
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

RICARDO DE LIMA SILVEIRA

Confinement induced variation of the power-law decay of the order parameter in the
low-temperature proximity effect

Recife

2022



RICARDO DE LIMA SILVEIRA

Confinement induced variation of the power-law decay of the order parameter in the
low-temperature proximity effect

Thesis presented to the Physics Graduate Program
at the Federal University of Pernambuco as a par-
tial requirement to obtain the degree of Master in
Physics.

Concentration area: Condensed Matter Physics
and Materials

Advisor: Mihail Croitoru

Recife

2022



Catalogação na fonte
Bibliotecária Nataly Soares Leite Moro, CRB4-1722

S587c Silveira, Ricardo de Lima
Confinement induced variation of the power-law decay of the order

parameter in the low-temperature proximity effect / Ricardo de Lima Silveira. –
2022.

84 f.: il., fig., tab.

Orientador: Mihail Croitoru.
Dissertação (Mestrado) – Universidade Federal de Pernambuco. CCEN,

Física, Recife, 2022.
Inclui referências.

1. Física da matéria condensada e de materiais. 2. Efeito de proximidade.
3. Confinamento quântico. 4. Equações de Bogoliubov-de Gennes. I. Croitoru,
Mihail (orientador). II. Título.

530.41 CDD (23. ed.) UFPE- CCEN 2023 - 45



RICARDO DE LIMA SILVEIRA

CONFINEMENT INDUCED VARIATION OF THE POWER-LAW DECAY OF THE
ORDER PARAMETER IN THE LOW-TEMPERATURE PROXIMITY EFFECT

Dissertação apresentada ao Programa de
Pós-Graduação em Física da Universidade
Federal de Pernambuco, como requisito
parcial para a obtenção do título de Mestre
em Física.

Aprovada em: 21/03/2022.

BANCA EXAMINADORA

________________________________________
Prof. Mihail Croitoru

Orientador
Universidade Federal de Pernambuco

_________________________________________
Prof. José Albino Oliveira de Aguiar

Examinador Interno
Universidade Federal de Pernambuco

_________________________________________
Prof. Antonio Rodrigues de Castro Romaguera

Examinador Externo
Universidade Federal Rural de Pernambuco

_________________________________________
Profª. Natalia Pugach
Examinadora Externa

HSE University



ABSTRACT

This thesis aims to investigate how the proximity effect is affected by the quantum confinement

of charge carriers. This phenomenon, which consists essentially in the diffusion of supercon-

ducting correlations into a non-superconducting metal, has been widely studied over several

decades, but not so much in the quasi-low dimensionality regime, taking into account the

effect of the quantum confinement of electrons on the properties of the system. We aim, more

specifically, to determine the functional form for the decay of the pair amplitude in cylindri-

cal nanowires of normal metals in the clean limit and at zero temperature. It is known that

quantum confinement leads to fluctuations in the values of superconducting quantities, such

as the energy gap and transition temperature. This can be expected to affect how strongly

the wave function of an electron pair decays in the normal metal. To investigate this problem,

we solve the Bogoliubov-de Gennes equations self-consistently in nanowires with different di-

ameters. Based on the literature on the proximity effect at low temperatures in clean metals,

we model the behavior of the superconducting correlations in the normal metal by an inverse

power law decay, with exponent 𝛼. The value of this parameter is extracted from the data

obtained numerically for each diameter. We found that this parameter follows an oscillatory

pattern whose peaks and valleys correspond to those observed in the energy gap.

Keywords: proximity effect; quantum confinement; Bogoliubov-de Gennes equations.



RESUMO

Essa dissertação tem por obejtivo investigar como o efeito de proximidade é afetado pelo

confinamento quântico de portadores de carga. Esse fenômeno, que consiste essencialmente

na difusão de correlações supercondutoras para um metal não supercondutor, tem sido am-

plamente estudado ao longo de várias décadas, mas nem tanto no regime de dimensionalidade

quase baixa, levando em consideração o efeito do confinamento quântico de elétrons sobre as

propriedades do sistema. Almejamos, mais especificamete, determinar a forma funcional para

o decaimento da amplitude de pares em nanocilindrindos de metal normal no limite balístico

e à temperatura nula. Sabe-se que o confinameno quântico leva a oscilações nos valores de

grandezas supercondutoras, como o gap de energia e a temperatura de transição. Pode-se

esperar que isso afete o quão forte é o decaimento da função de onda de um par no metal

normal. Para investigar esse problema, resolvemos as equações de Bogoliubov-de Gennes de

forma autoconsistente em nanofios com diferentes valores de diâmetro. Baseados na literatura

sobre o efeito de proximidade em baixas temperaturas em metais balísticos, modelamos o com-

portamento das correlações supercondutoras no metal normal por um decaimento em lei de

potência inversa, com expoente 𝛼. O valor desse parâmetro é extraído dos dados obtidos nu-

mericamente para cada diâmetro. Obtivemos que esse parâmetro segue um padrão oscilatório

cujos picos e vales correspondem àqueles observados no gap de energia.

Palavras-chaves: efeito de proximidade; confinamento quântico; equações de Bogoliubov-de

Gennes.
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1 INTRODUCTION

Since its discovery in 1911 (ONNES, 1911), superconductivity has developed into a wide

and rich field of research. A typical superconductor possesses some quite remarkable char-

acteristics. Perhaps the most celebrated one is the absence of electrical resistivity: below a

critical temperature, a superconductor is capable of sustaining an electrical current for an

astonishing long time without any apparent dissipation. But a superconductor is not merely

a perfect conductor, it is also a perfect diamagnet, that is, any external magnetic field that

is not too strong diminishes rapidly over a characteristic length away from the surface of a

superconductor and vanishes in its interior. This is the so-called Meissner effect (MEISSNER;

OCHSENFELD, 1933).

Moreover, a typical superconductor possesses a gapped spectrum (although gapless su-

perconductivity is also possible). This means that for such materials there exists an interval

in the energy spectrum in which single electron levels are not allowed. The existence of an

energy gap manifests itself in observable properties of the superconducting material, like in an

exponential decay of the specific heat as temperature decreases.

The drive to accurately explain superconductivity and its related phenomena led, over the

course of several decades, to the development of many fruitful ideas and theoretical frameworks.

Some highlights are London’s early phenomenological theory, which was able to account for the

Meissner effect (LONDON; LONDON, 1935a; LONDON; LONDON, 1935b). Ginzburg and Landau’s

theory approached superconductivity from the perspective of phase transitions and described

superconductors close to the critical temperature with the aid of a complex macroscopic

wave function as an order parameter. A successful microscopic description for homogeneous

s-wave superconductors with constant energy gap Δ is BCS theory, brought forth in 1957,

which is based on the concept of Cooper pairs, bound states formed by two electrons with

opposite momenta and spins that attract each other through an interaction mediated by

virtual phonons (BARDEEN; COOPER; SCHRIEFFER, 1957a; BARDEEN; COOPER; SCHRIEFFER,

1957b). For inhomogeneous systems, like nanowires and nanofilms, where the gap Δ(r) cannot

be considered constant throughout the material, a more appropriate description is provided

by the Bogoliubov-de Gennes (BdG) equations (GENNES, 1966). Superconductivity can also

be described by means of Green’s functions. It is necessary to introduce anomalous Green’s

functions related to the pairing of electrons. Gor’kov developed a set of coupled differential



12

equations for the normal and anomalous Green’s functions of a superconductor.

If a superconductor is appropriately connected to a non-superconducting metal (which

may be a nonmagnetic metal or a ferromagnet), one observes that some superconducting

properties, otherwise absent, are induced in the normal metal. Electronic interactions in the

system are characterized by the potential 𝑉 (r − r′) = 𝑔(𝑧)𝛿(r − r′). Most noticeably, the

pair amplitude 𝐹 (𝑧) =
⟨
Ψ†

↑(𝑧)Ψ
†
↓(𝑧)

⟩
= Δ(𝑧)/𝑔(𝑧), which is related to the probability am-

plitude of finding a pair at z, does not vanish completely in the normal metal but instead

decays over appreciable length scales. This is the so-called proximity effect. Additionally, this

leakage of superconducting correlations into the normal metal is accompanied by a weakening

of superconductivity on the superconductor itself: the value of the pair potential Δ(𝑧) (and

of 𝐹 (𝑧)) is reduced near the interface. The proximity effect was first observed by Holm and

Meissner (1932). More experiments were only carried out much later, in the 1950s (BEDARD;

MEISSNER, 1956) and flourished from the 1960s (CLARKE, 1968) onwards. Theoretical inves-

tigations began gaining traction in the 1960s, initially in the framework of Ginzburg-Landau

theory and Gor’kov equations (GENNES, 1964; DEUTSCHER; GENNES, 1969). The development

of the quasiclassical theory of superconductivity (EILENBERGER, 1968; USADEL, 1970) also

played an important role in the unravelling of proximity-related problems. It has been useful,

for example, in the treatment of a type of proximity effect that has received much atten-

tion since the 1990s: the induction of superconductivity in ferromagnets (BERGERET; VOLKOV;

EFETOV, 2005; BUZDIN, 2005). Additionally, the increase in computational power has allowed

researches to approach these problems numerically using more precise formalism such as the

Bogoliubov-de Gennes equations without needing to resort to potentially harmful approxima-

tions (HALTERMAN; VALLS, 2001).

Another subfield with notably rich physics is superconductivity at nanoscales, when the

thickness of a superconducting sample is reduced. This confinement of electronic motion along

some directions may cause the values of key properties of the system to significantly deviate

from those observed in bulk samples. Several of the characteristic quantities of superconductor

develop a remarkable oscillatory behavior as functions of sample thickness: the energy gap,

critical temperature, density of states at the Fermi level, coherence length, for example. The

initial steps in uncovering these phenomena were taken sixty years ago, by Blatt and Thompson

(1963), who studied energy gap oscillations in nanofilms based on the then recently developed

BCS theory. For several decades, experimental advances in this area stalled due to the lack of

nanostructures with satisfactory quality. The situation changed as technological improvements
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allowed for the creation of high-quality samples. Additionally, a more appropriate treatment of

such inhomogeneous nanostructures was achieved with the introduction of the Bogoliubov-de

Gennes equations.

The proximity effect and the oscillations in superconducting properties due to quantum

confinement are two classes of important superconductivity-related phenomena. What remains

to be extensively investigated with a proper microscopic self-consistent treatment, however,

is the interplay of these two effects, i.e, how the proximity effect is altered in the presence

of quantum confinement. Some work has been carried out in that direction (REEG; LOSS;

KLINOVAJA, 2017; REEG; LOSS; KLINOVAJA, 2018).

With these points in mind, the goal of this thesis is to explore some aspects of the proximity

effect in clean cylindrical nanowires at zero temperature. The nanowires are half superconduct-

ing, half normal metal, and these two parts are separated by a plane boundaries perpendicular

to the wire axis. More specifically, we aim to investigate how the functional form for the decay

of the pair amplitude 𝐹 (𝑧) in the normal metal is modified as wire thickness is changed, in

the regime where oscillations in 𝐹 (𝑧) induced by quantum confinement are present.
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2 OVERVIEW OF SUPERCONDUCTIVITY

Superconductivity was discovered in 1911 by the Dutch physicist Heike Kamerlingh Onnes

(ONNES, 1911). He had previously successfully liquefied helium for the first time, allowing him

to reach record low temperatures in his lab. Onnes realized that the resistivity of mercury (Hg)

suddenly dropped from a finite value to virtually zero at a critical temperature of 4.2 K.

2.1 LONDON PHENOMENOLOGICAL THEORY

An early attempt at explaining both perfect conductivity and perfect diamagnetism was

made in 1935 by Heinz and Fritz London (LONDON; LONDON, 1935a; LONDON; LONDON,

1935b). To understand their reasoning, we may initially investigate a metal that exhibits

perfect conductivity with the aide of Maxwell’s equations. In the presence of an electric field

E, the free charges in the system will be accelerated according to

𝑚
𝑑2r
𝑑𝑡2

= −𝑒E (2.1)

where 𝑚 and 𝑒 are the mass and charge of the electron, respectively. In general, a current

density can be written as the product of the volume charge density, 𝜌, and the velocity field,

v:

J = 𝜌v (2.2)

If 𝑛 is the density of electrons which are able to move without resistance, the current density

can be written as

J = −𝑒𝑛𝑑r
𝑑𝑡

(2.3)

By taking the derivative of this expression with respect to time, we obtain a new expression

for 𝑑2r
𝑑𝑡2 which can be substituted in (2.1), resulting in

E = 𝑚

𝑒2𝑛

𝑑J
𝑑𝑡

(2.4)

Faraday’s law, which is given by

∇ × E = −𝜕B
𝜕𝑡
, (2.5)

takes the form

∇ × 𝜕J
𝜕𝑡

= −𝑒2𝑛

𝑚

𝜕B
𝜕𝑡
. (2.6)
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The magnetic field and the current density are related through Ampère’s law:

∇ × B = 𝜇0J. (2.7)

Using (2.7), Eq.(2.6) becomes

∇ × ∇ × 𝜕B
𝜕𝑡

= −𝑛𝑒2𝜇0

𝑚

𝜕B
𝜕𝑡

(2.8)

The repeated curl can be simplified with the help of the vector identity

∇ × ∇ × A = ∇(∇ · A) − ∇2A (2.9)

and Gauss’s law for magnetism

∇ · B = 0 (2.10)

Finally, we obtain

∇2
(︃
𝜕B
𝜕𝑡

)︃
= 𝜆−2

𝐿

(︃
𝜕B
𝜕𝑡

)︃
, (2.11)

where

𝜆𝐿 =
√︃

𝑚

𝑒2𝑛𝜇0
=
√︃
𝑚𝜖0𝑐2

𝑒2𝑛
(2.12)

To illustrate the significance of this equation, we can examine a one dimensional perfect

conductor, with a magnetic field B applied along the transverse direction. In this particular

setting, Eq. (2.11) becomes

𝜕B
𝜕𝑡

=
(︃
𝜕B
𝜕𝑡

)︃
𝑧=0

exp
(︂

− 𝑧

𝜆𝐿

)︂
(2.13)

So inside this perfect conductor, away from the 𝑧 = 0 surface, we have that 𝜕B
𝜕𝑡

= 0. In other

words, the magnetic field in the interior of the sample would be constant. However, this is

in clear disagreement from what is known from the Meissner effect, which establishes that

the magnetic field inside a superconductor is not only constant, but exactly zero. This line of

reasoning therefore shows that a superconductor is more than just a perfect conductor. The

London brothers observed that this issue can be resolved if the partial derivatives in time are

remove from Eq.(2.11):

∇2B = 𝜆−2
𝐿 B. (2.14)

The implication now is that an external magnetic field decays exponentially to zero over a

distance 𝜆𝐿, which is called the London penetration depth.
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2.2 BCS THEORY

A satisfactory microscopic description of the superconducting state was presented in 1957

by John Bardeen, Leon Cooper and John Robert Schrieffer, and became known as the BCS

theory (BARDEEN; COOPER; SCHRIEFFER, 1957a; BARDEEN; COOPER; SCHRIEFFER, 1957b). At

the core of the BCS description of superconductivity is the idea that an effective attractive

interaction may arise between two electrons, leading to the formation of a bound state called

a Cooper pair. We may picture a metal as a see of electrons and a lattice of positively charged

ions that oscillate around fixed positions. The electrostatic interaction between the electrons

is, of course, repulsive, but when ionic movement is taken into account, the resultant effective

interaction is attractive. We may speak, then, of an electron-electron interaction mediated by

phonons (FRöHLICH, 1950). For a simple description of this phenomenon, we can imagine a

propagating electron that locally disturbs the lattice, creating a region of net positive charge.

The speed of the electron is considerably higher than the speed with which the lattice relaxes,

so the original electron goes away but the positive disturbance remains for a while and can

attract a second electron without much eletrostatic repulsion from the first one. The net result

is then an effective attraction between the two electrons. From this simplified description, it

is also clear that the interaction is not instantaneous, but time-retarded, and this is crucial to

circumvent the Coulomb repulsion.

Electrons are fermions, but out of two of them a new entity of bosonic character arises.

Being bosons, the Cooper pairs can all occupy the lowest energy state, as in a Bose-Einstein

condensate. This Cooper pair condensate is the superconducting ground state.

2.2.1 Single pair of electrons

Initially, Cooper considered how two electrons, taken in isolation, can form a bound state.

The particles interact via an attractive potential 𝑉 (r1 −r2), where r1 and r2 are their position

vectors. This two-particle system is described by the wave function Ψ(r1, r2), for which the

Schrödinger equation can be written as[︃
− ℏ2

2𝑚∇2
r1 − ℏ2

2𝑚∇2
r2 + 𝑉 (r1 − r2)

]︃
Ψ(r1, r2) = 𝐸Ψ(r1, r2) (2.15)
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Here, it is convenient to change coordinates and work instead with the separation vector and

the position of the center of mass

r = r2 − r1, R = r1 + r2

2 . (2.16)

The new Schrödinger equation is given by[︃
− ℏ2

2𝑀∇2
R − ℏ2

2𝜇∇2
r + 𝑉 (r)

]︃
Ψ(r,R) = 𝐸Ψ(r,R), (2.17)

where 𝑀 = 2𝑚 and 𝜇 = 𝑚/2. It is now possible to approach solving this equation by

separation of variables. We may write

Ψ(r,R) = 𝜓(r)Φ(R). (2.18)

Substituting this expression in Eq.(2.17) results in separate differential equations for 𝜓(r) and

Φ(R). A general solution for Φ(R) is of the form

Φ(R) = 𝑒𝑖K·R, (2.19)

whilst 𝜓(r) can be determined from a new Schrödinger equation:[︃
− ℏ2

2𝜇∇2
r + 𝑉 (r)

]︃
𝜓(r) = 𝐸̄𝜓(r), (2.20)

where

𝐸̄ = 𝐸 − ℏ2𝐾2

2𝑀 . (2.21)

As one can clearly see, 𝐸̄ will be minimum when the center of mass momentum K vanishes

or, in other words, when the two electrons have opposite momenta. This is the situation

traditionally considered in BCS theory. To solve eq. (2.20), we use the method of Fourier

transforms. Here, we introduce

𝜓(k) =
∫︁
𝜓(r)𝑒−𝑖k·r 𝑑3𝑟 (2.22)

and note that∫︁
𝑑3𝑟𝑉 (r)𝜓(r)𝑒−𝑖k·r 𝑑3𝑟 =

∫︁ 𝑑3𝑞

(2𝜋)3𝑉 (q)
∫︁
𝑑3𝑟𝜓(r)𝑒−𝑖(k−q)·r =

∫︁ 𝑑3𝑘′

(2𝜋)3𝑉 (k − k′)𝜓(k′)
(2.23)

By multiplying Eq.(2.20) by 𝑒−𝑖k·r and integrating in r, we obtain∫︁ 𝑑3𝑘′

(2𝜋)3𝑉 (k − k′)𝜓(k′) = (𝐸 − 2𝜖𝑘)𝜓(k), (2.24)
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with 𝜖𝑘 = ℏ2𝑘2/2𝑚. Because we take 𝐾 = 0 in Eq.(2.21), we can write 𝐸 instead of 𝐸̄

in Eq.(2.24). It is convenient to write everything in terms of a new wave function Δ(k) =

𝜓(k)(𝐸 − 2𝜖𝑘). This leads to

Δ(k) =
∫︁ 𝑑3𝑘′

(2𝜋)3
𝑉 (k − k′)
(𝐸 − 2𝜖𝑘) Δ(k′), (2.25)

This expression becomes more tractable if we integrate over energy instead of momentum:
∫︁ 𝑑3𝑘′

(2𝜋)3 =
∫︁
𝑑𝜖𝜌(𝜖), (2.26)

with the density of states per spin given by

𝜌(𝜖) = 1
2𝜋2

(︂2𝑚
ℏ2

)︂3/2
𝜖1/2 (2.27)

To proceed, we must know the form of the potential 𝑉 (k−k′). It is reasonable to take the

simple attractive potential 𝑉 (k − k′) = −𝑉0. The energy scales for phonons in a lattice is set

by ℏ𝜔𝐷, where 𝜔𝐷 is the Debye frequency. Since we assume that the net attractive interaction

between the electrons arises due to interaction with phonons, it is appropriate to take as an

upper bound for the energies in the problem. For a homogeneous three dimensional system,

we can look for solutions with uniform Δ(k) = Δ. Then,

Δ = 𝑉0Δ
∫︁ ℏ𝜔𝐷

0

𝑑𝜖𝜌(𝜖)
2𝜖− 𝐸

(2.28)

and ultimately √︃
−𝐸
2 arctan

(︃
2ℏ𝜔𝐷

−𝐸

)︃
= −2𝜋2

𝑉0

(︃
ℏ2

2𝑚

)︃3/2

+
√︁
ℏ𝜔𝐷. (2.29)

This is the expression for the energy 𝐸 of the pair. Note that we are considering a bound pair

of two electrons, so 𝐸 < 0. From this, we can infer the minimal value of 𝑉0 that allows for

the formation of bound pairs. Taking the limit 𝐸 → 0 of Eq.(2.29) from negative energies,

we arrive at

𝑉0,𝑚𝑖𝑛 = 2𝜋2
√
ℏ𝜔𝐷

(︃
ℏ2

2𝑚

)︃3/2

(2.30)

In more physical terms, this means that the attraction must be stronger than a minimum

value if bound pairs are to be formed. This simplified model, however, failed to take into

account an important feature of the system: the Fermi surface. In an actual many-body system

with a well-defined Fermi surface, only the electrons in the vicinity of the Fermi level 𝜖𝐹 can

interact to form pairs. We look at Eq.(2.28) once again, but now the lower and upper limits

in the integarl must be changed to 𝜖𝐹 and 𝜖𝐹 +ℏ𝜔𝐷, respectively. Additionally, ℏ𝜔𝐷 ≪ 𝜖𝐹 , so
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we can approximate the density of states by its value at the Fermi level: 𝜌(𝜖) ≈ 𝜌(𝜖𝐹 ). Thus,

we obtain

1
𝑉0𝜌(𝜖𝐹 ) =

∫︁ 𝜖𝐹 +𝜔𝐷

𝜖𝐹

𝑑𝜖

2𝜖𝐹 − 𝐸
= 1

2 ln
(︃

2𝜖𝐹 + 2ℏ𝜔𝐷 − 𝐸

2𝜖𝐹 − 𝐸

)︃
(2.31)

We can now introduce binding energy, that which is need in order to break a pair into isolated

electrons:

𝐸𝑏 = 2𝜖𝐹 − 𝐸 (2.32)

In the limit of 𝑉0𝜌(𝜖𝐹 ) ≪ 1, Eq.(2.31) yields

𝐸𝑏 = 2ℏ𝜔𝐷 exp
{︃

− 2
𝑉0𝜌(𝜖𝐹 )

}︃
(2.33)

.

