UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO ACADEMICO DO AGRESTE
NUCLEO DE TECNOLOGIA
CURSO DE ENGENHARIA CIVIL

ANDERSON FERREIRA ALVES

DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL WEB PARA
PROJETO BASEADO EM CONFIABILIDADE DE DUTOS SUJEITOS A
MULTIPLOS DEFEITOS DE CORROSAO

Caruaru
2019

ANDERSON FERREIRA ALVES

DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL WEB PARA
PROJETO BASEADO EM CONFIABILIDADE DE DUTOS SUJEITOS A
MULTIPLOS DEFEITOS DE CORROSAO

Trabalho de Conclusdo de Curso
apresentado ao Curso de Engenharia Civil
da Universidade Federal de Pernambuco,
como requisito parcial para a obtencéo do
titulo de Bacharel em Engenharia Civil.

Area de concentracgéo: Estruturas.

Orientador: Profd. Dr2. Juliana von Schmalz Torres.

Caruaru
2019

Catalogacao na fonte:
Bibliotecaria — Simone Xavier - CRB/4 - 1242

A474d

Alves, Anderson Ferreira.
Desenvolvimento de um sistema computacional web para projeto baseado em

confiabilidade de dutos sujeitos a multiplos defeitos de corrosdo. / Anderson Ferreira

Alves. — 2019.
117 f.il. : 30 cm.

Orientadora: Juliana von Schmalz Torres.

Monografia (Trabalho de Conclusdo de Curso) — Universidade Federal de
Pernambuco, CAA, Engenharia Civil, 2019.

Inclui Referéncias.

1. Dutos e tubulag@es. 2. Confiabilidade (Engenharia). 3. Monte Carlo, Método de.
4. Redes neurais (Computacéo). 5. Android (Recurso eletrdnico). 6. Compiladores
(Programas de computador). I. Torres, Juliana von Schmalz (Orientadora). Il. Titulo.

CDD 620 (23. ed.) UFPE (CAA 2019-065)

ANDERSON FERREIRA ALVES

DESENVOLVIMENTO DE UM SISTEMA COMPUTACIONAL WEB PARA
PROJETO BASEADO EM CONFIABILIDADE DE DUTOS SUJEITOS A MULTIPLOS
DEFEITOS DE CORROSAO

Trabalho de Conclusdo de Curso a ser apresentado ao Curso de Engenharia Civil do
Centro Académico do Agreste - CAA, da Universidade Federal de Pernambuco -
UFPE, em cumprimento as exigéncias para a obtencdo do grau de Bacharel em

Engenharia Civil.

Anderson Ferreira Alves

BANCA EXAMINADORA

A banca examinadora composta pelos professores abaixo, considera o candidato
ANDERSON FERREIRA ALVES aprovado com nota .

Prof2. Dr2. Juliana von Schmalz Torres:

Universidade Federal de Pernambuco — UFPE (Orientadora)

Prof2. Dr2. Mariana Fernandes dos Santos Villela:

Universidade Federal de Pernambuco — UFPE (Avaliador)

Prof. Dr. Alessandro Romario Echevarria Antunes:

Universidade Federal de Pernambuco — UFPE (Avaliador)

Prof. Dr. Elder Alpes de Vasconcelos:

Universidade Federal de Pernambuco — UFPE (Coordenador da disciplina de TCC)

Caruaru, de junho de 2019.

Dedico aos meus tios Lurdes e Valfrido, aos meus primos Edvaldo e Walter, e
ao meu irmao Fabiano por me apoiarem, ajudarem e acreditarem em mim em todos

0S momentos.

AGRADECIMENTOS

Primeiramente agradeco a Deus pelo dom da vida e por tudo que tenho e o que
conquistei até hoje, agradeco também a minha familia, especialmente minha tia
Lurdes e meu tio Valfrido, aos meus primos Edvaldo e Walter, e a meu irm&o Fabiano,
por sempre me proporcionarem uma infraestrutura familiar que me permitiu continuar
com 0s meus estudos, além é claro de todo o apoio e ajuda quando eu mais precisava

Meus agradecimentos aos meus amigos e colegas da universidade que sempre
estiveram dispostos a compartilhar conhecimentos e sanar duvidas contribuindo desta
forma para meu crescimento pessoal, além é claro dos momentos de descontracao.
Em especial agradeco a Kennendh, Felipe, Bruno, Matheus, Ayane, Hellen, Isabela,
Joao Lucas, Kevin, Letdnio, Claudiano, Alisson, Claudio, Miguel e Daniel. Além de
todos os outros que nao foram mencionados, mas que tiveram grande importancia ao
longo da graduacéo.

Agradeco a todo o corpo docente da Universidade Federal de Pernambuco, que
constituido por uma equipe competente de profissionais permitiu um bom aprendizado
e base sélida dos principais conceitos da Engenharia Civil.

E por Gltimo, mas ndo menos importante, agradeco incondicionalmente a minha
orientadora de TCC, Juliana, que sempre esteve disposta a escutar minhas ideias, e
sempre estimulando aplicacdes do meu interesse por programacao, além é claro pelas
varias vezes em gue me ajudou sanando duvidas e abrindo novos horizontes com

novas sugestdes de pesquisas.

“Projetos Conjuntos tem mais chances de
sucesso quando se beneficiam de ambos

os lados”’.

(Euripedes)

RESUMO

O sistema dutoviario € um dos mais eficientes no transporte de cargas como
petréleo e gas, isso se deve ao baixo custo operacional se comparado a outras
metodologias e pela grande eficiéncia devido ao fato de operar de forma continua.
Porém esse sistema é suscetivel a corrosdo, que por sua vez diminui a capacidade
resistente do duto, o que pode gerar ruptura acarretando diversos prejuizos. A
corrosdo gera defeitos ao longo do duto, estes defeitos podem interagir gerando uma
perda ainda maior na resisténcia do mesmo. Por meio da analise de confiabilidade
estrutural, é possivel levar em consideracao as incertezas das variaveis do problema,
proporcionando um projeto mais confiavel e econémico. No presente trabalho, &
desenvolvido um sistema web para analise e projeto (calculo da espessura 6tima)
utilizando confiabilidade estrutural em dutos sujeitos a multiplos defeitos de corroséo.
Este sistema € composto por um aplicativo Android e um webservice (aplicacéo web)
gue se comunica com o software Matlab, para que os métodos de confiabilidade sejam
executados remotamente. Um ambiente em trés dimensdes para representar o duto
3d e seu defeitos foi implementado na Engine Unity, onde sédo criados jogos e
ambientes tridimensionais, e integrado ao aplicativo desenvolvido neste trabalho, afim
de validar a representacdo do modelo dos dados de forma visual. Além disso, no
presente trabalho, foi criada uma linguagem de programacdo para que o Sistema
suportasse a escrita e resolucdo de outros tipos de problemas de confiabilidade
estrutural. Tal como, especificar outra variavel de projeto que ndo seja a espessura,
ou até mesmo problemas que ndo tenham relagdo com dutos, como o projeto de vigas.
A analise de confiabilidade foi feita utilizando-se dos métodos FORM, Monte Carlo,
Monte Carlo com Esperanca Condicionada, e Monte Carlo com Redes Neurais.
Utilizou-se de formulacdes empiricas obtidas da norma BS7910(2005) para o célculo
da presséo de falha. A evolucéo do processo corrosivo ao longo do tempo foi estudada

considerando o modelo linear de corrosédo proposto por Ahammed.

Palavras-chave: Dutos. Corrosao. Confiabilidade Estrutural. Monte Carlo. FORM.
Android.

ABSTRACT

The pipeline system is one of the most efficient in the transport of cargoes such
as oil and gas, this is due to the low operational cost compared to other methodologies
and the great efficiency due to the fact of operating continuously. However, this system
IS susceptible to corrosion, which in turn reduces the resistant capacity of the pipeline,
which can generate rupture causing several damages. Corrosion causes defects along
the duct, these defects can interact generating an even greater loss in the resistance
of the same. Through the structural reliability analysis, it is possible to take into account
the uncertainties of the problem variables, providing a more reliable and economical
project. In the present paper, a web system is developed for analysis and design
(calculation of the optimal thickness) using structural reliability in pipeline subject to
multiple corrosion defects. This system consists of an Android application and a
webservice (web application) that communicates with Matlab software so that reliability
methods are executed remotely. A 3D environment to represent the 3d pipeline and its
defects was implemented in Engine Unity, where games and three-dimensional
environments are created, and integrated with the application developed in this paper,
in order to validate the representation of the data model in a visual way. In addition, in
the present paper, a programming language was created for the system to support the
writing and resolution of other types of structural reliability problems. Like, specify
another design variable other than thickness, or even problems that are unrelated to
pipelines, such as beam design. The reliability analysis was done using the FORM,
Monte Carlo, Monte Carlo with Conditioned Hope, and Monte Carlo with Neural
Networks methods. Empirical formulations obtained from BS7910 (2005) were used to
calculate the failure pressure. The evolution of the corrosive process over time was

studied considering the linear corrosion model proposed by Ahammed.

Keyword: Pipeline. Corrosion. Reliability Structural. Monte Carlo. FORM. Android.

LISTA DE ILUSTRACOES

Figura 1 — Dimensdes associadas a interacao entre falhasccccccccveeiiiiiieeennnns 31
Figura 2 — Projecéao circunferencial entre falhas interagentes...........ccccccceeevieeevennnnns 32
Figura 3 — Projecéo e sobreposicao de falhas interagentes.............ccccvvvviiiiiiininnnnnee 32
Figura 4 — Exemplo de agrupamentos de falhas adjacentes............cccccuvvviiiiiiinnnnnes 33
Figura 5 — Exemplificacdo da funcdo de falha............cccoeeriiiiii e, 36
Figura 6 — Representacao grafica do método FORM...........cccoooeeiiiiiiiiiiiiii e, 38
Figura 7 — Representacgéo grafica do método de Newton-Raphson...........ccccceeeene. 43
Figura 8 — Estrutura de um neurdnio DIOIOQICO...........oouiiiiiiiiiiiiie e 45
Figura 9 — Estrutura de um neurdnio artificial..............ccccevvviiiiiii e, 46
Figura 10 — Rede neural com 3 camadas OCUltascccceeveeeeiiiiiiiiiiiiiie e, a7
Figura 11 - Tipos de FUNGOES de ALIVAGEODuuuuurriiiiiiiiiiiiiiiiiiiiiiiiiiieiiieneieeeeeeaeeeeee 48
Figura 12 - Representacao Grafica dos Tipos de Func¢des de Ativacao 48
Figura 13 — Rede alimentada adiante com uma Unica camada...............cccceeeeeeeeennns 49

Figura 14 — Rede alimentada adiante totalmente conectada com 1 camada oculta .50

Figura 15 — Rede recorrente sem camadas OCUIAS............uuvuuuriiiiiiiiiiiiiiiiiiiiiiiiiiieene 50
Figura 16 - Um COMPIAUOTuuiiiiiiiiiiiiiiiiiiitiiiiii e eeeeeeeee 59
Figura 17 — Etapas da COMPIlAGADuuuuuuiiiiiiiiiiiiiiiiiiiiiiii e 60
Figura 18 — Gramatica para as quatro operages aritméticas..........ccccccveeeeeeeeeeeennnns 63
Figura 19 — Arvore gramatical para uma expressio matematicac..coveeveeuenen. 63
Figura 20 - Exemplo de acdo semantica incorporada a uma produgao 65
Figura 21 — Definigdo da Classe java EStadio..............uuuueuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienene 68
Figura 22 — Diagrama de componentes do SIStEMa.............ceeeveeeeeiiiiiiiiiiiieeeeeeeeeennns 71
Figura 23 — Tela de Configuracdes do aplicativoccceeeiiiieiiiiiiiiiiiie e, 73
Figura 24 — Opgao “tipo do problema’...........oeueiiiiie e 73
Figura 25 — Escolha do método de confiabilidade..............cccoeeeeieeiiiiiiiiiies 74
Figura 26 — Fluxograma algoritmo Monte Carlo com Redes Neurais........................ 75

Figura 27 — Pilha de sessfes Matlab sincronizada com as threads do webservice ..79

Figura 28 — Cabecalhos de alguns métodos de confiabilidade do webservice 79
Figura 29 — “Gaveta” do apliCatiVouuuiiiiiiiiiiiiiiiiiiiiiii e 81
Figura 30 — Lista de dutos cadastradosccooeveiiiiiiiiiiiiii i 81
Figura 31 — Tela de adicionar/alterar um dutO...........ccoooevviiiiiiiiiiiii e, 82

Figura 32 — Tela de adicionar/alterar defeitos iguais alinhado longitudinalmente83

Figura 33 — Representacéo 3d de 5 defeitos iguais alinhados longitudinalmente.....83

Figura 34 — Gaveta do aplicativo no modo desenvolvedor..................uvueeeieeieiinennnnnee 84
Figura 35 — Representacao grafica do padrdo MVVMcccooeeeeiiiiiiiiiiiiiiie e, 85
Figura 36 — Malha GrafiCa............uuuueiiiii e e e e e eeanes 87
Figura 37 — Tridngulos formadores do cilindro vazado...................eeeeeeiiiiiiiiiniiiiiinnne 87
Figura 38 — Funcao responsavel por criar um cubo na engine Unitycc........... 88
Figura 39 — Cubo gerado via codigo da Figura 38uceiiiiieeiiiiiiiiiiiie e, 88
Figura 40 — Codigo exemplo na linguagem AnderScriptccooveeeevvvveivviiiiiieeeeeeeeeins 90
Figura 41 — Codigo compilado para 0 MatLab............ccooiiiiiiiiiiees 92
Figura 42 — Trecho de cddigo da funcédo Matlab que da suporte ao AnderScript......93
Figura 43 — Execucdo de comando na forma textualcccooeeevvviiiiiiiiiiiiieeeeeeeenns 93
Figura 44 — Exemplificacao de possiveis erros no editor de codigo.............cceeeeeennns 96
Figura 45 - Exemplificagdo de possiveis erros no editor de cOdigo............cccceeeerennnee 96
Figura 46 — Trelica isostatica do Problema 1ccccoooiiiiiiiiiiiiiiiiiiiieeeeeee 103
Figura 47 - Codigo AnderScript para as barras 1 e 2 do Problema 1...................... 104
Figura 48 - Codigo AnderScript a barra 3 para do Problema 1oooo. 105

Figura 49 — Viga em balangco com comportamento linear elastico do Problema 2..106
Figura 50 — Cadigo AnderScript para 0 Problema 2. 107
Figura 51 — Cadigo AnderScript para encontrar o diametro de projeto 108

LISTA DE TABELAS

Tabela 1 - Métodos de ciclo de vida de uma atividade............cccccccevvvviiiiiiiiiiniiinnnnnn. 56
Tabela 2 - VErboS HTTP ..o 58
Tabela 3 - Palvras-Chave da linguagem AnderScript..........ccccvvvvvviiiiiiiiiiiiiiieeieeeeeeen, 90
Tabela 4 — VariQveis aleatOoriascoovvvvviiiiiiiiiieeeeeeeeeeeeeee e 97
Tabela 5 — Fatores de importancia para as variaveis aleatoriascccccccceeeeeeennnn. 98
Tabela 6 — indice de Confiabilidade em func&o do tempo atual de inspecéo............ 99
Tabela 7 — indice de confiabilidade no intervalo de 30 @ 40..........c.ccceveeveevenennnnne.. 100
Tabela 8 — indice de confiabilidade em fungéo do nimero de defeitos................... 100
Tabela 9 — Espessura 6tima em funcdo do numero de defeitos..........ccccvvvveeeeeenn. 101

Tabela 10 — Espessura 6tima em funcao do indice de confiabilidade alvo (Bawo) ...102

Tabela 11 — Variaveis aleatérias do Problema 1 (trelica iSOStatica)c........ 104
Tabela 12 - Comparacao dos resultados para o Problema 1...........ccccovvvvviiinnenenn. 105
Tabela 13 — Variaveis aleatérias do Problema 2 (viga engastada) 107

Tabela 14 — Comparacao dos resultados para o Problema 2ccccvvveeeneenn. 107

ASME
CPU
EDT
FORM
GUI
HTTP
IDE
ILI
JSON
MC
MCEC
MCRN
MVVM
NNT
REST
ROA
SDK
SOAP
SORM
URI
XML

LISTA DE ABREVIATURAS

American Society of Mechanical Engineers
Central Processing Unit

Event Dispatching Thread

First Order Reliability Method

Graphical User Interface

HyperText Transfer Protocol

Integrated Development Environment
In-line Inspection

JavaScript Object Notation

Monte Carlo

Monte Carlo com Esperanca Condicionada
Monte Carlo com Redes Neurais
Model-View-ViewModel

Neural Network Toolbox

Representational State Transfer

Resource Oriented Architecture

Software Development Kit

Simple Object Access Protocol
Second-Order Reliability Method

Uniform Resource Identifiers

Extensible Markup Language

Ptalha

¢circ
S

leq

deq
di
do
Rad

To

Ri
G(U)

LISTA DE SIMBOLOS

Presséao de ruptura do duto

Tenséo de fluxo

Fator de reducéao

Fator empirico relacionado a geometria da area corroida

Area da secéo corroida

Area original da sec&o corroida

Fator de folias

Comprimento do defeito de corroséao

Espessura da parede do duto

Profundidade maxima do defeito

Presséao circunferencial no duto

Variavel de projeto

Diametro externo do duto

Presséo de falha ou de ruptura do duto

Espagamento circunferencial entre defeitos de corroséao
Espagamento longitudinal entre defeitos de corrosao
Comprimento equivalente de um conjunto de defeitos
interagentes

Numero de defeito de um grupo de defeitos interagente
Comprimento do i-ésimo defeito do grupo de defeitos interagente
i-ésimo espacamento de um grupo de defeitos interagente
alinhados longitudinalmente

Profundidade equivalente de um conjunto de defeitos interagentes
Profundidade do i-ésimo defeito do grupo de defeitos interagente
Profundidade do defeito na ultima inspecao

Taxa de corrosao radial

Tempo da inspecao atual

Tempo da ultima inspecao

Comprimento do defeito na ultima inspec¢éo

Taxa de corroséao longitudinal

Funcéo de falha

a(Vv)

oppP

Fx

Vetor de variaveis aleatorias

Probabilidade de falha

Funcado da distribuicdo de probabilidade conjunta das variaveis
aleatorias U

Resistencia ou pressao de falha do duto

Solicitagéo ou presséo atuante no duto

Vetor de variaveis aleatdérias no espaco normais padrao
estatisticamente

Independentes (média = 0 e desvio padréo = 1).

indice de confiabilidade

Funcao de falha no espaco reduzido

Matriz inversa da matriz triangular inferior obtida da
decomposicdo de Choleski da matriz dos coeficientes de
correlagdo das variaveis aleatorias U

Matriz diagonal contendo os desvios padrbes das variaveis
aleatorias

Vetor com as medias das variaveis aleatorias

Jacobiano

matriz triangular inferior obtida da decomposicéo de Choleski da
matriz dos coeficientes de correlacdo das variaveis aleatérias U
Elemento da linha i e coluna j da matriz L

Numero de variaveis aleatorias do problema

Coeficiente de correlacéo equivalente entre as variaveis Ui e U;.
Coeficiente de correlacéo entre as variaveis Ui e U;.

Inverso da funcdo cumulativa normal padréo.

Gradiente da funcéo de falha no espaco reduzido

Fator de importancia

Componente do vetor normal a superficie de falha no ponto de
projeto correspondente a variavel aleatoria i.

Numero de simula¢cdes no método de monte Carlo

Variavel aleatoria estatisticamente independente das outras e que
possui maior disperséo.

Funcéo de distribuicdo acumulada da variavel X

Saida de um neuroénio artificial

Wiji

Peso sindptico da sinapse i pertencente ao neurénio j

Entrada correspondente a sinapse i.

Funcao ativacao

Combinador linear do vetor de pesos sinapticos e do vetor de
entradas

Erro gerado pelo neurdnio |

Saida do conjunto de treinamento correspondente ao neurénio |
Saida do neurénio j

Erro total gerado por uma saida da rede

Peso sin4ptico da sinapse i pertencente ao neurdnio |

Taxa aprendizado da rede neural

Gradiente local

indice de confiabilidade alvo

Valor da variavel de projeto na iteragédo k

11
1.2
13
13.1
1.3.2

3.1
3.1.1
3.1.2
3.2
3.21
3.2.1.1

3.2.1.2
3.2.1.3

3.2.2
3.22.1

3.3
3.4
34.1
3.4.2
3.4.3
3.44
3.4.5
3.5
3.5.1
3.5.2
3.5.3
3.6

SUMARIO

INTRODUGAOD ...ttt ettt sttt 19
JUSTIFIC AT IV A e e eaas 20
MOTIVACGAO ...ttt nea e, 21
OBUJIETIVOS ...ttt e e e e e et e e e e e e e s e ennnneees 21
(O 0T [=2 LAY o T =T - | SRR 21
ODbjetivos ESPECITICOS ..oooviiiiiiiiiiieeie e 21
REVISAO BIBLIOGRAFICA ... 22
REFERENCIAL TEORICO.......cciiiieieieeecieeece e 27
CALCULO DA PRESSAQO DE FALHAooiiiiieiireieee e 28
Norma BS7910 e Defeitos Interagentes.........ccccevveiiiiiiieeeeeeeeeeee 29
Modelo linear de COMMOSED ..uuuuiiiiiiiiiiieiici e 34
ANALISE DE CONFIABILIDADE ESTRUTURAL......ccocoviiveieceeeceeens 35
FORM .ottt e e e e e e e e e e e e e e e e e n b eaaaes 37
Transformacao de VArAVEISceeeiieeiiiieiicee e 38
Busca ao ponto de Projet0.......uiii e 40
Fator de IMPOMtANCIA...........cuuuiii i e 41
Y[Y | (= - U o 42
Esperanca CondiCioNadacccceeeiviiiiiiiiiiiiee e 42
NEWTON-RAPHSON.ottt reee e 43
REDES NEURAIS ...ttt e e e e 44
Estrutura das redes NEUTAISoooveeeeieiieeeeeeeeee e 45
FUNGAO0 de atiVaG8i0cooeeeeeeeeeee e a7
Arquitetura de redes NEUTAISccoeeeeeiiieiiiiiie e ee e 49
Treinamento de redeS NEUTAIS.......uuuuuuuruuuiiiiiiiiiiiiianeeiiireneeeeneeeeeaeeeeaeeaee 51
Algoritmo backpropagation ... 51
ANDROID ... e 53
Plataforma ANAroidoooouiiiiiiie e e 53
Estrutura das Aplicagdes Android........cccoooeeiiiiiiiiiiii e 54
Ciclo de vida doS COMPONENTEScciiiiiiiieiiiiie e e 55
WEBSERVICE RESTFUL ..couniiiic e 56

3.6.1
3.6.2
3.7

3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.7.8
3.7.9
3.8

3.8.1
3.8.2

4.1
4.1.1
4.1.2
4.1.3
4.2
4.3
4.3.1
4.3.2
4.4
441
4.5
45.1
4.5.2
4.5.3
4.6

5.1
5.2

S 57
MELOAOS HTTP .o 58
(0101 =1 1177 Y@ J TR 58
ANALISE LEXICA. ..o i i 60
Expressdes e definigdes regulares..........coooooeiii 61
ANALISE SINTALICA ..o 62
Gramatica livre de CONTEXTOccvvvviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e 62
AIVOres gramatiCalSccovvieuuiiiiiiieeeeeeeees e e e e e e e e e e 63
ANAlISE SEMANTICA ...uuiii i 64
Geracgao de cOdigo iNtermMediario.........oocuviiiiiiiieeeie e 65
O 101101 F£=Tox=To N [oT0 To I To [0 TSRS 65
Geracao de cOdigo final........coovveiiiiiiii i 66
THREADS E CONCORRENCIA.......oeeoe oo 66
BenefiCios oo, 66
Thread Safety ... 67
METODOLOGIA ...ttt e e e e e e eeeeaeens 69
COMPONENTE DE CONFIABILIDADE ... 72
Célculo dapressdo de falha.......cccccooeiiiiiiiiiii 72
Analise de confiabilidade estruturalccccooiiiiiiiiiiiiieeen 72
Projeto baseado em confiabilidade estruturalcccoovvviiiennnnn. 76
COMPONENTE DO WEBSERVICE..........ccccutiiiiiiiee e 77
COMPONENTE DO APLICATIVO ..ot 80
Interface Gréfica do aplicativo e Material designcccccoeoviiiiiieennnn. 80
Padrao de projeto de software MVVMccooriiiiiiiiiii i, 85
COMPONENTE DO AMBIENTE TRIDIMENSIONALccvvvviiieeeiiiiinnnee, 86
Construgdo das MalhNasccevvvviiiiiiiiiiiiiiiieeeeee e 87
COMPONENTE DO COMPILADOR ...t 89
Sintaxe da linguagem ANderScriptcoooviiiiiiiii e, 89
Compilagdo para o MatLab ... 92
ReCUPEragao de EITOScoooeeieeeeeeeeeeeeeeeeeeeeeee 95
PARAMETROS ADOTADOS PARA O DUTO.....cviiiieeeeeeeeeeeeeeeee 97
RESULTADOS E DISCUSSAOQccviiveiieieeeieeeceeeeee e 98
ANALISE DOS FATORES DE IMPORTANCIAccoveeeciecececeee e 98
ANALISE DE CONFIABILIDADE COM A GUI DO APLICATIVO.............. 99

5.3 PROJETO DE CONFIABILIDADE COM A GUI DO APLICATIVO.......... 101

5.4 ANALISE DE CONFIABILIDADE USANDO ANDERSCRIPT................. 103
54.1 Problema 1: Trelica ISOStAtiCa.......cccovveviiiiiiiiie e, 103
5.4.2 Problema 2: Viga em balan¢co com carregamento distribuido 106
5.5 PROJETO DE CONFIABILIDADE USANDO ANDERSCRIPT 108
6 CONSIDERAC}@ES FINAIS L 110
7 TRABALHOS FUTUROS. ...ttt e 113

REFERENCIAS ... 114

19

1 INTRODUCAO

Dutos sao construidos de acordo com normas internacionais de seguranca para
o transporte de substancias explica Toro (2014). O transporte dutoviario tem se
mostrado eficiente como meio para movimentacdo de liquidos como petréleo e gas
natural. Esse fato ndo € por acaso, afinal este tipo de transporte permite uma grande
movimentacdo de massas, operacao continua, transporte para longas distancia, nao
requer embalagens e apresenta um gasto muito inferior se comparado ao transporte
destes recursos utilizando meios de transporte rodoviérios e ferroviarios por exemplo
(FILHO, 2018).

