi necessário

20

5.2 SUMÁRIO DE OBJETIVOS 21

utilizar de alternativas descritas em outro artigo para serem utilizadas como métrica.
No artigo Automatic evolution of programs for procedural generation of terrains for video

games: Accessibility and edge length constraints (em tradução livre: evolução automática de
programas para geração procedural de terrenos para vídeo-games: restrições de acessibilidade e
comprimentos de bordas), são descritas técnicas utilizadas para quantificar e avaliar a qualidade
de mapas gerados através da técnica de algoritmos genéticos [2]. A qualidade de um mapa,
neste artigo, tem relação com a percepção de apelo visual que um jogador teria para com o mapa
desenvolvido. As variáveis utilizadas para calcular o fitness (função matemática que define o
quão bem é um indivíduo produto de algoritmo genético) são acessibilidade e o comprimento de
borda. As variáveis estão relacionadas da seguinte forma: um mapa completamente acessível
é desinteressante ao jogador, dado que é um mapa plano; o apelo visual de um mapa contendo
muitos acidentes geográficos terá grande um grande valor para variável comprimento de bordas,
mas prejudicará a exploração e viabilidade de deslocamento do jogador.

Então, o desenvolvimento deste trabalho foi fundamentado ao associar a técnica e sugestões
de implementação do primeiro artigo citado as abordagens de avaliação do segundo artigo.

Em seguida, foi escolhido o motor de jogo (em inglês, game engine) Unity para ser desen-
volvida a técnica de PCG. Os principais fatores levados em consideração na escolha da engine
foram: a grande comunidade de desenvolvedores e de projetos construídos em Unity, possibi-
lidade de exportação multiplataforma do Unity (estão disponíveis: dispositivos móveis, com-
putadores, consoles, aparelhos de realidade aumentada/virtual, etc.) e também a complexidade
de implementação; pois a intenção é que seja útil para a maior quantidade de desenvolvedores
possível e o código possa ser adaptado, extensível e compreensível aos leitores.

5.2 Sumário de objetivos

Como forma enumerar e facilitar a análise de conteúdo desenvolvido, os itens abaixo foram
traduzidos da seção de trabalhos futuros do artigo Generating Real-Time Strategy Heightmaps
using Cellular Automata Generating Real-Time Strategy Heightmaps using Cellular Automata:

1. Experimentar adicionar outras regras de vizinhança, como a de Moore ou outros tipos
diferentes de vizinhança.

2. Experimentar adicionar mais estados ao autômato (além dos tradicionais ativado e desa-
tivado, ou vivo/morto) de forma a gerar todo o mapa em apenas uma camada.

Entretanto, a abordagem apresentada no artigo desconsidera diretamente o apelo visual do
mapa, os autores avaliam o critério de "fun"(diversão) para jogadores vencedores e perdedores
de uma partida utilizando o mapa gerado. Esse fator é apresentado em [2] como "apelo vi-
sual", e segundo ele, influencia positivamente na avaliação do jogador. Minha implementação
tenta utilizar da função fitness apresentadas no em [2] como quantificador do apelo visual, mas
saindo do escopo de algoritmos genéticos e trazendo implementação para a área de autôma-
tos celulares. Através dessa adaptação, por não necessitar de uma da mesma quantidade de
detalhes de implementação utilizada no algoritmo genético, utilizando da mecânica de regras
simples de autômatos, tenta-se atingir bons resultados.

5.3 MÉTRICAS 22

5.3 Métricas

5.3.1 Acessibilidade

No artigo Automatic evolution of programs for procedural generation of terrains for video
games: Accessibility and edge length constraints as métricas utilizadas para otimizar a função
de fitness do algoritmo genético são baseadas em cálculos topográficos Horn(1981) para avaliar
o declive de um terreno. De forma a simplificar a compreensão, a altura é calculada como eixo
Z (que denomina as variáveis da tabela abaixo).

z1 z2 z3

z4 z5 z6

z7 z8 z9

Considerando a organização celular do autômato de tamanho 3x3 da tabela acima, os au-
tores do artigo Hill shading and the reflectance map, Horn(1981) utilizam de técnicas para
calcular o declive (Slope: fórmula 5.1) percentual em relação a célula z5.

