
UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

BACHARELADO EM SISTEMAS DE INFORMAÇÕES

JÚLIO CÉSAR DE CARVALHO BARROS

TRANSFERÊNCIA DE APRENDIZAGEM EM CNN:
Um estudo comparativo aplicado ao diagnóstico de Glaucoma

RECIFE

2023



UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

BACHARELADO EM SISTEMAS DE INFORMAÇÕES

JÚLIO CÉSAR DE CARVALHO BARROS

TRANSFERÊNCIA DE APRENDIZAGEM EM CNN:
Um estudo comparativo aplicado ao diagnóstico de Glaucoma

Trabalho de Conclusão de Curso

apresentado à Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção de título de Bacharel em Sistemas

de Informações.

Área: Aprendizagem de Máquina

Orientador: Prof. Dr. Fernando Maciano de

Paula Neto

RECIFE

2023



Ficha de identificação da obra elaborada pelo autor,
    através do programa de geração automática do SIB/UFPE

                   
     

Barros, Júlio César de Carvalho.
     Transferência de Aprendizagem em CNN: Um estudo comparativo
aplicado ao diagnóstico de Glaucoma / Júlio César de Carvalho Barros. -
Recife, 2023.
     54p : il., tab.

     Orientador(a): Fernando Maciano de Paula Neto
     Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Sistemas de Informação - Bacharelado,
2023.
      Inclui referências, apêndices. 

      1. Redes Neurais Convolucionais. 2. Transferência de Aprendizagem. 3.
Classificação de Imagem. 4. Diagnóstico de Glaucoma. 5. Detecção por
Oftalmoscopia. I. Paula Neto, Fernando Maciano de. (Orientação). II. Título. 

    000  CDD (22.ed.)



JÚLIO CÉSAR DE CARVALHO BARROS

TRANSFERÊNCIA DE APRENDIZAGEM EM CNN:
Um estudo comparativo aplicado ao diagnóstico de Glaucoma

Trabalho de Conclusão de Curso

apresentado à Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção de título de Bacharel em Sistemas

de Informações.

Aprovado em: 25 / 04 / 2023 .

BANCA EXAMINADORA

____________________________________

Prof. Dr. Fernando Maciano de Paula Neto (Orientador)

Universidade Federal de Pernambuco

____________________________________

Prof. PhD. Tsang Ing Ren (Examinador Interno)

Universidade Federal de Pernambuco



AGRADECIMENTOS

Gostaria de agradecer e dedicar esta dissertação às seguintes pessoas:

Meus pais e familiares, em especial a memória de Eurides Barbosa de Barros,

por apoiarem, mesmo distantes, como podiam, dentro da desfavorável realidade

enfrentada por muitos sertanejos.

A todos os amigos com quem convivi na Casa do Estudante de Pernambuco

que estiveram comigo nos momentos mais difíceis. Amigos que partilham da mesma

jornada de migração do interior em busca de condições melhores na capital do

estado.

Aos professores do CIn, pois foram fundamentais na construção da minha

formação acadêmica e profissional, sem esquecer dos demais professores que

estiveram presentes desde o início.

Ao orientador pela paciência e compreensão, bem como, por fomentar a

realização deste trabalho.

Por fim, mas não menos importante, gostaria de agradecer a mim mesmo, por

fazer todo esse árduo trabalho, por acreditar e nunca desistir.

“Só quem suporta o processo, vive o propósito!”

Wladimir Moreira Dias



RESUMO

O glaucoma é a segunda causa mais comum de cegueira no mundo.

Estima-se que já tenha afetado a visão de cerca de 80 milhões de pessoas e com

projeção de crescimento para os próximos anos. Por se tratar de uma doença

assintomática nas fases iniciais e incurável, apenas retardada através de tratamento,

a detecção precoce é imprescindível. Nesse sentido, projetar sistemas

automatizados eficazes para classificação da doença se faz relevante, tendo em

vista que padrões de desconformidades podem ser observados através de exame

de imagem, como o aumento da razão copo-disco, hemorragia e palidez. Este

trabalho se propôs estudar a transferência de aprendizagem em Redes Neurais

Convolucionais avaliando o desempenho de cinco arquiteturas de última geração

(MobileNet V3, EfficientNet V2, RegNet, ConvNeXt e ResNet-RS) na classificação de

diagnósticos de glaucoma. Os resultados obtidos nos extensivos experimentos

realizados, utilizando o maior conjunto de dados público ACRIMA, apresentaram

área sob a curva característica de operação do receptor na detecção de glaucoma

de 0,9994 com intervalo de confiança de 95% entre 99,93% e 99,95%. Identificou-se

superioridade dos modelos ResNet-RS em relação aos demais.

Palavras-chaves: redes neurais convolucionais; transferência de

aprendizagem; classificação de imagem; diagnóstico de glaucoma; detecção por

oftalmoscopia;



ABSTRACT

Glaucoma is the second most common cause of blindness in the world. It is

estimated that it has already affected the vision of around 80 million people and is

projected to grow in the coming years. Because it is an asymptomatic disease in the

early stages and incurable, only delayed through treatment, early detection is

essential. In this sense, designing effective automated systems for classifying the

disease is relevant, given that patterns of non-compliance can be observed through

imaging, such as increased cup-to-disk ratio, hemorrhage and pallor. This work

aimed to study the transfer learning in Convolutional Neural Network evaluating the

performance of five state-of-the-art architectures (MobileNet V3, EfficientNet V2,

RegNet, ConvNeXt and ResNet-RS) in the classification of glaucoma diagnosis. The

results obtained in the extensive experiments carried out, using the largest public

dataset (ACRIMA), showed an area under the characteristic curve of operation of the

receiver in the detection of glaucoma of 0.9994 with a confidence interval of 95%

between 99.93% and 99.95%. The superiority of the ResNet-RS models was

identified in relation to the others.

