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RESUMO 

 

O escoamento de fluidos em meios porosos fraturados é um fenômeno muito relevante, 

pois a maior parte das reservas de petróleo remanescentes no mundo residem neste tipo 

de formações, além de as fraturas também estarem presentes em camadas menos 

profundas da crosta, o que as torna influentes também na extração de água e na dispersão 

de resíduos. O escoamento bifásico de água e óleo em reservatórios pode ser descrito 

matematicamente por um conjunto de equações diferenciais parciais não-lineares, cuja 

modelagem constitui-se num grande desafio, devido à complexidade dos ambientes 

deposicionais, além da presença das fraturas. Nesses casos, é particularmente complexo 

construir malhas computacionais estruturadas capazes de representar adequadamente o 

reservatório. No presente trabalho, uma nova estratégia foi desenvolvida para simular o 

escoamento bifásico imiscível em meios porosos fraturados 3-D, usando malhas não-

estruturadas tetraédricas. Tal estratégia é baseada em um método de volumes finitos com 

aproximação de fluxo por múltiplos pontos que utiliza o chamado "estêncil de diamante" 

(MPFA-D), considerando um modelo de fratura discreta embutida baseado em projeção 

(pEDFM) para incluir as influências das fraturas no modelo global do reservatório. O 

MPFA-D é uma formulação robusta e flexível, capaz de lidar com tensores de difusão 

altamente heterogêneos, possivelmente descontínuos, e anisotrópicos, inclusive não-

ortotrópicos, e que alcança taxas de convergência de segunda ordem para a variável 

escalar e de primeira ordem para o seu gradiente. No entanto, como outros métodos 

MPFA lineares, ele não garante formalmente soluções monótonas ou que respeitem o 

Princípio do Máximo Discreto (DMP) e pode produzir oscilações espúrias no campo de 

pressão para tensores de permeabilidade com razão de anisotropia elevada ou para malhas 

distorcidas. Para lidar com este problema e impor a observância do DMP, foi 

desenvolvida uma alternativa de correção não-linear para o MPFA-D. Além disso, o 

modelo de fratura adotado evita a complexidade adicional de alinhar fraturas com arestas 

ou faces da malha computacional que discretiza o domínio correspondente ao meio 

poroso, tornando a construção dessa malha mais flexível e menos suscetível a 

refinamentos localizados excessivos. Os termos de saturação do modelo matemático são 

discretizados segundo o método de Euler avançado, no contexto de um esquema numérico 

totalmente implícito. Os métodos numéricos propostos, bem como o simulador composto 

por eles, foram testados frente a problemas encontrados na literatura e outros elaborados 



pelo autor, visando demonstrar a robustez e a flexibilidade da ferramenta de simulação 

computacional desenvolvida. 

 

Palavras-chave: Simulação numérica; Escoamento bifásico de água e óleo; Reservatórios 

heterogêneos e anisotrópicos; Reservatórios Fraturados; pEDFM; MPFA-D; DMP. 



 

ABSTRACT 

 

Fluid flow in fractured porous media is a very relevant phenomenon, since most of the 

remaining oil reserves in the world reside in this type of formations, in addition to the fact 

that fractures are also present in shallower layers of the crust, which makes them 

influential also in water extraction and waste dispersion. The two-phase flow of oil and 

water in reservoirs can be mathematically described by a set of non-linear partial 

differential equations, whose modeling constitutes a great challenge, due to the 

complexity of the depositional environments, in addition to the presence of fractures. In 

these cases, it is particularly complex to construct structured computational meshes 

capable of adequately representing the reservoir. In the present work, a new strategy was 

developed to simulate immiscible two-phase flow in 3-D fractured porous media, using 

tetrahedral unstructured meshes. Such a strategy is based on a finite volume method with 

multipoint flux approximation that uses the so-called "diamond stencil" (MPFA-D), 

considering a projection-based embedded discrete fracture model (pEDFM) to include 

the influences of the fractures in the global reservoir model. The MPFA-D is a robust and 

flexible formulation, capable of handling highly heterogeneous, possibly discontinuous, 

and anisotropic, even non-orthotropic, diffusion tensors, and which achieves second-

order convergence rates for the scalar variable and first-order convergence rates for its 

gradient. However, like other linear MPFA methods, it does not formally guarantee 

monotonic solutions or those that respect the Discrete Maximum Principle (DMP) and 

can produce spurious oscillations in the pressure field for permeability tensors with high 

anisotropy ratio or for distorted meshes. To deal with this problem and enforce DMP 

compliance, an alternative non-linear defect correction for MPFA-D was developed. 

Furthermore, the adopted fracture model avoids the additional complexity of aligning 

fractures with edges or faces of the computational mesh that discretizes the domain 

corresponding to the porous medium, making the construction of this mesh more flexible 

and less susceptible to excessive localized refinements. The saturation terms of the 

mathematical model are discretized according to the backward Euler method, in the 

context of a fully implicit numerical scheme. The proposed numerical methods, as well 

as the simulator composed by them, were tested against problems found in the literature 

and others elaborated by the author, aiming to demonstrate the robustness and flexibility 

of the developed computational simulation tool. 

 



Keywords: Numerical simulation; Two-phase flow of oil and water; Heterogeneous and 

anisotropic reservoirs; Fractured Reservoirs; pEDFM; MPFA-D; DMP. 
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1 INTRODUCTION 

This first chapter briefly presents all the topics covered in this work, from the 

problem that motivated it to the proposed solutions. Beyond this, it summarizes the 

objectives and the organization of this thesis. 

1.1 SIMULATION OF FLUID FLOW IN RESERVOIRS 

A reservoir rock is a subsurface mineral volume having sufficient porosity and 

permeability that allow the migration and accumulation of hydrocarbons under adequate 

conditions (MAGOON, 2004). The fluids displacements in this type of environment is a 

very relevant phenomenon for mankind and its simulation is a very important tool in order 

to get information that permit the proper management of the hydrocarbons production, 

maximizing the economic return of the process (PEACEMAN, 1977; EWING, 1983; 

CHEN; HUAN; MA, 2006). Among the many strategies for extracting oil, there is the 

strategy in which water is injected to maintain a high pressure in the reservoir and keep 

continuously forcing the hydrocarbons out. In this case, assuming that the pressure of the 

reservoir does not drops sufficiently to lead to the appearance of a gas phase, this process 

can be simplified as a two-phase flow, that is the object of study of this work, and which, 

after considering some simplifying hypotheses, can be mathematically described as a set 

of nonlinear partial differential equations. 

It should be noted that the majority of the remaining exploitable reservoirs 

around the world are fractured structures (BEYDOUN, 1998), in addition to the fact that 

fractures are also present in less deep layers of the crust, which makes them also 

influential in water extraction and waste dispersion (MATTHÄI, 2018). In this context, 

the influence of the presence of the fractures on the two-phase flow must be correctly 

considered, since it potentially introduces discontinuities on the pressure and/or on the 

velocity fields (MARTIN; JAFFRÉ; ROBERTS, 2005). Modeling this problem 

represents a great challenge, because depositional environments are geometrically 

complex media, in which some properties (e.g., permeability) may vary many orders of 

magnitude over small distances, in addition to the presence of the fractures themselves 

(CRUMPTON; SHAW; WARE, 1995; CARVALHO; WILLMERSDORF; LYRA, 

2009). These environments are usually anisotropic, since the sedimentary layers can be 

deposited in different ways, giving different preferential directions to the fluids flows 

(CARVALHO; WILLMERSDORF; LYRA, 2009; CAVALCANTE et al., 2020), what 
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makes particularly complex, in such cases, to construct structured meshes aiming to 

model them (AAVATSMARK et al., 1998a). 

1.2 MODELING FRACTURED RESERVOIRS 

There are many strategies developed to handle these fractures in the context of 

simulation of fluid flow in porous media. Among these schemes, traditional methods, 

which do not treat the fractures as additional degrees of freedom, have some remarkable 

limitations. Transmissibility multipliers, for example, are very dependent on the mesh 

(MANZOCCHI et al., 1999; NILSEN; LIE; NATVIG, 2012); Dual-continuum models 

(BARENBLATT; ZHELTOV; KOCHINA, 1960; WARREN; ROOT, 1963; KAZEMI et 

al., 1976) require a very complex basis of parameters to guarantee a precise solution and 

are still not capable to deal with high fracture density and localized anisotropy, while the 

models that represent fractures explicitly may be more accurate and “physics oriented” 

(HOTEIT; FIROOZABADI, 2008). Also, the explicit discrete fracture representation 

may be more suitable for multiphase flow problems, because if the constitutive relations 

for capillary pressures and relative permeabilities are known, they can be included 

directly into the models (BERRE; DOSTER; KEILEGAVLEN, 2019). 

The word “fracture” may be used to represent a discontinuity in porous media 

throughout various length of scales, from a few millimeters to hundreds of meters. It is 

not feasible to handle all types of fractures explicitly. Thus, fractures are usually classified 

according to their length (or characteristic length), so that the small-scale ones are treated 

through some kind of homogenization (upscaling) method, while the large-scale ones are 

represented explicitly (LEE; LOUGH; JENSEN, 2001; LI; LEE, 2008). The present 

research focuses on large-scale fractures. 

Explicit fracture representation methods can be divided into two groups, based 

on the type of the discretization: conforming mesh and non-conforming mesh methods. 

For the first group, the mesh needs to accommodate the fracture positions, which are 

placed at the cell edges (in 2-D) or faces (in 3-D). This condition is critical when it is 

necessary to discretize small angles and small distances and can lead to excessive mesh 

refinements. This is not necessary for the second group, in which the fractures may cross 

the rock matrix mesh cells. 

The second group is less restrictive in terms of mesh construction, so that the 

fractures may cross the rock matrix mesh cells. In this context, there are the embedded 
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discrete fracture models (EDFM) (LI; LEE, 2008; MOINFAR et al., 2014; SHAKIBA; 

SEPEHRNOORI, 2015), in which the degrees of freedom of the rock matrix and fractures 

are discretized separately, but the structure of the coupling is similar to that of dual-

continuum methods, with the difference that the coupling term is modeled directly in 

terms of discrete variables directly (BERRE; DOSTER; KEILEGAVLEN, 2019).  

The EDFM produce good solutions for high permeability fractures, however, 

their application is limited whenever the fracture permeability is much lower than that of 

the rock matrix. In order to overcome the limitations of EDFM, the projection-based 

embedded discrete fracture models (pEDFM) (JIANG; YOUNIS, 2017; ŢENE et al., 

2017; RAO et al., 2020) were developed. Based on the projections of the areas of fractures 

on some faces of the cells in which they are contained, this strategy computes the 

interaction between the fractures and the neighboring cells sharing those faces that receive 

the projections, enriching the model. 

The pEDFM itself also evolved in order to overcome other limitations. From the 

original method (ŢENE et al., 2017), Jiang and Younis (2017) proposed two 

modifications: a generalized formula for the effective flow area of the modified matrix-

matrix connection and a new fracture-matrix transmissibility calculation aiming to avoid 

the flow between a fracture contained in a ultra-low permeability cell and its neighboring 

cells. Rao et al. (2020) proposed another modification of the fracture-matrix 

transmissibility calculation to avoid the flow from a high permeability fracture through a 

neighbor cell containing a ultra-low permeability fracture, and included fracture-fracture 

interactions in their model, enriching the pEDFM again. Besides, they have presented a 

new strategy to choose the cell face for the fractures areas projections. Recently, the 

pEDFM has been extended to be applied on corner-point grids (HOSSEINIMEHR et al., 

2022), which are still structured computational meshes. In this work, the EDFM and a 

simplified version of the pEDFM were applied to include, in our model, the influences of 

the fractures in the fluid flow, using flexible unstructured tetrahedral meshes for the first 

time in literature. 

The transmissibility terms and flux expressions corresponding to matrix-matrix, 

matrix-fracture and fracture-fracture interactions risen from the proposed EDFM and 

pEDFM will be applied in the numerical formulation developed in this work for the 

simulation of biphasic flows in fractured reservoirs. 
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1.3 NUMERICAL FORMULATIONS 

The equations governing the phenomenon of interest in this text, after several 

simplifying considerations, are obtained combining the mass conservation law and the 

Darcy’s law. The resulting mathematical model, in which phase saturation and phase 

pressure are functions of time and spatial position, is addressed in Chapter 2. 

Discretizing the pressure terms of this mathematical model may represent a 

challenging problem for traditional numerical methods, such as the classical Two Point 

Flux Approximation (TPFA) Finite Volume Method (FVM), which is monotone 

(KEILEGAVLEN; AAVATSMARK, 2011), but it does not even guarantees convergence 

for general full diffusion tensors or non k-orthogonal meshes (AAVATSMARK et al., 

1998a, 1998b; EDWARDS; ROGERS, 1998). On the other hand, the Galerkin Finite 

Element Method (GFEM) (CROSS, 1985; CIARLET, 2002), the Mixed-Finite Element 

Method (MFEM) (RAVIART; THOMAS, 1977; DURÁN, 2008) or even the sturdier 

linear Multipoint Flux Approximation (MPFA) formulations (AAVATSMARK et al., 

1998a, 1998b, 2008; EDWARDS; ROGERS, 1998; AAVATSMARK, 2002; 

KLAUSEN; EIGESTAD, 2004; CHEN et al., 2008; GAO; WU, 2011) are commonly 

convergent for arbitrary diffusion tensors and general meshes, but may transgress the 

Discrete Maximum Principle (DMP), generating spurious oscillations for the scalar 

pressure field and incorrect fluxes when performing more extreme tests with high 

anisotropy ratios or distorted meshes (KEILEGAVLEN; AAVATSMARK, 2011) or even 

the presence of discontinuities, as fractures. 

A notable example is the MPFA which uses diamond stencil (MPFA-D) (GAO; 

WU, 2011; CONTRERAS et al., 2016; LIRA FILHO et al., 2021), which is a locally 

conservative linearity-preserving finite volume method developed to be applicable to any 

polygonal 2-D meshes and general heterogeneous, possibly discontinuous, full-tensor 

diffusion coefficients. In this scheme, the vertex unknowns are interpolated as a weighted 

average of the neighboring cell-centered unknowns, from the impositions of flux 

continuity and the divergence-free field condition, considering an auxiliary control 

volume, in order to obtain a fully cell-centered formulation. In 2-D, the MPFA-D scheme 

has second order accuracy for the pressure field and more than first order accuracy for 

fluxes (GAO; WU, 2011). Even though it is very robust for problems involving high 

anisotropy and distorted meshes, it is not monotone and may therefore violate DMP 

(QUEIROZ et al., 2014; CONTRERAS et al., 2016). 
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In the context of 3-D models, there are, in literature, different vertex-centered 

and cell-centered finite volume formulations developed to discretize the diffusion terms. 

The control-volume based finite element method (CVFEM) (BALIGA; PATANKAR, 

1980, 1988; HSU, 1981; MALISKA, 1995), for example, was, from the beginning, 

designed to be extensible to 3-D (MUIR; RABI BALIGA, 1986). Aavatsmark et al. 

(AAVATSMARK; BARKVE; MANNSETH, 1998; AAVATSMARK et al., 2001; 

AAVATSMARK; EIGESTAD; KLAUSEN, 2007) presented and studied the 

convergence behavior of the extension to 3-D of their original MPFA method on 

structured grids. Hermeline (2007, 2009) proposed two different ways to extend the 

discrete duality finite volume (DDFV) (ANDREIANOV; BOYER; HUBERT, 2007) to 

3-D. The second one (HERMELINE, 2009) is locally conservative, presenting second 

order accuracy for the scalar variable, and, at least, first order accuracy for fluxes on all 

tested polyhedral meshes, even for distorted and non-matching grids. Pal and Edwards 

(2007) presented an extension to 3-D of the family of Control Volume Distributed MPFA 

(CVD-MPFA) methods which is applicable to different types of polyhedral meshes. They 

present convergence tests emphasizing the quadrature parametrization, with second order 

accuracy for the scalar variable and first order accuracy for gradients, achieving “super 

convergence” depending on the mesh and the chosen support region. Besides, they have 

presented monotonicity studies, showing the optimal quadrature condition to minimize, 

but not necessarily eliminate, spurious oscillations. Wolff et al. (2013) presented an 

extension to 3-D of the well-known L-method (AAVATSMARK et al., 2008), with 

interesting results compared with the classical linear TPFA method. Gao and Wu (WU; 

GAO, 2014; GAO; WU, 2015), developed, using the linearity-preserving criterion, an 

interpolation-based and positivity-preserving nonlinear two-point flux approximation 

finite volume method (NLFV-TPFA) for unstructured polygonal meshes, which is also 

extensible for 3-D applications. For smooth problems, their scheme presents second order 

accuracy for the scalar variable and first order accuracy for gradients. Another nonlinear 

monotone finite volume scheme was developed by Lian, Sheng and Yuan (2017), with 

their own way of eliminating the vertex unknowns in the context of a diamond scheme 

and which is applicable for unstructured tetrahedral meshes. Wang, Hang and Yuan 

(2017) presented their pyramid scheme applicable to polyhedral meshes, showing second 

order accuracy in several problems with scalar diffusion coefficients, including 

discontinuous or non-linear ones. Yang and Gao (2019) proposed a finite volume scheme 

with another explicit interpolation strategy for the vertex unknowns. Their formulation 
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presents second-order accuracy for the scalar variable and higher than first order accuracy 

for fluxes on some 2-D and 3-D meshes. Lira Filho et al. (2021) presented a 

tridimensional extension of the MPFA-D with explicit weighting for the vertex 

unknowns, showing second-order accuracy for the scalar variable and first order accuracy 

for its gradient on arbitrary tetrahedral meshes. As in the original 2-D version of Gao and 

Wu (2011), the method is unable to fulfill the DMP for challenging applications. Finally, 

Dong and Kang (2021, 2022) presented a least square based interpolation for MPFA-D, 

which is more robust than previous strategies in terms of handling full tensors and 

ensuring the DMP, but that still does not guarantee satisfying this condition for all cases. 

The efforts to overcome these limitations are not recent. The DMP satisfaction 

for finite elements approximations was addressed by Ciarlet and Raviart (1973), Korotov, 

Křížek and Neittaanmäki (2000) and Burman and Ern (2004). Le Potier (2005, 2009) 

presented a non-linear FVM satisfying the DMP and Cancès, Cathala and Le Potier 

(2013) presented a non-linear technique to correct a general FVM in order to satisfy the 

DMP. Pal and Edwards (2006, 2011) proposed flux-splitting strategies to improve the 

monotonicity behavior of FVM and impose DMP compliance based on a backward 

correction. Chen et al. (2008) have proposed their MPFA with an enriched stencil 

(MPFA-E), in order to mitigate spurious oscillations for the scalar field. Kuzmin, 

Shashkov and Svyatskiy (2009) presented a nonlinear constrained finite element scheme, 

in which they perform an algebraic matrix splitting followed by a slope limiting to impose 

DMP. Other finite volume formulations using two-steps strategies, as those presented by 

Su, Dong and Wu (2018) and Zhao, Sheng and Yuan (2020), also presents good results 

in terms of DMP. Finally, Cavalcante et al. (2022) presented a nonlinear defect correction 

to be applied on the MPFA-D of Lira Filho et al. (2021), but extensible to general MPFA 

methods, in order to ensure the DMP. Their repairing strategy is based on the fact that the 

MPFA-D flux expression can be naturally divided into two parts: the TFPA flux portion 

and the flux portion associated with the cross-diffusion terms (CDT). This flux splitting 

(EDWARDS, 2000; PAL; EDWARDS, 2006, 2011), in which the linear TPFA portion 

of the flux provides a solution that is free from spurious oscillations, is followed by local 

DMP imposition through a non-linear CDT flux limiting, as it is the potential source of 

the spurious oscillations in the scalar field. The MPFA-D with a non-linear defect 

correction (MPFA-DNL) aims to limit the CDT flux in order to obtain solutions that 

comply with the DMP, and that are locally conservative and capable of reproducing 

piecewise linear solutions exactly. 
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1.4 OBJECTIVES AND CONTRIBUTIONS OF THIS WORK 

The major objective of this work is to develop a computational tool to simulate 

immiscible two-phase flow in naturally fractured porous media, using a projection-based 

embedded discrete fracture model (pEDFM) and unstructured tetrahedral meshes, 

considering effects of gravity and compressibility. 

In this context, the specifics objectives are: 

▪ Develop a MPFA-D formulation for unstructured tetrahedral meshes, to 

discretize the matrix-matrix flux terms. 

▪ Investigate interpolation strategies do be applied on MPFA-D. 

▪ Develop an adaptation of pEDFM to handle the fractures on tetrahedral 

meshes, to discretize the matrix-fracture and the fracture-fracture flux terms 

and to modify the matrix-matrix flux terms. 

▪ Test the new numerical strategies presented through the solution of classical 

problems from the literature or elaborated by the author, in order to verify 

the accuracy or even the functionality of these proposed techniques. 

The main contributions of this work are the presentation of a locally conservative 

numerical method capable of handling with full tensors and unstructured tetrahedral grids 

in context of diffusion problems in 3-D (MPFA-D), including a non-linear defect 

correction for it (MPFA-DNL), to be used in case of DMP violation; the application of 

this MPFA-D in context of a fully implicit scheme, in order to compose the numerical 

strategy used to simulate two-phase flow in 3-D; and the presentation of a non-

conforming mesh fracture model (pEDFM) to be applied on unstructured tetrahedral 

grids, enabling a highly flexible simulator of fluid flow in fractured reservoirs, not only 

in terms of anisotropy (due to MPFA-D), but also in terms of geometry and mesh 

generation. 

