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RESUMO

O glaucoma é a segunda causa mais comum de cegueira no mundo.
Estima-se que ja tenha afetado a visdo de cerca de 80 milhdes de pessoas e com
projecao de crescimento para os proximos anos. Por se tratar de uma doencga
assintomatica nas fases iniciais e incuravel, apenas retardada através de tratamento,
a deteccdo precoce € imprescindivel. Nesse sentido, projetar sistemas
automatizados eficazes para classificacdo da doenca se faz relevante, tendo em
vista que padrdes de desconformidades podem ser observados através de exame
de imagem, como o aumento da razado copo-disco, hemorragia e palidez. Este
trabalho se propés estudar a transferéncia de aprendizagem em Redes Neurais
Convolucionais avaliando o desempenho de cinco arquiteturas de ultima geragao
(MobileNet V3, EfficientNet V2, RegNet, ConvNeXt e ResNet-RS) na classificagdo de
diagnosticos de glaucoma. Os resultados obtidos nos extensivos experimentos
realizados, utilizando o maior conjunto de dados publico ACRIMA, apresentaram
area sob a curva caracteristica de operacao do receptor na detec¢ao de glaucoma
de 0,9994 com intervalo de confianga de 95% entre 99,93% e 99,95%. ldentificou-se

superioridade dos modelos ResNet-RS em relagéo aos demais.

Palavras-chaves: redes neurais convolucionais; transferéncia de
aprendizagem; classificacdo de imagem; diagnodstico de glaucoma; deteccédo por

oftalmoscopia;



ABSTRACT

Glaucoma is the second most common cause of blindness in the world. It is
estimated that it has already affected the vision of around 80 million people and is
projected to grow in the coming years. Because it is an asymptomatic disease in the
early stages and incurable, only delayed through treatment, early detection is
essential. In this sense, designing effective automated systems for classifying the
disease is relevant, given that patterns of non-compliance can be observed through
imaging, such as increased cup-to-disk ratio, hemorrhage and pallor. This work
aimed to study the transfer learning in Convolutional Neural Network evaluating the
performance of five state-of-the-art architectures (MobileNet V3, EfficientNet V2,
RegNet, ConvNeXt and ResNet-RS) in the classification of glaucoma diagnosis. The
results obtained in the extensive experiments carried out, using the largest public
dataset (ACRIMA), showed an area under the characteristic curve of operation of the
receiver in the detection of glaucoma of 0.9994 with a confidence interval of 95%
between 99.93% and 99.95%. The superiority of the ResNet-RS models was

identified in relation to the others.

Keywords: convolutional neural networks; learning transfer; image

classification; diagnosis of glaucoma; ophthalmoscopy detection;
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1. INTRODUGAO

Glaucoma €& um grupo de neuropatias Opticas progressivas associadas a
defeitos de campo visual caracteristicos e alteragdes estruturais na cabega do nervo
6ptico (LUSTHAUS, 2019). E a segunda causa mais comum de cegueira no mundo,
atras apenas da catarata, e estima-se que ja tenha afetado a visdo de cerca de 80
milhdes de pessoas, com projegédo de crescimento para 111 milhdes até 2040, e que
4 milhdes estejam cegas devido ao glaucoma, aponta o relatério sobre a visdo da
Organizagao Mundial de Saude (OMS, 2019).

A detecgao precoce do glaucoma € imprescindivel uma vez que se trata de
uma doenga assintomatica nas fases iniciais e ndo possa ser curada, apenas
retardada através de tratamento. O exame de fundo de olho é uma das principais e
populares modalidades para diagnosticar o glaucoma. Isso se deve por se tratar de
uma abordagem nao invasiva, logo adequada para triagem em larga escala, a fim de
que apenas casos suspeitos passem por exames complementares e sejam

acompanhados por especialistas (CHEN, X., 2015).

Estudos mostram que anormalidades na regido do disco Optico, como
aumento da razdo copo-disco, hemorragia e palidez, fornecem evidéncias
suficientes para a presenga de glaucoma (NATARAJAN, 2021). Nesse sentido,
projetar sistemas automatizados eficazes na detecgcao da doencga se faz relevante

para obtengcdo de uma menor taxa de erro no diagndstico (NAWAZ, 2022).

Figura 1: Diferenga visual entre um nervo éptico normal e com glaucoma

Fonte: Adaptada de DIAZ-PINTO (2019).
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2. REFERENCIAL TEORICO

2.1. Aprendizado de maquina

O termo “Aprendizado de Maquina” tem ganhado bastante relevancia na
ultima década, embora nao seja algo novo. A priori, definida como sendo o campo
de estudo que possibilita aos computadores a habilidade de aprender sem
explicitamente programa-los (SAMUEL, 1959). E a posteriori, compreendida pela
alegacdo de que um programa de computador aprende pela experiéncia E em
relacdo a algum tipo de tarefa T e alguma medida de desempenho P se o seu
desempenho em T, conforme medido por P, melhora com a experiéncia E
(MITCHELL, 1997).

Outra maneira de compreender o aprendizado de maquina é através da

classificagao da aprendizagem.
2.1.1.  Origem da aprendizagem

No aprendizado supervisionado, o conjunto de dados de treinamento
fornecido ao algoritmo inclui as solugdes desejadas, chamadas de roétulos. O
algoritmo se adapta aos dados fornecidos no intuito de realizar classificagées ou
previsdes de conjunto de dados nao rotulados (Data Science Academy, 2022).
Diferentemente do aprendizado nao-supervisionado, onde o conjunto de dados de
treinamento fornecido ao algoritmo né&o inclui as solugdes desejadas, os dados séo
analisados na busca de identificar agrupamentos ou correlagdes entre si. Bem como,
diferente da aprendizagem semi-supervisionada que € uma abordagem hibrida entre
as duas anteriores, na qual o algoritmo lida com dados de treinamento parcialmente
rotulados. Outrossim, do aprendizado por refor¢o, onde o algoritmo - chamado de
agente nesse contexto - obtém os dados através da interagdo com o ambiente,
selecionando e executando agdes, buscando maximizar recompensas € minimizar
penalidades. Tal abordagem serve para identificar a melhor estratégia, chamada de
politica, a qual define que agdo o agente deve escolher quando estd em
determinada situacdo (GERON, 2019, p. 13).
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2.1.2.  Frequéncia de aprendizagem

No aprendizado em lote ou por ciclo, o algoritmo, apods treinado, é colocado
em producao aplicando o que foi aprendido sem aprender com os novos dados que
sao submetidos. Para ocorrer um novo aprendizado, é necessario submeter o
algoritmo ao treinamento novamente do zero com todos os dados anteriores e
novos. Enquanto no aprendizado incremental, o algoritmo ¢é treinado
progressivamente, sendo fornecido os dados de forma sequencial, individual ou em
pequenos lotes. Nao sendo necessario submeter ao treinamento do zero ou

armazenar os dados historicos.
2.1.3.  Funcionamento da aprendizagem

No aprendizado baseado em instancia, o algoritmo memoriza os dados de
treinamento e os generaliza em novos casos, através de uma medida de
similaridade, a fim de compara-los a outros exemplos aprendidos. No aprendizado
baseado em modelo, o algoritmo constréi um modelo - fungdo matematica - cujos
parametros sao ajustados a tendéncia dos dados de treinamento. Apds treinado, o

modelo pode fazer predigdes em novos dados.
2.1.4. Desafios

Desafios recorrentes na utilizacdo de aprendizado de maquina sado a
quantidade insuficiente de dados de treinamento, dados de treinamento nao
representativos, dados de baixa qualidade, caracteristicas irrelevantes, subajuste e
sobreajuste dos dados de treinamento. Subajuste (underfitting) se refere a
incapacidade do modelo de apreender as relagdes mais importante do conjunto de
dados de um problema. Enquanto, sobreajuste (overfitting) diz respeito a ineficacia

de um modelo prever novos resultados, distinto daqueles utilizados no treinamento.
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2.2. Redes Neurais Artificiais