Keywords: convolutional neural networks; learning transfer; image

classification; diagnosis of glaucoma; ophthalmoscopy detection;
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1. INTRODUÇÃO

Glaucoma é um grupo de neuropatias ópticas progressivas associadas a

defeitos de campo visual característicos e alterações estruturais na cabeça do nervo

óptico (LUSTHAUS, 2019). É a segunda causa mais comum de cegueira no mundo,

atrás apenas da catarata, e estima-se que já tenha afetado a visão de cerca de 80

milhões de pessoas, com projeção de crescimento para 111 milhões até 2040, e que

4 milhões estejam cegas devido ao glaucoma, aponta o relatório sobre a visão da

Organização Mundial de Saúde (OMS, 2019).

A detecção precoce do glaucoma é imprescindível uma vez que se trata de

uma doença assintomática nas fases iniciais e não possa ser curada, apenas

retardada através de tratamento. O exame de fundo de olho é uma das principais e

populares modalidades para diagnosticar o glaucoma. Isso se deve por se tratar de

uma abordagem não invasiva, logo adequada para triagem em larga escala, a fim de

que apenas casos suspeitos passem por exames complementares e sejam

acompanhados por especialistas (CHEN, X., 2015).

Estudos mostram que anormalidades na região do disco óptico, como

aumento da razão copo-disco, hemorragia e palidez, fornecem evidências

suficientes para a presença de glaucoma (NATARAJAN, 2021). Nesse sentido,

projetar sistemas automatizados eficazes na detecção da doença se faz relevante

para obtenção de uma menor taxa de erro no diagnóstico (NAWAZ, 2022).

Figura 1: Diferença visual entre um nervo óptico normal e com glaucoma

Fonte: Adaptada de DIAZ-PINTO (2019).
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2. REFERENCIAL TEÓRICO

2.1. Aprendizado de máquina

O termo “Aprendizado de Máquina” tem ganhado bastante relevância na

última década, embora não seja algo novo. A priori, definida como sendo o campo

de estudo que possibilita aos computadores a habilidade de aprender sem

explicitamente programá-los (SAMUEL, 1959). E a posteriori, compreendida pela

alegação de que um programa de computador aprende pela experiência E em

relação a algum tipo de tarefa T e alguma medida de desempenho P se o seu

desempenho em T, conforme medido por P, melhora com a experiência E

(MITCHELL, 1997).

Outra maneira de compreender o aprendizado de máquina é através da

classificação da aprendizagem.

2.1.1. Origem da aprendizagem

No aprendizado supervisionado, o conjunto de dados de treinamento

fornecido ao algoritmo inclui as soluções desejadas, chamadas de rótulos. O

algoritmo se adapta aos dados fornecidos no intuito de realizar classificações ou

previsões de conjunto de dados não rotulados (Data Science Academy, 2022).

Diferentemente do aprendizado não-supervisionado, onde o conjunto de dados de

treinamento fornecido ao algoritmo não inclui as soluções desejadas, os dados são

analisados na busca de identificar agrupamentos ou correlações entre si. Bem como,

diferente da aprendizagem semi-supervisionada que é uma abordagem híbrida entre

as duas anteriores, na qual o algoritmo lida com dados de treinamento parcialmente

rotulados. Outrossim, do aprendizado por reforço, onde o algoritmo - chamado de

agente nesse contexto - obtém os dados através da interação com o ambiente,

selecionando e executando ações, buscando maximizar recompensas e minimizar

penalidades. Tal abordagem serve para identificar a melhor estratégia, chamada de

política, a qual define que ação o agente deve escolher quando está em

determinada situação (GÉRON, 2019, p. 13).
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2.1.2. Frequência de aprendizagem

No aprendizado em lote ou por ciclo, o algoritmo, após treinado, é colocado

em produção aplicando o que foi aprendido sem aprender com os novos dados que

são submetidos. Para ocorrer um novo aprendizado, é necessário submeter o

algoritmo ao treinamento novamente do zero com todos os dados anteriores e

novos. Enquanto no aprendizado incremental, o algoritmo é treinado

progressivamente, sendo fornecido os dados de forma sequencial, individual ou em

pequenos lotes. Não sendo necessário submeter ao treinamento do zero ou

armazenar os dados históricos.

2.1.3. Funcionamento da aprendizagem

No aprendizado baseado em instância, o algoritmo memoriza os dados de

treinamento e os generaliza em novos casos, através de uma medida de

similaridade, a fim de compará-los a outros exemplos aprendidos. No aprendizado

baseado em modelo, o algoritmo constrói um modelo - função matemática - cujos

parâmetros são ajustados à tendência dos dados de treinamento. Após treinado, o

modelo pode fazer predições em novos dados.

2.1.4. Desafios

Desafios recorrentes na utilização de aprendizado de máquina são a

quantidade insuficiente de dados de treinamento, dados de treinamento não

representativos, dados de baixa qualidade, características irrelevantes, subajuste e

sobreajuste dos dados de treinamento. Subajuste (underfitting) se refere a

incapacidade do modelo de apreender as relações mais importante do conjunto de

dados de um problema. Enquanto, sobreajuste (overfitting) diz respeito à ineficácia

de um modelo prever novos resultados, distinto daqueles utilizados no treinamento.
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2.2. Redes Neurais Artificiais

Os algoritmos de Redes Neurais Artificiais (RNAs) são modelos de

aprendizado de máquina inspirados nas redes neurais cerebrais biológicas capazes

de resolver diversos problemas grandes e extremamente complexos por serem

versáteis, poderosas e escaláveis.