1.5 TEXT ORGANIZATION 

 The next chapters of this text are organized as following: the chapter 2 presents 

the mathematical modelling of the immiscible two-phase flow in porous media, including 

the possibility of presence of fractures; the chapter 3 shows the development of the 

MPFA-D for tetrahedral meshes and of the MPFA-DNL; the chapter 4 presents fracture 

modelling strategies, shortly passing by some classical methods and presenting the 
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pEDFM, used here in this work; the chapter 5 shows the applications of the proposed 

numerical formulations and of the computational simulation tool composed by them and 

the chapter 6 presents the conclusions of this researching work.
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2 MATHEMATICAL MODEL 

This chapter presents the mathematical model used here to describe the fluid 

flows in a porous reservoir rock, starting with some simplifying assumptions, followed 

by some fundamental concepts about rock and fluid properties which are important to the 

comprehension of the mathematical model, followed by the governing equations, 

including the auxiliary conditions. 

2.1 ASSUMPTIONS 

Fluid flows in porous media is a very complex phenomenon, which would lead 

to a complex mathematical model, so, aiming to simplify it, the following assumptions 

were considered: 

A1. Immiscible two-phase flow of oil (o) and water (w). 

A2. The rock (porous media) is fully saturated by fluids. 

A3. Rock and fractures are not deformable. 

A4. Thermal, chemical and capillary effects, as well as the dispersion and 

adsorption effects, are all neglected. 

A5. The Darcy’s law is applicable. 

2.2 ROCK AND FLUID PROPERTIES 

For the study of fluid flows in porous media, as in oil reservoirs, an important 

property is the ratio of pore volume (available to be occupied by the fluid) to the total 

volume of the medium (𝑉𝑅
𝑇). This ratio is called porosity (𝜙). In a reservoir rock, there 

are some isolated pores, while others are interconnected, then two types of porosity can 

be calculated, the total porosity, which considers all the pores of the rock sample, and the 

effective porosity, which account only volume of the interconnected ones (𝑉𝑅) 

(ERTEKIN; ABOU-KASSEM; KING, 2001). In the remainder of this text, the term 

porosity is used to refer to the effective porosity, because it indicates, the capacity of the 

reservoir to accumulate fluids that can be displaced (exploitable fluids), then: 

 

 𝜙 =
𝑉𝑅

𝑉𝑅
𝑇 (2.1)  
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Since the rock here is considered to be not deformable, the value of 𝜙 is constant. 

Considering that there are several fluid phases within the porous media, the saturation of 

a phase 𝛼 (𝑆𝛼) is the ratio of the volume occupied by this phase (𝑉𝛼) to the total pore 

volume: 

 

 𝑆𝛼 =
𝑉𝛼
𝑉𝑅

 (2.2) 

 

Considering a fully saturated porous media we can write: 

 

 ∑𝑆𝛼
𝛼

= 1 (2.3) 

 

As referred above (see assumption A1), the scope of this work is the study of oil 

(𝑜) and water (𝑤) immiscible two-phase flow, then the Eq. (2.3) becomes: 

 

 𝑆𝑤 + 𝑆𝑜 = 1 (2.4) 

 

Other important property to define is permeability, which is the capacity of a 

porous medium to transmit fluids through its interconnected pores. If the porous medium 

is completely saturated by only one phase, this capacity is called absolute permeability 

(𝚱), referred from now just as permeability. A rock sample, however, is not necessarily 

equally permeable in all directions, i.e., it is a potentially anisotropic medium. That is 

why the permeability is generally described as a tensor, which can be represented by a 

symmetric matrix. Using Cartesian coordinates in 3-D, the permeability tensor would be: 

 

 𝚱(𝑥 ) = [

Κ𝑥𝑥 Κ𝑥𝑦 Κ𝑥𝑧
Κ𝑥𝑦 Κ𝑦𝑦 Κ𝑦𝑧
Κ𝑥𝑧 Κ𝑦𝑧 Κ𝑧𝑧

] (2.5) 

 

where 𝑥  is the position vector. 

If there are more than one phase filling the porous media, it is necessary to 

consider the mobility of a phase 𝛼 (𝜆𝛼) in the presence of other phases, which is calculated 

as (FANCHI, 2006): 
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 𝜆𝛼 =
𝑘𝑟𝛼
𝜇𝛼

 (2.6) 

 

in which 𝑘𝑟𝛼 is the relative permeability of the phase 𝛼, which can be defined, for oil and 

water, as (COREY, 1954; ISLAM, 2015): 

 

 𝑘𝑟𝑤 = (𝑆𝑛)
𝑛𝑤;  𝑘𝑟𝑜 = (1 − 𝑆𝑛)

𝑛𝑜;  (2.7) 

 

in which 𝑛𝑤 and 𝑛𝑜 are parameters that can assume different values (KOZDON; 

MALLISON; GERRITSEN, 2011), but, in this work, they are 𝑛𝑤 = 𝑛𝑜 = 1. Besides, 𝑆𝑛 

is the normalization of the water phase saturation with respect to the irreducible water 

saturation (𝑆𝑤𝑖) and the residual oil saturation (𝑆𝑜𝑟), defined as (CHEN; HUAN; MA, 

2006; ISLAM, 2015): 

 

 𝑆𝑛 =
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟
  (2.8) 

 

in which 𝑆𝑤𝑖 is defined as the water saturation that would remain after a complete 

drainage process, i.e., the 𝑆𝑤 bellow which the water could not be displaced anymore due 

to the rock-fluid interactions. In the same way, 𝑆𝑜𝑟 is the minimum remainder oil 

saturation after a complete imbibition processes (ERTEKIN; ABOU-KASSEM; KING, 

2001). 

Besides, 𝜇𝛼 is the viscosity of the phase 𝛼, i.e., the measure of the resistance of 

the fluid to the flow. This property relates the shear stress applied to a fluid and the 

gradient of the velocity acquired by it as result of the load (FOX; PRITCHARD; 

MCDONALD, 2010). 

Considering the fluid phases as continuous medium, in which any property of it 

can be defined in any point, if 𝑚𝛼 and 𝑉𝛼 are, respectively, the mass and the volume of a 

phase 𝛼, the specific mass (or density, 𝜌𝛼) of it is defined as (FOX; PRITCHARD; 

MCDONALD, 2010): 

 

 𝜌𝛼 = lim
𝛿𝑉𝛼→𝑉𝛼

𝑟

𝛿𝑚𝛼

𝛿𝑉𝛼
 (2.9) 
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where 𝑉𝛼
𝑟 is the representative elementary volume above which the density becomes 

stable, i.e., an average defined value can be deterministically determined. However, if the 

fluid phase is compressible, its density also may vary as function of pressure. In this 

context, we define the phase compressibility as: 

 

 𝑐𝑓𝛼 =
1

𝜌𝛼

𝜕𝜌𝛼
𝜕𝑝

 (2.10) 

 

2.3 GOVERNING EQUATIONS 

The equations used to model the immiscible two-phase flow (oil and water) in 

heterogeneous and anisotropic porous media are presented here. Considering a phase 𝛼, 

the mass conservation law is defined, in a 3-D domain Ω𝑚 (representing the reservoir 

rock), as following: 

 

 
∂

∂𝑡
(𝜙𝜌𝛼𝑆𝛼) + ∇ ∙ (𝜌𝛼𝑣 𝛼) = 𝜌

𝛼
𝑞
𝛼
 (2.11) 

 

in which 𝑣 𝛼 is the phase velocity and 𝑞𝛼 is the source or sink term of the phase. The fluid 

flow also obeys the Darcy's law (see assumption A5) which is an empirical law proposed 

by Henry Darcy to describe the displacement of a fluid through a porous media (DARCY, 

1856). Despite being an empiric law, later studies led to a general form of the Darcy’s 

law for the laminar flow of a phase 𝛼 in presence of other phases (BEAR, 1972; 

PEACEMAN, 1977; EWING, 1983), which is largely used in reservoir simulation and is 

defined as following: 

 

 𝑣 𝛼 = −𝜆𝛼𝚱(∇𝑝𝛼 − 𝜌𝛼 ℊ⃗⃗ ) (2.12) 

 

in which ℊ⃗⃗ = ℊ ∇𝑧 with ℊ being the gravity acceleration modulus and 𝑧 being the depth 

of the point where 𝑣 𝛼 is calculated. Beyond this, 𝑝𝛼 is the phase pressure, with 𝛼 = 𝑜, 𝑤. 

In this work, according to assumption A4, the fluid pressure is 𝑝 = 𝑝𝑜 = 𝑝𝑤. 
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Therefore, the equation describing the flow of a phase 𝛼 in a porous media is the 

combination of Eq. (2.11) and Eq. (2.12), that can be summarized as: 

 

 
∂

∂𝑡
(𝜙𝜌𝛼𝑆𝛼) − ∇ ∙ [𝜌𝛼𝜆𝛼𝚱(∇𝑝𝛼 − 𝜌𝛼 ℊ⃗⃗ )] = 𝜌

𝛼
𝑞
𝛼
 (2.13) 

 

Thus, Eq. (2.13) written for both phases (oil and water) together with Eq. (2.4) 

and with the adequate initial and boundary conditions (still to be presented) compose the 

mathematical model for the phenomenon of interest. It is a coupled scheme (ERTEKIN; 

ABOU-KASSEM; KING, 2001; FANCHI, 2006), that is appropriate to the study of 

compressible flow. 

In case of considering incompressible flow, the restriction given in Eq. (2.4) and 

summing Eq. (2.11) written for both phases (oil and water), we have: 

 

 ∇ ∙ (𝑣 𝑜 + 𝑣 𝑤) = 𝑞𝑜 + 𝑞𝑤 (2.14) 

 

which can be used to find the solution only for pressure in segregate schemes 

(PEACEMAN, 1977). In this context, the Eq. (2.11) could be used to update the saturation 

field of the phase 𝛼 in the following form: 

 

 𝜙
∂𝑆𝛼
∂𝑡

+ ∇ ∙ 𝑣 𝛼 = 𝑞
𝛼
 (2.15) 

 

If there are fractures within Ω𝑚 (see Figure 1), it is necessary to consider, in the 

mathematical model, the phase flux between it and a domain Ω𝑓𝑘 representing the 𝑘-th of 

these 2-D fractures within Ω𝑚. Thus, the Eq. (2.11) becomes: 

 

 
∂

∂𝑡
(𝜙𝜌𝛼𝑆𝛼)𝑚 + ∇ ∙ (𝜌𝛼𝑣 𝛼)𝑚 = (𝜌𝛼𝑞𝛼)𝑚 + ∑ (𝜌𝛼𝜑𝛼)𝑚,𝑓𝑘

𝓃𝑓𝑟𝑎𝑐

𝑘=1

 (2.16) 

 

in which 𝓃𝑓𝑟𝑎𝑐 is the number of fractures within Ω𝑚 and (𝜌𝛼𝜑𝛼)𝑚,𝑓𝑘 is the phase flux 

between Ω𝑚 and Ω𝑓𝑘 defined accordingly to the work of Hajibeygi, Karvounis and Jenny 

(2011). Similarly, considering a domain Ω𝑓𝑘, for phase 𝛼, we can write: 
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∂

∂𝑡
(𝜙𝜌𝛼𝑆𝛼)𝑓𝑘 + ∇ ∙ (𝜌𝛼𝑣 𝛼)𝑓𝑘

= (𝜌𝛼𝑞𝛼)𝑓𝑘 + (𝜌𝛼𝜑𝛼)𝑓𝑘,𝑚 + ∑ (𝜌𝛼𝜑𝛼)𝑓𝑘,𝑓𝑗; 𝑘≠𝑗

𝑛𝑓𝑟𝑎𝑐

𝑗=1

 

(2.17) 

 

in which (𝜌𝛼𝜑𝛼)𝑓𝑘,𝑚 and (𝜌𝛼𝜑𝛼)𝑓𝑘,𝑓𝑗 are defined analogously to (𝜌𝛼𝜑𝛼)𝑚,𝑓𝑘. 

2.4 INITIAL AND BOUNDARY CONDITIONS 

In order to obtain a complete description of the problem, it is necessary to define 

appropriate auxiliary initial and boundary conditions. In this case, considering Ω𝑚, its 

contour Γ𝑚 is defined as: 

 

 Γ𝑚 = Γ𝑚
𝐷 ∪ Γ𝑚

𝑁 ∪ Γ𝑚
𝑃 ∪ Γ𝑚

𝐼  (2.18) 

 

where Γ𝑚
𝐷 and Γ𝑚

𝑁 represent the boundaries with prescribed pressures (Dirichlet boundary 

conditions), and prescribed fluxes (Neumann boundary conditions), respectively, and Γ𝑚
𝑃  

and Γ𝑚
𝐼  represent the production and injection wells, respectively. Therefore, these 

auxiliary conditions are typically given by (AZIZ; SETTARE, 1979; CONTRERAS et 

al., 2016): 

 

 

𝑝(𝑥 , 𝑡) = 𝑔𝐷 𝑜𝑛 Γ𝑚
𝐷 × [0, 𝑡]

𝑣 ∙ 𝑛⃗ = 𝑔𝑁 𝑜𝑛 Γ𝑚
𝑁 × [0, 𝑡]

𝑆𝑤(𝑥 , 𝑡) = 𝑆𝑤̅ 𝑜𝑛 Γ𝑚
𝐼 × [0, 𝑡]

𝑆𝑤(𝑥 , 0) = 𝑆𝑤̅
0 𝑜𝑛 Ω𝑚

 (2.19) 

 

where 𝑡 is the time variable, 𝑔𝐷 is a prescribed scalar function for pressure and 𝑔𝑁 is a 

prescribed scalar function for flux. Moreover, 𝑛⃗  is the outward unitary normal vector to 

the control surface, 𝑣 = 𝑣 𝑤 + 𝑣 𝑜 is the total flow velocity, 𝑆𝑤̅ is the prescribed water 

saturation on injection well and 𝑆𝑤̅
0  is the initial water saturation distribution throughout 

the reservoir. Besides, pressure or flux can be prescribed in the wells as: 
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𝑝(𝑥 , 𝑡) = 𝑔𝒲,1 𝑜𝑛 Γ𝑚
𝒲 × [0, 𝑡]

∫ 𝑣 ∙ 𝑛⃗ 
Γ𝒲

𝜕Γ𝒲 = 𝑔𝒲,2 𝑜𝑛 Γ𝑚
𝒲 × [0, 𝑡]

     𝑤𝑖𝑡ℎ 𝒲 = 𝐼, 𝑃 (2.20) 

 

where 𝑔𝒲,1 and 𝑔𝒲,2 are prescribed scalar functions for pressure and flux, respectively. 

In case of Eq. (2.14), the conditions for saturation are not applicable. Moreover, all the 

fractures are considered to be completely contained in Ω𝑚, so there are not any boundary 

conditions pertaining to them. The initial water saturation throughout the fractures 

follows the same spatial distribution given by 𝑆𝑤̅
0 . 

 

Figure 1 – 3-D domain containing 2-D fractures. 

 

Source: The author (2023).

Ω𝑓1 

Ω𝑓2 

Ω𝑓3 

Ω𝑚 
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3 NUMERICAL FORMULATION 

It is usually very hard (even impossible) to obtain analytical solutions for the 

system of equations risen from the mathematical model presented in the previous chapter, 

this is the reason why it is necessary to use numerical formulations to find the solutions 

for this type of problems (CHEN; HUAN; MA, 2006). This section presents some 

numerical strategies used here for this purpose. 

3.1 GOVERNING EQUATIONS 

In order to obtain the finite volume discretization of Eq. (2.16), it is necessary to 

integrate it on Ω𝑚: 

 

∫
∂

∂𝑡
(𝜙𝜌𝛼𝑆𝛼)

Ω𝑚

𝜕Ω𝑚 +∫ ∇ ∙ (𝜌𝛼𝑣 𝛼)
Ω𝑚

𝜕Ω𝑚

= ∫ 𝜌
𝛼
𝑞
𝛼

Ω𝑚

𝜕Ω𝑚 + ∑ ∫ (𝜌𝛼𝜑𝛼)𝑚,𝑓𝑘
Ω𝑚

𝜕Ω𝑚

𝓃𝑓𝑟𝑎𝑐

𝑘=1

 

(3.1) 

 

Considering that Ω𝑚 is discretized by 𝓃𝑡𝑒𝑡𝑟𝑎 tetrahedral control volumes (CV) 

and that Ω𝑓𝑘 is discretized by 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘  polygonal CV, we can rewrite Eq. (3.1) as: 

 

∑ ∫
∂

∂𝑡
(𝜙𝜌𝛼𝑆𝛼)

Ω𝑡̂

𝜕Ω𝑡̂

𝓃𝑡𝑒𝑡𝑟𝑎

𝑡=1

+ ∑ ∫ ∇ ∙ (𝜌𝛼𝑣 𝛼)
Ω𝑡̂

𝜕Ω𝑡̂

𝓃𝑡𝑒𝑡𝑟𝑎

𝑡=1

= ∑ ∫ 𝜌
𝛼
𝑞
𝛼

Ω𝑡̂

𝜕Ω𝑡̂

𝓃𝑡𝑒𝑡𝑟𝑎

𝑡=1

+ ∑ ∑ ∑ ∫ (𝜌𝛼𝜑𝛼)𝑡̂,𝑘̌𝑖
𝜏+1

Ω𝑡̂

𝜕Ω𝑡̂

 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

𝓃𝑡𝑒𝑡𝑟𝑎

𝑡=1

 

(3.2) 

 

in which 𝑡̂ is the 𝑡-th tetrahedral CV discretizing Ω𝑚, Ω𝑡̂ is the volume of 𝑡̂ and 𝑘̌𝑖 is the 

𝑖-th polygonal CV discretizing Ω𝑓𝑘. Thus, considering just 𝑡̂, we have: 
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∫
∂

∂𝑡
(𝜙𝜌𝛼𝑆𝛼)

Ω𝑡̂

𝜕Ω𝑡̂ +∫ ∇ ∙ (𝜌𝛼𝑣 𝛼)
Ω𝑡̂

𝜕Ω𝑡̂

= ∫ 𝜌
𝛼
𝑞
𝛼

Ω𝑡̂

𝜕Ω𝑡̂ + ∑ ∑ ∫ (𝜌𝛼𝜑𝛼)𝑡̂,𝑘̌𝑖
𝜏+1

Ω𝑡̂

𝜕Ω𝑡̂

 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

 

(3.3) 

 

Discretizing the derivative in the first term of Eq. (3.3) using the backward Euler 

method, applying the Gauss Divergence Theorem on its second term and considering an 

implicit scheme (CHEN; HUAN; MA, 2006), we have: 

 

∫ 𝜙
(𝜌𝛼𝑆𝛼)

𝜏+1 − (𝜌𝛼𝑆𝛼)
𝜏

∆𝑡Ω𝑡̂

𝜕Ω𝑡̂ +∫ [𝜌𝛼(𝑣 𝛼 ∙ 𝑛⃗ )]
𝜏+1

Γ𝑡̂

𝜕Γ𝑡̂

= ∫ (𝜌𝛼𝑞𝛼)
𝜏+1

Ω𝑡̂

𝜕Ω𝑡̂ + ∑ ∑ ∫ (𝜌𝛼𝜑𝛼)𝑡̂,𝑘̌𝑖
𝜏+1

Ω𝑡̂

𝜕Ω𝑡̂

 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

 

(3.4) 

 

in which Γ𝑡̂ is the set of boundary surfaces of 𝑡̂, 𝜏 is the time step index and 𝑛⃗  is the 

outward normal vector of Γ𝑡̂. Applying the mean value theorem on the first integral term 

on the left-hand side and on the first integral term in right-hand side, we have: 

 

𝜙𝑡̂Ω𝑡̂
(𝜌𝛼𝑆𝛼)𝑡̂

𝜏+1 − (𝜌𝛼𝑆𝛼)𝑡̂
𝜏

∆𝑡
+ ∫ [𝜌𝛼(𝑣 𝛼 ∙ 𝑛⃗ )]

𝜏+1

Γ𝑡̂

𝜕Γ𝑡̂

= Ω𝑡̂(𝜌𝛼𝑞𝛼)𝑡̂
𝜏+1 + ∑ ∑ ∫ (𝜌𝛼𝜑𝛼)𝑡̂,𝑘̌𝑖

𝜏+1

Ω𝑡̂

𝜕Ω𝑡̂

 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

 

(3.5) 

 

in which 𝜙𝑡̂, 𝜌𝛼, 𝑆𝛼 and 𝑞𝛼 are taken as the mean value, respectively, of rock porosity 

and of density, saturation and source term of phase 𝛼, at Ω𝑡̂. Following the work of Ţene 

et al. (2017), we can consider that: 

 

∫ (𝜌𝛼𝜑𝛼)𝑡̂,𝑘̌𝑖
Ω𝑡̂

𝜕Ω𝑡̂ = (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖 = −𝜌𝛼𝜆𝛼𝔗𝑡̂,𝑘̌𝑖(𝑝𝑘̌𝑖 − 𝑝𝑡̂) (3.6) 
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in which 𝔗𝑡̂,𝑘̌𝑖 is the transmissibility term between 𝑡̂ and 𝑘̌𝑖 to be defined in chapter 4. 