We see that two electrons in a many-body system with a well-defined Fermi surface can form

bound states for an arbitrarily weak attractive interaction. These states are called Cooper pairs

and the binding energy 𝐸𝑏 is the energy required to break one. Here, the condition ℏ𝜔𝐷 ≪ 𝜖𝐹

is crucial, since it effectively reduces the problem from 3D to 2D. We would not reach the

same conclusions in a strictly 3D system (ZAGOSKIN, 2014).

2.2.2 Multiple Cooper pairs and canonical transformations

As we recall from the preceding discussions, a naive model in which two electrons interact

in isolation will only result in a bound system if such an attractive interaction is strong enough.

However, when this pair of electrons is considered as part of a many-body system, the physical

picture is considerably altered. We see that no interaction threshold needs to be overcome,

and any value of the interaction potential, however small, will lead to the formation of a bound

state (Cooper pair). Going further, we can now investigate the more realistic situation in which

many pairs of electrons interact close to the Fermi surface, instead of just one.

An appropriate description of a many-electron system in which particles interact pairwise

is provided by the following Hamiltonian in k-representation:

𝐻 =
∑︁
k𝜎

𝜉k𝑐
†
k𝜎𝑐k𝜎 + 1

𝑁

∑︁
kk′

𝑉kk′𝑐†
k↑𝑐

†
−k↓𝑐−k′↓𝑐k′↑ (2.34)

In this expression, 𝑐†
k𝜎 is the creation operator for an electron with momentum k and spin

𝜎. In the first part of the Hamiltonian, 𝜉k = 𝜖k − 𝜇 = ℏ2k2

2𝑚
− 𝜇 is the energy associated
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with the single-particle state with momentum k measured from the Fermi energy. The second

term, the interactive part of the Hamiltonian, describes how the destruction of a pair of

electrons in the state −k′ ↓,k′ ↑ is followed by the creation of a pair in state k ↑,−k ↓. As

it stands, the quartic term in the Hamiltonian renders the problem too complicated. One way

around this is to introduce a mean field treatment. The appropriate mean field approach that

allows for the formation of particle pairs is the Hartree-Fock-Bogoliubov mean field theory. In

the standard Hartree-Fock theory, averages like
⟨
𝑐†

k↑𝑐
†
−k↓

⟩
vanish, but in an investigation of

superconductivity they must not simply disappear, since they represent the Cooper pairs.

The gap function is conveniently defined as

Δk ≡ 1
𝑁

∑︁
k′
𝑉kk′

⟨
𝑐−k′↓𝑐k′↓

⟩
(2.35)

With the previous modifications in mind, the Hamiltonian acquires a simplified form

𝐻 =
∑︁
k𝜎

𝜉k𝑐
†
k𝜎𝑐k𝜎 −

∑︁
kk′

(︁
Δk𝑐

†
k↑𝑐

†
−k↓ + Δ*

k𝑐−k′↓𝑐k′↓

)︁
+
∑︁

k
Δk

⟨
𝑐†

k′↑𝑐
†
−k′↓

⟩
(2.36)

However, little information about the system can be obtained from direct inspection of this

expression. Fortunately, it can be recast in a more instructive form by means of a canonical

transfromation of the operators. The so-called Bogoliubov-Valatin transformation introduces

new fermionic operators 𝛾†
−k↓, 𝛾k↑ and coefficients 𝑢k, 𝑣k:

𝑐k↑ = 𝑢*
k𝛾k↑ + 𝑣k↓𝛾

†
−k↓ (2.37a)

𝑐†
−k↓ = 𝑢k𝛾

†
−k↓ + 𝑣*

k𝛾k↑ (2.37b)

We recall that the original creation and annihilation operators must satisfy certain anticom-

mutation relations. This requirement is extended to the 𝛾 operators introduced in the trans-

formation. Considering as an example the anticommutator of 𝑐k↑ and 𝑐†
k↑, we obtain:

{︁
𝑐k↑, 𝑐

†
k↑

}︁
= |𝑢𝑘|2 + |𝑣𝑘|2 (2.38)

which indicates that the following normalization condition must hold:

|𝑢𝑘|2 + |𝑣𝑘|2 = 1. (2.39)

Sometimes, bare fundamental particles are not the most convenient entities with which

to describe a system. An electron in a many-body system, for example, is affected by the
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interactions with its environment. It can be more instructive to approach this situation in a way

that takes into account the many-body nature of the process from the onset. We speak then

of a quasielectron: an electron dressed by the interactions which retains some characteristics

of a fundamental electron, but can be associated with new properties (a different mass, for

example). We can define other quasiparticles: collective excitations or non-trivial combinations

of fundamental particles that can be treated as if they were particles (VENEMA L.; VERBERCK

et al., 2016), (CHANDRAN A.; IADECOLA et al., 2023).

The role of 𝛾k↑ and 𝛾†
−k↓ can be more easily comprehended if we solve for them in

Eqs.(2.37):

𝛾k↑ = 𝑢k𝑐k↑ − 𝑣k𝑐
†
−k↓, (2.40a)

𝛾†
−k↓ = 𝑢*

k𝑐
†
−k↓ + 𝑣*

k𝑐
†
k↑. (2.40b)

From this we see that 𝛾†
−k↓ and 𝛾k↑ are creation and annihilation operators for quasiparti-

cle excitations, the so-called Bogolons, which can be interpreted as a linear combination of

electrons and holes (ZAGOSKIN, 2014), (KIVELSON; ROKHSAR, 1990).

Substituting Eqs.(2.37) into Eq.(2.36) yields a new effective Hamiltonian:

𝐻 =
∑︁

k
𝜉k
[︁(︁

|𝑢k|2 − |𝑣k|2
)︁]︁(︁

𝛾†
k↑𝛾k↑ + 𝛾†

−k↓𝛾−k↓

)︁
+ 2|𝑣k|2 + 2𝑢k𝑣k𝛾

†
k↑𝛾

†
−k↓ + 2𝑢*

k𝑣
*
k𝛾−k↓𝛾k↑

+
∑︁

k

[︁
(Δk𝑢k𝑣

*
k + Δ*

k𝑢
*
k𝑣k)

(︁
𝛾†

k↑𝛾k↑ + 𝛾†
−k↓𝛾−k↓

)︁
− (Δk𝑢k𝑣

*
k + Δ*

k𝑢
*
k𝑣k)

]︁
−
∑︁

k

[︁(︁
Δk𝑢

2
k + Δ*

k𝑣
2
k

)︁
𝛾†

k↑𝛾
†
−k↓ − (Δk𝑢k𝑣

*
k + Δ*

k𝑢
*
k𝑣k)𝛾−k↓𝛾k↑

]︁
(2.41)

This expression is reminiscent of the quantum harmonic oscillator Hamiltonian, 𝐻𝐻.𝑂 =

ℏ𝜔𝐷

(︁
1
2 + 𝑎†𝑎

)︁
, where 𝑎† and 𝑎 are the ladder operators of that system. A crucial difference

lies in the terms containing the factors 𝛾†
k↑𝛾

†
−k↓ and 𝛾−k↓𝛾k↑. These terms must be eliminated

in order to diagonalize the Hamiltonian. This is accomplished by requiring that the 𝑢k and 𝑣k

satisfy the following equation:

2𝜉k𝑢k𝑣k − Δk𝑢
2
k + Δ*

k𝑣
2
k = 0 (2.42)

Dividing throughout by 𝑢2
k, we obtain a quadratic equation for the ratio 𝑣k

𝑢k
. The positive root

of the solution is given by:
𝑣k
𝑢k

=
−𝜉k +

√︁
𝜉2

k + |Δk|2

Δ*
k

(2.43)
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Here, it is convenient to introduce the notation 𝐸k =
√︁
𝜉2

k + |Δk|2. An already known equation

that relates 𝑢k and 𝑣k is the normalization condition:

1 = 1
|𝑢2

k| + |𝑣2
k|

=⇒
⃒⃒⃒
𝑢2

k

⃒⃒⃒
= 1

1 +
⃒⃒⃒⃒

𝑣k
𝑢k

⃒⃒⃒⃒2 (2.44)

Substitution of Eq.(2.43) in Eq.(2.44) results is expressions for |𝑢2
k| and |𝑣2

k|:
⃒⃒⃒
𝑢2

k

⃒⃒⃒
= 1

2

(︃
1 + 𝜉k

𝐸k

)︃
, (2.45a)

⃒⃒⃒
𝑣2

k

⃒⃒⃒
= 1

2

(︃
1 − 𝜉k

𝐸k

)︃
, (2.45b)

where the excitation energy is defined by

𝐸k =
√︁
𝜉2

k + |Δk|2. (2.46)

In terms of the quantities calculated until now, the Hamiltonian in Eq.(2.41) can be written

in a diagonalized form:

𝐻 =
∑︁
k𝜎

𝐸k𝛾
†
k𝜎𝛾k𝜎 + 𝐸0 (2.47)

with

𝐸0 =
∑︁

k

(︁
Δk

⟨
𝑐†

k↑𝑐
†
−k↓

⟩
+ 𝜉k − 𝐸k

)︁
. (2.48)

It is clear from Eq.(2.46) and Eq.(2.47) that a superconductor possesses a gapped excitation

spectrum.

2.2.3 Gap function

We can now investigate the gap function in the light of the canonical transformations.

Substituting 𝑐−k′↓ and 𝑐k′↓ in Eq.(2.35), we get

Δk = − 1
𝑁

∑︁
k′
𝑉kk′𝑢*

k′𝑣k′

(︁⟨
𝛾†

−k′↓𝛾−k′↓

⟩
−
⟨
𝛾†

k′↑𝛾k′↑

⟩)︁
. (2.49)

The Bogolons quasiparticles are of fermionic nature. Thus, they obey the Fermi-Dirac

distribution: ⟨
𝛾†

k′↑𝛾k′↑

⟩
=
⟨
𝛾†

−k′↓𝛾−k′↓

⟩
= 1
𝑒𝛽𝐸𝑘′ + 1 (2.50)

A quick manipulation is needed in the first expected value in Eq.(2.49):

𝛾−k′↓𝛾
†
−k′↓ =

{︁
𝛾−k′↓, 𝛾

†
−k′↓

}︁
− 𝛾†

−k′↓𝛾−k′↓ = 1 − 𝛾†
−k′↓𝛾−k′↓. (2.51)
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Thus, combining Eqs.(2.50) and Eqs.(2.51) we get

⟨
𝛾−k′↓𝛾

†
−k′↓

⟩
−
⟨
𝛾†

−k′↓𝛾−k′↓

⟩
= 𝑒

1
2 𝛽𝐸𝑘′ − 𝑒− 1

2 𝛽𝐸𝑘′

𝑒
1
2 𝛽𝐸𝑘′ + 𝑒− 1

2 𝛽𝐸𝑘′
= tanh

(︂
𝐸k′

2𝑘𝐵𝑇

)︂
(2.52)

We also note that 𝑢*
k′𝑣k′ = |𝑢2

k′| 𝑣k′
𝑢k′

and can be calculated from Eqs.(2.43) and Eqs.(2.45a).

Ultimately, we arrive at a new expression for the gap function:

Δk = − 1
𝑁

∑︁
k′

𝑉kk′Δk′

2𝐸𝑘

tanh
(︂
𝐸k′

2𝑘𝐵𝑇

)︂
. (2.53)

In the traditional BCS approach, it is customary to the contact potential 𝑉 (r − r′) =

𝑉0𝛿(r − r′), which a constant in momentum space, 𝑉kk′ = 𝑉0. Only the states with energy

in a small interval around the Fermi level are taken into account. This is the so-called Debye

window, and consists in the states that satisfy |𝜉k|, |𝜉k′ | < ℏ𝜔𝐷 (𝜉k = 𝜖k − 𝜇 and 𝜔𝐷 is the

Debye frequency). Furthermore, it is natural to look for a Δk = Δ, since the potential does

not depend on momentum here. With these points in mind, we arrive at

1 = −𝑉0

𝑁

∑︁
k

1
2𝐸𝑘

tanh
(︂
𝐸k′

2𝑘𝐵𝑇

)︂
, (2.54)

where the sum is restricted to those states that lei inside the Debye window, otherwise it would

diverge as consequence of the approximate contact potential we chose to consider (GENNES,

1966). It is convenient to make a substitution and instead integrate over energy. Because we

work in the approximation that ℏ𝜔𝐷 ≪ 𝜇, we can replace the density of states as a function

of energy by its value at the Fermi level. Hence, we obtain

1 = 𝑉0𝜌𝐹

∫︁ ℏ𝜔𝐷

0

𝑑𝜖√
𝜖2 + Δ2

tanh
(︃√

𝜖2 + Δ2

2𝑘𝐵𝑇

)︃
(2.55)

In the particular case of 𝑇 = 0, tanh(𝑥 → ∞) → 1, Eq.(2.55) becomes

1 = 𝑉0𝜌𝐹

∫︁ ℏ𝜔𝐷

0

𝑑𝜖√
𝜖2 + Δ2

. (2.56)

If we keep only the leading term for Δ0 ≪ ℏ𝜔𝐷, we get

1
𝑉0𝜌𝐹

= ln
(︃

2ℏ𝜔𝐷

Δ0

)︃
, (2.57)

or equivalently

Δ0 = 2ℏ𝜔𝐷𝑒
− 1

𝑉0𝜌𝐹 . (2.58)

The quantity 2Δ0 is the energy required to break a Cooper pair at 𝑇 = 0. Now with a

more general many-body discussion, we once again see that a gap can appear at 𝑇 = 0 for

arbitrary values of the attractive potential.
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We could also investigate the case where Δ → 0 in order to determine the critical tem-

perature 𝑇𝑐. The, Eq.(2.55) becomes

1 = 𝑉0𝜌𝐹

∫︁ ℏ𝜔𝐷

0

𝑑𝜖

𝜖
tanh

(︂
𝜖

2𝑘𝐵𝑇

)︂
. (2.59)

This integration can be carried out with the approximation ℏ𝜔𝐷 ≫ 𝑘𝐵𝑇𝑐 and ultimately

yields
1

𝑉0𝜌𝐹

= ln
(︃

2ℏ𝜔𝐷𝑒
𝛾𝐸

𝜋𝑘𝐵𝑇𝑐

)︃
, (2.60)

where 𝛾𝐸 ≈ 0.577 is the Euler constant. From this, we get

𝑘𝐵𝑇𝑐 = 2ℏ𝜔𝐷𝑒
𝛾𝐸

𝜋
𝑒

− 1
𝑉0𝜌𝐹 (2.61)

It is common to combine Eq.(2.58) and Eq.(2.61) in the form of a celebrated result of

BCS theory, the universal ratio
Δ0

𝑘𝐵𝑇𝑐

≈ 1.76. (2.62)

2.3 SECOND QUANTIZATION

A convenient way of studying many-body systems is provided by the language of second

quantization. In this formalism, we introduce the concept of field operators, represented by

Ψ†
𝜎(r) and Ψ𝜎(r). When acting on a state ket, Ψ†

𝜎(r) creates a particle of spin 𝜎 at position

r (creation operator) whereas Ψ𝜎(r) destroys a particle of spin 𝜎 at position r (annihilation

operator).

These field operators obey quantization rules. In the case of bosons, the following com-

mutation relations must be respected:

[︁
Ψ𝜎(r),Ψ†

𝜎′(r′)
]︁

= 𝛿𝜎𝜎′𝛿(r − r′), (2.63)

[Ψ𝜎(r),Ψ𝜎′(r′)] = 0, (2.64)

where the brackets represent a commutator [𝐴,𝐵] = 𝐴𝐵 − 𝐵𝐴. For a fermionic system,

similar relations hold, but now in terms of anticommutators, represented by curly brackets:

{𝐴,𝐵} = 𝐴𝐵 +𝐵𝐴.

{︁
Ψ𝜎(r),Ψ†

𝜎′(r′)
}︁

= 𝛿𝜎𝜎′𝛿(r − r′) (2.65)
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{Ψ𝜎(r),Ψ𝜎′(r′)} = 0 (2.66)

The Hamiltonian of a general system characterized by a single-electron energy 𝑇 (r) and a

potential energy function 𝑉 (r, r′) can be written in the language of second quantization as:

𝐻 =
∫︁
𝑑3𝑟𝜓†(r)𝑇 (r)𝜓(r) + 1

2

∫︁∫︁
𝑑3𝑟 𝑑3𝑟′𝜓†(r)𝜓†(r′)𝑉 (r, r′)𝜓(r′)𝜓(r) (2.67)

In the traditional conception of Cooper pairs in the BCS theory, the electrons have opposite

momenta and spins: k = −k′, 𝜎′ = −𝜎. This considerably simplifies the problem.

Again, we ought to work with the mean field version of the Hamiltonian in Eq.(2.67). In

the process, the pair potential is introduced

Δ(r) ≡ 𝑔
⟨
𝜓↑(r)𝜓↓(r)

⟩
. (2.68)

In terms of Δ(r), the interactive part of the Hamiltonian becomes

𝐻𝑖𝑛𝑡 =
∫︁
𝑑r𝜓†

↑(r)𝜓†
↓(r)Δ(r) + Δ*(r)𝜓↓(r)𝜓↑(r) + |Δ(r)|2

𝑔
(2.69)

While the single-electron part of the Hamiltonian is given by

𝐻𝑠𝑒 =
∑︁

𝜎

∫︁
𝑑r𝜓†

𝜎(r)
[︃

−ℏ2

2𝑚

(︂
∇ − 𝑖𝑒

ℏ𝑐
A
)︂2

− 𝜇

]︃
𝜓𝜎(r), (2.70)

the chemical potential 𝜇 is included due to the gran-canonical nature of this formalism.

2.3.1 Bogoliubov-de Gennes equations

Having arrived at the mean-field Hamiltonian for superconductivity, we can now derive the

Bogoliubov-de Gennes equations, that provide a general description of superconductor. This

approach allows us to circumvent problems encountered when other methods are used, like

the requirement for spatial homogeneity.

