

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIENCIAS CIÊNCIAS BIOLÓGICAS BACHARELADO

Nicholas Luiz de Oliveira Cavalcanti Medeiros

Atividade antimicrobiana do extrato hidroalcoólico de Hymenaea stigonocarpa (Mart. Ex Hayne) em associação com antimicrobianos frente a Staphylococcus aureus resistentes à meticilina

NICHOLAS LUIZ DE OLIVEIRA CAVALCANTI MEDEIROS

Atividade antimicrobiana do extrato hidroalcoólico de Hymenaea stigonocarpa (Mart. Ex Hayne) em associação com antimicrobianos frente a Staphylococcus aureus resistentes à meticilina

Trabalho de conclusão de curso apresentado à Coordenação do curso de Bacharelado em Ciências Biológicas da Universidade Federal de Pernambuco - UFPE, como requisito parcial à obtenção do título em Bacharel em Ciências Biológicas.

Orientadora: Prof.° Dra. Eulália Camelo Pessoa de Azevedo Ximenes

Recife

Ficha de identificação da obra elaborada pelo autor, através do programa de geração automática do SIB/UFPE

Medeiros, Nicholas Luiz de Oliveira Cavalcanti.

Atividade antimicrobiana do extrato hidroalcoólico de Hymenaea stigonocarpa (Mart. Ex Hayne) em associação com antimicrobianos frente a Staphylococcus aureus resistentes à meticilina / Nicholas Luiz de Oliveira Cavalcanti Medeiros. - Recife, 2023.

53 p.: il., tab.

Orientador(a): Eulália Camelo Pessoa de Azevedo Ximenes Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de Pernambuco, Centro de Biociências, Ciências Biológicas - Bacharelado, 2023. Inclui referências, apêndices, anexos.

1. Staphylococcus aureus resistente à meticilina. 2. Hymenaea stigonocarpa. 3. Extrato hidroalcoólico. 4. Sinergismo. I. Ximenes, Eulália Camelo Pessoa de Azevedo. (Orientação). II. Título.

610 CDD (22.ed.)

NICHOLAS LUIZ DE OLIVEIRA CAVALCANTI MEDEIROS

Atividade antimicrobiana do extrato hidroalcoólico de *Hymenaea* stigonocarpa (Mart. Ex Hayne) em associação com antimicrobianos frente a *Staphylococcus aureus* resistentes à meticilina

Trabalho de conclusão de curso apresentado à Coordenação do curso de Bacharelado em Ciências Biológicas da Universidade Federal de Pernambuco - UFPE, como um dos requisitos exigidos para obtenção do título em Bacharel em Ciências Biológicas, sob orientação da Prof.º Dra. Eulália Camelo Pessoa de Azevedo Ximenes.

Data de aprovação: <u>12/04/2023</u>

BANCA EXAMINADORA

Prof.ª Drª. Eulália Camelo Pessoa de Azevedo Ximenes (Orientadora)

Universidade Federal de Pernambuco

Danyele Costa de Melo MSD

Instituto Aggeu Magalhães

Renan Andrade Fernandes de Souza MSD

Universidade Federal de Pernambuco

AGRADECIMENTOS

Primeiramente, eu gostaria de agradecer a minha orientadora, **Prof^a Dr^a Eulália Ximenes**, que durante toda a trajetória final da minha graduação, desde o estágio obrigatório até o presente momento na defensa do TCC, foi uma pessoa extremamente paciente, compreensiva e que me ensinou muito, tanto em aspectos acadêmicos como pessoais. Obrigado professora, por todos os conselhos, ensinamentos e incentivos para que eu concluísse mais essa etapa na minha vida. A senhora sempre terá um lugar especial no meu coração.

Quero agradecer especialmente a minha melhor amiga, Vitória Gabriella, que foi uma das pessoas que a Universidade me apresentou e que também foi uma das pessoas mais especiais para mim durante todos esses anos de graduação e principalmente nos últimos meses de construção do meu TCC, sendo a minha dupla de laboratório. Sou eternamente grato por ter lhe conhecido e por ter passado por todos os momentos que passamos juntos. Muito obrigado por todos os momentos de risadas, choros e surtos. Obrigado também por todas as conversas e conselhos sobre diversos assuntos da vida. Espero que a nossa amizade dure muito além da universidade. Amo você do fundo do meu coração. Obrigado por tudo.

Também quero agradecer à minha família, minha mãe **Patrícia**, meu pai **Paulo** e minha irmã **Nathália**, por sempre terem sido a minha base durante toda a minha vida e por estarem sempre presentes, me motivando a correr atrás dos meus objetivos e me apoiando durante esses anos na graduação.

Aos meus amigos do colégio e da UFPE, Adriano Belanger, André Otávio, Antônio Nascimento, Débora Pires, Gabriel Mariz, Jayrla Lima, José Lauriano, Luana Maciel, Lucas Souza., Maria Cecília, Matheus Leonydas, Millena Mirna, Rafael Lucas, Rodrigo Augusto, Ruy Neto, Samantha Seehagen, Victor Santos e Yasmim Antonino, serei eternamente grato por ter cursado a minha graduação com vocês ao meu lado. Vocês foram extremamente importantes para mim e tornaram todos os dias do meu curso muito mais leves e alegres. Amo todos vocês.

Quero agradecer também aos meus amigos do trabalho, Camila Azevedo, Danyele Mello, João Vitor, Joyce Santos, Luiza Macedo, Michellangelo Nunes e Thalline Leite por me tranquilizarem e sempre me falarem que tudo iria dar certo nos momentos que antecederam a minha defesa. Sou eternamente grato pelas palavras de vocês.

Agradeço a minha banca, **Danyele Mello e Renan Andrade**, por terem aceitado o meu convite de serem os meus avaliadores e por estarem presentes num momento tão especial da minha vida. Muito obrigado, do fundo do meu coração.

E por último, gostaria de agradecer a cada pessoa que direta ou indiretamente esteve presente em algum momento da minha graduação e que contribuiu para que todos esses anos fossem mais leves. Muito obrigado.

RESUMO

A bactéria Staphylococcus aureus causa diferentes tipos de infecções, que afetam diferentes tecidos e órgãos, e muitas vezes é isolada de infecções adquiridas na comunidade e no ambiente hospitalar. A prevalência de cepas de Staphylococcus aureus resistentes à meticilina (SARM) representa um grave problema de saúde pública e a terapia anti-SARM é limitada ao uso de glicopeptídeos (vancomicina, teicoplanina), oxazolidina (linezolida), quinupristina-dalfopristina. Nesse sentido, a busca por novos antimicrobianos é urgente e necessária. Diante do exposto, o objetivo deste estudo foi avaliar a atividade antimicrobiana de extrato hidroalcoólico obtidos das cascas do caule de Hymenaea stigonocarpa (EHHS) e quatro discos de antimicrobianos (oxacilina, amoxicilina/ácido clavulânico, ciprofloxacina e vancomicina) contra oito cepas de Staphylococcus aureus resistentes à meticilina (LFBM OXA 1, LFBM SA 2204, LFBM SA 2205, LFBM AM 02, LFBM AM 04, LFBM AM 05, LFBM AM 07 e ATCC 33591). A Concentração Inibitória Minima (CIM) do EHHS foi de 512µg/mL para todas as cepas de SARM avaliadas. Das 4 associações realizadas para as oito cepas, todas mostraram-se sinérgicas, exceto a associação de CIP + EHHS para a cepa ATCC 33591 que apresentou efeito aditivo, e as associações VAN + EHHS e OXA + EHHS que apresentaram um efeito indiferente frente cepa ATCC 33591. Este estudo demonstrou que em geral, o EHHS combinado com antimicrobianos beta-lactâmicos, fluoroquinolonas e atua sinergicamente inibindo cepas de SARM.

Palavras-chave: Extrato hidroalcoólico; *Hymenaea stigonocarpa*; *Staphylococcus aureus* resistente à meticilina:

ABSTRACT

Staphylococcus aureus causes different types of infections, which affect different tissues and organs, often isolated from community-acquired and nosocomial infections. The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) strains represent a serious public health problem and anti-MRSA therapy is limited to the use of glycopeptides (vancomycin, teicoplanin), oxazolidine (linezolid), quinupristindalfopristin. In this sense, the search for new antimicrobials is urgent and necessary. In view of the above, the aim of this study was to evaluate the antimicrobial activity of hydroalcoholic extracts obtained from Hymenaea Stigonocarpa (HSHE) stem barks and four disc of antimicrobials (oxacillin, amoxicillin/clavulanic acid, ciprofloxacin and vancomycin) against eight strains of Staphylococcus aureus resistants to methicillin (LFBM OXA 1, LFBM SA 2204, LFBM SA 2205, LFBM AM 02, LFBM AM 04, LFBM AM 05, LFBM AM 07 and ATCC 33591). The criteria used to evaluate the synergistic activity were defined by the Overlay Inoculum Susceptibility Disc. The MIC of HSHE was 512µg/mL for all MRSA strains evaluated. Of the 4 associations performed for the eight strains, all were synergistic, except for the association of CIP + EHHS for the strain ATCC 33591, which showed an additive effect, and the associations VAN + EHHS and OXA + EHHS, which showed an indifferent effect against the ATCC strain 33591. This study demonstrated that, in general HSHE combined with beta lactams antimicrobials, fluoroquinolones and acts synergistically inhibiting MRSA strains.