Os algoritmos de Redes Neurais Artificiais (RNAs) s&o modelos de
aprendizado de maquina inspirados nas redes neurais cerebrais biolégicas capazes
de resolver diversos problemas grandes e extremamente complexos por serem

versateis, poderosas e escalaveis.
2.2.1.  Neurébnios Biologicos

O neurdnio biolégico trata-se de uma célula encontrada principalmente no
cérebro de animais, constituida por um corpo celular que contém a maioria dos
elementos constituintes complexos da célula, e muitos prolongamentos ramificados
chamados de dendritos, além de uma extensdo bem longa chamada de axdénio. O
axobnio divide-se em ramificagdes menores, chamadas de telodendros, nos quais em
suas extremidades existem terminais sinapticos que estdo conectados aos dendritos

ou corpos celulares de outros neurénios (GERON, 2019, p. 216).

Figura 1: Representagdo Simplificada do Neurdnio Bioldgico

’\F {  Dendritos

%‘i@,\/’ - ‘vb;

\\ Axonio Ramificacdes
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ry
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Sentido do impulso nervoso

Fonte: Data Science Academy, 2022.

Os neurbnios biologicos produzem pequenos impulsos elétricos que
percorrem o0s axénios e fazem as sinapses emitirem sinais quimicos chamados de
neurotransmissores. Quando um neurénio recebe uma quantidade suficiente desses
estimulos em um curto intervalo, ele dispara seus proprios impulsos elétricos (Data
Science Academy, 2022).
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2.2.2.  Neurébnios Artificiais

Em 1943, McCulloch e Pitts propuseram um modelo simplificado de um
neurdnio bioldégico, simulando as caracteristicas de adaptagéo e representacéo de
conhecimentos baseadas em conexdes. No artigo, demonstraram que com um
modelo simples é possivel calcular qualquer légica proposicional (MCCULLOCH,;
PITTS, 1943 apud Data Science Academy, 2022).

2.2.3.  Perceptron

Inventado por Frank Rosenblatt (1957, apud GERON, 2019, p. 218), o
perceptron € uma das arquiteturas mais simples dos RNAs, na qual o neurbnio
artificial € chamado de Unidade Logica de Limiar (TLU). As entradas e saidas sao
valores numéricos e cada conexao de entrada esta associada a um peso. A TLU
realiza a soma ponderada de suas entradas, aplica uma funcao de ativacédo a essa

soma e transmite o resultado como saida.

Figura 2: Equacao de saida de um Perceptron

Legenda

Entrada
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Soma

Fungdo de Alivacio
Saida

-

L)
-
=

X2

)
/

Xn

< 8 M

y=o(X xw)
i=1

Fonte: Adaptado de Data Science Academy (2022).

O algoritmo de treinamento de um perceptron é inspirado na Lei de Hebb
(1949 apud GERON, 2019, p. 220). Essa lei pode ser sintetizada como: “Células que
acionam juntas, se conectam juntas”, em outras palavras, o peso da conexao entre
dois neurdnios tende a aumentar quando eles ativam simultaneamente. Inspirado

nisso, o algoritmo de treinamento refor¢a as conexdes entre os neurdnios de entrada

. . real
atualizando o peso w, buscando reduzir o erro entre o valor esperadoy e o valor
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. obtido . ~
obtido y “*° de uma entrada X auma taxa de aprendizado n, conforme a equacéao

da Figura 3.

Figura 3: Equacao de aprendizagem do perceptron

novo atual real obtido

= w, + xi(y -y m

Fonte: Adaptado de GERON (2019)

Os perceptrons nao conseguem aprender padrées complexos, como 0s
classificadores de regressao logistica, uma vez que a fronteira de decisao de cada
neurbnio de saida € linear. Entretanto, em 1957, Rosenblatt demonstrou com o
teorema da convergéncia do perceptron que se as instancias de treinamento forem
linearmente separaveis, o algoritmo converge para uma solugao. Além disso, uma
série de deficiéncias graves das perceptrons foram ressaltadas por Marvin Minsky e
Seymour Papert, em 1969, na monografia Perceptrons. Em especial, a incapacidade
de resolver alguns problemas corriqueiros, como por exemplo, o problema de
classificagdo Exclusive OR (XOR). Tais limitagdes s6 puderam ser contornadas
utilizando multiplas camadas de perceptrons (ROSENBLATT, 1957; MINSKY,
PAPERT, 1969 apud GERON, 2019, p. 220-221).

2.2.4.  Perceptron Multicamadas

Perceptron Multicamadas (MLP) é uma arquitetura complexa de RNA,
composta por uma camada de entrada, uma ou mais camadas ocultas e uma
camada de saida (Data Science Academy, 2022). Cada camada pode possuir uma
ou mais TLUs, e podem incluir neurénios de viés com exceg¢ao da camada de saida,
ilustrado na Figura 4. Quando uma RNA contém diversas camadas ocultas é
chamada de Rede Neural Profunda (RNP).

15



Figura 4: Rede Neural Multicamadas
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Fonte: Adaptado de GERON (2019).

Com o aumento da complexidade da arquitetura e numero de parametros,
treinar MLPs com sucesso se tornou um grande desafio. Entretanto, David
Rumelhart et. al (1986, apud GERON, 2019, p. 222) publicou um artigo com o
algoritmo de treinamento por retropropagagéo de erros resolvendo o problema. Esse
algoritmo consiste em duas fases: a fase de propagacao, na qual as entradas sao
transmitidas por toda a rede e as previsbes de saida sdo geradas; e a fase de
retro-propagacéo, em que é calculada o gradiente da fungdo de perda na camada de
previsao e recursivamente é atualizado os pesos da rede através da regra da cadeia
(Data Science Academy, 2022).
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2.3. Processamento Digital de Imagens
2.3.1. Representagdo

Imagens sao representadas digitalmente como uma matriz bidimensional
(altura e largura) de pontos de cor conhecidos como pixels, cada pixel é
representado como: um numeérico indicando a intensidade da cor preta, para
imagens em escala de cinza; ou um vetor com os valores numeéricos da intensidade

das cores vermelho, verde e azul - chamados de canais - para imagens coloridas.

Figura 5: Representacao digital de uma imagem

Fonte: Adaptada de DIAZ-PINTO (2019).