The total mean field Hamiltonian is, of course, 𝐻𝐵𝐶𝑆 = 𝐻𝑠𝑒 +𝐻𝑖𝑛𝑡. As a first step in the

derivation, we rewrite the fields in the Heisenberg picture

𝜓𝜎(r, 𝑡) = 𝑒
𝑖
ℏ𝐻𝐵𝐶𝑆𝑡𝜓𝜎(r)𝑒− 𝑖

ℏ𝐻𝐵𝐶𝑆𝑡, (2.71)

where 𝜎 represents the spin, which can be up or down. To proceed, we want to employ the

equations of motion for Heisenberg fields:

𝑖ℏ
𝜕𝜓𝜎(r, 𝑡)

𝜕𝑡
= [𝜓𝜎(r, 𝑡), 𝐻𝐵𝐶𝑆] = 𝑒

𝑖
ℏ𝐻𝐵𝐶𝑆𝑡[𝜓𝜎(r), 𝐻𝐵𝐶𝑆]𝑒− 𝑖

ℏ𝐻𝐵𝐶𝑆𝑡. (2.72)
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With some work, we can show that

[︁
𝜓↑(r), 𝐻𝐵𝐶𝑆

]︁
= 𝑇𝑥𝜓↑(r) + Δ(r)𝜓†

↓(r) (2.73a)

[︁
𝜓↓(r), 𝐻𝐵𝐶𝑆

]︁
= 𝑇𝑟𝜓↓(r) − Δ(r)𝜓†

↑(r) (2.73b)

Taking the Hermitian conjugate of the last commutation relation, we obtain the relevant

commutation relation for 𝜓†
↓(r):

[︁
𝜓†

↓(r), 𝐻𝐵𝐶𝑆

]︁
= Δ*(r)𝜓↑(r) − 𝑇 *

𝑟 𝜓
†
↓(r). (2.74)

Therefore

𝑖ℏ
𝜕𝜓↑(r, 𝑡)

𝜕𝑡
= 𝑇𝑟𝜓↑(r, 𝑡) + Δ(r)𝜓†

↓(r, 𝑡) (2.75)

𝑖ℏ
𝜕𝜓†

↓(r, 𝑡)
𝜕𝑡

= Δ*(r)𝜓↑(r, 𝑡) − 𝑇 *
𝑟 𝜓

†
↓(r, 𝑡) (2.76)

The two equations above can be rewritten as a matrix expression:

𝑖ℏ
𝜕

𝜕𝑡

⎛⎜⎜⎝𝜓↑(r, 𝑡)

𝜓†
↓(r, 𝑡)

⎞⎟⎟⎠ =

⎛⎜⎜⎝ 𝑇𝑟 Δ(r)

Δ*(r) −𝑇 *
𝑟

⎞⎟⎟⎠
⏟  ⏞  

H𝐵𝑑𝐺

⎛⎜⎜⎝𝜓↑(r, 𝑡)

𝜓†
↓(r, 𝑡)

⎞⎟⎟⎠ (2.77)

The highlighted part in the previous equation is the Bogoliubov-de Gennes matrix differ-

ential operator. At this point, it is convenient to introduce to the coherent factors 𝑢𝜆(r) and

𝑣𝜆(r) in the eigenstates that diagonalize H𝐵𝑑𝐺:⎛⎜⎜⎝ 𝑇𝑟 Δ(r)

Δ*(r) −𝑇 *
𝑟

⎞⎟⎟⎠
⎛⎜⎜⎝𝑢𝜆(r)

𝑣𝜆(r)

⎞⎟⎟⎠ = 𝐸𝜆

⎛⎜⎜⎝𝑢𝜆(r)

𝑣𝜆(r)

⎞⎟⎟⎠ (2.78)

These are the Bogoliubov-de Gennes equations for 𝑢𝜆(r) and 𝑣𝜆(r). These equations pro-

vide a powerful framework for the study of superconductivity. They are particularly useful for

describing inhomogeneous systems, such as the nanostructures and contacts of different mate-

rials. For a deeper understanding of the theory and applications of the Bogoliubov-de Gennes

equations, see for example Zhu (2016), Gennes (1966), Altomare and Chang (2013).
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2.3.2 Gor’kov equations

Another powerful set of tools in the study of superconductors are the Gor’kov equations.

A well-organized discussion of this topic can be found in Fetter and Walecka (2003). The

single-particle Green’s function can be defined as

𝐺(r𝜏, r′𝜏 ′) = −
⟨
𝑇𝜏 [𝜓↑(r, 𝜏)𝜓†

↑(r′, 𝜏 ′)]
⟩
, (2.79)

where 𝜓↑(r, 𝜏) is like in Eq.(2.72), but with the substitution 𝜏 = 𝑖𝑡, and 𝑇𝜏 is the time

ordering operator. We can take the partial derivative of 𝐺(r𝜏, r′𝜏 ′) with respect to 𝜏 and use

the equations of motion of 𝜓↑(r, 𝜏) and 𝜓†
↑(r′, 𝜏 ′) in the calculations. This will yield

ℏ
𝜕

𝜕𝜏
𝐺(r𝜏, r′𝜏 ′) = −ℏ𝛿(r − r′)𝛿(𝜏 − 𝜏 ′)

−
[︃
− ℏ2

2𝑚∇2 − 𝜇

]︃
𝐺(r𝜏, r′𝜏 ′) + 𝑔

⟨
𝜓↑(r)𝜓↓(r)

⟩ ⟨
𝑇𝜏 [𝜓†

↓(r, 𝜏)𝜓†
↑(r′, 𝜏 ′)]

⟩
.

(2.80)

We are primarily interested in the cases where there is no magnetic field, A = 0. Eq.(2.80)

motivates the introduction of new quantities, the anomalous Green’s functions

𝐹 (r𝜏, r′𝜏 ′) = −
⟨
𝑇𝜏 [𝜓↑(r, 𝜏)𝜓↓(r′, 𝜏 ′)]

⟩
(2.81)

and

𝐹 †(r𝜏, r′𝜏 ′) = −
⟨
𝑇𝜏 [𝜓†

↓(r, 𝜏)𝜓†
↑(r′, 𝜏 ′)]

⟩
. (2.82)

In the case of time-independent Hamiltonians, these Green’s functions depend only on the

difference 𝜏 − 𝜏 ′, and the gap function can be defined as

Δ(r) = 𝑔𝐹 (r𝜏+, r𝜏) = 𝑔 ⟨𝜓↑(r)𝜓↓(r)⟩ . (2.83)

Thus, Eq.(2.80) can be written as[︃
−ℏ

𝜕

𝜕𝜏
+ ℏ2

2𝑚∇2 + 𝜇

]︃
𝐺(r𝜏, r′𝜏 ′) + Δ(r)𝐹 †(r𝜏, r′𝜏 ′) = ℏ𝛿(r − r′)𝛿(𝜏 − 𝜏 ′). (2.84)

Similar equations can be derived for 𝐹 (r𝜏, r′𝜏 ′) and 𝐹 †(r𝜏, r′𝜏 ′):[︃
−ℏ

𝜕

𝜕𝜏
+ ℏ2

2𝑚∇2 + 𝜇

]︃
𝐹 (r𝜏, r′𝜏 ′) = Δ(r)𝐺(r𝜏, r′𝜏 ′), (2.85)

[︃
ℏ
𝜕

𝜕𝜏
+ ℏ2

2𝑚∇2 + 𝜇

]︃
𝐹 †(r𝜏, r′𝜏 ′) = Δ*(r)𝐺(r𝜏, r′𝜏 ′). (2.86)
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These are the Gor’kov equations for the normal (𝐺) and anomalous (𝐹, 𝐹 †) Green’s func-

tions. If the Hamiltonian is time independent, these Green’s functions depend only on 𝜏 − 𝜏 ′

and can therefore be expanded in Fourier series:

𝐺(r𝜏, r′𝜏 ′) = 𝑘𝑇

ℏ
∑︁

𝑛

𝑒−𝑖𝜔𝑛(𝜏−𝜏 ′)𝐺𝜔𝑛
(r, r′), (2.87)

𝐹 †(r𝜏, r′𝜏 ′) = 𝑘𝑇

ℏ
∑︁

𝑛

𝑒−𝑖𝜔𝑛(𝜏−𝜏 ′)𝐹 †
𝜔𝑛

(r, r′), (2.88)

where 𝜔𝑛 = (2𝑛+ 1)𝜋𝑘𝑇/ℏ for fermionic particles.

The relevant Gor’kov equations then become[︃
𝑖ℏ𝜔𝑛 + ℏ2

2𝑚∇2 + 𝜇

]︃
𝐺𝜔𝑛

(r, r′) + Δ(r)𝐹 †
𝜔𝑛

(r, r′) = ℏ𝛿(r − r′), (2.89)

[︃
−𝑖ℏ𝜔𝑛 + ℏ2

2𝑚∇2 + 𝜇

]︃
𝐹 †

𝜔𝑛
(r, r′) − Δ*(r)𝐺†

𝜔𝑛
(r, r′) = 0, (2.90)

together with the self-consistency condition

Δ*(r) = 𝑔𝑘𝑇

ℏ
∑︁

𝑛

𝐹 †
𝜔𝑛

(r, r). (2.91)
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3 NANOSCALE SUPERCONDUCTIVITY

One might wonder how the properties of a superconductor would change if the shape of

the sample deviated from the simpler homogeneous 3D configuration. What would happen

if the size of a superconductor was drastically reduced in one or more directions, leading to

geometries like nanofilms, nanowires or nanograins? Some early investigations in this field

were carried out by Blatt and Thompson, who studied superconductivity in nanofilms with

a multiband BCS model (BLATT; THOMPSON, 1963; THOMPSON; BLATT, 1963). Their work

showed that confining particle motion along the transverse direction of the superconducting

nanofilms to nanoscales indeed led to remarkable new physics. However, this field could not

immediately be properly explored, since it was not possible to produce the required nanosam-

ples with satisfactory quality. This picture has changed in more recent decades as advances

in nanofabrication technology made it possible to create metallic structures in nanometric

scales while maintaining reduced impurity concentration. Improvement has also been made on

theoretical grounds, with the introduction of the Bogoliubov-de Gennes formalism to scene.

The Bogoliubov-de Gennes equations are the adequate tools to study inhomogeneous systems

such as nanofilms and nanowires and are more accurate than Blatt and Thompson’s original

model.

In a material containing impurities, the electron mean free path 𝑙 is the typical distance

an electron will travel between collisions with impurities or with the sample boundaries. Ex-

perimental investigations involving nanostructures synthesized with modern techniques show

that 𝑙 scales with the confined dimension of the sample, 𝑑 (the thickness of a nanofilm, for

instance), instead of 𝑙𝑖𝑚𝑝, the electron mean free path due to scattering by nonmagnetic im-

purities. In one of these studies, for example, an approximation of the kind 1
𝑙

≈ 1
2𝑑

+ 1
𝑙𝑖𝑚𝑝

was

found to be applicable to the system (ÖZER et al., 2007). In this case, the term 1
2𝑑

represents

the contribution of the boundaries, and 1
𝑙𝑖𝑚𝑝

, the contribution due to nonmagnetic impurities.

For such nanostructures, the scaling 𝑙 ∝ 𝑑 indicates that 𝑙 is dominated by boundary scattering

and, consequently, 𝑙𝑖𝑚𝑝 ≫ 𝑑 and 𝑘𝐹 𝑙𝑖𝑚𝑝 ≫ 1, where 𝑘𝐹 is the three dimensional Fermi wave

vector. Thus, the available technology is indeed capable of producing nanowires and nanofilms

with minor impurity content, insufficient to smear the transverse electron spectrum.

A long established result is that a small amount of impurity will not result in an appreciable

alteration in the equilibrium properties of a superconductor (ANDERSON, 1959), (CROITORU;
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SHANENKO et al., 2009). Therefore, the high quality superconducting nanostructures considered

here can be taken to be in the clean limit.

In summary, electron motion in such systems is confined to a very narrow region in the

transverse direction, but is unimpeded in other directions. The consequence of this confinement

is the splitting up of the conduction band into a series of subbands. The idea is conceptually

similar to formation of discrete energy levels when a particle is confined to a quantum well.

As pointed out above, sufficiently clean samples can be fabricated, such that this transverse

spectrum will not be smeared by impurity. The energy of each subband decreases as the

thickness of the system increases. Thus, by varying the thickness of the superconductor these

subbands can be made to sequentially cross the Fermi surface. Every time this happens, the

number of single-electron states near the Fermi level (inside the Debye window) increases

dramatically. As the size of the system along the confining direction continues to be changed,

the density of states inside the Debye window drops again, until the bottom of the next

subband reachs the Fermi surface. Clearly, what arises from this is an oscillatory pattern of

the density of states near the Fermi level. Each instance of rapid increase in this quantity is

called a shape resonance.

An important result of BCS theory for a 3D homogeneous superconductor establishes the

manner in which the energy gap Δ0 and critical temperature 𝑇𝑐 depend on the electronic

density of states at the Fermi level, 𝑁(0):

Δ0 = 1.76𝑇𝑐 = 1.14ℏ𝜔𝐷𝑒
−1/𝑁(0)𝑔 (3.1)

It is easy to see that due to the exponential dependence, even a slight variation in 𝑁(0) would

lead to substantial changes in Δ0 and 𝑇𝑐. Although this expression cannot be expected to hold

exactly for systems with reduced dimensions, the general trend indicates that oscillations in

the density of states 𝑁(0) have a dramatic effect on superconducting properties.

3.1 EARLY TREATMENT

The investigations of such oscillatory behavior of superconducting properties in nanos-

tructures was pioneered by Blatt and Thompson in the early 1960s. They considered a su-

perconducting clean slab described in the BCS multiband model (THOMPSON; BLATT, 1963).

Their analyses revealed that the energy gap parameter exhibits a series of periodic spikes as a

function of slab thickness.
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If the system under investigation is a 2D film limited in the z direction by 𝑧 = 0 and 𝑧 = 𝑎

but unlimited in the x and y directions, translational symmetry in the plane of the film implies

that the wavefunctions in the x and y directions are plane waves subject to periodic boundary

conditions, with periodicity 𝐿. Thus, the fundamental one-electron wavefunction has the form

𝜑𝑛,k⊥(r) = 1
𝐿
𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑤𝑛(𝑧) = 1

𝐿
𝑒𝑖k⊥·r⊥𝑤𝑛(𝑧), (3.2)

where r⊥ is a general vector in the plane perpendicular to the z-axis. In the transverse direction,

the wavefunctions vanish at the boundaries:

𝑤𝑛(0) = 0 = 𝑤𝑛(𝑎). (3.3)

The eigenenergy, measured from the Fermi level, is

𝜖𝑛,k⊥ = 𝜂𝑛 + ℏ2k2
⊥

2𝑚 . (3.4)

Ultimately, the relevant equation to be solved is

− ℏ2

2𝑚
𝑑2𝑤𝑛

𝑑𝑧2 = (𝜂𝑛 + 𝜇)𝑤𝑛. (3.5)

Next, it is necessary to examine how wavefunctions of the form (3.2) combine in pairs

in the superconducting state. Blatt and Thompson adopted the usual point contact attrac-

tive interaction, taking the necessary care to avoid the divergence that may arise from this.

As suggested by Anderson (1959), the pairing takes place between the time reversed states

(𝑛,k⊥, ↑) and (𝑛,−k⊥, ↓). The energy gaps Δ𝑛 is calculated from the usual self-consistency

equation in terms of 𝑤𝑛. This quantity is, of course, independent of 𝑘𝑥 and 𝑘𝑦 due to the

translational invariance in the 𝑥𝑦 plane. Moreover, the chemical potential 𝜇 can be obtained

from the electron density 𝑁/𝑉 (𝑁 is the total number of electrons in the volume 𝑎𝐿2). With

these points in mind, Blatt and Thomson obtained and solved numerically a complete set of

equations for Δ𝑛 and 𝜇. The dependence of the energy gap Δ𝑛 on slab thickness is shown in

Figure 1, for 𝑁/𝑉 = 2 × 1022𝑐𝑚−3, 𝑔𝑁(0) = 0.3 and ℏ𝜔𝐷/𝑘𝐵 = 100𝐾.

As each 𝜂𝑛(𝑧), energy level for motion in the transverse direction, passes through the Fermi

surface, a new spike appears in the Δ𝑛 plot. The horizontal line marks the bulk value of the

gap energy, Δ𝑏𝑢𝑙𝑘. The figure shows the impressive increase in Δ𝑛 above Δ𝑏𝑢𝑙𝑘 at the resonant

points. A new value of 𝑛 starts to contribute at each new resonance. The plots of Δ1 through

Δ4 are shown for small thicknesses, but above the second peak only the lowest and highest

values of the energy gap are presented.
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Figure 1 – Shape resonances in the superconducting energy gaps, Δ𝑛, as a function of film thickness. A new
Δ𝑛 starts to contribute at each resonant thickness. The horizontal line indicates the bulk value
Δ∞.

Source: Blatt and Thompson (1963)

The energy gap increases too steeply at resonances. The sharpness of this increase is

determined by the size of the Debye window, as shown in Figure 2, where the emergence of

the second peak of Figure 1 is shown in greater detail. The new energy gap contribution is

given by Δ4 and starts at 𝜂4 − 𝜇 = 100 K, that is, when a new energy level 𝜂𝑛 enters the

Debye window.
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Figure 2 – A more detailed view of the second peak in Figure 1, showing the sharp transition into the resonant
regime and the emergence of a new gap, Δ4.

Source: Blatt and Thompson (1963)

3.2 TREATMENT IN THE BOGOLIUBOV-DE GENNES FORMALISM

Although the studies by Blatt and Thompson yielded interesting results, the simplified

multiband BCS model they employed is not the most appropriate formalism for highly inho-

mogeneous systems as nanofilms. The need for a good microscopic description is fulfilled, as

discussed previously, by the Bogoliubov-de Gennes (BdG) formalism. Shanenko, Croitoru and

Peeters have investigated superconductivity in nanofilms and nanowires by self-consistently

solving the BdG equations in such geometries. In this manner, they have been able to study

the previously unexplored relationship of the critical temperature 𝑇𝑐 with the governing pa-

rameters when the system is subjected to quantum confinement. They have also been able to

make more direct comparisons of theory and experiment, among other advantages over older
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approaches. A brief but systematic comparison of the Bogoliubov-de Gennes method and that

employed but Blatt and Thompson can be found in Croitoru, Shanenko and Peeters (2007a).

Expositions of the methods and results presented here can be found in Peeters, Shanenko and

Croitoru (2009) and in Altomare and Chang (2013)

As a simplifying assumption, the detailed band structure of the materials is disregarded,

and is instead approximated by a parabolic dependence on the momentum k of the form ℏ2𝑘2

2𝑚* ,

where 𝑚* is the effective band mass, which is set to the free-electron mass in the calculations.

This is the so-called parabolic band approximation. This approach, however, can lead to results

that do not really match the experimental measurements. The way to avoid this problem is to

work with an effective Fermi level instead of the real one (SHANENKO; CROITORU; PEETERS,

2007; WEI; Y., 2002).

We recall that the BdG equations for the eigenfunctions 𝑢𝑖(r) and 𝑣𝑖(r) have the form

𝐸𝑖𝑢𝑖(r) =
(︃

− ℏ2

2𝑚∇2 + 𝑈(r) − 𝜇

)︃
𝑢𝑖(r) + Δ(r)𝑣𝑖(r),

𝐸𝑖𝑣𝑖(r) = Δ(r)𝑢𝑖(r) −
(︃

− ℏ2

2𝑚∇2 + 𝑈(r) − 𝜇

)︃
𝑣𝑖(r),

(3.6)

where 𝑈(r) and Δ(r) are the normal and anomalous mean-field potentials, respectively, and

are given by

𝑈(r) = −𝑔
∑︁

𝑖

[︁
|𝑢𝑖(r)|2 𝑓𝑖 + |𝑣𝑖(r)|2 (1 − 𝑓𝑖)

]︁
, (3.7)

Δ(r) = 𝑔
∑︁

|𝜉𝑖|<ℏ𝜔𝐷

𝑢𝑖(r)𝑣*
𝑖 (r) (1 − 2𝑓𝑖) , (3.8)

where, as usual, 𝑓𝑖 = 𝑓𝑖(𝐸𝑖) is the Fermi function and 𝑔 is the coupling constant. For 𝑈(r), the

sum in Eq.(3.7) runs over all positive energy states. In Eq.(3.8), on the other hand, the sum

must be restricted to single-electron energy states 𝜉𝑖 inside the Debye window, |𝜉𝑖| < ℏ𝜔𝐷,

otherwise this sum would be divergent (GENNES, 1966). The single-electron energy is given by

𝜉𝑖 =
∫︁
𝑑3𝑟

[︃
𝑢*

𝑖 (r)
(︃

− ℏ2

2𝑚∇2 + 𝑈(r) − 𝜇

)︃
𝑢𝑖(r) +𝑣*

𝑖 (r)
(︃

− ℏ2

2𝑚∇2 + 𝑈(r) − 𝜇

)︃
𝑣𝑖(r)

]︃
,

(3.9)

and the chemical potential is calculated from the mean electron density 𝑛𝑒:

𝑛𝑒 = 2
𝑉

∑︁
𝑖

∫︁
𝑑3𝑟

[︁
|𝑢𝑖(r)|2 𝑓𝑖 + |𝑣𝑖(r)|2 (1 − 𝑓𝑖)

]︁
(3.10)

As explained in Chapter 13 of Fetter and Walecka (2003), in the spatially homogeneous

case the Hartree-Fock contribution 𝑈(r) may be ignored, under the assumption that it does
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not change from the normal to the superconducting phase. Shanenko, Croitoru and Peeters

(2007) argue that this is also valid in the case of nanofilms. Taking 𝑈(r) into account amounts

only to very small changes in Δ(r), which allows one to simply set 𝑈 = 0. The role of the

Hartree-Fock potential in nanowires is more systematically explored in Chen et al. (2009).

When solving differential equations numerically, a useful technique is the expansion of

the sought-after solution in terms of a set of 𝒩 basis functions. We might, for example, be

interested in determining the wavefunction in some quantum mechanical problem, as is the

case here. This wavefunction can be viewed as a state vector in a Hilbert space. A complete

description of the wavefunction would generally require expansion in an infinite number of

basis states. If, however, the basis functions are conveniently chosen, an accurate representa-

tion can be achieve with a finite and manageable number 𝒩 of basis functions. The desired

wavefunction can now be represented by a vector containing its expansion coefficients and the

whole original differential equation is recast as an eigenvalue problem, which can be solved

with the use of well-known numerical techniques.