Keywords: Hydroalcoholic extract; *Hymenaea stigonocarpa*; methicillin-resistant *Staphylococcus aureus*;

LISTA DE ILUSTRAÇÕES

- **Figura 1:** *Staphylococcus aureus* visualizado por microscopia ótica (1000x), após coloração de Gram.
- **Figura 2:** Cepas de *Staphylococcus aureus* em meio Triptona Soja (TSB)
- Figura 3: Representação do Método Overlay Inoculum Susceptibility Disc
- Figura 4: Hymenaea stigonocarpa (Mart. Ex Hayne), jatobá-do-cerrado
- **Figura 5:** Forma molecular da astilbina, flavonóide encontrado no extrato hidroalcoólico (à esquerda) e um tanino condensado (à direita)
- **Figura 6:** À esquerda a solução padronizada do extrato hidroalcoólico e à direita a solução sendo esterilizada por filtração utilizando bomba à vácuo
- **Figura 7:** Padronização do inóculo das cepas de *Staphylococcus aureus* e representação do método *Overlay Inoculum susceptibility Disc* para determinação do sinergismo entre o extrato hidroalcoólico e antimicrobianos
- **Figura 8:** À esquerda (A) o controle (sensibilidade aos antimicrobianos) e à direita (B) o teste (antimicrobianos associado ao extrato hidroalcoólico introduzido no meio), cepas ATCC 33591, LFBM OXA 1, LFBM SA 2205. Vancomicina (1), Amoxicilina/ácido clavulânico (2), Ciprofloxacino (3), Oxacilina (4).
- **Figura 9:** À esquerda (A) o controle (sensibilidade aos antimicrobianos) e à direita (B) o teste (antimicrobianos associado ao extrato hidroalcoólico introduzido no meio), cepas LFBM AM 02, LFBM AM 04, LFBM AM05. Vancomicina (1), Amoxicilina/ácido clavulânico (2), Ciprofloxacino (3), Oxacilina (4).
- **Figura 10:** À esquerda (A) o controle (sensibilidade aos antimicrobianos) e à direita (B) o teste (antimicrobianos associado ao extrato hidroalcoólico introduzido no meio), cepa LFBM AM07. Vancomicina (1), Amoxicilina/ácido clavulânico (2), Ciprofloxacino (3), Oxacilina (4).
- **Figura 11:** Comparação dos Diâmetros da Zona de Inibição do crescimento das cepas de *Staphylococcus aureus* resistentes à meticilina ATCC 33591 e LFBM OXA 1. **Controle**: antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina); Teste- Associação extrato hidroalcoólico de *Hymenaea stigonocarpa* com os antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina).
- **Figura 12:** Comparação dos Diâmetros da Zona de Inibição do crescimento das cepas de *Staphylococcus aureus* resistentes à meticilina LFBM SA 2204 e LFBM SA 2205.

Controle: antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina); Teste- Associação extrato hidroalcoólico de *Hymenaea stigonocarpa* com os antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina).

Figura 13: Comparação dos Diâmetros da Zona de Inibição do crescimento das cepas de *Staphylococcus aureus* resistentes à meticilina LFBM AM 02 e LFBM AM 04. **Controle**: antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina); Teste- Associação extrato hidroalcoólico de *Hymenaea stigonocarpa* com os antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina).

Figura 14: Comparação dos Diâmetros da Zona de Inibição do crescimento das cepas de *Staphylococcus aureus* resistentes à meticilina LFBM AM 05 e LFBM AM 07. **Controle**: antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina); Teste- Associação extrato hidroalcoólico de *Hymenaea stigonocarpa* com os antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina).

LISTA DE TABELAS

Tabela 1: Origem do Isolamento e fenótipo de resistência das oito cepas de *Staphylococcus aureus*.

Tabela 2: Associação entre o extrato hidroalcoólico e antimicrobianos frente a cepas de *Staphylococcus aureus* resistentes à meticilina utilizando o método *Overlay Inoculum Susceptibility Disc*.

LISTA DE ABREVIATURAS

ATS - Ágar Triptona de soja;

AMC - Amoxicilina/ácido clavulânico;

AMP - Ampicilina;

CTS - Caldo Triptona Soja;

CIP – Ciprofloxacino;

CLIN – Clindamicina;

CIM - Concentração Inibitória Mínima;

DZI - Diâmetro da zona de inibição;

EGM - Elementos genéticos móveis;

ERI – Eritromicina;

EHHS - Extrato hidroalcoólico de *Hymenaea stigonocarpa*;

GEN – Gentamicina;

IC - Inibição completa

LFBM - Laboratório de Fisiologia e Bioquímica de Microrganismos;

MDR - Multidrogas resistentes;

ML – Mililitros;

OMS - Organização Mundial da Saúde;

OXA - Oxacilina;

PID - Pancreatite aguda induzida por drogas;

PEN – Penicilina:

P2aLP - Proteína 2a de ligação à penicilina;

PLP - Proteína de ligação à penicilina;

SARM - *Staphylococcus aureus* resistente à meticilina;

SPE - Substância polimérica extracelular;

TET – Tetraciclina;

UFC - Unidades formadoras de colônias;

VAN – Vancomicina;

SUMÁRIO

1.	INTRODUÇÃO	13
2.	OBJETIVOS	15
2.1.	OBJETIVO GERAL	15
2.2.	Objetivos específicos	15
3.	REVISÃO BIBLIOGRAFICA	16
3.1	GÊNERO STAPHYLOCOCCUS	16
3.1.1.	Aspectos gerais	16
3.1.2.	Metabolismo, características bioquímicas e morfológicas	16
3.1.3.	Mecanismos de resistência	17
3.2.	Método para o estudo de associações	de
	antimicrobianos	19
3.2.1.	Overlay Inoculum Susceptibility Disc	19
3.3.	GÊNERO <i>HYMENAEA</i>	20
3.3.1.	Extrato Hidroalcoólico	21
3.4.	TRATAMENTO	22
3.4.1.	Vancomicina	22
3.4.2.	Amoxicilina-ácido clavulânico	23
3.4.3.	Ciprofloxacino	23
3.4.4.	Oxacilina	23
3.4.5.	Daptomicina	24
4.	MATERIAIS E MÉTODOS	25
4.1.	Microrganismos e preparação do inóculo	25
4.2.	Agentes antimicrobianos	27
4.3.	Obtenção do extrato de Hymenaea stigonocarpa	27
4.4.	Preparação da solução de extrato hidroalcoólico	27
4.5.	Determinação da Concentração Inibitória Mínima	27
4.6.	Associação do extrato hidroalcoólico aos antimicrob	oianos
	convencionais	28
5.	RESULTADOS	31
5.1	Atividade antimicrobiana do extrato hidroalcoólico de Hym	enaea
	stigonocarpa (EHHS)	31

5.2	Associação extrato hidroalcoólico-antimicrobianos	31
6.	DISCUSSÃO	42
7.	CONCLUSÕES	45
8.	REFERÊNCIAS	46

1. INTRODUÇÃO

O gênero *Staphylococcus* engloba diversas espécies, entre elas, algumas que constituem a microbiota natural de seres humanos e de outros animais, mas em determinadas situações, por exemplo, queda de imunidade, são consideradas patógenos oportunistas.

Staphylococcus aureus é uma das espécies mais comumente isoladas em centros cirúrgicos, sendo responsável por 18,9% de todas as infecções nosocomiais. Além disso, em todo mundo *Staphylococcus aureus* resistente à meticilina (SARM) representa mais de 50% das infecções adquiridas em hospitais (SWOLANA E WOJTYCZKA, 2022).

Em 2017, a Organização Mundial da Saúde (OMS) publicou uma lista de "patógenos prioritários" que inclui SARM como um dos microrganismos patogênicos de maior importância para a saúde pública (VACA CÓRDOVA *et al*, 2021; OMS, 2017). A OMS prevê que até 2050 o número de mortes por ano causadas por infecções de bactérias multidrogas resistentes (MDR) aumente de 700.000 para 10 milhões, sendo maior que o número de mortes causadas cânceres (PLUMET *et al*, 2022).

S. aureus possui diversos mecanismos que dificultam o tratamento de infecções e que são responsáveis pela sua alta patogenicidade, como: produção de enzimas que provocam efeitos citolíticos, proteínas de superfície que se ligam às células e proteínas do hospedeiro, produção de biofilme e a presença de genes responsáveis pela resistência aos antimicrobianos, principalmente aos β-lactâmicos, como é o caso do SARM (KOZAJDA et al, 2019).

Devido a este cenário, a busca pelo desenvolvimento de novos agentes antimicrobianos ou de novos esquemas terapêuticos é de extrema importância, visto que, a disponibilidade de antimicrobianos está se esgotando com o passar dos anos, enquanto que o número de microrganismos MDR só aumenta (GÓRNIAK *et al*, 2019).

Muita atenção vem sendo dada pelos pesquisadores aos metabólitos secundários de origem vegetal, como é o caso dos taninos e flavonóides, alguns dos principais metabólitos secundários presentes em extratos vegetais e que possuem diversas atividades biológicas, como a antimicrobiana, podendo ser uma opção nas terapias combinadas com

antibióticos convencionais para o tratamento de infecções por bactérias MDR (DE O. RIBEIRO *et al*, 2018; OSORIO *et al*, 2021)

O extrato hidroalcoólico de *Hymenaea stigonocarpa* (EHHS) é produzido a partir da casca do caule do jatobá-do-cerrado. Dentre os vários metabólitos secundários identificados na casca do jatobá, os taninos e os flavonóides são os metabólitos mais abundantes e possuem uma grande variedade de atividades biológicas, como antioxidante, anti-inflamatórias, antitumorais e antimicrobianas (DIMECH, 2013; SARBU *et al*, 2019).

Diante do exposto acima, o presente estudo teve como primeiro objetivo, determinar a Concentração Inibitória Mínima (CIM) do extrato hidroalcoólico de *Hymenaea Stigonocarpa* (jatobá-do-cerrado) e dos antimicrobianos, vancomicina (VAN), amoxacilina/ácido clavulânico (AMC), ciprofloxacino (CIP) e oxacilina (OXA) normalmente utilizados para tratar infecções causadas por *Staphylococcus aureus* resistentes à meticilina (SARM). Posteriormente, foi avaliado o efeito da interação entre EHHS e os antimicrobianos normalmente utilizados no tratamento de SARM, utilizando uma adaptação do método *Overlay Inoculum Susceptibility Disc*.