2.3.2. Cortex Visual

A percepgdo de uma imagem apesar de ser uma atividade aparentemente
simples para os seres humanos nao € tao simples de ser explicada, muito menos
reproduzida por um computador. O fato é que a percepgao ocorre em grande parte
fora do dominio de nossa consciéncia, dentro de moédulos sensoriais visuais do
cérebro. Uma vez que a informagao sensorial chega a nossa consciéncia ja dotada
com caracteristicas de alto nivel. Segundo Hubel e Wiesel (1968, apud GERON,
2019, p. 345), os neurbnios do cortex visual ttm um pequeno campo receptivo local,
ou seja, reagem apenas a estimulos visuais localizados em uma regiao limitada do
campo visual. Os campos receptivos de diferentes neurdnios podem se sobrepor e
juntos, revestir todo o campo visual. Além disso, demonstraram que diferentes
neurénios, ao analisar o0 mesmo campo receptivo, reagem de maneira distinta a
depender da orientagdo das linhas que compdéem o campo receptivo, pois cada
neurdnio reage somente a linhas com especificas orientagdes. Identificaram também
que alguns neurdnios possuem campos receptivos maiores e reagem a padrbes

17



mais complexos, que sao combinacdes dos padrbes de camadas de nivel anterior.
Tais observagdes culminaram na ideia de que os neurbnios de camadas mais
profundas tomam como base as saidas dos neurbnios de camadas vizinhas menos

profundas.

2.4. Redes Neurais Convolucionais

Esses estudos acerca do cortex visual serviram como inspiragdo para uma
das redes neurais precursoras em reconhecimento de padrbes de imagens,
chamada de neocognitron, apresentada por Fukushima (1980, apud GERON, p.
346), que gradativamente evoluiu para o que hoje chamamos de Redes Neurais
Convolucionais (em inglés, Convolutional Neural Networks ou CNN), ganhando
notoriedade através do artigo publicado por LeCun (1998 apud NIELSEN, 2023). Tal
rede é constituida por dois novos tipos de elementos: as Camadas Convolucionais e

Camadas de Subamostragem.

2.4.1. Camada de Convolugédo

A camada de convolugao € responsavel por extrair caracteristicas da imagem
de entrada, passo a passo, através da estratégia de janela deslizante, multiplicando
0s pesos em cada filtro (kernel) pelos valores de pixels e combinando a soma para

criar uma nova imagem passada para a proxima camada.

Um filtro de convolugdo trata-se de uma pequena matriz de pesos, cujo
tamanho representa o campo receptivo, como 3x3, que quando percorre a um dado
passo (stride) - por exemplo a cada um pixel da direita a esquerda de cima para
baixo - multiplicando uma matriz de pixels 24x24 gera como resultado outra matriz
de pixels, de mesmo tamanho quando preenchida com zero (zero-padding) bordas
imaginarias ou de tamanho menor (22x22), que a depender dos pesos pode
desfocar elementos, destacar relevo, detectar bordas e reconhecer caracteristicas

(NIELSEN, 2023). A Figura 6 demonstra o resultado da aplicag&o de alguns filtros.
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Figura 6: Demonstracao de Filtros Convolucionais

IDENTITY XSOBEL YSOBEL XYSOBEL
0 0 0 1 = 1 1 0 1
0 1 0 0 0 0 2 0 2
0 o] 0 1 2 1 -1 4] 1

Fonte: Prépria autoria

2.4.2. Camada de Subamostragem

A camada de subamostragem desempenha o papel de redugdo da
amostragem, ou seja, reduzir o numero de dados para economizar recursos
computacionais. Consiste em condensar os mapas de caracteristicas obtidos pela
camada anterior, em mapas de caracteristicas menores, digamos que uma regiao de
2x2 possa ser representado como um unico valor, aplicando alguma técnica como
representar o agrupamento através do valor maximo (max polling), valor minimo (min
polling) ou valor médio (average polling). Desta forma, um mapa de caracteristicas
de tamanho 24x24, por exemplo, pode ser representado com menos informagdes e
menor exatiddo posicional por um mapa de caracteristicas de tamanho 12x12
(NIELSEN, 2023).
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2.4.3. Camada Totalmente Conectada

Por fim, a matriz de pixels da imagem resultante das camadas anteriores
passa por uma camada plana para ser convertida em uma matriz unidimensional,
para entao ser submetida a uma camada densa de saida que usa essa matriz como
entrada para produzir o rétulo previsto aplicando a combinagéao linear e a funcao de

ativacao nao linear (Data Science Academy, 2022).

2.4.4. Arquitetura de uma Rede Neural Convolucional

As camadas de convolugcdo e subamostragem podem se repetir, tornando a
rede ainda mais profunda, atribuindo diferentes tamanhos de mapa de
caracteristicas e serem combinadas com outras técnicas, ilustrado na Figura 7.
Competicdes, como a ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), tém motivado pesquisadores a criar, aperfeigoar, testar e disponibilizar
diversas abordagens de arquiteturas buscando obter melhor desempenho. Tudo
isso, utilizando conjuntos de dados volumosos, por exemplo o ImageNet que contém

mais de um milhdo de imagens de mil classes diferentes de objetos.

Figura 7: Arquitetura de uma Rede Neural Convolucional

Glaucomatous

O

Input Convolution Pooling Convolution Pooling Flatten Fully Connected
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Fonte: Prépria autoria
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2.4.5.  Transferéncia de Aprendizagem

Transferéncia de Aprendizagem é uma técnica utilizada para melhorar a
eficiéncia do treinamento de classificadores de imagens, sem a necessidade de um
conjunto de dados de treinamento expressivo, reutilizando os pesos aprendidos de
um modelo pré-treinado em um banco de dados de imagens volumoso para realizar
uma certa tarefa, por exemplo: distinguir cades e gatos, para outra, como: diferenciar

exames de fundo de olho com ou sem glaucoma.

Isso é possivel, pois as caracteristicas apreendidas pelas camadas inferiores
(camadas de convolugdo e camadas de subamostragem), como: linhas e arestas,
costumam estar relacionadas. Embora seja questionavel a semelhanca entre a
aparéncia de imagens ndo-médicas e imagens médicas, diversos estudos
evidenciam as vantagens da utilizacdo (CARNEIRO, 2015; CHEN, H., 2015;
TAJBAKHSH, 2016, apud DIAZ-PINTO, 2019).

A técnica consiste na importagdo de um modelo com pesos pré-definidos,
sem as camadas superiores (camada de média global e a camada densa de saida)
que sao responsaveis pelo aprendizado da classificagdo no contexto de treinamento
inicial, na qual sdo adicionadas camadas superiores proprias para classificagdao em
um novo contexto (GERON, 2019, p. 371).

Segundo o TensorFlow (2023), o treinamento utilizando a técnica é realizado
em duas etapas: Na primeira, chamada de extragdo de recursos, as camadas
inferiores sao congeladas, ou seja, definidas como nao treinaveis. Nesta fase,
apenas as camadas superiores adicionadas sdo treinadas para se adequar aos
pesos pré-existentes; Ja na segunda etapa de treinamento, chamada de ajuste fino,
as camadas inferiores sdo descongeladas, ou seja, definidas como treinaveis, além
de ser utilizada uma taxa de treinamento menor que na etapa anterior. Tal fase
consiste em ajustar os pesos das camadas superiores de mapas de caracteristicas
genéricas para mapas de caracteristicas associados especificamente ao conjunto de

dados de treinamento fornecido.
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2.5. Técnicas de Regularizagao

Quanto mais parametros possuir um modelo, mais versatil sera para se
acomodar a um conjunto de dados complexos. Entretanto, essa flexibilidade também
significa que a rede esta propensa a se sobreajustar ao conjunto de treinamento,

sendo necessarias regularizagdes (GERON, 2019, p. 280).
2.5.1.  Dropout

Dropout € uma técnica para omitir a participagao de um subconjunto aleatério
de neurbnios em uma ou mais camadas, com exce¢ao da camada de saida, durante
o treinamento a fim de reduzir a dependéncia exagerada de alguns neurdnios,
fazendo com que a rede neural se torne mais robusta e generalize melhor
(KRIZHEVSKY, 2017).