2.2.1. Neurônios Biológicos

O neurônio biológico trata-se de uma célula encontrada principalmente no

cérebro de animais, constituída por um corpo celular que contém a maioria dos

elementos constituintes complexos da célula, e muitos prolongamentos ramificados

chamados de dendritos, além de uma extensão bem longa chamada de axônio. O

axônio divide-se em ramificações menores, chamadas de telodendros, nos quais em

suas extremidades existem terminais sinápticos que estão conectados aos dendritos

ou corpos celulares de outros neurônios (GÉRON, 2019, p. 216).

Figura 1: Representação Simplificada do Neurônio Biológico

Fonte: Data Science Academy, 2022.

Os neurônios biológicos produzem pequenos impulsos elétricos que

percorrem os axônios e fazem as sinapses emitirem sinais químicos chamados de

neurotransmissores. Quando um neurônio recebe uma quantidade suficiente desses

estímulos em um curto intervalo, ele dispara seus próprios impulsos elétricos (Data

Science Academy, 2022).
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2.2.2. Neurônios Artificiais

Em 1943, McCulloch e Pitts propuseram um modelo simplificado de um

neurônio biológico, simulando as características de adaptação e representação de

conhecimentos baseadas em conexões. No artigo, demonstraram que com um

modelo simples é possível calcular qualquer lógica proposicional (MCCULLOCH;

PITTS, 1943 apud Data Science Academy, 2022).

2.2.3. Perceptron

Inventado por Frank Rosenblatt (1957, apud GÉRON, 2019, p. 218), o

perceptron é uma das arquiteturas mais simples dos RNAs, na qual o neurônio

artificial é chamado de Unidade Lógica de Limiar (TLU). As entradas e saídas são

valores numéricos e cada conexão de entrada está associada a um peso. A TLU

realiza a soma ponderada de suas entradas, aplica uma função de ativação a essa

soma e transmite o resultado como saída.

Figura 2: Equação de saída de um Perceptron

𝑦 = φ(
𝑖=1

𝑛

∑ 𝑥
𝑖
𝑤

𝑖
) 

Fonte: Adaptado de Data Science Academy (2022).

O algoritmo de treinamento de um perceptron é inspirado na Lei de Hebb

(1949 apud GÉRON, 2019, p. 220). Essa lei pode ser sintetizada como: “Células que

acionam juntas, se conectam juntas”, em outras palavras, o peso da conexão entre

dois neurônios tende a aumentar quando eles ativam simultaneamente. Inspirado

nisso, o algoritmo de treinamento reforça as conexões entre os neurônios de entrada

atualizando o peso , buscando reduzir o erro entre o valor esperado e o valor𝑤
𝑖

𝑦𝑟𝑒𝑎𝑙
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obtido de uma entrada a uma taxa de aprendizado , conforme a equação𝑦𝑜𝑏𝑡𝑖𝑑𝑜 𝑥
𝑖

 𝑛

da Figura 3.

Figura 3: Equação de aprendizagem do perceptron

𝑤
𝑖
𝑛𝑜𝑣𝑜 =  𝑤

𝑖
𝑎𝑡𝑢𝑎𝑙 +  𝑥

𝑖
(𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑜𝑏𝑡𝑖𝑑𝑜)𝑛

Fonte: Adaptado de GÉRON (2019)

Os perceptrons não conseguem aprender padrões complexos, como os

classificadores de regressão logística, uma vez que a fronteira de decisão de cada

neurônio de saída é linear. Entretanto, em 1957, Rosenblatt demonstrou com o

teorema da convergência do perceptron que se as instâncias de treinamento forem

linearmente separáveis, o algoritmo converge para uma solução. Além disso, uma

série de deficiências graves das perceptrons foram ressaltadas por Marvin Minsky e

Seymour Papert, em 1969, na monografia Perceptrons. Em especial, a incapacidade

de resolver alguns problemas corriqueiros, como por exemplo, o problema de

classificação Exclusive OR (XOR). Tais limitações só puderam ser contornadas

utilizando múltiplas camadas de perceptrons (ROSENBLATT, 1957; MINSKY,

PAPERT, 1969 apud GÉRON, 2019, p. 220-221).

2.2.4. Perceptron Multicamadas

Perceptron Multicamadas (MLP) é uma arquitetura complexa de RNA,

composta por uma camada de entrada, uma ou mais camadas ocultas e uma

camada de saída (Data Science Academy, 2022). Cada camada pode possuir uma

ou mais TLUs, e podem incluir neurônios de viés com exceção da camada de saída,

ilustrado na Figura 4. Quando uma RNA contém diversas camadas ocultas é

chamada de Rede Neural Profunda (RNP).
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Figura 4: Rede Neural Multicamadas

Fonte: Adaptado de GÉRON (2019).

Com o aumento da complexidade da arquitetura e número de parâmetros,

treinar MLPs com sucesso se tornou um grande desafio. Entretanto, David

Rumelhart et. al (1986, apud GÉRON, 2019, p. 222) publicou um artigo com o

algoritmo de treinamento por retropropagação de erros resolvendo o problema. Esse

algoritmo consiste em duas fases: a fase de propagação, na qual as entradas são

transmitidas por toda a rede e as previsões de saída são geradas; e a fase de

retro-propagação, em que é calculada o gradiente da função de perda na camada de

previsão e recursivamente é atualizado os pesos da rede através da regra da cadeia

(Data Science Academy, 2022).
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2.3. Processamento Digital de Imagens

2.3.1. Representação

Imagens são representadas digitalmente como uma matriz bidimensional

(altura e largura) de pontos de cor conhecidos como pixels, cada pixel é

representado como: um numérico indicando a intensidade da cor preta, para

imagens em escala de cinza; ou um vetor com os valores numéricos da intensidade

das cores vermelho, verde e azul - chamados de canais - para imagens coloridas.