Moreover, (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖 is the notation used from now for the flux between 𝑡̂ and 𝑘̌𝑖 

integrated on Ω𝑡̂. Then, we have: 

 

𝜙𝑡̂Ω𝑡̂
(𝜌𝛼𝑆𝛼)𝑡̂

𝜏+1 − (𝜌𝛼𝑆𝛼)𝑡̂
𝜏

∆𝑡
+ ∫ [𝜌𝛼(𝑣 𝛼 ∙ 𝑛⃗ )]

𝜏+1

Γ𝑡̂

𝜕Γ𝑡̂

= Ω𝑡̂(𝜌𝛼𝑞𝛼)𝑡̂
𝜏+1 + ∑ ∑ (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖

𝜏+1

 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

 

(3.7) 

 

Performing the same development from Eq. (2.17) and considering that 

∫ (𝜌𝛼𝜑𝛼)𝑡̂,𝑘̌𝑖Ω𝑡̂
𝜕Ω𝑡̂ = −∫ (𝜌𝛼𝜑𝛼)𝑘̌𝑖,𝑡̂Ω𝑘̌𝑖

𝜕Ω𝑘̌𝑖 (HOSSEINIMEHR et al., 2022), in which 

Ω𝑘̌𝑖 is the area of the polygon 𝑘̌𝑖, we can also write a similar expression for 𝑘̌𝑖: 

 

𝜙𝑘̌𝑖Ω𝑘̌𝑖

(𝜌𝛼𝑆𝛼)𝑘̌𝑖
𝜏+1 − (𝜌𝛼𝑆𝛼)𝑘̌𝑖

𝜏

∆𝑡
+ ∫ [𝜌𝛼(𝑣 𝛼 ∙ 𝑛⃗ )]

𝜏+1

Γ𝑘̌𝑖

𝜕Γ𝑘̌𝑖

= Ω𝑖̌𝑗(𝜌𝛼𝑞𝛼)𝑘̌𝑖
𝜏+1 − ∑ (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖

𝜏+1

𝓃𝑡𝑒𝑡𝑟𝑎

𝑡=1

+ ∑ ∑ (𝜌𝛼𝓆𝛼)𝑘̌𝑖,ℎ̌𝑦; 𝑘≠ℎ
𝜏+1

 𝓃𝑝𝑜𝑙𝑦𝑔
ℎ

𝑦=1

𝓃𝑓𝑟𝑎𝑐

ℎ=1

 

(3.8) 

 

in which (𝜌𝛼𝓆𝛼)𝑘̌𝑖,ℎ̌𝑦 is defined analogously to (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖 (see chapter 4). Remembering 

that 𝑡̂ is a tetrahedral cell and that 𝑘̌𝑖 is a polygonal cell, and using again the mean value 

theorem to evaluate the integral terms of Eq. (3.7) and Eq. (3.8) on each face (or edge) of 

𝑡̂ and 𝑘̌𝑖, these equations can be rewritten as: 

 

𝜙𝑡̂Ω𝑡̂
(𝜌𝛼𝑆𝛼)𝑡̂

𝜏+1 − (𝜌𝛼𝑆𝛼)𝑡̂
𝜏

∆𝑡
+ ∑[𝜌𝛼(𝑣 𝛼 ∙ 𝑁⃗⃗ 𝐹)]

𝜏+1

𝐹∈Γ𝑡̂

= Ω𝑡̂(𝜌𝛼𝑞𝛼)𝑡̂
𝜏+1 + ∑ ∑ (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖

𝜏+1

 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

 

(3.9) 

 

in which 𝑁⃗⃗ 𝐹 is the outward area normal vector of the face 𝐹̅ and: 
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𝜙𝑘̌𝑖Ω𝑘̌𝑖

(𝜌𝛼𝑆𝛼)𝑘̌𝑖
𝜏+1 − (𝜌𝛼𝑆𝛼)𝑘̌𝑖

𝜏

∆𝑡
+ ∑ [𝜌𝛼(𝑣 𝛼 ∙ 𝑁⃗⃗ 𝐸̇)]

𝜏+1

𝐸̇∈Γ𝑘̌𝑖

= Ω𝑘̌𝑖(𝜌𝛼𝑞𝛼)𝑘̌𝑖
𝜏+1 − ∑ (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖

𝜏+1

𝓃𝑡𝑒𝑡𝑟𝑎

𝑡=1

+ ∑ ∑ (𝜌𝛼𝓆𝛼)𝑘̌𝑖,ℎ̌𝑦; 𝑘≠ℎ
𝜏+1

 𝓃𝑝𝑜𝑙𝑦𝑔
ℎ

𝑦=1

𝓃𝑓𝑟𝑎𝑐

ℎ=1

 

(3.10) 

 

in which 𝑁⃗⃗ 𝐸̇ is the length normal vector of the edge 𝐸̇, outward to 𝑘̌𝑖. The second term 

on the left-hand side of Eq. (3.9), referred from now as pressure terms (because of the 

velocity definition according Darcy’s Law), must be determined. The strategy used here 

with this objective is a finite volume scheme using a multipoint flux approximation with 

a diamond stencil (MPFA-D), that will be described in section 3.2. In the same way, the 

second term on the left-hand side of Eq. (3.10) also need to be determined, as well as the 

second and the third terms on the right-hand side of the same equation, and the second 

term on the right-hand side of Eq. (3.9). 

As mentioned, the Eq. (3.9) and Eq. (3.10) represent an implicit scheme. In this 

context, aiming to get a stable formulation, we take the value of 𝜌𝛼 from the CV upwind 

to the flow (CHEN; HUAN; MA, 2006). Then, in order to get the solution for the 

numerical scheme, we write Eq. (3.9) and Eq. (3.10) in residual form and obtain: 

 

(𝑟𝛼)𝑡̂
𝜏+1 = Ω𝑡̂(𝜌𝛼𝑞𝛼)𝑡̂

𝜏+1 − 𝜙𝑡̂Ω𝑡̂
(𝜌𝛼𝑆𝛼)𝑡̂

𝜏+1 − (𝜌𝛼𝑆𝛼)𝑡̂
𝜏

∆𝑡
− ∑[𝜌𝛼(𝑣 𝛼 ∙ 𝑁⃗⃗ 𝐹)]

𝜏+1

𝐹∈Γ𝑡̂

+ ∑ ∑ (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖
𝜏+1

 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

 

(3.11) 

 

and: 
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(𝑟𝛼)𝑘̌𝑖
𝜏+1 = Ω𝑘̌𝑖(𝜌𝛼𝑞𝛼)𝑘̌𝑖

𝜏+1 − 𝜙𝑘̌𝑖Ω𝑘̌𝑖

(𝜌𝛼𝑆𝛼)𝑘̌𝑖
𝜏+1 − (𝜌𝛼𝑆𝛼)𝑘̌𝑖

𝜏

∆𝑡

− ∑ [𝜌𝛼(𝑣 𝛼 ∙ 𝑁⃗⃗ 𝐸̇)]
𝜏+1

𝐸̇∈Γ𝑘̌𝑖

− ∑ (𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖
𝜏+1

𝓃𝑡𝑒𝑡𝑟𝑎

𝑡=1

+ ∑ ∑ (𝜌𝛼𝓆𝛼)𝑘̌𝑖,ℎ̌𝑦; 𝑘≠ℎ
𝜏+1

 𝓃𝑝𝑜𝑙𝑦𝑔
ℎ

𝑦=1

𝓃𝑓𝑟𝑎𝑐

ℎ=1

 

(3.12) 

 

This way, writing the Eq. (3.11) and Eq. (3.12) for each CV (𝑡̂ and 𝑘̌𝑖) of the 

computational mesh at each time step (𝜏), we get a non-linear system of equations that 

can be linearized and solved by the Newton-Raphson (NR) method (CHEN; HUAN; MA, 

2006). Therefore, for each NR iteration (𝜐) we can write: 

 

 𝑟𝛼
𝜐+1 ≈ 𝑟𝛼

𝜐 + (
𝜕𝑟𝛼
𝜕𝑝
)
𝜐

𝛿𝑝𝜐+1 + (
𝜕𝑟𝛼
𝜕𝑆
)
𝜐

𝛿𝑆𝜐+1 (3.13) 

 

in which 𝑟𝛼 = [𝑟𝛼,𝑚 𝑟𝛼,𝑓]𝑇 is the vector of the residuals for each degree of freedom in 

the domains Ω𝑚 and Ω𝑓𝑘 (with 𝑘 = 1 to 𝓃𝑓𝑟𝑎𝑐) and, similarly, 𝛿𝑝 = [𝛿𝑝𝑚 𝛿𝑝𝑓]𝑇 and 

𝛿𝑆 = [𝛿𝑆𝑚 𝛿𝑆𝑓]𝑇. Therefore, considering both phases (oil and water), we can write: 

 

 [

𝑟𝑤,𝑚
𝑟𝑤,𝑓
𝑟𝑜,𝑚
𝑟𝑜,𝑓

]

𝜐

+ 𝓙𝜐

[
 
 
 
𝛿𝑝𝑚
𝛿𝑝𝑓
𝛿𝑆𝑚
𝛿𝑆𝑓 ]

 
 
 
𝜐+1

= 0 →

[
 
 
 
𝛿𝑝𝑚
𝛿𝑝𝑓
𝛿𝑆𝑚
𝛿𝑆𝑓 ]

 
 
 
𝜐+1

= −{𝓙𝜐}−1 [

𝑟𝑤,𝑚
𝑟𝑤,𝑓
𝑟𝑜,𝑚
𝑟𝑜,𝑓

]

𝜐

 (3.14) 

 

in which the Jacobian matrix (𝓙) is defined as: 

 

 𝓙 =

[
 
 
 
 
 [
𝓙𝑤𝑝
𝑚𝑚 𝓙𝑤𝑝

𝑚𝑓

𝓙𝑤𝑝
𝑓𝑚

𝓙𝑤𝑝
𝑓𝑓
] [

𝓙𝑤𝑆
𝑚𝑚 𝓙𝑤𝑆

𝑚𝑓

𝓙𝑤𝑆
𝑓𝑚

𝓙𝑤𝑆
𝑓𝑓
]

[
𝓙𝑜𝑝
𝑚𝑚 𝓙𝑜𝑝

𝑚𝑓

𝓙𝑜𝑝
𝑓𝑚

𝓙𝑜𝑝
𝑓𝑓 ] [

𝓙𝑜𝑆
𝑚𝑚 𝓙𝑜𝑆

𝑚𝑓

𝓙𝑜𝑆
𝑓𝑚

𝓙𝑜𝑆
𝑓𝑓 ]

]
 
 
 
 
 

 (3.15) 

 

in which: 
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 𝓙𝛼𝑝
𝛽𝛾
=
𝜕𝑟𝛼,𝛽

𝜕𝑝𝛾
  with  𝛼 = 𝑤, 𝑜  and  𝛽, 𝛾 = 𝑚, 𝑓 (3.16) 

 

The convergence criteria for the iterative process is defined as 

(HOSSEINIMEHR et al., 2022): 

 

 

(
‖𝑟𝑤

𝜐+1‖2
‖𝑟𝑤

0‖2
< 𝜖𝑤 or 

‖𝑟𝑤
𝜐+1‖2

‖𝑅𝐻𝑆𝑤‖2
< 𝜖𝑤) and(

‖𝑟𝑜
𝜐+1‖2
‖𝑟𝑜

0‖2
< 𝜖𝑜 or 

‖𝑟𝑜
𝜐+1‖2

‖𝑅𝐻𝑆𝑜‖2

< 𝜖𝑜)and(
‖𝛿𝑝‖2
‖𝑝‖2

< 𝜖𝑝 and 
‖𝛿𝑆‖2
‖𝑆‖2

< 𝜖𝑆) 

(3.17) 

 

in which 𝜖𝑤, 𝜖𝑜, 𝜖𝑝 and 𝜖𝑆 are tolerances defined by the user, and ‖𝑆‖2 is the L-2 norm 

of saturation vector, what is analogous for the other terms. Moreover, all the prescribed 

terms associated to phase 𝛼 will comprise its “right-hand side” (𝑅𝐻𝑆𝛼). In cases in which 

there are not Dirichlet boundary conditions or Neumann boundary conditions with values 

different than zero, 𝑅𝐻𝑆𝛼 = 𝜌𝛼𝑞𝛼. 

3.2 PRESSURE TERM DISCRETIZATION FOR TETRAHEDRAL CELLS 

In this section we present the development of the MPFA-D expression used to 

discretize the second terms in Eq. (3.5) and Eq. (3.7), considering a 3-D domain that is 

discretized using a tetrahedral mesh. The flux expression was developed as stated by Lira 

Filho et al. (2021), but with different strategies for the interpolation of the vertex 

unknowns. Besides, in this section we also present a non-linear defect correction strategy 

that was developed to avoid problems with DMP violation that can happen when using 

linear MPFA formulations, particularly for applications involving highly distorted 

meshes and strongly anisotropic permeability tensors. 

3.2.1 Finite volume discretization 

Consider a tetrahedral control volume 𝐿̂, formed by vertices 𝐼, 𝐽, 𝐾 and 𝑄 (see 

Figure 2), to be a primary cell of the tetrahedral mesh used to discretize a domain Ω. 𝑆 𝐼
𝐿̂ 

(see Figure 2) is the outward normal area vector of the opposite face to the vertex 𝐼 in the 

tetrahedron 𝐿̂ (analogously for the other vertices). Considering the second term on the 

left-hand side of Eq. (3.5), we have: 
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 ∫ 𝜌𝛼(𝑣 𝛼 ∙ 𝑛⃗ )
Γ𝐿̂

𝜕Γ𝐿̂ =∑𝜌𝛼(𝑣 𝛼 ∙ 𝑆 𝐼
𝐿̂)

𝐼∈𝐿̂

 (3.18) 

 

The flux expression 𝑣 𝛼 ∙ 𝑆 𝐼
𝐿̂ is what we need to determine to define our 

formulation. 

3.2.2 Gradient expression under the linearity-preserving criterion 

Applying the Gauss’s Divergence Theorem to this tetrahedron and considering 

a scalar field 𝑢, we have (ARFKEN; WEBER; HARRIS, 2013): 

 

 ∫ ∇𝑢
Ω𝐿̂

𝜕Ω𝐿̂ = ∫ 𝑢
Γ𝐿̂

𝜕Γ 𝐿̂ (3.19) 

 

Integrating, using the Mean Value Theorem, and considering that 𝑢𝐼 is the mean 

value of 𝑢 at 𝐼,̅ the opposite face to the vertex 𝐼 in this tetrahedron (analogously to the 

vertices 𝐽, 𝐾 and 𝑄), we can write: 

 

 ∇𝑢 =
1

Ω𝐿̂
(𝑢𝐼𝑆 𝐼

𝐿̂ + 𝑢𝐽𝑆 𝐽
𝐿̂ + 𝑢𝐾𝑆 𝐾

𝐿̂ + 𝑢𝑄𝑆 𝑄
𝐿̂) (3.20) 

 

Using Taylor expansion for multivariable functions (DUISTERMAAT; KOLK, 

2010) to find a second order approximation for 𝑢𝐼, 𝑢𝐽, 𝑢𝐾 and 𝑢𝑄 over the control surfaces 

of the tetrahedral control volume, we can write:  

 

 

∇𝑢 =
1

Ω𝐿̂
[(
𝑢𝐽 + 𝑢𝐾 + 𝑢𝑄

3
) 𝑆 𝐼

𝐿̂ + (
𝑢𝐼 + 𝑢𝐾 + 𝑢𝑄

3
) 𝑆 𝐽

𝐿̂ + (
𝑢𝐼 + 𝑢𝐽 + 𝑢𝑄

3
) 𝑆 𝐾

𝐿̂

+ (
𝑢𝐼 + 𝑢𝐽 + 𝑢𝐾

3
) 𝑆 𝑄

𝐿̂] 

(3.21) 

 

However, Eq. (3.21) can be rearranged, as: 
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∇𝑢 =

1

3Ω𝐿̂
[(𝑆 𝐼

𝐿̂ + 𝑆 𝐽
𝐿̂ + 𝑆 𝐾

𝐿̂)𝑢𝑄 + (𝑆 𝐼
𝐿̂ + 𝑆 𝐽

𝐿̂ + 𝑆 𝑄
𝐿̂)𝑢𝐾 + (𝑆 𝐼

𝐿̂ + 𝑆 𝑄
𝐿̂ + 𝑆 𝐾

𝐿̂)𝑢𝐽

+ (𝑆 𝑄
𝐿̂ + 𝑆 𝐽

𝐿̂ + 𝑆 𝐾
𝐿̂)𝑢𝐼] 

(3.22) 

 

But, for the considered tetrahedron, the following identity holds: 

 

 𝑆 𝐼
𝐿̂ + 𝑆 𝐽

𝐿̂ + 𝑆 𝐾
𝐿̂ + 𝑆 𝑄

𝐿̂ = 0 (3.23) 

 

Therefore, we can write the expression for the mean value of the gradient within 

a tetrahedral control volume, as: 

 

 ∇𝑢 = −
1

3Ω𝐿̂
(𝑢𝐼𝑆 𝐼

𝐿̂ + 𝑢𝐽𝑆 𝐽
𝐿̂ + 𝑢𝐾𝑆 𝐾

𝐿̂ + 𝑢𝑄𝑆 𝑄
𝐿̂) (3.24) 

 

3.2.3 MPFA-D inner face unique flux expression for a 3-D tetrahedral mesh 

Consider the configuration shown in Figure 3, with two tetrahedrons (𝐿̂ and 𝑅̂) 

in a 3-D mesh sharing the face 𝐹̅ = 𝐼𝐽𝐾. Additionally, consider the auxiliary tetrahedra 

ℒ̂ and ℛ̂ (also shown in Figure 3). Then, writing the scalar variable gradient expression, 

as shown in Eq. (3.24), to the tetrahedron ℒ̂ = 𝐿̂𝐼𝐽𝐾, we have: 

 

 ∇𝑢 = −
1

3Ωℒ̂
(𝑢𝐼𝑆 𝐼

ℒ̂ + 𝑢𝐽𝑆 𝐽
ℒ̂ + 𝑢𝐾𝑆 𝐾

ℒ̂ + 𝑢𝐿̂𝑆 𝐿̂
ℒ̂) (3.25) 

 

The expression in Eq. (3.25) can be replaced Eq. (2.12), but first it is convenient 

to rewrite this last equation as: 

 

 𝑣 𝛼 = 𝑣 𝛼
𝑝 + 𝑣 𝛼

𝑔
 (3.26) 

 

in which 𝑣 𝛼
𝑝 = −𝜆𝛼𝚱∇𝑝 (pressure term) and 𝑣 𝛼

𝑔
= 𝜆𝛼𝜌𝛼ℊ𝚱∇𝑧 (gravitational term), 

according to Eq. (2.12). All the following development presented for 𝑣 𝛼
𝑝
 is analogous for 

𝑣 𝛼
𝑔

. Thus, 𝑣 𝛼
𝑝
 can be written for the tetrahedron ℒ̂, based in Eq. (3.25) and considering 

that pressure (𝑝) is the scalar variable we are looking at, as: 
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 𝑣 𝛼
𝑝 =

𝜆𝛼
3Ωℒ̂

𝚱𝐿̂ [(𝑝𝐼𝑆 𝐼
ℒ̂ + 𝑝𝐽𝑆 𝐽

ℒ̂ + 𝑝𝐾𝑆 𝐾
ℒ̂ + 𝑝𝐿̂𝑆 𝐿̂

ℒ̂)] (3.27) 

 

where 𝚱𝐿̂ is the permeability (diffusion) tensor associated to the tetrahedron 𝐿̂ (note that 

ℒ̂ ⊂ 𝐿̂). Note that 𝜆𝛼 (and 𝜌𝛼 in case of 𝑣 𝛼
𝑔

) are evaluated on the face 𝐹̅ shared by 𝐿̂ and 

𝑅̂. Then, the expression corresponding to the flux through the face 𝐹̅, to be applied in Eq. 

(3.18), is: 

 

 𝑣 𝛼
𝑝 ∙ 𝑆 𝐿̂

ℒ̂ =
𝜆𝛼
𝐹̅

3Ωℒ̂
𝚱𝐿̂ (𝑝𝐼𝑆 𝐼

ℒ̂ + 𝑝𝐽𝑆 𝐽
ℒ̂ + 𝑝𝐾𝑆 𝐾

ℒ̂ + 𝑝𝐿̂𝑆 𝐿̂
ℒ̂) ∙ 𝑆 𝐿̂

ℒ̂ (3.28) 

 

Figure 2 – Tetrahedral control volume 𝐿̂. 

 

Source: The author (2023). 

 

In the same way, the flux trough that same face, with respect to the tetrahedron 

ℛ̂ = 𝐼𝐽𝐾𝑅̂ (see Figure 3) is: 

 

 𝑣 𝛼
𝑝 ∙ 𝑆 𝑅̂

ℛ̂ =
𝜆𝛼
𝐹̅

3Ωℛ̂
𝚱𝑅̂ (𝑝𝐼𝑆 𝐼

ℛ̂ + 𝑝𝐽𝑆 𝐽
ℛ̂ + 𝑝𝐾𝑆 𝐾

ℛ̂ + 𝑝𝑅̂𝑆 𝑅̂
ℛ̂) ∙ 𝑆 𝑅̂

ℛ̂ (3.29) 

 

Defining: 

 

𝐿̂ 

𝑄 

𝐾 

𝐼 

𝐽 

𝑆 𝑄
𝐿̂ 

𝑆 𝐾
𝐿̂  

𝑆 𝐽
𝐿̂ 

𝑆 𝐼
𝐿̂ 
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 𝑁⃗⃗ 𝐹 = 𝑆 𝐿̂
ℒ̂ = −𝑆 𝑅̂

ℛ̂ = (𝐽𝐼⃗⃗⃗  × 𝐽𝐾⃗⃗⃗⃗ ) 2⁄  (3.30) 

 

and then, according to Eq. (3.23), we have: 

 

 {
𝑆 𝐽
ℒ̂ = −𝑁⃗⃗ 𝐹 − 𝑆 𝐼

ℒ̂ − 𝑆 𝐾
ℒ̂

𝑆 𝐽
ℛ̂ = 𝑁⃗⃗ 𝐹 − 𝑆 𝐼

ℛ̂ − 𝑆 𝐾
ℛ̂

 (3.31) 

 

Figure 3 – Face 𝐼𝐽𝐾 shared by the tetrahedrons 𝐿̂ and 𝑅̂, highlighting ℒ̂ and ℛ̂. 