2.5.2. Data Augmentation

Data Augmentation € uma técnica para expandir artificialmente o tamanho do
conjunto de dados de treinamento, gerando diversas variantes realistas de cada
instancia de treinamento. Trata-se de uma técnica de regularizagdo que busca
reduzir o sobreajuste adicionando novas instancias resultantes do deslocamento,
rotacéo, redimensionamento, giro horizontal, giro vertical ou alteragao das condigcdes
de iluminagdo das imagens existentes, de maneira aleat6ria, no conjunto de dados
de treinamento (GERON, 2019, p. 360).
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3. TRABALHOS RELACIONADOS

Esta segéo busca apresentar a revisao bibliografica acerca de trabalhos sobre
sistemas de detecgéo de glaucoma baseados em aprendizado profundo.

Chen X. et al. (2015) implementou e treinou do zero um modelo de arquitetura
de CNN, constituido por seis camadas, sendo quatro camadas convolucionais e
duas totalmente conectadas. Esse modelo foi treinado em dois conjuntos de dados
privados: ORIGA que contém 650 imagens (sendo 168 com glaucoma e 482
normais) e SCES que contém 1676 (sendo 46 com glaucoma e 1630 normais), e
foram obtidos os seguintes valores de area sob a curva (AUC) 0,831 e 0,887. As
principais limitagbes observadas neste estudo foram o desbalanceamento das
amostras de cada uma das classes, bem como, a dificuldade de reproduzir o
experimento uma vez que se trata de um conjunto de dados privado.

Diaz-Pinto et al. (2019), comparou diferentes modelos pré-treinados - no
conjunto de dados I/mageNet - de cinco arquiteturas de CNN (VGG16, VGG19,
InceptionV3, ResNet50 e Xception) para classificagdo de glaucoma. Esses modelos
foram treinados e avaliados em cinco conjuntos de dados publicos: ACRIMA que
contém 705 imagens (sendo 396 com glaucoma e 309 normais), HRF que contém
45 imagens (sendo 27 com glaucoma e 18 normais), Drishiti-GS1 que contém 101
imagens (sendo 70 com glaucoma e 31 normais), RIM-ONE que contém 455
imagens (sendo 194 com glaucoma e 261 normais), sjchoi86-HRF que contém 401
(sendo 101 com glaucoma e 300 normais), e foram obtidos respectivamente os
seguintes valores de AUC 0,7678, 0,8041, 0,8575 e 0,7739 pelo modelo Xception
que apresentou melhor custo beneficio entre AUC e numero de parametros.

Natarajan et al. (2021), apresentou uma estrutura robusta para segmentagao
da regido de interesse (ROI) e classificagdo do glaucoma, utilizando para
classificagdo um modelo, baseado na arquitetura SqueezeNet, treinado nos
conjuntos de dados RIGA e RIM-ONE-V2 e testadas nos conjuntos de dados
ACRIMA, Drishti-GS1 e RIM-ONE-V1, obtendo os respectivos valores de AUC,
0,9999, 0,9990 e 1,0000.

Nawaz et al. (2022), realizou um trabalho robusto composto em dois estagios
utilizando EfficientDet-DO para segmentacdo e EfficientNet-BO para classificagao.
Esta solugdo foi treinada no conjunto de dados ORIGA, testado nos conjuntos de
dados HRF e RIM-ONE-DL, obteve valores de AUC de 0.979.
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Noury et al. (2022), propés uma sofisticada solugdo em aprendizado profundo
para detecgdo de glaucoma em tomografias 3D. Na qual, validou a arquitetura de
CNN 3D em trés conjuntos de dados etnicamente diferentes, obtendo 0,91, 0,80,
0,94 e 0,87 de AUC, respectivamente, em base de dados de Stanford, Hong Kong,
India e Nepal.

Este trabalho apresenta uma estrutura simplificada de detecc¢ao de glaucoma
sendo realizado apenas o estagio de classificacdo, foram utilizadas como entradas
para os modelos pré-treinados imagens 2D previamente recortadas na ROI,

conforme descrito nas sec¢des a seguir.
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4. OBJETIVO
4.1. Objetivo Geral

Avaliar o desempenho de modelos pré-treinados, construidos a partir das
mais recentes e publicas arquiteturas de CNN, re-treinando-as para classificacao de

diagndsticos de glaucoma.

4.2. Objetivo Especifico
e Aprofundar o conhecimento cientifico do estudante no tema por meio
de revisao da fundamentacgao tedrica;
e Transferir aprendizagem de modelos pré-treinados para classificacao
de imagens em um novo contexto;
e Avaliar as métricas de desempenho obtidas dos modelos de cada uma

das arquiteturas.
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5. METODOLOGIA

Esta secdo busca delimitar os procedimentos metodolégicos de execugéo

deste trabalho.
5.1. Revisao Bibliografica

A revisao bibliografica foi realizada a partir de livros e publica¢des cientificas
existentes nos principais indexadores de repositorios de periddicos cientificos, como
SciELO ou Google Scholar. Utilizando as palavras-chaves da referida tematica, por
exemplo: “convolutional neural network”, “glaucoma classification”, “transfer
learning”, “deep learning” e “artificial intelligence”, priorizando publicacbes mais

relevantes e recentes.
5.2. Selegao das Arquiteturas

A selegédo das arquiteturas das CNN se deu através dos seguintes critérios:
disponibilidade da implementagao no framework Keras; adequagao ao problema de
classificagdo de imagens; data de publicacdo do artigo de referéncia até 4 anos

anteriores da data de realizacéo deste trabalho.

Nesse sentido, as arquiteturas selecionadas foram: ConvNeXt, ResNet-RS,
RegNet, MobileNetV3 e EfficientNetV2, conforme pode ser observado no Apéndice
A.

5.3. Aquisicao de conjunto de dados

A escolha do conjunto de dados a ser utilizado para o treinamento e validagao
dos modelos foi realizada sobre os seguintes critérios: disponibilidade em
repositorios de dominio publico utilizado em trabalhos relacionados; maior numero
de amostras possiveis; adequacao a proposta de classificacado, ou seja, previamente

segmentadas e rotuladas por especialistas.

O conjunto de dados que melhor satisfaz os critérios acima, segundo a
pesquisa realizada, foi o ACRIMA, composto de 705 imagens, sendo 309 normal e

396 com glaucoma, mais detalhes da selecdo no Apéndice B.

