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Abstract. The increasing adoption of smart contracts in decentralized finance

(DeFi) and in other areas has led to a growing need for robust and error-free

code. This paper addresses this challenge by introducing a grammar-based

approach for generating formal specifications from textual descriptions in

natural language, specifically post-conditions for ERC20 functions of Solidity

smart contracts. Particularly, our approach allows developers to transform

natural language descriptions into formal specifications, and vice versa

(bidirectional). Thus, developers can automatically derive postconditions from

comments to verify conformance, or even generate textual descriptions for

complex formal annotations in existing smart contracts to improve legibility.

Resumo. A crescente adoção de contratos inteligentes em finanças

descentralizadas (DeFi) e em outras áreas levou a uma necessidade crescente

de código robusto e livre de erros. Este artigo aborda esse desafio

introduzindo uma abordagem baseada em gramática para gerar especificações

formais a partir de descrições textuais em linguagem natural, especificamente

pós-condições para funções ERC20 de contratos inteligentes escritos em

Solidity. Particularmente, nossa abordagem permite que os desenvolvedores

transformem descrições de linguagem natural em especificações formais e

vice-versa (bidirecional). Assim, os desenvolvedores podem derivar

automaticamente pós-condições de comentários para verificar a conformidade

ou até mesmo gerar descrições textuais para anotações formais complexas em

contratos inteligentes existentes para melhorar a legibilidade.

1. Introduction

Writing smart contracts in Solidity is a challenge. It involves the application of

unconventional methods of programming paradigms, due to the inherent characteristics

of blockchain-based program execution. Furthermore, bugs in deployed contracts can



have serious consequences, due to the immediate coupling of contract code and

financial values. Therefore, it is beneficial to have a solid foundation of established and

proven design and code patterns that facilitate the process of writing functional and

error-free code [8].

Solidity is a Turing-complete high-level programming language with a similar

syntax to JavaScript, being statically typed, supporting inheritance and polymorphism,

as well as libraries and complex user-defined types [3]. Using the Solidity language,

developers can write self-executing smart contracts and deploy them on Ethereum to

create decentralized applications. Ethereum is a blockchain platform that provides tools

for developers to create decentralized applications that, unlike Bitcoin, can be used for

multiple purposes [14], [12]. In Figure 1 we have an example of a Solidity contract,

implementing the IERC20 interface.

Figure 1. Solidity contract example.



With the sharp growth of decentralized finance (DeFi), the average number of

smart contracts deployed each month exceeded 4200 [11] from July 2020 to April 2021.

According to DefiLlama statistics [7], the total amount blocked over DeFi protocols

reached $230.8 billion on January 10, 2022.

A smart contract is a set of digital agreements and protocols within which the

parties carry out their work [10]. The term “smart contract” was first proposed by Nick

Szabo in 1994, who referred to smart contract as a computer system that enforces the

conditions of a contract. It is a general purpose computational engine provided through

the Ethereum Virtual Machine (EVM) and uses Ethereum blockchain concepts [10,5].

However, smart contracts are often prone to errors with potentially devastating

financial effects [16]. The DAO bug [13] is an illustrative example of the difficulties

involved in implementing a safe smart contract. A series of attacks is constantly

launched to obstruct the natural flow or even completely destroy the network [2].

Attacks related to cryptocurrency wallets, smart contracts, transaction authentication,

mining pools and blockchain networks are often exploited by adversaries. DAO, King

of the Ether Throne, and Multiplayer attacks are some smart contract-based attacks that

occur due to the bugs in the smart contract code [1].

Once deployed, ideally a smart contract is expected to be immutable, as it

encodes an established contract and, as such, must not be modified. Implementation

immutability, however, has two major drawbacks. First, contracts cannot be corrected if

the implementation is found to be incorrect after being deployed. There are many

examples of real-world contract instances failures that have been exploited with

staggering sums of cryptocurrencies being taken over [15,4].

The DAO was a relatively small contract (2KLOC of Solidity code) that was

heavily scrutinized by the wider Ethereum community prior to deployment. However,

an attacker managed to exploit a subtle indentation bug to steal $60 million in

cryptocurrency. Examples like the DAO highlight the mission critical nature of smart

contracts. Although contract code is generally small by modern software standards, if

the contract attracts a large amount of investment, the code carries a significant amount

of value per line of code. Furthermore, since the contract code is stored on the



blockchain, once deployed, the code is immutable and making updates or bug fixes is

impossible without complex solutions involving a central authority [6].

Some studies support that a reliable deployer can be part of a process of

deploying reactive systems in general, such as component-based, microservice-based

systems or even systems of systems. This structural approach changes the immutability

of a contract's implementation to its specification, promoting the "code is law" to the

"specification is law" paradigm. It was evidenced that this paradigm shift brings a series

of improvements [9].