 

 

 

Source: The author (2023). 

 

Then, substituting Eq. (3.31) in Eqs. (3.28) and (3.29), we obtain: 

 

 𝑣 𝛼
𝑝 ∙ 𝑆 𝐿̂

ℒ̂ =
𝜆𝛼
𝐹

3Ωℒ̂
𝚱𝐿̂[𝑆 𝐼

ℒ̂(𝑝𝐼 − 𝑝𝐽) − 𝑁⃗⃗ 𝐹(𝑝𝐽 − 𝑝𝐿̂) + 𝑆 𝐾
ℒ̂(𝑝𝐾 − 𝑝𝐽)] ∙ 𝑁⃗⃗ 𝐹 (3.32) 

 

and: 

 

𝑣 𝛼
𝑝 ∙ 𝑆 𝑅̂

ℛ̂ = −
𝜆𝛼
𝐹̅

3Ωℛ̂
𝚱𝑅̂[𝑆 𝐼

ℛ̂(𝑝𝐼 − 𝑝𝐽) + 𝑁⃗⃗ 𝐹(𝑝𝐽 − 𝑝𝑅̂) + 𝑆 𝐾
ℛ̂(𝑝𝐾 − 𝑝𝐽)] ∙ 𝑁⃗⃗ 𝐹 (3.33) 

 

but: 

 

𝐿̂ 

𝐾 

𝐽 

𝐼 

𝑅̂ 

𝑄 

𝑀 
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 𝑆 𝐼
ℒ̂ =

𝐽𝐾⃗⃗⃗⃗ × 𝐽𝐿̂⃗⃗  ⃗

2
;  𝑆 𝐾

ℒ̂ =
𝐽𝐿̂⃗⃗  ⃗ × 𝐽𝐼⃗⃗⃗  

2
; 𝑆 𝐼

ℛ̂ =
𝐽𝑅̂⃗⃗⃗⃗ × 𝐽𝐾⃗⃗⃗⃗ 

2
;  𝑆 𝐾

ℛ̂ =
𝐽𝐼⃗⃗⃗ × 𝐽𝑅̂⃗⃗⃗⃗ 

2
  (3.34) 

 

then, substituting the expressions of Eq. (3.34) in Eqs. (3.32) and (3.33), and after some 

algebraic manipulation, we have: 

 

 
𝑣 𝛼
𝑝 ∙ 𝑆 𝐿̂

ℒ̂ =
𝜆𝛼
𝐹̅

6Ωℒ̂
𝚱𝐿̂ [(𝐽𝐿̂

⃗⃗  ⃗ × 𝐽𝐾⃗⃗⃗⃗ ) (𝑝𝐽 − 𝑝𝐼) − 2𝑁⃗⃗ (𝑝𝐽 − 𝑝𝐿̂)

+ (𝐽𝐿̂⃗⃗  ⃗ × 𝐽𝐼⃗⃗⃗  ) (𝑝𝐾 − 𝑝𝐽)] ∙ 𝑁⃗⃗ 𝐹 

(3.35) 

 

and: 

 

 
𝑣 𝛼
𝑝 ∙ 𝑆 𝑅̂

ℛ̂ =
𝜆𝛼
𝐹

6Ωℛ̂
𝚱𝑅̂ [(𝐽𝑅̂

⃗⃗⃗⃗ × 𝐽𝐾⃗⃗⃗⃗ ) (𝑝𝐽 − 𝑝𝐼) + 2𝑁⃗⃗ (𝑝𝑅̂ − 𝑝𝐽)

+ (𝐽𝑅̂⃗⃗⃗⃗ × 𝐽𝐼⃗⃗⃗  ) (𝑝𝐾 − 𝑝𝐽)] ∙ 𝑁⃗⃗ 𝐹̅ 

(3.36)  

 

But based on the quadruple product identity (WILLARD GIBBS; BIDWELL 

WILSON, 1901), using non coplanar basis and considering the already shown notation, 

we can write the following identities: 

 

 

{
 
 

 
 𝐽𝐿̂⃗⃗  ⃗ =

〈−𝜏 𝐹
𝐽𝐾, 𝐽𝐿̂⃗⃗  ⃗〉

2|𝑁⃗⃗ 𝐹|
2 𝐽𝐼⃗⃗⃗  +

〈𝜏 𝐹
𝐽𝐼 , 𝐽𝐿̂⃗⃗  ⃗〉

2|𝑁⃗⃗ 𝐹|
2 𝐽𝐾
⃗⃗⃗⃗ −

ℎ𝐿̂
𝐹

|𝑁⃗⃗ 𝐹|
𝑁⃗⃗ 𝐹

𝐽𝑅̂⃗⃗⃗⃗ =
〈−𝜏 𝐹

𝐽𝐾 , 𝐽𝑅̂⃗⃗⃗⃗ 〉

2|𝑁⃗⃗ 𝐹|
2 𝐽𝐼⃗⃗⃗  +

〈𝜏 𝐹
𝐽𝐼 , 𝐽𝑅̂⃗⃗⃗⃗ 〉

2|𝑁⃗⃗ 𝐹|
2 𝐽𝐾
⃗⃗⃗⃗ +

ℎ𝑅̂
𝐹

|𝑁⃗⃗ 𝐹|
𝑁⃗⃗ 𝐹

  (3.37) 

 

where 𝜏 𝐹
𝐽𝐾 = 𝑁⃗⃗ 𝐹 × 𝐽𝐾⃗⃗⃗⃗  and 𝜏 𝐹

𝐽𝐼 = 𝑁⃗⃗ 𝐹 × 𝐽𝐼⃗⃗⃗ . Moreover, ℎ𝐿̂
𝐹 is the distance (height) between 

the centroid of 𝐿̂ and the face 𝐹̅ (analogously to 𝑅̂). Then, substituting the expressions of 

Eq. (3.37) in Eqs. (3.35) and (3.36), we have: 
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𝑣 𝛼
𝑝 ∙ 𝑆 𝐿̂

ℒ̂ =
𝜆𝛼
𝐹̅

6Ωℒ̂
𝚱𝐿̂ [(

〈−𝜏 𝐹
𝐽𝐾
, 𝐽𝐿̂⃗⃗  ⃗〉

2|𝑁⃗⃗ 𝐹|
2 2𝑁⃗⃗ 𝐹 −

ℎ𝐿̂
𝐹

|𝑁⃗⃗ 𝐹|
𝜏 𝐹
𝐽𝐾) (𝑝𝐽 − 𝑝𝐼) − 2𝑁⃗⃗ 𝐹(𝑝𝐽 − 𝑝𝐿̂)

+ (−
〈𝜏 𝐹
𝐽𝐼 , 𝐽𝐿̂⃗⃗  ⃗〉

2|𝑁⃗⃗ 𝐹̅|
2 2𝑁⃗⃗

 
𝐹 −

ℎ𝐿̂
𝐹

|𝑁⃗⃗ 𝐹|
𝜏 𝐹
𝐽𝐼) (𝑝𝐾 − 𝑝𝐽)] ∙ 𝑁⃗⃗ 𝐹 

(3.38) 

 

and: 

 

𝑣 𝛼
𝑝 ∙ 𝑆 𝑅̂

ℛ̂ =
𝜆𝛼
𝐹̅

6Ωℛ̂
𝚱𝑅̂ [(

〈−𝜏 𝐹
𝐽𝐾, 𝐽𝑅̂⃗⃗⃗⃗ 〉

2|𝑁⃗⃗ 𝐹|
2 2𝑁⃗⃗ 𝐹 +

ℎ𝑅̂
𝐹

|𝑁⃗⃗ 𝐹|
𝜏 𝐹
𝐽𝐾) (𝑝𝐽 − 𝑝𝐼) + 2𝑁⃗⃗ 𝐹(𝑝𝑅̂ − 𝑝𝐽)

+ (−
〈𝜏 𝐹
𝐽𝐼 , 𝐽𝑅̂⃗⃗⃗⃗ 〉

2|𝑁⃗⃗ 𝐹|
2 2𝑁⃗⃗

 
𝐹 +

ℎ𝑅̂
𝐹

|𝑁⃗⃗ 𝐹|
𝜏 𝐹
𝐽𝐼) (𝑝𝐾 − 𝑝𝐽)] ∙ 𝑁⃗⃗ 𝐹 

(3.39) 

 

Manipulating these expressions, we obtain: 

 

𝑣 𝛼
𝑝 ∙ 𝑆 𝐿̂

ℒ̂ =
𝜆𝛼
𝐹̅

6Ωℒ̂
[(
〈𝜏 𝐹̅
𝐽𝐾, 𝐿̂𝐽⃗⃗  ⃗〉

|𝑁⃗⃗ 𝐹|
2 𝑁⃗⃗ 𝐹̅

𝑇𝚱𝐿̂𝑁⃗⃗ 𝐹 −
ℎ𝐿̂
𝐹

|𝑁⃗⃗ 𝐹|
𝑁⃗⃗ 𝐹
𝑇𝚱𝐿̂𝜏 𝐹

𝐽𝐾) (𝑝𝐽 − 𝑝𝐼)

− 2𝑁⃗⃗ 𝐹̅
𝑇𝚱𝐿̂𝑁⃗⃗ 𝐹(𝑝𝐽 − 𝑝𝐿̂)

+ (
〈𝜏 𝐹
𝐽𝐼 , 𝐿̂𝐽⃗⃗  ⃗〉

|𝑁⃗⃗ 𝐹|
2 𝑁⃗⃗ 𝐹̅

𝑇𝚱𝐿̂𝑁⃗⃗ 𝐹 −
ℎ𝐿̂
𝐹

|𝑁⃗⃗ 𝐹|
𝑁⃗⃗ 𝐹
𝑇𝚱𝐿̂𝜏 𝐹

𝐽𝐼) (𝑝𝐾 − 𝑝𝐽)] 

(3.40) 

 

and: 

 

𝑣 𝛼
𝑝 ∙ 𝑆 𝑅̂

ℛ̂ =
𝜆𝛼
𝐹

6Ωℛ̂
[(
〈𝜏 𝐹
𝐽𝐾
, 𝐽𝑅̂⃗⃗⃗⃗ 〉

|𝑁⃗⃗ 𝐹|
2 𝑁⃗⃗ 𝐹

𝑇𝚱𝑅̂𝑁⃗⃗ 𝐹 −
ℎ𝑅̂
𝐹

|𝑁⃗⃗ 𝐹|
𝑁⃗⃗ 𝐹̅
𝑇𝚱𝑅̂𝜏 𝐹̅

𝐽𝐾) (𝑝𝐼 − 𝑝𝐽)

+ 2𝑁⃗⃗ 𝐹
𝑇𝚱𝑅̂𝑁⃗⃗ 𝐹(𝑝𝑅̂ − 𝑝𝐽)

+ (
〈𝜏 𝐹
𝐽𝐼 , 𝐽𝑅̂⃗⃗⃗⃗ 〉

|𝑁⃗⃗ 𝐹|
2 𝑁⃗⃗ 𝐹

𝑇𝚱𝑅̂𝑁⃗⃗ 𝐹̅ −
ℎ𝑅̂
𝐹

|𝑁⃗⃗ 𝐹̅|
𝑁⃗⃗ 𝐹
𝑇𝚱𝑅̂𝜏 𝐹

𝐽𝐼) (𝑝𝐽 − 𝑝𝐾)] 

(3.41) 

 

Finally, we can simplify these expressions as: 
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𝑣 𝛼
𝑝 ∙ 𝑆 𝐿̂

ℒ̂ =
𝜆𝛼
𝐹

6Ωℒ̂
[(〈𝜏 𝐹̅

𝐽𝐾, 𝐿̂𝐽⃗⃗  ⃗〉 𝐾𝐿̂𝐹
𝑛 − ℎ𝐿̂

𝐹|𝑁⃗⃗ 𝐹|𝐾𝐿̂𝐹
𝐽𝐾
) (𝑝𝐽 − 𝑝𝐼) − 2|𝑁⃗⃗ 𝐹|

2
𝐾𝐿̂𝐹̅
𝑛 (𝑝𝐽 − 𝑝𝐿̂)

+ (〈𝜏 𝐹
𝐽𝐼 , 𝐿̂𝐽⃗⃗  ⃗〉 𝐾𝐿̂𝐹

𝑛 − ℎ𝐿̂
𝐹|𝑁⃗⃗ 𝐹|𝐾𝐿̂𝐹̅

𝐽𝐼
) (𝑝𝐾 − 𝑝𝐽)] 

(3.42) 

 

and: 

 

𝑣 𝛼
𝑝 ∙ 𝑆 𝑅̂

ℛ̂ =
𝜆𝛼
𝐹̅

6Ωℛ̂
[(〈𝜏 𝐹

𝐽𝐾, 𝐽𝑅̂⃗⃗⃗⃗ 〉 𝐾𝑅̂𝐹̅
𝑛 − ℎ𝑅̂

𝐹|𝑁⃗⃗ 𝐹|𝐾𝑅̂𝐹
𝐽𝐾
) (𝑝𝐼 − 𝑝𝐽) + 2|𝑁⃗⃗ 𝐹|

2
𝐾𝑅̂𝐹̅
𝑛 (𝑝𝑅̂ − 𝑝𝐽)

+ (〈𝜏 𝐹
𝐽𝐼 , 𝐽𝑅̂⃗⃗⃗⃗ 〉 𝐾𝑅̂𝐹

𝑛 − ℎ𝑅̂
𝐹|𝑁⃗⃗ 𝐹|𝐾𝑅̂𝐹̅

𝐽𝐼
) (𝑝𝐽 − 𝑝𝐾)] 

(3.43) 

 

where: 

 

𝐾𝑘̂𝐹
𝑛 =

𝑁⃗⃗ 𝐹̅
𝑇𝚱𝑘̂𝑁⃗⃗ 𝐹

|𝑁⃗⃗ 𝐹|
2 ;  𝐾

𝑘̂𝐹

𝛽𝛾
=
𝑁⃗⃗ 𝐹̅
𝑇𝚱𝑘̂𝜏 𝐹

𝛽𝛾

|𝑁⃗⃗ 𝐹|
2 ;  𝑘 = 𝐿, 𝑅;  𝛽, 𝛾 = 𝐼, 𝐽, 𝐾  (3.44) 

 

Noting that 6Ωℛ̂ = 2|𝑁⃗⃗ 𝐹|ℎ𝑅̂
𝐹 (analogously to Ωℒ̂) and remembering that 𝑁⃗⃗ 𝐹 =

𝑆 𝐿̂
ℒ̂ = −𝑆 𝑅̂

ℛ̂, we can rearrange the equations above as: 

 

2|𝑁⃗⃗ 𝐹|ℎ𝐿̂
𝐹

𝐾𝐿̂𝐹
𝑛 𝑣 𝛼

𝑝 ∙ 𝑁⃗⃗ 𝐹

= 𝜆𝛼
𝐹̅ [(〈𝜏 𝐹

𝐽𝐾 , 𝐿̂𝐽⃗⃗  ⃗〉 − ℎ𝐿̂
𝐹|𝑁⃗⃗ 𝐹|

𝐾
𝐿̂𝐹̅
𝐽𝐾

𝐾𝐿̂𝐹̅
𝑛 ) (𝑝𝐽 − 𝑝𝐼) − 2|𝑁⃗⃗ 𝐹|

2
(𝑝𝐽 − 𝑝𝐿̂)

− (〈𝜏 𝐹
𝐽𝐼 , 𝐿̂𝐽⃗⃗  ⃗〉 − ℎ𝐿̂

𝐹|𝑁⃗⃗ 𝐹|
𝐾
𝐿̂𝐹̅
𝐽𝐼

𝐾𝐿̂𝐹̅
𝑛 ) (𝑝𝐽 − 𝑝𝐾)] 

(3.45) 

 

and: 
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2|𝑁⃗⃗ 𝐹̅|ℎ𝑅̂
𝐹 

𝐾𝑅̂𝐹
𝑛 𝑣 𝛼

𝑝 ∙ 𝑁⃗⃗ 𝐹

= 𝜆𝛼
𝐹 [(〈𝜏 𝐹

𝐽𝐾 , 𝐽𝑅̂⃗⃗⃗⃗ 〉 − ℎ𝑅̂
𝐹|𝑁⃗⃗ 𝐹|

𝐾
𝑅̂𝐹
𝐽𝐾

𝐾𝑅̂𝐹
𝑛 ) (𝑝𝐽 − 𝑝𝐼) + 2|𝑁⃗⃗ 𝐹̅|

2
(𝑝𝐽 − 𝑝𝑅̂)

− (〈𝜏 𝐹
𝐽𝐼 , 𝐽𝑅̂⃗⃗⃗⃗ 〉 − ℎ𝑅̂

𝐹|𝑁⃗⃗ 𝐹|
𝐾
𝑅̂𝐹
𝐽𝐼

𝐾𝑅̂𝐹
𝑛 ) (𝑝𝐽 − 𝑝𝐾)] 

(3.46) 

 

Summing the Eq. (3.45) to Eq. (3.46) and after some algebraic manipulation, we 

can get the unique flux expression through face 𝐹̅ as: 

 

𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹 = −𝜆𝛼

𝐹̅𝔎𝐹|𝑁⃗⃗ 𝐹| [(𝑝𝑅̂ − 𝑝𝐿̂) −
1

2
𝔇𝐹
𝐽𝐾(𝑝𝐽 − 𝑝𝐼) +

1

2
𝔇𝐹
𝐽𝐼(𝑝𝐽 − 𝑝𝐾)] (3.47) 

 

in which 𝜆𝛼
𝐹  is taken from the CV upwind to the flow and with: 

 

 𝔎𝐹 =
𝐾𝑅̂𝐹̅
𝑛 𝐾𝐿̂𝐹

𝑛

ℎ𝐿̂
𝐹𝐾𝑅̂𝐹

𝑛 + ℎ𝑅̂
𝐹𝐾𝐿̂𝐹

𝑛
 (3.48) 

 

and: 

 

 𝔇𝐹
𝛽𝛾
=
〈𝜏 𝐹
𝛽𝛾
, 𝐿̂𝑅̂⃗⃗⃗⃗  ⃗〉

|𝑁⃗⃗ 𝐹|
2 −

1

|𝑁⃗⃗ 𝐹|
(ℎ𝐿̂

𝐹
𝐾
𝐿̂𝐹̅

𝛽𝛾

𝐾𝐿̂𝐹
𝑛 + ℎ𝑅̂

𝐹
𝐾
𝑅̂𝐹

𝛽𝛾

𝐾𝑅̂𝐹̅
𝑛 ) ;  𝛽, 𝛾 = 𝐼, 𝐽, 𝐾 (3.49) 

 

Analogously, 𝑣 𝛼
𝑔
= 𝜆𝛼𝜌𝛼ℊ𝚱∇𝑧 can be discretized as: 

 

𝑣 𝛼
𝑔
∙ 𝑁⃗⃗ 𝐹 = 𝜆𝛼

𝐹̅𝜌𝛼
𝐹ℊ𝔎𝐹|𝑁⃗⃗ 𝐹| [(𝑧𝑅̂ − 𝑧𝐿̂) −

1

2
𝔇𝐹
𝐽𝐾(𝑧𝐽 − 𝑧𝐼) +

1

2
𝔇𝐹
𝐽𝐼(𝑧𝐽 − 𝑧𝐾)] (3.50) 

 

3.2.4 Flux expression for a boundary face 

Based on the Eq. (3.42), the flux expression for 𝐹̅ if it is a boundary face with 

prescribed values for 𝑝 is given by: 
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𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹 =

𝜆𝛼
𝐹

6Ωℒ̂
[(〈𝜏 𝐹

𝐽𝐾, 𝐿̂𝐽⃗⃗  ⃗〉 𝐾𝐿̂𝐹
𝑛 − ℎ𝐿̂

𝐹|𝑁⃗⃗ 𝐹|𝐾𝐿̂𝐹̅
𝐽𝐾
) (𝑔𝐷

𝐽 − 𝑔𝐷
𝐼 )

− 2|𝑁⃗⃗ 𝐹|
2
𝐾𝐿̂𝐹
𝑛 (𝑔𝐷

𝐽 − 𝑝𝐿̂)

+ (〈𝜏 𝐹
𝐽𝐼 , 𝐿̂𝐽⃗⃗  ⃗〉 𝐾𝐿̂𝐹

𝑛 − ℎ𝐿̂
𝐹|𝑁⃗⃗ 𝐹|𝐾𝐿̂𝐹̅

𝐽𝐼
) (𝑔𝐷

𝐾 − 𝑔𝐷
𝐽 )] 

(3.51) 

 

where 𝑔𝐷
𝐼 , 𝑔𝐷

𝐽
 and 𝑔𝐷

𝐾 are known. When we have prescribed flux on 𝐹̅, considering that 

𝑔𝑁 is its value, we can simply write the flux equation as: 

 

 𝑣 𝛼 ∙ 𝑁⃗⃗⃗ 𝐹̅ = 𝑔𝑁 |𝑁⃗⃗⃗
 
𝐹̅| (3.52) 

 

3.2.5 Interpolation of vertex unknowns 

In order to obtain a completely cell-centered formulation, it is necessary to 

eliminate the vertex unknowns 𝑝𝐼, 𝑝𝐽 and 𝑝𝐾 in Eq. (3.47). This is done by interpolating 

a vertex pressure 𝑝𝑄 as a weighted average of the values of 𝑝𝑘̂, considering all the cells 

surrounding node 𝑄, as described by the following expression: 

 

 𝑝𝑄 = ∑𝜔𝑘̂𝑝𝑘̂
𝑘̂∈ℚ̂

 (3.53)  

 

in which ℚ̂ is the set of cells sharing node 𝑄. 