Tal conjunto de dados foi elaborado pelo projeto TIN2013-46751-R, fundado

pelo Ministério de Economia e Competitividade da Espanha com o objetivo de
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desenvolver algoritmos automaticos para avaliagdo de doengas da retina. No qual,
todas as imagens foram obtidas em um angulo de visao de 35°, utilizando a camera
retinal Topcon TRC e o sistema de captura IMAGEnet. A partir de pacientes -
selecionados por especialistas - que consentiram previamente seguindo os padroes
éticos da Declaracdo de Helsinque 1964 (DIAZ-PINTO, 2019).

5.4. Treinamento de modelos

O treinamento supervisionado ocorreu por transferéncia de aprendizagem,
baseando-se no guia do TensorFlow (2023), os modelos foram submetidos ao
mesmo conjunto de dados, algoritmos de otimizagéo, fungdo de perda, numero de

amostras e interagdes.

Para realizagao do treinamento, o conjunto de dados foi dividido em 80% para
treinamento e 20% para teste, assim como, aumentado artificialmente adicionando
variagdes de rotagao aleatérias em até 40 graus e sendo submetido em lotes de 16

amostras - escolhidas ao acaso - de imagens com 224x224 pixels cada.

Na etapa de extracdo de caracteristicas, na qual apenas a camada superior
que substituiu a utilizada na classificagdo de origem é submetida ao treinamento,
foram realizadas 10 interagdes, utilizando: taxa de aprendizagem de 10*, funcéo de

perda Binary Cross Entropy e otimizagao Adaptive Moment Estimation (Adam).

Na etapa de ajuste fino, na qual a aprendizagem de -caracteristicas
associadas especificamente ao dominio do problema, foram realizadas mais 10
interagdes, utilizando: taxa de aprendizagem de 107, fungéo de perda Binary Cross

Entropy e otimizagdo Root Mean Squared Propagation (RMSprop).
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5.5. Avaliagao de Modelo

As métricas de avaliagdo foram calculadas da seguinte maneira:

Para cada um dos modelos re-treinados foi realizada a validagdo no conjunto
de dados original - sem aumento artificial de dados - e a partir dos resultados foi
obtida a Matriz de Confusdo, tabela que permite a visualizagdo de classificagcoes
corretas e incorretas, ou seja, verdadeiros-positivos (Vp) € verdadeiros-negativos
(Vy), bem como os falsos-positivos (Fp) e os falsos-negativos (Fy). Tais valores sao

utilizados para calcular as métricas da Tabela 1:

Tabela 1: Descricdo das métricas de avaliagao

Métrica Descricao Férmula
Acuracia Proporcao de acertos em razao de todos os itens A= V,+V,
classificados V,+ V +F +F,
Sensibilidade Capacidade de encontrar todas as amostras 5 = Yy
positivas V. +F
P N
Especificidade Capacidade de encontrar todas as amostras E = vy
negativas vV, +F,
Precisao Capacidade de classificar como positivo somente p = v,
as amostras relevantes V,+F,
F-score Média harmdnica entre a precisao e Fl1 =2 - p-S
sensibilidade P+S

Fonte: Adaptado de HARRISON (2019)

Em seguida, foi obtida a curva caracteristica de operacdo do receptor (em
inglés, Receiver Operating Characteristic, ROC) que é uma ferramenta amplamente
utilizada para avaliar classificadores. Tal ferramenta, mostra a taxa dos V;
(Sensibilidade) em relagdo a taxa de Fp (1 - Especificidade), na qual é calculada a
area sob a curva (em inglés, Area Under the Curve, AUC) no intuito de obter uma
métrica de valor unico, entre 0 e 1, para comparar diferentes classificadores. Quanto
mais préximo de 1 melhor e abaixo de 0.5 sera considerado um modelo ruim
(HARRISON, 2019).
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5.6. Teste Estatistico de Hipétese

No intuito de auxiliar na identificagdo da arquitetura que possui o melhor
desempenho através do método quantitativo, foi realizado um teste estatistico de
hipdtese, tendo em vista a natureza aleatdria das variaveis de treinamento. Dessa
forma, foi repetido o experimento 30 vezes para cada uma das arquiteturas,
coletando os resultados obtidos, para calcular o valor médio das métricas dentro de
um intervalo de confianca de 95% para apoiar a afirmagao com base em evidéncias
estatisticas de amostras de uma populacdo (GRUS, 2016, p. 94), conforme a

equacgao da Figura 8.

Figura 8: Equacao do intervalo de confianca

PX-Z.,~<p<X+Z,~2)
2 7

=1—- «

Legenda:

e X a média amostral;

e 7, valor associado ao intervalo de confianga;

2

e « nivel de significancia;

e —— desvio padrdo amostral da média;

\n

1w a média populacional;

Fonte: Adaptado de WALPOLE (1993)
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5.7. Ferramentas utilizadas

O equipamento utilizado para execugédo deste trabalho possui as seguintes
especificagoes:

CPU: Intel Core i5-9300H @ 2.40GHz ~ 4.10GHz;
RAM: 16GB DDR4 2666 MHz;

GPU: NVIDIA GeForce GTX 1650 4GB GDDRG;
HD: 512GB SSD M.2 NVMe.

As ferramentas utilizadas para a implementagao e treinamento dos modelos
foram: Python, Anaconda, Jupyter Notebook, Scikit-Learn, Tensorflow e Keras.

Ademais, o cédigo fonte utilizado neste experimento esta disponivel no Apéndice C.
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6. RESULTADOS E DISCUSSAO

Esta secéo busca apresentar e discutir os resultados obtidos.

O primeiro conjunto de modelo a ser analisado foi construido a partir da
arquitetura MobileNet V3 que objetiva balancear acuracia e performance na
classificagdo de imagens para utilizagdo em dispositivos mdveis com menor poder
computacional (QIAN, 2021). Os modelos com apenas 229 camadas e 939 mil
parametros obtiveram acuracia média de 65,22% e 84,56%, respectivamente, na

primeira e segunda fase de treinamento.

Ao submeter para avaliagdo, um dos exemplares do modelo, das 705
amostras analisadas 633 foram previstas corretamente, sendo: 380 casos positivos
de glaucoma (verdadeiros-positivos); e 253 casos normais, ou melhor, na qual nao
ha evidéncias de glaucoma (verdadeiros-falsos). Apenas 72 amostras foram
classificadas incorretamente, sendo: 16 falsos-negativos, imagens nas quais havia
indicios para glaucoma, entretanto foram classificadas como normais; e 56
falsos-positivos, imagens normais, mas que foram classificadas como positivo para

glaucoma. Os resultados podem ser visualizados na Figura 9.

Figura 9: Grafico de treinamento e matriz de confusdo de um modelo MobileNet V3
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Fonte: Prépria autoria
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Ja o segundo conjunto de modelos foi concebido através da arquitetura
EfficientNet V2. Tal arquitetura tem como principio alcancar maior velocidade de
treinamento e melhor eficiéncia de parametros (TAN, 2021). Com 270 camadas € 5
milhdes de parémetros, atingiu durante o treinamento acuracia média 61,20% na

primeira etapa, e 87,24% na segunda etapa.

Na avaliacdo, um exemplar desse conjunto, previu corretamente 648 das 705
amostras: 378 verdadeiros-positivos; e 270 verdadeiros-negativos. Apenas 57
amostras foram classificadas incorretamente, sendo: 18 falsos-negativos e 39

falsos-positivos. Os resultados podem ser visualizados na Figura 10.