3.2.1 Nanofilms

To illustrate how the techniques presented above are implemented, we first consider a

nanofilm with dimensions 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧, such that 𝐿𝑧 ≪ 𝐿𝑥, 𝐿𝑦. Periodic boundary condi-

tions are imposed in the plane of the nanofilm, as was done by Blatt and Thompson, and the

spatial dependence of the energy gap is limited to transverse direction: Δ(r) = Δ(𝑧). The

electron-like and hole-like wavefunctions can thus be written in the form:

𝑢𝑘𝑥𝑘𝑦𝑗(r) = 𝑒𝑖𝑘𝑥𝑥

√
𝐿𝑥

𝑒𝑖𝑘𝑦𝑦√︁
𝐿𝑦

𝑢̃𝑘𝑥𝑘𝑦𝑗(𝑧) (3.11a)

𝑣𝑘𝑥𝑘𝑦𝑗(r) = 𝑒𝑖𝑘𝑥𝑥

√
𝐿𝑥

𝑒𝑖𝑘𝑦𝑦√︁
𝐿𝑦

𝑣𝑘𝑥𝑘𝑦𝑗(𝑧) (3.11b)

The normalization for 𝑢𝑗(r) and 𝑣𝑗(r) leads to an equivalent expression for 𝑢̃𝑖(𝑧) and 𝑣𝑖(𝑧):

∫︁
𝑑𝑧
[︁
|𝑢̃𝑖(𝑧)|2 + |̃︀𝑣𝑖(𝑧)|2

]︁
= 1. (3.12)

The confinement of electrons in the transverse direction can be expressed through the

boundary conditions

𝑢̃𝑖(0) = 𝑢̃𝑖 (𝐿𝑧) = 0, ̃︀𝑣𝑖(0) = ̃︀𝑣𝑖 (𝐿𝑧) = 0, (3.13)
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which suggest as suitable basis functions for the expansion of 𝑢̃𝑖(𝑧) and 𝑣𝑖(𝑧) the quantum

well states (QWS) given by

𝜙𝑙(𝑧) =
√︃

2
𝐿𝑧

sin
[︃
𝜋(𝑙 + 1)𝑧

𝐿𝑧

]︃
(3.14)

Thus, the electron-like and hole-like wavefunctions can be written as

𝑢̃𝑖(𝑧) =
∑︁

𝑙

𝑢̃
(𝑙)
𝑖 𝜙𝑙(𝑧), 𝑣𝑖(𝑧) =

∑︁
𝑙

𝑣
(𝑙)
𝑖 𝜙𝑙(𝑧) (3.15)

The coefficients of this expansion are given by

𝑢̃
(𝑙)
𝑖 =

∫︁ 𝐿𝑧

0
𝑑𝑧𝜙*

𝑙 (𝑧)𝑢̃𝑖(𝑧), ̃︀𝑣(𝑙)
𝑖 =

∫︁ 𝐿𝑧

0
𝑑𝑧𝜙*

𝑙 (𝑧)̃︀𝑣𝑖(𝑧), (3.16)

and the BdG equations get the form

[︃
ℏ2

2𝑚

(︃
𝜋2(𝑙 + 1)2

𝐿2
𝑧

+ 𝑘2
𝑥 + 𝑘2

𝑦

)︃
− 𝜇

]︃
𝑢̃

(𝑙)
𝑖 +

∑︁
𝑙′

Δ𝑙𝑙′̃︀𝑣(𝑙′)
𝑖 = 𝐸𝑖𝑢̃

(𝑙)
𝑖 , (3.17a)

[︃
𝜇− ℏ2

2𝑚

(︃
𝜋2(𝑙 + 1)2

𝐿2
𝑧

+ 𝑘2
𝑥 + 𝑘2

𝑦

)︃]︃ ̃︀𝑣(𝑙)
𝑖 +

∑︁
𝑙′

Δ𝑙𝑙′𝑢̃
(𝑙′)
𝑖 = 𝐸𝑖̃︀𝑣(𝑙)

𝑖 , (3.17b)

with

Δ𝑙𝑙′ =
∫︁
𝑑𝑧𝜙*

𝑙 (𝑧)Δ(𝑧)𝜙𝑙′(𝑧) (3.18)

These equations can now be approached numerically as an eigenvalue problem.

Only electrons in the vicinity of the Fermi level make relevant contributions to the super-

conducting state. The scale of such vicinity is set by the Debye energy ℏ𝜔𝐷. Confinement of

electron motion in the transverse direction leads to the splitting of the band of single-electron

states into a series of subbands, the energy of which varies as thickness is changed. If the

bottom of such subbands is made to cross the Fermi surface, the number of single-electron

states near the Fermi level increases significantly. This effect is, of course, less pronounced as

the dimensions of the system approach bulk values. Thus, the density of single-electron states

per unit volume and spin projection develops into a series of damped oscillations as thickness

increases. This tendency then extends to other characteristic quantities of the superconductor

that have some relation to the density of states.

The behaviour of 𝑇𝑐/𝑇𝑏𝑢𝑙𝑘, for example, is shown in Figure 3. In the numerical procedure,

𝑇𝑐 is calculated as the first temperature value for which Δ(𝑧) = 0. At the resonant points, 𝑇𝑐

is considerably higher than 𝑇𝑏𝑢𝑙𝑘, but steadily decreases at off-resonant points, at times even
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Figure 3 – Critical temperature 𝑇𝑐, relative to the bulk value 𝑇𝑐,𝑏𝑢𝑙𝑘, as a function of film thickness for
superconducting nanofilms of several materials: cadmium (Cd), aluminum (Al), tin (Sn) and lead
(Pb).

Source: Shanenko, Croitoru and Peeters (2007)

becoming smaller than 𝑇𝑏𝑢𝑙𝑘. The magnitude of the enhancements at resonances, however, is

much larger than the drops bellow 𝑇𝑏𝑢𝑙𝑘.

The governing parameters behind the shape resonances in Figure 3 are 𝜔𝐷, 𝑔 and 𝜇𝑏𝑢𝑙𝑘.

The quantity 𝑁𝑏𝑢𝑙𝑘(0), in Table 1, is ultimately determined by 𝜇𝑏𝑢𝑙𝑘, as 𝑁𝑏𝑢𝑙𝑘(0) = 𝑚𝑘𝐹/2𝜋ℏ2,

and, for 𝑇 < 𝑇𝑐, the chemical potential does not change appreciably with temperature, so

that the 3D Fermi wave number is given by 𝑘𝐹 =
√

2𝑚𝜇𝑏𝑢𝑙𝑘/ℏ. Increasing any of these

governing parameters leads to a reduction in the amplitudes of the oscillations, as can be

seen by comparing the data in Table 1 with the plots in Figure 3: the oscillations are most

pronounced in cadmium; in aluminum (Al), the reduction is due to a bigger Debye window,

and in lead (Pb) and tin (Sn), it is a consequence of higher values of the coupling constant.

The dependence of the density of states at Fermi level, N(0), on film thickness in shown

in Figure 4. The quantity N(0) is the number of single-electron states in the Debye window,
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Table 1 – Governing nanofilm parameters

Metal ℏ𝜔𝐷/𝑘𝐵 𝑔𝑁𝑏𝑢𝑙𝑘(0) Femi level

Cd 164 K 0.18 7.47 eV
Al 375 K 0.18 11.7 eV
Sn 195 K 0.25 10.2 eV
Pb 96 K 0.39 9.47 eV

Source: The author (2022)

Figure 4 – Density of single-electron states at the Fermi level 𝑁(0) relative to the bulk value 𝑁𝑏𝑢𝑙𝑘(0) vs film
thickness, for nanofilms of aluminum (Al) and tin (Sn).

Source: Shanenko, Croitoru and Peeters (2007)

divided by 2ℏ𝜔𝐷 and 𝑉 , volume of the slab. We note that, contrary to what is observed for 𝑇𝑐,

the drops of N(0) bellow Nbulk are much more pronounced that the enhancements at resonant

points. The periodicity of such oscillations is numerically determined to be approximately

𝜆𝐹/2, where 𝜆𝐹 is the 3D Fermi wavelength, 𝜆𝐹 = 2𝜋/𝑘𝐹 . This can be understood with the

help of the quantum well states of Eq.(3.14). Although single-electron states in the absence
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of interactions are not the same as the states in the presence of Cooper pairing, they are close

enough to allow an analysis of oscillations of superconductor properties in terms of 𝜙𝑙(𝑧).

Mathematically, the crossing of the Fermi level by one such QWS is represented by

ℏ2𝜋2 (𝑙 + 1)
2𝑚𝐿2

𝑧

= 𝜇 (3.19)

where the left-hand side is the energy associated with 𝜙𝑙(𝑧). The resonant thickness is then

given by

𝐿𝑧 = ℏ𝜋(𝑙 + 1)√
2𝑚𝜇 . (3.20)

Thus, two consecutive resonances are separated by a thickness difference of

Δ𝐿𝑧 = ℏ𝜋√
2𝑚𝜇 = 𝜋

𝑘𝐹

= 𝜆𝐹

2 . (3.21)

3.2.2 Nanowires

The methods presented in the previous section are also applicable to nanowires. We can take

as an example a cylindrical nanowire in the clean limit and in the absence of magnetic fields.

The nanowire has radius 𝑅 and periodic boundary conditions are imposed in the longitudinal

direction, with periodicity length 𝐿. The most natural way to describe such a system is in

the cylindrical coordinates 𝜌, 𝜙, 𝑧. Thus, the electron-like and hole-like eigenfunctions may be

written as ⎛⎜⎜⎝𝑢𝑖(r)

𝑣𝑖(r)

⎞⎟⎟⎠ = 𝑒𝑖𝑚𝜑

√
2𝜋

𝑒𝑖𝑘𝑧

√
𝐿

⎛⎜⎜⎝𝑢𝑖(𝜌)

𝑣𝑖(𝜌)

⎞⎟⎟⎠ , (3.22)

where the wavefunction label 𝑖 is understood to be of the form 𝑖 = (𝑗,𝑚, 𝑘), in which 𝑗 stands

for the quantum number in the radial direction, 𝑚 the quantum number in the azimuthal

direction, and 𝑘 the wave vector in the logitudinal z-direction. Confinement of the electrons

in the radial direction implies the boundary conditions:

𝑢𝑖(𝜌 = 𝑅) = 0 = 𝑣𝑖(𝜌 = 𝑅) (3.23)

Hence, in such a cylindrically symmetric system, normalized Bessel functions 𝜗𝑛(𝜌) provide a

convenient set of basis functions for the expansion of 𝑢𝑖(r) and 𝑣𝑖(r):⎛⎜⎜⎝𝑢𝑖(𝜌)

𝑣𝑖(𝜌)

⎞⎟⎟⎠ =
∑︁

𝑛

⎛⎜⎜⎝𝑢𝑖
𝑛

𝑣𝑖
𝑛

⎞⎟⎟⎠𝜗𝑛(𝜌) (3.24)
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with

𝜗𝑛(𝜌) =
√

2
𝑅𝐽𝑚+1(𝛼𝑚𝑛)𝐽𝑚

(︂
𝛼𝑚𝑛𝜌

𝑅

)︂
. (3.25)

where 𝐽𝑚 is the Bessel function of the first kind of order 𝑚 and 𝛼𝑚𝑛 is the 𝑛𝑡ℎ zero of 𝐽𝑚.

The multiplicative factor in Eq.(3.25) is chosen so that the 𝜑𝑙(𝜌) are normalized.

The order parameter only varies in the transverse direction, so Δ(r) = Δ(𝜌).

These expressions for 𝑢(r) and 𝑣(r) given by Eqs.(3.22) and (3.24) can now be substituted

in the Bogoliubov-de Gennes equations. Those equations are then multiplied by some new

𝜗𝑛′(𝜌) and integrated from 0 to 𝑅, resulting in

(︁
𝑇 𝑖

𝑛 − 𝐸𝑖

)︁
𝑢𝑖

𝑛 +
∑︁
𝑛′

Δ𝑛𝑛′𝑣𝑖
𝑛, (3.26a)

(︁
𝐸𝑖 − 𝑇 𝑖

𝑛

)︁
𝑣𝑖

𝑛 +
∑︁
𝑛′

Δ𝑛𝑛′𝑢𝑖
𝑛, (3.26b)

in which

𝑇 𝑖
𝑛 = ℏ2

2𝑚

[︃
𝛼2

𝑚𝑛

𝑅2 + 𝑘2
]︃

− 𝜇 (3.27)

and

Δ𝑛𝑛′ =
∫︁
𝑑𝜌𝜗𝑛′(𝜌)Δ(𝜌)𝜗𝑛(𝜌). (3.28)

Once again, this set of coupled equations for 𝑢𝑖
𝑛 and 𝑣𝑖

𝑛 can be interpreted as a matrix

equation. The problem is solved iteratively, at each step diagonalizing the governing matrix to

obtain values for 𝑢𝑖
𝑛, 𝑣𝑖

𝑛, 𝐸𝑖 and Δ𝑛𝑛′ . The process goes on until self-consistency is achieved.

Some results obtained with this method are presented in Figure 5. They correspond to

aluminum (Al) nanowires, with 𝑔𝑁(0) = 0.18 and ℏ𝜔𝐷/𝑘𝐵 = 195 K, at 𝑇 = 0 K and

two different values of electron density 𝑛𝑒. The quantities Δ𝑅 and 𝜇𝑅 are the averages of

Δ(𝜌) and 𝜇, respectively, taken over the wire cross-section. The oscillatory pattern of the

superconducting gap is again present and the amplitudes of the shape resonances of Δ𝑅

above the bulk value are even higher then those observed in nanofilms, but less regular.

3.2.3 Binding Energy of Cooper pairs in Nanostructures

We have seen in Chapter 2 how Cooper approached the problem of the interaction of two

electrons above the Fermi surface. Working with electrons of opposite momenta and spins in

a three-dimensional system, one can show that their binding energy is given by (see Chapter
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Figure 5 – Superconducting energy gap Δ𝑅 and chemical potential 𝜇𝑅, relative to their respective bulk values,
as functions of nanowire radius 𝑅. The data corresponds to an aluminum (Al) nanowire at 𝑇 = 0 𝐾.
For the panels on the left, 𝑛𝑒 = 3.878 𝑛𝑚−3 and 𝜇𝑏𝑢𝑙𝑘 = 900 𝑚𝑒𝑉 . For those on the right,
𝑛𝑒 = 20 𝑛𝑚−3 and 𝜇𝑏𝑢𝑙𝑘 = 2687 𝑚𝑒𝑉 .

Source: Shanenko and Croitoru (2006)

2 and Tinkham (1996)):

𝐸0 = −2ℏ𝜔𝐷 exp
(︃

− 2
𝑔𝑁(0)

)︃
(3.29)

Any attractive interaction, however weak, will lead to the formation of a bound pair. If the

momenta of the two electrons is not exactly opposite, the strength of their binding energy will

be somewhat weaker.

One might now inquire how the introduction of quantum confinement of the charge carriers

in the problem would modify this result. Croitoru et al. (2012) set out to do just that. As already

pointed, in the presence of quantum confinement the band of single-electron states is divided

into a series of subbands, the energy of which changes as the thickness of the system is altered.

They found that when the bottom of a subband reaches the Fermi surface, the binding energy

of a Cooper pair increases considerably.

Also significant is the calculation of the size of a Cooper pair along the non-confined
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direction. It is given by

𝜉2
𝐶 = ℏ2

8𝑚𝐸0
(3.30)

From this, we see that at size resonances 𝐸0 is significantly enhanced, and thus the corre-

sponding Cooper pair size (along the non-confined direction) will diminish considerably.



43

4 PROXIMITY EFFECT

4.1 OVERVIEW

If a superconductor (S) is put in good electrical contact with a normal metal (N), Cooper

pairs can diffuse into the latter, leading that material to manifest superconductor-like prop-

erties, such as the ability to maintain a supercurrent and a lower density of states near the

Fermi level. Conversely, the strength of superconductivity in the S region is reduced close to

the interface. This apparent dilution of superconducting order from S into N is called the

proximity effect.

In the process of setting up an experiment to study the proximity effect, some precautions

are necessary in order to have a SN contact that can actually be considered good:

i) materials that form intermetallic compounds should not be used, as this would lead to

anomalies in the system’s transition temperature (CHIOU; KLOKHOLM, 1964).

ii) The atoms from one of the materials should not be able to migrate into the other, i.e,

their mutual solubility should be the lowest possible, otherwise impurity is introduced in the

vicinity of the SN boundary and the mean free path is altered (ROSE-INNES; SERIN, 1961).

iii) Care must be taken to avoid moisture in the environment. If the system is exposed to

moisture, the more anodic of the metals will be oxidized at the boundary (HAUSER; THEUERER;

WERTHAMER, 1966).

The first indications of the proximity effect were detected as early as in the 1930s, by

Holm and Meissner (1932), who studied the electrical resistance of contacts of two metals

separated by an oxide layer. They observed that when the temperature is sufficiently reduced,

allowing one of the metals to become superconducting, the resistance of the second metal

greatly decreases, suggesting the induction of superconducting correlations in the normal metal.

Later experiments corroborated the idea that superconducting correlations can be induced in

normal metals (BEDARD; MEISSNER, 1956; MEISSNER, 1958; SMITH et al., 1961). Meissner

(1960) observed that a supercurrent can be maintained between two superconducting samples

separated by a normal metal (an SNS junction) for N with thickness up to 100 nm.

Hilsch (1962) found that the transition temperature of a superconductor is greatly reduced

when it is in contact with a normal metal. This demonstrates that superconductivity is weak-

ened in the vicinity of a normal metal (this aspect of the proximity effect is sometimes called

the inverse proximity effect).
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A review of early experimental investigations of the proximity effect and their relation-

ships to theory is provided by Clarke (1968). The first theoretical studies were based on the

Ginzburg-Landau theory and on the linearized Gor’kov equations, both valid close to the critical

temperature. Important early contributions were made by de Gennes and partners (GENNES;

GUYON, 1963; GENNES, 1964). A good review of the theory of proximity effect in SN junctions

can be found in Deutscher and Gennes (1969). See also Wolf (2012) and Estève et al. (1996).

Several studies of the proximity effect focus on the spatial variation of the order parameter

across the SN interface and how it decays on the normal region. For a bulk system with an

interface lying at 𝑧 = 0 perpendicularly to the z-axis, the pair potential depends only on the z

coordinate: Δ(r) = Δ(𝑧). It is related to the pair amplitude 𝐹 (𝑧) by the expression Δ(𝑧) =

𝑔(𝑧)𝐹 (𝑧), where 𝑔(𝑧) is the coupling parameter governing the electron-electron interaction.

𝐹 (𝑧) is essentially the probability amplitude of finding a pair of electrons at the position z.

The coupling function can be written as

𝑔(𝑧) =

⎧⎪⎪⎨⎪⎪⎩
𝑉𝑁 , in the normal metal;

𝑉𝑆, in the superconductor.
(4.1)

4.1.1 Characteristic scales in non-magnetic normal metals

Extensive work has be can carried out concerning the situation in which 𝑉𝑁 = 0. In this

case, 𝑔(𝑧) = 𝑉𝑆Θ(𝑧) and Δ(𝑧) vanishes identically on the N side. Hence, the appropriate

quantity from which information can be obtained about the induced superconducting order

in N is the pair amplitude 𝐹 (𝑧) = Δ(𝑧)/𝑔(𝑧), since it maintains a finite value in the normal

region.

What is the range of the superconducting pairing induced in N, in other words, what

is the range of 𝐹 (𝑧)? The answer to this question depends on parameters like temperature

and impurity concentration. First, if the normal metal is in the clean limit, that is, it has been

calculated that 𝐹 (𝑧) will, at finite temperatures 𝑇 , decay exponentially (DEUTSCHER; GENNES,

1969):

𝐹 (𝑧) ∝ exp(−𝐾|𝑧|) (4.2)

over a range

𝐾−1 = ℏ𝑣𝑁

2𝜋𝑘𝐵𝑇
, (4.3)
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where 𝑣𝑁 is the Fermi velocity in N and |𝑧| measures the distance away from the SN interface.

When temperatures tend towards zero, this decay is much slower. The pair amplitude no

longer falls off exponentially, but is instead asymptotically characterized by an inverse power-

law decay (FALK, 1963):

𝐹 (𝑧) = 𝜉

|𝑧|
, (4.4)

where 𝜉 is the proximity length.

The implication is that at 𝑇 ≈ 0 the Cooper pairs diffusing from S can penetrate far

deeper into N, as compared to what happens at finite temperatures.

If, on the other hand, N is a dirty metal, the leakage of superconductivity is now controlled

by a diffusion process and the characteristic length for 𝐹 (𝑧) in Eq. (4.2) is altered to

𝐾−1 =
√︃

ℏ𝐷𝑁

2𝜋𝑘𝑇 , (4.5)

where 𝐷𝑁 is the diffusion coefficient in N.