Figura 5: Representação digital de uma imagem

Fonte: Adaptada de DIAZ-PINTO (2019).

2.3.2. Córtex Visual

A percepção de uma imagem apesar de ser uma atividade aparentemente

simples para os seres humanos não é tão simples de ser explicada, muito menos

reproduzida por um computador. O fato é que a percepção ocorre em grande parte

fora do domínio de nossa consciência, dentro de módulos sensoriais visuais do

cérebro. Uma vez que a informação sensorial chega à nossa consciência já dotada

com características de alto nível. Segundo Hubel e Wiesel (1968, apud GÉRON,

2019, p. 345), os neurônios do córtex visual têm um pequeno campo receptivo local,

ou seja, reagem apenas a estímulos visuais localizados em uma região limitada do

campo visual. Os campos receptivos de diferentes neurônios podem se sobrepor e

juntos, revestir todo o campo visual. Além disso, demonstraram que diferentes

neurônios, ao analisar o mesmo campo receptivo, reagem de maneira distinta a

depender da orientação das linhas que compõem o campo receptivo, pois cada

neurônio reage somente a linhas com específicas orientações. Identificaram também

que alguns neurônios possuem campos receptivos maiores e reagem a padrões
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mais complexos, que são combinações dos padrões de camadas de nível anterior.

Tais observações culminaram na ideia de que os neurônios de camadas mais

profundas tomam como base as saídas dos neurônios de camadas vizinhas menos

profundas.

2.4. Redes Neurais Convolucionais

Esses estudos acerca do córtex visual serviram como inspiração para uma

das redes neurais precursoras em reconhecimento de padrões de imagens,

chamada de neocognitron, apresentada por Fukushima (1980, apud GÉRON, p.

346), que gradativamente evoluiu para o que hoje chamamos de Redes Neurais

Convolucionais (em inglês, Convolutional Neural Networks ou CNN), ganhando

notoriedade através do artigo publicado por LeCun (1998 apud NIELSEN, 2023). Tal

rede é constituída por dois novos tipos de elementos: as Camadas Convolucionais e

Camadas de Subamostragem.

2.4.1. Camada de Convolução

A camada de convolução é responsável por extrair características da imagem

de entrada, passo a passo, através da estratégia de janela deslizante, multiplicando

os pesos em cada filtro (kernel) pelos valores de pixels e combinando a soma para

criar uma nova imagem passada para a próxima camada.

Um filtro de convolução trata-se de uma pequena matriz de pesos, cujo

tamanho representa o campo receptivo, como 3x3, que quando percorre a um dado

passo (stride) - por exemplo a cada um pixel da direita a esquerda de cima para

baixo - multiplicando uma matriz de pixels 24x24 gera como resultado outra matriz

de pixels, de mesmo tamanho quando preenchida com zero (zero-padding) bordas

imaginárias ou de tamanho menor (22x22), que a depender dos pesos pode

desfocar elementos, destacar relevo, detectar bordas e reconhecer características

(NIELSEN, 2023). A Figura 6 demonstra o resultado da aplicação de alguns filtros.

18



Figura 6: Demonstração de Filtros Convolucionais

Fonte: Própria autoria

2.4.2. Camada de Subamostragem

A camada de subamostragem desempenha o papel de redução da

amostragem, ou seja, reduzir o número de dados para economizar recursos

computacionais. Consiste em condensar os mapas de características obtidos pela

camada anterior, em mapas de características menores, digamos que uma região de

2x2 possa ser representado como um único valor, aplicando alguma técnica como

representar o agrupamento através do valor máximo (max polling), valor mínimo (min

polling) ou valor médio (average polling). Desta forma, um mapa de características

de tamanho 24x24, por exemplo, pode ser representado com menos informações e

menor exatidão posicional por um mapa de características de tamanho 12x12

(NIELSEN, 2023).
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2.4.3. Camada Totalmente Conectada

Por fim, a matriz de pixels da imagem resultante das camadas anteriores

passa por uma camada plana para ser convertida em uma matriz unidimensional,

para então ser submetida a uma camada densa de saída que usa essa matriz como

entrada para produzir o rótulo previsto aplicando a combinação linear e a função de

ativação não linear (Data Science Academy, 2022).

2.4.4. Arquitetura de uma Rede Neural Convolucional

As camadas de convolução e subamostragem podem se repetir, tornando a

rede ainda mais profunda, atribuindo diferentes tamanhos de mapa de

características e serem combinadas com outras técnicas, ilustrado na Figura 7.

Competições, como a ImageNet Large Scale Visual Recognition Challenge

(ILSVRC), têm motivado pesquisadores a criar, aperfeiçoar, testar e disponibilizar

diversas abordagens de arquiteturas buscando obter melhor desempenho. Tudo

isso, utilizando conjuntos de dados volumosos, por exemplo o ImageNet que contém

mais de um milhão de imagens de mil classes diferentes de objetos.

Figura 7: Arquitetura de uma Rede Neural Convolucional

Fonte: Própria autoria
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2.4.5. Transferência de Aprendizagem

Transferência de Aprendizagem é uma técnica utilizada para melhorar a

eficiência do treinamento de classificadores de imagens, sem a necessidade de um

conjunto de dados de treinamento expressivo, reutilizando os pesos aprendidos de

um modelo pré-treinado em um banco de dados de imagens volumoso para realizar

uma certa tarefa, por exemplo: distinguir cães e gatos, para outra, como: diferenciar

exames de fundo de olho com ou sem glaucoma.