2. OBJETIVOS

2.1 Objetivo geral

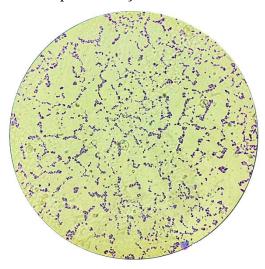
Avaliar a atividade antibacteriana do extrato hidroalcoólico de *Hymenaea stigonocarpa* e de suas associações com antimicrobianos frente a cepas de *Staphylococcus aureus* resistentes à meticilina (SARM).

2.2 Objetivos Específicos

- ✓ Determinar a Concentração Inibitória Mínima (CIM) do extrato hidroalcoólico, frente a cepas do complexo *Staphylococcus aureus* resistentes à meticilina.
- ✓ Associar o extrato hidroalcoólico em concentrações subinibidoras (0,5 x CIM) à discos de vancomicina, amoxicilina-ácido clavulânico, ciprofloxacino e oxacilina.
- ✓ Determinar o tipo de interação causada pelas associações sobre cepas de Staphylococcus aureus resistentes à meticilina.

3. REVISÃO BIBLIOGRÁFICA

3.1. Gênero Staphylococcus


3.1.1. Aspectos gerais

Staphylococcus aureus foi descoberto pela primeira vez pelo Dr. Alexander Ogston, que foi responsável por isolar o microrganismo do pus coletado em abcessos humanos e recria-los em camundongos saudáveis (HEMMADI E BISWAS, 2021). S. aureus é um dos principais patógenos bacterianos em diversas regiões do mundo, devido ao fato de estar continuamente adquirindo mecanismos de resistência a diversos antibióticos atuais (CASSAT E THOMSEN, 2021). Staphylococcus aureus é um microrganismo comensal, presente na pele e nas narinas de 30% da população, podendo ser responsável por infecções de diversos graus, desde as infecções leves e superficiais como as de pele, até infecções graves como choque séptico, endocardite, pneumonia grave, bacteremia e osteomielite (WONG FOK LUNG E PRÍNCIPE, 2020; SHERESTHA et al, 2021). A dificuldade no tratamento de infecções por S. aureus é decorrente do uso excessivo de antibióticos em humanos, que acaba provocando o surgimento de bactérias multidrogas resistentes (MDR) (MATUSZEWSKA et al, 2022).

3.1.2. Metabolismo, características bioquímicas e morfológicas

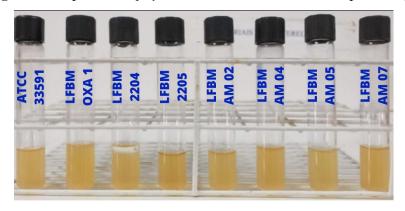

Staphylococcus aureus é caracterizado morfologicamente como uma bactéria cocoide, com aproximadamente de 0,8 µm de diâmetro, que pela coloração de Gram se apresenta como Gram-positiva, não formadora de esporos e flagelo, sendo assim imóvel, positiva para os testes de catalase, coagulase plasmática e desoxirribonuclease (LEE et al, 2018; GUO et al 2020). É um microrganismo considerado comensal, ou seja, ele mantém uma relação com outro ser vivo sem lhe causar danos, podendo assim obter benefícios através dessa relação. S. aureus tem como uma característica marcante a produção e secreção de uma substância polimérica extracelular (SPE), também conhecida como biofilme, que atua como uma espécie de barreira protetora que auxilia o microrganismo a resistir e a neutralizar os efeitos de antibióticos, dificultando assim o seu tratamento (IDREES et al 2021).

Figura 1: *Staphylococcus aureus* visualizado por microscopia ótica (1000x), após coloração de Gram

Fonte: O autor

Figura 2: Cepas de *Staphylococcus aureus* em caldo Triptona Soja (CTS)

(Fonte: O autor)

3.1.3. Mecanismos de resistência

A preocupação com a resistência a antimicrobianos em *Staphylococcus aureus* surgiu em meados de 1960, quando as primeiras cepas resistentes à meticilina foram isoladas. Microrganismos são considerados resistentes quando sofrem alterações na sua estrutura genética proporcionando mecanismos de resistência que tornam ineficazes tratamentos utilizando os fármacos existentes. O aumento da resistência antimicrobiana segue associado a altas taxas de morbidade e mortalidade, além de impactar e

comprometer diretamente resultados em diversas áreas da medicina (FRIERI *et al*, 2017). Um grande problema que favorece o surgimento de bactérias multirresistentes (MR) é a utilização indiscriminada e desnecessária de antibióticos de amplo espectro em terapias, gerando um ciclo vicioso que eleva as taxas de bactérias MDR e resultando no agravamento de um problema de saúde mundial (VAN DUIN E PATERSON, 2020).

Em 2017, a Organização Mundial da Saúde (OMS) publicou uma lista de agentes patogênicos prioritários que inclui *Staphylococcus aureus* resistente à meticilina (SARM), com sensibilidade intermediária e resistência à vancomicina, em segundo lugar na categoria de alta prioridade, destacando-o como um dos agentes patogênicos mais importantes na saúde pública (VACA CÓRDOVA *et al*, 2021; OMS, 2017). Mesmo com a descoberta de cepas de SARM resistentes à vancomicina, o uso desse antibiótico no tratamento de infecções continua sendo uma opção aceitável (KHANAL *et al*, 2021)

Staphylococcus aureus é um patógeno com diversos recursos que o auxiliam a inibir os efeitos de antimicrobianos utilizados no tratamento de infecções bacterianas. Entre os vários mecanismos, podem ser destacados: a secreção de enzimas beta-lactamases (que inibem especificamente as antibióticos beta-lactâmicos) e enzimas neutralizados que inativam antibióticos convencionais, produção de biofilme (possuem uma variedade de proteínas que influenciam desde a ligação a superfície celular até a ligação com outras moléculas) e alterações na proteína de ligação à penicilina (PBP) devido a modificações no gene responsável pela sua expressão.

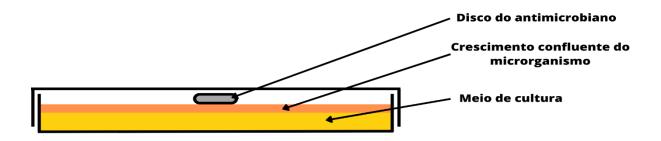
Estudos mostram que cepas de SARM adquiriram resistência a vários antibióticos através de elementos genéticos móveis (EGM), responsáveis por carregar genes de resistência, como o *blaZ* (resistência à penicilina), *dfrA* e *dfrK* (resistência à trimetoprima), *ermC* (resistência à eritromicina e clindamicina), *tetK* e *tetL* (resistência à tetracilcinas) (TURNER *et al.*, 2019).

A resistência à meticilina nas cepas de *Staphylococcus aureus* está associada a presença do um gene *mec*A, que é adquirido por meio do cassete cromossômico estafilocócico *mec* ou SCC*mec*, um tipo de EGM. O *mec*A é responsável pela produção da proteína 2a de ligação à penicilina (P2aLP), uma mutação da PLP, que possui baixa afinidade ao antibiótico e confere resistência a quase todos os beta-lactâmicos (LAKHUNDI E ZHANG, 2018). No caso da vancomicina, a resistência ocorre devido a alterações no terminal do precursor do peptidoglicano (d-alanil-d-alanina), o alvo de ação do antibiótico. Nas bactérias Gram-positivas ocorre a substituição da d-alanina terminal por um d-lactato, diminuindo drasticamente a afinidade de ligação da

vancomicina ao seu alvo (MÜHLBERG *et al*, 2020). Por último, a resistência aos aminoglicosídeos é causada por alterações ribossomais, enquanto que nas fluoroquinolonas é resultado de mutações na DNA girase (gyrA) e DNA topoisomerases (parC) (TASNEEM *et al*, 2022).

Devido aos diversos mecanismos de resistência, *S. aureus* resistente à meticilina é reconhecido e classificado pela Organização Mundial da Saúde (OMS) como um dos principais agente patogênicos e como um dos que necessitam de mais atenção nas pesquisas para desenvolvimento de novos antibióticos. Por conta desses mecanismos, MRSA também é um dos maiores responsáveis pelas infecções em ambientes de saúde e comunidades em todo o mundo. De acordo com a OMS, fatores como a compra de sem prescrição médica, o excesso de prescrição e o elevado uso de antibióticos pela população são algumas das causas que favorecem o surgimento da resistência nos microrganismos, e caso não sejam tomadas medidas urgentes, é possível que em uma realidade próxima infecções e ferimentos leves voltem a matar (WHO, 2020)

O uso de associações entre os antibióticos veem sendo cada vez mais uma das opções no tratamento de infecções causadas por *Staphylococcus aureus* resistente à meticilina, uma vez que o surgimento de resistência aos medicamentos torna o uso de monoterapia ineficaz. Uma das terapias combinadas bastante utilizadas no tratamento de MRSA é a combinação da vancomicina com β-lactâmicos (ROSE *et al*, 2021)


3.2. Método para o estudo de associações de antimicrobianos

3.2.1. Overlay Inoculum Susceptibility Disc

O Overlay Inoculum Susceptibility Disc é um método qualitativo, utilizado para determinar se o microrganismo analisado apresenta sensibilidade, resistência ou resistência intermediária aos antimicrobianos testados. O método consiste na incorporação de discos de antibióticos em placas de ágar contendo uma camada do microrganismo. Para a preparação do controle são utilizadas placas com a camada do microrganismo sem a presença dos discos de antimicrobianos.

A presença de sinergismo é determinada pelo aumento de 19% do halo da zona de inibição do microrganismo ao redor do disco, caso o aumento não ocorra a associação é considerada indiferente (LAISHRAM *et al.*, 2017).