In the present work, three types of weighting strategies were studied, namely, 

the linearity preserving explicit weights (LPEW) (GAO; WU, 2011; LIRA FILHO et al., 

2021), the LPEW based in averaging harmonic points (LPEW-HAP) (YANG; GAO, 

2020) and the global least square (GLS) weighting (DONG; KANG, 2021, 2022). 

The LPEW strategies presented here were developed within the PADMEC (High 

Performance Computing on Computational Mechanics) researching group in UFPE, as 

natural extensions of the 3-D LPEW formulations presented for  2-D domains by Gao and 

Wu (2011). These schemes are based on the imposition of the divergence free conditions 

on a support region surrounding 𝑄. This support region can be constructed by different 

ways, which will characterize different types of LPEW strategies (LPEW1, LPEW2 and 

LPEW3). The construction of the support region and the flux calculation for the 
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divergence free imposition, however, involve some auxiliary variables (𝑇𝑖, with 𝑖 =

1…6) as shown in Figure 4a (that presents the LPEW2 configuration), which need to be 

eliminated to achieve a full cell-centered weighting expression. 

 

Figure 4 – LPEW2 weighting strategy. (a) Part of a support region constructed 

surrounding 𝑄. (b) Sketch of the tetrahedra used in the flux continuity imposition on 

faces 𝑄𝑇1𝑇2 and 𝑄𝑇2𝑇3. 

 

 

 

 

Source: The author (2023). 

 

This elimination can be made by imposing the continuity condition on faces 

𝑄𝑇𝑖𝑇𝑗 (with 𝑖, 𝑗 = 1…6) shared by two cells sharing 𝑄. Figure 4b shows the faces 𝑄𝑇1𝑇2 

and 𝑄𝑇2𝑇3 shared by the cells 𝑘̂ and 𝑜̂𝐽, on which the flux continuity can be imposed in 

order to eliminate 𝑇1, 𝑇2 and 𝑇3 from the divergence free expression. All the mathematical 

development about LPEW strategies developed to obtain the final explicit weighting 

expressions, is presented in detail in Appendix A. 

The LPEW-HAP strategy are based on the determination of harmonic averaging 

points on each face sharing 𝑄. There is, for example, on face 𝑄𝐼𝐾, shown in Figure 4b, a 

harmonic averaging point on which the value of the pressure is a linear combination of 

the pressures 𝑝𝑘̂ and 𝑝𝑜̂𝐽. The same procedure can be performed for the faces 𝑄𝐴𝐾, 𝑄𝐽𝐾, 

𝑄𝐴𝐼, 𝑄𝐼𝐽 and for all the other faces sharing 𝑄. Then, we can use the pressures at these 

𝐼 

𝐾 

𝑜̂𝐽  

𝑘̂ 
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harmonic averaging points, together with some linear basis functions, to determine a 

weighting expression for 𝑝𝑄. All the mathematical development about LPEW-HAP, used 

to obtain the final explicit cell-centered expression is presented in detail in Appendix A. 

The GLS strategy is based on minimizing the values of some functions. The first 

set of functions corresponds to the difference between linear approximations of the 

pressure in each cell surrounding 𝑄 and the actual pressures in them, which must be 

minimized. The second set of functions corresponds to the difference between the 

projections of pressure gradients in the neighboring cells sharing 𝑄 on each edge shared 

by them. In the situation shown by Figure 4b, for example, the projection of the vector 

∇𝑝𝑘̂ − ∇𝑝𝑜̂𝐽 on the edges 𝑄𝐼 and 𝑄𝐾 must be also minimized. The third set of functions 

corresponds to the flux continuity imposition on each face sharing 𝑄. Writing these 

equations to each cell, edge and face surrounding 𝑄 gives rise to a system of equations 

from whose solution it is possible to get the GLS weighting for 𝑝𝑄. All the mathematical 

development about GLS, until to obtain the interpolation weights, is presented in detail 

in Appendix A. 

3.3 NON-LINEAR DEFECT CORRECTION FOR DMP VIOLATION 

As commonly observed in applications of most of linear MPFA formulation, 

those studied strategies failed in satisfy DMP, what motivated the investigation and 

development of a non-linear alternative to correct this defect (CAVALCANTE et al., 

2022), mainly based on the works of Pal and Edwards (2006, 2011), who proposed flux-

splitting strategies to improve the monotonicity behavior and impose DMP for FVM, and 

of Kuzmin, Shashkov and Svyatskiy (2009), who presented a nonlinear constrained finite 

element scheme, in which they perform an algebraic matrix splitting followed by a slope 

limiting to impose DMP. Satisfying DMP is very important for diffusion terms in 

modelling two-phase flows in porous media (LE POTIER, 2009), in order to avoid 

spurious oscillations in pressure solution (PAL; EDWARDS, 2011) and non "physics-

oriented" fluxes. 

Considering the discretization of an elliptic boundary value problem, as 

described in Eq. (2.14) and with its adequate boundary conditions, on fluid pressure, 

disregarding gravity effects and in the absence of source terms, must be limited by the 

maximum and the minimum values found on the boundaries (VARGA, 1966; PAL; 

EDWARDS, 2011). In this context, the Eq. (3.47) would become: 
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 𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹 = −𝔎𝐹|𝑁⃗⃗ 𝐹| [(𝑝𝑅̂ − 𝑝𝐿̂) −

1

2
𝔇𝐹
𝐽𝐾(𝑝𝐽 − 𝑝𝐼) +

1

2
𝔇𝐹
𝐽𝐼(𝑝𝐽 − 𝑝𝐾)] (3.54) 

 

and it could be rewritten as: 

 

 𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹 = (𝑣 𝛼

𝑝 ∙ 𝑁⃗⃗ 𝐹)𝑇𝑃𝐹𝐴 + (𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹)𝐶𝐷𝑇 (3.55) 

 

with: 

 

 (𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹̅)𝑇𝑃𝐹𝐴 = −𝔎𝐹|𝑁⃗⃗

 
𝐹|[(𝑝𝑅̂ − 𝑝𝐿̂)] (3.56) 

 

and: 

 

 (𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹)𝐶𝐷𝑇 = −𝔎𝐹|𝑁⃗⃗

 
𝐹| [−

1

2
𝔇𝐹
𝐽𝐾(𝑝𝐽 − 𝑝𝐼) +

1

2
𝔇𝐹
𝐽𝐼(𝑝𝐽 − 𝑝𝐾)] (3.57) 

 

Thus, (𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹)𝑇𝑃𝐹𝐴 is the TPFA contribution for the flux and (𝑣 𝛼

𝑝 ∙ 𝑁⃗⃗ 𝐹)𝐶𝐷𝑇 is 

the flux contribution from the cross diffusion terms (CDT), provided by the interpolated 

nodal values. Based in Eq. (3.18) and Eq. (2.14), we can write: 

 

 ∑𝜌𝛼(𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹)

𝐹∈𝐿̂

= 𝜌𝛼𝑞𝛼 (3.58) 

 

Computing Eq. (3.58) for all the control-volumes in the domain, we obtain the 

global system of equations 𝑨𝒑 = 𝒃. The solution of this system can be obtained 

iteratively by the Gauss-Seidel method: 

 

 𝒑𝜐+1 = (𝑫 + 𝑳)−1{𝒃 − 𝑼𝒑𝜐} (3.59) 

 

where 𝜐 is the iteration step and 𝑫 is the diagonal matrix of 𝑨, 𝑼 is the upper triangular 

part of 𝑨, 𝑳 is the lower triangular part of 𝑨, so that 𝑨 = 𝑳 + 𝑫+ 𝑼. Naturally, being 

𝓃𝑡𝑒𝑡𝑟𝑎 the amount of tetrahedra discretizing Ω𝑚, 𝑨 is a 𝓃𝑡𝑒𝑡𝑟𝑎 × 𝓃𝑡𝑒𝑡𝑟𝑎 matrix, in which 
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the 𝐿-th line corresponds to ∑ (𝑣 𝛼
𝑝
∙ 𝑁⃗⃗ 𝐹)|𝑘̅𝑘̅∈Γ𝐿̂

. Splitting the fluxes according to Eq. 

(3.55), we can write the global system of equations as: 

 

 [𝑨𝑻𝑷𝑭𝑨 + 𝑨𝑪𝑫𝑻]𝒑 = [𝒃𝑻𝑷𝑭𝑨 + 𝒃𝑪𝑫𝑻] (3.60) 

 

in which the 𝐿-th line of 𝑨𝑻𝑷𝑭𝑨 corresponds to ∑ (𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹)𝑇𝑃𝐹𝐴|𝑘̅𝑘̅∈Γ𝐿̂

 and the 𝐿-th line 

of 𝑨𝑪𝑫𝑻 corresponds to ∑ (𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝐹̅)𝐶𝐷𝑇|𝑘̅𝑘̅∈Γ𝐿̂

, according to Eq. (3.56) and Eq. (3.57), 

respectively. The expression shown in Eq. (3.60) is the regular MPFA-D global system 

under the described splitting. The solution of Eq. (3.60) can still be obtained iteratively 

by the Gauss-Seidel method, but in the following form: 

 

 
𝒑𝜐+1 = (𝑫𝑻𝑷𝑭𝑨 +𝑫𝑪𝑫𝑻 + 𝑳𝑻𝑷𝑭𝑨 + 𝑳𝑪𝑫𝑻)

−1{𝒃𝑻𝑷𝑭𝑨 + 𝒃𝑪𝑫𝑻

− [𝑼𝑻𝑷𝑭𝑨 + 𝑼𝑪𝑫𝑻]𝒑
𝜐} 

(3.61) 

 

After each iteration in Eq. (3.61), aiming to guarantee monotonicity through a 

local DMP imposition, we need to verify the compliance of the following restriction 

(PAL; EDWARDS, 2011): 

 

 𝒑𝒎𝒊𝒏
𝜐 − 𝛿 ≤ 𝒑𝜐+1 ≤ 𝒑𝒎𝒂𝒙

𝜐 + 𝛿 (3.62) 

 

with the above inequality being an entry-by-entry evaluation, where 𝒑𝒎𝒂𝒙
𝜐  and 𝒑𝒎𝒊𝒏

𝜐  are 

the vectors containing, respectively, the maximum and the minimum scalar values in the 

extended stencil of each cell after the 𝜐-th iteration and 𝛿 is a pre-established tolerance. 

The extended stencil of a cell (i.e., control volume) includes the cell itself and all the 

neighboring cells sharing vertices with it. Two important exceptions to the application of 

Eq. (3.62) are when the evaluated cell has the maximum source term or the minimum sink 

term in the extended stencil or when it has Neumann boundary faces in which 𝑔𝑁 ≠ 0. In 

these cases, the restriction in Eq. (3.62) is simply skipped (PAL; EDWARDS, 2011). If 

the restriction shown in Eq. (3.62) is violated by the approximation, we need to modify 

the system shown in Eq. (3.61) in order to impose the DMP. As the potential source of 

spurious oscillations in the MPFA-D are the fluxes associated to the CDT (PAL; 

EDWARDS, 2011; CAVALCANTE et al., 2022), we modify it as follows: 
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𝒑𝜐+1 = (𝑫𝑻𝑷𝑭𝑨 + 𝚼𝑫𝑪𝑫𝑻 + 𝑳𝑻𝑷𝑭𝑨 + 𝚼𝑳𝑪𝑫𝑻)

−1{𝒃𝑻𝑷𝑭𝑨 + 𝚼𝒃𝑪𝑫𝑻

− [𝑼𝑻𝑷𝑭𝑨 + 𝚼𝑼𝑪𝑫𝑻]𝒑
𝜐} 

(3.63) 

 

where 𝚼 is a diagonal matrix, with entries 0 ≤ Υ𝑖𝑖 ≤ 1, used to weight the CDT 

contributions. Note that with 𝚼 = 𝑰 (the identity matrix), we get back to Eq. (3.61), i.e., 

the iterative version of the original MPFA-D, on the other hand, if 𝚼 = 𝟎, we get the 

iterative version of the TPFA formulation. Rearranging the expression in Eq. (3.63), we 

get: 

 

 
𝒑𝜐+1 = (𝑫𝑻𝑷𝑭𝑨 + 𝑳𝑻𝑷𝑭𝑨 + 𝚼𝑫𝑪𝑫𝑻 + 𝚼𝑳𝑪𝑫𝑻)

−1[𝒃𝑻𝑷𝑭𝑨 − 𝑼𝑻𝑷𝑭𝑨𝒑
𝜐

+ 𝚼𝒃𝑪𝑫𝑻 − 𝚼𝑼𝑪𝑫𝑻𝒑
𝜐] 

(3.64) 

 

Replacing Eq. (3.64) in Eq. (3.62) and disregarding the tolerance 𝛿 for now, we 

have the two following inequalities sets: 

 

 {

(𝑫𝑻𝑷𝑭𝑨 + 𝑳𝑻𝑷𝑭𝑨 + 𝚼𝑫𝑪𝑫𝑻 + 𝚼𝑳𝑪𝑫𝑻)
−1 [

𝒃𝑻𝑷𝑭𝑨 − 𝑼𝑻𝑷𝑭𝑨𝒑
𝜐

+𝚼𝒃𝑪𝑫𝑻 − 𝚼𝑼𝑪𝑫𝑻𝒑
𝜐] ≤ 𝒑𝒎𝒂𝒙

𝜐

(𝑫𝑻𝑷𝑭𝑨 + 𝑳𝑻𝑷𝑭𝑨 + 𝚼𝑫𝑪𝑫𝑻 + 𝚼𝑳𝑪𝑫𝑻)
−1 [

𝒃𝑻𝑷𝑭𝑨 − 𝑼𝑻𝑷𝑭𝑨𝒑
𝜐

+𝚼𝒃𝑪𝑫𝑻 − 𝚼𝑼𝑪𝑫𝑻𝒑
𝜐] ≥ 𝒑𝒎𝒊𝒏

𝜐
 (3.65) 

 

Rearranging the system, we have: 

 

 {
𝔂𝒎𝒂𝒙 + 𝚼𝔁𝒎𝒂𝒙 ≥ 𝟎
𝔂𝒎𝒊𝒏 + 𝚼𝔁𝒎𝒊𝒏 ≤ 𝟎

 (3.66) 

 

where: 

 

 

𝔁𝒎𝒂𝒙 = 𝑼𝑪𝑫𝑻𝒑
𝜐 +𝑫𝑪𝑫𝑻𝒑𝒎𝒂𝒙

𝜐 + 𝑳𝑪𝑫𝑻𝒑𝒎𝒂𝒙
𝜐 − 𝒃𝑪𝑫𝑻 

𝔂𝒎𝒂𝒙 = 𝑼𝑻𝑷𝑭𝑨𝒑
𝜐 +𝑫𝑻𝑷𝑭𝑨𝒑𝒎𝒂𝒙

𝜐 + 𝑳𝑻𝑷𝑭𝑨𝒑𝒎𝒂𝒙
𝜐 − 𝒃𝑻𝑷𝑭𝑨 

𝔁𝒎𝒊𝒏 = 𝑼𝑪𝑫𝑻𝒑
𝜐 +𝑫𝑪𝑫𝑻𝒑𝒎𝒊𝒏

𝜐 + 𝑳𝑪𝑫𝑻𝒑𝒎𝒊𝒏
𝜐 − 𝒃𝑪𝑫𝑻 

𝔂𝒎𝒊𝒏 = 𝑼𝑻𝑷𝑭𝑨𝒑
𝜐 +𝑫𝑻𝑷𝑭𝑨𝒑𝒎𝒊𝒏

𝜐 + 𝑳𝑻𝑷𝑭𝑨𝒑𝒎𝒊𝒏
𝜐 − 𝒃𝑻𝑷𝑭𝑨 

(3.67) 
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Therefore, we can determine valid intervals (𝑌𝑚𝑎𝑥
𝑖̂  and 𝑌𝑚𝑖𝑛

𝑖̂ ) for the values of 

Υ𝑖𝑖. Considering that 𝓍𝑚𝑎𝑥,𝑖 is the 𝑖-th entry of 𝔁𝒎𝒂𝒙 (analogously to the similar arrays), 

the possible solutions to inequalities in Eq. (3.66) are given by: 

 

 𝑌𝑚𝑎𝑥
𝑖̂ =

{
 
 

 
 𝑖𝑓 𝓍𝑚𝑎𝑥,𝑖 > 0 → [−

𝓎𝑚𝑎𝑥,𝑖
𝓍𝑚𝑎𝑥,𝑖

, ∞)

𝑖𝑓 𝓍𝑚𝑎𝑥,𝑖 < 0 → (−∞,−
𝓎𝑚𝑎𝑥,𝑖
𝓍𝑚𝑎𝑥,𝑖

]

𝑖𝑓 𝓍𝑚𝑎𝑥,𝑖 = 0 → [0,1]

 (3.68) 

 

and: 

 

 𝑌𝑚𝑖𝑛
𝑖̂ =

{
 
 

 
 𝑖𝑓 𝓍𝑚𝑖𝑛,𝑖 > 0 → (−∞,−

𝓎𝑚𝑖𝑛,𝑖
𝓍𝑚𝑖𝑛,𝑖

]

𝑖𝑓 𝓍𝑚𝑖𝑛,𝑖 < 0 → [−
𝓎𝑚𝑖𝑛,𝑖
𝓍𝑚𝑖𝑛,𝑖

, ∞)

𝑖𝑓 𝓍𝑚𝑖𝑛,𝑖 = 0 → [0,1]

 (3.69) 

 

Therefore, we can define 𝑌𝑖̂ as: 

 

 𝑌 𝑖̂ = {

𝑖𝑓  𝒑𝑖
𝜐+1 ≤ 𝒑𝒎𝒊𝒏,𝑖

𝜐 → 𝑌𝑚𝑖𝑛
𝑖̂ ∩ [0,1]

𝑖𝑓  𝒑𝑖
𝜐+1 ≥ 𝒑𝒎𝒂𝒙,𝑖

𝜐 → 𝑌𝑚𝑎𝑥
𝑖̂ ∩ [0,1]

𝑒𝑙𝑠𝑒 → 𝑌𝑚𝑎𝑥
𝑖̂ ∩ 𝑌𝑚𝑖𝑛

𝑖̂ ∩ [0,1]

 (3.70) 

 

If 𝑌 𝑖̂ = ∅, we just adopt 𝑌𝑖̂ = [0,1], but not before taking an additional step. 

Consider that 𝕍̂ is the set of cells violating DMP, if 𝑖̂ ∈ 𝕍̂ and 𝑌𝑖̂ = ∅, we include in 𝕍̂ all 

the cells in the extended stencil of 𝑖̂, so we can try to fix it through modifying its 

neighbors.  

Note that, multiplying 𝚼𝑨𝑪𝑫𝑻, which means to multiply the 𝑖-th line of 𝑨𝑪𝑫𝑻 by 

Υ𝑖𝑖, would be the same thing that multiply each face flux of the cell 𝑖̂ by Υ𝑖𝑖. This would 

violate the mass conservation. Considering a face 𝑘̅ shared by two cells 𝑅̂ and 𝐿̂, as shown 

in Figure 3, then the CDT flux through 𝑘̅ is present in both 𝐿-th and 𝑅-th lines of 𝑨𝑪𝑫𝑻. 

This way, through 𝚼𝑨𝑪𝑫𝑻, the CDT flux through 𝑘̅ would be multiplied by Υ𝐿𝐿 in the flux 

balance of 𝐿̂ and by Υ𝑅𝑅 in the flux balance of 𝑅̂. This would obviously destroy the flux 
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continuity on 𝑘̅. Therefore, it is necessary to determine a unique value 𝜛 as the weighting 

factor to the cross-diffusion flux on each cell face in the interval 𝐹𝑘̅, such that: 

 

 𝜛𝑘̅ ∈ 𝐹
𝑘̅ = 𝑌𝐿̂ ∩ 𝑌𝑅̂ (3.71) 

 

On the other hand, if 𝐹𝑘̅ = ∅, we perform a different procedure, in which we 

need to verify if there is any DMP violation at 𝐿̂ or 𝑅̂. If the DMP violation occurs only 

at 𝐿̂, then 𝐹𝑘̅ = 𝑌𝐿̂. Analogously, if there is a DMP violation only at 𝑅̂, then 𝐹𝑘̅ = 𝑌𝑅̂. 