Mas uma coisa que também é certa, € que quando este tipo de transporte
apresenta falhas, como uma tubulacdo rompida, os prejuizos sdo desastrosos.
Primeiramente tem-se os danos financeiros pelo fato de ter perdido uma quantidade
consideravel de material como 6leo diesel ou petréleo no vazamento. Existe também,
as indenizacdes pelos impactos ambientais que podem poluir e destruir varios
ecossistemas aquéticos, e por ultimo temos os danos as vidas humanas.

Muitos dos acidentes envolvendo dutos estdo relacionados a tubulacé&o
corroida, ja que as tubulacdes sao de ferro ou aco. O problema é que a rede de dutos,
muitas vezes é enterrada e também é muito extensa o que acaba dificultando a
inspecdo em todos os locais, além é claro dos reparos quando necessarios. Uma das
metodologias adotadas € fazer a andlise de confiabilidade estrutural em dutos
existentes ou o projeto em dutos que serdo implantados, de tal forma que se programe
com exatiddo o momento certo de inspecionar cada tubulacdo. Isto por sua vez
previne acidentes e gera economia de recursos.

Diante destas premissas, e também o fato da popularizacdo dos dispositivos
moveis como smartphones e tablets, e do acesso facil a internet, principalmente a
movel, no presente trabalho foi implementada uma arquitetura composta por um
aplicativo Android que recebe as informacdes do duto e de seus defeitos de corrosao
e envia esses dados pela internet para um servidor, proposto neste trabalho, que
possui acesso as rotinas do software Matlab. O servidor com muito mais poder de
processamento que o dispositivo movel, resolve o problema mais rapido e devolve a
resposta para o aplicativo. Desta forma, as analises podem ser feitas no préprio local

de inspecéo, agilizando a tomada de decisao.

20

Além disso, uma linguagem de programacao foi desenvolvida, a fim de facilitar
a resolucdo numérica de problemas de confiabilidade estrutural, diminuindo as linhas
de codigo. Desta forma, apenas os detalhes essenciais do problema como variaveis
estatisticas, paramétricas e de projeto, além da definicdo da funcédo de falha, sédo
necessarios, utlizando assim poucas linhas de programacdo. A linguagem é
compilada para a linguagem do software Matlab, chamando desta forma rotinas
programadas no mesmo. ISso por sua vez, permite uma rapida adaptacao do sistema,
como por exemplo adotar o diametro como variavel de projeto ou mesmo definir a
funcdo de falha em funcdo de outras normas, além da definicdo padrédo referente a
norma BS7910 (2005).

1.1 JUSTIFICATIVA

O transporte dutoviario tem se mostrado um sistema bastante eficiente para o
transporte de produtos como petréleo e gas natural. Algumas de suas vantagens
incluem transporte de grandes quantidades de carga, operacao 24 horas diarias por
longas distancias, facil implementacdo, bem como baixo custo operacional de
transporte e energia (INSTITUTO BRASIL LOGISTICO, 2018).

No Brasil, este tipo de transporte ainda é pequeno, representando apenas cerca
de 3% do transporte destes produtos, enquanto que apenas o transporte rodoviario
representa 65%, e o ferroviario 19,5%, os demais juntos representam menos que 15%
(FILHO, 2018). Porém este tipo de transporte é adequado por reduzir custos e por
dificultar agbes de roubo. Apesar de todas estas vantagens, as tubulacoes utilizadas
nestes sistemas sofrem acao da umidade e seu material constituinte acaba corroendo.
Este efeito de corrosdo diminui a espessura da secdo do duto, o que por sua vez
acaba diminuindo sua capacidade resistente. Afim de se evitar um colapso, que
poderia provocar prejuizos milionérios e desastres ambientais de grandes proporc¢des,
sao feitas inspecodes e substituicdo de dutos.

O problema é que, se essa inspec¢do nédo é feita no tempo adequado, 0 mesmo
vale para substituicdo do duto, acaba gerando gastos desnecessarios. O presente
trabalho contempla o projeto da espessura 6tima de um duto, de tal forma que se
tenha o maximo de aproveitamento do duto ao longo do tempo, em termos de vida
atil, e que servicos de manutencdo e troca sejam feitos quando realmente for

necessario.

21

1.2 MOTIVACAO

O interesse no assunto surgiu durante as atividades do projeto de iniciacdo
cientifica (FACEPE) “Projeto baseado em confiabilidade de dutos sujeitos a multiplos
defeitos de corrosdo”, orientado pela professora doutora Juliana V. S. Torres no
periodo de agosto de 2016 a julho de 2017. No projeto de pesquisa foi projetada a
espessura Otima de dutos sujeitos a multiplos defeitos de corrosdo de dimensdes
iguais alinhados longitudinalmente e igualmente espacados utilizando o método
FORM e as formulacbes empiricas para a pressdo de falha proposta pela norma
BS7910 (2005).

Dando continuidade a esse projeto, decidiu-se focar na construgcdo de um
aplicativo na plataforma Android, no estudo de redes neurais artificiais, na construcéo
de uma infraestrutura em rede para envio dos dados para um servidor remoto,
responsavel por resolver problemas de analise e projeto baseado em confiabilidade,
e no desenvolvimento de uma linguagem de programacéao para problemas estruturais

de confiabilidade.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

v" Implementar um sistema computacional web para resolucéo de problemas de
confiabilidade estrutural focados em dutos sujeitos a mdultiplos defeitos de

CcOorrosao.

1.3.2 Objetivos Especificos

v' Implementar os métodos de confiabilidade estrutural (FORM, Monte Carlo,
Monte Carlo com Esperanca Condicionada e Monte Carlo com Redes Neurais)
em dutos sujeitos a multiplos defeitos de mesmas dimensdes e igualmente
espacados alinhados longitudinalmente no software Matlab;

v Implementar o webservice em Java, responsavel por expor as rotinas de
confiabilidade estrutural implementadas no Matlab para um aplicativo Android

remoto;

22

v" Implementar um aplicativo Android para a captacao dos dados do problema e
envio para o servidor remoto;

v' Implementar a representacédo tridimensional do duto e dos seus defeitos na
Engine Unity e integra-la com o aplicativo Android;

v Implementar um compilador para a linguagem AnderScript, idealizada pelo autor
do presente trabalho, para resolver problemas de confiabilidade de forma mais
simplificada, e integrar este modulo com o aplicativo, a fim de expandir as

possibilidades do sistema web.

2 REVISAO BIBLIOGRAFICA

Em 1994, Sagrilo apresentou o desenvolvimento de uma ferramenta
computacional para a analise de confiabilidade estrutural em grandes estruturas, por
meio dos métodos analiticos FORM e SORM, utilizando uma técnica adaptativa de
superficie de resposta para o calculo dos gradientes da funcéo de falha.

Em 1998, Ahammed propde um modelo de corrosao linear a longo prazo para
dutos, o estudo chega a analisar a exposi¢cao a corrosao de um duto em um periodo
de sessenta anos. Ahammed adotou uma abordagem probabilistica e as variaveis
aleatérias adotadas (profundidade do defeito, diametro do duto, comprimento do
defeito, pressao interna no duto, taxa de corroséo radial, taxa de corrosao longitudinal,
tensdo ultima do material e espessura da parede do duto) possuem distribuicbes
normais e ndo-normais.

Em 2004, Barbosa utilizou uma rede neural treinada para diminuir o nimero de
simulacdes no método de Monte Carlo, com o0 objetivo de reduzir o custo
computacional na analise de confiabilidade. Neste trabalho sdo utilizadas redes
multilayer Perceptron juntamente com o método de Monte Carlo, utilizando 3
metodologias diferentes. Na primeira € utilizada a técnica de esperanca condicionada,
a segunda representa a funcéo de falha de forma implicita, e na dltima a rede neural
é utilizada em todo o processo de analise de confiabilidade.

Em 2008, Verzenhassi desenvolve um programa computacional em Fortran
para encontra o coeficiente de seguranca parcial 6timo que minimiza o custo esperado
total de sistemas estruturais. Tal programa esta acoplado a um programa de

confiabilidade estrutural desenvolvido pela EESC/USP e a um programa comercial de

23

andlise por elementos finitos. O trabalho inclui alguns estudos de casos como analise
de uma torre de telefonia sujeita a cargas de vento. Verzenhassi encontra relacoes
entre a confiabilidade 6tima da estrutura e as consequéncias, bem como os custos de
falha.

Ja& em 2009, Torres traz uma andlise de dutos com corroséo, aplicando o
sistema de acoplamento de programas computacionais para a andlise de
confiabilidade. Analisando dutos com defeitos isolados e com multiplos defeitos.
Demonstra uma metodologia para verificagdo da seguranca e dimensionamento
baseado em confiabilidade de tais estruturas. Define-se a fungéo de falha em termos
da presséo interna aplicada e da presséo de falha, sendo esta calculada considerando
modelos empiricos, o0 Método dos Elementos Finitos (MEF), e o método de superficie
resposta. Para este ultimo utiliza aproximacédo do tipo ajuste de dados via Krigagem.
Apresenta o dimensionamento baseado em confiabilidade do duto, buscando garantir
a conservacao do nivel de seguranca por um determinado periodo de tempo.

Em 2011, Xu e Cheng analisaram a confiabilidade de dutos com defeitos de
corrosédo através de um modelo de elementos finitos comparando diferentes teores de
aco. A pressao de falha para efeito de comparacao foi obtida por trés modelos
empiricos (B31G, B31G Modificada e DNV). Foi observado que a pressao de falha é
reduzida com o aumento da profundidade do defeito e com a diminuicéo do teor de
aco.

Em 2014, Toro avalia a precisdo de alguns modelos empiricos para a
determinacao da presséao de falha de dutos sujeitos a corrosdo. Os métodos avaliados
foram: ASME B31G, ASME B31G modificado, DNV RP F101 e PCORRC. O estudo
foi feito a partir de base de dados sobre dutos reais e artificiais da literatura somando
mais de 400 resultados de ensaios de ruptura. Toro desenvolve o conceito de variavel
do modelo, responsavel por quantificar o erro acumulado pelos diversos modelos. Por
meio da aplicagéo da variavel “erro do modelo” foram feitas analises de confiabilidade
utilizando o método FORM, obtendo como saida o indice de confiabilidade e a
probabilidade de falha. O estudo analisou a evolugédo da pressao de falha a medida
que se aumentava a profundidade do defeito, além disso foram identificadas as
variaveis mais importantes do problema por meio de medida de sensibilidade.

Ainda em 2014, Gomes e Beck propéem um novo modelo de crescimento de
corrosdo em dutos enterrados por meio de polinbmios de caos. A espessura 6tima do

duto, o tempo da primeira inspecdo e o tempo entre as inspec¢des sucessivas sao

24

consideradas como variaveis de projeto. Gomes e Beck se concentram em minimizar
0s custos totais esperados na vida Gtil, que incluem custos de construgéo, inspec¢des
e reparo, além dos custos esperados com possiveis falhas. Os numeros esperados
de falhas, reparos e substituicdes sao avaliados por uma analise probabilistica usando
amostragem hipercubo latina.

Em 2015, Wan, Yajima, et al. descrevem uma abordagem de agrupamento de
defeitos de corrosdo, baseado no campo aleatério de Markov, para extrair potenciais
segmentos homogéneos a partir de uma grande extensdo do duto de uma estrutura
de dutos com propriedades heterogéneas no solo. Um exemplo envolvendo um
intervalo de duto de 110 km é empregado para ilustrar a implementacao da abordagem
de clustering. Por fim Wan, Yajima, et al. concluem que o processo de propagacédo da
corrosdo externa em um gasoduto enterrado depende da sua posi¢do ao longo do
duto e esta altamente relacionada ao ambiente do solo.

Em 2016, Leira, Naess e Naess abordam a analise de confiabilidade de dutos
de corroséo considerando também os efeitos do sistema na analise de confiabilidade.
A andlise é realizada pela utilizacdo de métodos de simulacdo de Monte Carlo
aprimorados, pois segundo o estudo, sdo muito mais eficientes para a quantificacéo
da confiabilidade do sistema no caso de mdultiplos componentes com niveis de
correlacao arbitrarios. Os exemplos que sédo estudados compreendem sistemas com
defeitos de corroséo, independentes e correlacionados.

Em 2017, Tee e Pesinis avaliam a confiabilidade dependente do tempo, de um
gas natural subterraneo corroido, pertencente a um sistema de oleoduto ao longo de
sua vida util. A andlise de confiabilidade é baseada em segmentos, em oposi¢cao a
baseada em defeitos e o segmento de duto é examinado em relacdo a corrosao
externa por perda de metal. O processo ndo-homogéneo de Poisson e um modelo de
lei de poténcia empirica sdo empregados para geracdo de defeitos de corrosdo ao
longo do tempo e para o crescimento dos defeitos, respectivamente. A probabilidade
de falha dependente do tempo € avaliada empregando a funcéo de estado limite para
falhas sob pressdo interna. A Pressdo interna é modelado usando um método
baseado em processos de ondas quadradas de Poisson. A seguir, 0 estudo usa a
analise supracitada, em conjunto com um modelo heuristico, a fim de investigar a
influéncia de reparos imperfeitos na previsdo da confiabilidade do sistema de dutos.

Ainda em 2017, Zhou, Xiang e Hong empregam 0S processos gaussianos gama

e inverso para modelar o crescimento dos defeitos, enquanto a dependéncia entre 0s

25

crescimentos de diferentes defeitos € caracterizada usando a abordagem de copula
gaussiana e soma de processo estocastico. No estudo conclui-se que o crescimento
de defeitos na analise de confiabilidade, é adequado para o crescimento de corrosao
relativamente lento que é tipico para tubulacdes enterradas.

Ainda em 2017, o comportamento de falha de dutos com defeitos de corrosao
interagentes foi estudado por Xu, Li, et al. que utilizaram um método de elementos
finitos para este fim, e entdo uma solucéo foi proposta para prever a pressao usando
uma rede neural artificial.

Ainda em 2017, Zemati, Chelloudj e Amirat apresentam uma metodologia com
0 objetivo de contribuir para a avaliacdo da vida remanescente de dutos usando
analise de confiabilidade, a fim de correlacionar o comprimento e a profundidade dos
defeitos de corrosdo. Os dois parametros através de um parametro comum, o indice
de confiabilidade, séo investigados através de quatro modelos de engenharia bem
estabelecidos; Irwin, SINTAP, ASME B31G e ASME B31G Modificado. Em seguida,
os resultados fornecidos por cada um dos quatro modelos séo coordenados, afim de
auxiliar na tomada de decisdo para fornecer respostas realistas para substituir e/ou
reparar um duto sujeito a pressao interna.

Em 2019, Amaya-Gomez, Sanchez-Silva, et al. fazem uma reviséo das fungdes
reconhecida de estado limite para oleodutos corroidos, discutindo suas suposicdes e
aplicabilidades. O estudo enfoca na pressdo de falha em dutos de petroleo e gas.
Portanto, uma comparacao completa é apresentada com base em critérios de falha,
dimensdes de defeito aceitaveis, probabilidade de falha e previsdo de erros com base
em testes de ruptura experimentais e numéricos. O objetivo do estudo consiste em
avaliar o nivel de conservadorismo de cada modelo simplificado, dependendo da
tenacidade do material e da taxa de corrosdo, afim de selecionar modelos de
confiabilidade em dutos corroidos para futuras estratégias de intervencao.

Ainda em 2019, Sun e Cheng desenvolvem um modelo tridimensional para
investigar a interacdo mecanico-eletroquimica de mdultiplos defeitos de corrosao
alinhados longitudinalmente em uma tubulacédo de aco X46 enterrada. Uma técnica
de acoplamento de campo multi-fisica foi empregada para derivar as distribuicdes de
tensdo, deformacao, potencial de corrosdo e densidade de corrente anddica nos
defeitos. Sun e Cheng explicam que para multiplos defeitos de corroséo, existe um
espagamento critico, abaixo do qual existe uma interacdo entre eles. Concluem que o

espacamento maximo de interacdo aumenta a medida que o comprimento do defeito

26

aumenta. Além disso, a medida que o espacamento do defeito diminui, h4 uma forte
interacdo entre eles, resultando em uma alta tenséo plastica nos defeitos. Por fim, Sun
e Cheng comentam que a interacdo entre multiplos defeitos de corrosédo, existe ndo
apenas no campo de tensdo mecanica, mas também no campo de corroséo
eletroquimica. E que um aumento do comprimento do defeito aumenta a tenséo local
nos defeitos, deslocando o0 potencial de corrosdo negativamente, e
consequentemente aumentando a densidade da corrente anddica tanto no defeito
guanto na area adjacente.

No mesmo ano, Mishra, Keshavarzzadeh e Noshadravan apresentam uma
nova abordagem para o gerenciamento da vida util baseado em confiabilidade de
dutos enterrados sujeitos a corrosdo. Primeiro, um modelo probabilistico para a
evolucdo temporal do crescimento da corrosdo € construido a partir de dados
disponiveis usando o formalismo do polindmio de caos. O modelo € usado para
propagacdo sistematica da incerteza subjacente nas fun¢es do estado limite e da
confiabilidade na vida util. Em seguida, é proposta uma estratégia de otimizacao
computacionalmente eficiente e precisa usando polinbmios substituto a fim de resolver
a otimizacdo estocastica associada ao gerenciamento da vida util de tubulacdes
enterradas. O método proposto facilita a otimizagdo do agendamento de manutencéo
para alcancar o custo minimo esperado da vida util.

Ainda em 2019, Wang, Yajima e Castaneda estabelecem um modelo de
crescimento de corrosdo estocastico para estruturas de tubulacdes subterraneas. O
modelo foi desenvolvido tendo em mente que a evolugdo dos danos causados pela
corrosdo localizada é dependente do tempo, apds 3 estagios: estagio de ativacao
(nucleacao), estagio de crescimento (propagacéao), e estagio de estado estacionario
(passivacdo). A correlagcdo temporal da evolucdo do defeito pode ser bem
representada por um processo de ponte Brownian geométrico. Duas aplicacdes sao
ilustradas: a primeira visa prever a evolucao da funcdo de densidade de probabilidade
da profundidade do defeito de corroséo, e a segunda avalia a confiabilidade de uma
estrutura de dutos.

Por fim ainda em 2019, Seghier, Keshtegar, et al. avaliam a probabilidade de
falha de tubulacbes corroidas de aco X60. Para este problema, a funcdo de
desempenho de falha por corrosdo é desenvolvida usando um modelo M5Tree
baseado em calibracdo com banco de dados de testes de falhas reais. A andlise

estatistica dos dados do relatério de ILI é realizada para melhor modelagem da

27

geometria dos defeitos de corroséo (ou seja, comprimento e profundidade dos
defeitos), onde diferentes distribui¢cdes de probabilidade (Normal, Lognormal, Frechet,
Gumbel, Weibull) foram testados. Além disso, o efeito da geometria dos defeitos na
probabilidade de falha foi investigado para essas diferentes distribuicbes de
probabilidade. Em seguida, a influéncia das distribuicées na analise de confiabilidade
também foi ilustrada. Os resultados indicaram que aumentos na profundidade dos
defeitos reduzem fortemente os niveis de seguranca do problema, e que a falta de

selecéo de distribuicdes nos defeitos poderia levar a resultados conservadores.

3 REFERENCIAL TEORICO

Nas proximas sessfes serdo apresentados alguns conceitos que foram
utilizados no presente trabalho, para a implementacéao do sistema computacional web
desenvolvido. A sec¢éo 3.1 descreve o célculo da pressao de falha em duto contendo
defeitos de corrosdo. Na secdo 3.2 é apresentada a confiabilidade estrutural, bem
como dois métodos de confiabilidade bastante conhecidos na literatura: o método
FORM e o método de Monte Carlo. Em seguida a secdo 3.3 é apresentada uma
revisdo do método de Newton-Raphson, utilizado para encontrar a raiz de uma funcéao,
utilizado neste trabalho para encontrar o valor da varidvel de projeto (espessura do
duto).

A secédo 3.4 descreve os fundamentos da teoria sobre redes neurais, muito
utilizadas para aproximar func¢des continuas de qualquer ordem. As secdes 3.5 e 3.6
descrevem os fundamentos e funcionamento da plataforma Android, para criacéo de
aplicativos para dispositivos méveis, e dos webservices RESTful, utilizados para
fornecer acesso a recursos remotos, conforme sera discutido posteriormente. Em
seguida, temos a secao 3.7, que apresenta a teoria para a criacdo e compiladores,
utilizados para converter um programa em uma linguagem de programacao para outra
linguagem, sendo aplico no presente trabalho, para converter codigo da linguagem
AnderScript, crida no presente trabalho, para a linguagem do software Matlab.

Por altimo, na sec¢éo 3.8, é apresentado o conceito de thread, que permitem a
existéncia de computacao paralela dentro de programas, sendo utilizada no presente
trabalho para permitir que multiplos usuarios tenham acesso simultaneo as rotinas do

Matlab de forma remota.

28

3.1 CALCULO DA PRESSAO DE FALHA

Os dutos operam transportando fluidos, portanto estdo submetidos a pressao
interna. Caso esta pressao, ultrapasse uma pressao limite, chamado de pressédo de
falha, a tubulacdo rompe, gerando varios prejuizos. As formula¢cdes empiricas para o
calculo da presséo de falha devem levar em consideracédo as propriedades mecéanicas
e geométricas do duto, bem como a geometria dos defeitos de corrosdo (TORO,
2014). Segundo Toro (2014) os modelos semi-empiricos sdo baseados na mecanica
da fratura e em ensaios experimentais. A formulagéo basica dos modelos é baseada
nos critérios da equacdo NG-18 Surface Flaw Equation. Basicamente a NG-18
descreve uma relacéo entre a tenséo de fluxo no duto pressurizado e o comprimento

do defeito. Esta relacéo esta representada na equacéo (1):

Orup = Oflow * fr (1)

O fator de reducéo fr é definido pela equagéo (2):

A
1—a*A—
fR: A 0 (2)
— 2 -1
= e ()

A area corroida original Ao = I*t, leva em consideragdo toda a espessura do
duto, enquanto que a area corroida é A = I*d, considera apenas a profundidade do
defeito. A tensao circunferéncia é obtida pela relagdo da pressao interna do duto, pela

area da secao transversal da parede, a equacéao (3) ilustra essa relacao.

PD
Ocirc = E

3)

No estado limite considera-se que a pressdo de falha é igual a pressao

circunferencial, desta forma a pressao de falha pode ser expressa pela equacao (4).

P D
falh
Urup = a2 ta (4)

29

Substituindo a equacdo (4) na equacdo (1) e isolando Prana, Obtém-se a

equacao (5):

ZtUﬂ
Pfalha = D > R ()

Substituindo a equacéao (2) na equacéao (5) determina-se a presséao de falha do

duto para um defeito de corrosao, expressa na equacao (6):

d
Zto-flow 1— ax ?
Pratha = D

(6)

O fator de dilatagdo M é um parametro adimensional proporcional a relacao
entre 0 comprimento pela espessura do tubo e do didmetro externo. Analisando a
equacao (6), pode-se observar que realmente a pressdo de falha depende das
propriedades mecanicas do duto, e da geometria deste e dos defeitos de corrosao.

As diferentes normas surgem variando os valores de a e do fator de dilatacéo
M. Estas normas incluem: B31G, B31G modificada, PCORRC ou Battelle, DNV RP
F101 e BS7910.