It must be pointed out, however, that some of the results mentioned above were originally

derived based on theories with considerable limitations, although they have been re-obtained

by other means and corroborated by experiments. The more simplistic early formulations are

problematic in the sense that they are unable to explain the mechanism by which charge is

transferred across the interface and do not take into account the implications on the elec-

tronic structure of the normal metals. Additionally, it turns out that the thermal decay length

presented in Eq.(4.5) is not the most fundamental length in N over which the Cooper pairs

coming from S will survive.

A proper description of the proximity effect must take into account the phenomenon of

Andreev reflection (ANDREEV, 1964; BLONDER; TINKHAM; KLAPWIJK, 1982). An incoming

electron from the N side with energy 𝐸 (measured from the Fermi level) will not be able to

penetrate into S if 𝐸 < Δ, the superconductor energy gap. The electron can still cross the

interface, however, if it pairs up with another electron from N and enters the superconductor

as a Cooper pair. In the process, the second electron from N leaves a hole with energy −𝐸

which is reflected back into N. Conversely, the Andreev reflection can be seen as the means

by which Cooper pairs can tunnel into the normal metal Cuevas et al. (2017).

Upon entering the normal metal, the pair turns into two time-reversed electron states with

energy difference 2𝐸. They will dephase over time by a factor exp(−𝑖2𝐸𝑡/ℏ), which becomes



46

of the order of unit for 𝑡 ≈ ℏ/𝐸. By this time, the pair will have travelled a distance

𝐿𝐸 ≈
√︁
𝐷𝑁 𝑡 =

√︃
ℏ𝐷𝑁

𝐸
. (4.6)

This is the coherence length in the normal metal, a more fundamental scale for the diffusion of

pairs in N. Clearly, sates with lower energy 𝐸 are associated with a longer 𝐿𝐸 but this cannot

extend indefinitely. At some point, other dephasing mechanisms come into play, setting an

upper limit for 𝐿𝐸, the phase breaking length 𝐿𝜑. See the discussions in Cuevas et al. (2017)

and Sohn, Kouwenhoven and Schön (1996). In summary, the proximiy effect can be understood

as the interplay of two things: Andreev reflection at the interface and the maintenance of phase

coherence over appreciable distances inside the normal metal. The role of Andreev reflection in

the proximity effect has been elucidated relatively recently by Pannetier and Courtois (2000)

and Klapwijk (2004).

Additionally, we already pointed out in Eq.(4.1) that situations in which there is some

non-vanishing interaction between electrons in N are also possible. If some slightly attractive

interaction is present in the normal region, it is itself of superconducting nature and possesses

a critical temperate 𝑇𝑐𝑁 . In this case, the expression for the range 𝐾−1 will actually possess a

factor of the type (𝑇 − 𝑇𝑐𝑁)−1 instead of 𝑇−1, and 𝐾−1 diverges as 𝑇 → 𝑇𝑐𝑁 (WOLF, 2012).

Investigating the proximity effect at 𝑇 = 0 in the case of a clean normal metal with

a repulsive effective electronic interaction, Alexandrov and Kabanov (2008) found that the

relation 𝐹 (𝑧) = 𝜉/|𝑧| is maintained, but with a reduced characteristic decay length 𝜉 in

comparison with the situation in which there is no interaction in N.

Valls, Bryan and Žutić (2010) also considered the proximity effect in the presence of

repulsive pairing interaction and list several other earlier works that directly investigated or

suggest this problem with negative interaction in N. In particular, they concluded that a

stronger repulsion in N corresponds to reduced values of F both in N and in S and to a

considerable attenuation of the superconducting correlations in S near the interface.

4.1.2 Ferromagnets

Ferromagnets are materials in which individual atomic magnetic moments will attempt

to align other atomic magnetic moments with themselves through the so-called exchange in-

teraction. This characteristic alignment of spins contrasts with the picture of electrons with

opposite spins making up the Coopers pairs in BCS superconductors. Ferromagnets, therefore,
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might not seem the ideal hosts for superconducting correlations. Nevertheless, superconduc-

tivity can still be induced in ferromagnetic materials through the proximity effect, albeit with

noticeable differences in comparison with SN junctions. The manifestation of proximity effects

in ferromagnets is reviewed in Buzdin (2005) See also Bulaevskii, Buzdin and Panyukov (1982)

and Buzdin, Bulaevskii and Panyukov (1982).

Again, if the superconductor is of the usual BCS type, the electrons in a Cooper pair have

opposite spins. What follows is that the electron with spin aligned with the exchange field

has its kinetic energy increased, while the electron with spin opposite to the exchange field

acquires a higher energy. The consequence of this is that the Cooper pair acquires a net center

of mass momentum 𝛿𝑘𝐹 . This means that the order parameter is modulated by a factor 𝑒𝛿𝑘𝐹 .

In more physical terms, the implication is that the pair wave function in the ferromagnet does

not decay monotonically, as is the case in ordinary normal metals, but instead decreases in an

oscillatory manner.

For a dirty SF system, that is, with a small mean free path 𝑙𝐹 , the Usadel equations

for the Green’s functions are the natural starting point (USADEL, 1970). Working with these

equations and considering an SF junction in which a BCS-type superconductor is connected

to a ferromagnet where the coupling constant is zero, one can derive the following expression

for the Cooper pair wave function inside the ferromagnet:

Ψ ≈ Δ exp
(︃

− 𝑧

𝜉1𝑓

)︃
cos
(︃
𝑧

𝜉2𝑓

)︃
(4.7)

where 𝜉1𝑓 = 𝜉2𝑓 =
√︁

ℏ𝐷𝐹

𝐸𝑒𝑥
, 𝐷𝐹 = 1

3𝑣𝐹 𝑙 is the diffusion coefficient and 𝑣𝐹 is the Fermi velocity

in F.

It is clear that the already mentioned oscillatory decay of superconductivity in F is indeed

obtained. A notable result is the fact that the two characteristic lengths in this process are

equal: the exponential decay range 𝜉1𝑓 and the spatial period of the oscillations 𝜉2𝑓 .

In the case of a ferromagnet in the clean limit, solving the quasiclassical Eilenberger equa-

tions (EILENBERGER, 1968) yields

Ψ ≈ 1
𝑧

exp
(︃

− 𝑧

𝜉1𝑓

)︃
sin
(︃
𝑧

𝜉2𝑓

)︃
, (4.8)

where 𝜉1𝑓 = ℏ𝑣𝐹

2𝜋𝑘𝑇
and 𝜉2𝑓 = ℏ𝑣𝐹

2𝐸𝑒𝑥
. Hence, in the clean limit the characteristic decay length

and oscillating length are no longer equal.
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In the limit of low temperatures, 𝑇 → 0, we see that 𝜉1𝑓 → ∞ and from the expressions

above we conclude that the wave function decays more slowly Buzdin (2005):

Ψ ≈ 1
𝑧

sin
(︃
𝑧

𝜉2𝑓

)︃
. (4.9)

In summary, we see that the proximity effect is long ranged both in clean normal metals

and in clean ferromagnets at low temperatures. The mean free path sets a limit to the diffusion

of pairs inside the nonsuperconductor. If this parameter is relatively small (dirty system), the

penetration length of the Cooper pairs will be greatly reduced, even at low temperatures. At

finite temperatures, on the other hand, the asymptotic behavior of the pair wave function

amounts to an exponential decay in both types of materials. The most striking difference

between the pair amplitude in ferromagnets and in normal metals is that it exhibits oscillations

in ferromagnets. Additionally, the typical length scales for this phenomenon are generally much

smaller in ferromagnets then in non magnetic normal metals. A comparison of typical length

scales of the proximity effect in non-magnetic normal metals and in ferromagnets is given in

Table 2.

Table 2 – Typical length scales of the proximity effect

N F − decay F − oscillation

Clean ℏ𝑣𝑁

2𝜋𝑘𝑇
ℏ𝑣𝐹

2𝜋𝑘𝑇
ℏ𝑣𝐹

2𝐸𝑒𝑥

Dirty
√︁

ℏ𝐷𝑁

2𝜋𝑘𝑇

√︁
ℏ𝐷𝐹

𝐸𝑒𝑥

√︁
ℏ𝐷𝐹

𝐸𝑒𝑥

Source: The author (2022)

Intermediate impurity concentration regimes are considered by Linder, Zareyan and Sudbø

(2009).

4.1.3 Lower dimensional systems

We emphasize that the results quoted so far concern three-dimensional systems, but the

proximity effect has also been explored in lower dimensional systems. For clean SF junctions, it

has been calculated that the pair wave function for the proximity-induced superconducting cor-

relations in F oscillate with a characteristic length 𝜉𝑓𝑏 = ℏ𝑣𝐹

𝐸𝑒𝑥
(BUZDIN; BULAEVSKII; PANYUKOV,
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1982), the same as mentioned before, but decay much slower than in the three-dimensional

case. In 2D systems, this decay is of the form
√︁

𝜉𝑓𝑏

𝑧
, where 𝑧 measures the distance ton the SF

interface. For 1D system, there’s essentially no decay (KONSCHELLE; CAYSSOL; BUZDIN, 2008;

CAYSSOL; MONTABAUX, 2004; KONSCHELLE; CAYSSOL; BUZDIN, 2010).

4.1.4 Limitations of traditional approaches

As pointed out by Halterman and Valls (2001), a huge body of research concerning the

proximity effect has been created, both for SN and SF junctions. However, most of these

investigations were based on non-self-consistent treatments and/or on not always reason-

able approximations. For a complete and accurate treatment of the problem, the appropriate

microscopic equations (BdG or Gor’kov) should be solved self-consistently and with as few

approximations as possible.

We emphasize that the results presented above regarding the proximity effect in ferromag-

nets are obtained in the quasiclassical approximation, when the fast, less important variations

in the relevant quantities are averaged out. Some of these and other results of proximity in

ferromagnets were confirmed by numerical simulations carried out by Halterman and Valls

(2001) and Halterman and Valls (2002). These works are based on the self-consistent solution

of the full Bogoliubov-de Gennes equations with minimum assumptions or approximations.

Based on a more complete theoretical framework, these studies are also able to perceive

phenomena at scales of the order of the Fermi wavelength, such as the rapid oscillations in

the pair amplitude that appear near the boundaries of the system and close to the SN(F)

interface, which are called Friedel oscillations.

4.2 THEORETICAL RESULTS FOR CLEAN THREE-DIMENSIONAL NS JUNCTIONS

Later on in the thesis on focus our attention on the proximity effect in clean samples of

non-magnetic normal metals at zero temperature. A pioneering work on the proximity effect

under this circumstances is (FALK, 1963). Here we follow the arguments presented in that

paper to derive some theoretical results. The starting point are the Gor’kov equations. In a



50

superconductor, these equations take the form

[︃
𝑖ℏ𝜔𝑛 + ℏ2

2𝑚∇2 + 𝜇

]︃
𝐺𝜔𝑛 (r, r′) + Δ(𝑧)𝐹 †

𝜔𝑛
(r, r′) = ℏ𝛿 (r − r′) , (4.10a)

[︃
−𝑖ℏ𝜔𝑛 + ℏ2

2𝑚∇2 + 𝜇

]︃
𝐹 †

𝜔𝑛
(r, r′) − Δ*(𝑧)𝐺𝜔𝑛 (r, r′) = 0, (4.10b)

where𝐺𝜔𝑛 (r, r′) and 𝐹 †
𝜔𝑛

(r, r′) are the coefficients in the Fourier representations of the normal

and anomalous Green’s functions, respectively, and 𝜔𝑛 are the Matsubara frequencies, which

take the discrete set of values 𝜔𝑛 = (2𝑛+ 1)𝜋𝑘𝑇, 𝑛 = 0, 1, 2, 3 . . . These equations must be

solved together with the expression for the pair wave function Δ*(𝑧):

Δ*(𝑧) = 𝑔𝑘𝑇

ℏ

∞∑︁
𝑛=−∞

𝐹 †
𝜔𝑛

(r, r) (4.11)

As it stands, this problem is rather difficult to solve. We can attempt to work with a model

Δ𝑚(𝑧) that could simplify the calculations instead of the original Δ(𝑧). It is not in our interest,

however, to simply assume Δ(𝑧) to be small. That would not be necessary if we could guess

a simplified Δ𝑚(𝑧) such that the deviation Δ(𝑧) − Δ𝑚(𝑧) would be small. Actually, for the

geometries we consider here, a reasonable approximation is to take Δ𝑚(𝑧) independent of

position inside the superconductor:

Δ𝑚(𝑧) = Δ. (4.12)

This is used in Eqs. (4.10). When 𝐹 †
𝜔𝑛

(r, r′) is obtained, Δ*(𝑧) can calculated from Eq. (4.11).

For the situations of interest here, spatial change happens solely in the z direction. We can

make this dependence explicit from the beginning by taking Fourier transforms of the relevant

Green’s functions in the x and y directions:

𝐺𝜔𝑛 (r, r′) =
∫︁ 𝑑k⊥

(2𝜋)2 𝑒
𝑖k⊥·(r⊥−r′

⊥)𝐺𝜔𝑛,𝑘⊥ (𝑧, 𝑧′) ,

𝐹 †
𝜔𝑛

(r, r′) =
∫︁ 𝑑k⊥

(2𝜋)2 𝑒
𝑖k⊥·(r⊥−r′

⊥)𝐹 †
𝜔𝑛,𝑘⊥

(𝑧, 𝑧′) ,
(4.13)

in which vectors with the subscript ⊥ are perpendicular to the z axis, i.e, lie in the 𝑥𝑦 plane.

𝐺𝜔𝑛
(r, r′) and 𝐹 †

𝜔𝑛
(r, r′) can then be substituted in Eq.(4.10), resulting in the modified

Gor’kov equations

1
2𝑚

(︃
𝑎2 + 𝑑2

𝑑𝑧2

)︃
𝐺𝜔𝑛,𝑘⊥ (𝑧, 𝑧′) + Δ𝐹 †

𝜔𝑛,𝑘⊥
(𝑧, 𝑧′) = 𝛿 (𝑧 − 𝑧′) , (4.14a)
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1
2𝑚

(︃
𝑎*2 + 𝑑2

𝑑𝑧2

)︃
𝐹𝜔𝑛

† (𝑧, 𝑧′, 𝑘⊥) − Δ*𝐺𝜔𝑛,𝑘⊥ (𝑧, 𝑧′) = 0, (4.14b)

where the newly introduced symbols are defined by

𝜉⊥ = ℏ2𝑘2
⊥

2𝑚 − 𝜇, (4.15)

the kinetic energy associated with motion in the xy-plane, measured from the Fermi level 𝜇,

and

𝑎 = [2𝑚(−𝜉⊥ + 𝑖ℏ𝜔𝑛)]1/2 and 𝑎* = −[2𝑚(−𝜉⊥ − 𝑖ℏ𝜔𝑛)]1/2. (4.16)

The convention adopted here for the phase of a complex number is such that it lies between

0 and 2𝜋. If 𝑎 is taken to be in upper half plane, the minus sign in 𝑎* guarantees that it lies

in the lower half plane.

4.2.1 Contact of a superconductor and a normal metal

To derive some general results in the theory of the proximity effect, we consider as a model

system a superconductor in contact with a normal (non-superconducting) metal. The interface

lies in the 𝑧 = 0 plane. The superconductor is taken to be in the 𝑧 > 0 region, while the normal

metal lies in the 𝑧 < 0 region. In each of the two materials, the characteristic parameters, like

effective mass 𝑚 or chemical potential 𝜇, have different values. To distinguish between them,

quantities related to the normal metal are topped by a bar: 𝑚̄, 𝜇̄, 𝜉⊥ and 𝑎̄, for example.

In the normal metal considered here, the coupling constant is zero, i.e., 𝑔(𝑧) = 0 for

𝑧 < 0. It then lacks a proper mechanism by which electrons could interact attractively to form

Cooper pairs (superconducting correlations, however, can still be present if they are induced by

the neighboring superconductor, as we shall see). Thus, from Eq.(4.11), the order parameter

vanishes in this region: Δ(𝑧) = 0, 𝑧 < 0. Therefore, the Gor’kov equations for the normal

metal take the form

1
2𝑚̄

(︃
𝑎̄2 + 𝑑2

𝑑𝑧2

)︃
𝐺𝜔𝑛,𝑘⊥ (𝑧, 𝑧′) = 𝛿 (𝑧 − 𝑧′) , (4.17a)

1
2𝑚̄

(︃
𝑎̄*2 + 𝑑2

𝑑𝑧2

)︃
𝐹 †

𝜔𝑛,𝑘⊥
(𝑧, 𝑧′) = 0, 𝑧 < 0 (4.17b)
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The whole NS system may be considered at once if we combine Eqs. (4.17) and Eqs. (4.14)

using step functions. The final coupled differential equations are given by

[︃
𝜃(𝑧) 1

2𝑚

(︃
𝑎2 + 𝑑2

𝑑𝑧2

)︃
+ 𝜃(−𝑧) 1

2𝑚̄

(︃
𝑎̄2 + 𝑑2

𝑑𝑧2

)︃]︃
𝐺𝜔𝑛,𝑘⊥ (𝑧, 𝑧′)

+𝜃(𝑧)Δ𝐹 †
𝜔𝑛,𝑘⊥

(𝑧, 𝑧′) = 𝛿 (𝑧 − 𝑧′)
(4.18a)

[︃
𝜃(𝑧) 1

2𝑚

(︃
𝑎*2 + 𝑑2

𝑑𝑧2

)︃
+ 𝜃(−𝑧) 1

2𝑚̄

(︃
𝑎̄*2 + 𝑑2

𝑑𝑧2

)︃]︃
𝐹 †

𝜔𝑛,𝑘⊥
(𝑧, 𝑧′)

−𝜃(𝑧)Δ*𝐺𝜔𝑛,𝑘⊥ (𝑧, 𝑧′) = 0.
(4.18b)

To properly solve these equations, it is necessary to know what the boundary conditions

are. Some considerations are important here, as pointed out by Harrison (1961). First, we note

that a current passing through the interface must be continuous in order to avoid accumulation

of charge at the boundary. In the absence of a magnetic field, a general expression for the

current density is given by (FETTER; WALECKA, 2003)

j(𝑧) = − 𝑒ℏ
2𝑚𝑖

[︃
𝜓*(𝑧)d𝜓

d𝑧 (𝑧) − 𝜓(𝑧)d𝜓*

d𝑧 (𝑧)
]︃
. (4.19)

In this expression we can observe the dependence of j(𝑧) on 𝑚, which changes discontinuously

across the boundary, as pointed out before. Thus, to ensure continuity of the current, the wave

function 𝜓(𝑧) and its derivative have to be discontinuous at the interface. These boundary

conditions can be written as

Bloch theorem establishes that the actual wave function of a system in a periodic potential

are the product of plane waves and periodic functions with the same period as the potential.

It is these Bloch functions that must be continuous across the boundary. In the context of a

effective mass approximation, the Bloch functions are replaced by plane waves, which can be

discontinuous at the interface.

𝜓(0−) = 𝜎𝜓(0+), d𝜓(0−)
d𝑧 = 𝜌

d𝜓(0+)
d𝑧 , (4.20)

where the − and + superscripts denote that these expressions are to be evaluated at points

arbitrarily close to the interface, but approaching it from the negative z-axis (normal metal)

or positive z-axis (superconductor), respectively. We can now impose the continuity of the

current density, j(0−) = j(0+), leading to

𝑚

𝑚̄
Im

[︃
𝜓(0−)d𝜓(0−)

d𝑧

]︃
= Im

[︃
𝜓(0+)d𝜓(0+)

d𝑧

]︃
. (4.21)
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Substituting Eqs. (4.20) in Eq. (4.21), we obtain the relation

𝜌𝜎 = 𝑚̄

𝑚
. (4.22)

4.2.2 Solving for Green’s functions

To solve Eqs. (4.18), we employ the method of Laplace transforms, and begin by intro-

ducing new quantities defined by

𝐺± (𝐾, 𝑧′) = ±
∫︁ ±∞

0
𝑑𝑧𝑒𝑖𝐾𝑧𝐺𝜔𝑛,𝑘⊥ (𝑧, 𝑧′)

𝐹± (𝐾, 𝑧′) = ±
∫︁ ±∞

0
𝑑𝑧𝑒𝑖𝐾𝑧𝐹 †

𝜔𝑛,𝑘⊥
(𝑧, 𝑧′)

(4.23)

Some considerations about Laplace transforms are in order here. Let us take a function

𝑓(𝑡) such that
∫︀∞

0 𝑑𝑡𝑒−𝑐𝑡|𝑓(𝑡)| < ∞ for some 𝑐 ∈ R. The Laplace transform 𝑓(𝑠) of 𝑓(𝑡) is

defined as

𝑓(𝑠) =
∫︁ ∞

0
𝑑𝑡𝑒−𝑠𝑡𝑓(𝑡), Re(𝑠) ≥ 𝑐. (4.24)

An important result is that 𝑓(𝑠) is analytic in the open half plane Re(𝑠) ≥ 𝑐. With this in mind,

we can rewrite the complex variable 𝐾 as 𝐾𝑅𝑒 + 𝑖𝐾𝐼𝑚 and substitute it in the exponential in

Eq.(4.23), obtaining 𝑒𝑖𝐾𝑧 = 𝑒−(𝐾𝐼𝑚−𝑖𝐾𝑅𝑒)𝑧. Thus, 𝐺+ (𝐾, 𝑧′) is analytic where Re(𝐾𝐼𝑚 > 0),

i.e., the upper half plane, and so is 𝐹+ (𝐾, 𝑧′). Similarly, we can conclude that 𝐺− (𝐾, 𝑧′) and

𝐹− (𝐾, 𝑧′) are analytic in the lower half plane.

