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Abstract. Today, people enjoy unprecedented access to state-of-the-art artifi-
cial intelligence models. This generates great opportunities for innovation and
development but also several problems. Artists working with images are now
worried about deep learning models trained to replicate their styles, and public
figures are increasingly concerned about AIs being able to mimic their appear-
ance and voice. In general, people are now concerned about whether they can
trust anything they see, hear, or read on the internet. One very present problem
is to trust if an image is true or computer generated. In the paper, we evaluate
whether new methods of image synthesis can still be recognized by deep learn-
ing models. This work evaluates the new developments in CNNs and pattern
recognition applied to synthetic image detection. The results present improve-
ments in the proposed model compared to previous works on the efficiency gains
of new architectures of convolutional neural networks and on the generalization
potential of models trained through pattern identification methods.

Resumo. Hoje, as pessoas desfrutam de acesso sem precedentes a modelos de
inteligência artificial de última geração. Isso gera grandes oportunidades de
inovação e desenvolvimento, mas também vários problemas. Artistas que tra-
balham com imagens agora estão preocupados com modelos de aprendizado
profundo treinados para replicar seus estilos, e figuras públicas estão cada vez
mais preocupadas com a capacidade de IAs de imitar sua aparência e voz. Em
geral, as pessoas agora estão preocupadas se podem confiar em qualquer coisa
que vejam, ouçam ou leiam na internet. Um problema muito presente é confiar
se uma imagem é verdadeira ou gerada por computador. No artigo, avaliamos
se novos métodos de síntese de imagens ainda podem ser reconhecidos por mod-
elos de aprendizado profundo. Este trabalho avalia os novos desenvolvimentos
em CNNs e reconhecimento de padrões aplicados à detecção de imagens sin-
téticas. Os resultados apresentam melhorias no modelo proposto em relação
a trabalhos anteriores sobre os ganhos de eficiência de novas arquiteturas de
redes neurais convolucionais e sobre o potencial de generalização de modelos
treinados por meio de métodos de identificação de padrões.

1. Introduction
Presently several different models can produce synthetic images. This task was en-
abled mainly due to the advent of generative models. The history of generative mod-
els began with Generative Adversarial Networks (GAN) in 2014[Goodfellow et al. 2020]



Figure 1. Examples of images evaluated in this study were obtained from various
generative methods. The upper row of the images comprises real images,
while the bottom row displays synthetic images. These synthetic images
were generated using selected generative models.

and together with Style Transfer published in 2016[Gatys et al. 2016] progressed
into StyleGAN[Karras et al. 2019]. Furthermore, this procedure evolved to text-
to-image models that started with another development, the CLIP model in 2021
[Radford et al. 2021], that tries to describe by the text an image received as input through
multimodal learning.

The first text-to-image models used CLIP together with a GAN network to iter-
atively approximate the image generated by the GAN network to the text given as input
ranked by CLIP. The greatest success of this era of machine learning generators was the
VQGAN+CLIP developed in 2021 and peer-reviewed in 2022 [Crowson et al. 2022] that
showed for the first time the real power of generation possessed by well-developed and
trained neural networks. VQGAN+CLIP created the first boom of interest from normal
people in an area that was previously only of academic interest, with many people dis-
covering the best prompts to give themselves as entry to the network, and many others are
publishing modifications and their versions of VQGAN+CLIP.

The next advance in the field was the development of the so-called diffusion mod-
els made public in early 2021 by OpenAI [Ramesh et al. 2021]. These models showed
performance and result far superior to the GAN models. Diffusion models were used to
create several commercial programs and websites and continue to be in active develop-
ment. Currently, they can create images very close to reality or works of art rivaling to
those used for training the neural network.

Moreover, when generative models became good enough to raise concerns that
they might one-day fool humans, interest in detecting and classifying the images created
by these models arose. These detection methods are divided into two approaches: arti-
fact detection and data-based detection. However, even with good results in recognizing
images generated by the same generative models that created the training images, the
detection methods have difficulty recognizing images generated by other models.

Data-based approaches to detection are very dependent on the availability of large
datasets and models trained on a large number of real and fake images to learn com-



mon features of the generative models that created the fake images. A purely data-driven
approach quickly encounters the generalization problem since images generated by un-
seen models will not be detected reliably. Resizing and lossy compression methods of
images found on the internet make data augmentation a common practice on models
using this approach. Examples include:[Wang et al. 2020], [Gragnaniello et al. 2021],
[Rahman et al. 2023]. All of them use a large and diverse dataset and extensively use
data augmentation to deal with the generalization problem.