3.1.1 Norma BS7910 e Defeitos Interagentes

Como dito anteriormente, as diferentes normas sugerem valores diferentes
para a, e expressodes diferentes para o fator de dilatacdo M. Para a norma BS7910,
as expressodes para o calculo da presséo de falha e para o fator de dilatacdo, estdo
representadas respectivamente nas equacdes (7) e (8), (BS7910, 2005):

d
-7

2to
— flow "
d
t

o ()

1—

£

1
M

30

1

M = (1 +031 (\/%)2)2 8)

Porém, em problemas reais, existem multiplos defeitos de corrosdo em um
duto. Este conjunto de defeitos de corroséo, tem potencial para gerar uma presséao de
falha maior que qualquer um dos defeitos isolados. Isso ocorre pelo fato de suas linhas
de influéncia se sobreporem aumentando ainda mais sua influéncia, o que diminui
ainda mais a resisténcia do duto.

A norma BS7910 (2005) permite calcular pressdo de falha do duto, para
multiplos defeitos interagentes, utilizando a mesma expressdo para o célculo da
pressdo de falha para um unico defeito, porém deve-se calcular as caracteristicas do
defeito equivalente para este conjunto de defeitos interagentes. Desta forma sao
calculados a profundidade e o comprimento equivalentes como dados de entrada para
a equacao (7).

Para que dois defeitos adjacentes interajam entre si, € necessario que 0sS
mesmos cumpram 0s seguintes critérios, que estdo representados graficamente na

Figura 1:
a) Ambos os defeitos devem possuir profundidade maxima de no minimo 20% da

espessura do duto;

b) O espagamento circunferencial @circ, entre os defeitos ndo pode exceder o valor

3 |t
Pcirc < 360;\/; (9)

c) O espacamento longitudinal s, entre os defeitos ndo pode exceder o valor dado

dado pela equacéo (9):

pela equacéo (10):

s <2VDt (10)

Figura 1 — Dimens0fes associadas a interagdo entre falhas

d

‘ |!'1 ‘ 5 ‘ II? ‘

FONTE: (BS7910, 2005)

31

De acordo com a norma (BS7910, 2005), os procedimentos para estimar a

pressédo de falha, para multiplos defeitos interagentes, sao os seguintes:

1) Para as regides onde ha perda geral de metal, ou seja, menos de 10% da

espessura do duto, deve ser considerada a prépria espessura do duto para o

calculo da presséao de falha;

2) A secdao corroida seve ser dividida em sec¢fes longitudinais de comprimento

minimo de 5vVDt, com sobreposi¢cdo minima de 2.5vDt. Os passos 3) a 10)

devem ser repetidos para todas essas secdes, afim de avaliar todas as

possiveis interacdes;

3) Construir uma série de linhas de projecdes longitudinais ao longo da

circunferéncia do duto com espagamento circunferencial dado pela equacao

(9), conforme representado na Figura 2;

32

Figura 2 — Projecéo circunferencial entre falhas interagentes

S |_ __________________ e

Axial projection lines

Box enclosing flaw :

Project onto line

FONTE: (BS7910, 2005)

4) Para cada linha de projecéo considerar o intervalo +-Qcirc, projetar nessa linha
todos os defeitos que estiverem dentro do intervalo;

5) Onde as falhas se sobrepbem, as mesmas devem ser combinadas para
formarem uma Unica falha de comprimento igual ao comprimento combinado e

profundidade igual a profundidade méaxima, conforme ilustrado na Figura 3;

Figura 3 — Projecéo e sobreposicao de falhas interagentes

'L____ i 1|r l Projection line j

Section through projection l0ine

I 5

FONTE: (BS7910, 2005)

33

6) Tratar cada falha ou falha combinada como uma Unica falha, usar essas falhas
resultantes e calcular a pressao de falha para cada uma delas;
7) Calcular o comprimento combinados de todas as combinacdes de falha

possiveis usando a equacéao (11), conforme demonstrado na Figura 4;

i=7’ld—1

g =lny+) (i+5) (1)
i=1

Figura 4 — Exemplo de agrupamentos de falhas adjacentes

T —— [] [T []
I e I R S— .
g =/ [LT =]
T =—— [J /7T]
] =—— [] [T [z]
T = 17 [™—1 [23 |
1T = [O =7 |z]
T — [0 [—J 53]
T —— [T =
T +——— [7T &=]
Flaw 1 Flaw 2 Flaw 3 Flaw &

FONTE: (BS7910, 2005)

34

8) Calcular a profundidade equivalente de todas as combinacfes possiveis

usando a equacgéao (12);

Y tdil; (12)

dog = =]

eq

9) Calcular a pressado de falha usando a equacao (7) para cada uma das
combinagdes considerando o comprimento e profundidade equivalentes para

cada combinacao;

10) A presséo de falha da linha de projecao atual é tomada como a menor das
pressdes individuais e das combinacdes.
A presséo de trabalho segura é tomada como sendo a menor de todas as

projecdes circunferéncias.
3.1.2 Modelo linear de corroséao

A corrosdo € uma espécie de processo decorrente da degradacdo de um
material, na maioria das vezes metal, por uma interacéo quimica ou eletroquimica com
0 meio no qual esta inserido (GENTIL, 1996). Desta forma as condi¢fes climéticas da
regido, as caracteristicas do solo, caso o duto seja enterrado, possuem forte influéncia
na velocidade com que o processo corrosivo se desenvolve com o tempo. Para Toro
(2014, p. 21) “A corrosdo € um dos principais mecanismos de falha em dutos
enterrados, tornando necessaria a reparacdo ou até a substituicdo de trechos de
dutos”.

O problema é que a maioria das tubulacdes é feita de ferro ou aco e por isso
estdo sujeitas a deterioracdo por corrosdo. O processo Corrosivo apresenta-se por
meio de falhas denominadas defeitos de corroséo. Estes defeitos, crescem com o
tempo fazendo com que a espessura do duto diminua, acarretando maiores chances
de a tubulacdo romper, o que pode causar danos econdémicos, ambientais e humanos.

Os dutos sé&o projetados ou analisados levando em consideragdo o tempo da
altima inspecéo e o tempo atual (inspecéo futura na simulagéo), ou seja, existe um
periodo de tempo em que a corrosdo muda seus parametros. Na verdade, o projeto

de dutos é feito visando uma data futura de inspecéo, e o duto tem que resistir até

35

esta data limite. Isto é feito para minimizar o nimero de inspecdes, ja que as mesmas
demandam o gasto de recursos financeiros, que por sua vez envolvem mao-de-obra
e equipamentos.

Para se programar adequadamente o nimero de inspecdes, bem como prever
possiveis falhas na tubulacdo, € preciso conhecer como 0 processo Corrosivo evolui
ao longo do tempo. Ahammed (1998) propos um modelo linear de corrosao ao longo
do tempo, o que facilita sua implementacdo. Neste modelo a taxa de corrosdo €
constante, e os crescimentos da profundidade e comprimento do defeito, séo lineares.
As expressoes para os crescimentos do comprimento e profundidade do defeito, estéo
representadas respectivamente nas equacgoes (13) e (14).

d=dy+ Rp(T— Tp) (13)

l= 1o+ R,(T— Ty (14)

3.2 ANALISE DE CONFIABILIDADE ESTRUTURAL

Desde o seu surgimento, a computacdo tem evoluido muito rapidamente, isso
permitiu que recursos como computacao paralela, computacdo em nuvem, sistemas
distribuidos, enormes bases de dados e o desenvolvimento da inteligéncia artificial se
tornassem cada vez mais acessiveis ao usuario. Além disso, o desenvolvimento em
software € cada vez mais crescente, novos métodos numéricos sdo formulados, novas
arquiteturas sédo adotadas, plataformas inteiras sao criadas e softwares robustos estéao
cada vez mais acessiveis.

Com todos estes recursos em maos, executar uma analise ou projeto de uma
estrutura inteira pode demorar apenas alguns minutos. Apesar desta facilidade com o
fator tempo, e consequentemente a possibilidade de fazer varias simulagfes antes de
sua construcao, a estrutura pode sim apresentar probabilidade de vir ao colapso,
mesmo em um bom projeto. I1Sso ocorre porque as variaveis do problema sejam elas
propriedades mecanicas, geométricas ou dados sobre as for¢cas atuantes na estrutura,
apresentam imprecisdes em suas medidas. Estas imprecisdes se propagam tornando

0 modelo mais distante da realidade.

36

Para mensurar essa chance de colapso da estrutura, existe a confiabilidade
estrutural que considera que nenhuma estrutura é completamente segura, todas
apresentam ainda que pequena uma probabilidade de vir a colapsar (SAGRILO,
1994). Para diminuir e mensurar esta probabilidade de falha, a confiabilidade
estrutural utiliza de informacdes estatisticas como média, desvio padrao e covariancia,
além de conceitos da estatistica como variaveis aleatorias e distribuicdo de
probabilidade.

‘A confiabilidade estrutural € uma ferramenta adicional que permite ao
engenheiro estrutural quantificar as incertezas nas variaveis do seu projeto e auxilia-
lo na tomada de decisées com mais seguranga” (SAGRILO, 1994). Através da andlise
de confiabilidade é possivel por exemplo calcular a probabilidade de falha de uma
tubulacdo de petroleo e através disto, programar de forma otimizada a inspecéo,
reparo e troca de material, 0 que por sua vez diminui 0s custos da companhia
envolvida.

A confiabilidade estrutural se baseia em uma funcédo de estado limite ultimo,
conhecida como funcéo de falha G(U), sendo que U = (U1, Uz,...,Un) € 0 conjunto das
variaveis aleatérias do problema. A superficie de falha ocorre onde G(U) = 0, e a
mesma divide o dominio seguro G(U) > 0 do dominio de falha G(U) < 0. Um exemplo
desta superficie € ilustrado na Figura 5.

Figura 5 — Exemplificacdo da funcao de falha

+U:

G{U,,U) <0.0

(Fudha)

G(U,,U)> 0.0

[Seguro)

FONTE: (SAGRILO, 1994)

Para a confiabilidade estrutural, o importante é o calculo da probabilidade de

falha pf, isto €, a probabilidade de a fungdo de falha assumir valores que estejam

37

dentro do dominio de falha. Esta probabilidade é expressa de acordo com a equacao
(15):

pf =PlGU) < 0] (15)

Conforme Sagrilo (1994) demonstra, a probabilidade de falha pode ser reescrita
em funcédo da distribuicdo de probabilidade conjunta das variaveis aleatérias do
problema, e integrada sobre todo o dominio de falha, conforme representado na

equacao (16):

pfzf fu(U)du (16)

A funcéo de falha, para problemas de dutos, é geralmente descrita de acordo
com a equagéo (17):

GWU)=R-S (17)

Aresisténcia R neste caso é a pressao de falha do duto, discutida anteriormente
na secdo 3.1.1, e a solicitacdo S, é a pressao interna aplicada ao duto.

3.21 FORM

O FORM é um método de confiabilidade para o céalculo da probabilidade de
falha que evita o calculo da integral definida na equacao (16). Para isso, 0 FORM
converte as variaveis randémicas U do problema, para variaveis V normais padréo
estatisticamente independentes (média = 0 e desvio padrdo = 1).

Conforme aponta Sagrilo (1994), no método FORM, a superficie de falha G(V)=
0 é aproximada de forma linear (hiperplano), no ponto de maior densidade local de
probabilidade, que corresponde ao ponto de projeto V*, que por sua vez € o ponto
mais proximo da origem. O valor da distancia deste ponto até a origem é chamado de
indice de confiabilidade, e esta definido na equacgéo (18):

38

g = |V (18)

Na Figura 6 é exemplificada a representacédo grafica do método FORM, onde
podemos observar que ocorre uma aproximacao linear através de um plano no ponto

mais proximo da origem:

Figura 6 — Representacéao grafica do método FORM

va 4

FONTE: Adaptado de Barbosa (2004)

3.2.1.1 Transformacé&o de variaveis

A transformacao de variaveis, envolve a eliminacdo da correlacdo entre as
variaveis aleatorias e o célculo das variaveis normais equivalentes. Representando
assim, um mapeamento do espaco de projeto U para o espaco normal padrdo V
(TORO, 2014).

Para o caso onde U contém somente varidveis normais e estas por sua vez
possuirem correlacdo entre si (ou nao), um vetor V de variaveis normais padrao

estatiscamente independentes pode ser obtido conforme a equacgéo (19) demonstra:

V = Topp ' (U~-m)
= (U —m)

(19)

Onde T é igual a L, onde L é uma matriz triangular inferior obtida da decomposicéo
de Choleski da matriz dos coeficientes de correlagdo de U, sendo expressa pela

equacao (20):

39

Ly 0 0 0
Lo |z Lz 00 (20)

Lip Ly . Lyy

Tomando p como sendo 0 numero de variaveis aleatorias da transformacéo, a

matriz triangular L pode ser obtida a partir das expressdes da equacao

(21):
Lll = 1,0
Lil = Pi1 i=1..,n
k-1
1 .
Lik:a Tik — : lLiijj 1<k<i (21)
j:

Ly = /1—2;'.;11L2U. i>1

Para os casos onde as variaveis ndo sao normais € necessario realizar uma
transformacao em normal equivalente para utilizar a equacao (19). Adotando-se duas
variaveis Ui e Uj com distribui¢cdes de probabilidade quaisquer e dependentes entre si,
cuja dependéncia € definida pelo coeficiente de correlagcéo p;;, pode-se definir o
coeficiente de correlagéo equivalente entre as duas distribuicdes normais equivalentes

utilizando a equacéo (22):
pi; = F py (22)

O fator F depende apenas de p;; e dos coeficientes de variacdo das variaveis
Ui e Uj. Kiureghian e Liu (1986) apresentam para uma variedade de expressdes
analiticas para o fator F.

Obtidas as normais equivalentes das variaveis U e as suas correlacdes
equivalentes, o proximo passo consiste em utilizar a equacédo (19) para a obtencéo
das variaveis normais padrdes estaticamente independentes V, da mesmo forma que
é feita para variaveis normais.

Para o caso onde a fungdo de densidade de probabilidades conjunta f,,(U) &

conhecida, a transformacdo de Rosenblatt € a mais recomendada na conversédo das

40

variaveis U em V (SAGRILO, 1994). Essa converséo € ilustrada nas expressfes da

equacao (23):

¢~ [Fy: (Uy)]
¢~ [Fy2(U2/U)]

Vi
Vs
(23)

Ve, =¢~* [FUn (%)]

Onde;

Ui , . . - . -
Fy; (ﬁ) € a funcdo cumulativa de probabilidade da variavel Ui condicionada a
1V2.Uj-1

valores conhecidos das variaveis U1,U2,Us,...,Ui.1;

¢! é o inverso da funcdo cumulativa normal padrao.

3.2.1.2 Busca ao ponto de projeto

Um dos passos fundamentais para o calculo da probabilidade de falha pelo
método FORM, é o de encontrar o ponto U* sobre a superficie de falha mais proxima
a origem. Para encontrar o ponto de projeto no espaco das variaveis reduzidas,

desenvolve-se uma expressao iterativa com as condi¢cdes expressa na equacao (24):

Minimize |V]|
Sujeitoag(V) =0

(24)

O método mais usado para resolver este problema de otimizacdo € o método
proposto por Hasofer e Lind (1974) e melhorado por por Rackwitz e Fiessler (1978).
Este algoritmo € mais conhecido como HL-RF e € esta representado na expressao

iterativa da equacao (25):

1
v = 7R [Vg(VO)TV — g(vO)vg(Vi)T (25)

41

Onde a funcéo de falha no espaco reduzido, e o gradiente da funcdo de falha no
espaco reduzido, sdo dados respectivamente pelas equacdes (26) e (27), (SAGRILO,
1994):

gk = GU*) (26)

Vg(Vk) = DTG (UY) (27)

O algoritmo converge quando [VK+1| — |VK|/|[VE*1| < Tol(tolerancia). Sendo

VK*1 0 novo ponto, e V¥ o ponto atual.

3.2.1.3 Fator de importancia

Além do indice de confiabilidade o método FORM pode retornar outras
informacdes uteis. Segundo Sagrilo (1994), um dos mais importantes resultados
obtidos através dos métodos analiticos sdo as medidas de sensibilidade relacionadas
ao indice de confiabilidade em relacdo a variagdo dos parametros que definem a
funcao de falha.

Um destes fatores é o fator de importancia que define a importancia relativa de
uma variavel aleatoria na analise em questdo (SAGRILO, 1994). Para uma variavel

aleatdria i do problema, o fator de importancia é dado pela equacgéo (28):
Ii = aiz (28)

Onde ai é a componente do vetor normal a superficie de falha no ponto de projeto V,
correspondente a variavel i. O fator ai € dado pela equagéo (29):

o = Ag(V);
b lag(n)|

(29)

42

3.2.2 Monte Carlo

A técnica de Monte Carlo é uma das mais simples para avaliar a probabilidade
de falha de uma estrutura. Basicamente consiste em gerar um numero bastante
grande de amostras aleatorias para simular um experimento. A partir das distribuicées
de probabilidade das variaveis, é gerado um conjunto de amostras independentes.
Para cada amostra gerada a funcdo de falha é avaliada G(U), caso ela esteja no
dominio de falha G(U) < 0 ela é contada.

Por fim a probabilidade de falha é obtida pela divisdo da contagem de amostras
no dominio de falha pelo numero total de amostras. Conforme apontado por
Sagrilo(1994) a obtencéo da probabilidade de falha expressa na equacéao (16) pode

ser aproximada pela equacéao (30), desde que o niumero de amostras seja elevado:

N
1
pf = N;HG(U) <0) (30)

Apesar de ser um método que apresenta boas aproximacdes e ser de facil
implementacgéo, este método requer um ndmero bastante elevado de simulacdes, é
por isso que basicamente este método € utilizado para validar novos métodos (TORO,
2014). Afim de reduzir o nimero de simulacbes do método de Monte Carlo foram
criados varios métodos derivados do mesmo, o que fazem basicamente € adotar uma
técnica de reducao da variancia.

Estas técnicas de reducdo da variancia permitem que sejam geradas amostras
na regido mais representativas, ou seja, com menos amostras € possivel uma
representacdo satisfatéria do modelo. Algumas destas técnicas incluem o Hipercubo

Latino, amostragem por importancia e esperanca condicionada.

3.2.2.1 Esperancga Condicionada

Segundo (BARBOSA, 2004) “O objetivo desta técnica é reduzir o espago
amostral das variaveis para a obtencdo da probabilidade de falha, caracterizando o
problema de forma condicional”. O método consiste em escolher uma variavel

aleatdria X, que seja estatisticamente independente das outras e que possua maior

43

disperséo, isto é, que contribui com maior intensidade para a probabilidade de falha.
Em seguida, deve-se expressar a variavel X em termos das outras, através da relagéo
G(U) =0.

Reformulando a equacao (16) em termos da funcéo de distribuicdo acumulada
F da variavel X, e aplicando a técnica de Monte Carlo, Barbosa (2004) obteve a
expressao para o célculo da probabilidade de falha utilizando o método de Monte Carlo

com Esperanca Condicionada, conforme ilustrado na equacéo (31):

N
1
pf = 3) F(0 (31)
i=1

3.3 NEWTON-RAPHSON

O método de Newton-Raphson é conhecido pela sua r4pida convergéncia e se
baseia em calcular o préximo ponto da curva utilizando o ponto atual e a tangente da
curva nesse ponto. Desta forma é obtida a intersecdo da tangente com o eixo das
abcissas e calculado o proximo ponto da curva, o método prossegue até que a
diferenca entre o ponto atual e o préximo seja menor que uma tolerancia previamente
estabelecida ou que o0 numero de iteragbes maxima seja excedido. Uma

esquematizacao do método é demonstrada na Figura 7.

Figura 7 — Representacao grafica do método de Newton-Raphson

Stxy)

(
a

FONTE: (ASANO e COLLI, 2009)

44

Matematicamente o processo iterativo € montando usando a regra de iteracao

expressa pela equagéao (32), conforme demonstrado por Asano e Colli (2009):

Xiv1 = X; — f’(x')
l

3.4 REDES NEURAIS

Um dos grandes objetivos da humanidade sempre foi a construcdo de
maquinas inteligentes que pudessem operar e executar tarefas complexas sem a
intervencdo humana. Afim de alcancar este objetivo, 0 homem comecou a observar
como ele mesmo pensa, afim de entender os mecanismos que geram as ideias, assim
como os pensamentos (RUSSEL e NORVIG, 2013).

Este sonho comecou a se tornar cada vez mais tangivel, a partir do século
passado, onde foram desenvolvidos varios modelos de inteligéncia artificial. A partir
da segunda década deste século, houve um aumento significativo nas bases de dados
no mundo, além do barateamento de recursos como computacdo paralelas e do
proprio computador desde anos anteriores, isto tudo proporcionou a ascensao das
redes neurais. As redes neurais, permitem que tarefas antes realizadas apenas por
humanos, fossem realizadas também por computadores (HAYKIN, 2008).

Redes neurais conseguem, a partir de um grande conjunto de dados de
treinamento, extrair conceitos abstratos e relevante de tal forma que possa generalizar
e extrapolar resultados. Segundo Haykin (2008) as principais caracteristicas de uma
rede neural s&o:

v' Tolerancia a falhas, mesmo que parte da rede apresente problemas, a rede
ainda é capaz de apresentar boas aproximacdes, pelo fato da informacéo da
rede estar distribuida;

v' Generalizagdo, permite que a rede gere saidas boas para entradas
desconhecidas, que nao pertencem ao conjunto de treinamento;

v' Capacidade de aprendizagem, capacidade de aprender com os dados, isto &,
extrair os conceitos implicitamente contidos nos dados;

v' Habilidade de aproximacéo, desde que os dados sejam representativos do
processo ou problema, a rede € capaz de aproximar fungdes continuas de

ordem qualquer.

45

3.4.1 Estrutura das redes neurais

O cérebro humano é formado por cerca de 10 bilhdes de neurdnios (RUSSEL
e NORVIG, 2013). Esta rede densa de neurdnios possui diversos tipos de conexdes
responsaveis por transmitir impulsos nervosos, responsaveis pelo pensamento,
reflexos, agcbes e as lembrancas. Apesar de toda a complexidade desta rede, ela é
formada por unidades simples, chamadas de neurénios. Os neurdnios sdo a unidade
basica de processamento, eles recebem e propagam o sinal do impulso elétrico para
um ou mais neuronios. E possivel visualizar uma ilustracdo de um neurdnio tipico na

Figura 8.

Figura 8 — Estrutura de um neurénio biolégico

FONTE: (BARBOSA, 2004)

Conforme observa-se na Figura 8, 0s principais componentes de um neurénio
sao, (HAYKIN, 2008):
v' Os dendritos, que sdo extensdes na forma de filamentos responsaveis por
receber o impulso de outros neurbnios;
v' A soma, ou corpo do neurbnio, responsavel por combinar os estimulos

coletados de outros neurbénios;

46

v' O axodnio, responsavel por transmitir os estimulos para os neurdnios ligados a
ele.

As redes neurais artificiais se baseiam nesse comportamento da rede neural
humana. Da mesma forma, sdo usadas unidades de processamento menores
chamadas de neurénios artificiais, responsaveis por receberem entradas processadas
de outros neurénios, combina-las e repassarem a saida gerada para outros neurénios
(HAYKIN, 2008). Na Figura 9 é ilustrado os componentes de um neurénio artificial,

sendo que na pratica, este neurdnio € implementacdo como uma rotina.

Figura 9 — Estrutura de um neur6nio artificial

) = '™
L b, (Mas)

Entrada fixa 1, = +1 O=—=>{"io}—

."-‘\
K, -) \
(e} \
v \ \
A\ f ungan de

atvagdo

\i"J.\.(’l =g “ ¥ ,“,4 ’ '[f - Saids
- |

entraca S ¥
“ K

4 g

oy
1 /'w /
T e ' T o
\-'/

['; SOS

SIndpticos

FONTE: (HAYKIN, 2008)

As redes neurais artificiais sédo organizadas em camadas de neurdnios: camada
de entrada, uma ou mais camadas ocultas e uma camada de saida. O numero de
neurdnios nas camadas de entrada e saida, é funcdo do tamanho do vetor de entrada
e saida, respectivamente, enquanto que a quantidade de camadas intermediarias,
bem como o numero de neurdnios em cada camada é determinado por meio de
experimentos ou por recomendacdes da literatura. Uma exemplificacdo de uma rede
neural com uma camada de entrada com 2 neurénios, 2 camadas intermediarias com
4 neurbnios cada e uma camada de saida com apenas 1 neurdnios, € ilustrada na

Figura 10.

a7

Figura 10 — Rede neural com 3 camadas ocultas

Conexdes

entrada

‘llll'i camada de
salda

camada de ,

camadas intermediarias

FONTE: (AUTOR, 2019)

Cada conexao em uma rede neurais possui um peso, que € um valor numerico
responsavel por ponderar uma determinada entrada (saida de outro neurénio) em um
neurdnio. Conforme aponta Barbosa (2004) na formacao de uma rede neural 3 etapas
devem ser seguidas:

v' A determinacao da arquitetura da rede, que define a forma como as camadas
estao interligadas e como enviam e recebem dados umas das outras;

v' A determinagao da funcdo de ativacdo, que define a forma como um neurénio
processa o sinal de saida;

v' A determinacao do método de aprendizagem, responsavel por ajustar os pesos

das ligacdes da rede, fazendo com que a rede extraia o padréo dos dados.
3.4.2 Funcao de ativacéo

Como dito anteriormente um neurdnio é uma unidade de processamento que
recebe varias entradas e as combina gerando uma saida, que repassa para um ou
mais neurdnios. Matematicamente a saida de um neurénio € expressa pela equacéo
(33).