Isso é possível, pois as características apreendidas pelas camadas inferiores

(camadas de convolução e camadas de subamostragem), como: linhas e arestas,

costumam estar relacionadas. Embora seja questionável a semelhança entre a

aparência de imagens não-médicas e imagens médicas, diversos estudos

evidenciam as vantagens da utilização (CARNEIRO, 2015; CHEN, H., 2015;

TAJBAKHSH, 2016, apud DIAZ-PINTO, 2019).

A técnica consiste na importação de um modelo com pesos pré-definidos,

sem as camadas superiores (camada de média global e a camada densa de saída)

que são responsáveis pelo aprendizado da classificação no contexto de treinamento

inicial, na qual são adicionadas camadas superiores próprias para classificação em

um novo contexto (GÉRON, 2019, p. 371).

Segundo o TensorFlow (2023), o treinamento utilizando a técnica é realizado

em duas etapas: Na primeira, chamada de extração de recursos, as camadas

inferiores são congeladas, ou seja, definidas como não treináveis. Nesta fase,

apenas as camadas superiores adicionadas são treinadas para se adequar aos

pesos pré-existentes; Já na segunda etapa de treinamento, chamada de ajuste fino,

as camadas inferiores são descongeladas, ou seja, definidas como treináveis, além

de ser utilizada uma taxa de treinamento menor que na etapa anterior. Tal fase

consiste em ajustar os pesos das camadas superiores de mapas de características

genéricas para mapas de características associados especificamente ao conjunto de

dados de treinamento fornecido.
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2.5. Técnicas de Regularização

Quanto mais parâmetros possuir um modelo, mais versátil será para se

acomodar a um conjunto de dados complexos. Entretanto, essa flexibilidade também

significa que a rede está propensa a se sobreajustar ao conjunto de treinamento,

sendo necessárias regularizações (GÉRON, 2019, p. 280).

2.5.1. Dropout

Dropout é uma técnica para omitir a participação de um subconjunto aleatório

de neurônios em uma ou mais camadas, com exceção da camada de saída, durante

o treinamento a fim de reduzir a dependência exagerada de alguns neurônios,

fazendo com que a rede neural se torne mais robusta e generalize melhor

(KRIZHEVSKY, 2017).

2.5.2. Data Augmentation

Data Augmentation é uma técnica para expandir artificialmente o tamanho do

conjunto de dados de treinamento, gerando diversas variantes realistas de cada

instância de treinamento. Trata-se de uma técnica de regularização que busca

reduzir o sobreajuste adicionando novas instâncias resultantes do deslocamento,

rotação, redimensionamento, giro horizontal, giro vertical ou alteração das condições

de iluminação das imagens existentes, de maneira aleatória, no conjunto de dados

de treinamento (GÉRON, 2019, p. 360).
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3. TRABALHOS RELACIONADOS

Esta seção busca apresentar a revisão bibliográfica acerca de trabalhos sobre

sistemas de detecção de glaucoma baseados em aprendizado profundo.

Chen X. et al. (2015) implementou e treinou do zero um modelo de arquitetura

de CNN, constituído por seis camadas, sendo quatro camadas convolucionais e

duas totalmente conectadas. Esse modelo foi treinado em dois conjuntos de dados

privados: ORIGA que contém 650 imagens (sendo 168 com glaucoma e 482

normais) e SCES que contém 1676 (sendo 46 com glaucoma e 1630 normais), e

foram obtidos os seguintes valores de área sob a curva (AUC) 0,831 e 0,887. As

principais limitações observadas neste estudo foram o desbalanceamento das

amostras de cada uma das classes, bem como, a dificuldade de reproduzir o

experimento uma vez que se trata de um conjunto de dados privado.

Diaz-Pinto et al. (2019), comparou diferentes modelos pré-treinados - no

conjunto de dados ImageNet - de cinco arquiteturas de CNN (VGG16, VGG19,

InceptionV3, ResNet50 e Xception) para classificação de glaucoma. Esses modelos

foram treinados e avaliados em cinco conjuntos de dados públicos: ACRIMA que

contém 705 imagens (sendo 396 com glaucoma e 309 normais), HRF que contém

45 imagens (sendo 27 com glaucoma e 18 normais), Drishiti-GS1 que contém 101

imagens (sendo 70 com glaucoma e 31 normais), RIM-ONE que contém 455

imagens (sendo 194 com glaucoma e 261 normais), sjchoi86-HRF que contém 401

(sendo 101 com glaucoma e 300 normais), e foram obtidos respectivamente os

seguintes valores de AUC 0,7678, 0,8041, 0,8575 e 0,7739 pelo modelo Xception

que apresentou melhor custo benefício entre AUC e número de parâmetros.

Natarajan et al. (2021), apresentou uma estrutura robusta para segmentação

da região de interesse (ROI) e classificação do glaucoma, utilizando para

classificação um modelo, baseado na arquitetura SqueezeNet, treinado nos

conjuntos de dados RIGA e RIM-ONE-V2 e testadas nos conjuntos de dados

ACRIMA, Drishti-GS1 e RIM-ONE-V1, obtendo os respectivos valores de AUC,

0,9999, 0,9990 e 1,0000.

Nawaz et al. (2022), realizou um trabalho robusto composto em dois estágios

utilizando EfficientDet-D0 para segmentação e EfficientNet-B0 para classificação.

Esta solução foi treinada no conjunto de dados ORIGA, testado nos conjuntos de

dados HRF e RIM-ONE-DL, obteve valores de AUC de 0.979.
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Noury et al. (2022), propôs uma sofisticada solução em aprendizado profundo

para detecção de glaucoma em tomografias 3D. Na qual, validou a arquitetura de

CNN 3D em três conjuntos de dados etnicamente diferentes, obtendo 0,91, 0,80,

0,94 e 0,87 de AUC, respectivamente, em base de dados de Stanford, Hong Kong,

India e Nepal.