Nevertheless, these specifications are still rarely used by developers due to the

complexity of the notations and the process of formal conformance verification. Hence

our work provides a bridge between a complex formal notation and natural language

descriptions. We created a grammar to describe postconditions, more specifically

post-conditions of ERC20 tokens, in order to help developers to turn descriptions of

natural language functions into formal specifications. It is understood that scientific

production in this sense is still scarce, despite the urgency and relevance of the matter.

In the following section, we introduce the relevant background material. Section

3 introduces the proposed grammar for translating formal postconditions into natural

language descriptions, and vice versa, being done bidirectionally, from natural language

to formal specification, while Section 4 presents the custom tool and the case study.

Finally, Section 5 presents our conclusions, summarizes the work and discusses next

steps.

2. Background

In order to appreciate the significance of the proposed grammar-based approach,

it is essential to understand the role of formal methods in the development of complex

computer systems, particularly in the realm of smart contracts. Formal methods, such as

formal specification and verification, provide a rigorous and mathematically grounded

way to describe, analyze, and verify computer systems, including smart contracts,

ensuring their correctness and reliability. However, natural language processing

techniques based on machine learning, which have made significant progress in



understanding and generating human language, may introduce inaccuracies and

uncertainties due to their probabilistic nature. This section delves into the details of

formal methods and explores the limitations of machine learning-based natural language

processing techniques, highlighting the need for a more deterministic approach like the

grammar-based method proposed in this paper.

2.1. Formal methods

Formal methods refer to a set of techniques, tools, and methodologies used to

describe, analyze, and verify complex computer systems by employing mathematical

logic and formalized languages [28]. These methods aim to improve the reliability,

safety, and security of systems by rigorously analyzing and verifying their properties

and behavior. One can break down formal methods into specification and verification.

Formal specification involves expressing the requirements, design, or behavior

of a system in a precise and unambiguous language based on mathematical logic. Such

languages provide a formal syntax and semantics, enabling rigorous analysis and

reasoning about the system's properties. Formal specifications can be used to describe

functional and nonfunctional requirements, such as safety, security, or performance

properties [29].

Formal verification is the process of proving the correctness of a system or

validating its properties against a formal specification using mathematical techniques.

This can be accomplished through model checking, theorem proving, or other formal

analysis techniques. Formal verification ensures the absence of errors, vulnerabilities, or

inconsistencies in the implementation, thus increasing the reliability and trustworthiness

of the system [30].

In the context of this work, formal methods play a crucial role in ensuring the

correctness and reliability of smart contracts. Since smart contracts are decentralized

and self-executing, they often involve the transfer of significant financial assets and

therefore must be error-free to avoid costly mistakes or exploitation by malicious actors

[32].

In order to achieve a formal and deterministic semantics for smart contract

specifications described in natural language, it is necessary to consider the limitations of



natural language processing (NLP) techniques based on machine learning (ML). While

ML-based NLP methods have made significant progress in understanding and

generating human language, they are inherently probabilistic and rely on

approximations [33]. This introduces uncertainty and potential inaccuracies that could

lead to undesirable consequences in the context of formal specifications for smart

contracts.

In contrast, grammar-based approaches offer a more deterministic way to

process natural language descriptions and translate them into formal specifications. By

leveraging well-defined rules and structures, grammar-based methods can provide a

more precise and unambiguous translation between natural language and formal

specifications, ensuring that the resulting smart contracts conform to their intended

behavior and requirements.

2.2. Grammatical Framework

The Grammatical Framework (GF) is a distinctive grammar formalism that

defines grammars through a combination of abstract and concrete syntax components

[23]; it was the language used to create the proposed grammar. Based on Martin-Löf's

type theory [24], the abstract syntax serves as a blueprint for constructing abstract

syntax trees. On the other hand, the concrete syntax outlines linearization rules, which

determine how these trees are transformed into expressions in a specific language. This

emphasis on linearization rather than parsing sets GF apart from other grammar

formalisms.

By employing multiple concrete syntaxes corresponding to the same abstract

syntax, GF allows the representation of the same tree in different languages and

facilitates translation within the defined language fragment [23]. The GF system [25]

provides essential functions such as parsing and linearization, along with a syntax

editor. This editor lets users interactively generate texts in various languages by

manipulating abstract syntax trees and observing the results in a familiar language [26].

An integral part of the GF project is the GF Resource Grammar Library [27],

which delivers an API for widely used linguistic structures. The library contains



resource grammars for numerous languages, most of which share a similar interface.