Slope(%) = 100×

√(
∂ f
∂x

)2

+

(
∂ f
∂y

)2

(5.1)

As derivadas em relação a x e y são calculadas visando encontrar a inclinação deste bloco
de 9 células. Para tal, é realizada a subtração da altura (eixo Z) em ambos os eixos (leste-
oeste: fórmula 5.2; norte-sul: fórmula 5.3), desconsiderando a célula central z5, isso justifica
as variáveis z2, z4, z6 e z8 (todos vizinhos imediatos de z5) sempre encontrarem-se duplicados
em seus cálculos (para compensar a ausência de z5).

∂ f
∂x

≈ z3 +2z6 + z9 − (z1 +2z4 + z7)

8∆x
(5.2)

∂ f
∂y

≈ (z7 +2z8 + z9)− (z1 +2z2 + z3)

8∆y
(5.3)

A partir da aplicação das operações acima, teremos obtido um mapa A, de dimensões iguais
aos do autômato celular, o qual identifica as células acessíveis como 0 e não-acessíveis como 1.
Para calcular valor de acessibilidade do terreno, é necessário efetuar o produto das dimensões
do terreno dividido pela maior quantidade de blocos acessíveis (maior área acessível contínua
no terreno, A+), tomemos v como esse percentual relativo a quantidade de células total.

v =
largura×altura

A+
(5.4)

O método utilizado na minha implementação para encontrar o A+ foi através do algoritmo
de preenchimento de área (flood fill), que identifica o maior conjunto de elementos dada uma
condição (no caso, se a célula é acessível), a partir de uma célula inicial. A+ não pode ser zero.

5.3 MÉTRICAS 23

Após utilizá-lo várias vezes, utilizando como origem todas as células do mapa, é atribuída a
maior área como A+. Algumas heurísticas podem ser utilizadas para reduzir o número de
execuções: utilizando um conjunto é possível evitar que uma célula que já foi encontrada seja
verificada novamente no flood fill; ou para a execução na célula atual, caso a área retornada
ultrapasse 50%.

conjunto_visitado = {}
def Flood_Fill(x, y)

se par(x,y) pertence a conjunto_visitado
\ OU tamanho(conjunto_visitado) >
\ tamanho(quantidade_celulas_automato)/2:
retorne

conjunto_visitado->adicionarPar(x,y)

Flood_Fill(x-1, y-1)
Flood_Fill(x, y+1)
Flood_Fill(x+1, y)
Flood_Fill(x+1, y+1)
retorne

Para normalizar os valores, tomemos com vS o valor de acessibilidade subtraído do limite
desejado pelo usuário (vt). O cálculo de vt é definido pelo quociente entre o produto as di-
mensões de altura e largura e a função piso do mesmo produto multiplicado pelo limite de área
acessível estabelecido pelo usuário, pa (que varia de diferente de 0 até 1). A função piso serve
para atingir a condição de parada do algoritmo genético.

vS = |v− vt | (5.5)

vt =
largura×altura

⌈largura×altura× pa⌉
(5.6)

5.3.2 Comprimento de borda

De forma semelhante a elaborada acima, os cálculos realizados para obter-se valores de com-
primento de borda são bastante semelhantes

• E: relação entre total de células e quantas estão numa bordas.

• E+: indica a quantidade de células inacessíveis. E+ não pode ser zero.

• Et : limite de células inacessíveis desejado pelo usuário.

• pe: percentual de comprimento de borda desejado em relação a área total (varia de dife-
rente de 0 até 1).

5.4 IMPLEMENTAÇÃO DOS OBJETIVOS 24

• ∇2f: representa o operador de Laplace aplicado ao mapa A (acessibilidade das células),
definido na subseção anterior. Se o resultado da aplicação da fórmula for positivo, então
o valor faz parte de uma borda.

E =
largura×altura

E+
(5.7)

ES = |E −Et | (5.8)

Et =
largura×altura

⌈largura×altura× pe⌉
(5.9)

∇
2 f ≈ 8z5 − (z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9) (5.10)

Por fim, o fitness é regulado através do uso de 2 pesos wa e we:

f itness = wa ∗ vs +we ∗Es (5.11)

5.4 Implementação dos objetivos

5.4.1 Regras de vizinhança

Em [2], os experimentos são realizados utilizando a vizinhança de Von Neumann para avaliar
o estado dos autômatos vizinhos. Na imagem abaixo, estão ilustradas as diferenças entre as
vizinhanças implementadas. O referencial é o quadrado central (x,y).

Figura 5.1 Ilustração dos tipos de vizinhança implementados, autor.