Figura 3: Representação do Método Overlay Inoculum Susceptibility Disc

(Fonte: O autor)

3.3. GÊNERO HYMENAEA

Pertencente à família Fabaceae e subfamília Caesalpinioideae, *Hymenaea* é um gênero neotropical que inclui 14 espécies distribuídas em regiões tropicais e subtropicais. Dentre elas se encontra *Hymenaea stigonocarpa*, conhecida popularmente como "jatobádo-cerrado", uma leguminosa arbórea que habita regiões de cerradão, Cerrado aberto e Cerrado campo (DE MENEZES FILHO *et al*, 2020; LUZ *et al*, 2023).

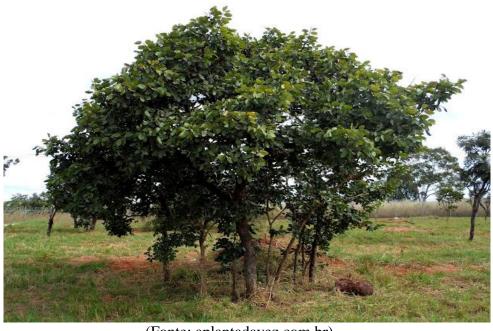


Figura 4: Hymenaea stigonocarpa (jatobá-do-cerrado)

(Fonte: aplantadavez.com.br)

Devido ao grande número de espécies utilizadas para os mais diversos fins, como o uso medicinal, a família Fabaceae é uma das mais importantes famílias botânicas. Dentro do gênero Hymenaea, H. stigonocarpa é uma das espécies com maior importância medicinal nas regiões Norte, Nordeste, Centro-Oeste e Sudeste do Brasil, pois a sua resina, fruto, seiva, chá do caule e casca do caule são utilizados no tratamento de doenças gástricas, inflamatórias, infecciosas e pulmonares (DA SILVA et al, 2022).

3.3.1. Extrato Hidroalcoólico

A casca do caule de Hymenaea stigonocarpa possui a presença de terpenos, esteróides, cumarinas, flavonóides e taninos condensados, sendo os dois últimos os metabólitos secundários mais encontrados (DIMECH, 2013). Flavonóides são derivados polifenólicos comumente encontrados em uma diversidade de plantas e são conhecidos pelas suas diversas atividades biológicas, como a antimicrobiana (SANTOS E BRAGA, 2021). Os taninos possuem diversos efeitos biologicamente interessantes, em específico a sua atividade antibacteriana que é provocada pelo seu efeito adstringente, que está diretamente relacionado com a estrutura molecular do tanino (KOVÁČ et al, 2023).

Figura 5: Forma molecular da astilbina, flavonóide encontrado no extrato hidroalcoólico (à esquerda) e um tanino condensado (à direita)

Estrutura da astilbina

(Fonte: SUN et al, 2020)

Estrutura de um tanino condensado

(Fonte: Souza *et al*, 2015)

3.4. TRATAMENTO

Um grande desafio da prática clínica no tratamento de infecções bacterianas é o desenvolvimento da resistência microbiana, principalmente de *Staphylococcus aureus* resistente à meticilina (SARM), para diversos antimicrobianos (SONG *et al*, 2018). Para grande parte dos casos de bacteremia por SARM, o tratamento mais comum é realizado com a utilização dos antibióticos vancomicina ou daptomicina, mas em certos casos a linezolida também pode ser uma opção de tratamento (HASSUON *et al*, 2017).

O uso de terapias combinadas entre antibióticos vem se tornando um problema devido aos efeitos adversos provocados pelas associações dos antimicrobianos, como no caso da vancomicina + aminoglicosídeos e vancomicina + β -lactâmicos, onde ambas as associações apresentam quadros de nefrotoxicidade (VANAMALA *et al*, 2021).

Diante desses fatos, a busca por novas moléculas com atividades biológicas capazes de auxiliar no tratamento de infecções causadas por SARM se torna extremamente importante.

3.4.1 Vancomicina

A vancomicina é um antibiótico glicopeptídico de amplo espectro frequentemente utilizado no tratamento de infecções causadas por bactérias Grampositivas, principalmente *Staphylococcus aureus* resistentes à meticilina (SARM) (TSUTSUURA *et al*, 2021). O seu mecanismo de ação atua inibindo a biossíntese da

parede celular bacteriana ao se ligar aos seus precursores, provocando a lise celular (WU *et al*, 2020).

3.4.2 Amoxicilina-ácido clavulânico

A amoxicilina-ácido clavulânico (AMC) é uma das associações mais utilizadas no tratamento de diversas infecções devido a capacidade do ácido clavulânico de intensificar o efeito antibacteriano da amoxicilina (ESPINOSA-GONGORA *et al*, 2020; MANCABELLI *et al*, 2021). O mecanismo de ação dessa combinação ocorre através da ligação da amoxicilina à proteína de ligação à penicilina (PLP) 1A, uma enzima responsável pela síntese da parede celular bacteriana. Ademais, o ácido clavulânico exerce seu papel ao se ligar no sítio ativo da β-lactamase, inativando-o (HUTTNER *et al*, 2020). Mesmo com seus efeitos positivos, alguns estudos mostram que em casos raros a utilização de amoxicilina-ácido clavulânico no tratamento de infecções bacterianas pode estar associada com o desenvolvimento de pancreatite aguda induzida por drogas (PID) (CHAMS *et al*, 2018).

3.4.3 Ciprofloxacino

O ciprofloxacino (CPI) é um antibiótico pertencente a classe das fluoroquinolonas e é utilizado para tratar uma diversidade de infecções causadas por bactérias Gram-negativas e Gram-positivas, incluindo *Staphylococcus aureus* resistente à meticilina (SARM) (SHARIATI *et* al, 2022). O CPI atua nas células bacterianas inibindo a DNA-girase e as enzimas topoisomerases IV e II, impactando diretamente na replicação e na transcrição do DNA bacteriano (THAI *et al*, 2021). Por conta do seu amplo espectro e custo-benefício o ciprofloxacino se tornou muito utilizado em ambientes de assistência à saúde. Porém, com o aumento da sua utilização as bactérias desenvolveram mecanismos de resistência e isolados de SARM tornaram-se resistentes ao antibiótico, através de mutações nas regiões de ligação às topoisomerases IV e II, e DNA-girase (KANG *et al*, 2020; NWABUIFE *et al*, 2022).

3.4.4 Oxacilina

A oxacilina pertence ao grupo das penicilinas que são resistentes às betalactamases e penicilinases produzidas pelos *Staphylococcus*. Devido ao aumento de casos de SARM, a oxacilina veem sendo utilizada em terapias alternativas pelo fato de possuir uma maior afinidade por vários tipos de proteínas de ligação à penicilina

(REICHMANN E PINHO, 2017). Assim como outros antibióticos β-lactâmicos, o mecanismo de ação da oxacilina atua ao se ligar aos precursores de produção do peptideoglicano, responsável pela formação da parede bacteriana (ALFEI E SCHITO, 2022).

3.4.5 Daptomicina

A daptomicina é um antimicrobiano da classe dos lipopeptídeos e atualmente é a principal alternativa para os tratamentos contra infecções provocadas por SARM onde uso da vancomicina não se demonstra eficaz. Em determinados pontos, a daptomicina leva certas vantagens quando comparada com a vancomicina, devido ao maior potencial da sua atividade bactericida e a um perfil de tolerância mais aceitável (MARAOLO *et al*, 2021; ZASOWSKI *et al*, 2022). O mecanismo de ação da daptomicina atua inibindo diversas funções da membrana celular bacteriana, como a homeostase do envelope celular através de interações com os fosfolipídios da membrana. Essas interações provocam sérios danos, gerando deformações na parede celular e na membrana bacteriana, que posteriormente sofrem rupturas e por consequência levam a morte celular (BENDER *et al*, 2018; PATEL E SAW, 2022).

4 MATERIAIS E MÉTODOS

4.1. Microrganismos e preparação do inóculo

Oito cepas da espécie *Staphylococcus aureus* resistentes à meticilina foram obtidas de culturas-estoques mantidas no Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM) – Departamento de Antibióticos - UFPE. Esses microrganismos foram cultivados em caldo Triptona Soja (CTS), incubados à 37° C por 24 horas.

Os fenótipos de resistência aos antibióticos normalmente utilizados para o tratamento de infecções bacterianas e as origens do isolamento de cada cepa estão apresentados demonstrados na tabela 1.

O inóculo foi obtido a partir da diluição das culturas bacterianas em solução de salina esterilizada, com o objetivo de obter uma inóculo de concentração igual a 10^8 Unidades Formadoras de Colônias(UFC)/mL, que corresponde a 0,5 na escala de Mc Farland (**Figura 7**).

Tabela 1: Origem do isolamento e fenótipo de resistência de oito cepas de *Staphylococcus aureus*.

Cepas de Staphylococcus aureus	Origem	Fenótipo de resistência determinado pelo Phoenix ¹ BD
ATCC 33591	American Type culture collection	METICILINA
LFBM OXA 1	Hemocultura	CLIN, ERI, GET, OXA, PE
LFBM 2204	Hemocultura	CLIN, ERI, OXA, PEN
LFBM 2205	Hemocultura	CLIN, ERI, GET, OXA, PE
LFBM AM 02	Secreção Vaginal	PEN, TET
LFBM AM 04	Escarro	CLIN, ERI, GET, OXA, PE
LFBM AM05	Hemocultura	ERI
LFBM AM 07	Hemocultura	AMP, CEF, OXA, PEN

Ampicilina (AMP); Clindamicina (CLIN); Eritromicina (ERI); Gentamicina (GET); Oxacilina (OXA); Penicilina (PEN); Tetraciclina (TET);

4.2. Agentes antimicrobianos

Os discos de antibióticos utilizados no estudo foram obtidos da DME (Diagnósticos Microbiológicos Especializados) e CECON (Centro de Controle e Produtos para Diagnóstico), sendo o critério de escolha com base no mecanismo de ação: vancomicina, amoxacilina/ácido clavulânico, ciprofloxacino e oxacilina.

O padrão de resistência para cada disco de antimicrobiano foi baseado no que recomenda o Clinical Laboratory Standar Institute (CLSI, 2022).