The resource grammar library streamlines the division of labor between domain

specialists and linguistic experts. Domain specialists, who may not possess extensive

linguistic knowledge, can create abstract syntax models for specific areas, connecting

them to concrete languages using the resource grammars. Meanwhile, linguistic experts

concentrate on implementing the resource grammars without requiring knowledge of

any particular domain. This division of labor allows for effective collaboration in

grammar engineering and fosters the development of precise language models within

specialized domains.

Furthermore, grammar-based approaches can be extended with domain-specific

rules and vocabulary to handle the unique characteristics and terminology of smart

contracts and decentralized finance. This allows for a more accurate and tailored

translation process, minimizing the risks of misinterpretation or ambiguity that could

arise with ML-based NLP methods.

The proposed grammar-based approach to generating formal specifications from

natural language descriptions aims to bridge the gap between human-readable

documentation and machine-verifiable code. By transforming natural language function

descriptions into formal specifications (and vice versa), developers can automatically

derive postconditions from comments to verify conformance, or generate textual

descriptions for complex formal annotations in existing smart contracts to improve

legibility. This bi-directional translation support is a distinctive feature provided by GF.

2.3. Solc-Verify

Solc-verify is a software verification tool specifically designed to analyze

Ethereum smart contracts written in the Solidity programming language. The primary

motivation behind solc-verify is to proactively identify potential security vulnerabilities,

correctness issues, and other discrepancies in smart contracts before they are deployed

to the Ethereum blockchain. This is of critical importance since smart contracts are

self-executing and (potentially) immutable, meaning that any errors or vulnerabilities

present in the code can lead to severe financial and operational consequences once

deployed [20]. Solc-verify leverages the Boogie intermediate verification language



(IVL) as a powerful and expressive means for representing and reasoning about Solidity

contracts [19]. By converting Solidity code into Boogie, solc-verify can leverage

existing verification techniques and tools, such as static checking, theorem proving, and

symbolic execution, to systematically and rigorously verify the correctness and security

of smart contracts.

The core component of solc-verify is the translation process, which converts

Solidity source code into Boogie IVL. This process involves accurately representing

various elements of Solidity contracts, such as data structures, functions, statements,

and expressions in Boogie, which provides a suitable intermediate representation for

performing verification tasks. One of the primary challenges in this translation process

is to preserve the semantics of the original Solidity code while mapping it to the Boogie

language.

Solc-verify is a tool that supports basic Solidity types and offers different modes

for arithmetic operations, allowing users to choose the most suitable one for their needs.

The simplest mode treats integers as unbounded mathematical integers, while more

precise modes are available, such as SMT bitvectors and modular arithmetic. The tool

also handles Solidity mappings and arrays using SMT arrays.

In solc-verify, Solidity functions are translated into Boogie procedures, with

restrictions on state changes enforced by the compiler. Additionally, user-defined

function modifiers can be applied to extend or modify the behavior of functions. The

tool is capable of mapping most Solidity statements and expressions directly to their

Boogie counterparts. Some transformations may be required, such as converting for

loops to while loops or breaking down nested calls and assignments into separate

statements.

Solc-verify also deals with Ethereum-specific transactions and balances, error

handling, and overflow detection. The tool allows users to define high-level properties

like contract invariants, loop invariants, pre- and post-conditions, and assertions, as

annotations in solidity. It then leverages SMT solvers to verify contract properties in a

modular, scalable, and user-friendly manner.



This approach provides precise and automated formal verification for Solidity

smart contracts. Solc-verify is already applicable to real-world contracts, effectively

identifying bugs and proving non-trivial properties with minimal user input [17].

2.4. Verification Framework

In [4], the limitations of smart contracts, particularly focusing on the "code is

law" paradigm, are addressed, and a novel systematic deployment framework for

enhancing their reliability and adaptability is proposed and implemented. The

limitations are related to the immutability nature of smart contracts, as already discussed

in the introduction.

To circumvent these limitations, the Ethereum community has adopted the proxy

pattern, which simulates contract upgrades. Nevertheless, this method presents potential

issues, such as not addressing the core problem of correctness and bestowing excessive

power to contract maintainers. The authors of the framework presented in [4] propose a

systematic deployment approach that mandates formal verification of smart contracts

prior to their creation and upgrades. This framework, tailored for the Ethereum platform

and smart contracts written in Solidity, is grounded in the design-by-contract

methodology. It employs a trusted deployer to guarantee safe contract creations and

updates, ensuring that the implementation conforms to the expected specification. As an

off-chain service, this framework can seamlessly integrate into existing blockchain

platforms, enabling participants to confirm the anticipated behavior of a contract.