However, if there is a DMP violation at both 𝐿̂ and 𝑅̂, we simply use 𝐹𝑘̅ =

{0.5[min(𝑌𝐿̂) + min(𝑌𝑅̂)], 0.5[max(𝑌𝐿̂) + max(𝑌𝑅̂)]}. For the case where there is no 

DMP violation, 𝐹𝑘̅ = [0,1]. Then the unique value of 𝜛𝑘̅ is defined as: 

 

 𝜛𝑘̅ = {
𝑖𝑓 max(𝐹𝑘̅) < 1 → max(𝐹𝑘̅)

𝑖𝑓  max(𝐹𝑘̅) = 1 → 0.5[min(𝐹𝑘̅) + max(𝐹𝑘̅)]
 (3.72) 

 

Thus, we can see that as we have defined 𝕍̂ as a set of cells violating DMP, we 

need to define a set of faces 𝔽̅ whose CDT flux will be modified to avoid spurious 

solutions. This set will consist of all the faces comprising the cells in 𝕍̂. Then, to formally 

guarantee flux continuity through a face 𝑘̅ ∈ 𝔽̅, 𝑨𝑪𝑫𝑻 must be corrected as follows: 

 

 {
𝑨𝑪𝑫𝑻
𝐿̂ = 𝑨𝑪𝑫𝑻

𝐿̂ + (𝜛𝑘̅ − 1) [(𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝑘̅)𝐶𝐷𝑇|𝑘̅∈𝔽̅

]

𝑨𝑪𝑫𝑻
𝑅̂ = 𝑨𝑪𝑫𝑻

𝑅̂ − (𝜛𝑘̅ − 1) [(𝑣 𝛼
𝑝 ∙ 𝑁⃗⃗ 𝑘̅)𝐶𝐷𝑇|𝑘̅∈𝔽̅

]
 (3.73) 

 

Evidently, 𝑫𝑪𝑫𝑻, 𝑼𝑪𝑫𝑻, 𝑳𝑪𝑫𝑻 and 𝒃𝑪𝑫𝑻 will be modified accordingly, because 

of the modification of 𝑨𝑪𝑫𝑻. Since we compute 𝜛𝑘̅ explicitly, face by face in 𝔽̅, these 

modifications may give rise to some undesirable side effects in other cells in terms of 

DMP violation. Therefore, the process described by Eq. (3.65) to Eq. (3.73) is repeated, 

as shown in the algorithm of Figure 5, until the condition given in Eq. (3.62) is fulfilled.  

As it is well known that the classic linear TPFA method is a monotone 

formulation (MØYNER; LIE, 2014), we note that such a condition will be necessarily 

satisfied, at least in the extreme case in which 𝚼 = 𝟎 and the CDT terms vanish. Thus, 
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since we ensure the DMP in each iteration, the converged solution will undoubtedly 

satisfy the DMP. 

Besides, this algorithm considers the solution to be converged when the iteration 

residue at the 𝜐-th iteration (𝔯𝜐 = ‖𝒑
𝜐 − 𝒑𝜐−1‖2) is 𝔯𝜐 < 10−3𝔯1, where 𝔯1 is the first 

iteration residue, calculated from the initial guess 𝒑0. 

 

Figure 5 - The MPFA-DNL algorithm. 

 

 

 

Source: The author (2023). 
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4 MODELING FRACTURES 

This section presents some strategies developed over the years in order to add to 

the numerical models the contribution of large-scale fractures (LEE; LOUGH; JENSEN, 

2001; LI; LEE, 2008). Starting by showing some classical schemes and finally 

highlighting those that are relevant for the present work, namely the Embedded Discrete 

Fracture Model (EDFM) and its projection-based version (pEDFM). 

4.1 CLASSICAL FRACTURE MODELS 

Historically, the most commonly used strategies to handle fractures in the 

context of flow simulation in porous media are the dual-continuum models. The 

theoretical foundation behind this type of scheme was initially developed by Barenblatt, 

Zheltov and Kochina (1960) and, based on it, Warren and Root (1963) introduced the two 

porosity systems in the context of reservoir engineering. The dual-porosity model 

considers the reservoir to be comprised by two continua, one representing the rock matrix 

and the other, the fractures network. Since the fractures are dominant in the flow driving, 

in this model, each block discretizing the matrix (each orange square in Figure 6a) is 

considered to be bounded by the fractures network (green media in Figure 6a), without 

direct connection between two matrix blocks, so that each one communicates only with 

the fractures network (see Figure 6a). The mathematical formulation is obtained by 

applying the mass conservation principles for each continuum and the fluid flow between 

fractures and the matrix blocks is accounted as source terms (KAZEMI et al., 1976). An 

evolution of this model is the dual-porosity-dual-permeability scheme (GILMAN; 

KAZEMI, 1983; THOMAS; DIXON; PIERSON, 1983; ULEBERG; KLEPPE, 1996) in 

which the interactions between matrix blocks are also considered (Figure 6b). In these 

methods it is necessary to consider a complex set of parameters, such as the shape of the 

matrix block, re-infiltration process and diffusivity (ULEBERG; KLEPPE, 1996), to 

guarantee a precise representation of the physical flow phenomena. These models are still 

not capable to deal with high fracture density and localized anisotropy due to the 

directions of the fractures (MOINFAR et al., 2011).  

The method of transmissibility multipliers (MANZOCCHI et al., 1999; 

NILSEN; LIE; NATVIG, 2012), beyond being very dependent on the mesh (BERRE; 

DOSTER; KEILEGAVLEN, 2019), it does not represent high permeability fractures 
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adequately. Considering, for example, the configuration shown in Figure 7, in which, 

originally, the cells 𝐿̂ and 𝑅̂ were sharing a face 𝐹̅, so that the transmissibility between 

them was 𝔗𝐹 (see Figure 7a). However, if there is a fracture between 𝐿̂ and 𝑅̂ (see Figure 

7b), due to the presence of the fracture, the referred transmissibility  is modified as 

following (NILSEN; LIE; NATVIG, 2012):  

 

Figure 6 - Sketch representing dual-continuum models. (a) Dual-porosity. (b) Dual-

porosity-dual-permeability. 

  

 

Source: The author (2023). 

 

 𝔗
𝐿̂𝑅̂
𝑓
= 𝔪

𝐿̂𝑅̂
𝑓
𝔗𝐹   with   𝔪𝐿̂𝑅̂

𝑓
=

𝔗𝑓

𝔗𝑓 + 𝔗𝐹
 (4.1) 

 

in which the multiplying factor 𝔪
𝐿̂𝑅̂
𝑓

 is composed by the transmissibility of the fracture 

(𝔗𝑓) and the transmissibility 𝔗𝐹 of the face originally shared by 𝐿̂ and 𝑅̂ (disregarding 

the fracture). Note that the higher is 𝔗𝑓, the less influential the fracture is in the 

transmissibility between 𝐿̂ and 𝑅̂ (𝔪
𝐿̂𝑅̂
𝑓

 approaches 1), which is the opposite of what is 

expected. 

Looking at these important limitations of the classical methods that are used to 

model fractures, some more recent alternatives were investigated in order to reproduce, 

in a more physics-based way, the effects of the presence of the fractures in fluid flows in 

porous media. In the present work, we specifically concentrate on those that represent the 

(a) (b) 
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fractures explicitly, as additional degrees of freedom to the problem (HOTEIT; 

FIROOZABADI, 2008). Usually, these methods can be divided into two main groups, 

based on the relative positioning of the fractures and the meshes used in the spatial 

discretization: conforming mesh and non-conforming mesh schemes (JIANG; YOUNIS, 

2017). 

 

Figure 7 - Sketch representing the transmissibility multipliers method. (a) Original 

transmissibility between 𝐿̂ and 𝑅̂. (b) Modified transmissibility between 𝐿̂ and 𝑅̂, due to 

the presence of the fracture. 

  

Source: The author (2023). 

 

When applying conforming mesh methods (KARIMI-FARD; DURLOFSKY; 

AZIZ, 2004; SANDVE; BERRE; NORDBOTTEN, 2012; DEVLOO; TENG; ZHANG, 

2019; CAVALCANTE et al., 2020; WANG et al., 2022), it is necessary to build the mesh 

discretizing the rock matrix in a way to accommodate the fracture positions, which need 

to be placed at the edges (in 2-D) or faces (in 3-D) of the grid cells. This condition is 

critical when it is necessary to discretize small angles and small distances between the 

fractures and can lead to localized and excessive mesh refinements, as shown in Figure 

8, which represents part of a triangular conforming mesh (2-D) discretizing a fractured 

domain. Anyhow, it is still possible to improve the mesh quality performing some 

corrections as the coalescing of points (whether from the fracture grid or from the rock 

matrix one), whenever distances or angles are less than tolerable (LIMA; DEVLOO; 

VILLEGAS, 2020). 

Non-conforming mesh methods are much more flexible from the mesh 

generation point of view as it is not necessary to fit the fractures positions when building 

the mesh and the fractures may cross the rock matrix grid cells. In this group, there are 

the most relevant fracture representation strategies for the present work and which will 

        

𝐿̂ 𝑅̂ 

𝐿̂ 𝑅̂ 𝔗𝐹̅ 

𝐹̅ 

𝔗
𝐿̂𝑅̂
𝑓

 

(a) 

(b) 
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be detailed in the next sections, namely: the embedded discrete fracture model (EDFM) 

(LI; LEE, 2008; MOINFAR et al., 2014; SHAKIBA; SEPEHRNOORI, 2015) and the 

projection-based embedded discrete fracture model (pEDFM) (JIANG; YOUNIS, 2017; 

ŢENE et al., 2017; RAO et al., 2020; HOSSEINIMEHR et al., 2022). 

 

Figure 8 – Localized over refinement because of small distances between the fractures 

(marked in red). 

 

Source: The author (2023). 

 

4.2 EMBEDDED DISCRETE FRACTURE MODEL 

The embedded discrete fracture model (EDFM) (LI; LEE, 2008; MOINFAR et 

al., 2014; SHAKIBA; SEPEHRNOORI, 2015) is a non-conforming mesh method of 

representation of fractures in which the degrees of freedom of the rock matrix and 

fractures are discretized separately, but the structure of the coupling is similar to that of 

methods that represent fractures implicitly (as dual-continuum), with the difference that 

the coupling terms between the fracture cells and the rock matrix cells are modeled in 

terms of discrete variables directly (BERRE; DOSTER; KEILEGAVLEN, 2019), based 

on the permeabilities of the referred cells and on the geometric intersection between them. 

4.2.1 Fracture-matrix and fracture-fracture intersections calculation 

Let 𝑡̂ be a generic tetrahedron defined by the intersections of the planes 𝜋1, 𝜋2, 

𝜋3 and 𝜋4 (with normal vectors 𝑛⃗ 1, 𝑛⃗ 2, 𝑛⃗ 3 and 𝑛⃗ 4) and let Ω𝑓𝑘 be the plane containing the 
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fracture cell 𝑘̌𝑖 (with normal vector 𝑛⃗ 𝑓𝑘). Considering that 𝑃⃗ 𝑓𝑘 is the position vector of a 

point on Ω𝑓𝑘 and that 𝑇⃗ 1, 𝑇⃗ 2, 𝑇⃗ 3 and 𝑇⃗ 4 are the position vectors of the vertices of 𝑡̂, we can 

verify if there exists any intersection between 𝑡̂ and Ω𝑓𝑘, checking if there are vertices of 

𝑡̂ in different hemispaces defined by Ω𝑓𝑘. We verify this by the following inequality: 

 

 |∑
〈𝑛⃗ 𝑓𝑘 , 𝑇⃗

 
𝑖 − 𝑃⃗ 𝑓𝑘〉

|〈𝑛⃗ 𝑓𝑘 , 𝑇⃗
 
𝑖 − 𝑃⃗ 𝑓𝑘〉|

4

𝑖=1

| < 4 (4.2) 

 

where 〈𝑣 1, 𝑣 2〉 is the inner product between 𝑣 1 and 𝑣 2. If it is true, then there exists the 

intersection between 𝑡̂ and Ω𝑓𝑘.  

If Ω𝑓𝑘 ∩ 𝑡̂ ≠ ∅, we can calculate the area of the intersection between the plane 

that contains the fracture and the tetrahedron. First, using the inner product shown in Eq. 

(4.2), we verify how many points of the tetrahedron are on Ω𝑓𝑘. If three points of 𝑡̂ are on 

Ω𝑓𝑘, one of the faces of 𝑡̂ corresponds to Ω𝑓𝑘 ∩ 𝑡̂. If two points of 𝑡̂ are on Ω𝑓𝑘, one of the 

edges of 𝑡̂ corresponds to Ω𝑓𝑘 ∩ 𝑡̂. If one point of 𝑡̂ is on Ω𝑓𝑘, this point corresponds to 

Ω𝑓𝑘 ∩ 𝑡̂. If there are not any points of 𝑡̂ on Ω𝑓𝑘, the referred intersection can be calculated 

through the following algorithm: considering that 𝑃⃗ 𝑖 is the position vector of a point on 

𝜋𝑖 (as well as 𝑃⃗ 𝑓𝑘 on Ω𝑓𝑘), whose normal vector is 𝑛⃗ 𝑖 = [𝑛𝑖𝑥 𝑛𝑖𝑦 𝑛𝑖𝑧]𝑇 (as well as 𝑛⃗ 𝑓𝑘 

for Ω𝑓𝑘), the intersection between the edges of 𝑡̂ and Ω𝑓𝑘 will give rise to six linear 

systems, since a tetrahedron has six edges, each one established based on the equations 

defining the two planes whose intersection create the edge and the plane containing the 

fracture (STEIMBRUCH; WINTERLE, 1995). Therefore, we can write: 

 

[

𝑛𝑖𝑥 𝑛𝑖𝑦 𝑛𝑖𝑧
𝑛𝑗𝑥 𝑛𝑗𝑦 𝑛𝑗𝑧
𝑛𝑓𝑘𝑥 𝑛𝑓𝑘𝑦 𝑛𝑓𝑘𝑧

] [
𝑥
𝑦
𝑧
] = [

𝑛𝑖𝑥𝑃𝑖𝑥 + 𝑛𝑖𝑦𝑃𝑖𝑦 + 𝑛𝑖𝑧𝑃𝑖𝑧
𝑛𝑗𝑥𝑃𝑗𝑥 + 𝑛𝑗𝑦𝑃𝑗𝑦 + 𝑛𝑗𝑧𝑃𝑗𝑧

𝑛𝑓𝑘𝑥𝑃𝑓𝑘𝑥 + 𝑛𝑓𝑘𝑦𝑃𝑓𝑘𝑦 + 𝑛𝑓𝑘𝑧𝑃𝑓𝑘𝑧

] ;  
𝑖, 𝑗 = 1,2,3,4

𝑖 ≠ 𝑗
 (4.3) 

 

whose solutions will define six points coordinates of which, however, only three (see 

Figure 9a) or four (see Figure 9b) will be on the faces of 𝑡̂ (the others will be out of the 

tetrahedron). These three or four points will form the polygon 𝑐 = Ω𝑓𝑘 ∩ 𝑡̂, as shown in 

Figure 9. 
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Thus, there are two polygons contained in Ω𝑓𝑘 (𝑘̌𝑖 and 𝑐) intersecting each other, 

so that we can define the polygon 𝑑 = 𝑘̌𝑖 ∩ 𝑐 = 𝑘̌𝑖 ∩ 𝑡̂, as shown in Figure 10. 

Mathematically, the intersection operation is performed by finding the intersection points 

between each straight line containing the edges of 𝑘̌𝑖 and each straight line containing the 

edges 𝑐. Considering, for example, that 𝑟 = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧) is the direction vector of a straight 

line 𝑟 = 𝑅 + 𝓇𝑟  containing one edge of 𝑘̌𝑖 and that 𝑠 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) is the direction vector 

of a straight line 𝑠 = 𝑆 + 𝓈𝑠  containing one edge of 𝑐 (STEIMBRUCH; WINTERLE, 

1995), the intersection 𝑟 ∩ 𝑠 can be determined imposing: 

 

 𝑅 + 𝓇𝑟 = 𝑆 + 𝓈𝑠  (4.4) 

 

Figure 9 – Intersection between 𝛺𝑓𝑘 and 𝑡̂. (a) Intersection defined by three points. (b) 

Intersection defined by four points. 

 

 

 

Source: The author (2023). 

 

then: 

 

 𝓇𝑟 − 𝓈𝑠 = 𝑆 − 𝑅 (4.5) 

 

and: 

 

𝛀𝒇𝒌 

𝑡̂ 

𝒄 

𝒄 

𝑡̂ 𝛀𝒇𝒌 

(a) (b) 
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 [

𝑟𝑥 −𝑠𝑥
𝑟𝑦 −𝑠𝑦
𝑟𝑧 −𝑠𝑧

] [
𝓇
𝓈
] = [

𝑆𝑥 − 𝑅𝑥
𝑆𝑦 − 𝑅𝑦
𝑆𝑧 − 𝑅𝑧

] (4.6) 

 

Thus, the values of the parameters 𝓇 and 𝓈 that will indicate the intersection 

coordinates are determined through the following equation: 

 

 [
𝓇
𝓈
] = {[

𝑟𝑥 −𝑠𝑥
𝑟𝑦 −𝑠𝑦
𝑟𝑧 −𝑠𝑧

]

𝑇

[

𝑟𝑥 −𝑠𝑥
𝑟𝑦 −𝑠𝑦
𝑟𝑧 −𝑠𝑧

]}

−1

[

𝑟𝑥 −𝑠𝑥
𝑟𝑦 −𝑠𝑦
𝑟𝑧 −𝑠𝑧

]

𝑇

[

𝑆𝑥 − 𝑅𝑥
𝑆𝑦 − 𝑅𝑦
𝑆𝑧 − 𝑅𝑧

] (4.7) 

 

Figure 10 – Intersection between 𝑘̌𝑖 and 𝑐. (a) 𝑘̌𝑖, 𝑐 and 𝑡̂. (b) 𝑑 = 𝑘̌𝑖 ∩ 𝑐 = 𝑘̌𝑖 ∩ 𝑡̂. 

 

 

 

 

Source: The author (2023). 

 

Naturally, not all the intersection points will be part of 𝑑 = 𝑘̌𝑖 ∩ 𝑐, but only those 

within the limits of the edges of the polygons 𝑘̌𝑖 and 𝑐, together with the vertices of 𝑘̌𝑖 

inside 𝑐 and the vertices of 𝑐 inside 𝑘̌𝑖. 

On the other hand, the intersection between two fracture cells, whenever they 

are not parallel, is calculated by the following algorithm: let Ω𝑓𝑘 be the plane containing 

the fracture 𝑘̌𝑖 and let Ω𝑓ℎ be the plane containing the fracture ℎ̌𝑗 . Let 𝑟 = Ω𝑓𝑘 ∩ Ω𝑓ℎ be 

a straight line coplanar to 𝑘̌𝑖 and to ℎ̌𝑗 . We can determine the segments 𝑠1 = 𝑟 ∩ 𝑘̌𝑖 and 

𝑠2 = 𝑟 ∩ ℎ̌𝑗, calculated analogously to Eq. (4.7), so that 𝑘̌𝑖 ∩ ℎ̌𝑗 = 𝑠1 ∩ 𝑠2, as shown in 

Figure 11. 

(

a) 

 

(

b) 

𝛀𝒇𝒌 

 

𝛀𝒇𝒌 

 

𝒌̌𝒊 𝒌̌𝒊 

𝒄 𝒄 

𝒅 

𝑡̂ 𝑡̂ 

(a) (b) 
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Figure 11 – Intersection between 𝑘̌𝑖 and ℎ̌𝑗 . (a) 𝑟 = 𝛺𝑓𝑘 ∩ 𝛺𝑓ℎ. (b) 𝑠1 = 𝑟 ∩ 𝑘̌𝑖. (c) 𝑠2 =

𝑟 ∩ ℎ̌𝑗 . (d) 𝑠 = 𝑠1 ∩ 𝑠2 = 𝑘̌𝑖 ∩ ℎ̌𝑗 . 

 

 

  

 

  

 

 

Source: The author (2023). 

 

The area of the polygon 𝑑 = 𝑡̂ ∩ 𝑘̌𝑖 will be referred from now on as 𝐴𝑡̂,𝑘̌𝑖 and 

will be used in the calculation of the transmissibility between 𝑡̂ and 𝑘̌𝑖, while the length 

of 𝑠 = 𝑘̌𝑖 ∩ ℎ̌𝑗 will be referred from now as 𝐿𝑘̌𝑖,ℎ̌𝑗 and will be used in the calculation of 

the transmissibility between ℎ̌𝑗  and 𝑘̌𝑖. 

4.2.2 The matrix-fracture flux calculation 

As mentioned before, the terms in Eq. (3.11) and Eq. (3.12) corresponding to the 

phase flux between a tetrahedral cell 𝑡̂ and a polygonal fracture cell 𝑘̌𝑖 are calculated 

𝒉̌𝒋 𝒉̌𝒋 

𝒌̌𝒊 𝒌̌𝒊 

𝒉̌𝒋 

𝒌̌𝒊 

𝒉̌𝒋 

𝒌̌𝒊 

𝒓 𝒓 

𝒓 𝒓 

𝛀𝒇𝒉 

𝛀𝒇𝒌 

𝛀𝒇𝒉 

𝛀𝒇𝒌 

𝛀𝒇𝒉 

𝛀𝒇𝒌 

𝛀𝒇𝒉 

𝛀𝒇𝒌 

𝒔𝟏 

𝒔𝟐 

 

𝒔 

(a) (b) 

(c) (d) 
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according to Eq. (3.6), in which 𝜌𝛼 and 𝜆𝛼 are taken upwind and 𝔗𝑡̂,𝑘̌𝑖 is calculated as 

(HOSSEINIMEHR et al., 2022): 

 

 𝔗𝑡̂,𝑘̌𝑖 = [
𝐴𝑡̂,𝑘̌𝑖
〈𝑑𝑡̂,𝑘̌𝑖〉

] [
(ℓ𝑡̂ + 𝑤𝑓𝑘)𝛫𝑡̂𝑘̌𝑖

𝑛 𝛫𝑓𝑘
𝛫
𝑡̂𝑘̌𝑖

𝑛 𝑤𝑓𝑘 +𝛫𝑓𝑘ℓ𝑡̂
] (4.8) 

 

where ℓ𝑡̂ is a characteristic size of the cell 𝑡̂ (here, we adopted the cubic root of its 

volume), 𝑤𝑓𝑘 is the aperture of the fracture Ω𝑓𝑘, 𝛫𝑓𝑘 is so that the permeability tensor of 

Ω𝑓𝑘 is 𝚱𝑓𝑘 = 𝛫𝑓𝑘𝑰3×3, with 𝑰 being the identity matrix, and 𝛫𝑡̂𝑘̌𝑖
𝑛  is defined analogously 

to Eq. (3.44), but considering a normal vector to the plane containing 𝑘̌𝑖. Moreover, 𝐴𝑡̂,𝑘̌𝑖 

is the area of 𝑡̂⋂𝑘̌𝑖 and 〈𝑑𝑡̂,𝑘̌𝑖〉 is calculated as: 

 

 〈𝑑𝑡̂,𝑘̌𝑖〉 = ∫ |𝑟 𝑘̌𝑖,𝑡̂ ∙ 𝑛⃗ 𝑓𝑘|
Ω𝑡̂

𝑑Ω𝑡̂ (4.9) 

 

in which 𝑟 𝑘̌𝑖,𝑡̂ is a vector from the centroid of 𝑡̂⋂𝑘̌𝑖 to a point in Ω𝑡̂ and 𝑛⃗ 𝑘̌𝑖 is the unitary 

normal vector to 𝑘̌𝑖. 