Antes de verificar se os vizinhos são acessíveis, é necessário verificar se se eles estão dentro
dos limites do mapa:

5.4 IMPLEMENTAÇÃO DOS OBJETIVOS 25

def Verificar_Vizinhanca(x, y)
Se x pertence ao mapa E y pertence ao mapa:

retorne Verdadeiro
Senão

retorne Falso

A partir da implementação acima, basta percorrer cada célula do mapa e salvar os valores
de quantidade de vizinhos vivo/mortos para cada célula visitada.

def Von_Neumann()
mapa_vizinhos = []
Para x no intervalo (0, mapa.largura)

Para y no intervalo (0, mapa.altura)
Se Verificar_Vizinhanca(x, y-1)
mapa_vizinhos[x, y] = mapa[x, y-1] + mapa_vizinhos[x, y]

Se Verificar_Vizinhanca(x-1, y)
mapa_vizinhos[x, y] = mapa[x-1, y] + mapa_vizinhos[x, y]

Se Verificar_Vizinhanca(x+1, y)
mapa_vizinhos[x, y] = mapa[x+1, y] + mapa_vizinhos[x, y]

Se Verificar_Vizinhanca(x, y+1)
mapa_vizinhos[x, y] = mapa[x, y+1] + mapa_vizinhos[x, y]

De forma semelhante, a vizinhança diagonal funciona modificando as 4 condicionais do
código acima

def Diagonal()
...
Se Verificar_Vizinhanca(x-1, y-1)

mapa_vizinhos[x, y] = mapa[x-1, y-1] + mapa_vizinhos[x, y]
Se Verificar_Vizinhanca(x+1, y-1)

mapa_vizinhos[x, y] = mapa[x+1, y-1] + mapa_vizinhos[x, y]
Se Verificar_Vizinhanca(x+1, y-1)

mapa_vizinhos[x, y] = mapa[x-1, y+1] + mapa_vizinhos[x, y]
Se Verificar_Vizinhanca(x+1, y+1)

mapa_vizinhos[x, y] = mapa[x+1, y+1] + mapa_vizinhos[x, y]

A vizinhança de Moore funciona combinando todas as condicionais vistas nas duas abor-
dagens acima.

5.4.2 Estados do autômato

A sugestão de um ou mais estados extras foi satisfeita de forma a adicionar o estado de imutável
a um CA. O estado imutável torna uma célula do autômato inalterável por quaisquer regras de
vizinhança que tentem interagir. Normalmente, como descrito na seção de revisão literária, um
autômato possui como motor a aplicação de uma regra em toda sua estrutura. Ao adicionar o

5.4 IMPLEMENTAÇÃO DOS OBJETIVOS 26

estado imutável, é esperado que o mapa preserve mais de suas características a cada iteração.
Uma possível aplicação do estado imutável, por exemplo, é manter um layout pré-definido pelo
usuário, ou ainda definir as bordas o mapa como imutáveis, de forma que as bordas possam ser
sempre inacessíveis.

5.4.3 Modelo Contínuo

Figura 5.2 Captura de execução da ferramenta desenvolvida no Unity: mapa em 3 dimensões, autor.

Como sugerido: expandir o modelo de autômatos celulares para adicionar estados contínuos
permite utilizar essa variável contínua como referencial de altura. Até então, cada célula do au-
tomato precisaria ter uma altura definida por padrão e essa altura seria modificada por funções
de erosão (pós-processadas). Através da implementação do atributo contínuo, torna-se possível
gerar altura (ainda que aleatoriamente) durante a evolução do mapa, removendo a necessidade
de realizar etapas posteriores de processamento. Normalmente, como mostrado nos trabalhos
relacionados de [5], a utilização de algoritmos (Midpoint, Diamond, Worley, Perlin e Simplex)
que podem gerar padrões de ruído de gradientes de cinza, permitem ao usuário simular texturas
terrestres com grau de semelhança relativo a realidade. Entretanto, ao gerar a altura aleato-
riamente utilizando como célula um autômato cúbico os resultados não foram são agradáveis
(imagem acima). Acredito que a alternativa mais viável seria utilizar de funções aplicadas num
plano dividido em quadrantes (os autômatos) para modelar o mesmo. Como alternativa a essa
sugestão de modelo contínuo e das técnicas de erosão, uma abordagem que experimentei foi
gerar (como sugerido) um CA em uma só camada, exportar esse mapa para uma imagem (100
células dispostas num grid 10x10, gerou uma imagem de 100 pixels, 10x10) e utilizar uma
ferramenta de processamento de imagem externa (PIL, Python Image Library) para aumentar
(técnica de resampling Laczos) a escala em 3 vezes (tamanho final 40x40) a do mapa original,
resultando num modelo semelhante ao apresentado em [5] e que se assemelha a implementação
contínua do Lênia.