Este trabalho apresenta uma estrutura simplificada de detecção de glaucoma

sendo realizado apenas o estágio de classificação, foram utilizadas como entradas

para os modelos pré-treinados imagens 2D previamente recortadas na ROI,

conforme descrito nas seções a seguir.
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4. OBJETIVO

4.1. Objetivo Geral

Avaliar o desempenho de modelos pré-treinados, construídos a partir das

mais recentes e públicas arquiteturas de CNN, re-treinando-as para classificação de

diagnósticos de glaucoma.

4.2. Objetivo Específico
● Aprofundar o conhecimento científico do estudante no tema por meio

de revisão da fundamentação teórica;

● Transferir aprendizagem de modelos pré-treinados para classificação

de imagens em um novo contexto;

● Avaliar as métricas de desempenho obtidas dos modelos de cada uma

das arquiteturas.
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5. METODOLOGIA

Esta seção busca delimitar os procedimentos metodológicos de execução

deste trabalho.

5.1. Revisão Bibliográfica

A revisão bibliográfica foi realizada a partir de livros e publicações científicas

existentes nos principais indexadores de repositórios de periódicos científicos, como

SciELO ou Google Scholar. Utilizando as palavras-chaves da referida temática, por

exemplo: “convolutional neural network”, “glaucoma classification”, “transfer

learning”, “deep learning” e “artificial intelligence", priorizando publicações mais

relevantes e recentes.

5.2. Seleção das Arquiteturas

A seleção das arquiteturas das CNN se deu através dos seguintes critérios:

disponibilidade da implementação no framework Keras; adequação ao problema de

classificação de imagens; data de publicação do artigo de referência até 4 anos

anteriores da data de realização deste trabalho.

Nesse sentido, as arquiteturas selecionadas foram: ConvNeXt, ResNet-RS,

RegNet, MobileNetV3 e EfficientNetV2, conforme pode ser observado no Apêndice
A.

5.3. Aquisição de conjunto de dados

A escolha do conjunto de dados a ser utilizado para o treinamento e validação

dos modelos foi realizada sobre os seguintes critérios: disponibilidade em

repositórios de domínio público utilizado em trabalhos relacionados; maior número

de amostras possíveis; adequação a proposta de classificação, ou seja, previamente

segmentadas e rotuladas por especialistas.

O conjunto de dados que melhor satisfaz os critérios acima, segundo a

pesquisa realizada, foi o ACRIMA, composto de 705 imagens, sendo 309 normal e

396 com glaucoma, mais detalhes da seleção no Apêndice B.

Tal conjunto de dados foi elaborado pelo projeto TIN2013-46751-R, fundado

pelo Ministério de Economia e Competitividade da Espanha com o objetivo de
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desenvolver algoritmos automáticos para avaliação de doenças da retina. No qual,

todas as imagens foram obtidas em um ângulo de visão de 35º, utilizando a câmera

retinal Topcon TRC e o sistema de captura IMAGEnet. A partir de pacientes -

selecionados por especialistas - que consentiram previamente seguindo os padrões

éticos da Declaração de Helsinque 1964 (DIAZ-PINTO, 2019).

5.4. Treinamento de modelos

O treinamento supervisionado ocorreu por transferência de aprendizagem,

baseando-se no guia do TensorFlow (2023), os modelos foram submetidos ao

mesmo conjunto de dados, algoritmos de otimização, função de perda, número de

amostras e interações.

Para realização do treinamento, o conjunto de dados foi dividido em 80% para

treinamento e 20% para teste, assim como, aumentado artificialmente adicionando

variações de rotação aleatórias em até 40 graus e sendo submetido em lotes de 16

amostras - escolhidas ao acaso - de imagens com 224x224 pixels cada.

Na etapa de extração de características, na qual apenas a camada superior

que substituiu a utilizada na classificação de origem é submetida ao treinamento,

foram realizadas 10 interações, utilizando: taxa de aprendizagem de 10-4, função de

perda Binary Cross Entropy e otimização Adaptive Moment Estimation (Adam).

Na etapa de ajuste fino, na qual a aprendizagem de características

associadas especificamente ao domínio do problema, foram realizadas mais 10

interações, utilizando: taxa de aprendizagem de 10-3, função de perda Binary Cross

Entropy e otimização Root Mean Squared Propagation (RMSprop).
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5.5. Avaliação de Modelo

As métricas de avaliação foram calculadas da seguinte maneira:

Para cada um dos modelos re-treinados foi realizada a validação no conjunto

de dados original - sem aumento artificial de dados - e a partir dos resultados foi

obtida a Matriz de Confusão, tabela que permite a visualização de classificações

corretas e incorretas, ou seja, verdadeiros-positivos (VP) e verdadeiros-negativos

(VN), bem como os falsos-positivos (FP) e os falsos-negativos (FN). Tais valores são

utilizados para calcular as métricas da Tabela 1:

Tabela 1: Descrição das métricas de avaliação

Métrica Descrição Fórmula

Acurácia Proporção de acertos em razão de todos os itens
classificados 𝐴 =

 𝑉
𝑃
 +  𝑉

𝑁

 𝑉
𝑃
 +  𝑉

𝑁
+ 𝐹

𝑃
 + 𝐹

𝑁

Sensibilidade Capacidade de encontrar todas as amostras
positivas 𝑆 =

 𝑉
𝑃

 𝑉
𝑃
  +  𝐹

𝑁

Especificidade Capacidade de encontrar todas as amostras
negativas 𝐸 =

 𝑉
𝑁

 𝑉
𝑁

  +  𝐹
𝑃

Precisão Capacidade de classificar como positivo somente
as amostras relevantes 𝑃 =