Artifact detection approaches try to use artifacts left by the processes of the gen-
erative network to identify images. Detection based on spatial domain artifacts quickly
becomes ineffective as the quality of the images generated by a method improves. With
the current rate of development of synthetic images, the detection methods can be ef-
fective for a short time. Frequency domain artifacts are interesting since each type of
generative method leaves a unique fingerprint that can be used to identify it. Artifact de-
tection approaches are still vulnerable to the generalization problem. They are even more
affected by resizing and lossy compression since the traces left by the generative network
are often very small and fragile. Furthermore, complications arise because some syn-
thesis methods like StyleGAN3 [Karras et al. 2021] work to eliminate even the normally
invisible frequency artifacts. Examples can be found in reference [Durall et al. 2020] and
[Frank et al. 2020]. B. Liu et al. [Liu et al. 2022a] use frequency analysis differently, in-
stead of learning the artifact pattern of a given generative method, they try to learn the
common features of real images.

This article presents a modern CNN architecture detection model trained using
images from an "old" generative model ProGAN [Karras et al. 2018] as a training base.
These experiments show that synthetic image detection is still possible by using the ad-
vances in CNN models and Learned Noise Patterns (LNP) proposed by B. Liu et al.
[Liu et al. 2022a]. Here we applied a very recently proposed CNN architecture, the Con-
vNeXt [Liu et al. 2022b].

2. Related Works
The development of new image synthesis models has led to a growing interest in detecting
images produced by these models, and significant progress has already been made in this
area.

J. Frank et al. [Frank et al. 2020] show that Fourier transforms reveal pat-
terns that can be used as a form of signature of each generative model. Marra et al.
[Marra et al. 2019] showed that generative models leave fingerprints on their generated
images, and that pre-trained CNN classifiers perform better than CNNs trained only for
detecting generated images [Marra et al. 2018]. Wang et al. [Wang et al. 2020] showed
that large and diverse datasets are fundamental for good results. Data Augmentation tech-
niques such as blurring and simulating lossy compression are essential to guarantee results
in real use cases. Yu et al. [Yu et al. 2019] showed that GANs have unique signatures,
and they can be used to distinguish them. B. Liu et al. [Liu et al. 2022a] found common
patterns between real images instead of using the patterns created by generative networks.

The detection of synthetic images is facilitated by identifying underlying pat-
terns that distinguish them from real images. It is, therefore, imperative to preserve
these patterns during the training and testing stages of the model. Resizing operations



may inadvertently alter these patterns, leading to inaccurate results. Gragnaniello et al.
[Gragnaniello et al. 2021] demonstrated the importance of preserving these patterns by
achieving improved results through the removal of two layers of downsampling from the
Resnet network, as compared to the earlier work by Wang [Wang et al. 2020].

The primary issue faced by these models is their inability to generalize effectively,
which is further exacerbated by the rapid advancement of generative models. Despite
the emergence of new diffusion models, the identifying patterns of a model still persist,
leading to poor classification results when trained on images generated by a different
model. This finding is supported by Corvi et al. [Corvi et al. 2022].

The images evaluated in this study are presented in Fig. 1. The upper row includes
real images, while the bottom row features synthetic images from various datasets.

3. Methodology

3.1. Learned Noise Patterns (LNP)

Figure 2. The upper row consists of images that had their LNP extracted and their
Fourier transforms, which consist of generated images by the StyleGAN3
and StarGAN models, respectively. The bottom row consists of real im-
ages. Unlike StyleGAN3, which generates an entirely new image, StarGAN
enhances an existing image so a more direct comparison is possible. A
grid-like pattern is clearly visible on the Fourier transform of the generated
images.

Proposed by B. Liu et al. [Liu et al. 2022a], the LNP are patterns created by the
different incidences of light during the creation of the image by a camera. These patterns
do not have a periodicity in a real image, but in synthetic images, this periodicity is present
due to the processes necessary for creating the image. The revealed pattern has a grid-like
shape that is more visible in some images than others but is very noticeable in the Fourier
space. LNPs can be used in two ways to extract as much information as possible from
an image, LNP Amplitude Spectrum is given by the two-dimensional Fourier transform



of the image, thus making image frequency analysis possible. We can observe that real
images have a very similar frequency domain, which makes it possible to distinguish
the generated images that have their distinct patterns. Fig.2 shows examples of the LNP
features and its Fourier transforms for synthetic and real images.