4.3. Obtenção do extrato hidroalcoólico de Hymenaea stigonocarpa

As cascas do caule de *H. stigonocarpa* foram secas ao ar, moídas em moinho de martelo (Tigre ASN5) e posteriormente armazenadas em frascos âmbar à temperatura ambiente. Para a obtenção do extrato hidroalcoólico (EH), foi realizada uma maceração de 60 g (1:2 p/v) em etanol/água (1:1), seguindo a metodologia descrita por Gustavo Dimech (DIMECH, 2013)

4.4. Preparação da solução de extrato hidroalcoólico

De acordo com a metodologia descrita em 2013 por Dimech, a partir dos cristais obtidos do extrato hidroalcoólico, 0,1024g foram pesados em balança analítica (Quimis) e solubilizado em balão volumétrico em etanol : água (1:1). Em seguida, a solução obtida foi esterilizada por filtração utilizando membrana de 60mm de diâmetro e 0,22μm de porosidade (**Figura 6**).

4.5. Determinação da Concentração Inibitória Mínima

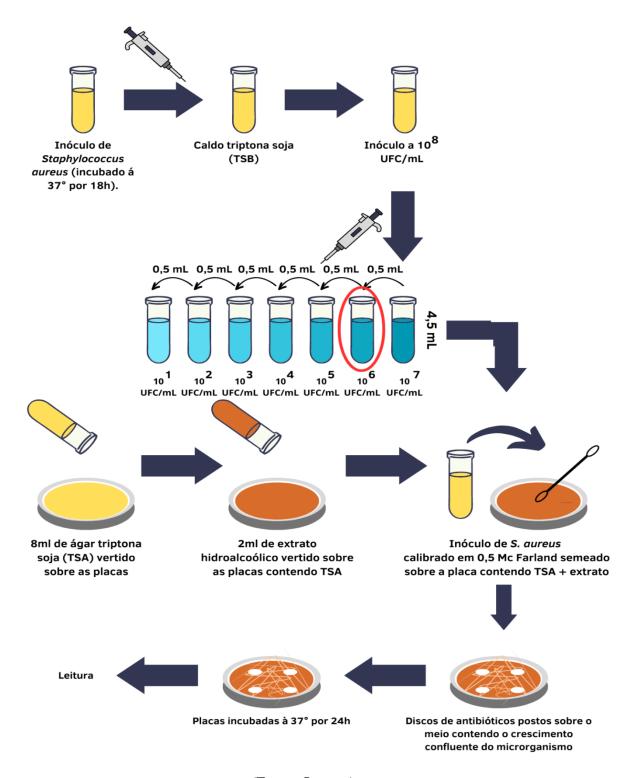
A Concentração Inibitória Mínima (CIM) foi determinada seguindo o método de macrodiluição, de acordo com as normas do CLSI (2020) com algumas modificações. Diluições seriadas da solução do extrato hidroalcóolico foram realizadas a partir da solução estoque, até que fossem obtidas soluções de concentração de 512- 64 μg/mL. Posteriormente, 4,5 ml da suspenção bacteriana padronizada foram dispensados em todos os tubos com as concentrações do EHHS. Uma avaliação antimicrobiana do sistema etanol/Tween 80/água (1,0/0,5/8,5) foi inserido no experimente, para excluir a possibilidade de efeitos tóxicos sobre as cepas de *Staphylococcus aureus*. A CIM é

conceituada pela menor concentração de um agente microbiano que é capaz de inibir o crescimento do microrganismo após um período de 24 h de incubação à 37°C.

Figura 6: À esquerda a solução padronizada do extrato hidroalcoólico e à direita a solução sendo esterilizada por filtração utilizando bomba à vácuo

(Fonte: Professora Eulália Ximenes)

4.6. Associação do extrato hidroalcoólico aos discos de antimicrobianos


Para avaliação das associações do extrato hidroalcóolico com os discos de antimicrobianos: vancomicina (30 μg), amoxicilina + ácido clavulânico (30 μg), ciprofloxacino (5 μg) e oxacilina (1 μg) foi utilizado o método *Overlay Inoculum Susceptibility Disc* (LAISHRAM *et al.*, 2017).

O procedimento utilizado no experimento (**figura 7**) foi uma modificação do método de difusão em meio sólido. Uma solução com concentração equivalente a 1/2 da CIM do extrato hidroalcóolico foi introduzida no ágar triptona de soja (ATS) e vertido nas placas. Em seguida, soluções padronizadas do microrganismo a 10⁶ UFC/mL foram semeadas sobre o meio solidificado com auxílio de swab estéril até a formação de um crescimento confluente do microrganismo. Posteriormente, discos de vancomicina, amoxicilina + ácido clavulânico, ciprofloxacino e oxacilina foram dispostos sobre à superfície do meio de forma equidistante. As placas foram incubadas a 37° por 24 horas.

A Leitura foi realizada pela medida do halo de inibição do cresimento do microrganismo em torno do disco. O aumento do diâmetro da zona de inibição (DZI) ao

redor do disco >19% é equivalente a um efeito sinérgico, <19% igual a um efeito aditivo e sem variação do DZI corresponde a um resultado indiferente (LAISHRAM *et al.*, 2017).

Figura 7: Padronização do inóculo das cepas de *Staphylococcus aureus* e representação do método *Overlay Inoculum Susceptibility Disc* para determinação do efeito antimicrobiano entre o extrato hidroalcoólico e antimicrobianos

(Fonte: O autor)

5. RESULTADOS

5.1. Atividade antimicrobiana do extrato hidroalcoólico de *Hymenaea stigonocarpa* (EHHS)

O EHHS apresentou uma Concentração Inibitória Mínima (CIM) de 512 μ g/mL frente a todas as oito cepas utilizadas neste estudo (ATCC 33591, LFBM OXA 1, LFBM AS 2204, LFMB AS 2205, LFBM AM 02, LFBM, AM 04, LFBM AM 05 e LFBM AM 07).

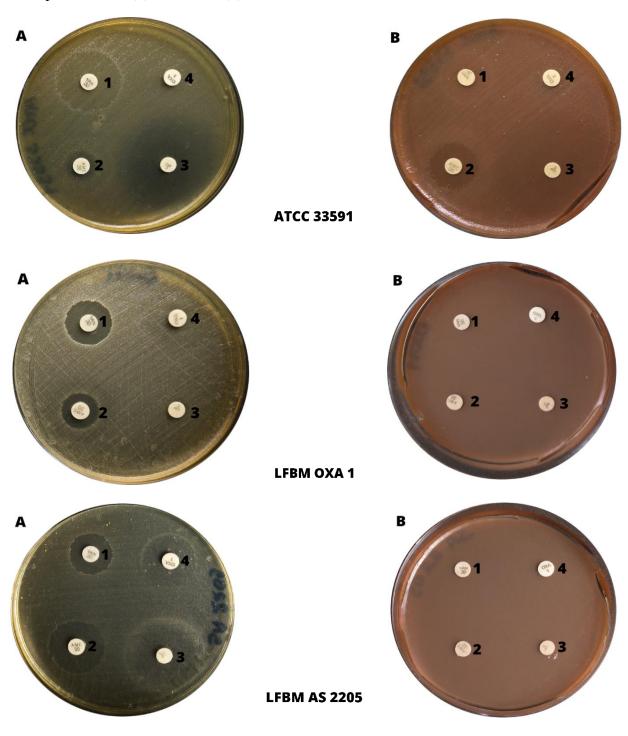
5.2. Associação extrato hidroalcoólico-antimicrobianos

A atividade da associação do extrato hidroalcoólico de *Hymenaea stigonocarpa* (EHHS) com antimicrobianos frente a cepas de *Staphylococcus aureus* resistentes à meticilina (SARM) estão representadas na tabela 3.

Das 4 associações realizadas para as oito cepas, todas mostraram-se sinérgicas, exceto a associação de CIP + EHHS para a cepa ATCC 33591 que apresentou efeito aditivo, e as associações VAN + EHHS e OXA + EHHS que apresentaram um efeito indiferente frente cepa ATCC 33591, visto que foi observado o mesmo resultado que obtido na placa, controle, não houve atividade.

.

Tabela 2: Associação entre o extrato hidroalcoólico e antimicrobianos frente a cepas de *Staphylococcus aureus* resistentes à meticilina utilizando o método *Overlay Inoculum Susceptibility Disc*.


		Diâmetro da Zona de Inibição (DZI ± DP)		
Staphylococcus aureus	Drogas	Controle (mm)	Teste (mm)	Interpretação
	VAN	0	0 ± 0	INDIFERENTE
A TO CO 20501	AMC	0	$15,85 \pm 16,15$	SINÉRGICO
ATCC 33591	CIP	33,32	$36,15 \pm 36,25$	ADITIVO
	OXA	0	0 ± 0	INDIFERENTE
	VAN	15,33	IC; IC	SINÉRGICO
LEDIT ON A	AMC	12,28	IC; IC	SINÉRGICO
LFBM OXA 1	CIP	0	IC; IC	SINÉRGICO
	OXA	0	IC; IC	SINÉRGICO
	VAN	17,46	IC; IC	SINÉRGICO
LFBM 2204	AMC	38,87	IC; IC	SINÉRGICO
	CIP	30,59	IC; IC	SINÉRGICO

	OXA			SINÉRGICO
		25,65	IC; IC	
	VAN	14,70	IC; IC	SINÉRGICO
LFBM 2205	AMC	19,65	IC; IC	SINÉRGICO
LFBW 2203	CIP	30,17	IC; IC	SINÉRGICO
	OXA	20,35	IC; IC	SINÉRGICO
	VAN	16,98	IC; IC	SINÉRGICO
LFBM AM 02	AMC	12,02	IC; IC	SINÉRGICO
	CIP	0	IC; IC	SINÉRGICO
	OXA	0	IC; IC	SINÉRGICO