4.2.3 The fracture-fracture flux calculation 

The term in Eq. (3.12) corresponding to the phase flux between two polygonal 

cells (𝑘̌𝑖 and 𝑘̌𝑗) contained in the same fracture Ω𝑓𝑘 and sharing an edge 𝐸̇ (with 𝑁⃗⃗ 𝐸̇ 

outward to 𝑘̌𝑖) is calculated as (HOSSEINIMEHR et al., 2022): 

 

 𝜌𝛼(𝑣 𝛼 ∙ 𝑁⃗⃗ 𝐸̇) = −𝜌𝛼𝜆𝛼𝐾𝑓𝑘

𝐿𝑘̌𝑖,𝑘̌𝑗
𝑑𝑘̌𝑖,𝑘̌𝑗

(𝑝𝑘̌𝑗 − 𝑝𝑘̌𝑖) (4.10) 

 

in which 𝐿𝑘̌𝑖,𝑘̌𝑗 is the length of the edge shared by 𝑘̌𝑖 and 𝑘̌𝑗 and 𝑑𝑘̌𝑖,𝑘̌𝑗 is the distance 

between their centroids. On the other hand, the phase transfer between two polygonal 

cells (𝑘̌𝑖 and ℎ̌𝑗) contained in different fractures Ω𝑓ℎ and Ω𝑓𝑘 is calculated as 

(HOSSEINIMEHR et al., 2022): 
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 (𝜌𝛼𝓆𝛼)𝑘̌𝑖,ℎ̌𝑗 = −(𝜌𝛼𝓆𝛼)ℎ̌𝑗,𝑘̌𝑖 = −𝜌𝛼𝜆𝛼𝐾𝑘̌𝑖,ℎ̌𝑗
𝐻 𝜁𝑘̌𝑖,ℎ̌𝑗 (𝑝ℎ̌𝑗 − 𝑝𝑘̌𝑖) (4.11) 

 

in which 𝐾𝑘̌𝑖,ℎ̌𝑗
𝐻  is the harmonic mean between 𝐾𝑓𝑘 and 𝐾𝑓ℎ, and: 

 

 𝜁𝑘̌𝑖,ℎ̌𝑗 = 2
𝐿𝑘̌𝑖,ℎ̌𝑗

〈𝑑𝑘̌𝑖,ℎ̌𝑗〉 + 〈𝑑ℎ̌𝑗,𝑘̌𝑖〉
 (4.12) 

 

Again, in both cases, 𝜌𝛼 and 𝜆𝛼 are taken upwind. 

4.3 PROJECTION-BASED EMBEDDED DISCRETE FRACTURE MODEL 

The EDFM is capable to produce excellent solutions for high permeability 

fractures, however, their application is limited whenever the fracture permeability is 

much lower than the rock matrix one (ŢENE et al., 2017), because the term 𝔗𝑡̂,𝑘̌𝑖 in Eq. 

(4.8) tends to be smaller when the permeability of the fracture gets smaller, making 

(𝜌𝛼𝓆𝛼)𝑡̂,𝑘̌𝑖, calculated according to Eq. (3.6), less influential in Eq. (3.11) and in the fluid 

displacement modeling. This is the opposite of the proper expected physical behavior 

since a low permeability fracture should work as a barrier to the fluid flow. 

In order to overcome some of the limitations of EDFM, the projection-based 

embedded discrete fracture models (pEDFM) were developed (JIANG; YOUNIS, 2017; 

ŢENE et al., 2017; RAO et al., 2020; HOSSEINIMEHR et al., 2022). Based on the 

projections of the areas of fractures on some faces of the cells in which they are contained, 

this strategy computes the interaction between the fractures and neighboring cells sharing 

those faces that receive the projections, enriching the model. Besides, these projections 

also restrict the interactions between the two tetrahedrons sharing the faces that receive 

them, what makes pEDFM adequate to represent the barrier to the flow due to the 

presence of a low permeability fracture. 

Initially, it was developed to be applied on Cartesian grids (JIANG; YOUNIS, 

2017; ŢENE et al., 2017; RAO et al., 2020), later it was extended for corner-point grids 

(HOSSEINIMEHR et al., 2022) and, in the present work, for the first time in literature, 

we have adapted it for unstructured tetrahedral grids. When applying pEDFM on 

Cartesian or corner-point (structured) grids, we deal with a fracture that crosses a six-

sided polyhedron, from which some of them are chosen to receive the projections that 
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will modify the formulation. Figure 12 shows a fracture cell 𝑘̌𝑖 intersecting a hexahedral 

cell 𝐿̂, with the projections of the referred intersection on the faces 𝐹̅ and 𝐺̅  that are 

indicated by the red lines in the picture to the left. Through these projections, 𝑘̌𝑖 can 

interact with 𝑅̂ and 𝑆̂, and restricts their interaction with 𝐿̂. Also, in Figure 12, to the right, 

we can see a light blue line, representing the set of projections of the fracture Ω𝑓𝑘, on 

various faces, along the domain. 

In this case, as previously mentioned, there are additional transmissibility terms 

between 𝑘̌𝑖 and 𝑅̂, and between 𝑘̌𝑖 and 𝑆̂, whose calculation is not a fully resolved issue, 

as well as the choosing of the faces to receive the projections and the calculation of the 

remainder area of these faces to the interaction between 𝐿̂ and 𝑅̂ and between 𝐿̂ and 𝑆̂. 

Ţene et al. (2017) proposed an expression for the transmissibility term between 

𝑘̌𝑖 and 𝑅̂ to be applied on k-orthogonal Cartesian grids, which is here adapted for the 

purposes of this work and that is applied on an expression similar to Eq. (3.6), as: 

 

 𝔗𝑅̂,𝑘̌𝑖 = [
𝐴𝐿̂,𝑘̌𝑖
𝐹

〈𝑑𝑅̂,𝑘̌𝑖〉
] [
(𝑤𝑓𝑘 + ℓ𝑅̂)𝛫𝑅̂𝑘̌𝑖

𝑛 𝛫𝑓𝑘
𝛫
𝑅̂𝑘̌𝑖

𝑛 𝑤𝑓𝑘 + 𝛫𝑓𝑘ℓ𝑅̂
] (4.13) 

 

in which 𝐴𝐿̂,𝑘̌𝑖
𝐹  is the area of the projection Ρ𝐿̂,𝑘̌𝑖

𝐹  of 𝐿̂ ∩ 𝑘̌𝑖 on 𝐹̅. Jiang and Younis (2017) 

realized, however, that, if L̂ (in Figure 12) is a ultra-low permeability cell, this would 

prevent communication between 𝑘̌𝑖 and 𝑅̂, so that 𝐿̂ should be used in the calculation of 

𝔗𝑅̂,𝑘̌𝑖. The expression proposed by them is here adapted as: 

 

 𝔗𝑅̂,𝑘̌𝑖 = [
𝐴𝐿̂,𝑘̌𝑖
𝐹

〈𝑑𝑅̂,𝑘̌𝑖〉
] [

(𝑤𝑓𝑘 + ℓ𝑅̂ + ℓ𝐿̂)𝛫𝐿̂𝑘̌𝑖
𝑛 𝛫𝑅̂𝑘̌𝑖

𝑛 𝛫𝑓𝑘
𝛫
𝐿̂𝑘̌𝑖

𝑛 𝛫
𝑅̂𝑘̌𝑖

𝑛 𝑤𝑓𝑘 + 𝛫𝐿̂𝑘̌𝑖
𝑛 𝛫𝑓𝑘ℓ𝑅̂ + 𝛫𝑅̂𝑘̌𝑖

𝑛 𝛫𝑓𝑘ℓ𝐿̂
] (4.14) 

 

On the other hand, Rao et al. (2020) proposed that the influence of 𝐿̂ should be 

the smaller, the smaller is the volume between 𝑘̌𝑖 and the face 𝐹̅, in such a way that, if 𝑘̌𝑖 

coincides with 𝐹̅, the expression shown in Eq. (4.14) should become the one shown in 

Eq. (4.13). An alternative expression that meets the recommendations of Rao et al. (2020) 

can be: 
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Figure 12 - Fractures projections on mesh faces. 

 

 

 

Source: Adapted from HosseiniMehr et al. (2022). 

 

 𝔗𝑅̂,𝑘̌𝑖 = [
𝐴𝐿̂,𝑘̌𝑖
𝐹

〈𝑑𝑅̂,𝑘̌𝑖〉
]

[
 
 
 
 
 (𝑤𝑓𝑘 + ℓ𝑅̂ +

𝑉𝑘̌𝑖𝐹
𝐿̂

Ω𝐿̂
ℓ𝐿̂)𝛫𝐿̂𝑘̌𝑖

𝑛 𝛫𝑅̂𝑘̌𝑖
𝑛 𝛫𝑓𝑘

𝛫
𝐿̂𝑘̌𝑖

𝑛 𝛫
𝑅̂𝑘̌𝑖

𝑛 𝑤𝑓𝑘 + 𝛫𝐿̂𝑘̌𝑖
𝑛 𝛫𝑓𝑘ℓ𝑅̂ +

𝑉
𝑘̌𝑖𝐹̅
𝐿̂

Ω𝐿̂
𝛫
𝑅̂𝑘̌𝑖

𝑛 𝛫𝑓𝑘ℓ𝐿̂
]
 
 
 
 
 

 (4.15) 

 

in which 𝑉𝑘̌𝑖𝐹̅
𝐿̂  is the volume of 𝐿̂ between 𝑘̌𝑖 and the face 𝐹̅. More than this, Rao et al. 

(2020) were also worried with the possibility of the interaction between 𝑘̌𝑖 and 𝑅̂ being 

restricted by the presence of a fracture within 𝑅̂. Figure 13 shows fracture cells (ℎ̌𝑗  and 

ℎ̌𝑚) intersecting 𝑅̂, whose projections on 𝐹̅ intersects the projection of 𝑘̌𝑖 on the same 

face. Rao et al. (2020) proposes that, in this condition, ℎ̌𝑗  and ℎ̌𝑚 should participate in the 

calculation of 𝔗𝑅̂,𝑘̌𝑖. Thus, the Eq. (4.15) becomes: 

 

 𝔗𝑅̂,𝑘̌𝑖 = [
𝐴̃𝐿̂,𝑘̌𝑖
𝐹

〈𝑑𝑅̂,𝑘̌𝑖〉
]

[
 
 
 
 
 (𝑤𝑓𝑘 + ℓ𝑅̂ +

𝑉𝑘̌𝑖𝐹
𝐿̂

Ω𝐿̂
ℓ𝐿̂)𝛫𝐿̂𝑘̌𝑖

𝑛 𝛫𝑅̂𝑘̌𝑖
𝑛 𝛫𝑓𝑘

𝛫
𝐿̂𝑘̌𝑖

𝑛 𝛫
𝑅̂𝑘̌𝑖

𝑛 𝑤𝑓𝑘 + 𝛫𝐿̂𝑘̌𝑖
𝑛 𝛫𝑓𝑘ℓ𝑅̂ +

𝑉
𝑘̌𝑖𝐹̅
𝐿̂

Ω𝐿̂
𝛫
𝑅̂𝑘̌𝑖

𝑛 𝛫𝑓𝑘ℓ𝐿̂
]
 
 
 
 
 

 (4.16) 
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𝐴𝐿̂,𝑘̌𝑖
𝐹̅  

𝐴𝐿̂,𝑘̌𝑖
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with: 

 

 𝐴̃𝐿̂,𝑘̌𝑖
𝐹 = 𝐴𝐿̂,𝑘̌𝑖

𝐹 − 𝐴 (Ρ𝐿̂,𝑘̌𝑖
𝐹 ∩ Ρ𝑅̂,ℎ̌𝑚

𝐹 ) − 𝐴(Ρ𝐿̂,𝑘̌𝑖
𝐹 ∩ Ρ𝑅̂,ℎ̌𝑗

𝐹 ) (4.17) 

 

in which 𝐴 (Ρ𝐿̂,𝑘̌𝑖
𝐹 ∩ Ρ𝑅̂,ℎ̌𝑚

𝐹 ) is the area of Ρ𝐿̂,𝑘̌𝑖
𝐹 ∩ Ρ𝑅̂,ℎ̌𝑚

𝐹  (analogous to ℎ̌𝑗). 

Besides, Rao et al. (2020) proposed one more sophistication for pEDFM: the 

additional transmissibility between two fracture cells intersecting neighboring rock 

matrix cells. Since the projections of 𝑘̌𝑖 and ℎ̌𝑗  on 𝐹̅ intersect each other, in Figure 13, 

there should be an additional transmissibility term between 𝑘̌𝑖 and ℎ̌𝑗 . This term can be 

defined as: 

 

 𝔗𝑘̌𝑖,ℎ̌𝑗 = [2
𝐴 (Ρ𝐿̂,𝑘̌𝑖

𝐹 ∩ Ρ𝑅̂,ℎ̌𝑗
𝐹 )

〈𝑑𝑘̌𝑖,ℎ̌𝑗〉 + 〈𝑑ℎ̌𝑗,𝑘̌𝑖〉
] [
𝒲𝑛𝛫𝐿̂𝑘̌𝑖

𝑛 𝛫𝑅̂ℎ̌𝑗
𝑛 𝛫𝑓𝑘𝛫𝑓ℎ

𝒲𝑑
] (4.18) 

 

in which: 

 

 𝒲𝑛 = 𝑤𝑓𝑘 + 𝑤𝑓ℎ +
𝑉𝑘̌𝑖𝐹̅
𝐿̂

Ω𝐿̂
ℓ𝐿̂ +

𝑉ℎ̌𝑗𝐹
𝑅̂

Ω𝑅̂
ℓ𝑅̂ (4.19) 

 

and: 

 

 

𝒲𝑑 = 𝛫𝐿̂𝑘̌𝑖
𝑛 𝛫𝑅̂ℎ̌𝑗

𝑛 𝛫𝑓ℎ𝑤𝑓𝑘 + 𝛫𝐿̂𝑘̌𝑖
𝑛 𝛫𝑅̂ℎ̌𝑗

𝑛 𝛫𝑓𝑘𝑤𝑓ℎ +
𝑉𝑘̌𝑖𝐹̅
𝐿̂

Ω𝐿̂
𝛫𝑅̂ℎ̌𝑗
𝑛 𝛫𝑓𝑘𝛫𝑓ℎℓ𝐿̂

+
𝑉ℎ̌𝑗𝐹
𝑅̂

Ω𝑅̂
𝛫𝐿̂𝑘̌𝑖
𝑛 𝛫𝑓𝑘𝛫𝑓ℎℓ𝑅̂ 

(4.20) 

 

The transmissibility expressions presented from Eq. (4.13) to Eq. (4.16) can be 

applied on TPFA equations similar to Eq. (3.6) in order to determine the additional 

pEDFM fluxes through the face F̅ that receive the projections. Besides, the pEDFM flux 

between 𝑘̌𝑖 and ℎ̌𝑗 , for the case shown in Figure 13, can be calculated similarly, using the 

transmissibility presented in Eq. (4.18), as: 
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Figure 13 – Intersections between fractures projections on the same face. 

 

 

 

Source: The author (2023). 

 

 (𝜌𝛼𝓆𝛼)𝑘̌𝑖,ℎ̌𝑗 = −(𝜌𝛼𝓆𝛼)ℎ̌𝑗,𝑘̌𝑖 = −𝜌𝛼𝜆𝛼𝔗𝑘̌𝑖,ℎ̌𝑗 (𝑝ℎ̌𝑗 − 𝑝𝑘̌𝑖) (4.21) 

 

It is necessary, however, to determine if 𝐹̅ receives or not the projections, from 

which the development presented in Eq. (4.13) to Eq. (4.20) stems. Ţene et al. (2017), 

Jiang and Younis (2017) and Rao et al. (2020) indicated different strategies with this 

objective, but all these selection methods were developed for Cartesian grids. In this 

work, the followed strategy is that presented by HosseiniMehr et al. (2022) to be applied 

on corner-point grids: given a face 𝐹̅, shared by 𝐿̂ and 𝑅̂, it will receive the projection of 

𝑘̌𝑖 ∩ 𝐿̂, if Ω𝑓𝑘 intersects the segment connecting the centroids of 𝐿̂ and 𝑅̂, as shown in 

Figure 14. This strategy makes sense for unstructured grids and is capable, as far as known 

by the tests realized during the development of this work, to lead to continuous sets of 

projections, what is very important to good performance of pEDFM. 

Other important aspect of the pEDFM application is the determination of the 

remainder area of 𝐹̅, available to the interaction between 𝐿̂ and 𝑅̂ (𝐴
𝐿̂𝑅̂
𝑝𝐸𝐷𝐹𝑀

). Since this 

work focuses on unstructured grids, the approaches proposed, about this issue, by Ţene 

et al. (2017), Jiang and Younis (2017), Rao et al. (2020) or HosseiniMehr et al. (2022) 

are not applicable. All these authors considered that 𝐴
𝐿̂𝑅̂
𝑝𝐸𝐷𝐹𝑀

 can be determined as: 

𝐿̂ 𝑅̂ 

𝑘̌𝑖 

ℎ̌𝑗 

𝐴𝐿̂,𝑘̌𝑖
𝐹̅  

𝐴𝑅̂,ℎ̌𝑗
𝐹̅  

ℎ̌𝑚 
𝐴𝑅̂,ℎ̌𝑚
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Figure 14 - Intersection between 𝛺𝑓𝑘  and the segment connecting 𝐿̂ and 𝑅̂. The blue 

region represents the intersection 𝑘̌𝑖 ∩ 𝐿̂. 

 

Source: The author (2023). 

 

 

 𝐴
𝐿̂𝑅̂
𝑝𝐸𝐷𝐹𝑀

= 𝐴𝐹 − 𝐴(⋃ ⋃ Ρ𝐿̂,𝑘̌𝑖
𝐹

𝓃𝑝𝑜𝑙𝑦
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

∪ ⋃ ⋃ Ρ𝑅̂,𝑘̌𝑖
𝐹

𝓃𝑝𝑜𝑙𝑦
𝑘

𝑖=1

𝓃𝑓𝑟𝑎𝑐

𝑘=1

) (4.22) 

 

in which 𝐴𝐹 is the original area of the face 𝐹̅. Figure 15 shows why this approach is not 

applicable and the alternative chosen for this work. This figure shows a set of triangle 

cells, in a 2-D unstructured grid (for didactic purposes), crossed by a fracture Ω𝑓𝑘. The 

referred approach creates a discontinuous set of projections, so that the face 𝐹̅, shared by 

𝐿̂ and 𝑅̂, is not completely covered by the projection of 𝐿̂ ∩ Ω𝑓𝑘 (see Figure 15a). This 

way, there would be an unexpected interaction between 𝐿̂ and 𝑅̂. Figure 15b shows how 

the set of projections ideally should be in this case, but it is extremely difficult to 

operationalize this construction when dealing with unstructured meshes in 3-D. By 

simplicity, in this work, it is considered that if Ω𝑓𝑘 intersects the segment connecting the 

𝐿̂ 

𝑅̂ 

𝛀𝒇𝒌 

𝒌̌𝒊 

𝐹̅ 
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centroids of two cells sharing a face, the interaction between these two grid elements (𝐿̂ 

and 𝑅̂) through that face is completely cancelled, as shown in Figure 15c. 

 

Figure 15 - Set of fractures projections on grid faces. (a) Faces projections, creating a 

discontinuous set. Circles highlighting discontinuities. (b) Ideal set of projections for 

this case. (c) Set of projections as done in this work. Circles highlighting the complete 

coverage of the faces by the projections. 

 

   

 

 

Source: The author (2023). 

 

This strategy is notably over conservative and introduces errors (excessive 

interactions cancellation) in the regions coinciding with the limits of the fractures. On the 

other hand, it is a simple way to guarantee the absence of unexpected interactions between 

cells through all the area of the fracture.  

There are other relevant simplifications in the pEDFM model applied in this 

work. First, the transmissibility expressions presented from Eq. (4.14) to Eq. (4.16) are 

not considered, so that the matrix-fracture pEDFM interactions are calculated here 

according to Eq. (4.13). The implementation and testing of those more sophisticated 

transmissibility terms remains as further works. Moreover, the additional transmissibility 

between two fracture cells intersecting neighboring rock matrix cells proposed by Rao et 

al. (2020), to be calculated according to Eq. (4.18) to Eq. (4.20), are also not considered 

in this work. 