The LNP Phase Spectrum seeks to extract structural information from the im-
age. Through experiments, better results are found using the phase spectrum of the LNP
instead of the phase spectrum of the original image.

3.2. Extracting LNPs

The extraction of LNPs is done through a denoising neural network, which is especially
effective for our application since they manage to extract the noise from an image without
affecting its content. Among the various noise removal networks, better results were
obtained with CycleISP [Zamir et al. 2020], which transforms RGB images to RAW and
then back to RGB to have more realistic noise removal results. LNPs are then obtained
from the difference between the original and denoised images.

3.3. ConvNeXt

ConvNeXt showed excellent results in image classification, object detection, and seman-
tic segmentation applications [Liu et al. 2022b]. Its good results and the fact that it is a
pure CNN allow us to compare it with the ResNet network and verify whether the gains
in accuracy and efficiency are noticeable even in its most minor version of the ConvNeXt,
ConvNeXt-Tiny. The results obtained by Rahman et al. [Rahman et al. 2023] using a
larger version of ConvNeXt, while not attributable to architecture choice alone, are en-
couraging.

Recalling that the LNPs, as well as the artifacts left by the generator models, can
be disturbed or erased by processing operations on the images, we reduced the stride fac-
tor of the ConvNeXt stem block to 2 instead of 4 in order to reduce the loss of information
from the images during convolution. Rahman et al. showed that such a modification re-
sults in a significant performance improvement.

4. Experiments and Results

4.1. Datasets

The 20 classes of the dataset provided by [Wang et al. 2020] were used for training, con-
taining images with common objects, vehicles, animals, and persons. It has 726K images
divided equally between images generated by ProGAN and real images, with other 8K
images for a validation set divided equally as the training set.

A part of the dataset provided by [Wang et al. 2020] was used as a test
set. It consists of 63K images generated by various types of GANs (StarGAN
[Choi et al. 2018], CycleGAN [Zhu et al. 2017], GauGAN [Park et al. 2019], BigGAN
[Brock et al. 2019], ProGAN[Karras et al. 2018], StyleGAN [Karras et al. 2019], Style-
GAN2 [Karras et al. 2020]) divided equally between generated and real images. Two
additional datasets were also tested with more recent methods. The first consists of 20K
images generated by Stable Diffusion selected from DiffusionDB [Wang et al. 2022] and
20K images of real works of art selected from ArtBench-10 [Liao et al. 2022]. Moreover,



Figure 3. Number of images contained in each method on the test dataset.

a second dataset comprises 10K images generated by StyleGAN3 [Karras et al. 2021] and
10K real images, all obtained from the ArtiFact [Rahman et al. 2023] dataset were also
used. Fig.1 shows some images from the selected generative methods.

In order to assess the impact of dataset size on the performance of the models,
a smaller dataset was created by selecting a subset of images from the ProGAN dataset.
Specifically, this reduced dataset contains only 181K images, in contrast to the original
ProGAN dataset which has a much larger number of images. The generative models were
then trained on this smaller dataset to determine whether the size of the dataset has an
effect on their ability to produce synthetic images. Fig.3 presents the results of this ex-
periment, showing the number of synthetic images generated by each method on the test
dataset. It is clear that the number of synthetic images varies significantly across the dif-
ferent methods, indicating that some models may be better suited for smaller datasets than
others. This information is useful for researchers and practitioners who may be working
with limited data resources and need to optimize their training process accordingly.

4.2. Experiments

Figure 4. Proposed model structure.

The experiments were done using a ConvNeXt-Tiny [Liu et al. 2022b] network



Table 1. Comparison on the accuracy of a model trained on a reduced dataset
with the accuracy of the same model tested on a stable diffusion dataset.

Methods Accuracy

Resnet 51.2
ConvNeXt-Tiny 53.5
Resnet+LNP 67.9
ConvNeXt-Tiny+LNP (ours) 70.8

pre-trained on the ImageNet dataset, and all the images have dimensions of 256x256,
using an Adam optimizer and an initial learning rate of 10-4. In the reduced dataset,
a Resnet50 [He et al. 2016] network pre-trained also on the ImageNet dataset was also
used. Fig.4 illustrates the proposed model’s structure with all its components.