48

n
y=f (Z wm) - f® (33)
=1

Onde wo € o valor de bias do neurdnio, cuja a entrada correspondente é a constante
1. Existem varios tipos de funcao de ativacdo que séo especificas para determinadas
classes de problemas, e até mesmo para determinadas camadas (entrada, oculta ou
saida). As principais funcdes de ativacdo utilizadas, segundo Quiles (2004), estédo

representadas matematicamente e graficamente, nas Figura 11 e Figura 12

respectivamente:
Figura 11 - Tipos de Func¢des de Ativacao
Tipo de Funcio Funcio
N _ flse v=10
Limiar fv) = {D se ve 0
1 = L
LT j—
se vz
. 1 1
Linear por Partes fFlv) = 1 v se — > - vy o= 5
0 = L
5€ v = —2
Sigmoide Logistica Fv) = (1 +exp(—av))?
Tangente Hiperhdlica Fv) = tanh(v)

FONTE: Adaptado de Quiles (2004)

Figura 12 - Representacédo Gréfica dos Tipos de Funcdes de Ativacao

Fungao Limiar Funcao Linear por Partes

Funcgao Sigmoide Logistica Funcgao Tangente Hiperbdlica

FONTE: (QUILES, 2004)

49

3.4.3 Arquitetura de redes neurais

A arquitetura das redes neurais esta relacionada a forma como os neurdnios se
ligam com neurdnios de outras camadas. Conforme Haykin (2008) explica, conhecer
a arquitetura da rede € importante, pois influencia no tipo de treinamento escolhido.
Além de influenciar no treinamento, a arquitetura da rede define a classe de problemas
para o qual ela € mais adequada.

Conforme Haykin (2008) expde existem basicamente 3 arquiteturas de redes
neurais:

v Redes Single-Layer Feedforward: é uma rede bastante simples, basicamente
existem apenas a camada de saida e a camada de entrada, ou seja, ndo existe
nenhuma camada oculta. O fluxo do sinal é sempre progressivo, ou seja, hao
existe realimentacao das camadas, este tipo de rede é exemplificado na Figura
13.

Figura 13 — Rede alimentada adiante com uma Unica camada

FONTE: (HAYKIN, 2008)

v' Redes Multilayer Feedforward: neste caso a rede possui uma ou mais camadas
ocultas e o fluxo de sinal também é progressivo. A rede pode ser densamente
conectada quando todos os neurdnios de uma camada estdo conectados a
todos os neurdnios da camada seguinte, ou pode ser parcialmente conectada,
qgquando algumas destas conex0es estdo ausentes. Este tipo de rede é

exemplificado na Figura 14.

50

Figura 14 — Rede alimentada adiante totalmente conectada com 1 camada oculta

FONTE: (HAYKIN, 2008)

v' Redes Recorrentes: este tipo de rede néo é progressivo, ou seja, ha pelo um
loop de realimentacao na rede. Isto significa que a saida de um neurénio pode
voltar para o mesmo como entrada uma ou mais vezes. Este tipo de arquitetura
€ muito utilizado em problema em que a rede precise manter “memaria” ao
longo do tempo, algumas aplicagBes incluem prever a colisdo de veiculos
através de filmagens, e completar uma frase de um texto de forma coerente e

de acordo com o contexto. Este tipo de rede € exemplificado na Figura 15.

Figura 15 — Rede recorrente sem camadas ocultas

Sardas

Vs

Operadores d¢

AIrASO UNItano
Entradas {

FONTE: (HAYKIN, 2008)

51

3.4.4 Treinamento de redes neurais

O treinamento de uma rede neural é 0 passo mais importante para a validacao
da mesma. Durante o treinamento sao apresentados conjuntos de dados para que a
rede aprenda o padrao ou regra associada aos dados, para que dessa forma forneca
boas interpolagdes ou extrapolacbes baseadas no que aprendeu. Este processo de
aprendizado, é gradual e por meio de um processo interativo, onde 0S pesos
sinapticos sdo ajustados para que fornecam saidas mais parecidas com a realidade.
Haykin (2008) expde a existéncia de trés tipos de aprendizado:

v Aprendizado supervisionado: o usuério dispde de conjuntos de dados com
pares de entrada e saida, desta forma a rede pode comparar a saida gerada
com a saida real, e desta forma definir e calcular uma métrica de erro para que
possa ajustar o valor dos pesos sinapticos. Alguns algoritmos utilizados para
este tipo de treinamento incluem a regra delta, o backpropagation e Levenberg-
Marquardt.

v" Aprendizado ndo-supervisionado: neste tipo de treinamento existem apenas os
dados de entrada, ndo ha dados de saida. A rede aprende a criar
representagfes internas de caracteristicas especificas, ou seja, cria classes,
por isso esse tipo de treinamento € realizado em redes criadas para problemas
de classificacdo. Os principais algoritmos de treinamento incluem o hebbiano e
o aprendizado por competicao.

v Aprendizado por refor¢co: o aprendizado ocorre devido a interagdes continuas
entre o agente (rede) e o ambiente. O agente realiza determinadas acgdes e
obtém do ambiente um sinal de recompensa, indicando o quao bem aquela
acao foi naquele momento. O objetivo do agente é maximizar a recompensa,
de tal forma que aprenda uma politica de acfes 6timas, que por sua vez permite
ao agente tomar as melhores acdes possiveis. Desta forma, os dados de
entrada e saida sdo obtidos a partir da propria interacdo do agente com o

ambiente.

3.4.5 Algoritmo backpropagation

O algoritmo Backpropagation é o mais utilizado para aprendizado de redes

neurais, atualmente o método evoluiu bastante e possui diversas variacdes. Este

52

algoritmo se baseia em duas etapas na rede: a propagagdo da entrada, e a
retropropagacao do erro (HAYKIN, 2008). Segundo Haykin (2008) na primeira etapa
os dados de entrada sdo submetidos aos neurdnios de entrada da rede, que se
propagam camada por camada ao longo da rede até gerar uma saida. Neste passo,
0S pesos sindpticos das conexdes dos neurdnios sao mantidos fixos.

Na segunda etapa, a saida gerada é subtraida da resposta real, gerando um
sinal de erro que € propagado de forma inversa ao longo da rede, isto €, comecando
da camada de saida em direcdo as camadas ocultas. A medida que o sinal de erro
passa pelas camadas, 0s pesos sinapticos das ligacdes dos neurbnios sdo ajustados,
afim de que a saida da rede se torne mais parecida com a resposta real.

O sinal de erro do neurénio j na interacdo n é calculado a partir da equacao
(34):

ej(n) = d;(n) — y;(n) (34)

O erro total gerado por uma saida da rede é dado pela equacao (35):

1
e(n) = 52 e? (35)

jec

Onde o C denota o conjunto dos neurbnios da camada de saida da rede. A correcao
dos pesos sinapticos é dada pela equacéao (36):

Awj;(n) = né;j(n)y;(n) (36)

Dependendo de onde o neurdnio esta localizado, o termo 6;(n) é diferente.

Portanto temos dois casos, (HAYKIN, 2008):
Caso 1: O neurdnio esta localizado na camada de saida

. Neste caso calcula-se diretamente o sinal de erro usando-se a equacao (34),
e o termo 6;(n) € calculado pela equagéo (37):

53

5(n) = ;(m)g’; (v;(m)) (37)
Caso 2: O neurbnio esta localizado em uma camada oculta

. Neste caso, o sinal de erro do neurdnio é calculado recursivamente em termos
dos sinais de erros dos neurdnios, aos quais este neurdnio esta conectado, conforme

demonstrado na equacao (38) para o calculo do termo §;(n), onde o indice k denota

0S neurdnios conectados ao neurdnio |.
500 = @' (1)) D 8 wiy () (38)
k

3.5 ANDROID
3.5.1 Plataforma Android

Segundo Google (2019), “o Android € um sistema Linux multiusuério em que
cada aplicativo € um usuario diferente”. Como cada aplicativo € um usuério, cada
aplicativo possui suas proprias permissdes para acessar recursos do sistema, tais
recursos incluem acesso a componentes de hardware, internet, arquivos, outras
fontes de dados, etc. além disso, cada aplicativo Android é executado em uma
maquina virtual Java separada, garantindo desta forma o isolamento do cddigo do
aplicativo. A linguagem padrdo de programacédo da plataforma Android é o Java.

Como Google (2019) defende, os aplicativos Android, sdo criados partir da
combinacdo de componentes distintos que possuem seus proéprios ciclos de vida, e
gue podem ser invocados independentes. Isso cria um modelo em que o aplicativo
possui multiplos pontos de entrada, diferentemente da maioria das outras plataformas
em que existe um unico ponto de entrada, normalmente uma fungdo ou método “main”.
Isso permite que o aplicativo seja iniciado a partir de qualquer componente,
melhorando desta forma a experiéncia do usuario.

Outra caracteristica importante dos aplicativos Android, é que 0S mesmos

podem definir diversos recursos XML, para que se adaptem aos diversos tipos de

54

configuracdes. Alguns exemplos de configuragdes incluem a posicao da tela (retrato
ou paisagem), e o idioma atual (GOOGLE, 2019).

3.5.2 Estrutura das Aplicacdes Android

Como dito anteriormente os aplicativos Android possuem multiplos pontos de
entrada, justamente pelo fato de ser formado pela justaposicdo de componentes que
desempenharem funcdes especificas dentro da aplicacdo. O sistema Android
reconhece 4 tipos de componentes distintos, (MEDNIEKS, DORNIN, et al., 2013):

v Atividades: representam uma tela da aplicacdo. Geralmente cada aplicativo
possui varias telas, que por sua vez possuem varios elementos graficos
chamados de View’s. Cada View controla uma porcdo da tela e possui
manipuladores de eventos associados a si, como por eventos ouvintes para
guando ocorrer toques na tela, deslizar do dedo, etc;

v' Servicos: sdo componentes que sao executados em background, ou seja, ndo
possuem interface gréfica. Eles sdo usados para o processamento de tarefas
longas como downloads, entre outras tarefas que ndo possam ser executadas
na thread, ponteiro responsavel por ler e executar o cddigo do programa,
principal do aplicativo, com o risco de travar a aplicagdo e a mesma ser fechada
pelo sistema operacional.

v" Provedores de Conteudo: conforme dito anteriormente cada aplicativo possui
suas permissfes para acessar recursos. Cada aplicativo, possui arquivos
privados em que nenhuma outra aplicacdo pode ter acesso, porém em muitos
casos € preciso que uma aplicacdo compartilhe dados com outras, como por
exemplo a lista telefénica do aplicativo de ligacédo. Os provedores de conteudo,
permitem que os dados, arquivos, registros no banco de dados SQLite, entre
outras fontes de dados, possam ser acessados de forma segura e controlado
por outros aplicativos.

v' Receptores de transmissao: sdo componentes que respondem a anuncios
feitos pelo sistema ou por outros aplicativos. Desta forma, eventos como bateria
fraca, termino de downloads de certos arquivos, podem ser detectados por
aplicativos, para que 0s mesmos possam responder com um aviso ao usuario,

ou qualquer outra acao.

55

Além destes componentes temos as intengdes (Intents) que servem para iniciar
componentes, além de transmitir dados de um componente para outro. Desta forma
um componente ao iniciado, pode, através das informacdes recebidas, decidir que tipo
de acao executar.

Qualquer componente criado no aplicativo e que deva ser utilizado pelo mesmo,
deve ser declarado no seu arquivo de manifesto. Este arquivo controla as principais
configuracbes do aplicativo, como os componentes da aplicacdo, as permissoes, a
versao minima do Android para executar o aplicativo, entre muitas outras
configuragodes.

Afim de permitir um maior reaproveitamento de componentes, na versao 3.0 do
sistema Android foi criado o componente fragmento, que ndo € reconhecido pelo
sistema, apenas pelas telas, ou atividades (MEDNIEKS, DORNIN, et al., 2013).
Seguindo esta filosofia, a tela € modularizada, onde por¢des da tela é controlada por
um fragmento, sendo que este fica responsavel por comportar as View’s, bem como
despachar os eventos de GUI para as mesmas. A atividade entéo torna-se apenas
uma gerente de fragmentos, deixando todo o trabalho pesado para os mesmos. Este
modelo permite criar telas como uma composi¢cédo de fragmentos, que podem fazer

tarefas complexas e abrigar diversos View’s organizadas nos mais diversos layouts.

3.5.3 Ciclo de vida dos componentes

Um conceito muito importante quando se fala em aplicacdes Android, € o ciclo
de vida dos componentes. Tanto o aplicativo quanto os componentes, que o formam,
possuem inicio, meio e fim. Quando determinadas condi¢cBes acontecem, o Sistema
Operacional modifica o estado do ciclo de vida dos componentes, ativando eventos,
gue por sua vez consistem em chamadas de func¢des especiais dentro da aplicacao.

As atividades, possuem um ciclo de vida que esta associado basicamente com
a visibilidade da tela atual. Na Tabela 1, é possivel visualizar os principais métodos
do ciclo de vida de uma atividade, (MEDNIEKS, DORNIN, et al., 2013):

56

Tabela 1 - Métodos de ciclo de vida de uma atividade

Método Descricédo
Chamado quando a atividade € criada, nesse método é
onCreate
definido o layout da tela bem como as configuracdes iniciais
onRestart Chamado quando a tela se torna visivel para o usuario
onResume Chamado quando a tela esta apta para interagir com 0 USUario
Chamado quando a tela ndo estd mais interativa, isso pode
onPause acontecer quando outra tela estiver no topo da pilha da
aplicacao
onStop Chamado quando a tela ndo esta mais visivel ao usuario
Chamado quando a tela é encerrada, pode ocorrer quando a
onDestroy tela é retirada do topo da pilha ou quando o aplicativo é

encerrado
FONTE: (AUTOR, 2019)

O conhecimento do ciclo de vida de uma aplicacdo Android € essencial para
um bom desempenho da mesma. Conforme Google (2019) aconselha, uma aplicacao
deve ceder recursos para o sistema Android, quando por exemplo a tela atual nao
estiver visivel, diminuindo desta forma o uso da CPU. Isto por sua vez implica na
diminuicdo do gasto de energia, aumentando a performance da aplicacdo, ou seja, a
aplicacdo s6 usa recursos quando realmente precisa, quando ndo € mais necessario

ela os libera.

3.6 WEBSERVICE RESTFUL

“Os Servicos Web permitem que sistemas heterogéneos comuniquem entre si
por meio de trocas de mensagens” (NGOLO, 2009). Os sistemas neste caso, podem
ser de diversas plataformas como sistemas operacionais e linguagens de
programacao diferentes. Além disso, a reutilizacdo do servico web para diversos
clientes € outro fator importante, pois clientes como aplicativos Android, aplicacdes
desktop e aplicagbes web podem consumir 0 mesmo webservice.

Para que possam ser executados, 0os webservices precisam de um contéiner

de servidor, que gerencia detalhes de baixo nivel como pool de conexdes,

57

mapeamento da URI, configuracdo do protocolo HTTP, etc. No mercado existem
varios containers disponiveis de forma livre, Impacta (2019) indica alguns como:

Apache Tomcat, JBoss, Glassfish, Jetty e IIS.

3.6.1 REST

“Um dos motivos pelo qual a arquitetura REST esta a aumentar de popularidade
€ a sua simplicidade e facilidade de uso bem como o uso extensivo de tecnologias
Web nativas como o HTTP” (NGOLO, 2009). O acesso a0 recursos e servigcos
ofertados pelo webservice é feito por meio da URI do servico, o que torna o REST
mais simples que outras arquiteturas como o SOAP, onde devem ser especificadas
varias camadas do servico, bem como a configuracdo de varias propriedades em
arquivos de configuracao.

O principio fundamental do REST, segundo Goncalves (2011) é a existéncia de
recursos e de enderec¢os associados a estes recursos. Recursos neste caso, podem
ser um documento, um registro em um banco de dados ou o resultado de um
algoritmo. Os enderecos se referem a uma URI, para que o recurso seja encontrado
na internet.

O REST como mencionado anteriormente se baseia na existéncia de recursos,
e isto introduz uma arquitetura orientada a servicos (ROA). A ROA por sua vez se
baseia em quatro pilares, conforme aponta Goncalves (2011) :

v' Enderecabilidade: para que uma aplicacdo seja enderecavel, a mesma deve
expor seus recursos por meio de URI. A especificacdo errada do endereco do
recurso torna impossivel 0 acesso ao mesmo;

v" Auséncia de estados: cada requisicdo HTTP esta isolada, ou seja, ndo depende
da requisicdo seguinte ou da anterior. A requisicdo carrega consigo toda a
informacao de que o servidor necessita para acessar 0 recurso ou executar
uma tarefa,

v' Conectividade: os recursos devem estar tdo conectados quanto possivel. Isto
permite que o usuario descubra todas as acfes e recursos por meio de uma
unica URI base;

v Interface Uniforme: O protocolo HTTP e as suas primitivas fornecem uma
interface ao REST, mas o que torna essa interface uniforme é o fato de todos

0S servi¢os usarem a interface da mesma forma.

58

3.6.2 Métodos HTTP

Conforme Ngolo (2009) aponta, o HTTP € o protocolo dominante na internet
por estar presente em todas as plataformas e ser utilizado em quase todas as
requisicdes. Usando o protocolo HTTP é possivel ter acesso aos mais variados
recursos como videos, imagens, paginas da internet, resultados de operacdes, etc.
Quando se faz uma requisicdo HTTP, é necesséaria a especificacdo da URI do recurso
ou servico bem como a acao relacionada ao recurso ou servi¢o. Goncalves (2011)
comenta que a acdo é especificada por meio das primitivas ou verbos HTTP. Os

verbos mais relevantes estao listados na Tabela 2.

Tabela 2 - Verbos HTTP

Método Descricédo
GET Recupera um recurso
PUT Atualiza um recurso
POST Envia um recurso para o servidor
DELETE Apaga um recurso

FONTE: (AUTOR, 2019)

Em uma requisicdo HTTP em um servico RESTful, os dados séo transferidos
por meio de mensagens. Ngolo (2009) indica que dentre os principais tipos de
formatos de mensagens incluem JSON e XML. Atualmente o JSON é o mais utilizado
por sua simplicidade e por estruturar a informacéo de forma muito mais compacta que

o XML, o que torna o envio e recebimento das mensagens muito mais rapidos.

3.7 COMPILACAO

Atualmente existe diversos programas aplicativos nas mais diversas areas,
estes programas contam com as mais diversas GUI, que por sua vez facilita a vida do
usuario por emular fungcdes complexas em uma representacéo grafica amigavel e facil
de usar. Apesar de todas estas facilidades, as interfaces graficas podem néo resolver
todos os problemas, e caso conseguissem seria bastante complexa sua
implementagdo quanto sua usabilidade quebrando assim o seu principio béasico: a

facilidade.

59

Uma solucdo € a criagdo de uma linguagem de dominio especifico, para um
determinado tipo de problema. Uma linguagem expande as possibilidades, pois com
algumas linhas de codigo € possivel resolver tarefas complexas. A especificacdo de
uma linguagem envolve a criacdo de um compilador. Um compilador é um programa
gue converte um programa escrito em uma linguagem fonte para um programa na
linguagem alvo (AHO, SETHI e ULLMAN, 1995), esta definicdo é ilustrada na Figura
16.

Figura 16 - Um Compilador

Programit
fonte

Programa

campilador f——-
alvo

l

mensdgens
de erro

FONTE: (AHO, SETHI e ULLMAN, 1995)

E comum linguagens de alto nivel tais como C e C++ serem compiladas para
linguagens de baixo nivel, tal como o cddigo Assembly. O processo de compilagcéo
existe para facilitar a programacdo. Um exemplo € variedade de linguagens de alto
nivel que fornecem uma maneira muito mais facil de se programar do que as de baixo
nivel, que estdo muito proximas do cédigo binario.

Conforme aponta Aho, Sethi e Ullman (1995), a compilacdo apresenta duas
partes: a analise e a sintese. Na parte da andlise, o programa fonte é dividido em suas
partes constituintes, e é criada uma representacao intermediaria do mesmo. Na parte
de sintese, a representacao intermediaria € sintetizada juntamente com seus atributos
para gerar o programa na linguagem alvo, que geralmente é o codigo de maquina.

O compilador opera em fases, que converte o programa para diversas
representacdes diferentes ao longo de todo o processo de compilacdo. Na Figura 17
é possivel visualizar todas as seis fases do processo de compilacéo.

60

Figura 17 — Etapas da compilacao

programa fonte

analisador

I¢xico

'

analissdor
sintdtico

'

analisador

semiintico
gerenciador da l tratador

tabela de simbolos de erros

gerador de codigo
intermedidano

'

otmizador

de cédigo

‘

gerador
de oodigo

'

programa alvo

FONTE: (AHO, SETHI e ULLMAN, 1995)

As fases de analise Iéxica, sintatica e semantica fazem parte da analise do
compilador, enquanto que a geracao de cddigo intermediario, otimizacdo de codigo e
geracdo de cadigo final fazem parte da sintese. Associado a estas fases do
compilador, temos a tabela de simbolos, responsavel por guardar atributos dos
componentes do programa, e o verificador de erros, responsavel por apresentar um
relatorio sobre os diversos erros que surgem durante todo o processo de compilacéo

(AHO, SETHI e ULLMAN, 1995).

3.7.1 Analise léxica
A andlise léxica é a primeira fase do compilador e envolve a leitura dos
caracteres do programa fonte e geracdo de tokens para o analisador sintatico. Um
token € um identificador retornado por um conjunto de cadeias de caracteres que
obedece a uma regra ou padrdo (AHO, SETHI e ULLMAN, 1995), sendo classificados
como:
v' Palavras-clave: palavras que devem aparecer literalmente na linguagem sem
variacao alguma.
v Identificadores: palavras que obedecem a um padrdo, porém podem assumir
diversos valores, séo utilizados para nomear entidades em um programa como

fungbes, variaveis, classes, constantes, etc.

61

v' Simbolos especiais: simbolos que ndo podem parecer em identificadores ou
palavras chave, sdo usados para compor expressées aritméticas e logicas,
comando de atribuicéo, etc.

v' Constantes: podem ser valores reais, inteiros, booleanos, caracteres ou literais.

v' Comentarios: cadeias de caracteres com o Unico propésito de documentacao.
Além disso, o analisador Iéxico tem como funcao eliminar espacos em branco

e comentarios, além de detectar e informar os erros léxicos.

3.7.2 Expressodes e defini¢des regulares

Um ponto muito importante com relacdo a analisadores léxicos é a
especificacdo dos tokens. Uma notacdo muito utilizada para esse fim sdo as
expressdes regulares. Na pratica o que ocorre € a utilizagdo de uma linguagem de
especificacdo de analisadores Iéxico, baseada na notacao de expressdes regulares,
para criar de forma automatizada um analisador Iéxico.

Conforme Aho, Sethi e Ullman (1995) apontam, as expressdes regulares sao
formadas a partir de expressfes regulares mais simples. Onde cada expresséao
regular descreve um conjunto de cadeias de caracteres, sem precisar listas todas as
cadeias do conjunto. Conforme Aho, Sethi e Ullman (1995), as principais regras para
a construcdo de expressdes regulares sao:

v' Alternancia: representada por uma barra invertida (|), serve para separar
alternativas;

v' Agrupamento: representado pelos parénteses, serve para definir o escopo ou
a procedéncia da cadeia,

v' Repeticdo: esta relacionado a um quantificador apés um token ou
agrupamento, e indica 0 numero de vezes que o elemento precedente pode
ocorrer.

Complementar ao conceito de expressdes regulares, temos o conceito de
definicbes regulares, que segundo tal basicamente consistem em nomear expressoes
regulares, para que estas possam ser usadas como se fosses simbolos, facilitando
desta forma a legibilidade e a escrita de outras expressdes regulares em funcao

destas.

62

3.7.3 Anélise sintética

O analisador sintatico € responsavel por validar a sintaxe da linguagem, para
isso ele agrupa os tokens fornecidos pelo analisador Iéxico, e verifica se uma
determinada cadeia pode ser gerada pela gramatica da linguagem (AHO, SETHI e
ULLMAN, 1995). Para isso, o analisador sintatico constréi a arvore sintatica
correspondente do programa. Além disso, o analisador sintatico tem como tarefa a
deteccao de erros sintatico do programa, ou seja, informar sobre as construcfes que
ndo obedecem a gramatica da linguagem (AHO, SETHI e ULLMAN, 1995).

3.7.4 Gramatica livre de contexto

Conforme Aho, Sethi e Ullman (1995) explicam, uma graméatica descreve a
estrutura hierarquica das constru¢des de uma linguagem de programacdo. JA uma
gramatica livre de contexto possui a mesma tarefa, porém ndo € sensivel as
caracteristicas semanticas da linguagem.