5.5 EXPERIMENTOS E RESULTADOS 27

Figura 5.3 Evolução do autômato utilizando apenas uma camada, autor.

Figura 5.4 Escalonamento da imagem do último estado do autômato, autor.

Ao realizar o escalonamento, cores de tonalidade roxas/rosadas não presentes na montagem
do automato surgem. Isso se dá por razão do algoritmo de escalonamento criar tons de tran-
sição entre um pixel e outro. Para normalizar as cores, pode-se utilizar da mesma técnica que
algoritmos de padrões ruído citados acima fazem: representar a imagem em tons cinza.

Figura 5.5 Evolução do autômato utilizando apenas uma camada em tons de cinza, autor.

Figura 5.6 Escalonamento da imagem do último estado do autômato em tons de cinza, autor.

5.5 Experimentos e resultados

Nesta seção serão feitos experimentos e apresentados seus resultados com base na implemen-
tação dos trabalhos futuros do artigo de [5] e utilizando as mesmas métricas para comparação
a partir de [2]. O objetivo é investigar se autômatos podem atingir a mesma qualidade na gera-
ção de mapas. Os experimentos foram realizados utilizando um desktop comum (processador

5.5 EXPERIMENTOS E RESULTADOS 28

Intel Core i5 10400, 16 GB de RAM de frequência 2666 MHz, sem placa de vídeo (GPU), C#
com compilador .NET versão 7.0.203, Python versão 3.10.4, no sistema operacional Windows
10, armazenamento em disco rígido de 7200 RPM). Para cada experimento foram salvos: um
arquivo TXT contendo a cor da célula para cada iteração do autômato e um arquivo YAML
contendo os registros da execução para serem processados na linguagem Python, os arquivos
para reprodução e compilação própria estão disponíveis sob licença pública e hospedados no
GitHub do autor.

Em [5], nas primeiras iterações de seu algoritmo são feitas num plano de 32x32 células, que
utilizando da divisão celular e sucessivas aplicações posteriores de função de erosão, termina
com um número maior. Isto posto, como não estarei utilizando da divisão celular nem de algo-
ritmos de erosão, é tomada a decisão de utilizar um plano de 64x64 células, de forma a manter
um nível de detalhamento intermediário. A partir de um experimento, busca-se atingir bons
resultados para função fitness elucidada na seção de métricas para as propostas de trabalhos
futuros identificadas na seção de implementação.

Isto posto, em todos os experimentos realizados foram utilizadas as seguintes variáveis
padrão:

• Comprimento: 64 células

• Largura: 64 células

• Quantidade de células total: 4096

• Tipos distintos de células: 5 (acessíveis representadas pelas cores: azul, verde, branco,
cinza e inacessível identificada pela cor preta)

• Evoluções do autômato realizadas: 5

A montagem do autômato em um plano é feito de forma aleatória, com seu estado de acessi-
bilidade definido por uma função randômica de 50% de probabilidade. A cor (tipo) da célula
é definido também de forma aleatória entre um dos 4 tipos de célula. As regras de evolução
seguem as premissas dispostas na seção de revisão literária:

// Regra de reprodução
Se(célula está morta E quantidade de vizinhos == 3):

próximo_estado(célula->viver())

// Regras de subpopulação e superpopulação
Senão se(célula está viva E

(quantidade de vizinhos < 2 OU quantidade de vizinhos > 4)):
próximo_estado(célula->morrer())

// Regra de equilíbrio
Senão:

próximo_estado(célula)

https://github.com/vss-2/TG

5.5 EXPERIMENTOS E RESULTADOS 29

5.5.1 Experimento 1

Neste primeiro experimento, foi testada a geração de um mapa balanceado, com proporção
de células inacessíveis dividida igual às acessíveis. Foi estipulado, entretanto, um peso mais
importante para células acessíveis (wa = 80%).