 𝑉
𝑃

 𝑉
𝑃
  +  𝐹

𝑃

F-score Média harmônica entre a precisão e
sensibilidade

𝐹1 = 2 · 𝑃 · 𝑆
𝑃 + 𝑆

Fonte: Adaptado de HARRISON (2019)

Em seguida, foi obtida a curva característica de operação do receptor (em

inglês, Receiver Operating Characteristic, ROC) que é uma ferramenta amplamente

utilizada para avaliar classificadores. Tal ferramenta, mostra a taxa dos VP

(Sensibilidade) em relação a taxa de FP (1 - Especificidade), na qual é calculada a

área sob a curva (em inglês, Area Under the Curve, AUC) no intuito de obter uma

métrica de valor único, entre 0 e 1, para comparar diferentes classificadores. Quanto

mais próximo de 1 melhor e abaixo de 0.5 será considerado um modelo ruim

(HARRISON, 2019).
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5.6. Teste Estatístico de Hipótese

No intuito de auxiliar na identificação da arquitetura que possui o melhor

desempenho através do método quantitativo, foi realizado um teste estatístico de

hipótese, tendo em vista a natureza aleatória das variáveis de treinamento. Dessa

forma, foi repetido o experimento 30 vezes para cada uma das arquiteturas,

coletando os resultados obtidos, para calcular o valor médio das métricas dentro de

um intervalo de confiança de 95% para apoiar a afirmação com base em evidências

estatísticas de amostras de uma população (GRUS, 2016, p. 94), conforme a

equação da Figura 8.

Figura 8: Equação do intervalo de confiança

𝑃(𝑋 − 𝑍 𝑎
2

σ
𝑛

≤ µ ≤ 𝑋 + 𝑍 𝑎
2

σ
𝑛

) =  1 −  α

Legenda:

● a média amostral;𝑋

● valor associado ao intervalo de confiança;𝑍 𝑎
2

● nível de significância;α

● desvio padrão amostral da média;σ
𝑛

● a média populacional;µ 

Fonte: Adaptado de WALPOLE (1993)
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5.7. Ferramentas utilizadas

O equipamento utilizado para execução deste trabalho possui as seguintes

especificações:

CPU: Intel Core i5-9300H @ 2.40GHz ~ 4.10GHz;

RAM: 16GB DDR4 ‎2666 MHz;

GPU: NVIDIA GeForce GTX 1650 4GB GDDR6;

HD: 512GB SSD M.2 NVMe.

As ferramentas utilizadas para a implementação e treinamento dos modelos

foram: Python, Anaconda, Jupyter Notebook, Scikit-Learn, Tensorflow e Keras.

Ademais, o código fonte utilizado neste experimento está disponível no Apêndice C.
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6. RESULTADOS E DISCUSSÃO

Esta seção busca apresentar e discutir os resultados obtidos.

O primeiro conjunto de modelo a ser analisado foi construído a partir da

arquitetura MobileNet V3 que objetiva balancear acurácia e performance na

classificação de imagens para utilização em dispositivos móveis com menor poder

computacional (QIAN, 2021). Os modelos com apenas 229 camadas e 939 mil

parâmetros obtiveram acurácia média de 65,22% e 84,56%, respectivamente, na

primeira e segunda fase de treinamento.

Ao submeter para avaliação, um dos exemplares do modelo, das 705

amostras analisadas 633 foram previstas corretamente, sendo: 380 casos positivos

de glaucoma (verdadeiros-positivos); e 253 casos normais, ou melhor, na qual não

há evidências de glaucoma (verdadeiros-falsos). Apenas 72 amostras foram

classificadas incorretamente, sendo: 16 falsos-negativos, imagens nas quais havia

indícios para glaucoma, entretanto foram classificadas como normais; e 56

falsos-positivos, imagens normais, mas que foram classificadas como positivo para

glaucoma. Os resultados podem ser visualizados na Figura 9.

Figura 9: Gráfico de treinamento e matriz de confusão de um modelo MobileNet V3

Fonte: Própria autoria
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Já o segundo conjunto de modelos foi concebido através da arquitetura

EfficientNet V2. Tal arquitetura tem como princípio alcançar maior velocidade de

treinamento e melhor eficiência de parâmetros (TAN, 2021). Com 270 camadas e 5

milhões de parâmetros, atingiu durante o treinamento acurácia média 61,20% na

primeira etapa, e 87,24% na segunda etapa.

Na avaliação, um exemplar desse conjunto, previu corretamente 648 das 705

amostras: 378 verdadeiros-positivos; e 270 verdadeiros-negativos. Apenas 57

amostras foram classificadas incorretamente, sendo: 18 falsos-negativos e 39

falsos-positivos. Os resultados podem ser visualizados na Figura 10.

Figura 10: Gráfico de treinamento e matriz de confusão de um modelo EfficientNet

V2

Fonte: Própria autoria

Ademais, a arquitetura RegNet que busca melhorar a escalabilidade para

dotá-la de maior complexidade computacional e consequentemente poder

representacional, através de estratégias de dimensionamento como aumento da

largura, profundidade, resolução do modelo entre outros (DOLLÁR, 2021). A partir

dela, modelos de apenas 143 camadas e 2 milhões de parâmetros, obtiveram

60,84% e 89,04% de acurácia média, respectivamente durante as etapas de

extração de features e ajuste fino de treinamento.