As gramaticas livres de contexto sao formadas por 4 elementos (AHO, SETHI
e ULLMAN, 1995):

v" Terminais: sdo os simbolos basicos pelos quais se constroem as cadeias,
Neste caso 0s terminais sdo 0s proprios tokens;

v" Nao-terminais: definem conjuntos de cadeias que auxiliam na especificacdo da
linguagem, além disso, por serem 0s nGs interiores das arvores sintatica, impde
uma ordem hierarquica na linguagem, que por sua vez € a base para a anélise
sintatica e a propria traducdo;

v' Simbolo de partida: € o ndo-terminal cujo conjunto de cadeias é a prépria
linguagem definida pela gramatica, ou seja, ele é o nd raiz de qualquer
programa escrito nessa linguagem;

v" Produc0es: especificam a forma pela qual os terminais e ndo-terminais de uma
gramatica podem se combinar para formar as cadeias da linguagem. Cada
producao consiste em um ndo-terminal seguido por uma seta, seguido por uma
cadeia de n&o-terminais e/ou terminais.

Para exemplificar um pouco estes conceitos considere a gramatica definida na

Figura 18.

63

Figura 18 — Gramética para as quatro operacdes aritméticas

exXpressao —-» exXpressac + termo | expressac - termo | termo;
termo -> termo * fator | termo / fator | fator:
fator -» DIGITO | (expressac):;

FONTE: (AUTOR, 2019)

Na Figura 18, o token “DIGITO” denota o conjunto dos digitos de 0 a 9. O nao
terminal “expressao” é o simbolo de partida, pois ele é a raiz, ou seja, através dele
toda a graméatica se desenvolve. O token “DIGITO” é um terminal, enquanto que

” o«

“‘expressao’, “termo” e “fator” sdo os ndo-terminais, pois 0s mesmos sao nos internos
da arvore, cuja funcéo é facilitar a escrita da gramatica em termos dos terminais. Por
fim cada uma das linhas da Figura 18 representa uma producao, pois temos um néo
terminal seguido por uma seta, seguido por uma cadeia de terminais e/ou n&o

terminais.
3.7.5 Arvores gramaticais

As arvores gramaticais mostram, como o simbolo de partida deriva uma cadeia
de construcao da linguagem. Na Figura 19, pode-se observar a arvore gramatical para

aexpressdo4+5-2*7 + 3 * (5 + 4) conforme a graméatica da Figura 18:

Figura 19 — Arvore gramatical para uma expressdo matematica

EXPRESSAO

_— ! T

EXPRESSAO TERMO
\ / L \
EXPRESSA TER TERMO FATOR
EXPRESSAO TE FATOR FATOR EXPRESSAQ

' | //// - \\\
TERMO FATOR FATOR DIGITO DIGITO EXPRESSAO TERMO
FATOR DIGITO DIGITO 7 3 TERMO FATOR
DIGITO 2 FATOR DIGITO

4 DIGITO 4

FONTE: (AUTOR, 2019)

64

Uma arvore gramatical representa o programa de forma hierarquica, e possui
as seguintes caracteristicas (AHO, SETHI e ULLMAN, 1995):
1) Araiz é rotulada pelo simbolo de partida;
2) Cada né é rotulado por um token ou uma producéo vazia,
3) Cada nd¢ interior é rotulado como um nao terminal;
4) Se A é um no interior e Xa, X2,..., Xn SA0 rotulos dos filhos daquele ng, entdo A-

> X1,X2,...,Xn € uma producao.

3.7.6 Analise semantica

Como visto anteriormente a sintaxe de uma linguagem de programacédo é
geralmente descrita por uma gramatica livre de contexto. A questdo é que todo
programa possui um contexto associado com as partes constituintes do programa.

Chamamos isto de seméantica do programa, e consiste na utilizacdo da arvore
gramatical para: identificar operadores e operandos das expressoes, reconhecer erros
semanticos, fazer verificacbes de compatibilidade de tipo, analisar o escopo das
variaveis, fazer verificacdes de correspondéncia entre parametros, etc. (AHO, SETHI
e ULLMAN, 1995). Alguns exemplos de erros semanticos incluem: utilizar uma
variavel que nédo foi declarada ou fora do seu escopo, e fazer atribuicdo onde os lados
direito e esquerdo possuem tipos incompativeis.

Como estamos falando de gramatica livre de contexto, a validacdo semantica
do programa ndo esta incluida na especificacdo da gramatica, portanto deve ser
realizada de forma separada. Durante a andlise sintatica, os atributos dos tokens e
producdes sdo salvos na tabela de simbolos, sendo que posteriormente estes dados

sdo consultados para verificar a validade seméantica do programa. Este processo é

[N

dirigido pela sintaxe, ou seja, para cada regra sintatica da gramatica (producdes)
associada uma acao semantica representada por uma chamada de rotina, cuja funcéo
€ salvar e consultar atributos na tabela de simbolos ou em uma representacéo da
arvore sintatica (AHO, SETHI e ULLMAN, 1995).

Na Figura 20, é representada uma gramatica simples para criar expressoes que
envolvem soma e subtracdo, pode-se observar que cada produ¢do possui uma acao

semantica associada, que neste caso € a impressédo de algum caractere.

65

Figura 20 - Exemplo de acdo semantica incorporada a uma producao

expr + dermo { imprimiv i F1

LA
expr LeFm § ferpreimne b

e
e

Fe IR

Ferni
Viimprimir (707) |
)

TEFirne | dmprinnr (1

'_-'J-I-I-l-

reEme — 9 [ieapredmie {75°)

FONTE: (AHO, SETHI e ULLMAN, 1995)

3.7.7 Geracdao de codigo intermediario

Uma representacdo intermediaria € um codigo para uma maquina abstrata que
deve ser facil de produzir e traduzir no programa objeto (AHO, SETHI e ULLMAN,
1995). O mais conhecido codigo intermediario € o cédigo dos 3 enderecos utilizado
guando a linguagem alvo é algum Assembly. No codigo dos 3 enderecos, existem no
maximo 3 variaveis envolvidas em um comando, uma no lado esquerdo da atribuigéo,

e duas no lado direito separadas por algum operador.

3.7.8 Otimizacéo de codigo

A otimizag&o de cadigo consiste em uma melhoria no cédigo intermediario para
gue o cadigo final seja mais rapido em sua execuc¢édo. Conforme Aho, Sethi e Ullman
(1995) apontam, o ideal seria que os compiladores produzissem coédigo tdo bom
quanto o cédigo escrito a mao, porém isto sé ocorre em caso limitados e com uma
certa dificuldade.

De forma macroscépica existem 2 formas de otimizacdes em compiladores: as
dependentes da maquina-alvo como a alocacdo de registradores, e as que nao
dependem da maquina-alvo, por isso podem ser aproveitadas em diversas
plataformas. Existe um consenso popular que diz que a maioria dos programas
gastam 90% do seu tempo de execucdo em 10% do seu cédigo (AHO, SETHI e
ULLMAN, 1995). Com base em informacfdes como essa, 0os compiladores procuram
otimizar as regibes mais criticas do programa, que sao definidas muitas vezes por

meio de estatisticas a respeito de outros programas-fonte.

66

3.7.9 Geracéo de cadigo final

Essa consiste na fase final do compilador, onde finalmente € gerado o cadigo
para a linguagem alvo. Geralmente, o codigo é gerado para uma linguagem de baixo
nivel como assembly ou cddigo de maquina. Porém, também € muito comum a
conversdo de uma linguagem de alto nivel para outra também de alto nivel, € o que
ocorre com muitas linguagens de script, como por exemplo a Engine Unity, onde s&o
programados jogos e ambientes 3d. A programacao no Unity é feita na linguagem C#,
que por sua vez é compilada para linguagem especificas dependendo da plataforma
alvo, se for para Android, por exemplo, é compilado para cédigo Java. Neste caso, a
linguagem C# tem uma caracteristica multiplataforma, onde existe um gerador de

cddigo final especifico para cada plataforma.

3.8 THREADS E CONCORRENCIA

Inerente a todo sistema computacional temos o conceito de Thread.
Tanenbaum (2012) esclarece que thread em um programa é um ponteiro que |é as
instruc6es do codigo e as executa sequencialmente. O que acontece € que muitas
vezes 0s programas ou aplicativos precisas executar tarefas de forma ndo sequencial,
por exemplo, o usuario pode querer continuar interagindo com a interface grafica de
uma planilha eletrénica, enquanto que a mesma esta salvando os dados da planilha,
ou até mesmo procurando atualizacdes.

Para resolver este tipo de problema é necesséria a criacao de varias Threads
dentro do programa, uma para cada tarefa ndo sequencial, o que pode aumentar a
performance da aplicacéo, adicionando um grau de paralelismo real, o que diminui o

tempo de computacao.

3.8.1 Beneficios

Conforme Goetz, Peierls, et al. (2008) descrevem, o uso de threads facilita a
modelagem de tarefas e ac¢des, transformando tarefas assincronas em um conjunto
de tarefas sequenciais. Permite também converter um codigo complicado em um
cbdigo linear mais simples de escrever. Os principais casos de uso de threads sao,
(GOETZ, PEIERLS, et al., 2008):

67

v' Explorar varios processadores: programas com multiplas threads sé&o
executados simultaneamente em varios processadores, aumentando a
performance;

v' Simplicidade da modelagem: gerenciar tarefas assincronas € complicado pois
envolve a manipulagdo de recursos de baixo nivel. Um fluxo de trabalho
assincrono e complicado pode ser decomposto em varios fluxos de trabalho
mais simples e sincronos, cada um executando em um thread separado,
interagindo apenas uns com o0s outros em pontos de sincronizacao especificos;

v Interfaces de usuario mais responsivas: Atualmente, os kits de GUI utilizam o
modelo EDT. Neste modelo a thread principal do programa é responsavel por
responder aos eventos da GUI. Em um acionamento de botéo, por exemplo, os
manipuladores de eventos sdo chamados na thread principal. Se a tarefa for
curta, ndo ird gerar “congelamentos” na GUI. Porém, para os casos em que as
tarefas séo longas, a thread principal pode iniciar outra thread para executar o
trabalho. ApGs esta terminar a tarefa, a mesma devolve para a thread principal
o resultado ou informacdes relacionadas a tarefa, a thread principal entéo
atualiza a tela para refletir a conclusdo ou andamento da tarefa. Este modelo,
portanto impede o comuns travamentos de tela, proporcionando uma melhor
experiéncia do usuario.

Além disso, Tanenbaum (2012) indica outra aplicacdo para as threads, que
seria 0 processamento massivo de dados. Segundo esta proposta, uma thread ficaria
responsavel por receber os dados, uma segunda thread por processa-los, e uma
terceira por enviar os dados processados. Desta forma, todas as 3 tarefas estaréo
sendo executadas ao mesmo tempo. Além disso, o0 uso de threads é muito usado em
computacdo numérica para acelera-la, um exemplo € a constru¢do de uma matriz com
milhares de linhas e colunas, onde vérias threads podem construir um pedaco da
matriz separadamente, e ao final do processo juntar as contribuicdes para formar a

matriz inteira.
3.8.2 Thread Safety
Apesar de todos os seus beneficios, as threads devem ser usadas com

cuidado, pois programas multithread podem adicionar novos tipos de erros ou falhas,

gue nao existem em um ambiente com uma unica thread. Além disso, 0 USO excessivo

68

de threads pode ter o efeito contrario no desempenho, uma vez que a troca de
contexto entre as varias threads dentro da aplicacdo, consome uma fatia consideravel
do tempo de execucdo do processo.

Conforme Goetz, Peierls, et al. (2008) discutem, o codigo thread safety consiste
em gerenciar o acesso ao estado mutavel compartilhado. Este estado, consiste nas
variaveis mutaveis do programa que estejam acessivel por multiplas threads. Portanto
tornar um cédigo seguro consiste em proteger os dados do acesso simultaneo néo
controlado. Um cdédigo seguro garante que o acesso ao estado mutavel de qualquer
variavel seja feito de forma sincronizada, evitando dessa forma, corrup¢éo dos dados.

Goetz, Peierls, et al. (2008) comentam ainda, que a sincronizacao de threads
deve ser feitas em pontos especificos do codigo, chamados de regides criticas. E nas
regides criticas, que ocorre 0 acesso a recursos compartilhados, e portanto deve ser
feito de forma sincronizada, isto €, uma Unica thread por vez pode estar em uma regido
critica. Sincronizar threads em suas regifes criticas impedem problemas como
condicbes de corrida. Para exemplificar este problema considere a classe Java

definida na Figura 21.

Figura 21 — Definigédo da Classe java Estadio

public class Estadio {

private int pesscaCount;

pukblic void addPes=soal() {

FONTE: (AUTOR, 2019)

Conforme ilustrado na Figura 21 a classe Estadio possui um Unico atributo que
representa o numero de pessoa no estadio, e um método responsavel por incrementar
este niumero. Suponha que haja uma instancia dessa classe compartilhada por duas
ou mais threads, e que todas estdo a todo momento recebendo novas pessoas,
portanto incrementando o valor do atributo “pessoaCount”. Como sabemos, o
computador opera por meio de processos e a CPU muda a execugédo de um processo

para outro em um tempo muito curto, de tal forma, que em um uUnico segundo varios

69

processos podem ter sido executados varias vezes, isso nos d4 a sensacdo de
paralelismo, sendo este paradigma conhecido como Multiprogramagéao
(TANENBAUM, 2012). O mesmo acontece com as threads em um processo, a CPU
escalona a execucédo de uma thread para outra.

O problema é que a execucdo da Unica instru¢do do método “addPessoa” ndo
€ uma operacdo atdbmica. A verdade é que ela € uma forma compacta para trés
operacoes: ler o valor da variavel, incrementar o valor e escrever o novo valor. Desta
forma, uma thread A pode invocar o método “addPessoa” e entdo, ler o valor da
variavel e incrementa-lo, mas na hora de escrever o novo valor, a CPU decide
suspender a execucdo desta thread para executar uma thread B. A thread B por sua
vez, pode fazer seu trabalho normalmente e chegar a incrementar o valor, mas quando
a CPU voltar para a thread A, a mesma vai gravar aquele valor que havia calculado.
Podemos observar aqui, que um incremento foi perdido, gerando uma corrupgao nos
dados, isso considerando apenas 2 threads. A situacdo pode se tornar muito mais
problematica com mais threads.

O problema destes erros é que séo dificeis de detectar e de dificil reproducéo,
na verdade um sistema inteiro pode funcionar tranquilamente por um bom tempo, mas
uma hora o erro de sincroniza¢ao pode aparecer e quebrar todo o sistema e a validade
de seus dados.

4 METODOLOGIA

No presente trabalho, para o problema de andlise de confiabilidade estrutural,
sdo utilizados os seguintes métodos: Monte Carlo (MC), Monte Carlo com Esperanca
Condicionada (MCEC), FORM e Monte Carlo com Redes Neurais (MCRN). Em cada
um desses métodos é abordado o problema de dutos considerando defeitos de
dimensdes iguais alinhados longitudinalmente e igualmente espacados.

Estes métodos séo utilizados para a andlise de confiabilidade estrutural. Para
o projeto baseado em confiabilidade de dutos, o método de Newton-Raphson é
aplicado. Este método é associado aos métodos de confiabilidade, a fim de encontrar
0 ponto de projeto sobre a superficie de falha, obtendo dessa forma a espessura de
projeto, para que o duto seja dimensionado para suportar as solicitagdes que Ihe sao

impostas.

70

Como dito anteriormente, o presente trabalho consiste na implementagéao de
um sistema computacional para o projeto baseado em confiabilidade de dutos sujeitos
a multiplos defeitos de corrosdo. Para isso, € implementado um aplicativo Android com
interface grafica nativa, com integracdo com a Engine Unity para o gerenciamento da
cena tridimensional, responsavel por representar o duto e seus defeitos.

A abordagem adotada para resolver os problemas de confiabilidade, foi a de
integrar o aplicativo Android com um servidor remoto executando um WebService,
implementado no presente trabalho, a fim de expor funcdes de célculo para os
usuarios por meio do protocolo HTTP, o principal meio de envio de informagdo na
internet, usando o padrdo RESTful. Desta forma a maior carga de computacgéao ficou
por conta servidor, que pode ser qualquer computador que execute o webservice
implementado no presente trabalho e que tenha conexao com a internet, o que permite
uma resposta mais rapida e unificada. Para que o servidor fosse capaz de executar
os calculos mateméaticos de confiabilidade estrutural, aplicando os métodos de
confiabilidade tal como o FORM, foi utilizado o software MATLAB. Desta forma o
cliente remoto acessa indiretamente o Matlab para executar sua computacdo
numeérica.

Tendo em vistas, que o sistema, composto pelo aplicativo e o webservice,
possui limitacdes como qualquer outro, e que o usuario poderia estar interessado em
resolver um problema de dutos usando uma outra variavel de projeto, ou até mesmo
um problema qualquer de confiabilidade estrutural, que ndo tenha relacdo com dutos,
foi desenvolvido um editor de cédigo no aplicativo juntamente com uma linguagem de
programacao nomeada de “AnderScript”.

Esta linguagem permite uma sintaxe mais clara do problema fazendo com que
O usuario se preocupe apenas com variaveis de projeto, varidveis aleatorias e a
definicdo da funcao de falha. Enquanto que a manipulacao destas expressoes é feita
por rotinas previamente programadas no Matlab, ou seja, o cddigo do usuério é
compilado em cddigo que pode ser interpretado pelo Matlab e executado como
qualquer outra funcao.

Os passos para a implementacéao do sistema seréo apresentados na seguinte
ordem:

1. Implementacdo dos métodos de confiabilidade estrutural no MatLab;
2. Implementacéo e Interagdo com o WebService;

3. Implementacgédo do aplicativo Android;

71

4. Integracdo com a Engine Unity;
5. Desenvolvimento e acoplamento da linguagem de programagao.

Cada um desses passos € representado por um componente diferente, onde
um componente neste caso € tratado como um bloco independente dos outros que
realiza tarefas exclusivas, tais como gerenciar a cena tridimensional (componente do
Unity), e receber requisicdes de usuarios e devolver uma resposta (WebService). O
sistema completo bem como a relacédo entre esses diversos componentes pode ser

visualizado na Figura 22.

Figura 22 — Diagrama de componentes do sistema

g Compilador AnderScript

El

% WebService RESTHul | _ E Aplicativo Android

}E Ambiente 3D Unity

v Y
g MatLab - Métodos de Confiabilidade % Banco de Dados SOLite

FONTE: (AUTOR, 2019)

Observando a Figura 22, nota-se que o aplicativo Android é depende de todos
0s outros componentes, o WebService por sua vez depende do acesso as rotinas de
confiabilidade executadas no software MatLab. A dependéncia com o componente de
banco de dados, expressa apenas a forma como o aplicativo persiste os dados no
dispositivo, onde as informacdes sobre os dutos e seus respectivos defeitos de
corrosao sao especificadas utilizando a GUI do aplicativo, e salvas por meio de um
banco de dados SQLite.

72

41 COMPONENTE DE CONFIABILIDADE

Como dito anteriormente, os métodos de confiabilidade foram implementados
no presente trabalho através do software MatLab e chamados pelo WebService. Para
facilitar o desenvolvimento foram criados arquivos de fun¢cdes no MatLab para cada
método de confiabilidade utilizado (FORM, Monte Carlo, Monte Carlo com Esperanca
Condicionada e Monte Carlo com Redes Neurais), tanto para a analise de
confiabilidade quanto para o projeto baseado em confiabilidade, e colocados todos
juntos no mesmo diretdrio, a fim de se evitar trocar o diretdrio de trabalho para cada
nova chamada de func¢des de arquivos Matlab.

4.1.1 Céalculo da presséao de falha

Para o presente trabalho, o célculo da pressdo de falha foi realizado por
expressdes empiricas, utilizando a norma BS7910 (2005). Esta norma aproxima o
defeito pelo paralelepipedo envolvente conforme visto anteriormente na Figura 1,
facilitando a medi¢cédo das dimens@es do defeito. Como visto anteriormente, o calculo
da presséo de falha envolve apenas as caracteristicas para um Unico defeito, porém
em situacOes reais 0s dutos podem apresentar diversos defeitos de corrosdo em
quaisquer posicionamentos ao longo do duto

No presente trabalho, considerou-se dutos com multiplos defeitos de corroséao
com dimens®es iguais alinhados longitudinalmente e igualmente espacos. Como visto
anteriormente na secado 3.1.1, a norma BS7910 permite converter um conjunto de
defeitos interagente em um unico defeito equivalente, possibilitando a utilizacdo da
equacdao (7), para um unico defeito, para o defeito equivalente referente a um grupo

de defeitos interagentes.

4.1.2 Analise de confiabilidade estrutural

Como dito anteriormente foi desenvolvido um aplicativo para analise e projeto
de dutos submetidos a corrosao, cujos parametros (tipo de problema, IP do servidor,
método de confiabilidade e modo de desenvolvimento), podem ser configurados em
uma tela de configuragbes no aplicativo, conforme ilustrado na Figura 23. O tipo de

problema (analise ou projeto baseado em confiabilidade) pode ser configurado, assim

73

como o método de confiabilidade utilizado conforme ilustrado nas Figura 24 e Figura
25 respectivamente. Desta forma, o usuario pode escolher um dos seguintes métodos
de confiabilidade: FORM, Monte Carlo, Monte Carlo com Esperanca Condicionada e

Monte Carlo com Redes Neurais.

Figura 23 — Tela de Configuracdes do aplicativo

< Configuracoes

Tipo de Problema

Define se & um problema de andlise de
confiabilidade ou projeto baseado em
confiabilidade

Método
Configura o método numérico para o
calculo da pressao de falha

Tipo de defeitos

Configura o tipo dos defeitos em cada
duto, os defeitos podem ser todos iguais
alinhados longitudinalmente e igualmente
espacados ou diferentes em qualquer
posigdo no duto

IP do Servidor

Modo Desenvolvedor
Permite a criagao de scripts
para resolver problemas de
confiabilidade estrutural mais
gerais

FONTE: (AUTOR, 2019)

Figura 24 — Opcéo “tipo do problema”

Tipo de Problema

@® Projeto
O Anilise

CANCELAR

FONTE: (AUTOR, 2019)

74

Figura 25 — Escolha do método de confiabilidade

Método

Monte Carlo Puro

Monte Carlo com
Esperanga Condicionada

Monte Carlo com Redes
Neurais

FORM

CANCELAR

FONTE: (AUTOR, 2019)

Para cada um desses métodos, foram aplicadas algumas fun¢des no Matlab
gue recebem como entrada as informac6es do duto e de seus defeitos, dados sobre
das geometrias do duto e dos defeitos e do material do duto, retornando o indice de
confiabilidade do duto. Os procedimentos para a implementacdo dos métodos FORM,
Monte Carlo e Monte Carlo com Esperanca Condicionada foram explicados
anteriormente nas sec¢des 3.2.1 e 3.2.2.

Ja a implementacdo do método de Monte Carlo com Redes Neurais foi
realizada conforme a metodologia apresentada por Barbosa (2004). Essa metodologia
propde que primeiramente, o método de Monte Carlo deve utilizar a esperanca
condicionada como técnica de reducéo da variancia. Assim como no método de Monte
Carlo classico, sdo geradas amostras aleatérias para as variaveis estatisticas do
problema, porém em um numero bem menor. Para cada conjunto de amostras, é
calculado o valor da variavel aleatéria X de maior disperséo, variavel que contribui
com maior significancia na probabilidade de falha, que neste caso é a pressao interna
aplicada ao duto, bem como o valor da funcéo de distribuicdo acumulada Fxm para
esta variavel, conforme discutido anteriormente na se¢éo 3.2.2.1.

Este conjunto de amostras ri, juntamente com os valores da funcdo de

distribuicdo acumulada Fxm para a variavel X, calculados para cada amostra, séo

75

entdo submetidos como um conjunto de treinamento [ri, Fxm] para a rede neural. Uma
vez que a rede esta treinada, sdo geradas novas amostra aleatérias, mas em vez de
calcular novos valores de distribuicdo acumulada para a variavel X, estes valores sdo
gerados pela rede neural, e por fim aplicada a equacdo (31). Estes passos séo

resumidos no fluxograma ilustrado na Figura 26.

Figura 26 — Fluxograma algoritmo Monte Carlo com Redes Neurais

Determinar a varidvel com maior dispersio Xm, explicitando-a atraves de G(X)=0 I

Para cada vanavel Xi, gerar p valores aleatorios de acordo com suas respectivas distribuigies I

Calcular p valores de Fxm | e com o conjunto gerado, treinar a rede neural configurada para o problema

Apos o treinamento da rede, gerar N valores de Fxm I

Determinar Pf I

FONTE: (BARBOSA, 2004)

A rede neural adotada, € uma rede Multilayer Feedforward densamente
conectada, possui 2 camadas ocultas, cada uma com 7 neurbnios, e a camada de
entrada possui 4 neurbnios, correspondentes as quatro variaveis aleatorias utilizadas
no presente trabalho (profundidade do defeito, pressao interna, taxa de corrosao radial
e espessura do duto). A rede neural foi implementada utilizando a caixa de
ferramentas para redes neurais do Matlab (NNT).