Tabela 5.1 Uma iteração de experimento com vizinhança Neumann.
Parâmetros Valor

Pa 0.969238281
vt 1.25
vs 0.25
A 1.031738
Pe 3.0761719
E 32.50794
Et 0.32507935
Es 32.182858
we 0.2
wa 0.8

Tempo de execução 143ms
Fitness 6.6365714

O primeiro experimento não obteve resultados empolgantes. Apesar de utilizar o algoritmo
de vizinhança de Neumann, apresentado em [5], para gerar o mapa, o valor de fitness excedeu
em muito o esperado (esperava-se um número próximo de 0, tal qual exibido em [2]). Obser-
vando a ilustração do mapa resultante abaixo, é visível que ao utilizar apenas uma camada para
abrigar tipos de autômato que interagem entre si acabou por deixar o mapa bastante poluído e
esparso. Ao verificar o valor calculado de: wa * vs + we * Es; percebe-se que o Es está muito
alto (32.18) e está afetando drasticamente o cálculo, essa constatação é reforçada pelo valor
de Pa, que (0.96, equivalente a 96% ou 1-Pe). Isso acontece, pois como demonstrado na fór-
mula 5.8, o Es é calculado a partir da quantidade de células inacessíveis; como existem poucas
células inacessíveis, o valor dispara. Para tentar solucionar esse problema, no experimento 2
será utilizado um pa baseado no pa2 (80%) e pe2 (25%) de [2], de forma a estabelecer um piso
de células inacessíveis existentes, independente do que exija a função de vizinhança, o nome
dessa vizinhança será notado como "Neumann Limitada".

// Modificação para Vizinhança de Neumann Limitada
// Regra de reprodução
Se(célula está morta E quantidade de vizinhos == 3

OU quantidade células vivas < 20%):
próximo_estado(célula->viver())

5.5 EXPERIMENTOS E RESULTADOS 30

// Regras de subpopulação e superpopulação
Senão se(célula está viva E

(quantidade de vizinhos < 2 OU quantidade de vizinhos > 4)
OU quantidade de células vivas > 80%):

próximo_estado(célula->morrer())

// Regra de equilíbrio
Senão:

próximo_estado(célula)

Figura 5.7 Mapa gerado no experimento número 1, autor.

5.5.2 Experimento 2

No experimento 2 será alterada a regra de vizinhança baseada no Game of Life. Percebe-se que
é necessário haver garantia de proporção e maior quantidade de células inacessíveis, de forma
a reduzir o caos do sistema. Ao observar os parâmetros utilizados por [2], percebe-se que ao
atribuir valores máximos de Pa como 80% e Pe 25% bons resultados foram atingidos, por isso,
esse serão os intervalos utilizados no experimento abaixo.

Figura 5.8 Mapa gerado no experimento 2, autor.

5.5 EXPERIMENTOS E RESULTADOS 31

Tabela 5.2 Uma iteração de experimento com vizinhança Neumann Limitada
Parâmetro Valor

Pa 0.72192383
vt 1.25
vs 0.25
A 1.3851877
Pe 27.807617
E 3.596137
Et 0.03596137
Es 3.5601757
we 0.2
wa 0.8

Tempo de execução 153ms
Fitness 0.9120351

Figura 5.9 Figura 19 retirada de Automatic evolution of programs for procedural generation of terrains
for video games: Accessibility and edge length constraints, [2].

O fitness foi melhorado drasticamente após a modificação das regras de vizinhança. A adi-
ção de uma condicional "e" para restringir as modificações da função de transição impactaram
na redução de mais de 6 vezes o valor do experimento 1. A imagem agora se assemelha um
pouco mais semelhante a casos como a figura 19 da pesquisa de [2], que possui fitness perfeito
(0.0), ilustrada abaixo na direita.

Antes de avaliar outros melhoramentos, é necessário verificar se o valor do experimento 2
foi um valor aberrante (outlier). Foram obtidos os seguintes resultados:

5.5 EXPERIMENTOS E RESULTADOS 32

Tabela 5.3 Dez mil iterações com método de vizinhança Neumann Limitada
Experimento Resultados de Fitness

Média 1.0064278238870001
Desvio padrão 0.009541613076023255
Menor valor 0.99399

25% (1o quartil) 0.99919134
50% (2o quartil) 1.0042702
75% (3o quartil) 1.0112238

Maior valor 1.070348
Tempo de execução médio 158.6432 ms

Figura 5.10 Gráfico do experimento 2 de Pa x Fitness resultante das dez mil execuções, autor.