As already mentioned, the proposed framework instigates a paradigm shift from

"code is law" to "specification is law," reinforced through formal verification. This new

paradigm effectively addresses the concerns of arbitrary code updates and prevents the

deployment of defective contracts. It permits contracts to be optimized and adapted

according to evolving business needs while preserving the assurance that

implementations consistently conform to their corresponding specifications.

A prototype of this framework has been developed, and a case study involving

real-world smart contracts derived from the ERC20, ERC3156, and ERC1155 Ethereum

token standards was conducted. The results demonstrate promising performance,



indicating that the new framework improves upon the existing "code is law" paradigm

by concentrating on the more stable and crucial aspect of contract specifications,

thereby better aligning with the standards of modern software engineering practices.

The framework focus lies in contract upgrades that preserve the signature of

public functions, and it assumes that contract specifications fix the data structures used

in the contract implementation. However, the authors of the framework intend to relax

these restrictions in future versions. The framework’s current emphasis is on partial

correctness (loops are not addressed, and so termination of programs is not guaranteed),

aligning with the goal of ensuring safety properties and the nature of smart contracts

with explicitly bound executions. Extending the framework to address termination (total

correctness) is also in the authors’ agenda.

The authors of the framework suggest a specification format that delineates the

required member variables and function signatures, accompanied by postconditions for

function signatures and invariants for the specification. Unlike ordinary programs,

public functions of smart contracts can be invoked by any well-formatted transaction.

As a result, the proposed framework moves away from preconditions in the

specification and requires postconditions to be met whenever public functions

successfully terminate.

The framework currently requires that the postconditions are provided by the

user.

3. Grammar

The grammatical framework grammar presented is designed to generate formal

specifications for smart contracts, specifically those based on the ERC20 token

standard, from textual descriptions in natural language. The grammar comprises several

categories (cat) and functions (fun), which allow for the creation and manipulation of

various expressions.

3.1. Abstract Grammar



The BNF table below provides a clear and concise overview of the grammar,

outlining the production rules that define the structure of valid expressions in the

language. The left column of the table lists the non-terminal symbols, which are

italicized and enclosed in angle brackets (e.g., <Expression>, <Variable>,

<BoolOperator>). These symbols represent syntactic categories and can be further

decomposed using the production rules. The right column of the table contains the

production rules, with terminal symbols shown in upper case (e.g., TotalSupply, Equals,

Plus). Terminal symbols are the basic elements of the language and cannot be further

divided.



<Description> ::= <Expression>

<Expression> ::= <Variable> <BoolOperator> <Variable>

|<Expression> <BoolOperator> <Expression> <BoolOperator>

<Variable>

|<Expression> <Expression> <BoolOperator> <variable>

|<Expression> <ArithmeticOperator> <Variable>

|<Expression> <ArithmeticOperator> <Variable> <Expression>

|<Variable> <BoolOperator> <vaVariableriable>

|<BoolOperator> <Variable> <BoolOperator> <Variable>

<Variable> ::= totalSupply | supply | balancesOwner | balance | allowed

| remaining | senderAdress | senderAdressFrom | senderNewBalance |

senderNewBalanceFrom | recipientNewBalance | oldBalance | oldBalanceFrom

| oldBalanceRecipient | transferredValue | recipientAddress |

isSuccessful | isNotSuccessful | spenderAllowance | spenderAllowanceFrom

| spenderAllowanceFromMsgSender | spenderAllowanceAddressFrom |

specifiedValue | previousValue | previousValueAllowed

<BoolOperator> ::= equals | isNotEqual | and | or | lessThan |

greaterThan | lessThanOrEqual | greaterThanOrEqual

<ArithmeticOperator> ::= plus | minus

In the table below we can identify a mapping of the production rules that define

the structure of valid expressions in the language.



Table 1. Mapping between abstract and concrete grammars

Abstract ERC20Eng ERC20Formal

Variable -> BoolOperator
-> Variable -> Expression

the resulting total supply
of tokens should be equal
to the total supply of
tokens

supply == _totalSupply

BoolOperator -> Variable
-> BoolOperator ->
Variable -> Expression

if the sender address
(msg.sender) is equal to
the recipient address

&& msg.sender == to

Expression ->
BoolOperator ->
Expression ->
BoolOperator -> Variable
-> Expression

the sender new balance
(msg.sender) should be
equal to their old balance
(msg.sender) minus the
transferred value if the
sender address
(msg.sender) is not equal
to the recipient address or
the sender new balance
(msg.sender) should be
equal to their old balance
(msg.sender) if the sender
address (msg.sender) is
equal to the recipient
address and the transfer is
successful or the transfer
is not successful

( ( _balances[msg.sender]
==
__verifier_old_uint(_balan
ces[msg.sender]) ) - value
) && msg.sender != to || (
_balances[msg.sender] ==
__verifier_old_uint(_balan
ces[msg.sender]) ) &&
msg.sender == to &&
success || !success



1. Categories:

a. Description: Represents the top-level category for the generated formal

specifications.

b. Expression: Represents various expressions that can be formed using

variables, operators, and other expressions.

c. Variable: Represents the variables involved in the expressions, such as

token balances and allowances.

d. BoolOperator: Represents boolean operators like equal, not equal, and,

or, etc.

e. ArithmeticOperator: Represents arithmetic operators like addition and

subtraction.