4.3. Study on a reduced datataset

An important aspect in the evaluation of machine learning models is their ability to gen-
eralize to new datasets. To test the impact of the training dataset size on the accuracy of
image detection models, we trained a model on a reduced version of the ProGAN dataset
containing only 181K images. To evaluate the performance of the detection methods,
an initial test was conducted on a reduced dataset. The dataset, comprising only 181K
images, was used to investigate the impact of dataset size on the models’ performance.
Table 1 shows the results of the early testing. The ConvNeXt+LNP method demonstrated
the highest accuracy of 70.8%, outperforming the original standard ResNet method by
20.5%. These results indicate that the ConvNeXt+LNP method is a promising approach
for detecting synthetic images and can potentially be further optimized for improved per-
formance. The use of LNP proves to improve considerably the results compared with not
using this feature.

4.4. Comparisons

The models utilized in this study were trained on the complete ProGAN dataset and aug-
mented with techniques such as a 10% probability of Gaussian blurring (sigma = 0.0∼3.0)
and JPEG quality modifications (30∼100). The obtained results are presented in Tables 2,
3, and 4. It is worth noting that the models developed by Wang et al. and B. Liu et al. per-
formed consistently with the results reported in their respective papers [Wang et al. 2020]
[Liu et al. 2022a], as well as with the outcomes of similar studies conducted by other
researchers [Gragnaniello et al. 2021] [Corvi et al. 2022].

The results achieved by the ConvNeXt-Tiny models are consistent with their per-
formance improvements over ResNet in ImageNet classification tests, as reported in previ-
ous studies [Liu et al. 2022b]. Specifically, the ConvNeXt-Tiny model exhibited slightly
superior performance compared to ResNet50 on most of the tests conducted in our experi-
ments. These findings are particularly noteworthy given the challenges posed by synthetic
image detection, which require models to distinguish between images with subtle differ-
ences in texture, color, and pattern.

Our proposed ConvNeXt-Tiny+LNP model shows a very similar performance
gain over B. Liu et al. model, but a more in-depth discussion of some results are worth-



Table 2. The comparison of the accuracy with other state-of-the-art methods.

Methods Big
GAN

Cycle
GAN

Gau
GAN

Pro
GAN

Star
GAN

Style
GAN

Style
GAN2

Style
GAN3

Stable
Dif-
fu-
sion

Average

Resnet [Liu et al. 2022a] 73.2 87.7 82.9 100 94.7 92.5 86.4 57.2 53.2 80.8
ConvNeXt-Tiny (ours) 76.0 88.2 85.7 100 93.8 90.8 90.2 57.5 53.5 81.7
Resnet+LNP [Liu et al. 2022a] 89.8 93.2 82.4 99.4 99.9 89.2 91.4 48.5 65.9 84.4
ConvNeXt-Tiny+LNP (ours) 80.1 90.4 77.2 99.5 100 90.1 96.9 51.3 75.5 84.5
Voting Ensemble (ours) 79.5 88.8 85.5 100 95.3 92.2 87.4 57.0 53.3 82.1
MLP Ensemble (ours) 92.3 94.4 85.5 100 98.2 98.9 94.6 66.6 82.0 90.3

Table 3. The comparison of the precision with other state-of-the-art methods.

Methods Big
GAN

Cycle
GAN

Gau
GAN

Pro
GAN

Star
GAN

Style
GAN

Style
GAN2

Style
GAN3

Stable
Dif-
fu-

sion

Average

Resnet [Liu et al. 2022a] 87.2 95.3 91.1 100 99.0 99.9 99.4 78.5 71.2 91.2
ConvNeXt-Tiny (ours) 95.3 98.3 97.3 100 99.3 99.7 99.7 78.3 75.8 93.7
Resnet+LNP[Liu et al. 2022a] 96.5 98.7 89.2 99.9 99.9 99.4 99.7 44.9 84.1 90.2
ConvNeXt-Tiny+LNP (ours) 89.2 97.1 85.0 100 100 96.2 99.9 64.5 90.6 94.1
Voting Ensemble (ours) 78.5 86.8 83.6 100 94.8 92.2 87.4 45.8 53.3 88.3
MLP Ensemble (ours) 88.5 93.9 85.9 100 98.8 98.8 94.6 57.3 78.3 90.1

Table 4. The comparison of the F1-score with other state-of-the-art methods.