Para o método de Monte Carlo foram adotas 50000 simula¢@es, para o0 método
de Monte Carlo com Esperanca Condicionada 10000 simulac¢des, enquanto que o

método de Monte Carlo com Redes Neurais 8000 simulacdes.

76

4.1.3 Projeto baseado em confiabilidade estrutural

O aplicativo desenvolvido, possui a opcéo de projeto baseado em confiabilidade
para que seja calculado a espessura de projeto do duto, esta opcao € ilustrada na
Figura 24. Os mesmos métodos para a andlise de confiabilidade sdo também
utilizados no projeto baseado em confiabilidade. Este constitui um processo de duplo
laco, no qual o Newton-Raphson, que faz a busca da variavel de projeto num processo
iterativo, faz chamadas aos métodos de confiabilidade, tais como o FORM, que
também é um método iterativo.

Assim como foi feito para a analise de confiabilidade, para o projeto baseado
em confiabilidade foram criados arquivos na linguagem da plataforma Matlab para
cada método de confiabilidade. Desta forma, os dados de entradas sdo as
informacdes do duto e dos defeitos, valores da média e o coeficiente de variagdo para
cada variavel aleatéria, e os valores das varidveis paramétricas, além do indice de
confiabilidade alvo especificado pelo usuario, sendo como resultado de saida neste
caso, a variavel de projeto espessura do duto.

O algoritmo para obtencdo do ponto de projeto pode ser descrito pelos
seguintes passos, que consistem na aplicacdo do método de Newton-Raphson:

1°- Definigdo do valor alvo para o indice de confiabilidade ('), ou seja, qual o
grau de confiabilidade que a estrutura deve possuir, sendo este indice especificado
de acordo com definicbes da JCSS (2000);

2° - Definir um do ponto de partida para a variavel de projeto, no presente trabalho,
espessura do duto;

3°- Inicio da iteracdo do método de duplo laco, Newton-Rapson juntamente com
métodos de confiabilidade;

4° - Inicio do método de confiabilidade utilizado, definindo as variaveis aleatorias,
para determinar o indice de confiabilidade ,B(U, Pk), associado as variaveis
aleatorias U e a variavel de projeto da iterac&o corrente PX;

5°- Determinacdo da fungdo matemética g(U, Pk) para solugao do problema com

restricdo de verificagdo de seguranca definida pela equagéo (39);

g(U, Pk) _ B(U, Pk) —plve = (39)

77

6°- Determinacéo do gradiente da funcdo g em (PX);
7° - Determinacdo do novo ponto pelo método de Newton-Raphson, neste caso

obtém-se um novo valor para a espessura do duto segundo a equacéao (40);

k
prrt = pk_ T/ (v.P") (40)
vg(U,PY)

Onde Vg(U,PX) é o gradiente da funcdo g(U,PX), podendo ser obtido através da
equacao (41);
B(UP + aP)—p(u,P")

(41)
AP¥

vg(U,P¥) =

8° - Verifica-se o critério de convergéncia adotado. Se a convergéncia é atingida
encerra-se 0 algoritmo, caso contrario retorna-se ao 2° passo utilizando como
ponto de partida a espessura do duto PX*!, Adota-se para a tolerancia um valor de
0,0001.

42 COMPONENTE DO WEBSERVICE

O webservice implementado neste trabalho, foi feito utilizando a biblioteca JAX-
WS, da linguagem java. Esta biblioteca é utilizada para a criagcdo de webservices
RESTful na plataforma java. E o contéiner de servidor adotado foi o Glassfish.

Afim de que as rotinas do MatLab fossem acessiveis para o aplicativo Android,
foi construido um webservice RESTful que funcionasse como Wrapper, uma rotina
envolvente, para as rotinas Matlab, isto €, para cada rotina MatLab existe uma rotina
no webservice que recebe os dados do aplicativo e chama a rotina correspondente do
MatLab para obter o resultado da analise ou projeto baseado em confiabilidade, e
retornar para o cliente.

O problema que surge € que o Matlab € um programa que foi criado tendo em
mente que apenas um usuario acesse cada sessdo do Matlab por vez, ou seja, caso
uma thread, atividade ndo sequencial, de uma requisicdo no webservice coloque uma

tarefa para ser executada no Matlab, e logo apés outra thread também coloque uma

78

tarefa para ser executada, havera corrupcdo nos dados de tal forma que nenhuma
das duas obterd o resultado correto, pois ambas estardo alterando as mesmas
variaveis presentes na sessdo do Matlab. Porém fazer com que uma Unica thread
tenha acesso as func¢des do Matlab, faz com que um Unico usuario seja atendido por
vez, impossibilitando que mdltiplos usuarios consumam o0 webservice
simultaneamente.

A solucdo encontrada € inicializar um determinado niamero de instancias do
MatLab, sendo que cada thread teria acesso a uma Unica instancia por vez que
estivesse livre. Essa solucdo € viavel, porém um problema deve ser resolvido: o
acesso as instancias do Matlab, uma execucéo do software Matlab, deve ser feito de
forma sincronizada, afim de que uma thread ndo cause corrupg¢éo nos resultados de
outras threads.

As conexdes com o Matlab sdo feitas no webservice através da classe java
“‘MatlabEngine” que recupera as sessbes compartilhadas do MatLab presentes no
computador. A fim de evitar os problemas de concorréncia descritos na secéo 3.8.2,
foi adotada a seguinte abordagem: as conexdes com o Matlab foram todas
armazenadas em uma pilha sincronizada, estrutura de dados onde o ultimo elemento
inserido é o primeiro a ser retirado e apenas uma Unica thread por vez pode inserir e
retirar elementos, de tal forma que tentativas de retirar e colocar elementos nela, seja
feito de forma sincronizada, isto €, apenas uma unica thread tem acesso a pilha por
vez.

Desta forma, quando uma thread esta prestes a se conectar a uma sessao do
Matlab, ela acessa de forma sincronizada a pilha, caso haja conexdes disponiveis, a
thread retira uma conexao da pilha e a usa por meio de uma operagao “pop” (retirar
do topo da pilha). Em seguida quando terminar seu trabalho, ela insere novamente
aguela conexao na pilha por meio de uma operacao “add” (adicionar ao topo da pilha).
Desta forma, ndo ha risco de duas threads acessarem a mesma sessédo do MatLab, o
gue poderia gerar corrup¢ao nos dados. Caso todas as conexdes estejam ocupadas,
a thread devolve uma mensagem de erro, para ser exibida ao usuario no aplicativo,
alertando para tentar novamente em algum momento posterior. A Figura 27
exemplifica este procedimento de acesso a pilha sincronizada de sessbes do Matlab,
onde no exemplo em questdo duas threads acessam a pilha de sessbes Matlab

contendo quatro sessoes diferentes.

79

Figura 27 — Pilha de sessdes Matlab sincronizada com as threads do webservice

Sessdes MatLab

Sessio 3 Sessdo 2
Sessdo 2 N Sessan 2 Sessdo 3 Sessan 3
Thread 0
—_— n
Thread 1 Thread 1 Thread 0
Sessdo 1 popll SES530 | e | SE5580 1| e | 585580 || e |Se5530 1
papt) add() add()
Sessaon Sessac 0 Sessao 0 Sessaon 0 Sessde 0

FONTE: (AUTOR, 2019)

Como dito anteriormente o aplicativo acessa as funcdes do webservice através
do protocolo HTTP. Na Figura 28 estdo representadas as assinaturas, definicdo da

funcao, de alguns dos métodos do webservice visiveis ao aplicativo.

Figura 28 — Cabecalhos de alguns métodos de confiabilidade do webservice

EPOST

BPath ("PHMCDI/post™)
public String PMCDT (String content)

EPOST

@Path ("PHMCECDI, /post™)
public String PMCECDT (String content)

EPOST

EProduces (MediaType.
BPath ("PMCRENDI /post™)
pukblic String PHMCRHNDI (String content)

EBPOST

@Path ("PFORMDI / post™)
public String PFOBMDT (String content)

FONTE: (AUTOR, 2019)

Como pode-se observar em todos os meétodos ilustrados na Figura 28 é
transmitido uma string como parametro, que € uma string no formato JSON, que

contém todos os dados da requisicdo de forma estruturada. Isto & especificado por

80

meio da anotagdo “@Consumes”, que define o formato em que os dados sédo
recebidos pelo método do webservice. Da mesma forma, quando o método do
webservice obtém o resultado da rotina do Matlab, o método cria uma string em
formato JSON, especificada por meio da anotacgao “@Produces”, que define o formato

dos dados de saida, contendo o resultado e a retorna para o usuario.

4.3 COMPONENTE DO APLICATIVO

4.3.1 Interface Gréfica do aplicativo e Material design

Outro conceito importante quando se projeta uma interface grafica, é
justamente como construi-la. O kit de desenvolvimento de software (SDK) do Google
fornece varios controles padrdes para criacao de interfaces graficas no seu ambiente
de desenvolvimento integrado (IDE) padrdo, o Android Studio. Porém mesmo com
estes controles, € necessario algo que guie no projeto de interfaces. Para isso o
Google fornece uma especificacdo conhecida como material design, que se baseia
em maximizar a experiéncia do usuério, tornando-a mais intuitiva, eficiente e
produtiva.

Conforme (RALLO, 2019) “O Material Design tem como objetivo sintetizar os
conceitos classicos de um bom design com a inovacao e possibilidades trazidas com
a tecnologia e a ciéncia”. Os principios basicos do Material Design abrangem varios
topicos como sombras, sobreposicdo de elementos graficos, movimentacdo
(animacgdes), cor e iconografia (desenho dos icones do aplicativo). O presente
trabalho visou seguir os principios basicos do Material Design, a fim de proporcionar
uma melhor experiéncia de usuario, através de uma GUI moderna e intuitiva.

O projeto da GUI do aplicativo visou facilitar a captacéo de informacdes do duto
e de seus defeitos de forma simplificada. Conforme podemos observar na Figura 29 o

aplicativo possui algumas op¢des em sua “gaveta”, menu lateral do aplicativo:

81

Figura 29 — “Gaveta” do aplicativo

REPIPE-CODE
Pre to de Dutos

Visao 3D

Dados

Configuragoes

Manual

Compartilhar

Backup

@ 0 A B &

Sobre

FONTE: (AUTOR, 2019)

A opcéao “Dados” no aplicativo € a mais importante do aplicativo, pois permite
captar os dados do problema. E onde ocorre a gravacéo das informacées dos dutos e
de seus defeitos. Uma vez que varios dutos podem ser avaliados ao longo de um
determinado periodo, optou-se por permitir o armazenamento das informacdes de
varios dutos no aplicativo, e seu acesso é feito através de uma lista ilustrada na Figura
30.

Figura 30 — Lista de dutos cadastrados

Meédia Carga = 6.0, Variancia Carga = 0.1, Média
Taxa de Corrosao Radial = 5.0E-4, Variancia Taxa
de Corrosdo Radial = 0.1, Indice de Confiabilidade =
3.1, Taxa de Corrosdo Longitudinal = 5.0E-4, Tempo
Inicial = 10.0, Tempo Final = 27.0, Tensao Ultima =

538.0, Diametro = 0.813
>
>
>

>

FONTE: (AUTOR, 2019)

O O0OO0OO0O0

82

Ao se criar um novo duto através do icone representado pelo sinal “+”, conforme
mostrado na Figura 30, deve-se preencher as informacdes da tela seguinte

representada na Figura 31.

Figura 31 — Tela de adicionar/alterar um duto
Nome do Duto

I:IutoPanelas

Variaveis Aleatodrias

Carga

6.0 0.1

T.CR.

5.0E-4 0.1

Dados Paramétricos

I.C. Diametro

3.1 0.813
FONTE: (AUTOR, 2019)

Similar a lista de dutos, que permite o acesso as informacfes dos dutos
cadastrados no aplicativo, existe a lista de defeitos para cada duto, que permite
acessar as informacdes dos defeitos pertencentes a um duto registrado. Na aba
“Defeitos” da Figura 30 é exibida uma lista dos defeitos do duto selecionado, cujo
botdo esta preenchido com verde na lista de dutos. Da mesma forma a criacdo de
novos defeitos para o duto selecionado é feita através do icone com o sinal “+”, e com
o preenchimento das informacdes da tela seguinte representada na Figura 32, no que

diz respeito as variaveis aleatorias e paramétricas do defeito.

83

Figura 32 — Tela de adicionar/alterar defeitos iguais alinhado longitudinalmente

Nome do Defeito

hefeitos

Variaveis Aleatorias

Produndidade

0.0025 0.2

Dados Parameétricos

Comprimento N°® Defeitos

0.2 5

Distancia entre Defeitos
0.025

FONTE: (AUTOR, 2019)
A opcéao “Visao 3d” permite visualizar de forma tridimensional a representacéo

do duto atualmente selecionado juntamente com seus defeitos de corrosdo. Na Figura
33 é exemplificado um duto com 5 defeitos de mesmas dimensdes alinhados

longitudinalmente ao longo do duto.

Figura 33 — Representacao 3d de 5 defeitos iguais alinhados longitudinalmente

= Visdao 3D

FONTE: (AUTOR, 2019)

84

Como dito anteriormente, o aplicativo possui um compilador para a linguagem
“‘AnderScript”, desenvolvida neste trabalho para resolver problemas de confiabilidade
estrutural. Esta opcao de se programar no aplicativo se torna visivel ao ativar o modo
desenvolvedor nas configuracdes conforme foi ilustrado anteriormente na Figura 23.
ApOs esta opgdo ser ativada, a “gaveta” do aplicativo, um menu lateral, € alterada

conforme ilustra a Figura 34.

Figura 34 — Gaveta do aplicativo no modo desenvolvedor

REPIPE-CODE
Projeto de Dutos

a Configuragoes
u Manual

-<: Compartilhar
OO Backup

@ Sobre

<> Editor de Codigo

FONTE: (AUTOR, 2019)

Esta modificacdo da gaveta do aplicativo acontece por questdes de semantica
para refletir a mudanca na forma de especificar os dados e a funcéo de falha, que
neste caso é feita pelo usuario. A linguagem de programacao AnderScript foi feita para
resolver problemas de confiabilidade estrutural de forma geral, ou seja, ndo é
especifico para problemas de corrosdo de dutos. Esta nova gaveta retira as op¢cées
“Visao 3d” e “Dados”, e adiciona a opcao “Editor de Codigo” para que se possa
programar na linguagem “AnderScript”.

Desta forma, os dados do problema sao especificados via cédigo, bem como a
definicdo da funcdo de falha e as variaveis do problema. Para executar um problema
de confiabilidade, € necessario apenas clicar no botédo localizado na extremidade

superior direita da tela, presente nas telas “Dados”, “Visao 3d” e “Editor de Cdodigo”.

85

Em seguida as informacfes do problema sdo enviadas para o WebService, que por

sua vez ao terminar o processamento da tarefa, retorna o resultado para o aplicativo.

4.3.2 Padréo de projeto de software MVVM

Atualmente temos varios “Design Patterns”, ou padrdes de projeto, que séo
solugcbes amplamente aceitas e eficientes para problemas recorrentes no
desenvolvimento de software. Os padrdes de projeto modelam a criacao, estruturacao
e comportamento de instancias de componentes nos programas, favorecendo desta
forma a reutilizacdo de software, a legibilidade, facil manutencdo e aumento
consideravel da produtividade no projeto de software.

Um deste padrdes é o MVVM, que modela a forma como se da a relacéo entre
a visdo (Interface grafica) e o modelo (os dados e as regras do aplicativo). Segundo
Nunes (2017) o padrdo MVVM define basicamente 3 componentes: a View, o Model,

e o0 ViewModel, estes 3 componentes podem ser visualizados na Figura 35.

Figura 35 — Representacdo grafica do padrao MVVM

aevent write

ﬁ

-_

read
data binding

FONTE: (AUTOR, 2019)

Abaixo estd uma explicacdo detalhada sobre cada um destes componentes:

v" Model: Implementacédo do modelo de dominio da aplicacao que inclui o modelo
de dados, regras de negocio e validacdes de logica.

v' View: Entidade responsavel por definir a estrutura, layout e aparéncia do que
sera exibido na tela

v" ViewModel: Ele age como intermediario entre a View e o Model, e é o

responsavel por manusear o Model para ser utilizado pela View. Ele utiliza o

86

databinding, técnica que mantém os dados da aplicacéo sincronizados com a

interface grafica, para notificar mudancas aos observadores (View).

O padrdao MVVM por sua vez, utiliza o padrdo observador, para que uma
mudanca nos dados seja notificada automaticamente para todos os componentes que
estejam interessados naquele dado. Desta forma, qualquer acesso aos dados na
aplicacéo, obtém-se sempre a versdo mais atualizada. No presente trabalho, isso
possibilitou que as mudancas nas informacfes de dutos e de defeitos de corrosao,
fossem instantaneamente representadas na GUI do aplicativo, bem como na

visualizagao tridimensional.

44 COMPONENTE DO AMBIENTE TRIDIMENSIONAL

O Unity é uma engine, programa para simplificar o desenvolvimento de
aplicacbes gréficas, para construcdo de jogos e simulacdes em ambientes
tridimensionais. No presente trabalho, o ambiente tridimensional do aplicativo foi
implementado como um projeto no software Unity separado do projeto do aplicativo,
no software Android Studio. O passo seguinte foi exportar o projeto no software Unity
como uma biblioteca Java e integra-la ao projeto do aplicativo. Apesar de ser
importado para o aplicativo, a interface de comunicagé&o entre as duas tecnologias néo
é tao trivial, conforme sera discutido a sequir.

O ambiente 3d integrado ao aplicativo possui rotinas e gerenciamento proprio,
como a renderiza¢do do ambiente tridimensional e o gerenciamento das entidades 3d.
Ou seja, ele € uma “caixa preta” que possui funcionamento predefinido, portanto nédo
é facilmente modificavel. A solucdo é criar no ambiente 3d rotinas que recebem um
anico argumento na forma de uma String. Toda informacéo passada do aplicativo para
o ambiente 3d deve ser textual. Desta forma, quando o usuario cria um novo duto ou
defeito no aplicativo, este recolhe estas informagdes e as converte em um Unico texto,
por fim as envia para o método correspondente do ambiente 3d. Este por sua vez
extrai as informacdes do texto, e atualiza as malhas do duto e dos defeitos de

Ccorrosao.

87

4.4.1 Construcao das malhas

A construcdo das malhas, dutos e defeitos, foi feita utilizando elementos
triangulares. Em computacdo grafica, qualquer objeto tridimensional pode ser
modelado utilizando essa primitiva grafica conforme ilustra a Figura 36. A
representacdo do duto em termos de tridngulos por sua vez € ilustrada na Figura 37.

Figura 36 — Malha Grafica

FONTE: (WIKIMEDIA FOUNDATION, 2018)

Figura 37 — Tridngulos formadores do cilindro vazado

LIS S S L S

FONTE: (AUTOR, 2019)

Para se construir uma malha de elementos tridimensionais, deve se especificar
os vértices desta malha por meio de um vetor, bem como as conexdes destes vértices
responsaveis por formar a malha (UNITY TECHNOLOGIES, 2019). Neste vetor de

valores reais, cada 3 valores correspondem um vértice, onde estes 3 valores séo as

88

coordenadas X, y e z deste vértice. A Figura 38 exemplifica a estrutura desse vetor
entre as linhas 26 e 35.

Figura 38 — Funcao responsavel por criar um cubo na engine Unity

23 = public void createCubecffloat cubeX, float cubeY, float cubeZ)
24 1

25 Vector3[] vertices = new Vector3[8];

26

27 vertices[@] = new Vector3(@, @, 8);

28 vertices[1] = new) 3(cubeX, @, @);

29 vertices[2] = new) r3(@, cubeY, @);

38 vertices[3] = new) r3(@, @, cubei);

31 vertices[4] = new) r3{cubeX, @, cubei);
32 vertices[5] = new) r3{cubeX, cubeY, 8);
33 vertices[6] = new) r3(@, cube¥, cubei);
34 vertices[7] = new Vector3({cubeX, cubeY, cubeZ};
35

36 = int[] triangulos = new int[] {

37 @, 2, 1, 1, 2, 5

38

39 3, 8, 1, 1, 4, 3,

48

41 @, 3, 2, 2, 3, 6,

42

43 1, s, 4, 5, 7, 4,

44

45 6, 3, 4, 6, 4, 7,

45

47 6, 5, 2, 7, 5, 6

48 i

49

58 cuboMesh.Clear();

51 cuboMesh.vertices = wertices;

52 cuboMesh.triangles = triangulos;

53 cuboMesh.RecalculateNormals();

54

L= s

FONTE: (AUTOR, 2019)

Além de especificar os vértices da malha, deve-se especificar como estes
vértices formam a malha. Afinal existem infinitas possibilidades de ligacdo entre os
vértices, que por sua vez originam infinitas configuracdes de malhas. A especificacédo
da malha é feita por um segundo vetor, o vetor de indices, onde cada 3 nameros
correspondem um triangulo. Os valores deste segundo vetor sdo os indices dos
vértices que forma os triangulos (UNITY TECHNOLOGIES, 2019). O cddigo da Figura

38 ao ser executado cria o cubo representado na Figura 39:

Figura 39 — Cubo gerado via cédigo da Figura 38

FONTE: (AUTOR, 2019)

89

Na Figura 38 podemos observar que entre a linha 27 e a linha 34 ocorre as
definicdes dos vértices do cubo, cujo tamanho do vetor “vertices” € de 8 (cubo). J& o
vetor “triangulos” possui dimensao de 36, pois um cubo possui 6 lados, cada lado é
um retangulo que pode ser representado por 2 triangulos, e cada triangulo é
especificado por meio de 3 indices no vetor de vértices, logo 6x2x3 resulta em 36
indices para especificar todos os triangulos do cubo. A especificagdo dos triangulos é
feita entre as linhas 36 e 48.

Como observado anteriormente na Figura 33 os defeitos foram criados como
“manchas” sobre a malha do duto, ao invés de buracos na malha do duto, isto foi feito
para que as malhas dos defeitos fossem independentes da malha do duto. De fato, as
malhas dos defeitos possuem um pequeno espacamento em relacdo a malha do duto,
pois caso ficassem sobrepostas, as duas malhas provocariam efeitos estranhos na

renderizagao.

45 COMPONENTE DO COMPILADOR

Como dito anteriormente, o compilador do aplicativo foi desenvolvido para
estender as capacidades do sistema. O analisador léxico da linguagem foi
implementado utilizando expressdes e definicbes regulares, conforme explicado
anteriormente na secdo 3.7.2, através da biblioteca java chamada JFlex. Ja o
analisador sintatico foi definido por meio de gramatica livre de contexto utilizando a
biblioteca Java CUP. Nao houve otimizacao de cédigo, tornando o cédigo mais rapido
conforme discutido na secdo 3.7.8, pois nem mesmo teve geracdo de cddigo
intermediario, discutido brevemente na secdo 3.7.7, a compilacdo converte

diretamente o cédigo “AnderScript” para cédigo MatLab.

4.5.1 Sintaxe dalinguagem AnderScript

A abordagem adotada visou simplificar a escrita de problemas de confiabilidade
estrutural para um unico elemento estrutural, sem correlagcdo entre as variaveis
aleatérias do problema, e com apenas uma unica variavel de projeto. Na Tabela 3
sdo mostradas as palavras-chaves da linguagem, responsaveis por especificar

expressoes, funcdes, blocos de cédigo e comandos.

90

Tabela 3 - Palvras-Chave da linguagem AnderScript

config global fun
proj norm var
if else for

FONTE: (AUTOR, 2019)

Pode-se observar que sdo poucas palavras-chave se comparadas a uma
linguagem convencional como a linguagem C. Na Figura 40 pode-se visualizar um

exemplo de codigo escrito na linguagem AnderScript.

Figura 40 — Cddigo exemplo na linguagem AnderScript

EditordeCéd. B B8

FONTE: (AUTOR, 2019)

Conforme pode-se observar, temos os blocos “config” e “global”, e a fungéo
“failure”. O bloco “config” (linhas 1 a 3 da Figura 40) serve apenas para configurar as
variaveis do sistema. Em sua versao atual, o AnderScript possui apenas a variavel de
indice de confiabilidade alvo (IC) como variavel do sistema, que tem como padréo o

valor 3,1. Como as variaveis do sistema possuem valores padrao, o bloco “config” é

91

opcional no cédigo. O bloco global (linhas 4 a 12 da Figura 40) é responsavel por
definir e inicializar as variaveis aleatéria e paramétricas do problema. Variaveis
aleatérias com distribuicdo normal séo definidas com a palavra-chave “norm” (linha 6
da Figura 40) e séo iniciadas com os valores da média e desvio padrdo da variavel.
Ja as variaveis paramétricas sao definidas utilizando “var” (linha 9 da Figura 40), e por
fim as variaveis de projeto sdo definidas utilizando a palavra-chave “proj” (linha 5
Figura 40) e em sua inicializacdo recebem como entrada o valor do ponto de partida
da variavel de projeto. Atualmente, o compilador s6 permite a definicdo de apenas
uma variavel de projeto. As palavras-chaves “norm” e “var’, podem ser usadas para
criar vetores de variaveis aleatOrias e paramétricas, respectivamente, conforme
ilustrado nas linhas 7 a 8 e 10 a 11 da Figura 40.