A partir da execução de dez mil autômatos gerados utilizando os mesmos parâmetros do
experimento 2, podemos identificar que o Pa apresenta um comportamento semelhante a uma
função quadrática com concavidade para cima. Este tipo de função possuí um mínimo global, e,
conforme observados os valores de desvio padrão, ele possivelmente foi atingido nos menores
intervalos. Na imagem é possível perceber que entre os valores de Pa (eixo X) 0.66 e 0.68 de
Pa há um melhor rendimento de fitness, ao passo em que valores anteriores e posteriores a esse
trecho ocorre piora do fitness. Isso se confirma quando comparamos com o que foi visto no
experimento 1: havia um Pa menor e o fitness foi muito mais alto. Além da variável Pa, os
outros parâmetros atingiram baixo valor de desvio padrão, sendo apenas os valores de células
acessíveis e inacessível que se modificaram mais (como esperado). O tempo de execução médio
foi de 158ms, com desvio padrão de 122ms, e valor de mínimo de 116ms e máximo de 2427ms.
Dado que foram, a partir de [2] e de nossos experimentos, foram exauridas as capacidades de
interpolação de parâmetros, podemos alternar para outros tipos de vizinhança implementadas.

A próxima distância a ser experimentada, ainda que semelhante a de Neumann, é a diagonal.

5.5 EXPERIMENTOS E RESULTADOS 33

Por ter quatro células em sua vizinhança, é esperado que a função de fitness apresente resultados
condizentes com os dos experimentos passados. O que há de ser observado é se o visual do
mapa ficará mais disperso ou mais coeso que os observados nas vizinhanças de Neumann e
Neumann Limitada.

5.5.3 Experimento 3

Tabela 5.4 Dez mil iterações com método de vizinhança Diagonal
Métrica Resultados de Fitness Resultados de Pa
Média 0.783917925098 0.388840136638

Desvio padrão 0.10812665604187927 0.02206848306405352
Menor valor 0.29754987 0.29882812

25% (1o quartil) 0.71218383 0.37402344
50% (2o quartil) 0.7810138 0.38867188
75 (3o quartil) 0.8539374 0.40356445

Maior valor 1.0959013 0.46655273
Tempo de execução médio 174.7844 ms

Figura 5.11 Gráfico do experimento 3 de Pa x Fitness resultante das dez mil execuções, autor.

Pode-se dizer que o terceiro experimento atinge um recorde, tendo seu melhor fitness 0.29
na iteração 1101, com Pa de 0.29. Isso significa que menores Pas resultaram em fitness mai-
ores para esta configuração. Entretanto, ao observar o gráfico que compara Pa com fitness é

5.5 EXPERIMENTOS E RESULTADOS 34

possível ver que os resultados não apresentam uma continuidade, sendo o melhor fitness atin-
gido claramente um outlier. Abaixo, observando a imagem a esquerda, que ilustra o melhor
caso alcançado, é perceptível que, ao proliferar várias áreas inacessíveis o mapa adquire uma
característica labiríntica. Como exposto na seção de revisão literária, sabe-se que autômatos
podem ser utilizado para gerar mapas úteis para jogos de RPG (com destaque para dungeons),
e esse fitness beneficiou a geração deste cenário. Na imagem da direita, a qual foi retirada de
um resultado com fitness de 0.46453974 e que segue a curva da função quadrática observada
acima, é perceptível que existem mais terrenos acessíveis, ainda assim, mapa resultante é bas-
tante acidentado. Embora estes resultado possam não ser o melhor uso para jogos RTS, onde
são desejados espaços largos para deslocamento de unidades e posicionamento de estruturas,
é possível exportá-los e adaptar o mapa ao aplicar-se pós processamento e erosão, técnicas
descritas em [5].

Figura 5.12 À esquerda: gráfico do melhor fitness do experimento 3; À direita gráfico de um fitness
pertercente a função quadrática observada no experimento 3, autor.

5.5.4 Experimento 4

Tabela 5.5 Dez mil iterações com método de vizinhança Diagonal Limitada
Métrica Resultados de Fitness Resultados de Pa
Média 1.0025440435070003 0.695862671141

Desvio padrão 0.007489720421042951 0.014063042764821228
Menor valor 0.99399 0.6442871

25% (1o quartil) 0.99684083 0.6862793
50% (2o quartil) 1.0007632 0.6960449
75% (3o quartil) 1.0061538 0.70532227

Maior valor 1.0595226 0.7504883
Tempo médio de execução 181.6359 ms

5.5 EXPERIMENTOS E RESULTADOS 35

Figura 5.13 Gráfico do experimento 4 de Pa x Fitness resultante das dez mil execuções, autor

Ao tentar controlar o experimento 3 utilizando da modificação também aplicada ao expe-
rimento 2 (limitar proporção de células vivas/mortas), ocorre o negativo efeito de aumentar o
valor de fitness. Essa abordagem provou-se infrutífera no experimento 4. No próximo expe-
rimento, que avalia uma vizinhança maior superior a 4 células, será reutilizada essa mesma
abordagem, dado que as regras descritas em Game of Life não são adaptadas para esse cenário.