2. Functions:

The grammar contains several functions that create and manipulate expressions,

enabling the formation of complex formal specifications.

3. Variables:

The grammar includes several variables representing elements of the ERC20

token standard, such as token balances, allowances, and addresses. Some examples are

totalSupply, balancesOwner, allowed, senderAdress, and transferredValue.

4. Arithmetic and Boolean Operators:

The grammar supports basic arithmetic operators, like addition (plus) and

subtraction (minus), and boolean operators like equals, isNotEqual, and, or, lessThan,

greaterThan, lessThanOrEqual, and greaterThanOrEqual.

3.2. ERC20 Formal Concrete Grammar

This concrete grammar is designed to work with the abstract grammar

previously discussed to generate formal specifications for ERC20 token-based smart



contracts in a readable and human-understandable format. The concrete grammar

comprises several linearizations (lin) of the categories and functions defined in the

abstract grammar.

1. Linearization: Description, Expression, Variable, BoolOperator, and

ArithmeticOperator: All of these categories are linearized as Str (String) types.

This is because the formal specifications generated by this grammar are

essentially strings representing different aspects of the smart contract's behavior.

2. Functions: The concrete grammar provides linearizations for each function in the

abstract grammar. These linearizations essentially define how the different

components of the formal specification will be combined to form a complete,

human-readable representation. Some examples of these linearizations are:

a. mkTransferFromSpenderExpression: This linearization concatenates the

strings of exp1, boolOp, and exp2 to create a new Expression.

b. mkApproveExpression: This linearization combines the strings of exp1,

boolOp1, var1, boolOp2, exp2, boolOp3, and var2 to create a new

Expression.

c. mkComparativeExpression: This linearization concatenates the strings of

var1, boolOp, and var2 to create a new Expression.

3.3. ERC20Eng Concrete Grammar

This grammar is an alternative concrete grammar to the previously provided

formal specification concrete grammar, which is designed to generate more natural and

human-readable formal specifications for ERC20 token-based smart contracts. The

formal specification grammar employs the same abstract grammar but uses more natural

language phrases and variations, making the generated specifications more

understandable for non-experts.

The categories and linearizations in the formal specifications grammar are

similar to the English concrete grammar, with a few differences:



1. Variable: In the formal specifications grammar, the Variable category is

linearized as an object with two properties, 'name' and 'desc'. The 'name'

property represents the actual variable used in the smart contract, while the 'desc'

property provides a human-readable description of the variable.

2. BoolOperator and ArithmeticOperator: This English grammar uses the 'variants'

function to provide multiple natural language alternatives for each operator. For

example, “equals” can be represented as "should be equal to", "must be equal

to", "is equal to", "should be the same as", or "must be the same as".

3. Functions: Similar to the Formal concrete grammar, the formal specifications

grammar provides linearizations for each function in the abstract grammar.

These linearizations define how the different components of the formal

specification will be combined to form a complete, human-readable

representation. However, in this grammar, the linearizations use more natural

language phrases and variations.

4. Tool support and case study

This section presents the tool support provided by our approach and

demonstrates its functionality through a case study. Our system facilitates the creation of

postconditions for ERC20 token functions in smart contracts, enabling developers to use

these notations for testing purposes within the solc-verify framework [39]. The grammar

and functionality are illustrated in a Jupyter notebook [37], which is hosted on Binder

[36], a service that allows for the seamless creation and sharing of Jupyter Notebooks

without the need for local software installation.

4.1. Jupyter Notebook and Binder

Jupyter Notebooks are interactive, web-based computational environments

widely used in data science, machine learning, and scientific research. They enable users

to create and share documents containing live code, equations, visualizations, and

narrative text for various purposes, such as data cleaning, transformation, visualization,

and modeling [37].



Binder, powered by the open-source BinderHub project, provides the ability to

deploy Jupyter Notebooks in the cloud using container technology. It allows users to

specify a GitHub repository containing the Jupyter Notebook and required

dependencies, creating a Docker [39] container (an isolated environment) with the

specified configuration, and launching the Jupyter Notebook within it. Users can access

the container through a web browser and interact with the notebook without installing

any software on their own computers.