Na fungao “failure” (linhas 13 a 27 da Figura 40) é onde ocorre a definicdo da
funcdo de falha, que pode ser expressa em fungao das variaveis do bloco “global” e
das variaveis de escopo local, corpo da fun¢éo. Toda definicdo de funcdo que tiver um
retorno deve especifica-lo por meio de uma variavel especial nomeada como
“#NomeDaFuncgao”. No caso da funcao “failure”, essa variavel se chama “#failure”
(linhas 22 e 25 da Figura 40). Além disso, a variavel de retorno e as variaveis definidas
no escopo global, possuem usos restritos, afim de evitar diversos situagdes
desnecessarias descritas a seguir.

As variaveis do bloco “global” nunca podem ser usadas no lado esquerdo de
expressdes de atribuicdo, com isso seus valores nunca sdo mudados diretamente pelo
usuario. Caso seja uma variavel paramétrica, permanecera com 0s mesmos valores
da sua criacdo, caso seja uma variavel aleatéria ou de projeto seu valor sera
gerenciado e atualizado pelo tempo de execucéo do algoritmo FORM, de acordo com
seu tipo de distribuicdo no caso de variaveis aleatorias, e com o ponto de partida no
caso de variaveis de projeto. No caso da variavel de retorno, a mesma sé pode figurar
no lado esquerdo das atribui¢des, ou seja, s6 pode receber valores e nao fazer parte
de uma expressao.

Variaveis locais sé@o definidas usando a palavra-chave “var’. Também podem
ser definidos vetores com esta mesma palavra-chave. Os Unicos comandos
disponiveis na linguagem sao “if’, “if-else” e “for”. Aléem disso, variaveis do escopo
global sdo acessiveis de dentro das fungfes colocando-se um “@” antes de seu nome.
Por exemplo a variavel “n1” contida na Figura 40 (linha 6), a mesma é acessada na

funcao “failure” usando “@n1” conforme pode-se observar na linha 16 da Figura 40.

92

Isso foi definido para impedir que variaveis de mesmo nome no escopo local,
declaradas dentro de fungdes, ocultasse variaveis do bloco “global”.

Os operadores da linguagem englobam as 4 operacdes basicas (+, -, *, /), além
do operador de exponenciagao(”), os operadores relacionais (<, >, <=, >=, ==e |=) e

l6gicos(|| e &&).

4.5.2 Compilacdo para o MatLab

O cadigo aqui denominado de AnderScript, linguagem implementada pelo autor
do presente trabalho, permite uma escrita mais facil para problemas de confiabilidade
estrutural, uma vez que o usuario precisa apenas especificar as variaveis do problema
e a defini¢cdo da funcéo de falha. Detalhes como atualizacédo das variaveis aleatorias,
o método de confiabilidade utilizado, transformacédo das varidveis para o espaco
reduzido e busca ao ponto de projeto sdo abstraidos do usuério. Para que tudo isso
funcione o coédigo convertido para a linguagem do Matlab segue algumas convencoes
explicadas posteriormente. Na Figura 41 € mostrado a compilacéo do cédigo da Figura
40.

Figura 41 — Cédigo compilado para o MatLab

B

=ALEATORIA_ (1)

18.08

d=[10.2, 56.0]
b=c*3.@+var_project+ALEATORIA_(1)+vetor_values(l)
a=1.a

while (vpa(subs{a,ALEATORIA_,U_'),6)<=3.8)
b=b+ALEATORIA_(round({a+1) }+vetor_values{round(a+l}}
b=b+ALEATORIA_(round{a+3) }+vetor_values(round(a+d4))
a=vpa(subs{a,ALEATORIA_,U_"),6)+1.8

11 end

12 if (wpa(subs(b,ALEATORIA_,U_'),6)>18.8)

13 GU_=b+(d{1.8)-18.8)

[= s 1]
] 1]

[x

(S T, T - WY R B

[Y R v R |

14 else
15 GU_=b+(d{2.8)*5.@)
16 end

FONTE: (AUTOR, 2019)

Na Figura 42 é observado o trecho de cddigo inicial, da fungdo Matlab
responsavel por realizar a andlise de confiabilidade estrutural para problemas que

usam o compilador AnderScript (linguagem elaborada no presente trabalho).

93

Figura 42 — Trecho de cédigo da funcéo Matlab que da suporte ao AnderScript

function [BETA SIMAL] = BSPConfCodigo(var project,vetor media, vetor desvio_pedrao, wetor values, string codigo, DELTA)

function [GETA SINAL |
NTHIT =5; %]

0 = wetor media'; &V

tam =lengih(0) ;3TAM REPRESENTA A QUANTIDRADE DE VARIAVEIS ALERTCRIAS

ATEAEAREY o e
ALERIURIA = ZYEL L

FONTE: (AUTOR, 2019)

Na definicdo da funcdo mostrada na Figura 42, o parametro “var_project’
recebe o ponto de partida da variavel de projeto. O parametro “vetor_media” recebe
todas as médias definidas nas variaveis “norm”, o parametro “vetor_desvio_padrao”
recebe todos os desvios padrdes das variaveis “norm”, o parametro “vetor_values”
recebe os valores das variaveis paramétricas definidas no bloco “global” e por fim o
parametro “string_codigo” recebe o cédigo Matlab compilado na forma textual.

O codigo Matlab na forma textual pode ser executado utilizando o comando
‘eval” do MatLab. Um exemplo é a execug¢dao do comando “for” na forma textual
conforme € ilustrado na Figura 43, onde € ilustrada a siada do comando, que consiste

“rn
|

na impressao do valor da variavel “i” em cada iteragao.

Figura 43 — Execucao de comando na forma textual

> comando = "for i1i=1:3 i ‘\n end °';
> ewval (char (sprintf (comanda)))

[l

FONTE: (AUTOR, 2019)

7

Como o codigo € compilado para ser executado no método FORM, é
necessaria a criacdo de variaveis simbolicas do MatLab, uma para cada variavel

aleatdria. As referéncias as variaveis do bloco “global” e a variavel de retorno, variavel

94

gue representa o retorno (resultado) de uma rotina, sdo convertidas para referéncias

as variaveis definidas na funcdo da Figura 42, anteriormente citada, e seguem as

seguintes regras:

v

Nas expressdes condicionais dos comandos “if”, “if-else” e “for”, além das
expressbes de inicializacdo e incremento do comando "for", as variaveis
definidas no bloco “global” sdo convertidas para valores reais, conforme
ilustrado na linha 17 da Figura 40, que é compilada para linha 7 da Figura 41.
Em todos os outros casos sao usados os valores simbdlicos. Isso é feito porque
operacbes de comparagao por exemplo exigem os valores reais e néo
simbdlicos, conforme ilustrado na linha 18 da Figura 40, que é compilada para
linha 8 da Figura 41;

As variaveis aleatdrias sdo convertidas para indices especificos do vetor
‘ALEATORIA_" que representa um vetor de variaveis simbdlicas, conforme
ilustrado na linha 14 da Figura 40, onde a variavel “b” é compilada para linha 2
da Figura 41;

A variavel de retorno da fungao “failure” é convertida para a variavel “GU_" que
€ a representacao simbdlica da funcéo de falha, conforme ilustrado na linha 22
da Figura 40 que € compilada para linha 13 da Figura 41,

Nas expressdes que necessitam de valores reais, como dito anteriormente, as
referéncias as variaveis aleatorias sdo convertidas para indices da variavel “U_”"
gue representa o vetor do valor real da variavel aleatdria na iteracdo atual;
Nas expressfes que necessitam de valores reais, as referéncias as variaveis
locais que consistam em expressdes que contenham variaveis aleatoérias, sdo
convertidas em “vpa(subs(“VariavelLocal”, ALEATORIA ,U '),6)”, para assim
obter o valor real associado a variavel, conforme ilustrado na linha 21 da Figura
40 que é compilada para linha 12 da Figura 41,

As variaveis paramétricas definidas no bloco “global” sdo convertidas para
referéncias as posicdes da variavel “vetor_values conforme ilustrado na linha
16 da Figura 40 que é compilada para linha 5 da Figura 41;

As variaveis previamente definidas na funcdo da Figura 42 criada no Matlab,

({1

possuem o sufixo “ ”, e as variaveis da linguagem AnderScript s0 aceitam

caracteres alfanuméricos. Desta forma, ndo ocorre o risco que 0 usuario oculte

uma variavel do tempo de execucdao.

95

As variaveis locais quando séo convertidas do cédigo AnderScript para o codigo
MatLab permanecem com o mesmo nome. Além disso, todas as fun¢des do MatLab
estdo acessiveis no codigo AnderScript. Por fim, a linguagem trabalha apenas com
variaveis ou vetores, a definicdo e 0 uso de matrizes ndo sdo suportados. Em sua
versao atual, a linguagem AnderScript aceita a definicdo de uma funcéo apenas, a

funcao “failure”.
4.5.3 Recuperacao de Erros

O compilador AnderScript possui algumas formas de recuperacao de erros, a
fim de se evitar que certos problemas ocorram durante a execucao no servidor. Os
seguintes erros sdo sinalizados em tempo de compilacéo:

v Criar mais de uma variavel de projeto;

v Criar uma ou mais variaveis no bloco global com o0 mesmo nome;

v Criar uma ou mais variaveis locais na mesma funcdo com o mesmo nome;

v Erros de sintaxe;

v Na criagdo de vetores de variaveis aleatérias, especificar um vetor com valores

de media com tamanho diferente do vetor de desvios padroes;

\

Referenciar uma variavel ndo declarada ou inexistente;

<\

Tentar mudar o valor de uma variavel do bloco “global”;
v Nao definir a funcao principal “failure”, funcéo onde ocorre a definicao da funcéo
de falha, sem argumentos.
v Criar 2 ou mais fung6es com 0 mesmo nome,
Quando o erro é encontrado, o0 aviso é exibido no aplicativo e o envio dos dados
ao servidor ndo acontece até que o usuario corrija todos os erros do cédigo. As Figura

44 e Figura 45 exemplificam algumas possiveis mensagens de erros.

Figura 44 — Exemplificag@o de possiveis erros no editor de codigo

Erros

Foram declaradas mais de uma
variavel de projeto;

Variavel tf ja existe no escopo
global;

Os vetores de media e desvio
padrao tem tamanhos diferentes na
variavel testeVetor;

A variavel rfg ndo existe em nenhum
escopo;

FONTE: (AUTOR, 2019)

Figura 45 - Exemplificagdo de possiveis erros no editor de codigo

Erros

Erro de sintaxe linha 38

Funcao failure inexistente;

FONTE: (AUTOR, 2019)

97

4.6 PARAMETROS ADOTADOS PARA O DUTO

Nesse trabalho, sera utilizado para a avaliacdo de confiabilidade o duto corroido
apresentado na literatura por AHAMMED (1998). Sendo, que esses valores, que estédo
apresentados na Tabela 4, correspondem aos dados da primeira inspecdo da
corrosédo, que ocorreu em um tempo TO = 10 anos. Vale salientar, que o duto escolhido
foi adaptado ao problema. Isso porque, no problema original ndo possui a informacéo
da variavel aleatéria distancia entre defeitos, de forma que teve de ser arbitrado um
valor e uma distribuicdo de probabilidade para essa variavel (ROCHA, 2016).

A principio foram consideradas nove variaveis aleatérias conforme ilustrado na
Tabela 4.

Tabela 4 — Variaveis aleatoérias

., N - Coef.
Variavel Distribuicéo Media o
Variagao
Profundidade do defeito(d) Normal 3 mm 0,1
Presséo interna(Ps) Normal 5 MPa 0,1
Taxa de corrosao radial(Rd) Normal 0,1 mm/ano 0,2
Espessura do duto(t) Normal 10 mm 0,05
Tensdao ultima do material(ou) Lognormal 538 MPa 0,067
Diametro do duto(D) Normal 600 mm 0,03
Comprimento do defeito(l) Normal 200 mm 0,05
Taxa de corroséo
o Normal 0,1 mm/ano 0,2
longitudinal(Ri)

Distancia entre defeitos(s) Normal 25 mm 0,05

FONTE: Adaptado de Ahammed (1998)

O primeiro passo sera realizar a analise de sensibilidade das variaveis
aleatérias do problema por meio do método FORM, a fim de determinar as que mais
contribuem para a quantificacdo da probabilidade de falha. Isso por sua vez vai
diminuir o nimero de variaveis aleatorias do problema, j& que as de menor fator de
importancia serdo transformadas em variaveis paramétricas. O numero reduzido de
variaveis aleatérias no problema, por sua vez, aumenta a performance dos métodos

de confiabilidade, pois no caso do FORM, o tamanho das matrizes no método, ficam

98

menores. No caso dos métodos baseados no Monte Carlo o tamanho de cada amostra
diminui. Por ultimo no caso do treinamento da rede neural, o nUmero de entradas na

rede diminui tornando o treinamento da mesma mais rapido.

5 RESULTADOS E DISCUSSAO

Os algoritmos FORM e Monte Carlo foram adaptados (TORRES, 2009) para o
caso em estudo. O modelo empirico de pressédo de falha proposto pela norma BS-
7910 (2005) foi implementado para o caso de multiplos defeitos de dimensdes iguais
alinhados longitudinalmente. Também foram calculados os fatores de importancia das

variaveis aleatorias envolvidas, por meio do algoritmo FORM.
5.1 ANALISE DOS FATORES DE IMPORTANCIA
Para os dados fornecidos pela Tabela 4, e considerando apenas 2 defeitos
interagentes, foram calculados os fatores de importancia utilizando a equacéo (28) na
execucdo do método FORM para diversos tempos de inspe¢do atual, conforme

ilustrado na Tabela 5:

Tabela 5 — Fatores de importancia para as variaveis aleatérias

Variavel T=20anos T=30anos T=40anos T=50ano0s
Profundidade do defeito 0,1325 0,1242 0,1015 0,07843
Presséo interna 0,1613 0,1151 0,0785 0,0546
Taxa de corroséo radial 0,0589 0,2208 0,4062 0,5577
Espessura do duto 0,5163 0,4582 0,3634 0,2762
Tensdo ultima do material 0,1096 0,0670 0,0404 0,0253
Diametro do duto 0,0180 0,0107 0,0063 0,0040
Comprimento do defeito 0,0033 0,0036 0,0032 0,0026

Taxa de corrosao
) _ 0,0000 0,0000 0,0000 0,0000
longitudinal
Distancia entre defeitos 0,00002 0,0003 0,0004 0,0003

FONTE: (AUTOR, 2019)

99

Observando a Tabela 5, nota-se que as varidveis profundidade do defeito,
presséao interna, taxa de corroséo radial e espessura do duto, apresentam os maiores
valores nos periodos entre 20 e 50 anos para a inspecao atual. Apesar de a tensao
altima do material, apresentar um valor do fator de importancia relativamente alto, com
0 passar do tempo, o seu valor decai bastante se tornando insignificante. A taxa de
corrosdo longitudinal por sua vez apresentou um valor muito baixo. Porém nos
resultados, a precisdo adotada foi de quatro casas decimais, por isso o valor esta
representado como sendo nulo para a taxa de corrosao longitudinal

Desta forma, no presente trabalho foram adotadas como variaveis aleatérias:

profundidade do defeito, pressao interna, taxa de corroséo radial e espessura do duto.

5.2 ANALISE DE CONFIABILIDADE COM A GUI DO APLICATIVO

Foram feitas andlises de confiabilidade para os quatro métodos estudados
(FORM, Monte Carlo, Monte Carlo com Esperanca Condicionada e Monte Carlo com
Redes Neurais) considerando dois defeitos interagentes, afim de avaliar o duto
descrito por Ahammed (1998). Na Tabela 6 estdo resumidos os resultados dos indices
de confiabilidade em funcéo do tempo da ultima atual:

Tabela 6 — indice de Confiabilidade em func¢&o do tempo atual de inspecdo

Inspecao
20 30 40 50
Atual (anos)
FORM 6,1299 4.2983 2,6539 1,3403
MC Infinito 4.1075 2,6462 1,3409
MCEC 7,9088 4,2952 2,6509 1,3446
MCRN 6,6558 4.,3446 2,6156 1,3396

FONTE: (AUTOR, 2019)

Conforme pode-se observar na Tabela 6, o indice de confiabilidade a tende a
diminuir com o passar do tempo. De fato, a medida que o tempo passa o processo de
corrosdo tem maior acdo na estrutura, diminuindo a sua capacidade resistente,
acarretando desta forma, uma diminuigdo na seguranca da estrutura. Isto por sua vez
diminui o indice de confiabilidade. Todos os quatro métodos apresentaram resultados

muito proximos nos tempos 30 a 50 anos, porém no tempo 20 anos houve uma certa

100

diferenga. De fato, para o tempo de 20 anos, o indice de confiabilidade retornado pelos
métodos, equivale a uma probabilidade de falha muito baixa (5.8167e-10 para o
método FORM), tdo baixa que o método de Monte Carlo chegou a retornar um indice
de confiabilidade infinito.

Outra informacgé&o util tirada da Tabela 6 € com relagdo a vida util do duto
analisado. Adotando-se um indice de confiabilidade alvo para o duto, € possivel
estimar o tempo de vida remanescente o mesmo. Considerando um indice de
confiabilidade alvo de 3.1, o tempo de vida util do duto esta entre 40 e 30 anos.
Algumas analise foram feitas no intervalo de 30 a 40 anos, cujos resultados estéo
ilustrados na Tabela 7.

Tabela 7 — indice de confiabilidade no intervalo de 30 a 40

Inspecao
35 36 37 38
Atual (anos)

FORM 3.4379 3.2745 3.1143 2.9575
FONTE: (AUTOR, 2019)

O valor mais préximo do indice de confiabilidade alvo € 3,1143 que corresponde
ao tempo de inspecao atual de 37 anos. Como o tempo da ultima inspecéo é de 10
anos, logo a vida remanescente do duto € de 27 anos (37 — 10 anos).

Em seguida, foi feita a andlise de confiabilidade para os métodos citados
anteriormente. Desta vez em relagdo ao numero de defeitos, fixando o tempo da atual

inspecdo em 35 anos. Na Tabela 8, estdo representados estes resultados:

Tabela 8 — indice de confiabilidade em func&o do nimero de defeitos

N° Defeitos 2 3 4 5
FORM 3,4379 3,3053 3,2397 3,2012
MC 3,4600 3,2794 3,2534 3,1747
MCEC 3,5409 3,2991 3,2331 3,1571
MCRN 3,4221 3,2822 3,1458 3,0940

FONTE: (AUTOR, 2019)

101

Conforme observa-se na Tabela 8, o indice de confiabilidade a tende diminuir
a medida que o numero de defeitos aumenta. Como citado anteriormente, neste
trabalho, a medida que o niumero de defeitos interagente aumenta, também aumenta
o efeito de interacdo entre os defeitos de corrosdo, causando desta forma uma
reducdo ainda mais significativa da resisténcia do duto, se comparada ao efeito
causado por defeitos isolados. Além disso, ambos os quatro métodos apresentam
resultados muito proximos, enquanto que o Monte Carlo com Redes Neurais
apresenta os menores valores se comparado aos outros, 0 que caracteriza uma

abordagem mais conservadora, favorecendo desta forma a seguranca.

5.3 PROJETO DE CONFIABILIDADE COM A GUI DO APLICATIVO

Como citado anteriormente, os mesmos metodos de analise de confiabilidade
foram também utilizados no projeto baseado em confiabilidade. Para que isso fosse
possivel, como visto anteriormente na secao 4.1.3, estes métodos sdo chamados pelo
método de Newton-Raphson, afim de se calcular o valor da variavel de projeto.

Primeiramente foi projetada a espessura do duto variado o nimero de defeitos
interagentes. Neste caso, adotou-se o0s valores de 37 anos para a inspecéo atual, e o
valor de 3,1 para o indice de confiabilidade alvo. Estes resultados estéo representados

na Tabela 9.

Tabela 9 — Espessura 6tima em funcdo do nimero de defeitos

N° Defeitos 2 3 4 5
FORM 9,4286 9,5318 9,5838 9,6147
MC 9,2832 9,3205 9,3608 9,4456
MCEC 9,2628 9,3500 9,3992 9,4567
MCRN 9,2370 9,3279 9,3494 9,4355

FONTE: (AUTOR, 2019)

Como discutido na analise de confiabilidade, o aumento no nimero de defeitos
interagentes, diminui o indice de confiabilidade da estrutura. No projeto baseado em
confiabilidade, isto é refletido no aumento da espessura, pois para se manter um
indice de confiabilidade alvo fixo, ao aumentar o numero de defeitos diminui a

seguranca da estrutura. Para combater essa diminuicéo do indice de confiabilidade, o

102

método de confiabilidade utilizado, tende a aumenta a espessura do duto, o que por
sua vez aumenta a capacidade resistente do mesmo.

Na Tabela 9, é possivel perceber que realmente em todos os 4 métodos
utilizados, a espessura € incrementada a medida que o numero de defeitos
interagentes aumenta. Porém, apesar de proximos, os valores da espessura para 0s
4 métodos apresentam divergéncias em termos de precisdo. Enquanto que, o método
FORM apresenta 0os maiores valores de espessura, portanto apresentando uma
abordagem mais conservadora, ja que esta a favor da seguranca, 0s outros meétodos,
relacionados ao método de Monte Carlo, apresentam resultados um pouco inferiores,
porém parecidos entre si.

Em seguida, foi feito o projeto baseado em confiabilidade variando o indice de
confiabilidade alvo. Para este problema, foram fixados o tempo da inspecéo atual
como sendo 35 anos, e o numero de defeitos como sendo igual a 3. Os resultados
estéo listados na Tabela 10.

Tabela 10 — Espessura 6tima em func¢éo do indice de confiabilidade alvo (Bawo)

Balvo 3,1 3.3 3,7
FORM 9,2687 9,3820 9,6085

MC 9,3613 9,4483 9,7318
MCEC 9,3636 9,3660 9,3734
MCRN 9,3176 9,4661 NaN

FONTE: (AUTOR, 2019)

b

Conforme representado na Tabela 10, em todos os métodos utilizados, a
medida que o indice de confiabilidade aumenta, a espessura do duto também
aumenta. De fato, um indice de confiabilidade maior fornece uma maior seguranca da
estrutura, e para aumentar esta seguranga é preciso aumentar a espessura do duto
como esperado. Observando-se os dados contidos na Tabela 10, novamente percebe-
se que os métodos FORM e Monte Carlo apresentaram resultados consistentes, pois
a espessura do duto cresce em fungdo do niumero de defeitos, apesar de ndo tao
proximos.

Em contrapartida, o método de Monte Carlo com Esperanca Condicionada

apresentou pouca variabilidade em funcdo do aumento do indice de confiabilidade

103

alvo, enquanto que o método de Monte Carlo com Redes Neurais para um aumento
do indice de confiabilidade alvo, apresentou sérias dificuldades para encontrar a
variavel de projeto, a ponto de ndo retornar nenhum resultado valido, conforme ilustra

o resultado “NaN” que significa “ndo € numero”, ou seja, nenhuma saida é gerada.

5.4 ANALISE DE CONFIABILIDADE USANDO ANDERSCRIPT

Para validar a analise de confiabilidade utilizando a linguagem AnderScript,
foram utilizados dois exemplos apresentados por Barbosa (2004). O primeiro
problema esté relacionado a uma trelica isostatica e o outro a uma viga engastada
com carregamento distribuido. Ambos exemplos, servem para ilustrar que a
linguagem AnderScript € adaptavel a problemas de confiabilidade que ndo estejam

relacionados a apenas dutos.