Durante a avaliação de um exemplar deste, conforme a Figura 11, as

previsões corretas somaram 649 amostras sendo: 377 verdadeiros-positivos e 272

verdadeiros-falsos. Já as previsões incorretas totalizaram 56 (37 falsos-positivos e

19 falsos-negativos).
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Figura 11: Gráfico de treinamento e matriz de confusão de um modelo RegNet

Fonte: Próprio autor

A arquitetura ConvNeXt almeja superioridade de acurácia e escalabilidade

através de abordagens híbridas entre os vieses indutivos inerentes da convolução e

transformers, técnica utilizada na aprendizagem de contextos em dados sequenciais,

como no processamento de linguagem natural (LIU, 2022). Com 295 camadas e 87

milhões de parâmetros, obteve 75,82% de acurácia média na primeira etapa e

96,31% de acurácia média na segunda etapa de treinamento.

Na avaliação de um exemplar do modelo em questão, de acordo com a

Figura 12, foram previstas corretamente 651 amostras (344 verdadeiros-positivos e

307 verdadeiros-negativos) das 705 do conjunto de dados. Enquanto as previsões

incorretas, somente 54 (52 falsos-negativos e 2 falsos-positivos).

Figura 12: Gráfico de treinamento e matriz de confusão de um modelo ConvNeXt

Fonte: Própria autoria
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A arquitetura ResNet-RS é motivada pela obtenção de superioridade de

acurácia com maior foco em estratégias de treinamento e escalabilidade ponderadas

do que em mudanças arquitetônicas (BELLO, 2021). Com impressionantes 1471

camadas e 128 milhões de parâmetros obteve acurácia média 73,04% ainda na

primeira fase de treinamento e 98,31% na segunda fase de treinamento.

Um exemplar desse conjunto, durante a avaliação, obteve 696 classificações

corretas (389 verdadeiros-positivos e 307 verdadeiros-negativos) e apenas 9

classificações incorretas (2 falsos-positivos e 7 falsos-negativos), observáveis na

Figura 13.

Figura 13: Gráfico de treinamento e matriz de confusão de um modelo ResNet-RS

Fonte: Própria autoria

Em geral, os resultados obtidos pelas arquiteturas nesse experimento foram

bastante competitivos, sobretudo quando comparado uma única amostra de cada

arquitetura, a diferença é quase imperceptível, vistas na Figura 14. Nesse sentido, a

fim de compará-los com maior precisão foram treinados 30 exemplares de cada

arquitetura e calculadas as métricas de avaliação em um intervalo de confiança de

95%. Conforme observado na Tabela 2, dois modelos se destacaram entre os

demais, sendo eles: ConvNeXt e ResNet-RS.
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Figura 14: Comparação ROC AUC entre os modelos

Fonte: Própria autoria

Tabela 2: Resultados das métricas de avaliação

Modelos Parâmetros Acurácia Sensibilidade Especificidade Precisão F-Score AUC

MobileNet V3 939.697 0,8930 (0,0066) 0,9495 (0,0059) 0,8207 (0,0170) 0,8727 (0,0102) 0,9091 (0,051) 0,9641 (0,0032)

EfficientNet V2 5.920.593 0,9020 (0,0039) 0,9660 (0,0032) 0,8201 (0,0107) 0,8735 (0,0065) 0,9173 (0,0030) 0,9702 (0,0008)

RegNet 2.337.009 0,9086 (0,0047) 0,9462 (0,0095) 0,8604 (0,0153) 0,8980 (0,0094) 0,9209 (0,0039) 0,9693 (0,0018)

ConvNeXt 87.567.489 0,9564 (0,0044) 0,9337 (0,0092) 0,9854 (0,0026) 0,9881 (0,0020) 0,9599 (0,0043) 0,9956 (0,0003)

ResNet-RS 128.057.569 0,9798 (0,0040) 0,9708 (0,0082) 0,9914 (0,0030) 0,9932 (0,0023) 0,9817 (0,0037) 0,9994 (0,0001)

Fonte: Própria Autoria
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7. CONCLUSÃO

Esta seção busca apresentar as considerações finais e indicar trabalhos

futuros.

Neste trabalho, foi apresentado uma estrutura de avaliação para 5 diferentes

arquiteturas de última geração de CNN, baseados em transferência de

aprendizagem para detecção automática de glaucoma, na qual foi possível comparar

o desempenho dos modelos, a partir de métricas amplamente utilizadas em

trabalhos relacionados na base de dados pública ACRIMA. No experimento

realizado o modelo ResNet-RS apresentou os melhores resultados em comparação

com os demais, obtendo 0,9994 de AUC com intervalo de confiança de 95% de

99,93-99,95%.

Ademais, embora os resultados sejam promissores e apresentem uma

melhoria significativa quando comparados aos trabalhos relacionados, é de

conhecimento as limitações deste trabalho. Dada a dificuldade em generalizar para

conjuntos de dados distintos dos usados para treinamento, mesmo com a utilização

do maior banco de dados público disponível e aumento de dados para realizar o

ajuste-fino dos modelos, tendo em vista a diversidade entre os pacientes, qualidade

das imagens e diferentes critérios de avaliação utilizados para rotulação do banco de

dados.

Em trabalhos futuros, planeja-se disponibilizar os modelos treinados em uma

plataforma online para fins de demonstração, contemplar a etapa de segmentação

da ROI de imagens, assim como, realizar estudos acerca de técnicas e processos

que permitam melhor compreensão dos resultados obtidos pelas inteligências

artificiais explicáveis (em inglês, eXplainable Artificial Intelligence, XAI). Outrossim,

recomenda-se a elaboração de um banco de dados volumoso com amostras de

exame de fundo de olho que melhor representem a diversidade étnica nacional.
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