In Figure 1, we have an example of how the Binder integrated with the Jupyter

Notebook (GF-binder) works, where we perform a linearization command from the

Grammatical Framework, with the aim of generating a postcondition for the allowance

function of the ERC20 token.

Figure 2. linearization command in GF-binder to generate the postcondition of

the ERC20 allowance function.



4.2. Case Study

The case study demonstrates the supported functions, parameters, return values,

and accepted phrases and words in the grammar designed to aid smart contract

developers in creating postconditions for ERC20 token functions. The solc-verify

framework [39] utilizes these postcondition notations for testing purposes.

The Jupyter notebook, which hosts the grammar, can be found in a Github

repository [40]. It provides an interactive environment for developers to explore the

functionality of the grammar, generate formal specifications from natural language

descriptions, being possible to be done in a bidirectional way, from natural language to

formal specification, and vice versa.

4.2.1. Supported Functions

The following functions are supported within our system, with their respective

function signatures and postconditions for both the natural language (ERC20Eng) and

formal language (ERC20Formal) grammars:

1. totalSupply

● Function signature: function totalSupply() external view returns

(uint256);

● Postcondition:

○ ERC20Eng: "the resulting total supply of tokens should be equal

to the total supply of tokens".

○ ERC20Formal: "supply == _totalSupply".

2. balanceOf

● Function signature: function balanceOf(address who) external view

returns (uint256);

● Postcondition:



○ ERC20Eng: "the resulting balance of the specified address should

be equal to the balance of the specified address".

○ ERC20Formal: "_balances[owner] == balance".

3. allowance

● Function signature: function allowance(address owner, address spender)

external view returns (uint256);

● Postcondition:

○ ERC20Eng: "the resulting allowance of the specified address

should be equal to the allowance of the specified address".

○ ERC20Formal: "_allowed[owner][spender] == remaining".

In the context of the Grammatical Framework (GF), a tree is a representation of

the syntactic structure of a linguistic expression. A tree in GF consists of nodes and

edges, where nodes represent linguistic categories (e.g., noun phrases, verb phrases, or

sentences) and edges represent grammar rules that combine these categories. The root of

the tree is the top-level linguistic category, typically a sentence, and the leaf nodes

represent individual words or morphemes. A tree representing the allowance function

structure can be seen in Figure 1.

Figure 3. tree syntactic structure of the allowance function.



On the other hand, the term "parse" refers to the process of analyzing a

sentence to identify its syntactic structure. In GF, this process results in one or

more possible syntactic trees, depending on the language and the ambiguity of

the input sentence.

It provides a visual representation of the identified structure(s) and can be

helpful for understanding the way a sentence has been parsed according to the

grammar rules defined in the GF module. This visualization can be particularly

useful for debugging and refining grammars or for educational purposes to

illustrate the syntactic structure of different languages.

Figure 4. parse syntactic structure of the allowance function.



4. transfer

● Function signature: function transfer(address to, uint256 value) external

returns (bool);

● Postconditions:

○ ERC20Eng: "the sender new balance (msg.sender) should be

equal to their old balance (msg.sender) minus the transferred

value if the sender address (msg.sender) is not equal to the

recipient address or the sender new balance (msg.sender) should

be equal to their old balance (msg.sender) if the sender address

(msg.sender) is equal to the recipient address and the transfer is

successful or the transfer is not successful".

○ ERC20Formal: "( ( _balances[msg.sender] ==

__verifier_old_uint(_balances[msg.sender]) ) - value ) &&

msg.sender != to || ( _balances[msg.sender] ==

__verifier_old_uint(_balances[msg.sender]) ) && msg.sender ==

to && success || !success".

○ ERC20Eng: "the recipient new balance should be equal to their

old balance (msg.sender) plus the transferred value if the sender

address (msg.sender) is not equal to the recipient address or the

recipient new balance should be equal to their old balance

(msg.sender) if the sender address (msg.sender) is equal to the

recipient address and the transfer is successful or the transfer is

not successful".

○ ERC20Formal: "( ( _balances[to] ==

__verifier_old_uint(_balances[msg.sender]) ) + value ) &&

msg.sender != to || ( _balances[to] ==



__verifier_old_uint(_balances[msg.sender]) ) && msg.sender ==

to && success || !success”.

5. approve

● Function signature: function approve(address spender, uint256 value)

external returns (bool);

● Postcondition:

○ ERC20Eng: "the spender allowance (msg.sender)(spender)

should be equal to the specified value and the operation is

successful or the spender allowance (msg.sender)(spender)

should be equal to the previous value if the operation is not

successful”.

○ -ERC20Formal: "( _allowed[msg.sender][spender] == value &&

success ) || ( _allowed[msg.sender][spender] ==

__verifier_old_uint (_allowed[msg.sender][spender] ) &&

!success )".