5.4.1 Problema 1: Trelica Isostatica

Este exemplo proposto por Barbosa (2004) consiste em calcular a
probabilidade de falhas para cada barra da trelica ilustrada na Figura 46. As variaveis
aleatorias sdo a carga Pcarga aplicada na trelica, e a Resistencia a compressao R das
barras. As informacdes estatisticas destas variaveis estao representadas na Tabela
11:

Figura 46 — Trelica isostéatica do Problema 1

Fcarga l

Barra 1

Barra 3

L
FONTE: (BARBOSA, 2004)

104

Tabela 11 — Variaveis aleatorias do Problema 1 (trelica isostatica)

Variavel Distribuicao Média Desvio Padréao
Carga (Pcarga) Normal 14 1,25
Resistencia (R) Normal 11 15

FONTE: Adaptado de Barbosa (2004)

A funcéo de falha é definida como a diferenca entre resisténcia a compressao

da barra pela solicitacdo axial na barra. Resolvendo a trelica da Figura 46 pelo o
método dos nds, obtém-se os valores de esforcos normais de Pcarga\/§/3 para as
barras 1 e 2, e de Pcarga\/§/6 para a barra 3. Desta forma as funcdes de falha para as

barras 1 e 2, e para a barra 3, podem ser representadas pelas equacgoes (42) e (43),

respectivamente:

GU)=R— M (42)
GU)=R— M (43)

Este problema é escrito através do aplicativo utilizando a linguagem
“‘AnderScript” para as barras 1 e 2, e 3, conforme ilustrado nas Figura 47 e Figura 48

respectivamente:

Figura 47 - Codigo AnderScript para as barras 1 e 2 do Problema 1

Editorde Céd.. B

FONTE: (AUTOR, 2019)

105

Figura 48 - Codigo AnderScript a barra 3 para do Problema 1

EditordeCéd.. B &

FONTE: (AUTOR, 2019)

Como pode-se observar nas Figura 47 e Figura 48, a variavel “a” é equivalente

ao termo v3/3 na equac&o (42), e ao termo v3/6 na equacao (43). Além disso, como
dito anteriormente, a definicdo de variaveis aleatdrias na linguagem AnderScript
requer a meédia e o coeficiente de variagdo de cada variavel aleatoria. Ao observar a
Tabela 11, nota-se que estao representados apenas a média e o desvio padréo das
variaveis aleatérias, ndo esta ilustrado o coeficiente de variacdo necessario para
especificar variaveis aleatérias na linguagem AnderScript. Conforme Barbosa (2004),
o coeficiente de variacédo é obtido da relacdo entre o desvio padrdo e a média. Essa
relacdo gerou os valores de coeficiente de variacdo de 0.089 e 0.1363 apresentados

nas Figura 47 e Figura 48. A comparacao dos resultados esta ilustrada na Tabela 12:

Tabela 12 - Comparacgao dos resultados para o Problema 1

Barra le?2 3
Barbosa (2004) 0,039848 2,24e-6
AnderScript 0,039687 2,24e-6

FONTE: (AUTOR, 2019)

Conforme pode se observar na Tabela 12, os resultados sdo bastante
préximos, validando desta forma o algoritmo da linguagem AnderScript. Um
desempenho muito bom, em termos de precisdo numerica, se for levado em conta que
foram programadas apenas algumas poucas linhas de cddigo para resolver este

problema.

106

5.4.2 Problema 2: Viga em balan¢co com carregamento distribuido
Barbosa (2004) prop&e outro exemplo, desta vez para o calculo do indice de
confiabilidade da viga engastada representada na Figura 49. A estrutura € uma viga
em balago com um carregamento distribuido e secédo retangular.
Figura 49 — Viga em balan¢co com comportamento linear elastico do Problema 2
INNNNNEN

El b

VLTI TSI
=

T
1

L

FONTE: (BARBOSA, 2004)

A funcdo de falha neste caso esta relacionada a flecha transversal da
extremidade da viga. O deslocamento n&o deve exceder o limite de servigo L/325,
onde L é o comprimento da viga. A funcédo de falha para este caso € representada
pela (44):

Lviga WbL4

325 8EI

GU) = (44)

Onde w é o carregamento distribuido, E € o médulo de elasticidade, | € o momento de
inércia da secdo da viga, b é largura da viga e h é a altura da viga. Barbosa (2004)
considera o comprimento L com o valor de 6m, e o modulo de elasticidade E com o
valor de 2,6.10*MPa. Aplicando estes valores, bem como o momento de inercia para
secBes retangulares (I = bh3/12), obtém-se a equacdo (45) em funcdo de w e h,

cujas informacdes estatisticas estao representadas na Tabela 13:

w
G(U) = 18461538 — 74769.2307 ;5 (45)

107

Tabela 13 — Variaveis aleatorias do Problema 2 (viga engastada)

Variavel Distribuicao Média Coef. Variagéo
w Normal 1000 N/m?2 0,2
h Normal 250mm 0,15

FONTE: Adaptado de Barbosa (2004)

A escrita deste problema na linguagem AnderScript estéa ilustrada no codigo da

Figura 50:

Figura 50 — Cddigo AnderScript para o Problema 2

Editor de Cod...

FONTE: (AUTOR, 2019)

A comparacdo dos resultados obtidos por Barbosa (2004) e os obtidos pelo

codigo da Figura 50 é ilustrada na Tabela 14.

Tabela 14 — Comparacéo dos resultados para o Problema 2

Barbosa AnderScript

2.341 2.331
FONTE: (AUTOR, 2019)

A preciséo dos resultados, valida o uso da linguagem AnderScript, que permitiu
aresolucéo do problema com apenas 10 linhas de cédigo conforme ilustrado na Figura
50.

108

5.5 PROJETO DE CONFIABILIDADE USANDO ANDERSCRIPT

Por fim, foi realizado o projeto de um duto utilizando a linguagem AnderScript.

Como dito anteriormente a linguagem serve para resolver problemas de confiabilidade

estrutural de um dnico componente estrutural, sem correlagdo entre as variaveis

aleatorias, e com apenas uma Unica variavel de projeto. Uma das propostas € resolver

problemas de dutos com caracteristicas diferentes, como por exemplo utilizar outra

norma para o calculo da pressao de falha, ou a escolha de outra variavel de projeto

gue néo seja a espessura, tal como a espessura.

Para este problema, foi projetado um duto com as mesmas caracteristicas da

Tabela 4, sendo que a variavel de projeto neste caso € o diametro. A Figura 51 ilustra

o cbédigo AnderScript para o célculo do diametro de projeto.

Figura 51 — Cddigo AnderScript para encontrar o diametro de projeto

T BI0DoL T
2 proj diametro = 8.1;

3 norm espessura = (8.81,8.85);

4 norm profundidade = (8.883,8.1);

5 norm carga = (5,8.18);

[norm rd = (@.8881,8.2);

7 var distancia = 8.825;

3 var comprimento = ©.208;

9 var nDefeitos = 5;

1@ var rl = 3.8881;

11 var tu = 538;

12 var ti = 18.8;

13 var tf = 35.8;

14

15

16 fun failure() {

17 var deltaT = @tf - gti;

18 varm=1, 1 =8, k =1;

19 var 18 = gcomprimento + @rl * deltal;

26 var j, d, pressoes = @profundidade, presaoMinima;

21 var posicao;

22 if(@profundidace < 8.2 * @espessura && @distancia » 2 * (Ediametro * @espessura)™(1 / 2)) {
73 1= 18;

24 m=(1+8.31=* ((1) ~ 2)/(gdiametro * @espessura))™(1 / 2};

25 d = (Eprofundidade + @rd * deltaT);

26 pressoes[1] = 2 * (@tu) * (Bespessura / (@diametro - @espessura)) * (1 - {(d / @espessura)) / (1 - ({d) / (@espessura * m))});
27 #failure = pressoez[l] - @carga ;

28 i

29 else {

36 for{j = 1; j <= @nDefeitos; j = 7 + 1) {

31 1=1(j- 1) * ({(Bcomprimento + @rl * deltaT) + @distancia) + 18;

32 m=(1+8.31* ((1) ~ 2)/(@diametro * @espessura))™{1 / 2);

33 d = (i) * (Eprofundidade + @rd * deltaT) * (@comprimento + @rl * deltaT) / 1;

34 pressoes[k] = 2 * (8tu) * (@espessura / (@diametro - @espessura)) * (1 - {d / @espessura)) / (1 - ((d) / (@espessura * m}));
35 k=k+1;

37 presacMinima = min(pressoes);

38 posicao = find{pressoes == preszacMinima);

39 #failure = pressoes{posicao[l]) - @carga ;

48 i

41

FONTE: (AUTOR, 2019)

Pode-se observar na Figura 51, nas linhas 2 a 13 ocorre a definicdo das

variaveis aleatdrias e paramétricas do problema. Na linha 22 ocorre a verificacdo da

109

interacao entre os defeitos, conforme mostrado anteriormente nos critérios a) e c) para
interacao entre defeitos na secdo 3.1.1. Em seguida da linha 23 a linha 27, ocorre a
definicdo da funcéo de falha para um unico defeito, este trecho € executado caso néo
haja interacdo entre os defeitos. Havendo interacéo entre os defeitos, o cédigo entre
as linhas 31 e 34 calcula a pressao de falha para cada combinacéo de defeitos, sendo
que na linha 37 a menor pressao de falha é selecionada e utilizada na linha 39 para o
calculo da funcéo de falha. O cddigo para a combinacédo entre os defeitos (linhas 31 a
34) foi simplificado, se comparado a geracdo dos grupos de defeitos interagentes
comentados anteriormente na secdo 3.1.1. Isso porque, os defeitos neste caso
possuem dimensdes iguais e sao igualmente espacados alinhados longitudinalmente.

A execucédo do codigo da Figura 51 gera como saida o valor do diametro de
617,51mm. Conforme observado nos exemplos anteriores, este valor consiste em um
didmetro dentro dos limites aceitaveis, portanto consiste em um bom resultado do
método.

110

6 CONSIDERACOES FINAIS

O uso da confiabilidade estrutural € uma ferramenta de auxilio ao engenheiro
que permite a consideracdo das incertezas associadas aos parametros inerentes a
todo projeto. Como toda estrutura possui probabilidade n&o nula de vir ao colapso, o
uso da andlise de confiabilidade permite quantificar este risco e tomar medidas que o
diminua o maximo possivel acidentes, visando impedir o colapso da estrutura que por
sua vez pode causar danos econdémicos, ambientais e humanos.

O uso adequado da andlise de confiabilidade por sua vez permite uma grande
economia para a companhia envolvida, pois permite minimizar a troca de material,
bem como a frequéncia dos reparos e inspecdes. Uma vez que estas operacdes
demandam muitos gastos, relacionados a equipamentos, mao-de-obra e materiais,
otimizar este processo evita custos desnecessarios.

Dentro da confiabilidade estrutural, o uso de formulagbes empiricas se
comparados as metodologias numéricas como elementos finitos, possui a vantagem
de ter um tempo de processamento menor, além é claro de ser mais facil de se
implementar.

Ao fazer a andlise de confiabilidade, pode-se notar que o indice de
confiabilidade do duto analisado diminui em funcdo do aumento do tempo de
exposicao a corrosao. Isso ocorre pelo fato de que as consequéncias da corrosao,
diminuicdo da espessura do duto, aumentam com o passar do tempo, diminuindo
desta forma a vida util do duto. Além disso, foi observado que o indice de
confiabilidade também depende do niumero de defeitos interagentes, de fato, a medida
gue o numero de defeitos aumenta, o indice de confiabilidade diminui. Isto se deve ao
fato de que os multiplos defeitos podem sobrepor suas areas de influéncia, causando
um efeito ainda maior sobre a estrutura em termos de diminuicdo da capacidade
resistente do duto.

Com relacao ao projeto baseado em confiabilidade, pode-se notar que o valor
da variavel de projeto (espessura) aumenta a medida que o numero de defeitos
aumenta. O aumento do numero de defeitos diminui a resisténcia do duto, e a forma
de compensar issoO € aumentar sua espessura, para que 0 mesmo possa ter um
acréscimo em sua resisténcia, e desta forma atender ao indice de confiabilidade alvo.
Pode-se notar também, que o indice de confiabilidade alvo possui influéncia na

espessura final do duto, pois ao se aumentar o indice de confiabilidade alvo, a

111

espessura do duto também tende a aumentar, em resposta a necessidade de manter
um nivel de seguranca ainda maior.

Na andlise de confiabilidade, os 4 métodos analisados, tiveram resultados
muito parecidos. Neste caso, 0 Unico método que possui desvantagens significativas
€ 0 método de Monte Carlo classico, devido ao seu alto custo computacional. Porém,
0 cenario muda no projeto baseado em confiabilidade, onde apenas os métodos
FORM, e Monte Carlo tiveram resultados satisfatorios, com relacdo ao aumento da
espessura do duto com o aumento no numero de defeitos. Portanto, considerando os
4 métodos analisados neste trabalho, conclui-se que na analise de confiabilidade pode
ser feita satisfatoriamente com os métodos de FORM, Monte Carlo com Esperanca
Condicionada e Monte Carlo com Redes Neurais. Enquanto que o projeto baseado
em confiabilidade possui o maior desempenho se for feito utilizando o método FORM,
pelo mesmo apresentar resultados precisos, em relacdo ao comportamento real, e
pouco custo computacional.

A metodologia proposta neste trabalho, de que cada thread do webservice
tenha acesso a uma instancia exclusiva do Matlab, possui pontos positivos e
negativos. Com relacdo aos pontos positivos, estd a facil implementacdo e
implantacdo do sistema. Além de que, para um baixo nimero de conexdes
simultaneas o sistema (webservice e o aplicativo) atende adequadamente ao seu
propésito de realizar a computacdo dos métodos de confiabilidade em um tempo curto.
Em contrapartida, precisar de uma instancia do Matlab para cada thread ativa, pode
sobrecarregar o servidor para um namero grande de clientes. Além disso, € bastante
provavel que ndo haja muitos servicos de hospedagem (“aluguel” de estrutura
computacional para abrigar aplicac6es web) disponiveis no mercado que tenham o
Matlab instalado ou que permitam sua instalacdo. Desta forma, a implantacdo deste
sistema em uma estrutura nao proprietaria pode ser um problema.

Uma possivel solugdo € o uso do MatlabServer que permite criar webservices
diretamente utilizando a estrutura do Matlab. Isto permite que as funcdes do Matlab
sejam acessadas simultaneamente, sem que precisem ser criadas sec¢des para cada
requisicdo. Uma outra solucéo é usar a plataforma Python, a mesma possui médulos
para desenvolvimento de WebServices, os mais recentes algoritmos em redes neurais
e inteligéncia artificial, além de matemética simbdlica igualmente ao Matlab. Além
disso, o Python possui muitos servigos de hospedagem, o que facilita ainda mais sua

implantagédo em um servidor remoto.

112

A linguagem AnderScript apresenta uma forma mais facil de se escrever
problemas de confiabilidade que contenham apenas um Unico componente estrutural,
sem correlacdo entre as variaveis aleatérias e com apenas uma unica variavel de
projeto. A compilacdo e execucdo sao feitas para o método FORM, que conforme
comentado anteriormente, apresenta bons resultados em termos de precisao
numérica e fidelidade ao comportamento real, tanto para a fase de andlise em
confiabilidade, quanto para projeto baseado em confiabilidade, o que justifica os bons
resultados em termos de precisdo numeérica obtidos anteriormente neste trabalho ao
se escrever e resolver problemas nesta linguagem.

Além disso, o uso do aplicativo para captar as informacdes relativas ao duto e
seus defeitos de corrosdo, apresentou um meétodo facil para a entrada dos dados.
Uma das principais vantagens, foi a possibilidade de armazenar informacfes de
diversos defeitos, e a possibilidade de poder exportar e compartilhar estar informacdes
na forma de um arquivo no formato “.txt”. Por fim, a integragdo com o ambiente
tridimensional desenvolvido na Engine Unity, apresentou a representacéo 3d do duto
e seus defeitos de corrosao de forma satisfatoria, com poucas linhas de programacao

sem grandes consequéncias negativas na performance do aplicativo.

7

113

TRABALHOS FUTUROS

Como sugestdes de trabalhos futuros tem-se:

v

Fazer analise e projeto baseado em confiabilidade de dutos sujeitos a multiplos
defeitos de corrosdo desalinhados;

Fazer analise e projeto baseado em confiabilidade utilizando modelos numéricos
para o calculo da presséao de falha;

Utilizacdo de modelo ndo-linear de corrosao;

Melhorar a linguagem AnderScript para suportar a definicdo de mais de uma
variavel de projeto, e a definicdo de outros tipos de distribuicdo de probabilidade,
gue néo seja apenas distribuicdo normal, para as variaveis aleatorias;

Implementar o sistema proposto no presente trabalho na plataforma Python.

114

REFERENCIAS

AHAMMED, M. Probabilistic estimation of remaining life of a pipeline in the presence
of active defects. International Journal of Pressure Vessels and Piping, Vol. 75,
1998. Pages 325 - 329.

AHO, A. V.; SETHI, R.; ULLMAN, J. D. Compiladores Principios, Técnicas e
Ferramentas. Rio de Janeiro: LTC-Livro Técnicos e Cientificos Editora S.A., 1995.

AMAYA-GOMEZ, R. et al. Reliability assessments of corroded pipelines based on
internal pressure — A review. Engineering Failure Analysis, v. 98, p. 190-214,
2019.

ASANO, C. H.; COLLI, E. Calculo Numérico - Fundamentos e Aplicacdes. Instituto
Militar de Engenharia - Universidade de S&o Paulo. S&o Paulo. 2009.

BARBOSA, A. H. Analise de Confiabilidade Estrutural Utilizando o Método de
Monte Carlo e Redes Neurais. Dissertacdo (Mestrado em Engenharia Civil) -
Universidade Federal de Ouro Preto. Ouro Preto. 2004.

BS7910. Guide on Methods for Assessing the Acceptability of Flaws in Metallic
Structures - Annex G: The Assessment of Corrosion in Pipes and Pressure
Vessels. British Standard. [S.l.]. 2005.

FILHO, R. D. P. O transporte por dutos ainda € incipiente no Brasil. Revista
Adnormas, 2018. Disponivel em: <https://revistaadnormas.com.br/2018/10/09/o-
transporte-por-dutos-ainda-e-incipiente-no-brasil/>. Acesso em: 27 maio 2019.

GENTIL, V. Corrosao. 32. ed. Rio de Janeiro: LTC - Livros Técnicos e Cientificos
Editora S. A., 1996.

GOETZ, B. etal. Java Concurrency in Pratice. 22. ed. Nova Jersey: Addison-Wesley,
2008.

GOMES, W. J. S.; BECK, A. T. Optimal inspection and design of onshore pipelines
under external corrosion process. Structural Safety, v. 47, p. 48-58, 2014.

GONCALVES, A. Introducédo a Plataforma Java EE 6 com GlassFish 3. 22 ed. Rio
de Janeiro: Editora Ciéncia Moderna Ltda., v. Paulo André P. Marques, 2011.

GOOGLE. App fundamentals. Android Developers, 2019. Disponivel em:
<https://developer.android.com/guide?hl=pt-BR>. Acesso em: 20 maio 2019.

HASOFER, A. M.; LIND, N. C. Exact and Invariant Second-Moment Code Format.
Journal of Engineering Mechanics (ASME), v. 100, p. 111-121, 1974.

HAYKIN, S. Redes Neurais Principios e pratica. 22. ed. Sdo Paulo: ARTMED Editora
S.A., 2008.

115

IMPACTA. 9 servidores de aplicacdo Uteis para desenvolvedores. Blog Impacta,
2019. Disponivel em: <https://www.impacta.com.br/blog/2017/08/02/7-servidores-
de-aplicacao-desenvolvedores/>. Acesso em: 27 maio 2019.

INSTITUTO BRASIL LOGISTICO. IBLOG. MODAL DUTOVIARIO (DUTOS,
CLASSIFICAC}AO, VANTAGENS E DESVANTAGENS.), 2018. Disponivel em:
<https://institutobrasillogistico.com.br/2018/01/28/modal-dutoviario-dutos-
classificacao-vantagens-e-desvantagens/>. Acesso em: 27 maio 2019.

JCSS. PROBABILISTIC MODEL CODE, Part 1 - BASIS OF DESIGN. Joint
Committee on Structural Safety. [S.I.]. 2000.

KIUREGHIAN, A. D.; LIU, P. L. Structural Reliability Under Incomplete Probability
Information. Journal of Engineering Mechanics (ASCE), v. 112, 1986.

LEIRA, B. J.; NAESS, A.; NASS, O. E. B. Reliability analysis of corroding pipelines by
enhanced Monte Carlo simulation. International Journal of Pressure Vessels and
Piping, v. 144, p. 11-17, 2016.

MEDNIEKS, Z. et al. Programando o Android. 2°. ed. S&do Pulo: Novatec Editora
Ltda, 2013.

MISHRA, M.; KESHAVARZZADEH, V.; NOSHADRAVAN, A. Reliability-based
lifecycle management for corroding pipelines. Structural Safety, v. 76, p. 1-14,
20109.

NGOLO, M. A. Arquitetura Orientada a Servicos REST para Laboratérios
Remotos. Dissertacdo (Mestre em Engenharia Eletrotécnica e de Computadores)
- Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa. Lisboa. 2009.

NUNES, F. Android MVC x MVP x MVVM qual Pattern utilizar—Parte 1. Medium,
2017. Disponivel em: <https://medium.com/@FilipeFNunes/android-mvc-x-mvp-x-
mvvm-qual-pattern-utilizar-parte-1-3defc5c89afd>. Acesso em: 27 maio 2019.

QUILES, M. G. Sistema de Visdo Baseado em Redes Neurais para o. Dissertacéo
(Mestrado em Cléncia da Computacdo e Matematica Computacional) -
Universidade de Sao Paulo. S&o Paulo. 2004.

RACKWITZ, R.; FIESSLER, B. Structural Reliability Under Combined Randon Load
Sequence. Computer and Structures, v. 9, p. 489-494, 1978.

RALLO, R. Material Design: aprenda tudo sobre o design do Google! Rock Content,
2019. Disponivel em: <https://rockcontent.com/blog/material-design/>. Acesso em:
27 maio 2019.

ROCHA, A. ~C. F. ESTUDO DE CONFIABILIDADE DE DUTOS SUJEITOS A
CORROSAOQ. Trabalho de Concluséo de Curso (Graduagédo em Engenharia Civil)
- Universidade Federal de Pernambuco. Caruaru. 2016.

116

RUSSEL, S.; NORVIG, P. Inteligéncia Artificial. 32. ed. Rio de Janeiro: Elsevier
Editora Ltda., 2013.

SAGRILO, L. V. Analise de Confiabilidade Estrutural Utilizando os Métodos
andliticos FORM E SORM. Tese (Doutorado em Ciéncias em Engenharia Civil) -
Universidade Federal do Rio de Janeiro. Rio de Janeiro. 1994.

SEGHIER, M. E. A. B. et al. Reliability analysis based on hybrid algorithm of M5 model
tree and Monte Carlo simulation for corroded pipelines: Case of study X60 Steel
grade pipes. Engineering Failure Analysis, v. 97, p. 793-803, 2019.

SUN, J.; CHENG, Y. F. Modelling of mechano-electrochemical interaction of multiple
longitudinally aligned corrosion defects on oil/gas pipelines. Engineering
Structures, v. 190, p. 9-19, 2019.

TANENBAUM, S. Sistemas Operacionais Modernos. 3°. ed. S&o Paulo: Pearson
Education do Brasil Ltda., 2012.

TEE, K. F.; PESINIS, K. Reliability prediction for corroding natural gas pipelines.
Tunnelling and Underground Space Technology, v. 65, p. 91-105, 2017.

TORO, J. N. Pressdo de Ruptura de Dutos contendo Defeitos de Corroséo.
Dissertacao (Mestre em Engenharia de Estruturas) - Universidade de Sao Paulo.
Séo Carlos. 2014.

TORRES, J. S. Uma Metodologia para Verificagdo da Seguranca e
Dimensionamento Otimo de Dutos com Defeitos Causados por Corroséao.
Tese (Doutorado em Estruturas) - Universidade Federal de Pernambuco. Recife.
20009.

UNITY TECHNOLOGIES. Example - Creating a Quad. Unity Documentation, 2019.
Disponivel em: <https://docs.unity3d.com/Manual/Example-
CreatingaBillboardPlane.html>. Acesso em: 20 Maio 2019.

VERZENHASSI, C. C. Otimizagao de risco estrutural baseada em confiabilidade.
Dissertacao (Mestrado em Engenharia de Estruturas) - Escola de Engenharia de
Séo Carlos. Séo Carlos. 2008.

WANG, H. et al. A clustering approach for assessing external corrosion in a buried
pipeline based on hidden Markov random field model. Structural Safety, v. 56, p.
18-29, 2015.

WANG, H.; YAJIMA, A.; CASTANEDA, H. A stochastic defect growth model for
reliability assessment of corroded underground pipelines. Process Safety and
Environmental Protection, v. 123, p. 179-189, 2019.

WIKIMEDIA FOUNDATION. Polygon mesh. Wikipedia, 2018. Disponivel em:
<https://en.wikipedia.org/wiki/Polygon_mesh>. Acesso em: 05 jun. 2019.

117

XU, L. Y.; CHENG, Y. F. Reliability and Failure Pressure Prediction of Various Grades
of Pipeline Steel in the Presence of Corrosion Defects and Pre-Strain. International
Journal of Pressure Vessels and Piping, 2011.

XU, W.-Z. et al. Corroded pipeline failure analysis using artificial neural network
scheme. Advances in Engineering Software, v. 112, p. 255-266, 2017.

ZELMATI, D.; GHELLOUDJ, O.; AMIRAT, A. Correlation between defect depth and
defect length through a reliability index when evaluating of the remaining life of steel
pipeline under corrosion and crack defects. Engineering Failure Analysis, v. 79,
p. 171-185, 2017.

ZHOU, W.; XIANG, W.; HONG, H. P. Sensitivity of system reliability of corroding
pipelines to modeling of stochastic growth of corrosion defects. Reliability
Engineering & System Safety, v. 167, p. 428-438, 2017.