We now multiply Eq.(4.18a) by 𝑒𝑖𝐾𝑧 and integrate in 𝑧 from −∞ to ∞, which results in

the following expression:

1
2𝑚

(︁
𝑎2 −𝐾2

)︁
𝐺+ (𝐾, 𝑧′) + 1

2𝑚̄
(︁
𝑎̄2 −𝐾2

)︁
𝐺− (𝐾, 𝑧′) + Δ𝐹+ (𝐾, 𝑧′) = 𝑒𝑖𝐾𝑧′

+ 𝑖𝐾

2𝑚𝐺𝜔𝑛,𝑘⊥

(︁
0+, 𝑧′

)︁
− 𝑖𝐾

2𝑚̄𝐺𝜔𝑛,𝑘⊥

(︁
0−, 𝑧′

)︁
− 1

2𝑚
𝑑𝐺𝜔𝑛,𝑘⊥

𝑑𝑧

(︁
0+, 𝑧′

)︁
+ 1

2𝑚̄
𝑑𝐺𝜔𝑛,𝑘⊥

𝑑𝑧

(︁
0−, 𝑧′

)︁ (4.25)

At this point, it is convenient to simplify the notation by introducing

𝐴± (𝑧′) = 𝐺𝜔𝑛,𝑘⊥

(︁
0±, 𝑧′

)︁
, 𝐵± (𝑧′) = 𝑑𝐺𝜔𝑛,𝑘⊥

𝑑𝑧

(︁
0±, 𝑧′

)︁
,

𝐶± (𝑧′) = 𝐹 †
𝜔𝑛,𝑘⊥

(︁
0±, 𝑧′

)︁
, 𝐷± (𝑧′) =

𝑑𝐹 †
𝜔𝑛,𝑘⊥

𝑑𝑥

(︁
0±, 𝑧′

)︁
,

(4.26)

and noting that 𝐺𝜔𝑛 and 𝑑𝐺𝜔𝑛

𝑑𝑧
are subject to the same boundary conditions as 𝜓(𝑧′) and

𝑑𝜓

𝑑𝑧
(𝑧′). The parts of Eq. (4.25) which are evaluated at the interface can now be written in
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terms of the quantities defined in Eq.(4.26). As an example, we consider the terms involving

𝐺𝜔𝑛 :

1
2𝑚𝐺𝜔𝑛,𝑘⊥

(︁
0+, 𝑧′

)︁
− 1

2𝑚̄𝐺𝜔𝑛,𝑘⊥

(︁
0−, 𝑧′

)︁
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2𝑚

(︃
1 − 1

𝜌

)︃
𝐺𝜔𝑛,𝑘⊥ (0+, 𝑧′)

1
2𝑚𝜎

(︃
1 − 1

𝜌

)︃
𝐺𝜔𝑛,𝑘⊥ (0−, 𝑧′)

, (4.27)

where we used Eq.(4.22) (the two lines represent alternative ways of writing the same thing).

We further introduce two coefficients:

𝜂 = 1
2𝑚

(︃
1 − 1

𝜌

)︃
, 𝜁 = 1

2𝑚

(︂
1 − 1

𝜎

)︂
. (4.28)

The line of reasoning employed in the derivation of Eq.(4.27) can be followed with the re-

maining boundary terms, which are then more succinctly written as

1
2𝑚𝐺𝜔𝑛,𝑘⊥

(︁
0+, 𝑧′

)︁
− 1

2𝑚̄𝐺𝜔𝑛,𝑘⊥

(︁
0−, 𝑧′

)︁
= 𝜂𝐴+ (𝑧′) = 𝜂

𝜎
𝐴− (𝑧′) , (4.29a)

1
2𝑚

𝑑𝐺𝜔𝑛,𝑘⊥

𝑑𝑧

(︁
0+, 𝑧′

)︁
− 1

2𝑚̄
𝑑𝐺𝜔𝑛,𝑘⊥

𝑑𝑧

(︁
0−, 𝑧′

)︁
= 𝜁𝐵+ (𝑧′) = 𝜁

𝜌
𝐵− (𝑧′) , (4.29b)

1
2𝑚𝐹𝜔𝑛,𝑘⊥

(︁
0+, 𝑧′

)︁
− 1

2𝑚̄𝐹𝜔𝑛,𝑘⊥

(︁
0−, 𝑧′

)︁
= 𝜂𝐶+ (𝑧′) = 𝜂

𝜎
𝐶− (𝑧′) , (4.29c)

1
2𝑚

𝑑𝐹𝜔𝑛,𝑘⊥

𝑑𝑧

(︁
0+, 𝑧′

)︁
− 1

2𝑚̄
𝑑𝐹𝜔𝑛,𝑘⊥

𝑑𝑧

(︁
0−, 𝑧′

)︁
= 𝜁𝐷+ (𝑧′) = 𝜁

𝜌
𝐷− (𝑧′) , (4.29d)

After all these considerations, Eq.(4.25) attains the more favorable form

1
2𝑚 (𝑎2 −𝐾2)𝐺+ (𝐾, 𝑧′) + Δ𝐹+ (𝐾, 𝑧′) − 𝜃 (𝑧′) 𝑒𝑖𝐾𝑧′ =

− 1
2𝑚̄ (𝑎̄2 −𝐾2)𝐺− (𝐾, 𝑧′) + 𝜃 (−𝑧′) 𝑒𝑖𝐾𝑧′ + 𝜁𝐵+ (𝑧′) − 𝑖𝐾𝜂𝐴+ (𝑧′)

(4.30)

The same procedure discussed so far can be carried out for Eq.(4.18b), leading to

1
2𝑚 (𝑎*2 −𝐾2)𝐹+ (𝐾, 𝑧′) − Δ*𝐺+ (𝐾, 𝑧′) =

− 1
2𝑚̄ (𝑎̄*2 −𝐾2)𝐹− (𝐾, 𝑧′) + 𝜁𝐷+ (𝑧′) − 𝑖𝐾𝜂𝐶+ (𝑧′)

(4.31)

The terms of Eqs.(4.30) and (4.31) are not randomly arranged. Based on the exposition

presented earlier, one can see that in both of these equations the first term is the limit of an
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analytic function of the variable 𝐾 in the upper half plane, while the second term is the limit

of a function which is analytic in the lower half plane. Thus, for each equation, we can set

both sides equal to the same function, analytic both in the upper and in the lower half planes,

i.e., an entire function of 𝐾. This is quite useful because it allows us to solve the problem by

using the properties of analytic functions. As an example, we investigate the right hand side

of Eqs.(4.30), for 𝑧′ > 0. We can set this expression equal to an entire function 𝑃 ′(𝐾, 𝑧′) and

solve for 𝐺− (𝐾, 𝑧′):

𝐺− (𝐾, 𝑧′) = 2𝑚̄
(𝐾 − 𝑎̄)(𝐾 + 𝑎̄) [𝑃 ′ (𝐾, 𝑧′) − 𝜁𝐵+ (𝑧′) + 𝑖𝐾𝜂𝐴+ (𝑧′)] (4.32)

We recall that 𝐺− (𝐾, 𝑧′) is analytic in the lower half plane by construction. Since −𝑎̄ lies

in that region, the apparently problematic factor in the denominator is compensated by the

numerator, assuring that no pole exists at 𝐾 = −𝑎̄. This can be made explicit by introducing

a new entire function 𝑃 (𝐾, 𝑧′):

𝐺− (𝐾, 𝑧′) = 2𝑚̄𝑃 (𝐾, 𝑧′)
(𝐾 − 𝑎̄) (4.33)

In a similar manner, the right hand side of Eq.(4.31) gives

𝐹− (𝐾, 𝑧′) = 2𝑚̄𝑄 (𝐾, 𝑧′)
(𝐾 + 𝑎̄*) , (4.34)

where 𝑄 (𝐾, 𝑧′) is another entire function of 𝐾.

We can now go back to Eqs.(4.30) and (4.31) and solve for 𝐹+ (𝐾, 𝑧′) and 𝐺+ (𝐾, 𝑧′) using

the above expressions for 𝐹− (𝐾, 𝑧′) and 𝐺− (𝐾, 𝑧′). From the left hand side of Eqs.(4.31),

we get

𝐹+ (𝐾, 𝑧′)

= −2𝑚
(𝐾 − 𝑎*) (𝐾 + 𝑎*) [Δ*𝐺+(𝐾, 𝑧′) + (𝐾 − 𝑎̄*)𝑄(𝐾, 𝑧′) + 𝜁𝐷+(𝑧′) − 𝑖𝐾𝜂𝐶+(𝑧′)].

(4.35)

Similarly, the remaining part of Eqs.(4.30) results in

𝐺+(𝐾, 𝑧′)

= 2𝑚
(𝐾 − 𝑎)(𝐾 + 𝑎)

[︁
Δ𝐹+(𝐾, 𝑧′) − 𝑒𝑖𝐾𝑧′ − (𝐾 + 𝑎̄)𝑃 (𝐾, 𝑧′) − 𝜁𝐵+ (𝑧′) + 𝑖𝐾𝜂𝐴+ (𝑧′)

]︁
(4.36)

We now have two different formulas for each of the transformed Green’s functions, one

being from the original definitions (Eq.(4.23)) and the other being an expression in terms of

an yet undetermined entire function and of boundary terms (Eqs. (4.33), (4.34), (4.35) and
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(4.36)). We focus, for the sake of illustration, on 𝐺− (𝐾, 𝑧′). Further insight about 𝑃 (𝐾, 𝑧′)

can be gained by investigating the behaviour of the different expressions for 𝐺− (𝐾, 𝑧′) in the

limit of large 𝐾. From the definition,

𝐺− (𝐾, 𝑧′) =
∫︁ 0

−∞
𝑑𝑧𝑒𝑖𝐾𝑧𝐺𝜔𝑛,𝑘⊥ (𝑧, 𝑧′) ≈ 1

𝑖𝐾
𝐴− (𝑥′) + 1

𝐾2𝐵− (𝑧′) + · · · (4.37)

On the other hand, we note that the Laurent series expansion of 1
𝑥− 𝑥0

for 𝑥 → ∞ is given

by
1
𝑥

+ 𝑥0

𝑥2 + 𝑥2
0
𝑥3 + 𝑥3

0
𝑥4 + · · · (4.38)

Thus, the expansion of the denominator of Eq.(4.33) gives

𝐺− (𝐾, 𝑧′) ≈ 2𝑚̄𝑃 (𝐾, 𝑥′)
[︂ 1
𝐾

+ 𝑎̄

𝐾2 · · ·
]︂

(4.39)

Now, 𝐴−(𝑧′) and 𝐵−(𝑧′) clearly do not depend on 𝐾, so the comparison of Eqs.(4.37) and

(4.38) shows that 𝑃 (𝐾, 𝑧′), as a function of 𝐾, approaches a constant value for large 𝐾 in

the lower half plane. An analogous argument involving 𝐺+ reveals, on the other hand, that

𝑃 (𝐾, 𝑧′) approaches a constant also in the upper half plane. Liouville’s theorem in complex

analysis establishes that every bounded entire function must be constant. Therefore, 𝑃 (𝐾, 𝑧′)

does not depend on 𝐾:

𝑃 (𝐾, 𝑧′) = 𝑃 (𝑧′) = 1
2𝑚̄𝑖𝐴− (𝑧′) = 𝜎

2𝑚̄𝑖𝐴+ (𝑧′)

= 1
2𝑚̄𝑎̄𝐵− (𝑧′) = 𝜌

2𝑚̄𝑎̄𝐵+ (𝑧′) .
(4.40)

Analysis of the asymptotic behavior of 𝐹+ and 𝐹− yields similar results for 𝑄(𝐾, 𝑧′):

𝑄 (𝐾, 𝑥′) = 𝑄 (𝑥′) = 1
2𝑚̄𝑖𝐶− (𝑥′) = 𝜎

2𝑚̄𝑖𝐶+ (𝑥′)

= −1
2𝑚̄𝑎̄*𝐷− (𝑥′) = −𝜌

2𝑚̄𝑎̄*𝐷+ (𝑥′) .
(4.41)

The expressions obtained so far can be inserted in Eq.(4.35). Solving for 𝐹+ yields

𝐹+ (𝐾, 𝑧′) = (2𝑚)2

(𝐾2 − 𝑏2) (𝐾2 − 𝑏*2)
[︁
Δ*𝑒𝑖𝐾𝑧′ + Δ*(𝜌𝐾 + 𝜎𝑎̄)𝑃 (𝑥′)

−(1/2𝑚)
(︁
𝐾2 − 𝑎2

)︁
(𝜌𝐾 − 𝜎𝑎̄*)𝑄 (𝑥′)

]︁
,

(4.42)

where new quantities have been introduced:

𝑏 = [2𝑚(−𝜉⊥ + 𝑖𝜖𝑛)]1/2, 𝑏* = −[2𝑚(−𝜉⊥ − 𝑖𝜖𝑛)]1/2

and 𝜖𝑛 =
[︁
𝜔2

𝑛 + |Δ|
]︁1/2 (4.43)
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Again, 𝐹+ is analytic in the upper half plane, so the expression in brackets must vanish in the

otherwise problematic points 𝐾 = 𝑏 and 𝐾 = −𝑏*. This leads to two equations that determine

𝑃 (𝑧′) and 𝑄(𝑧′) :

𝑄 (𝑧′) = 2𝑚Δ*

𝐷 (𝑏, 𝑏*)
[︁
(𝜌𝑏* − 𝜎𝑎̄) 𝑒𝑖𝑏𝑧′ + (𝜌𝑏+ 𝜎𝑎̄)𝑒−𝑖𝑏*𝑧′]︁

,

𝑃 (𝑧′) = 1
𝐷 (𝑏, 𝑏*)

[︁(︁
𝑏*2 − 𝑎2

)︁
(𝜌𝑏* + 𝜎𝑎̄*) 𝑒𝑖𝑏𝑧′ +

(︁
𝑏2 − 𝑎2

)︁
(𝜌𝑏− 𝜎𝑎̄*) 𝑒−𝑖𝑏*𝑧′]︁

.

(4.44)

The factor 𝐷 (𝑏, 𝑏*) has been introduced to simplify the notation. I is defined as

𝐷 (𝑏, 𝑏*) ≡
(︁
𝑏2 − 𝑎2

)︁
(𝜌𝑏* − 𝜎𝑎̄) (𝜌𝑏− 𝜎𝑎̄*) −

(︁
𝑏*2 − 𝑎2

)︁
(𝜌𝑏+ 𝜎𝑎̄) (𝜌𝑏* + 𝜎𝑎̄*) (4.45)

In this investigation of the proximity effect, we are ultimately interested in deriving an

expression for 𝐹 †
𝜔𝑛

(𝑧), since it is the one that appears in the self-consistency equation for

the pair potential: Δ*(𝑧) = 𝑔𝑘𝑇
∑︀

𝑛 𝐹
†
𝜔𝑛

(𝑧). Thus, our main interest lies in 𝐹+ and 𝐹−. We

remark that the calculations carried out so far concern the case 𝑧′ > 0. Let us suppose that

𝑧 > 0 too, as an example. In this case, inverting the definition, Eq.(4.23), results in

𝐹 †
𝜔𝑛,𝑘⊥

(𝑧, 𝑧′) =
∫︁ ∞

−∞

𝑑𝐾

2𝜋 𝑒
−𝑖𝐾𝑧𝐹+ (𝐾, 𝑧′) , 𝑧′ > 0, 𝑧 > 0, (4.46)

where 𝐹+ is the one given in Eq.(4.42). The integration can be performed with the aide of

techniques in complex analysis, as described in Chapter 15 of Boas (1983).

The arguments discussed until now can again be applied in solving Eqs.(4.23) for 𝑧′ < 0.

Finally, the result for all values of 𝑧 and 𝑧′ is of the form

𝐹 †
𝜔𝑛,𝑘⊥

(𝑧, 𝑧′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℱℐ , 𝑧, 𝑧
′ > 0;

ℱℐℐ , 𝑧 > 0, 𝑧′ < 0

ℱℐℐℐ , 𝑧 < 0, 𝑧′ > 0;

ℱℐ𝒱 , 𝑧, 𝑧
′ < 0.

(4.47)

where

ℱℐ = 𝐹∞†
𝜔𝑛,𝑘⊥

(𝑧, 𝑧′)

+ 4𝑚2𝑖Δ*

𝐷 (𝑏, 𝑏*) (𝑏2 − 𝑏*2)
{︁
𝜌𝜎(𝑎+ 𝑎*)

[︁(︁
𝑏2 − 𝑎2

)︁
𝑒𝑖𝑏𝑧𝑒−𝑖𝑏*𝑧′ +

(︁
𝑏*2 − 𝑎2

)︁
𝑒.−𝑖𝑏*𝑧𝑒𝑖𝑏𝑧′]︁

−𝐷 (−𝑏, 𝑏*)
2𝑏 𝑒𝑖𝑏(𝑧+𝑧′) − 𝐷 (𝑏,−𝑏*)

2𝑏* 𝑒−𝑖𝑏*(𝑧+𝑧′)
}︃

;

(4.48)

ℱℐℐ = 4𝑚𝑚̄𝑖Δ*

𝐷 (𝑏, 𝑏*)
[︁
(𝜌𝑏* + 𝜎𝑎̄*) 𝑒𝑖𝑏𝑧𝑒−𝑖𝑎̄𝑧′ + (𝜌𝑏− 𝜎𝑎̄*) 𝑒−𝑖𝑏*𝑧𝑒−𝑖𝑎̄𝑧′]︁ ; (4.49)



58

ℱℐℐℐ = 4𝑚𝑚̄𝑖Δ*

𝐷 (𝑏, 𝑏*)
[︁
(𝜌𝑏* − 𝜎𝑎̄) 𝑒𝑖𝑎̄*𝑧𝑒𝑖𝑏𝑧′ + (𝜌𝑏+ 𝜎𝑎̄)𝑒𝑖𝛼̄*𝑧𝑒−𝑖𝑏*𝑧′]︁ ; (4.50)

ℱℐ𝒱 = 4𝑚̄2𝑖Δ*

𝐷 (𝑏, 𝑏*) (𝑏+ 𝑏*) 𝑒𝑖𝑎̄*𝑧𝑒−𝑖𝑎̄𝑧′
. (4.51)

As a first evaluation of the correctness of this expression, we can examine its asymptotic

limits as 𝑧, 𝑧′ → ∞ or − ∞, while 𝑧 − 𝑧′ remains finite. For 𝑧, 𝑧′ < 0, only the last quantity,

ℱℐ𝒱 , is relevant. The quantities 𝑎, 𝑎̄ and 𝑏 all have positive imaginary parts, so that both

the exponentials in this term of 𝐹 †
𝜔𝑛,𝑘⊥

are of the types 𝑒−𝜅𝑧, 𝑒−𝜅𝑧′ , where 𝜅 is some positive

quantity. Thus, for 𝑧, 𝑧′ < 0, 𝐹 †
𝜔𝑛,𝑘⊥

→ 0, what is expected since we are in the normal metal.

For 𝑧, 𝑧′ > 0, which corresponds to the superconductor, only ℱℐ contributes. The same line

of reasoning as above leads to the conclusion that in this region 𝐹 †
𝜔𝑛,𝑘⊥

→ 𝐹∞†
𝜔𝑛,𝑘⊥

, i.e., the

system behaves as if it were an infinite superconductor, as it should.