Figura 10: Grafico de treinamento e matriz de confusdo de um modelo EfficientNet
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Fonte: Prépria autoria

Ademais, a arquitetura RegNet que busca melhorar a escalabilidade para
dota-la de maior complexidade computacional e consequentemente poder
representacional, através de estratégias de dimensionamento como aumento da
largura, profundidade, resolucdo do modelo entre outros (DOLLAR, 2021). A partir
dela, modelos de apenas 143 camadas e 2 milhdes de parametros, obtiveram
60,84% e 89,04% de acuracia média, respectivamente durante as etapas de

extragcao de features e ajuste fino de treinamento.

Durante a avaliagdo de um exemplar deste, conforme a Figura 11, as
previsdes corretas somaram 649 amostras sendo: 377 verdadeiros-positivos e 272
verdadeiros-falsos. Ja as previsdes incorretas totalizaram 56 (37 falsos-positivos e

19 falsos-negativos).
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Figura 11: Grafico de treinamento e matriz de confusdo de um modelo RegNet
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Fonte: Proprio autor

A arquitetura ConvNeXt almeja superioridade de acuracia e escalabilidade
através de abordagens hibridas entre os vieses indutivos inerentes da convolugéo e
transformers, técnica utilizada na aprendizagem de contextos em dados sequenciais,
como no processamento de linguagem natural (LIU, 2022). Com 295 camadas e 87
milhbes de parametros, obteve 75,82% de acuracia média na primeira etapa e

96,31% de acuracia média na segunda etapa de treinamento.

Na avaliacdo de um exemplar do modelo em questdo, de acordo com a
Figura 12, foram previstas corretamente 651 amostras (344 verdadeiros-positivos e
307 verdadeiros-negativos) das 705 do conjunto de dados. Enquanto as previsdes

incorretas, somente 54 (52 falsos-negativos e 2 falsos-positivos).

Figura 12: Grafico de treinamento e matriz de confusdo de um modelo ConvNeXt
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A arquitetura ResNet-RS é motivada pela obtencdo de superioridade de
acuracia com maior foco em estratégias de treinamento e escalabilidade ponderadas
do que em mudangas arquitetbnicas (BELLO, 2021). Com impressionantes 1471
camadas e 128 milhdes de parametros obteve acuracia média 73,04% ainda na
primeira fase de treinamento e 98,31% na segunda fase de treinamento.

Um exemplar desse conjunto, durante a avaliagao, obteve 696 classificacoes
corretas (389 verdadeiros-positivos e 307 verdadeiros-negativos) e apenas 9

classificacdes incorretas (2 falsos-positivos e 7 falsos-negativos), observaveis na
Figura 13.

Figura 13: Grafico de treinamento e matriz de confus&do de um modelo ResNet-RS
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Fonte: Prépria autoria

Em geral, os resultados obtidos pelas arquiteturas nesse experimento foram
bastante competitivos, sobretudo quando comparado uma unica amostra de cada
arquitetura, a diferenga é quase imperceptivel, vistas na Figura 14. Nesse sentido, a
fim de compara-los com maior precisdo foram treinados 30 exemplares de cada
arquitetura e calculadas as métricas de avaliagdo em um intervalo de confianga de
95%. Conforme observado na Tabela 2, dois modelos se destacaram entre os
demais, sendo eles: ConvNeXt e ResNet-RS.
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Figura 14: Comparagdo ROC AUC entre os modelos
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Tabela 2: Resultados das métricas de avaliagao

Modelos Parametros Acuracia Sensibilidade Especificidade Preciséao F-Score AUC
MobileNet V3 939.697 0,8930 (0,0066) | 0,9495 (0,0059) | 0,8207 (0,0170) | 0,8727 (0,0102) 0,9091 (0,051) 0,9641 (0,0032)
EfficientNet V2 5.920.593 0,9020 (0,0039) | 0,9660 (0,0032) | 0,8201 (0,0107) | 0,8735 (0,0065) | 0,9173(0,0030) | 0,9702 (0,0008)

RegNet 2.337.009 0,9086 (0,0047) | 0,9462 (0,0095) | 0,8604 (0,0153) | 0,8980 (0,0094) | 0,9209 (0,0039) | 0,9693 (0,0018)

ConvNeXt 87.567.489 0,9564 (0,0044) | 0,9337 (0,0092) | 0,9854 (0,0026) | 0,9881 (0,0020) | 0,9599 (0,0043) | 0,9956 (0,0003)

ResNet-RS 128.057.569 0,9798 (0,0040) | 0,9708 (0,0082) | 0,9914 (0,0030) | 0,9932 (0,0023) | 0,9817 (0,0037) | 0,9994 (0,0001)

Fonte

: Propria Autoria
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7. CONCLUSAO

Esta secdo busca apresentar as consideragdes finais e indicar trabalhos

futuros.

Neste trabalho, foi apresentado uma estrutura de avaliagao para 5 diferentes
arquiteturas de ultima geracdo de CNN, baseados em transferéncia de
aprendizagem para detecgédo automatica de glaucoma, na qual foi possivel comparar
o desempenho dos modelos, a partir de métricas amplamente utilizadas em
trabalhos relacionados na base de dados publica ACRIMA. No experimento
realizado o modelo ResNet-RS apresentou os melhores resultados em comparagao
com os demais, obtendo 0,9994 de AUC com intervalo de confiangca de 95% de
99,93-99,95%.

Ademais, embora os resultados sejam promissores e apresentem uma
melhoria significativa quando comparados aos trabalhos relacionados, é de
conhecimento as limitagbes deste trabalho. Dada a dificuldade em generalizar para
conjuntos de dados distintos dos usados para treinamento, mesmo com a utilizagao
do maior banco de dados publico disponivel e aumento de dados para realizar o
ajuste-fino dos modelos, tendo em vista a diversidade entre os pacientes, qualidade
das imagens e diferentes critérios de avaliag&o utilizados para rotulagdo do banco de

dados.

Em trabalhos futuros, planeja-se disponibilizar os modelos treinados em uma
plataforma online para fins de demonstracéo, contemplar a etapa de segmentacgao
da ROI de imagens, assim como, realizar estudos acerca de técnicas e processos
que permitam melhor compreensao dos resultados obtidos pelas inteligéncias
artificiais explicaveis (em inglés, eXplainable Artificial Intelligence, XAl). Outrossim,
recomenda-se a elaboracdo de um banco de dados volumoso com amostras de

exame de fundo de olho que melhor representem a diversidade étnica nacional.
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APENDICE A

PUBLICACOES DE REFERENCIA DAS ARQUITETURAS DE CNN

Arquitetura

Artigo

Ano

ConvNeXt

LIU, Zhuang et al. A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022. p. 11976-11986.

2022

ResNet-RS

BELLO, Irwan et al. Revisiting resnets: Improved training and scaling strategies. Advances
in Neural Information Processing Systems, v. 34, p. 22614-22627, 2021.

2021

RegNet

DOLLAR, Piotr; SINGH, Mannat; GIRSHICK, Ross. Fast and accurate model scaling. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021. p. 924-932.