	VAN	18,76	$23,70 \pm 22,30$	SINÉRGICO
LEDM AMOA	AMC	35,72	IC; IC	SINÉRGICO
LFBM AM04	CIP	29,70	IC; IC	SINÉRGICO
	OXA	0	$27,22 \pm 25,45$	SINÉRGICO
	VAN	17,13	IC; IC	SINÉRGICO
A FDM ANA OF	AMC	10,89	IC; IC	SINÉRGICO
LFBM AM 05	CIP	33,13	IC; IC	SINÉRGICO
	OXA	0	IC; IC	SINÉRGICO
	VAN	15,58	$20,10 \pm 20,08$	SINÉRGICO
	AMC	32,60	IC; IC	SINÉRGICO
LFBM AM 07	CIP	24,30	IC; IC	SINÉRGICO
	OXA	21,95	IC; IC	SINÉRGICO

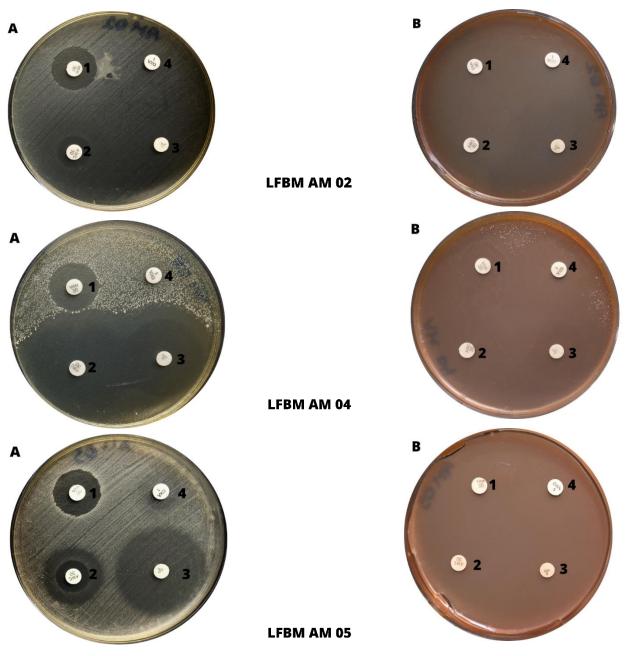
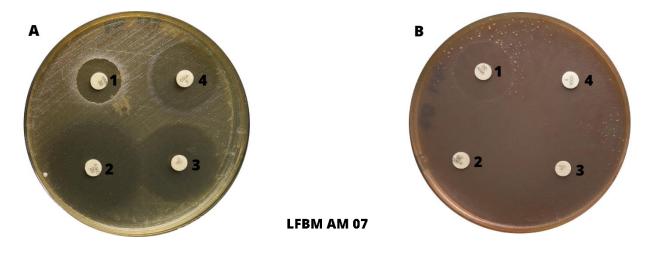
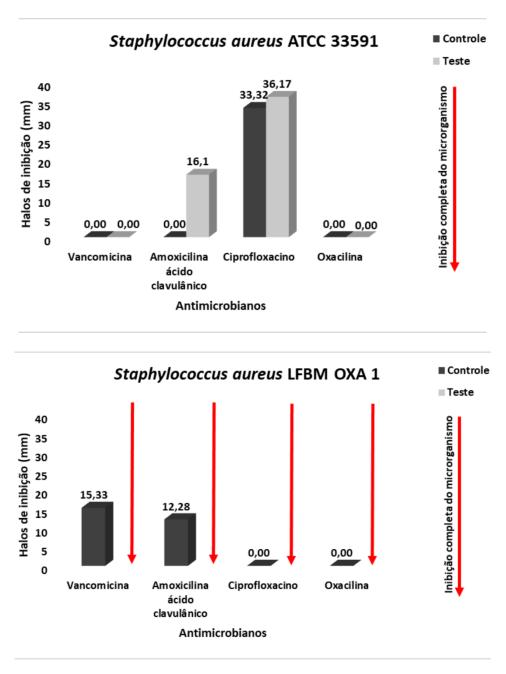
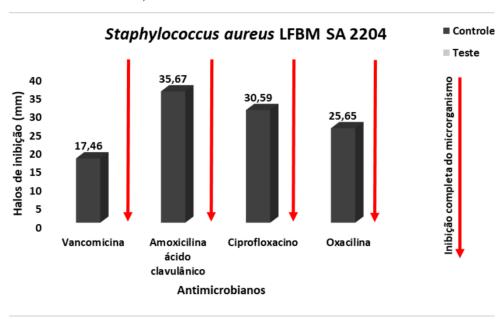

Inibição Completa (IC); Vancomicina (VAN); Amoxicilina/ácido clavulânico (AMC); Ciprofloxacino (CIP); Oxacilina (OXA).

Figura 8: À esquerda (A) demostra o controle e à direita (B) demostra o teste dos antimicrobianos com o extrato hidroalcoólico introduzido no meio, cepas ATCC 33591, LFBM OXA 1, LFBM AS 2205. Vancomicina (1), Amoxicilina/ácido clavulânico (2), Ciprofloxacino (3), Oxacilina (4).



(Fonte: O autor)


Figura 9: À esquerda (A) demostra o controle e à direita (B) demostra o teste dos antimicrobianos com o extrato hidroalcoólico introduzido no meio, cepas LFBM AM 02, LFBM AM 04, LFBM AM05. Vancomicina (1), Amoxicilina/ácido clavulânico (2), Ciprofloxacino (3), Oxacilina (4).


Figura 10: À esquerda (A) demostra o controle e à direita (B) demostra o teste dos antimicrobianos com o extrato hidroalcoólico introduzido no meio, cepa LFBM AM07. Vancomicina (1), Amoxicilina/ácido clavulânico (2), Ciprofloxacino (3), Oxacilina (4).

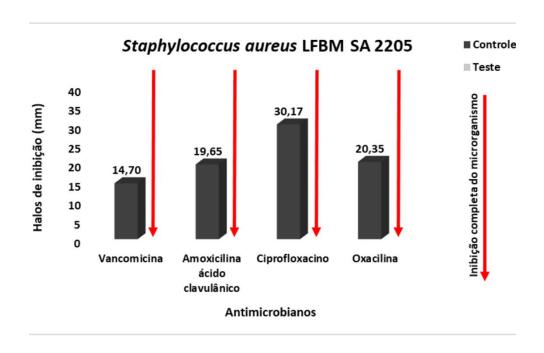


Figura 11: Comparação dos Diâmetros da Zona de Inibição do crescimento das cepas de *Staphylococcus aureus* resistentes à meticilina ATCC 33591 e LFBM OXA 1. **Controle**: antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina); Teste- Associação extrato hidroalcoólico de *Hymenaea stigonocarpa* com os antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina).

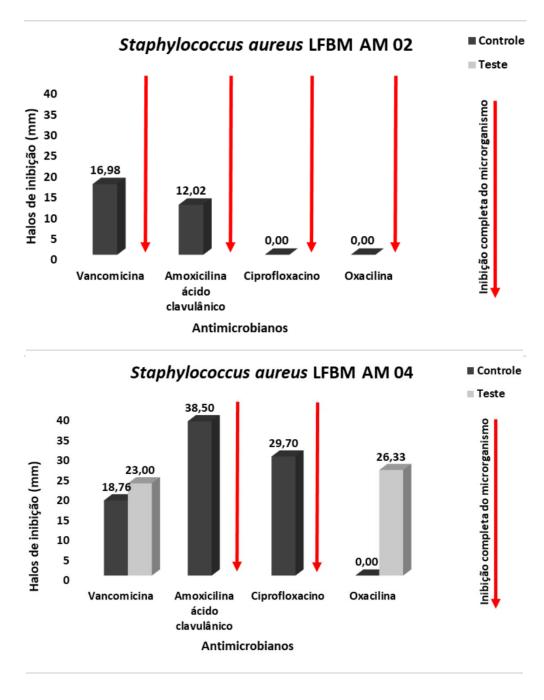


Figura 12: Comparação dos Diâmetros da Zona de Inibição do crescimento das cepas de *Staphylococcus aureus* resistentes à meticilina LFBM AS 2204 e LFBM AS 2205. **Controle**: antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina); Teste- Associação extrato hidroalcoólico de *Hymenaea stigonocarpa* com os antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina).

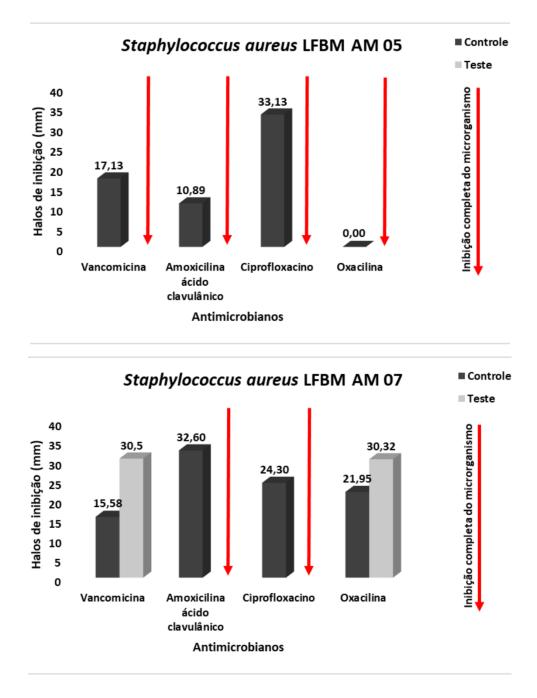


Figura 13: Comparação dos Diâmetros da Zona de Inibição do crescimento das cepas de *Staphylococcus aureus* resistentes à meticilina LFBM AM 02 e LFBM AM 04. **Controle**: antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina); Teste- Associação extrato hidroalcoólico de *Hymenaea stigonocarpa* com os antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina).