4.2.3 Pair wave function

We can attempt to derive more precise equations for the pair wave function. Here we study

the case 𝑧 > 0. It is convenient to rewrite the relevant quantities in such a way that their bulk

values are singled out. This defines the primed quantities in the following expressions:

𝐹 †
𝜔𝑛,𝑘⊥

= 𝐹∞†
𝜔𝑛,𝑘⊥

+ 𝐹 ′†
𝜔𝑛,𝑘⊥

, (4.52)

Δ*(𝑧) = Δ* + Δ′*(𝑧). (4.53)

Hence, from Eq. (4.11),

Δ′*(𝑧) = 𝑔𝑘𝑇

ℏ
∑︁

𝑛

𝐹 ′†
𝜔𝑛

(𝑧), 𝑧 > 0. (4.54)

From Eq. (4.13) we get

𝐹 †
𝜔𝑛

(𝑧) =
∫︁ 𝑑k⊥

(2𝜋)2𝐹
†
𝜔𝑛,𝑘⊥

(𝑧) , (4.55)

but the relevant quantities are given in terms of the energy 𝜉⊥ = ℏ2𝑘2
⊥

2𝑚
−𝜇, so it is convenient

to change the integration variable:
∫︁ 𝑑k⊥

(2𝜋)2 =
∫︁ 𝑘𝑑𝑘⊥

(2𝜋) → 𝑚

2𝜋

∫︁ ∞

−𝜇
𝑑𝜉⊥. (4.56)
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At this point, it is also fitting to rewrite the exponentials in a more suitable way for integration:

𝑒𝑖(𝑏−𝑏*)𝑧 = 𝑖

𝑚𝑧

𝑏𝑏*

𝑏* − 𝑏

𝑑

𝑑𝜉⊥
𝑒𝑖(𝑏−𝑏*)𝑧 (4.57)

𝑒2𝑖𝑏𝑧 = 𝑖

𝑧

𝑏

2𝑚
𝑑

𝑑𝜉⊥
𝑒2𝑖𝑏𝑧 (4.58)

This integration is, unfortunately, quite difficult. However, if we are interested in obtaining

Δ*(𝑧) only for large 𝑧, some helpful simplifications can be made.

In the upper limit, 𝜉⊥ → ∞, the quantities 𝑏, −𝑏*, and 𝑏 − 𝑏* tend towards 𝑖∞, so

that the exponentials in Eq. (4.47) relevant for the case 𝑧 > 0 all become of the form

𝑒𝑥𝑝[−(positive quantity) × 𝑧]. These rapidly decaying terms are of course negligible in com-

parison with the terms resultant from the lower limit, 𝜉⊥ = −𝜇. With this in mind, we simplify

the calculations by setting 𝜉⊥ = −𝜇 in the coefficients of the exponentials in Eq. (4.55) before

evaluating the integral. With these simplifying assumptions, we finally get

𝐹 ′†
𝜔𝑛

(𝑧) ≈ 2𝑚2Δ*

𝜋𝑧

1
𝐷 (𝑏, 𝑏*) (𝑏2 − 𝑏*2)×{︃

𝜌𝜎
(︁
𝑎*2 − 𝑎2

)︁
(𝑎̄+ 𝑎̄*) 𝑏𝑏*

𝑏* − 𝑏
𝑒𝑖(𝑏−𝑏*)𝑧 + 1

4
[︁
−𝐷 (−𝑏, 𝑏*) 𝑒2𝑖𝑏𝑧 +𝐷 (𝑏,−𝑏*) 𝑒−2𝑖𝑏*𝑧

]︁}︃
,

(4.59)

noting that we must set 𝜉⊥ = −𝜇 in this expression.

4.2.4 NS contact at 𝑇 ≈ 𝑇𝑐

4.2.4.1 Superconductor, 𝑧 > 0

We may now consider the situation in which the system is in the vicinity of its critical

temperature. In this case, Δ* ≈ 0 and 𝜖𝑛 ≈ 𝜔𝑛. The terms in Eq.(4.59) that depend directly on

𝜔𝑛 cancel out. In the end, 𝐹 ′†
𝜔𝑛

(𝑧) depends on 𝜔𝑛 solely through 𝜖𝑛 =
√︁
ℏ2𝜔2

𝑛 + |Δ|2 ≈ |ℏ𝜔𝑛|.

Thus, 𝐹 ′†
𝜔𝑛

(𝑧) is an even function of 𝜔𝑛 and we can make a change in Eq. (4.54):
∞∑︁

𝑛=−∞
→ 2

∞∑︁
𝑛=0

(4.60)

Moreover, Eq.(4.59) contains exponentials of the kind exp
[︁
𝑖𝑧𝑝0

√︁
1 ± 𝑖ℏ𝜔𝑛

𝜇

]︁
, where 𝑝0 is de-

fined by 𝑝2
0

2𝑚
= 𝜇. Therefore, for large 𝑧, the only relevant contribution comes from the lowest
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value of ℏ𝜔𝑛, ℏ𝜔0 = 𝜋𝑘𝑇𝑐. Higher values of 𝜔𝑛 lead to exponentials that decay too rapidly. In

these calculations the approximation 𝑘𝑇𝑐

𝜇
≪ 1 and 𝑘𝑇𝑐

𝜇̄
≪ 1 is employed.

We consider first the last two terms of Eq. (4.59), keeping in mind that several relations

can be derived given the approximations we made:√︃
1 ± 𝑖

𝜋𝑘𝑇𝑐

𝜇
≈ ±1 + 𝑖

𝜋𝑘𝑇𝑐

2𝜇 , (4.61)

𝑏 ≈ 𝑝0

(︃
1 + 𝑖

𝜖𝑛

2𝜇

)︃
≈ 𝑝0

(︃
1 + 𝑖

𝜋𝑘𝑇𝑐

2𝜇

)︃
, (4.62)

𝑏* ≈ 𝑝0

(︃
1 − 𝑖

𝜖𝑛

2𝜇

)︃
≈ 𝑝0

(︃
1 − 𝑖

𝜋𝑘𝑇𝑐

2𝜇

)︃
, (4.63)

𝑏2 − 𝑏*2 = 4𝑚𝑖𝜖𝑛 ≈ 𝑖
2𝜋𝑘𝑇𝑐𝑝

2
0

𝜇
(4.64)

𝑏 − 𝑏* ≈ 𝑖
𝜋𝑘𝑇𝑐𝑝0

𝜇
, (4.65)

𝐷(𝑏, 𝑏*) ≈ −
(︁
𝑏2* − 𝑎2

)︁
(𝜌𝑏+ 𝜎𝑎̄)(𝜌𝑏* + 𝜎𝑎̄*) = −

(︁
𝑏2* − 𝑎2

)︁
𝜌2𝑝2

0

(︃
1 + 𝜎

𝜌

𝑝0

𝑝0

)︃
, (4.66)

𝐷(𝑏,−𝑏*)𝑒−2𝑖𝑏*𝑧−𝐷(−𝑏, 𝑏*)𝑒2𝑖𝑏𝑧 ≈ 𝜌𝜎(𝑏𝑎̄ − 𝑏𝑎̄)
(︁
𝑒2𝑖𝑏𝑧 + 𝑒2𝑖𝑏𝑧

)︁
+
(︁
𝜌2𝑏𝑏 − 𝜎2𝑎̄𝑎̄

)︁(︁
𝑒2𝑖𝑏𝑧 − 𝑒2𝑖𝑏𝑧

)︁
,

(4.67)

The first part vanishes of Eq.(4.67), since 𝑏𝑎̄ ≈ 𝑏𝑎̄ for 𝑇 ≈ 𝑇𝑐. The last two will result in a

term proportional to

𝑒2𝑖𝑏𝑧 − 𝑒−2𝑖𝑏*𝑧 ≈ 𝑒−𝑝0𝜔𝑛𝑧/𝜇
[︁
𝑒2𝑖𝑝0𝑧 − 𝑒−2𝑖𝑝0𝑧

]︁
≈ 2𝑖 sin(2𝑝0𝑧)𝑒−𝑝0𝜔𝑛𝑧/𝜇 (4.68)

Hence, we see that the last terms of Eq. (4.59) lead to a rapidly oscillating term with frequency

2𝑝0, which averages to zero over any relevant scale and can therefore be ignored.

The only relevant contribution comes from the first term of Eq. (4.59). After substituting

all the factors appropriately modified to take into account the approximations associated with

the regime 𝑇 ≈ 𝑇𝑐 we get

𝜃(𝑧)Δ′*(𝑧) ≈ −𝜃(𝑧)𝑔𝑚Δ*

2𝜋2𝑧

𝜇

𝜋𝑘𝑇𝑐

⎡⎣4𝜎
𝜌

𝑝0

𝑝0

⧸︃(︃
1 + 𝜎𝑝0

𝜌𝑝0

)︃2
⎤⎦ 𝑒−𝑝0𝑧𝜋𝑘𝑇𝑐/ℏ𝜇. (4.69)
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To simplify the notation, we introduce

𝑇𝜇 = 4𝜎
𝜌

𝑝0

𝑝0

⧸︃(︃
1 + 𝜎𝑝0

𝜌𝑝0

)︃2

(4.70)

This quantity can be interpreted as a transmission coefficient across the boundary at an energy

𝐸 = 𝜇.

By replacing Δ′*(𝑧) in Eq.(4.53) with Eq.(4.69), we get, for large positive 𝑧:

𝜃(𝑧)Δ*(𝑧) = 𝜃(𝑧)Δ*
[︂
1 − 𝑔𝑚𝑇𝜇

2𝜋2𝑧

𝜇

𝜋𝑘𝑇𝑐

𝑒−𝑝0𝑧𝜋𝑘𝑇𝑐/ℏ𝜇
]︂

(4.71)

It is interesting to note that changes in the magnitude of the transmission coefficient,

i.e., how easily particles can cross the interface, will alter the amplitude of the second term in

Eq.(4.71), but its range remains unchanged (the argument of the exponential does not depend

on 𝑇𝜇).

This result clearly reproduces the previously mentioned inverse proximity effect: the pair

wave function within the superconductor decreases from its bulk value over a distance ℏ𝜇
𝜋𝑘𝑇𝑐𝑝0

before the interface. This distance is approximately the coherence length, 𝜉0 = ℏ𝑣𝑁

𝜋|Δ| = 2ℏ𝜇
𝜋|Δ|𝑝0

,

where 𝑣𝑁 is the Fermi velocity in the normal metal.

4.2.4.2 Normal metal, 𝑧 < 0

Similar calculations in the normal metal (𝑧 < 0) lead to an exponential decay of the pair

amplitude as the dominant behavior over an analogous length scale (with the difference that

now the normal metal parameters are used):

𝜃(−𝑧)𝐹 (𝑧) = 𝜃(−𝑧)Δ 𝑚̄𝑇𝜇

2𝜋2|𝑧|
𝜇̄

𝜋𝑘𝑇𝑐

𝑒−𝑝0|𝑧|𝜋𝑘𝑇𝑐/ℏ𝜇̄ (4.72)

The characteristic length scale for this decay is indeed what was already pointed out in

Eq.(4.2). Since 2𝜇̄/𝑝0 = 𝑣𝑁 :

ℏ𝜇̄
𝑝0|𝑧|𝜋𝑘𝑇𝑐

= ℏ𝑣𝑁

2|𝑧|𝜋𝑘𝑇𝑐

= 𝐾−1. (4.73)



62

4.2.5 NS contact at 𝑇 = 0

4.2.5.1 Superconductor, 𝑧 > 0

At zero temperature, the summation in Eq.(4.54) must be replaced by an integration

(ABRIKOSOV; GOR’KOV; DZYALOSHINSKII, 1959):

𝑘𝑇
∑︁
𝜔𝑛

→ 1
2𝜋

∫︁ ∞

−∞
𝑑𝜔𝑛 . . . (4.74)

As was the case for a system at its critical temperature, the second and terms of Eq.(4.59)

result in a rapidly oscillating term that averages to zero and therefore can be disregarded. The

remaining exponential in Eq.(4.59) has the form

exp [𝑖 (𝑏− 𝑏*) 𝑧] = exp
{︃

−𝑧
[︂
4𝑚

[︂(︁
𝜇2 + |Δ|2 + ℏ2𝜔2

𝑛

)︁1/2
− 𝜇

]︂]︂1/2
}︃

(4.75)

Hence, the main contribution for large 𝑧 comes from the vicinity of 𝜔𝑛 ≈ 0 (higher values

of 𝜔𝑛 would yield more rapidly decaying exponentials), so this expression can be expanded in

around 𝜔𝑛 = 0, taking into account that Δ ≪ 𝜇, 𝜇̄. Ultimately, one arrives at the result for

the pair wave function in the superconductor, at 𝑇 = 0:

𝜃(𝑧)Δ*(𝑧) = 𝜃(𝑧)Δ*

⎡⎣1 − 𝑔𝑚𝑝0

2𝜋2
𝜋2

4
𝑇𝜇

1 +𝑅𝜇

(︃
𝜉0

𝑧

)︃2

exp
(︃

− 2
𝜋

𝑧

𝜉0

)︃⎤⎦ (4.76)

Here, 𝑅𝜇 = 1 − 𝑇𝜇 can be interpreted as a reflection coefficient.

Once again, we see a decrease in Δ*(𝑧) before the interface over a distance that is essen-

tially 𝜉0. The actual range appearing in the argument of the exponential is longer than the

analogous quantity at 𝑇 ≈ 𝑇𝑐 by a factor of less than 2.

4.2.5.2 Normal metal, 𝑧 < 0

In this case we need not begin with the approximations that led to Eq. (4.59). We can

instead go back to Eq. (4.17b), the Gor’kov equation for 𝐹 †
𝜔𝑛𝑘⊥

(𝑧, 𝑧′) in the normal metal, and

make general considerations about this region. For convenience, we reproduce this equation

here:
1

2𝑚̄

(︃
𝑎̄*2 + 𝑑2

𝑑𝑧2

)︃
𝐹 †

𝜔𝑛,𝑘⊥
(𝑧, 𝑧′) = 0, 𝑧 < 0. (4.77)

First, the general solution of Eq.(4.77) is easy to guess: it would be given in terms of

increasing and decaying exponentials. More specifically, because we want 𝐹 †
𝜔𝑛

→ 0 as 𝑥 →



63

−∞, the solution has the form

𝐹 †
𝜔𝑛,𝑘⊥

(𝑧, 𝑧′) = 𝑓𝜔𝑛 (𝑧′, 𝑘⊥) 𝑒𝑖𝑎*𝑧 (4.78)

From the definition,

𝐹 †
𝜔𝑛,𝑘⊥

(𝑧′, 𝑧) = 𝐹 †
−𝜔𝑛,𝑘⊥

(𝑧, 𝑧′) . (4.79)

If 𝜔𝑛 is changed to −𝜔𝑛, 𝑎* becomes −𝑎. The reasoning above leads us to write

𝐹 †
−𝜔𝑛,𝑘⊥

(𝑧, 𝑧′) = 𝑓−𝜔𝑛 (𝑧′, 𝑘⊥) 𝑒−𝑖𝑎𝑧′ (4.80)

Combining Eqs.(4.81) and (4.80) yields

𝐹 †
𝜔𝑛,𝑘⊥

(𝑧, 𝑧′) = 𝑓𝜔𝑛 (𝑘⊥) 𝑒𝑖𝑎*𝑧𝑒−𝑖𝑎𝑧′
𝑧, 𝑧′ < 0, (4.81)

with 𝑓𝜔𝑛 (𝑘⊥) = 𝑓−𝜔𝑛 (𝑘⊥). In obtaining 𝐹 †
𝜔𝑛

(𝑧) from 𝐹 †
𝜔𝑛,𝑘⊥

(𝑧, 𝑧′), the integration in 𝑘⊥ can

once again be conveniently transformed to an integration in 𝜉⊥. As in Eq.(4.74), the summation

in Eq.(4.11) becomes an integral at 𝑇 = 0:

𝜃(−𝑧)Δ*(𝑧) = 𝜃(−𝑧) 𝑔𝑚4𝜋2

∫︁ ∞

−∞
𝑑𝜔𝑛

∫︁ ∞

−𝜇
𝑑𝜉⊥𝑓𝜔𝑛 (𝑘⊥) 𝑒𝑖(𝑎−𝑎*)|𝑧| (4.82)

From the definitions of 𝑎 and 𝑎*, it follows that

𝑖(𝑎− 𝑎*)|𝑧| = −
[︂
4𝑚

[︂(︁
𝜉2

⊥ + ℏ2𝜔2
𝑛

)︁1/3
+ 𝜉⊥

]︂]︂1/2
|𝑧|. (4.83)

As argued in other situations before, the most relevant contribution comes from 𝜉⊥ < 0 and

the vicinity of 𝜔𝑛 = 0, so we replace 𝑓𝜔𝑛(𝑘⊥) by 𝑓𝜔0(𝑘⊥) in the coefficient of the exponential:

𝜃(−𝑧)Δ*(𝑧) ≈ 𝜃(−𝑧) 𝑔𝑚2𝜋2

∫︁ 0

−𝜇
𝑑𝜉⊥𝑓0 (𝑘⊥)

∫︁ ∞

0
𝑑𝜔𝑛 exp

{︃
−|𝑧|

[︂
4𝑚

[︂(︁
𝜉⊥

2 + ℏ2𝜔𝑛
2
)︁1/2

+ 𝜉⊥

]︂]︂1/2
}︃

(4.84)

If we carry out the integration in 𝜔𝑛, keeping in mind that
√︁
𝜉2

⊥ = |𝜉⊥| = −𝜉⊥, we obtain

the general asymptotic behavior of the pair wave function in the normal metal:

𝜃(−𝑧)𝐹 (𝑧) ≈ 𝜃(−𝑧) 1
2𝜋2|𝑧|

(︂
𝑚

2

)︂1/2 ∫︁ 0

−𝜇
𝑑𝜉⊥𝑓0 (𝑘⊥) (−𝜉⊥)1/2 (4.85)

Now, if the approximations developed for 𝐹 †
𝜔𝑛

(𝑧) (as in Eq.(4.59)) are taken into account and

if we consider the case with perfect current transmission, this result becomes

𝜃(−𝑧)𝐹 (𝑧) ≈ 𝜃(−𝑧)Δ 𝜉0

|𝑧|
𝑚𝑝0

2𝜋2
𝜋

6 . (4.86)
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Clearly, the pair wave function dies off in the normal metal much more slowly than the

exponential decay derived for finite temperatures. We recall that this derivations assume a

three dimensional NS junction in the clean limit in which the metals are separated by a plane

boundary. Under this circumstances, the pair wave function becomes long-ranged in N, since

there is simply no mechanism in that region that could cause the disruption of superconducting

correlations. The situation would be different if there were some interaction in normal metal

or if the system was not in the clean limit.
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5 QUANTUM CONFINEMENT INFLUENCE ON THE PROXIMITY EFFECT

IN NANOWIRES

We have given, in Chapter 3, a brief overview of the remarkable consequences of reducing

some dimensions of a superconductor to sizes well smaller than its coherence length. In Chapter

4, we discussed how the placement of a normal metal in good electronic contact with a

superconductor can induce superconducting correlations in the former. Thus, we have set the

stage to discuss that which is the main goal of this thesis, namely the study of the interplay of

these two effects. That is, how the proximity effect in a normal metal/superconductor junction

is affected in the presence of quantum confinement of the charge carriers.

5.1 MODEL AND METHODS

To explore this phenomenon, we chose cylindrical nanowires as model systems. Each of

these nanowires is comprised of two parts: a superconductor and a normal (non-superconducting)

metal. The two metals are connected through a plane transverse boundary. The electronic in-

teractions in the nanowires considered in this work can be described by a space dependent

coupling parameter, 𝑔(𝑧): it has a constant finite value in the superconducting side and some

other value on the normal metal side (generally zero, meaning that, in isolation, this region

would not sustain the electron-electron attraction necessary for superconductivity).

Figure 6 – Simplified representation of a cylindrical nanowire comprised of a superconductor and a normal
metal.

Source: The author (2022)

We take the system to be in the clean limit, i.e., the mean-free path is much larger than

the coherence length, so that impurity scattering is not an issue. Additionally, we work with

very low temperatures, T ≈ 0 K, and we consider that the nanowire is not under the influence
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of any external field.

The investigation is based on the numerical self-consistent solution of the Bogoliubov-

de Gennes equations in the nanowire, as described in Chapter 3. Here, however, a slight

modification is introduced. Since now we work with finite nanowires of length L, instead of

utilising periodic boundary conditions in the longitudinal direction and expanding the wave

function in terms of 𝑒𝑖𝑘𝑧𝑧/
√
𝐿, we do so in terms of Γ𝑙(𝑧) =

√︁
2
𝐿

sin
(︁

𝑙𝜋𝑧
𝐿

)︁
, with 𝑙 = 1, 2, 3 . . .