5.5.5 Experimento 5

A vizinhança de Moore possui uma característica particular em relação as anteriores: ela ve-
rifica uma vizinhança de 8 células adjacentes, sendo o dobro de Neumann e das diagonais.
Ao executar os testes utilizando as mesmas regras apresentadas em Game of Life, o algoritmo
excede a quantidade de células mortas (regra de superpopulação). Isso é bastante claro, dado
que, ao visitar o dobro de células, a proporção definida por Conway não se beneficiaria da
regra desta vizinhança. Não foram encontrados resultados competitivos utilizando função de
controle do semelhante a do experimento passado, com fitness médio ficando em torno de 1.03.
Além disso, uma das vantagens de se estar utilizando autômatos foi colocada em risco: ao rea-
lizar mais verificações condicionais para a vizinhança, o tempo médio de execução subiu para
395ms, um incremento de 1 vezes quando comparada aos experimentos passados (variam em
torno de 150 a 180ms).

5.5.6 Experimento 6

Para testar a implementação proposta do estado adicional imutável (célula que, uma vez vi-
va/morta atribuída, não muda de estado), foram executadas 900 iterações para cada método de
vizinhança. A cada iteração o número de autômatos imutável subia 0.1%, começando de 0%
até 90%. Não foram utilizadas regras extras para garantir a quantidade proporcional, visto que

5.5 EXPERIMENTOS E RESULTADOS 36

essa função foi infrutífera nos casos anteriores.

Tabela 5.6 Tabela de desvio padrão, valores mínimo e máximo, quartis e tempo médio de execução
para as abordagens Neumann, Diagonal e Moore.

Abordagem Neumann Diagonal Moore
Fitness Médio 0.662434 0.657863 0.596421
Desvio Padrão 0.336423 0.327487 0.320405

Menor Valor de Fitness 0.396000 0.396000 0.396000
1º quartil 0.414686 0.415305 0.410386
2º quartil 0.450511 0.457641 0.424064
3º quartil 1.168999 1.164815 0.486971

Maior Valor de Fitness 1.195413 1.195413 1.195413
Tempo Médio de Execução 604.843333 595.218889 600.808889

Figura 5.14 Gráfico agregado combinando dados das técnicas de Neumann, Diagonal e Moore, autor.

O gráfico exibido acima demonstra a constância entre os 3 algoritmos testados: quando
sobrepostos, são poucas as diferenças entre os valores analisados. O algoritmo de Moore,
entretanto, é a melhor das alternativas, com aproximadamente 10% de vantagem. Quanto a
Neumann e Diagonal, são virtualmente iguais, com uma leve vantagem para o método de vizi-
nhança Diagonal por ser 2% mais rápido.

5.6 CONCLUSÃO E TRABALHOS FUTUROS 37

5.6 Conclusão e trabalhos futuros

Os experimentos apresentados na seção passada demonstram o uso e aplicação de autômatos
celulares na criação de arte (em formato de mapas) através de criatividade computacional. Ao
combinar conteúdo de dois artigos visando utilizar das mesmas métricas para competir com
algoritmos genéticos, usando o potencial emergente dos autômatos celulares, não foi possível
atingir resultados tão próximos. Isso ocorreu, pois a abordagem de algoritmos genéticos garante
a busca implacável por um resultado refinado que é norteado pela sua função de fitness. Ainda
assim, a abordagem caótica e estocástica dos autômatos celulares pode servir para aplicações na
área dos jogos. Ela consome, sem dúvidas, menos recursos computacionais por envolver menos
cálculos, e é interessante caso seja necessário aplicar em dispositivos com recursos limitados
(por memória, bateria, processamento, etc). Entretanto, se há capacidade e necessidade de
atingir os melhores resultados possíveis, a alternativa de algoritmos genéticos seria a indicação.

Uma possibilidade futura a ser explorada é utilizar do vasto catálogo da enciclopédia de
espécies do Game of Life para experimentar modelos descobertos e com comportamento pre-
visto. Podem existir aplicações práticas que se beneficiem do uso de autômatos regulares, como
controladores de luz ou outros dispositivos com comportamento periódico.