Figura 14: Comparação dos Diâmetros da Zona de Inibição do crescimento das cepas de *Staphylococcus aureus* resistentes à meticilina LFBM AM 05 e LFBM AM 07. **Controle**: antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina); Teste- Associação extrato hidroalcoólico de *Hymenaea stigonocarpa* com os antimicrobianos (Vancomicina, Amoxicilina/ácido clavulânico, Ciprofloxacino e Oxacilina).

6. DISCUSSÃO

Staphylococcus aureus resistente à meticilina (SARM), uma bactéria multidroga resistente (MDR), é considerada uma das principais e mais graves ameaças à saúde pública. Ele é responsável por provocar infecções nosocomiais, desde infecções leves, como infecções superficiais e intoxicações alimentares, até infecções graves, como pneumonia, endocardite infecciosa, bacteremia e diversas infecções sistêmicas (CHEN et al, 2021). Com o passar dos anos, a administração exacerbada de antimicrobianos para o tratamento de SARM levou ao desenvolvimento de cepas multirresistentes, o que provocou uma diminuição das possibilidades terapêuticas para infecções por S. aureus resistentes à meticilina (ALSEQELY et al, 2021). As infecções decorrentes de bactérias MDR são responsáveis por uma taxa de mortalidade aproximadamente de 30% em todo o mundo, sendo Staphylococcus aureus um dos patógenos mais preocupantes, afetando 50 em cada 100.000 pessoas, com uma taxa de mortalidade que varia entre 19% a 57% para adultos (MINEJIMA et al, 2020; HUANG et al, 2022).

Nesse contexto, é indispensável a busca por novas moléculas e/ou esquemas terapêuticos, com isso, os metabólitos secundários com atividade biológica podem ser uma opção para o tratamento de infecções causadas por esses microrganismos.

No estudo apresentado, foi realizada a análise da capacidade do extrato hidroalcoólico de *Hymenaea stigonocarpa* (EHHS) em inibir o crescimento de cepas de *Staphylococcus aureus* resistentes à meticilina (SARM).

Em 2004, Sotoratto e colaboradores determinaram a classificação para o potencial antimicrobianos de moléculas bioativas, através da Concentração Inibitória Mínima (CIM), sendo obtidos os seguintes intervalos: moléculas com atividade considerada forte apresentam uma CIM que varia de 50 a 500μg/mL; moléculas com atividade moderada possuem valores de CIM entre 600 e 1500μg/mL; por fim, moléculas com atividade biológica fraca apresentam valores acima de 1500μg/mL. No nosso estudo, o EHHS apresentou uma atividade biológica moderada, visto que o valor de CIM utilizado foi de 512μg/mL.

A associação do extrato hidroalcoólico, na CIM de 512μg/ml, com antibióticos glicopeptídeos (vancomicina), β-lactâmicos (amoxacilina + ácido clavulânico) e (oxacilina) e quinolonas (ciprofloxacino) gerou efeitos sinérgicos, provocando aumento dos halos de inibição ou inibições completas do crescimento nas diversas cepas de SARM utilizadas neste estudo.

Dentre as 8 cepas avaliadas no estudo, as cepas LFMB OXA1, LFBM SA 2204, LFBM SA 2205, LFBM AM 02 e LFBM AM 05 foram as que apresentaram inibição completa do crescimento quando foi associado o EHHS aos antimicrobianos. Apresentando desta forma um efeito sinérgico, visto que o aumento do halo de inibição foi superior a 19% (CHINWUBA *et al*, 1991).

Para as cepas LFBM AM 04 e LFBM AM 07 todas as associações apresentaram características sinérgicas, porém apenas as associações do EHHS/amoxacilina + ácido clavulânico e EHHS/ciprofloxacino apresentaram uma inibição completa do crescimento bacteriano.

A cepa ATCC 33591 foi a única que não apresentou a inibição completa do microrganismo nas placas teste. A associação EHHS/vancomicina e EHHS/oxacilina não apresentou alteração do tamanho do halo de inibição, sendo assim caracterizadas como associações indiferentes. O EHHS associado ao antimicrobiano, ciprofloxacino foi a única associação que se apresentou como aditiva, visto que o aumento do halo de inibição foi inferior a 19%. Por fim, para a ATCC 33591 a única associação considerada sinérgica foi entre o EHHS/amoxacilina + ácido clavulânico, com aumento do halo de inibição superior a 19%.

Utilizando outro método, Dimech (2013) também realizou estudos para avaliar a atividade antimicrobiana do extrato hidroalcoólico de *Hymenaea stigonocarpa* frente a cepas de *Staphylococcus aureus* resistentes à meticilina (SARM). Segundo o seu estudo, o EHHS mostrou uma melhor atividade antibacteriana frente a cepas de *S. aureus* quando comparado com a atividade frente a bactérias Gram-negativas.

Dimech também avaliou a atividade antibacteriana de duas frações do EHHS, a fração aquosa (FA) e a fração acetato de etila (FAE), sendo a FA composta apenas por taninos condensados e a FAE apresentando grande quantidade de flavonóides. A fração FA apresentou uma maior atividade antibacteriana, com valores de CIM variando de 64 e 256 μg/mL para cepas de *Staphylococcus aureus* sensíveis à meticilina (SASS) e SARM, enquanto que a FAE para as mesmas cepas apresentou valores de CIM entre 128 e 512 μg/mL, respectivamente.

Além de analisar a CIM de diversas frações do EHHS, Dimech analisou por meio de microscopia eletrônica quais os efeitos ultraestruturais que o EHHS, rico em taninos condensados e os flavonóides, gerava nas cepas de *S. aureus*. Em um tratamento com metade da CIM, Dimech observou o surgimento de orifícios na parede celular, parede parcialmente digerida, esfoliação na superfície bacteriana e espessamento do septo. Ao

utilizar um tratamento com a CIM, além das alterações já citadas, foram observadas mudanças em diversas estruturas celulares, como a condensação dos ribossomos, desligamento da parede celular, divisão anormal da célula, múltiplos septos, presença de células fantasmas e rompimentos na parede celular.

Os flavonóides são capazes de se ligarem diretamente a parede celular e alterar a sua integridade, gerando uma falha na incorporação do peptidoglicano na parede celular, podendo ser os responsáveis pelo aparecimento dos orifícios. O espessamento da parede celular e a condensação dos ribossomos é resultado de um mecanismo de defesa das bactérias na tentativa de estabilizar a pressão osmótica após o EHHS exercer sua ação (DIMECH, 2013)

Os resultados obtidos por Dimech corroboram com os apresentados no presente estudo, mostrando que o extrato hidroalcoólico de *Hymenaea stigonocarpa* (EHHS) possui atividade antibacteriana contra cepas de *Staphylococcus aureus* resistentes à meticilina (SARM) e comprovando que o EHHS é capaz de intensificar a atividade de antimicrobianos convencionais, utilizados no tratamento de infecções por SARM, por meio de interações sinérgicas.

Diante do exposto, é visível que a pesquisa sobre a associação entre metabólitos secundários e antimicrobianos é extremamente importante e promissora, podendo auxiliar no tratamento de infecções causadas por *S. aureus* resistentes à meticilina.

7. CONCLUSÕES

O extrato hidroalcoólico *Hymenaea stigonocarpa* (EHHS) foi capaz de inibir o crescimento de cepas de *Staphylococcus aureus* resistentes à meticilina (SARM).

O EHHS apresentou sinergismo em 90,62% das associações realizadas, mostrando que pode ser uma eficiente alternativa no tratamento combinado para infecções por SARM.

A associação EHHS/vancomicina e EHHS/oxacilina se mostraram indiferentes para a cepa ATCC 33591, revelando um forte perfil de resistência para estes antimicrobianos

Os resultados obtidos podem servir futuramente para estudos mais aprofundados a respeito do efeito das associações entre o extrato hidroalcoólico de *Hymenaea stigonocarpa* e antimicrobianos contra cepas de *Staphylococcus aureus* resistentes à meticilina.

8. REFERÊNCIAS

ALFEI, Silvana; SCHITO, Anna Maria. β-lactam antibiotics and β-lactamase enzymes inhibitors, part 2: our limited resources. Pharmaceuticals, v. 15, n. 4, p. 476, 2022.

ALSEQELY, Mustafa et al. Association between fluoroquinolone resistance and MRSA genotype in Alexandria, Egypt. Scientific reports, v. 11, n. 1, p. 1-9, 2021.

Antibiotic resistance. **World Health Organization**, 2020. Disponível em: https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance . Acesso em: 20 de fev. de 2023.

BENDER, Jennifer K. et al. **Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature**. Drug Resistance Updates, v. 40, p. 25-39, 2018.

CASSANDRA, W. The drug-resistant bacteria that pose the greatest health threats. Nature, v. 543, p. 15, 2017.

CASSAT, James E.; THOMSEN, Isaac. **Staphylococcus aureus infections in children. Current Opinion in Infectious Diseases**, v. 34, n. 5, p. 510-518, 2021.

CHAMS, Sana et al. **Amoxicillin/clavulanic acid-induced pancreatitis: case report. BMC gastroenterology**, v. 18, n. 1, p. 1-5, 2018.

CHEN, Hongbin et al. **Drivers of methicillin-resistant Staphylococcus aureus** (MRSA) lineage replacement in China. Genome Medicine, v. 13, p. 1-14, 2021.

CHINWUBA, Z. G. et al. **Determination of the synergy of antibiotic combinations by an overlay inoculum susceptibility disc method.** Arzneimittel-forschung, v. 41, n. 2, p. 148-150, 1991.

DA SILVA, Cléber José et al. **Biological activities associated with tannins and flavonoids present in Hymenaea stigonocarpa and Hymenaea courbaril: A systematic review.** Research, Society and Development, v. 11, n. 12, p. e174111234196-e174111234196, 2022.

DE MENEZES FILHO, Antonio Carlos Pereira; et al. **Avaliações antioxidante e antifúngica dos óleos essenciais de Hymenaea stigonocarpa Mart. ex Hayne e Hymenaea courbaril L**. Journal of Biotechnology and Biodiversity, v. 8, n. 2, p. 104-114, 2020.