2021

MobileNet V3

QIAN, Siying; NING, Chenran; HU, Yuepeng. MobileNetV3 for image classification. In: 2021
IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of
Things Engineering (ICBAIE). IEEE, 2021. p. 490-497.

2021

EfficientNet V2

TAN, Mingxing; LE, Quoc. Efficientnetv2: Smaller models and faster training. In:
International conference on machine learning. PMLR, 2021. p. 10096-10106.

2021

EfficientNet

TAN, Mingxing; LE, Quoc. Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International conference on machine learning. PMLR, 2019. p. 6105-6114.

2019

NASNet

ZOPH, Barret et al. Learning transferable architectures for scalable image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018. p. 8697-8710.

2018

MobileNet V2

SANDLER, Mark et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2018. p. 4510-4520.

2018

Xception V1

CHOLLET, Frangois. Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2017. p. 1251-1258.

2017

MobileNet

HOWARD, Andrew G. et al. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861, 2017.

2017

Inception-ResNet V2

SZEGEDY, Christian et al. Inception-v4, inception-resnet and the impact of residual
connections on learning. In: Proceedings of the AAAI conference on artificial
intelligence. 2017.

2017

DenseNet

HUANG, Gao et al. Densely connected convolutional networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017. p. 4700-4708.

2017

ResNet V2

HE, Kaiming et al. Identity mappings in deep residual networks. In: Computer
Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing,
2016. p. 630-645.

2016

ResNet / ResNet50

HE, Kaiming et al. Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016. p. 770-778.

2016

Inception V3

SZEGEDY, Christian et al. Rethinking the inception architecture for computer vision. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016. p. 2818-2826.

2016

VGG16 /VGG19

SIMONYAN, Karen; ZISSERMAN, Andrew. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

2014

Fonte: Préprio Autor
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APENDICE B

PRINCIPAIS CONJUNTOS DE DADOS PUBLICOS EXISTENTES

Nome Artigo Normal Glaucoma Total Finalidade
ALMAZROA, Ahmed et al. Retinal fundus images for glaucoma analysis: the RIGA dataset. In: Medical
RIGA Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications. SPIE, 2018. p. - - 750 Segmentacdo
55-62.
DIAZ-PINTO, Andres et al. CNNs for automatic glaucoma assessment using fundus images: an extensive
ACRIMA validation. Biomedical engineering online, v. 18, p. 1-19, 2019. 309 396 705 Classificaggo
SIVASWAMY, Jayanthi et al. A comprehensive retinal image dataset for the assessment of glaucoma from
Drishti-S1 the optic nerve head analysis. JSM Biomedical Imaging Data Papers, v. 2, n. 1, p. 1004, 2015. 31 70 101 Classificagao
BATISTA, Francisco et al. Rim-one dI: A unified retinal image database for assessing glaucoma using
RIM-ONEV1 deep learning. Image Analysis & Stereology, v. 39, n. 3, p. 161-167, 2020. "8 51 169 Classificagao
BATISTA, Francisco et al. Rim-one dl: A unified retinal image database for assessing glaucoma using
RIM-ONEv2 255 200 455 Classificagao

deep learning. Image Analysis & Stereology, v. 39, n. 3, p. 161-167, 2020.

Fonte: Préprio Autor
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APENDICE C

CODIGO FONTE UTILIZADO NO EXPERIMENTO

' glaucoma.py *

C: > Users » JULIO > Documents > GitHub > CNNs > @ glaucoma.py > & generate_augmented_training_dataset

1

wOooo o~ M

R T e = e e
[ N R N T =

import os

import math

import tensorflow as tf

import keras as K

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import roc_curve, roc_auc_score
from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense, Dropout, GlobalAveragePooling2D

print("TensorFlow Version:", tf._ version_ )
print("Keras Version:", K._version_ )

DATASET_DIR = "glaucoma_datasets”

def resolve path(relative path):
return os.path.join(DATASET DIR, relative path)
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20
21 def generate_augmented_training_dataset(directory_path, target_size = (224, 22&), batch_size = 16):

22 train_datagen = ImageDataGenerator(
23 validation_split=0.2,

24 horizontal flip = True,

25 vertical flip = True,

26 rotation_range=40,

27 fill_mode='nearest')

28

29 training_set = train_datagen.flow_from_directory(
30 directory_path,

31 subset="training’,

32 class_mode = ‘binary’,

33 target_size = target_size,

34 batch_size = batch_size,

35 shuffle=True)

36

37 validation_set = train_datagen.flow_from_directory(
38 directory_path,

39 subset="validation"',

40 class_mode = ‘binary’,

41 target_size = target_size,

42 batch_size = batch_size,

43 shuffle=True)

L4

45 return training_set, validation_set
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46
47
48
49
50
51
52
53
54
55
56
57
58

def generate_test_dataset(directory_path, target_size
test_datagen = ImageDataGenerator()

test_set = test_datagen.flow_from_directory(
directory_path,
class_mode = ‘'binary’,
target_size = target_size,
batch_size = batch_size,
shuffle = False)

return test_set

(224, 224), batch_size

16):
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84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

base_learning_rate = 0.0001, show_summary =
if show_summary:
base _model.summary()

# Freeze convolutional layers
base model.trainable = False

# New prediction layer
image_batch, lzbel batch = training_set.next()
feature_batch = base_model(image_batch)

global_average_layer = GlobalAveragePooling2D()
feature_batch_average = global_average_layer(feature_batch)

prediction_layer = Dense(1)
prediction_batch = prediction_layer(feature_batch_average)

# Model Assembly

inputs = Input(shape=input_shape)

X = preprocess_input(inputs)

X = base_model(x, training=False)

x = global_average_layer(x)

X = Dropout(0.5)(x)

outputs = prediction_layer(x)
classifier = Model(inputs, outputs)

if show_summary:
classifier.summary()

classifier.compile(

def recompile_model(base_model, preprocess_input, training_set, input_shape =

False):

loss= tf.keras.losses.BinaryCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(learning_rate=base_learning_rate),

metrics=["accuracy'])

return classifier

(224, 224, 3),
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59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

def

def

def

def

def

load_convnext(input_shape=(224,224,3)):

from tensorflow.keras.applications.convnext import ConvNeXtBase

convnext = ConvNeXtBase(input_shape=input_shape, weights="'imagenet', include_top=False)
return convnext, tf.keras.applications.convnext.preprocess_input

load_efficientnet(input_shape=(224,224,3)):

from tensorflow.keras.applications.efficientnet_v2 import EfficientNetV2B0O

efficientnet = EfficientNetV2BO(input_shape=input_shape, weights="imagenet', include_top=False)
return efficientnet, tf.keras.applications.efficientnet v2.preprocess_input

load _mobilenet(input_shape=(224,224,3)):

from tensorflow.keras.applications import MobileNetV3Small

mobilenet = MobileNetV3Small(input_shape=input_shape, weights="imagenet', include_top=False)
return mobilenet, tf.keras.applications.mobilenet_v3.preprocess_input

load_regnet(input_shape=(224,224,3)):

from tensorflow.keras.applications.regnet import RegNetX002

regnet = RegNetX002(input_shape=input_shape, weights="imagenet', include_top=False)
return regnet, tf.keras.applications.regnet.preprocess_input

load resnet rs(input_shape=(224,224,3)):

from tensorflow.keras.applications.resnet_rs import ResNetRS270

resnet_rs = ResNetRS278(input_shape=input_shape, weights='imagenet', include_top=False)
return resnet_rs, tf.keras.applications.resnet_rs.preprocess_input
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121
122  def fit_model(classifier, training_set, validation_set, epochs = 10):
123 history = classifier.fit(