Due to the azimuthal symmetry in the system, the electron-like and hole-like wavefunctions

can be written in the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑢𝑖(r)

𝑣𝑖(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 𝑒𝑖𝑚𝜑

√
2𝜋

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑢𝑖(𝜌, 𝑧)

𝑣𝑖(𝜌, 𝑧)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (5.1)

Similarly, the pair wave function depends only on 𝜌 and 𝑧:

Δ(r) = Δ(𝜌, 𝑧) (5.2)

Then 𝑢𝑖(𝜌, 𝑧) and 𝑣𝑖(𝜌, 𝑧) can be expanded in terms of the appropriate basis functions as

follows: ⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑢𝑖(𝜌, 𝑧)

𝑣𝑖(𝜌, 𝑧)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
∑︁
𝑙,𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑢𝑖

𝑛𝑙

𝑣𝑖
𝑛𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎠𝜗𝑛(𝜌)Γ𝑙(𝑧), (5.3)

where the 𝜗𝑛(𝜌) are the normalized basis functions in terms of the Bessel functions 𝐽𝑚 with

zeros 𝛼𝑚𝑛:

𝜗𝑛(𝜌) =
√

2
𝑅𝐽𝑚+1(𝛼𝑚𝑛)𝐽𝑚

(︂
𝛼𝑚𝑛𝜌

𝑅

)︂
. (5.4)

As a result, the Bogoliubov-de Gennes equations attain a more convenient form for numerical

treatment: (︁
𝑇 𝑖

𝑛,𝑙 − 𝐸𝑖

)︁
𝑢𝑖

𝑛,𝑙 +
∑︁
𝑛′,𝑙′

Δ𝑛𝑛′,𝑙𝑙′𝑣
𝑖
𝑛,𝑙 (5.5a)

(︁
𝐸𝑖 − 𝑇 𝑖

𝑛,𝑙

)︁
𝑣𝑖

𝑛,𝑙 +
∑︁
𝑛′,𝑙′

Δ𝑛𝑛′,𝑙𝑙′𝑢
𝑖
𝑛,𝑙, 𝑖 (5.5b)

in which

𝑇 𝑖
𝑛,𝑙 = ℏ2

2𝑚

[︃
𝛼2

𝑚𝑛

𝑅2 + 𝜋2𝑙2

𝐿2

]︃
− 𝜇 (5.6)
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and

Δ𝑛𝑛′,𝑙𝑙′ =
∫︁∫︁

𝑑𝜌𝑑𝑧𝜗𝑛′(𝜌)Γ𝑙′(𝑧)Δ(𝜌, 𝑧)Γ𝑙(𝑧)𝜗𝑛(𝜌). (5.7)

This is in fact a symmetrical eigenvalue problem. To solve it, we employ the resources

available at the Lapack Library of numerical routines.

5.1.1 Numerical Procedure

The numerical procedure for the self-consistent solution of the BdG equations can be

roughly summarized as follows: first, the bulk value of the gap parameter Δ𝑏𝑢𝑙𝑘 is used as an

initial approximation for Δ(r). The BdG equations are solved, yielding a first set of eigen-

fuctions 𝑢𝑖(r), 𝑣𝑖(r) and eigenenergies 𝐸𝑖. These are then substituted in the self-consistency

equation for Δ(r), resulting in a new value of the energy gap which will be substituted back

in BdG equations for a new round of calculations. This iterative process continues until Δ(r)

stops changing appreciably, that is, the maximum difference between values of Δ(r) from

consecutive interactions is smaller than a prescribed tolerance 𝜖, which is set to 𝜖 = 0.001.

Figure 7 – Schematic representation of the numerical procedure for the self-consistent solution of the
Bogoliubov-de Gennes equations.

Source: Croitoru, Shanenko and Peeters (2007b)

For the simulations, we begin with 𝑑 = 1.08 nm, where the first shape resonance in the

order parameter is detected. The diameter is gradually increased, in steps of 0.02 nm, until

around 4.0 nm, so that we go through multiple shape resonances. Throughout this work, the

length and temperature of the nanowires were kept constant at 𝐿 = 2000 nm and 𝑇 = 0 K,

respectively, but systems with slightly different characteristics were simulated by varying the
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values of 𝑔(𝑧). For the mean electron density, the value used was 𝑛 = 4.0 nm−3. We recall that

the Debye window is the interval inside which single-electron states with energy 𝜉𝑖 (measured

from the Fermi level) can participate in the formation of Cooper pairs and is determined by

−ℏ𝜔𝐷 < 𝜉𝑖 < ℏ𝜔𝐷, where 𝜔𝐷 is the Debye frequency. The value of this governing parameter

was set through ℏ𝜔𝐷/𝑘𝐵 = 0.96 K.

Here we present the results obtained for 3 different scenarios, distinguished from each

other by the values of coupling constant. In two of them, the product of the Gor’kov coupling

constant and the electron density at Fermi level is set to 𝑔𝑁(0) = 0.39 in the superconductor.

We note that this particular combination of parameters (𝑛, ℏ𝜔𝐷/𝑘𝐵, 𝑔𝑁(0)) is typical of the

metal lead (Pb).

In Case 1, the coupling constant was taken to be zero throughout the normal metal. In Case

2, the coupling in the normal side was set to 𝑔𝑁(0) = −0.195, meaning that the electrons

interact repulsively in that region, and this interaction has half the strength of that which

takes place in the superconducting side. The idea behind Case 2 is to investigate how the

introduction of some repulsion affects the leakage of Cooper pairs into the normal metal as

compared to the situation where no repulsion is present.

For Case 3, we considered a hypothetical superconducting material with 𝑔𝑁(0) = 0.49,

but without any interaction in the normal metal side. This is the same situation as in Case 1,

but with a higher value of 𝑔𝑁(0) in the superconducting side, to understand how varying this

parameter changes the decay of superconductivity across the interface.

5.2 RESULTS

5.2.1 Qualitative discussion

The model system adopted for the simulations is comprised of a superconductor on the

left side (0 nm − 1000 nm) and a normal metal on the right side (1000 nm − 2000 nm).

The data generated by the numerical procedure allows us to visualize how the pair potential

Δ(r) depends on the spatial coordinates. The 3D plot in Figure (8) shows Δ(𝜌, 𝑧) for a Pb

nanowire of diameter 1.30 nm. This plot confirms visually a point discussed before about the

behaviour of the pair potential. Introduction of quantum confinement in the radial direction

breaks translational invariance, so that Δ(r) could not be considered constant throughout

the wire, as is typically done in the BCS framework for bulk superconductors. Instead, Δ(r)
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is strongly dependent on the radial coordinate 𝜌, but does not change appreciably in the

longitudinal direction, except near the boundaries.

Figure 8 – Three-dimensional representation of Δ(𝜌, 𝑧) in an entirely superconducting nanowire, with 𝑑 =
1.30 nm and 𝑔(𝑧)𝑁(0) = 0.39.

Source: The author (2022)

These calculations were repeated for several values of the wire’s thickness. At each step,

the diameter was increased by an amount of 0.02𝑛𝑚. We have seen, in Chapter 3, that varying

the thickness of nanowires such as these leads to oscillations in characteristic properties of

the superconducting material, such as the order parameter. This phenomenon is exemplified

here in Figure (9). As is clear from Figure (8), Δ(𝜌, 𝑧) and 𝐹 (𝜌, 𝑧) depend significantly on 𝜌,

but not so much on 𝑧. For Figure (9), we chose, for each nanowire diameter, the value of 𝜌

corresponding to the peak value of 𝐹 (𝜌, 𝑧) and took an average along the 𝑧-direction. The

shape resonances are evident: for certain diameters, 𝐹 reaches remarkably high values, but

decreases as the diameter is increased until another resonant thickness is reached. Again, the

appearance of such shape resonances is related to the crossing of the Fermi surface by one of

the discrete subbands that appear due to quantum confinement.

Next, we can attempt to perceive visually the consequences of connecting a normal metal

to the superconductor, with a planar transverse interface between them. This is the situation

in Figure 10, where we present data for the pair amplitude 𝐹 (𝜌, 𝑧) = Δ(𝜌, 𝑧)/𝑔(𝑧). The plots

shown here for illustrative purposes correspond to a Pb nanowire , with 𝑔𝑁(0) = 0.39 in SC

and 0.0 in NM. Thus, Δ(𝑧) = 𝑔(𝑧)𝐹 (𝜌, 𝑧) simply vanishes throughout the NM region. We
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Figure 9 – Some of the shape resonances in the pair amplitude F. The peak value of F is plotted for each
value of wire diameter.

Source: The author (2022)

clearly observe the expected decay in 𝐹 (𝜌, 𝑧) across the wire cross section which takes place

close to the interface at 𝑧 = 1000 nm.

To better understand this phenomenon and to approach the data in a more quantitative

fashion, we consider separately the points lying in the plane intersecting the plot vertically

through its peak. The result is shown in Figure 11. Figure 11a and Figure 11b show the profile

of the pair amplitude and pair potential, respectively, corresponding to a wire of diameter

1.30nm and taken at a radial distance 𝜌 associated with their peaks. Because we work with

a fixed value of 𝜌, it is convenient to update our notation to 𝐹 (𝑧) and Δ(𝑧). In the figures,

these quantities are normalized with respect to their average 𝑧 values in the absence of the

proximity effect.

The plot of 𝐹 (𝑧) is quite interesting, since it displays several features of proximity phe-

nomena. First of all, we clearly observe that the pair amplitude decays in NM, but is seen to

maintain a finite value deep inside that region, away from from the interface. At this point

we cannot make any precise quantitative claim about the functional form of this decay, but it

already seems to be in accordance with an inverse power law decay typical for SN junctions

at zero temperature. An exponential decay, which characterizes the proximity effect at finite

temperatures, leads to 𝐹 (𝑧) vanishing not too far away from the interface. At zero tempera-

ture, the absence of a disruptive mechanism means that the superconducting correlations can
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Figure 10 – Three-dimensional plot of 𝐹 (𝜌, 𝑧) in a nanowire which is half superconductor and half normal
metal. The interface lies at 1000 nm and 𝑔(𝑧)𝑁(0) = 0.39 (SC), 0.0 (NM)

Source: The author (2022)

be seen deep inside the normal metal (FALK, 1963).

A second remarkable feature is the weakening of superconductivity in SC close to the

interface, in some papers presented as the inverse proximity effect (BUZDIN, 2005). Other

authors, like Zaikin and Zharkov (1983) and Falk (1963), estimate that the distance from

the interface over which this weakening takes place is approximately 𝜉0, the superconductor

coherence length. For Pb, 𝜉0 ≈ 83 nm (FETTER; WALECKA, 2003). In Figure 11a, the distance

over which 𝐹 (𝑧) decreases before the interface is of the order of 70 nm, which seems reasonably

close to the expected value, 𝜉0. Thirdly, we note that Zaikin and Zharkov (1983) also conclude

that at the interface the pair amplitude should be approximately half of its value inside SC,

away from the boundary with NM, which we denote by 𝐹𝑆. From Figure 11, this is close to

what we observe, as the plot crosses the line representing the interface at around 0.6 × 𝐹𝑆.

We note, however, that although the results we obtained for a nanowire with this par-
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Figure 11 – Profiles of the normalized pair amplitude 𝐹 (𝑧), (a), and pair potential Δ(𝑧), (b). Δ(𝑧) is iden-
tically zero in NM, whilst 𝐹 (𝑧) remains finite over a significant distance from the interface. The
parameters used for the superconductor correspond to lead (Pb).

Source: The author (2022)

ticular radius are in line with the literature concerning the traditional 3D proximity effect,

complications may arise due to finite-size effects. As a matter of fact, Figure 12 is precisely

an example of that. The data shown in this figure corresponds to a diameter value associated

with a shape resonance. The reduction in 𝐹 (𝑧) in S near the interface, typical of the inverse

proximity effect, is not seen in this case. On the contrary, the pair amplitude actually develops

a bump/peak right before the interface. This phenomenon seems to arise from the interplay

of two effects: the actual inverse proximity effect and Friedel oscillations.

When a metal is subject to a local disturbance, like a localized impurity, its electron density

can acquire a spatial modulation that resembles a standing wave. This perturbations are called

Friedel oscillations (HARRISON, 1979), (WOLF, 2012). Friedel-like oscillations are observed in

superconductor-normal-metal interfaces, arising due to the sharpness of the interface (VALLS;

BRYAN; ŽUTIć, 2010).

The range for the reduction of superconductivity in S away from the interface is set by the

coherence length, as pointed out by Shanenko, Croitoru and Peeters (2010), the coherence

length drops radically at resonant points. On the other hand, the barrier is much enhanced

at a resonance and, as a consequence, Friedel oscillations become very pronounced near the

interface. This interplay of strong Friedel oscillations and a weak inverse proximity effect leads

to the particular configuration seen in Figure 12.
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Figure 12 – Profiles of the normalized pair amplitude 𝐹 (𝑧), (a), and pair potential Δ(𝑧), (b). The diameter
chosen here corresponds to a resonance in 𝐹 (𝑧) and Δ(𝑧). The pronounced Friedel oscillations
near the interface are shown. The parameters used for the superconductor correspond to lead
(Pb).

Source: The author (2022)

5.2.2 Power law decay of the pair amplitude

Having made this preliminary exposition of results, we can now move on to a more sys-

tematic treatment of the data. As before, we work with data points in NM corresponding to

a radial distance 𝜌 associated with the peak of 𝐹 (𝜌, 𝑧). The idea is to fit a model function to

the discretized values of 𝐹 (𝑧) in the normal metal obtained through the numerical procedure.

Motivated by what is already known for the proximity effect, as presented in Chapter 4, we

take as fitting model

𝐹 (𝑧) = 𝐴+ 𝐵

(𝑧 − 𝑧0)𝛼
, (5.8)

where the parameters 𝐴, 𝐵 and 𝛼 are to be determined numerically through the curve fitting

procedure, and 𝑧0 marks the location of the SN interface. In our case, 𝑧0 = 1000 nm. From

the literature, we expect 𝐴 to be essentially zero. In this thesis, we are primarily interested in

understanding how the power-law decay parameter 𝛼 changes as the thickness of the nanowires

varies, under three different configurations of coupling constant, as stated previously.

The so-called Levenberg-Marquardt method is a standard numerical routine used in curve

fitting problems when the model depends nonlinearly on the unknown parameters, as is the case

in Eq.(5.8) (PRESS et al., 2007). In our work, we made use of the Levenberg-Marquardt method

as implemented in the curve_fit function of Python’s Scipy library. This function receives as

arguments the model function, two data arrays containing the values of the dependent and
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independent variables, an array with data uncertainties and a tuple containing a user provided

first approximation of the parameters. It yields, if no error occurs, an array containing the

optimized values of the fitting parameters and the covariance matrix. This matrix contains, at

each of its entries, the covariance of two of the parameters. Roughly speaking, the covariance

measures how much two variables change together. The covariance of a variable with itself is

its variance. Thus, in our case the covariance matrix has the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣𝑎𝑟(𝐴) 𝑐𝑜𝑣(𝐴,𝐵) 𝑐𝑜𝑣(𝐴,𝛼)

𝑐𝑜𝑣(𝐵,𝐴) 𝑣𝑎𝑟(𝐵) 𝑐𝑜𝑣(𝐵,𝛼)

𝑐𝑜𝑣(𝛼,𝐴) 𝑐𝑜𝑣(𝛼,𝐵) 𝑣𝑎𝑟(𝛼)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.9)

If alternative ways of writing the same model function are available, one should choose the

one that results in the minimum correlation between any two different adjustable parameters.

The result of this optimization procedure is exemplified in Figure 13, where the red curve is

Figure 13 – Example of a curve fitting procedure. 𝐹 (𝑧) is normalized with respect to its average value inside
the superconductor, away from the interface. The data corresponds to a wire of diameter d =
1.30 nm and 𝑔(𝑧)𝑁(0) = 0.39 (SC), 0.0 (NM) .

Source: The author (2022)

the optimal fitting and the blue dots are the original data. Once again, the exemplifying figure

corresponds to a wire of diameter 1.30 nm and 𝑔(𝑧)𝑁(0) = 0.39 (SC), 0.0 (NM).

The fitting procedure described above is carried out for multiple wire thicknesses. Our main

interest, as stated before, is to understand how the parameter 𝛼 depends on the diameter in
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order to see how the proximity effect is influenced by quantum confinement. In Figure 14

several values of 𝛼 (green dots) plotted against wire diameter. We see that a pattern of peaks

in the value of 𝛼 develops as the diameter is increased. The red line is simply a reproduction

of Figure 9. Indeed, this figure shows a remarkable correlation between the peaks of the pair

amplitude 𝐹 (𝑧) and those of 𝛼.

Figure 14 – Comparison of the oscillations in the parameter 𝛼 with the oscillations in 𝐹 . The peaks and
troughs occur at the same diameters for the two quantities. The data corresponds to 𝑔(𝑧)𝑁(0) =
0.39 (SC), 0.0 (NM)

Source: The author (2022)

More data is presented in the following plots. Figure 15 is concerned with Case 1 (𝑔(𝑧)𝑁(0) =

0.39 in SC but no interaction in NM). Figure 16. corresponds to Case 2 (𝑔(𝑧)𝑁(0) = 0.39 in

𝑆𝐶 with some repulsion in NM), and Figure 17 presents the data of Case 3 (𝑔(𝑧)𝑁(0) = 0.49

in SC, no interaction in 𝑁𝑀). In the plots, the purple horizontal line marks the 𝛼 = 1.0 value,

which is expected for 3D systems at 𝑇 = 0 K, as discussed and derived in 4.

The results for the 3 cases are generally very similar. The trend uncovered in Figure 14

is present throughout all the plots: 𝛼, as a function of wire thickness, develops a distinct

oscillatory pattern and the peaks of the oscillations occur at the resonant thicknesses, i.e, the

diameters where the pair amplitude reaches its maxima as well. In all cases, the peak value of

𝛼 are very close to 1.0. That, as we recall, is the characteristic power-law decay of 𝐹 (𝑧) for

3D SN junctions. As the thickness is increased past a resonant point, 𝛼 gradually decreases

and can reach values well below 1.0 right before the next shape resonance comes into play.

Now, we have pointed out before (Chapter 4) that investigations of the proximity effect in 2D
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Figure 15 – Oscillatory behavior of 𝛼 as a function of wire diameter. Case 1.

Source: The author (2022)

Figure 16 – Oscillatory behavior of 𝛼 as a function of wire diameter. Case 2.

Source: The author (2022)

and 1D superconductor/ferromagnet junctions found reduced values for the power-law decay

parameter compared to the 3D situation, namely 𝛼2D = 1
2 (KONSCHELLE; CAYSSOL; BUZDIN,

2008) and 𝛼1D ≈ 0 (CAYSSOL; MONTABAUX, 2004). One might wonder if this reduction in

𝛼 due to reduced dimensionality has any connection to the confinement induced oscillations

we observed in this parameter. One can try to make sense of this similarity by recalling how
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Figure 17 – Oscillatory behavior of 𝛼 as a function of wire diameter. Case 3.

Source: The author (2022)

quantum confinement influences the binding energy of electrons in a Cooper pair and its length

along a non-confined direction. Although the results alluded to in Chapter 3 are for only 2

electrons above the Fermi surface, they still provide useful insight for this discussion. At a

resonant point, the binding energy 𝐸𝑔 dramatically increases and 𝜉𝑐, the size of a cooper pair

along the non-confined direction, reaches its smallest value. When the thickness is increased

to off-resonant values, 𝐸𝑔 decreases and 𝜉𝑐 increases. So we may say that the Cooper pairs

are least deformed from a spatially symmetric form when resonances are at play. If the wire

diameter is taken to off-resonant values, 𝜉𝑐 increases considerably and the Cooper pair can

be thought to be greatly elongated in the longitudinal direction. Thus, resonance points are

expected to be the ones with the least pronounced deviation from the spherically symmetric

Cooper pair in 3D and that would lead to values of 𝛼 close to 1.0 (the typical 3D value)

for nanowires with resonant thickness. As the diameter is increased, the cooper pairs become

elongated and can resemble the situation found in 2D and 1D system. Hence, one could expect

𝛼 to approach 2D and 1D values as well when wire thickness is increased before next shape

resonance.
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6 CONCLUSION

In this thesis, we investigated the clean limit proximity effect in nanowires at low temper-

atures and under the influence of quantum size effects. More precisely, the nanowires are half

superconductor, half normal metal, and are connected through a transverse plane boundary.

For sufficiently thin nanowires, size-resonance effects become relevant and several proper-

ties of a superconductor are modified with respect to the bulk values. In order to have systems

in this regime, we considered nanowires with diameters varying from approximately 1.0 nm to

4.0 nm.

For clean samples at T=0, the literature indicates that the decay of the pair wave function

in the non-superconducting region follows an inverse power law relation:

𝐹 (𝑧) ∝ 1
|𝑧 − 𝑧0|𝛼

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛼 = 1.0, 3D,

𝛼 = 0.5, 2D,

𝛼 = 0.0, 1D,

(6.1)

where again 𝑧0 is the position of the interface.

Based on this, the main objective of this thesis was to try and determine how the parameter

𝛼 varies for nanowires in the regime in which quantum confinement of the electrons affects the

properties of the system and causes the pair amplitude, among others, to gain an oscillatory

behavior as a function of thickness. We considered 3 slightly different situations, by varying

the value of the coupling constant in the superconductor and in the normal metal.

By extracting the value of 𝛼 for SN wires of several diameters, we obtained that this

parameter also oscillates as a function of sample thickness, and its peaks and troughs match

those of the pair amplitude, i.e., the size resonances in 𝛼 match those in F(z). For a given res-

onant wire diameter, 𝛼 peaks at about 1.0 (the 3D typical value) and diminishes subsequently

to values much smaller than 1.0 (reminiscent of the 1D situation) until the next resonance

comes into play. We speculate that this variation of 𝛼 between values close to 3D, 2D, and

1D systems is related to the fact the Cooper pair form and size also go over those typical

of 3D, 2D, and 1D systems. Overall, 𝛼 seems to approximate 1.0 as diameter increases, as

is expected, since for sufficiently large diameters the 3D value 𝛼 = 1.0 should be observed.

Not much difference is noticed in the behavior of the parameter 𝛼 in the situations considered

here.
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