DE O. RIBEIRO, Izabella Carolina et al. **Plants of the Cerrado with antimicrobial effects against Staphylococcus spp. and Escherichia coli from cattle**. BMC Veterinary Research, v. 14, p. 1-10, 2018.

DIMECH, Gustavo Santiago. Estudo fitoquímico e antimicrobiano da casca do caule de Hymenaea stigonocarpa mart. Ex. Hayne (jatobá). 2014.

ESPINOSA-GONGORA, Carmen et al. Impact of oral amoxicillin and amoxicillin/clavulanic acid treatment on bacterial diversity and β -lactam resistance in the canine faecal microbiota. Journal of Antimicrobial Chemotherapy, v. 75, n. 2, p. 351-361, 2020.

FRIERI, Marianne; KUMAR, Krishan; BOUTIN, Anthony. **Antibiotic resistance**. Journal of infection and public health, v. 10, n. 4, p. 369-378, 2017.

GÓRNIAK, Ireneusz; BARTOSZEWSKI, Rafał; KRÓLICZEWSKI, Jarosław. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry reviews, v. 18, p. 241-272, 2019.

GUO, Yunlei et al. **Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in cellular and infection microbiology**, v. 10, p. 107, 2020.

HEMMADI, Vijay; BISWAS, Malabika. **An overview of moonlighting proteins in Staphylococcus aureus infection**. Archives of microbiology, v. 203, n. 2, p. 481-498, 2021.

HUANG, Xiaosu et al. **Phloroglucinol Derivative Carbomer Hydrogel Accelerates MRSA-Infected Wounds' Healing**. International Journal of Molecular Sciences, v. 23, n. 15, p. 8682, 2022.

HUTTNER, Angela et al. **Oral amoxicillin and amoxicillin-clavulanic acid: properties, indications and usage**. Clinical microbiology and infection, v. 26, n. 7, p. 871-879, 2020.

IDREES, Muhammad et al. **Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies**. International Journal of Environmental Research and Public Health, v. 18, n. 14, p. 7602, 2021.

Jatobá (Hymenaea stigonocarpa Mart. ex Hayne). A Planta da Vez, 2020. Disponível em: https://www.aplantadavez.com.br/2020/09/jatoba-hymenaea-stigonocarpa-mart_ex.html. Acesso em: 23 de fev. de 2023.

KANG, Sangrim et al. **Membrane-targeting triphenylphosphonium functionalized ciprofloxacin for methicillin-resistant Staphylococcus aureus (MRSA)**. Antibiotics, v. 9, n. 11, p. 758, 2020.

KHANAL, Ashok et al. **Methicillin-resistant Staphylococcus aureus in Nepal: A systematic review and meta-analysis**. International Journal of Infectious Diseases, v. 103, p. 48-55, 2021.

KOVÁČ, Ján et al. Therapeutic Potential of Flavonoids and Tannins in Management of Oral Infectious Diseases—A Review. Molecules, v. 28, n. 1, p. 158, 2023.

KOZAJDA, Anna; JEŻAK, Karolina; KAPSA, Agnieszka. **Airborne Staphylococcus aureus in different environments—a review**. Environmental Science and Pollution Research, v. 26, p. 34741-34753, 2019.

LAKHUNDI, Sahreena; ZHANG, Kunyan. **Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology**. Clinical microbiology reviews, v. 31, n. 4, p. e00020-18, 2018.

LEE, Andie S. et al. **Methicillin-resistant Staphylococcus aureus**. Nature reviews Disease primers, v. 4, n. 1, p. 1-23, 2018.

LUNG, Tania Wong Fok; PRINCE, Alice. Consequences of metabolic interactions during Staphylococcus aureus infection. Toxins, v. 12, n. 9, 2020.

LUZ, Luana M. et al. Distinct physiological mechanisms underpin growth and rehydration of Hymenaea courbaril and Hymenaea stigonocarpa upon short-term exposure to drought stress. Journal of Forestry Research, v. 34, n. 1, p. 113-123, 2023.

MANCABELLI, Leonardo et al. **Amoxicillin-clavulanic acid resistance in the genus Bifidobacterium**. Applied and Environmental Microbiology, v. 87, n. 7, p. e03137-20, 2021.

MARAOLO, Alberto Enrico et al. **Daptomycin versus vancomycin for the treatment of methicillin-resistant staphylococcus aureus bloodstream infection with or without endocarditis: a systematic review and meta-analysis**. Antibiotics, v. 10, n. 8, p. 1014, 2021.

MATUSZEWSKA, Marta et al. Stable antibiotic resistance and rapid human adaptation in livestock-associated MRSA. Elife, v. 11, p. e74819, 2022.

MINEJIMA, Emi et al. **Defining the breakpoint duration of Staphylococcus aureus bacteremia predictive of poor outcomes**. Clinical Infectious Diseases, v. 70, n. 4, p. 566-573, 2020.

MÜHLBERG, Eric et al. Renaissance of vancomycin: Approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Canadian journal of microbiology, v. 66, n. 1, p. 11-16, 2020.

NWABUIFE, Joshua C.; OMOLO, Calvin A.; GOVENDER, Thirumala. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria "E. coli; P. aeruginosa; Saureus; and MRSA" and their infections. Journal of Controlled Release, v. 349, p. 338-353, 2022.

OSORIO, Mauricio et al. **Prenylated flavonoids with potential antimicrobial activity: Synthesis, biological activity, and in silico study**. International journal of molecular sciences, v. 22, n. 11, p. 5472, 2021.

Patel S, Saw S. **Daptomicina**. [Atualizado em 11 de dezembro de 2022]. In: StatPearls [Internet]. Ilha do Tesouro (FL): StatPearls Publishing; 2023 Jan-. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK470407/. Acesso em: 20 de mar. 2023.

PLUMET, Lucile et al. **Bacteriophage therapy for Staphylococcus aureus Infections:** A review of animal models, treatments, and clinical trials. Frontiers in Cellular and Infection Microbiology, p. 808, 2022.

REICHMANN, Nathalie T.; PINHO, Mariana G. Role of SCC mec type in resistance to the synergistic activity of oxacillin and cefoxitin in MRSA. Scientific Reports, v. 7, n. 1, p. 6154, 2017.

ROSE, Warren et al. Current paradigms of combination therapy in methicillinresistant Staphylococcus aureus (MRSA) bacteremia: does it work, which combination, and for which patients? Clinical Infectious Diseases, v. 73, n. 12, p. 2353-2360, 2021.

SANTOS, Nádia E.; BRAGA, Susana Santos. Redesigning Nature: Ruthenium Flavonoid Complexes with Antitumour, Antimicrobial and Cardioprotective Activities. Molecules, v. 26, n. 15, p. 4544, 2021.

SARBU, L. G. et al. Synthetic flavonoids with antimicrobial activity: a review. Journal of applied microbiology, v. 127, n. 5, p. 1282-1290, 2019.

SHARIATI, Aref et al. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Frontiers in Public Health, v. 10, 2022.

SHRESTHA, Lok Bahadur et al. **Methicillin-resistant Staphylococcus aureus in Nepal.** JNMA: Journal of the Nepal Medical Association, v. 59, n. 237, p. 518, 2021.

SONG, Mingsheng et al. The antibacterial effect of topical ozone on the treatment of MRSA skin infection. Molecular medicine reports, v. 17, n. 2, p. 2449-2455, 2018.

SUN, Shuaibo et al. Astilbin prevents osteoarthritis development through the TLR4/MD-2 pathway. Journal of Cellular and Molecular Medicine, v. 24, n. 22, p. 13104-13114, 2020.

SWOLANA, Denis; WOJTYCZKA, Robert D. **Activity of Silver Nanoparticles against Staphylococcus spp**. International Journal of Molecular Sciences, v. 23, n. 8, p. 4298, 2022.

TASNEEM, Ufaq et al. **Methicillin resistant Staphylococcus aureus: A brief review of virulence and resistance**. JPMA. The Journal of the Pakistan Medical Association, v. 72, n. 3, p. 509-515, 2022.

THAI, Tony; SALISBURY, Blake H.; ZITO, Patrick M. Ciprofloxacin. In: StatPearls [Internet]. StatPearls Publishing, 2021.

TSUTSUURA, Moeko et al. The monitoring of vancomycin: a systematic review and meta-analyses of area under the concentration-time curve-guided dosing and trough-guided dosing. BMC infectious diseases, v. 21, p. 1-15, 2021.

TURNER, Nicholas A. et al. **Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research**. Nature Reviews Microbiology, v. 17, n. 4, p. 203-218, 2019.

VACA CÓRDOVA, Stephany Denisse; CRUZ PIERARD, Stephanie Marie; IÑIGUEZ JIMÉNEZ, Samuel Olegario. **Prevalencia de Staphylococcus aureus meticilino resistente en el personal de salud de un Hospital de Especialidades en Quito-Ecuador**. Revista San Gregorio, v. 1, n. 45, p. 86-98, 2021.

VAN DUIN, David; PATERSON, David L. Multidrug-resistant bacteria in the community: an update. Infectious Disease Clinics, v. 34, n. 4, p. 709-722, 2020.

VANAMALA, Kushal et al. **Novel approaches for the treatment of methicillin-**resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug discovery today, v. 26, n. 1, p. 31-43, 2021.

WU, Zhi-Chen; CAMERON, Michael D.; BOGER, Dale L. Vancomycin C-terminus guanidine modifications and further insights into an added mechanism of action imparted by a peripheral structural modification. ACS infectious diseases, v. 6, n. 8, p. 2169-2180, 2020.

ZASOWSKI, Evan J. et al. **Multicenter cohort study of ceftaroline versus daptomycin for treatment of methicillin-resistant Staphylococcus aureus bloodstream infection**. In: Open Forum Infectious Diseases. US: Oxford University Press, 2022. p. ofab606.