124 training_set,

125 validation_data = validation_set,

126 epochs = epochs,

127 steps_per_epoch = training_set.samples // training_set.batch_size,

128 validation steps = validation set.samples // validation set.batch size)
129

130 return history
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131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

def plot
epoc
epoc

daccC

val_

plt
plt
plt
plt.
plt
plt
plt
plt
plt

loss

val _

plt
plt.
plt.
plt
plt
plt
plt
plt

_training_validation_accuracy(history):
hs = history.params[ 'epochs']
hs_range = range(epochs)

= history.history[ ' 'accuracy']
acc = history.history['val _accuracy']

.figure(figsize=(8, 3))
.subplot(1l, 2, 1)
.plot(epochs_range, acc, label='Training Accuracy')

plot(epochs_range, val_acc, label='Validation Accuracy')

.xlabel("Epoch")

.ylabel("Accuracy')

ylim([@.5, 11)

.legend(loc="lower right')
.title('Training and Validation Accuracy')

= history.history[ 'loss']
loss = history.history['val loss']

.subplot(1, 2, 2)

plot(epochs_range, loss, label="Training Loss')
plot(epochs_range, val_loss, label="Validation Loss')

.xlabel("Epoch")

.ylabel('Loss")

.legend(loc="lower right')

.title( 'Training and Validation Loss')
.show( )
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160
161 def fine_tune(base_model, classifier, training_set, validation_set, history,

162 fine_tune_at=100, base_learning_rate = 0.0001, initial_epochs = 10,
163 fine_tune_epochs = 10, show_summary = False):

164 # Unfreeze all layers starting from 'fine_tune_at' layer

165 base _model.trainable = True

166 for layer in base_model.layers[:fine_tune_at]:

167 layer.trainable = False

168

169 classifier.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
170 optimizer = tf.keras.optimizers.RMSprop(learning_rate=base_learning_rate/10),
171 metrics=["'accuracy'])

172

173 total_layers = len(base _model.layers)

174 print(f"Fine adjustment applied starting from {fine_tune_at} of {total_layers}")
175 if show_summary:

176 classifier.summary()

177 print(len(classifier.trainable_variables))

178

179 total_epochs = initial_epochs + fine_tune_epochs

180

181 history_fine = classifier.fit(training_set,

182 epochs=total_epochs,

183 initial_epoch=history.epoch[-1],

184 validation data=validation_set)

185

186 return history_fine
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187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

def plot_fine_tune_training_validation_accuracy(history, history_fine):
initial_epochs = history.params[ 'epochs’']

acc
val

acc
val

pLt
plt
plt
pLt
plt
plt
plt
plt
pLt
plt

= history.history[ "accuracy']

_acc = history.history['val _accuracy']

+= history_fine.history['accuracy']

_acc += history_fine.history['val_accuracy']

.figure(figsize=(8, 3))

.subplot(1, 2, 1)

.plot(acc, label='Training Accuracy"')

.plot(val_acc, label='Validation Accuracy')

.xlabel("Epoch')

.ylabel( Accuracy')

.ylim([0.5, 11)

.plot([initial_epochs - 1,initial_epochs - 1], plt.ylim(), label='Start Fine Tuning"')
.legend(loc="lower right"')

.title('Training and Validation Accuracy')

loss = history.history[ 'loss']

val

_loss = history.history[ 'val _loss']

loss += history_fine.history['loss']

val

plt
pLt
plt
plt
plt
plt
pLt
plt
plt
plt

_loss += history_fine.history['val loss']

.subplot(1, 2, 2)

.plot(loss, label='Training Loss')

.plot(val_loss, label='Validation Loss')

.xlabel( "Epoch')

.ylabel('Loss')

ylim([0, 1.0])

.plot([initial_epochs - 1,initial_epochs - 11, plt.ylim(), label='Start Fine Tuning')

.legend{loc="upper right")
.title('Training and Validation Loss')
.show()
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224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

def get_real_and_predicted_labels(model, validation_generator):
predictions_list = np.array([])
labels list = np.array([])

for i in range(len(validation_generator)):
X_batch, y_batch = validation_generator[il]

# Get the model prediction
predictions = model.predict_on_batch(x_batch).flatten()

# Get predicted labels

predictions = tf.nn.sigmoid(predictions)

predictions = tf.where(predictions < 0.5, @, 1)

predictions_list = np.concatenate([predictions_list, predictions])

# Get expected labels
labels = y_batch.flatten()
labels_list = np.concatenate([labels_list, labels])

return [labels_list, predictions_list]
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245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

def plot_confusion matrix(classifier, test set):

all_

labels, all_predictions = get_real_and_predicted_labels(classifier, test_set)

conf_matrix = tf.math.confusion _matrix(all_labels, all _predictions)

sorted _names = sorted(test _set.class_indices.items(), key=lambda x: x[1])
class _names = list(map(lambda x: x[0], sorted names))

plt
sns

plt
plt
plt.
plt.

.figure(figsize=(3, 3))
.heatmap(

conf_matrix,

annot=True,

fmt="d",
cmap=plt.cm.Blues,
xticklabels=class_names,
yticklabels=class_names)

.tight_layout()
.ylabel( 'True label')

xlabel('Predicted label’)
show( )
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266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

def get_real_labels_and_predicted_probabilities(model, validation_generator):
labels_list = np.array([])
probabilities list = np.array([])

for i in range(len(validation_generator)):
Xx_batch, y_batch = validation_generator[i]

# Get the model prediction
predictions = model.predict_on_batch(x_batch).flatten()

# Get probability of the diagnosis being positive
probabilities = tf.nn.sigmoid(predictions)
probabilities list = np.concatenate([probabilities list, probabilities])

# Get expected labels
labels = y_batch.flatten()
labels _1list = np.concatenate([labels 1list, labels])

return [labels list, probabilities list]
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286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

305
306
307
308
309
310
311

def

def

plot_roc_curve(classifiers, test set):

# Plot ROC curve

plt.figure(figsize=(4, 4))

plt.plot([0, 11, [0, 1], "k--', label=f"Random (AUC = {.5:.4f})")

for classifier_name, classifier in classifiers:
labels, probabilities = get_real_labels_and_predicted_probabilities(classifier, test_set)
fpr, tpr, thresholds = roc_curve(labels, probabilities)
auc_score = roc_auc_score(labels, probabilities)
plt.plot(fpr, tpr, label=f"{classifier name} (AUC = {auc_score:.4f})")

plt.legend(loc="lower right')
plt.xlabel('False Positive Rate')
plt.xlim([@, 11)

plt.ylabel( 'True Positive Rate')
plt.ylim([@, 11)

plt.title( 'ROC Curve')

plt.show()

export _classifier(classifier, filepath):

model_json = classifier.to_json()

with open(f'{filepath}.json", "w") as json_file:
json_file.write(model_json)

classifier.save_weights(f'{filepath}.h5")

Fonte: Adaptado de TensorFlow (2023)
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