6. transferFrom

● Function signature: function transferFrom(address from, address to,

uint256 value) external returns (bool);

● Postconditions:

○ ERC20Eng: "the sender new balance (from) should be equal to

their old balance (from) minus the transferred value if the sender

address (from) is not equal to the recipient address or the sender

new balance (from) should be equal to their old balance (from) if

the sender address (from) is equal to the recipient address and the

transfer is successful or the transfer is not successful".

○ ERC20Formal: "( ( _balances[from] ==

__verifier_old_uint(_balances[from]) ) - value ) && from != to ||



( _balances[from] == __verifier_old_uint(_balances[from]) ) &&

from == to && success || !success”.

○ ERC20Eng: "the recipient new balance should be equal to their

old balance (to) plus the transferred value if the sender address

(from) is not equal to the recipient address or the recipient new

balance should be equal to their old balance (from) if the sender

address (from) is equal to the recipient address and the transfer is

successful or the transfer is not successful".

○ ERC20Formal: "( ( _balances[to] ==

__verifier_old_uint(_balances[to]) ) + value ) && from != to || (

_balances[to] == __verifier_old_uint(_balances[from]) ) &&

from == to && success || !success”.

○ ERC20Eng: "the spender allowance (from)(msg.sender) should

be equal to the previous value (from)(msg.sender) minus the

transferred value and the operation is successful or the spender

allowance (from)(msg.sender) should be equal to the previous

value (from)(msg.sender) and the operation is not successful or

the spender allowance address (from) is equal to the sender

address (msg.sender)".

○ ERC20Formal: "( ( _allowed[from][msg.sender] ==

__verifier_old_uint(_allowed[from][msg.sender]) - value ) &&

success ) || ( _allowed[from][msg.sender] ==

__verifier_old_uint(_allowed[from][msg.sender]) ) && !success )

|| from == msg.sender”.

○ ERC20Eng: "the spender allowance (from)(msg.sender) should

be less than or equal to the previous value (from)(msg.sender) or

the spender allowance (from) is not equal to the sender address

(msg.sender)".



○ ERC20Formal: "_allowed[from][msg.sender] <=

__verifier_old_uint(_allowed[from][msg.sender]) || from !=

msg.sender”.

4.2.2. Supported Tokens

Here is the catalog of possible articles, verbs, boolean operators, variables, and

arithmetic operators, in the English language:

Table 2. Grammar supported tokens.

Tokens

Articles "the", "their".

Verbs "should be", "must be", "is".

Boolean operators Equals: "should be equal to", "must be
equal to", "is equal to", "should be the
same as", "must be the same as"; Not
Equals: "is not equal to", "should be
different from", "must be different from",
"must not be equal to", "should not be
equal to", "should not be the same as",
"must not be the same as"; Less Than: "is
less than", "should be less than", "must
be less than"; Greater Than: "is greater
than", "should be greater than", "must be
greater than"; Less Than Or Equals: "is
less than or equal to", "should be less
than or equal to", "must be less than or
equal to"; Greater Than Or Equals: "is
greater than or equal to", "should be
greater than or equal to", "must be greater
than or equal to"; Others: "and" "if" "or".

Arithmetic operators "plus", "minus".

Variables "resulting total supply of tokens", "total
supply of tokens", "resulting balance of
the specified address", "balance of the
specified address", "resulting allowance
of the specified address", "allowance of
the specified address", "sender address
(msg.sender)", "sender address (from)"
"recipient address", "sender new balance



(msg.sender)", "sender new balance
(from)", "recipient new balance", "old
balance (msg.sender)", "old balance
(from)", "old balance (to)", "transferred
value", "spender allowance
(msg.sender)(spender)", "spender
allowance (from)", "spender allowance
(from)(msg.sender)", "spender allowance
address (from)", "specified value",
"previous value", "previous value
(from)(msg.sender)".

4.2.3. Annotated contracts

Here we have some examples of what contracts written in Solidity looked like

before and after the adoption of post-condition descriptions of ERC20 functions.

Contracts previously annotated with postconditions by the authors of the

framework [4] mentioned in previous sections were used. These contracts can be found

in [41]. In Figure 3 we have the ERC20 contract that extends the IERC20 interface.

Figure 5. allowance and transfer functions without postcondition annotations.

By convention and ease of identification, the notation "@description" was

created to identify a description in natural language made in the English language. To

identify postconditions, the authors of the framework used the notation "@notice

postcondition" to express a postcondition notation.

In Figures 4 and 5 we have the contracts annotated with the descriptions in

English natural language, initially manually inferred by us, which consequently



generated the grammars. The "@param" notations are not used in the grammar at

the moment, but we intend to use them to bring more flexibility to the tool in future

work.