Methods Big
GAN

Cycle
GAN

Gau
GAN

Pro
GAN

Star
GAN

Style
GAN

Style
GAN2

Style
GAN3

Stable
Dif-
fu-
sion

Average

Resnet [Liu et al. 2022a] 0.742 0.869 0.832 0.999 0.952 0.923 0.862 0.277 0.137 0,732
ConvNeXt-Tiny (ours) 0.766 0.883 0.861 1.0 0.928 0.911 0.899 0.04 0.136 0.713
Resnet+LNP [Liu et al. 2022a] 0.898 0.930 0.829 0.993 0.999 0.879 0.906 0.04 0.506 0.775
ConvNeXt-Tiny+LNP (ours) 0.802 0.902 0.795 0.995 1.0 0.898 0.968 0.110 0.694 0.796
Voting Ensemble (ours) 0.748 0.879 0.838 1.0 0.951 0.916 0.856 0.062 0.124 0.708
MLP Ensemble (ours) 0.929 0.943 0.886 1.0 0.987 0.989 0.943 0.452 0.791 0.883



while. BigGAN and GauGAN performance was lower than expected. Artifacts generated
by these methods may be hard for the network to notice, but the excellent BigGAN results
of the ResNet+LNP method contradict this conclusion. Therefore, further investigation
is necessary. StyleGAN3 was a challenge to all methods, and those based on LNP de-
tecting had worse results. This shows that the measures taken to minimize artifacts in
StyleGAN3-generated images were effective.

4.5. Ensemble Models

In this study, we conducted an analysis of the images that were correctly and incorrectly
detected by each of the models used, as illustrated in Figures 5 and 6, respectively. Our
results showed that there were noticeable differences in the images that each model de-
tected correctly and incorrectly. These differences suggest that it may be possible to
improve overall performance by using ensemble methods that leverage the strengths of
multiple models to capitalize on these performance differences. By combining the out-
puts of multiple models, it may be possible to achieve higher overall accuracy and improve
the reliability of the detection process.

We investigated the effectiveness of ensemble modeling using two different ap-
proaches to improve the detection of synthetic images. The first approach was a simple
majority vote between the prior detection methods, while the second approach was a
Stacking ensemble consisting of a Multi-Layer Perceptron (MLP) trained on the outputs
of the prior methods.

The results of our experiments showed that the simple majority vote ensemble
method had worse performance compared to using one of the LNP-enhanced methods
individually. On the other hand, the Stacking ensemble method showed excellent results
and outperformed the individual methods in terms of accuracy on most tests. However,
we observed that the Stacking ensemble suffered slightly in precision.

Figure 5. The Venn diagram showing the number of images correctly predicted
by each method.



Figure 6. The Venn diagram showing the number of images incorrectly predicted
by each method.

5. Conclusion and Future Work

The focus of this paper was to evaluate the effectiveness of ConvNeXt-Tiny and LNP
extraction for detecting synthetic images generated by both older and newer generative
models. Although there is currently no universal method available for reliably detecting
synthetic images, our findings suggest that the combination of ConvNeXT-Tiny and LNP
extraction shows excellent results when used in conjunction with each other.

Frequency analysis, which involves the examination of patterns in the Fourier
transform of an image, has shown to be effective in detecting synthetic images. How-
ever, as newer generative models attempt to minimize artifacts such as those found in the
StyleGAN3 model, the effectiveness of frequency analysis may become more challenging
to perform effectively. Nonetheless, our results indicate that ConvNeXt-Tiny and LNP ex-
traction remain promising methods for the detection of synthetic images. Further research
could explore the effectiveness of these methods on a broader range of generative models
and examine the potential limitations of these approaches in more detail.

The initial results obtained from testing our ConvNeXt-Tiny model with LNP ex-
traction on the detection of generative models have shown great potential. Moreover,
the findings of [Rahman et al. 2023] also indicate the effectiveness of LNP extraction in
detecting synthetic images. Despite the promising results, we acknowledge that there is
still a lot of room for improvement. In particular, with access to better hardware, we
would like to evaluate the performance of larger versions of ConvNeXt models, poten-
tially with deeper architectures and more parameters, trained on a more extensive and
modern dataset, such as the one used in [Rahman et al. 2023].
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