Após avaliar exaustivamente a caoticidade dos mapas gerados por autômatos em uma só
camada, outra boa possível boa aplicação de autômatos celulares ou estudo de caso de uso seria
aplicação em jogos do tipo match-3, como Candy Crush, Tetris ou Bejeweled, ou jogos de roleta
de cassino. Esses jogos podem abusar dos pontos positivos de autômato: alta aleatoriedade e
baixo custo de processamento. O estudo de caso seria voltado a aplicações de autômatos nesse
contexto: probabilidade de células adjacentes combinarem, grau de entropia de um mapa e
elaboração de funções de transição com regras de ativação com viés para preservar a entropia.

Referências Bibliográficas

[1] Google, “Liquidfun,” 2014. [Online; Arquivo acessado em Fevereiro/2023.].

[2] d. V. F. . C. Frade, M., “C. automatic evolution of programs for procedural generation of
terrains for video games.,” Soft Comput 16, p. 1893–1914, 2012.

[3] E. W. WEISSTEIN, “A new kind of science.” Also published on Wolfram MathWorld,
escrito em 2002, acessado em Dezembro/2022.

[4] S. ARBESMAN, “Emergent microcosms: Artificial life, agent-based modeling, and uns-
pooling worlds with code..” Published on Substack blog post 13/12/2022, acessado em
Dezembro/2022.

[5] P. Ziegler and S. von Mammen, “Generating real-time strategy heightmaps using cellular
automata,” in Proceedings of the 15th International Conference on the Foundations of
Digital Games, FDG ’20, (New York, NY, USA), Association for Computing Machinery,
2020.

[6] B. K. P. Horn, “Hill shading and the reflectance map,” Proceedigs of the IEEE, 69(1),
pp. 14–47, 1981.

[7] M. GARDNER, “The fantastic combinations of john conway’s new solitaire game ’life’,”
Scientific American 223, pp. 120–123, 10 1970.

[8] Wikipédia, “Geração procedural em jogos digitais — wikipédia, a enciclopédia livre,”
2021. [Online; accessed 18-novembro-2021].

[9] B. W.-C. CHAN, “Lenia: Biology of artificial life,” Complex Systems, vol. 28, pp. 251–
286, 2019.

[10] M. BITTKER, “Sandspiel.” Publicado em 19/04/2019, acessado em Março/2023.

[11] T. ÖSTERLUND, “Design possibilities of emergent algorithms for adaptive lighting sys-
tem,” Nordic Journal of Architectural Research, vol. 25, pp. 159–184, 11 2013.

[12] “Silo 468 / lighting design collective,” 2012. Arquivo acessado em Fevereiro/2023.

[13] C. INSOOK, “Interactive sonification exploring emergent behavior applying models for
biological information and listening,” Frontiers in Neuroscience, vol. 12, 2018.

38

REFERÊNCIAS BIBLIOGRÁFICAS 39

[14] I. Wolfram Research, “Wolframtones: How it works,” 2005. [Arquivo acessado em Mar-
ço/2023.].

[15] W. Alexan, M. ElBeltagy, and A. Aboshousha, “Rgb image encryption through cellular
automata, s-box and the lorenz system,” Symmetry, vol. 14, no. 3, 2022.

[16] D. H. I. K. N. M. Husnul Habib Yahya, H. Fabroyir and S. Arifiani, “Dungeon’s room ge-
neration using cellular automata and poisson disk sampling in roguelike game,” 13th In-
ternational Conference on Information & Communication Technology and System (ICTS),
pp. 29–34, 2021.

Este volume foi tipografado em LATEX na classe UFPEThesis (www.cin.ufpe.br/~paguso/ufpethesis).

www.cin.ufpe.br/~paguso/ufpethesis

	Resumo
	Lista de Figuras
	Lista de Abreviações
	Introdução
	Revisão literária
	Fundamentos teóricos
	Informática Teórica
	Autômatos
	Autômatos celulares

	Sistemas de Lindenmayer
	Fractais

	Implementações
	Conway's Game of Life
	Lenia
	Jogos de areia caindo

	Aplicações em contextos distintos
	Uso na arquitetura e urbanismo
	Uso em produção sonora
	Uso em simulações físicas
	Uso em criptografia
	Uso em predição de cenários

	Aplicações em desenvolvimento de jogos

	Objetivos
	Metodologia
	Desenvolvimento
	Introdução e trabalhos relacionados
	Sumário de objetivos
	Métricas
	Acessibilidade
	Comprimento de borda

	Implementação dos objetivos
	Regras de vizinhança
	Estados do autômato
	Modelo Contínuo

	Experimentos e resultados
	Experimento 1
	Experimento 2
	Experimento 3
	Experimento 4
	Experimento 5
	Experimento 6

	Conclusão e trabalhos futuros

	Referências Bibliográficas