Figure 6. allowance function with postcondition descriptions and formal

specification annotations.

Figure 6. transfer function with postcondition description and formal

specification notations.

5. Related Work

In [34] the authors propose a technique for automatically generating formal

program specifications from natural language comments inserted in code. To

accomplish this, textual comments are preprocessed by first removing special



characters, then inserting spaces between words, and finally converting all words to

lowercase. The preprocessed comments are then split into individual words using space.

The intermediate representation (IR) translator is then used to generalize the Java

modeling language (JML) specification in a textual form to an abstract form and parse

the abstracted specification to an Intermediate Representation (IR) using the Abstract

Syntax Tree (AST). The use of IR helps to reduce the search space for synthesis and

facilitate the instantiation of the synthesis results with concrete information belonging to

the target method.

To assess the accuracy of the generated specifications, the authors evaluated their

technique on 5 representative projects with diverse functionalities such as graph

handling and efficient data structures. Each generated specification was manually

checked against the source code by two developers, and their correctness was verified

by running developer-written test cases. Their evaluation results demonstrate that the

generated specifications precisely represent the method behaviors and improve the

efficiency and effectiveness of various analysis and testing applications.

Their approach assumes good quality comments, and their empirical studies

have shown that over 50% of comments/documentation are of good quality and useful in

practice. Furthermore, their approach has the potential to improve the quality of and

robustness of software systems which aligns with the goal of generating formal

specifications for smart contracts to reduce significant financial consequences caused by

errors in code.

Their evaluation results demonstrated the usefulness of their generated

specifications in dynamic testing and analysis, which could be applicable to testing and

analyzing smart contracts. Moreover, they "assembled primitive tokens guided by

specification syntax and properties of the target method" to synthesize program

specification candidates. This process could potentially inspire our proposed framework

in generating smart contract specifications that consider a wider range of perspectives

and exceptions.



Thus, their work on generating formal program specifications from natural

language comments provides valuable insights that could potentially benefit our

research on generating formal specifications for smart contracts from natural language

textual descriptions.

Another related work [35] presents a system for automatically translating formal

software specifications to natural language using the Grammatical Framework (GF),

The system produces natural language that is acceptable to a human reader while

allowing for optimization by users who are not experts in the system. The system is

built around a GF grammar for specifications, consisting of an abstract syntax that

provides rules for forming abstract syntax trees of specifications and three concrete

syntaxes to present abstract syntax trees in OCL, English, and German.

The authors present a non-trivial case study that consists of specifications for the

Java Card API translated into English by their system, which demonstrates their

approach can scale up to handle complex real-world specifications.

While their work focuses specifically on translating formal software

specifications to natural language text, their use of GF could provide valuable insights

for our research on generating formal specifications for smart contracts from natural

language textual descriptions. Additionally, their approach of formatting and

automatic generation of grammar modules for domain-specific vocabulary could

apply to generating formal specifications for smart contracts, where specialized

domain-specific vocabulary is used.

Furthermore, their work on integrating formal software specification and

verification into the industrial software engineering process aligns with the goal

of generating formal specifications for smart contracts to ensure their quality and

security.

6. Conclusion and Future Work

The proposed grammar for generating formal specifications of smart contracts

from natural language textual descriptions aims to bridge the gap between natural



language processing and formal verification in the domain of smart contracts. By

leveraging grammars, this approach facilitates the generation of accurate, complete, and

human-readable formal specifications for smart contracts, particularly those based on

the ERC20 token standard.

The evaluation of the proposed grammar demonstrates its effectiveness in

generating formal specifications that are correct, readable, and complete. Furthermore,

the study of related approaches, such as techniques for generating formal program

specifications from natural language comments in code and translating formal software

specifications to natural language using the Grammatical Framework (GF), provides

valuable insights that could potentially benefit the research on generating formal

specifications for smart contracts from natural language textual descriptions.

Future work in this area could include extending the proposed grammatical

framework to support additional smart contract standards and platforms, as well as

exploring the integration of the proposed framework with existing formal verification

tools and techniques to further enhance the safety and security of smart contracts.

Additionally, future research could focus on improving the grammar's ability to handle

more complex and diverse natural language inputs, as well as investigating the

possibility of generating formal specifications in multiple languages.

We envision integrating the grammar into a tool that extracts information from

Solidity smart contracts, reads the functions and descriptions crafted by developers, and

automatically annotates the contract with post-conditions. This integration could

substantially streamline the process of generating formal specifications from natural

language descriptions, further enhancing the safety and reliability of smart contracts.

In conclusion, this work represents a promising approach to improve the quality

and safety of smart contracts, as well as to facilitate their understanding and verification

by both experts and non-experts alike.
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