Similarly, if, for example, the fracture cell 𝑘̌𝑖 intersects the segment connecting 

the centroids of two fracture cells (ℎ̌𝑗 and ℎ̌𝑚), as shown in Figure 16, the communication 

(a) (b) (c) 

𝐿̂ 𝑅̂ 𝐿̂ 𝑅̂ 𝐿̂ 𝑅̂ 

Ω𝑓𝑘  Ω𝑓𝑘  Ω𝑓𝑘  



73 
 

 

between ℎ̌𝑗  and ℎ̌𝑚 could also be blocked, while 𝑘̌𝑖 interacts with ℎ̌𝑗  according to Eq. 

(4.11). 

 

Figure 16 – Intersection between fractures in the context of pEDFM. 

 

 

 

Source: The author (2023). 

 

Besides, the projection of 𝑘̌𝑖 ∩ ℎ̌𝑗  on the edge 𝐸̇, shared by ℎ̌𝑗  and ℎ̌𝑚, would 

cause an additional interaction between 𝑘̌𝑖 and ℎ̌𝑚. However, these fracture-fracture 

pEDFM interactions are also not considered in this work, in order to avoid the interruption 

of the flow through a high permeability fracture crossed by a barrier. In this work, the 

channels (i.e., high permeability fractures) always overcome the barriers (i.e., low 

permeability fractures) when they cross. Ideally, the user of the simulator could choose, 

at each intersection, which of the fractures would prevail, but, in the present work, we 

have chosen to avoid the fracture-fracture pEDFM interactions to ensure the prevalence 

of channels over barriers. 

Figure 17 summarizes, in a 2-D unstructured grid (for didactic reasons, but it is 

analogous to 3-D), all the interactions between two rock matrix cells (𝐿̂ and 𝑅̂) sharing a 

face (𝐹̅) and a fracture Ω𝑓ℎ intersecting them, while the communication between 𝐿̂ and 𝑅̂ 

𝒉̌𝒋 
𝒌̌𝒊 

𝛀𝒇𝒉 

𝛀𝒇𝒌 

𝒉̌𝒎 

𝐿𝑘̌𝑖,ℎ̌𝑚
𝐸̇  

𝐸̇ 

𝐿𝑘̌𝑖,ℎ̌𝑚 
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themselves is cancelled. It is also useful, together with Figure 18, to review all the 

numerical formulation applied in this work in the context of EDFM and pEDFM.  

  

Figure 17 - Summary of EDFM and pEDFM interactions in a 2-D unstructured grid. 

 

 

 

Source: The author (2023). 

 

Figure 17 indicates the EDFM interactions between each rock matrix cell (𝐿̂ or 

𝑅̂) and the fractures cells intersecting it, according to the development shown in section 

4.2. The interactions between fracture cells are also obtained according to section 4.2, 

considering only EDFM (see Figure 18). Moreover, the blue arrow, for example, shows 

that there is a pEDFM connection between 𝐿̂ and the fracture cell ℎ̌𝑗 , in addition to the 

one that already existed due to EDFM (see Figure 18), through the projection on 𝐹̅ of the 

part of ℎ̌𝑗  within 𝑅̂. This additional pEDFM interaction is computed using the 

transmissibility presented in Eq. (4.13). 

In the same way, there are additional pEDFM interactions between 𝐿̂ and ℎ̌𝑖, 

between 𝑅̂ and ℎ̌𝑗 , and between 𝑅̂ and ℎ̌𝑘, also to be calculated using the transmissibility 

of Eq. (4.13). Note that between 𝐿̂ and ℎ̌𝑖 and between 𝑅̂ and ℎ̌𝑘 there is not any EDFM 

connections, since there are not intersections between them.  
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All these mentioned interactions will give rise to flux calculations, as shown in 

Eq. (3.6), Eq. (4.10) and Eq. (4.11) (see Figure 18), that are used in Eqs. (3.11) and (3.12) 

and compose the global system of equations that will describe the fluid flow we pretend 

to simulate. 

 

Figure 18 - Summary of transmissibility calculations used in this work, in the context of 

matrix-fracture and fracture-fracture interactions. 

 

 

 

Source: The author (2023). 
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5 APPLICATIONS 

This section presents some applications of the numerical schemes presented in 

this thesis, in order to demonstrate their robustness in dealing with some interesting 

problems. The first subsection presents some tests about MPFA-D, as well as the 

comparison of the different interpolation strategies studied here. The second subsection 

presents a demonstration of effectiveness of MPFA-DNL, the third subsection presents 

one benchmark test of single-phase flow in fractured media and, finally, the last 

subsection presents the tests about immiscible two-phase flow in anisotropic porous 

media, illustrating the application of pEDFM on tetrahedral unstructured grids. 

MPFA-D, MPFA-DNL, as well as all their requirements in terms of 

preprocessing or postprocessing, were implemented by the author in MATLAB® (an 

environment that allows easy prototyping and have wide library of functions), in the 

PADMEC researching group of UFPE. The framework of DARSim software 

(HOSSEINIMEHR et al., 2022) was used to perform simulations of immiscible two-

phase flow. It was originally developed, at TUDelft, for Cartesian and corner-point grids 

and was adapted to make it capable of applying pEDFM on tetrahedral meshes, according 

to what was presented in section 4. The mesh generation, for the discretization of the 

domain, was made by using the free software GMSH (GEUZAINE; REMACLE, 2009). 

The visualization of the resulting pressure and saturation fields was made by using VisIt® 

(CHILDS et al., 2012) and some graphs were made by using MATLAB®. 

5.1 MPFA-D FOR TETRAHEDRAL UNSTRUCTURED GRIDS 

This subsection is not in the context of fractured reservoirs, but it presents some 

application of the developed MPFA-D (LIRA FILHO et al., 2021) in solving some 

benchmark problems, in the context of unstructured tetrahedral grids, including the 

comparison of the interpolation strategies presented here: LPEW1, LPEW2, LPEW3, 

LPEW-WAP and GLS. The gravity effects are not considered. 

It is convenient to define some parameters to be used in the following analysis. 

Considering that the exact solution is given by 𝓅 and the approximate solution is 

represented by 𝑝, we can define the relative L-2 norm of error for the pressure (EYMARD 

et al., 2011; LIRA FILHO et al., 2021) as: 
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 ℓ𝑝
2 = √

∑ (𝓅𝑖̂ − 𝑝𝑖̂)2Ω𝑖̂
𝓃𝑡𝑒𝑡𝑟𝑎
𝑖=1

∑ 𝓅𝑖̂2Ω𝑖̂
𝓃𝑡𝑒𝑡𝑟𝑎
𝑖=1

 (5.1) 

 

and for its gradient ∇𝑝 as: 

 

 ℓ∇𝑝
2 = √

∑ |∇𝓅𝑖̂ − ∇𝑝𝑖̂|2Ω𝑖̂
𝓃𝑡𝑒𝑡𝑟𝑎
𝑖=1

∑ |∇𝓅𝑖̂|2Ω𝑖̂
𝓃𝑡𝑒𝑡𝑟𝑎
𝑖=1

 (5.2) 

 

for which the numerical convergence rate is given by (EYMARD et al., 2011): 

 

 ℛ𝔷 = −3

𝑙𝑜𝑔 (
ℓ𝔷,𝓂
2

ℓ𝔷,𝓂−1
2 )

𝑙𝑜𝑔 (
𝓃𝑡𝑒𝑡𝑟𝑎
𝓂

𝓃𝑡𝑒𝑡𝑟𝑎
𝓂−1 )

 (5.3) 

 

for two successive meshes1 (𝓂− 1 and 𝓂), with 𝓂 > 1 and 𝔷 = 𝑝, ∇𝑝. 

5.1.1 Oblique Fracture 

This example is based on the benchmark tests 6 and 7 from Herbin and Hubert 

(2008). Consider a domain Ω𝑚 = [0,1]3 with a diagonal fracture Ω𝑓 dimensionally 

represented, in this example, as a 3-D entity (this is not an EDFM or pEDFM application). 

Ω𝑚 is divided in two parts (Ω𝑚1 and Ω𝑚2) separated by Ω𝑓, so that the geometrical 

definition of the whole problem is: 

 

 {

Ω𝑚1 = {(𝑥, 𝑦, 𝑧) ∈ Ω𝑚; 𝜙1(𝑥, 𝑦, 𝑧) < 0}

Ω𝑓 = {(𝑥, 𝑦, 𝑧); 𝜙1(𝑥, 𝑦, 𝑧) > 0, 𝜙2(𝑥, 𝑦, 𝑧) < 0}

Ω𝑚2 = {(𝑥, 𝑦, 𝑧) ∈ Ω𝑚; 𝜙2(𝑥, 𝑦, 𝑧) > 0}

 (5.4) 

 

with 𝜙1(𝑥, 𝑦, 𝑧) = 𝑦 − 𝛿(𝑥 − 0.5) − 0.475 and 𝜙2(𝑥, 𝑦, 𝑧) = 𝜙1(𝑥, 𝑦, 𝑧) − 0.05, with 

the slope of the fracture being 𝛿 = 0.2. The Neumann boundary conditions (Γ𝑚
𝑁 and Γ𝑓

𝑁) 

are defined at 𝑦 = 0 and 𝑦 = 1 with the prescribed value 𝑔𝑁 = 0. The rest of the 

 
1 The meshes used in this work can be found at the following address: https://github.com/tuliocavalcante/mesh 

https://github.com/tuliocavalcante/mesh
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boundary is considered as Dirichlet boundaries (Γ𝑚
𝐷 and Γ𝑓

𝐷). Beyond this, two cases are 

defined. 

5.1.1.1 Drain Case 

In this case, there is a plane solution (implying in the Dirichlet boundary 

conditions) given by: 

 

 𝓅1(𝑥, 𝑦, 𝑧) = −𝑥 − 𝛿𝑦 (5.5) 

 

with an anisotropic diffusion tensor defined as: 

 

 𝚱1 = 𝑅𝜃 [
𝛼 0 0
0 𝛽 0
0 0 1

] 𝑅𝜃
𝑇 (5.6) 

 

with 𝜃 = atan 𝛿 and 𝑅𝜃 being the rotation matrix in the 𝑧 axis, defined as: 

 

 𝑅𝜃 = [
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

] (5.7) 

 

and with 𝛼 and 𝛽, to be applied in Eq. (5.6), being defined as: 

 

 (
𝛼

𝛽
) = (

102

10
)  in Ω𝑓 and (

𝛼

𝛽
) = (

1

10−1
)  in Ω𝑚1 ∪ Ω𝑚2 (5.8) 

 

5.1.1.2 Barrier Case  

In this case, there is a piecewise plane solution (implying in the Dirichlet 

boundary conditions) given by: 

 

 𝓅2(𝑥, 𝑦, 𝑧) = {

−𝜙1(𝑥, 𝑦, 𝑧) on Ω𝑚1
−𝜙1(𝑥, 𝑦, 𝑧) 10

−2⁄  on Ω𝑓
−𝜙3(𝑥, 𝑦, 𝑧) on Ω𝑚2

 (5.9) 
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with 𝜙3(𝑥, 𝑦, 𝑧) = 𝑦 − 𝛿(𝑥 − 0.5) + 0.02 and with a diffusion tensor defined as: 

 

 𝚱2 = [
𝛼 0 0
0 𝛼 0
0 0 1

] (5.10) 

 

in which 𝛼 = 10−2 in Ω𝑓 and 𝛼 = 1 in Ω𝑚1 ∪ Ω𝑚2. 

5.1.1.3 Results 

This test was used to prove the linearity-preserving characteristic (that should be 

called “planicity preserving”, in 3-D) of the interpolation strategies studied here, namely: 

LPEW1, LPEW2, LPEW3 (LIRA FILHO et al., 2021), LPEW-HAP (YANG; GAO, 

2020) and GLS (DONG; KANG, 2021, 2022). The L-2 norm of error of the pressure (ℓ𝑝
2) 

of these two cases (high permeability fracture and low permeability fracture) are 

presented in Table 1, which shows that all the evaluated methods are capable to recover 

the exact piecewise plane continuous solutions, as those in cases 5.1.1.1 and 5.1.1.2. 

 

Table 1 - The L-2 norm of error of the pressure for the test 5.1.1 - Oblique Fracture. 

 

   ℓ𝑝
2  

Case 𝓃𝑡𝑒𝑡𝑟𝑎 LPEW1 LPEW2 LPEW3 LPEW-HAP GLS 

5.1.1.1 30 5.75e-11 5.91e-12 5.75e-12 2.21e-14 5.04e-14 

5.1.1.2 30 6.48e-13 1.44e-12 2.29e-12 3.62e-16 2.44e-16 

 

Source: The author (2023). 

 

5.1.2 Homogeneous and Mild Anisotropic Media 

This is the test 6 of the work of c with a regular solution over the domain Ω𝑚 =

[0,1]3, that implies in a non-homogeneous Dirichlet boundary condition, defined as: 

 

 𝓅(𝑥, 𝑦, 𝑧) = 1 + sin(𝜋𝑥) sin [𝜋 (𝑦 +
1

2
)] sin [𝜋 (𝑧 +

1

3
)] (5.11) 
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with an anisotropic diffusion tensor defined as: 

 

 Κ = [
1.5 0.5 0
0.5 1.5 0.5
0 0.5 1

] (5.12) 

 

and with a source term computed according to:  

 

 𝑞(𝑥, 𝑦, 𝑧) = −𝚱∇𝓅(𝑥, 𝑦, 𝑧) (5.13) 

 

This test was used to compare the convergence behavior of the interpolation 

strategies studied here. The results presented in Table 2 shows that LPEW1 achieve 

second order of accuracy for pressure (Figure 19a) and first order of accuracy for fluxes 

(Figure 19b), as expected. Note that the LPEW1 convergence rate for the flux is bigger 

than 1, in this example, for all the tested meshes. 

 

Table 2 - Results for the test 5.1.2 - Homogeneous and Mild Anisotropic Media. The 

“unexpected” results, in terms of convergence rates, are highlighted in red. 

 

 LPEW1 LPEW-HAP 

𝓃𝑡𝑒𝑡𝑟𝑎 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 

215 0.052 - 0.587 - 0.056 - 0.719 - 

2,003 0.013 1.838 0.267 1.059 0.043 0.363 1.380 -0.877 

3,898 0.008 2.055 0.206 1.173 0.065 -1.909 2.585 -2.826 

7,711 0.005 2.037 0.163 1.028 0.008 9.133 0.375 8.486 

15,266 0.004 1.682 0.129 1.043 0.027 -5.305 1.956 -7.251 

30,480 0.002 2.174 0.101 1.050 0.016 2.378 1.378 1.520 

61,052 0.001 1.749 0.079 1.073 0.052 -5.094 5.721 -6.149 

 

Source: The author (2023). 

 

The results obtained by LPEW2, LPEW3 and GLS are almost coincident with 

those from LPEW1, as shown in Figure 19. The results from LPEW-HAP (shown in Table 

2 and Figure 19), however, indicate that its convergence depends on the mesh. It 
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converges if applied to “regular” meshes, as those used by Yang and Gao (2020), but not 

necessarily when applied to “truly unstructured” meshes, as those here used, got from the 

benchmark work of Eymard et al. (2011). Because of this, LPEW-HAP has been 

discarded, in this work, as interpolation strategy, when simulating two-phase flow in 

fractured porous media, using tetrahedral unstructured grids. 

 

 

Figure 19 – Convergence graphs for the test 5.1.2 - Homogeneous and Mild Anisotropic 

Media. 

 

 

 

 

Source: The author (2023). 

 

5.1.3 Heterogeneous and Anisotropic Media 

This is the benchmark test case 2 from Eymard et al. (2011) with a regular 

solution, over the domain Ω𝑚 = [0,1]3, that implies in a non-homogeneous Dirichlet 

boundary condition, defined as: 

 

 𝓅(𝑥, 𝑦, 𝑧) = 𝑥3𝑦2𝑧 + 𝑥 sin(2𝜋𝑥𝑧) sin(2𝜋𝑥𝑦) sin(2𝜋𝑧) (5.14) 

 

with an anisotropic and heterogeneous diffusion tensor defined as: 
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(a) (b) 

ℓ𝑝
2  ℓ∇𝑝

2  

PRESSURE PRESSURE GRADIENT 



82 

 

 

 

 Κ(𝑥, 𝑦, 𝑧) = [

𝑦2 + 𝑧2 + 1 −𝑥𝑦 −𝑥𝑧

−𝑥𝑦 𝑥2 + 𝑧2 + 1 −𝑦𝑧

−𝑥𝑧 −𝑦𝑧 𝑥2 + 𝑦2 + 1

] (5.15) 

 

The source term is calculated similarly to Eq. (5.13). Table 3 presents the 

comparison between the results of LPEW3 and GLS, which are almost coincident, in the 

same way that those from LPEW1 and LPEW2, achieving second order of accuracy for 

pressure (Figure 20a) and first order of accuracy for fluxes (Figure 20b). Again, the 

LPEW-HAP was not capable to ensure the convergence, reinforcing the decision, 

affirmed in the previous example, not to use it in the simulations using unstructured grids. 

 

Table 3 - Results for the test 5.1.3 - Heterogeneous and Anisotropic Media. 

 

 LPEW3 GLS 

𝓃𝑡𝑒𝑡𝑟𝑎 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 

215 0.506 - 0.980 - 0.509 - 0.985 - 

2,003 0.128 1.848 0.535 0.813 0.132 1.817 0.548 0.789 

3,898 0.083 1.945 0.448 0.802 0.086 1.910 0.458 0.808 

7,711 0.061 1.367 0.358 0.986 0.064 1.307 0.370 0.938 

15,266 0.038 2.104 0.283 1.027 0.040 2.038 0.293 1.017 

30,480 0.024 1.915 0.228 0.951 0.026 1.852 0.235 0.960 

61,052 0.017 1.654 0.180 1.004 0.018 1.681 0.186 1.001 

 

Source: The author (2023). 

 

5.1.4 Homogeneous and Highly Anisotropic Media 

This is the benchmark test case 3 from Eymard et al. (2011) with an analytic 

solution, over the domain Ω𝑚 = [0,1]3, that implies in a non-homogeneous Dirichlet 

boundary condition, defined as: 

 

 𝓅(𝑥, 𝑦, 𝑧) = sin(2𝜋𝑥) sin(2𝜋𝑦) sin(2𝜋𝑧) (5.16) 
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Figure 20 – Convergence graphs for the test 5.1.3 - Heterogeneous and Anisotropic 

Media. 

 

 

 

 

Source: The author (2023). 

 

with a highly anisotropic diffusion tensor defined as: 

 

 Κ = [
1 0 0
0 1 0
0 0 1,000

] (5.17) 

 

and with a source term computed according to Eq. (5.13). 

This test was also used to compare the convergence behavior of the interpolation 

strategies studied here. The results presented in Table 4 shows that GLS achieve second 

order accuracy for pressure and first order accuracy for fluxes, as expected. In this case, 

however, LPEW1, LPEW2 and LPEW3 were unsuccessful in guarantee the convergence, 

as presented in Figure 21. Table 4 also shows the results of LPEW2, demonstrating the 

inability of the authorial interpolation methods to handle strongly anisotropic tensors. 

Because of this, LPEW1, LPEW2 and LPEW3 have been discarded, in this work, as 

interpolation strategy, when simulating two-phase flow in fractured porous media. 
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Table 4 - Results for the test 5.1.4 - Homogeneous and Highly Anisotropic Media. The 

“unexpected” results, in terms of convergence rates, are highlighted in red. 

 

 GLS LPEW2 

𝓃𝑡𝑒𝑡𝑟𝑎 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 

215 1.066 - 1.060 - 1.090 - 1.139 - 

2,003 0.244 1.983 0.502 1.005 11.244 -3.137 20.725 -3.900 

3,898 0.160 1.897 0.423 0.776 0.979 11.000 2.108 10.299 

7,711 0.106 1.821 0.334 1.035 1.227 -0.995 3.362 -2.054 

15,266 0.066 2.095 0.271 0.911 1.183 0.159 3.793 -0.530 

30,480 0.042 1.930 0.216 1.001 1.853 -1.947 7.316 -2.850 

61,052 0.027 1.979 0.171 0.991 2.773 -1.740 12.646 -2.364 

 

Source: The author (2023). 

 

Figure 21 – Convergence graphs for the test 5.1.4 - Homogeneous and Highly 

Anisotropic Media. 

 

 

 

 

Source: The author (2023). 
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5.1.5 Four Anisotropic Regions 

This is the benchmark test case 5 from Eymard et al. (2011) with a domain Ω𝑚 =

[0,1]3 divided into four subdomains Ω𝑚 =∪𝑖=1
4 Ω𝑖: 

 

 

{
 
 

 
 Ω1 = {(𝑥, 𝑦, 𝑧) ∈ [0,1]

3 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 ≤ 0.5, 𝑧 ≤ 0.5}

Ω2 = {(𝑥, 𝑦, 𝑧) ∈ [0,1]
3 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 > 0.5, 𝑧 ≤ 0.5}

Ω3 = {(𝑥, 𝑦, 𝑧) ∈ [0,1]
3 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 > 0.5, 𝑧 > 0.5}

Ω4 = {(𝑥, 𝑦, 𝑧) ∈ [0,1]
3 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦 ≤ 0.5, 𝑧 > 0.5}

 (5.18) 

 

and with an analytic solution, that implies in a non-homogeneous Dirichlet boundary 

condition, defined as: 

 

 𝓅(𝑥, 𝑦, 𝑧) = 𝛼𝑖𝑠𝑖𝑛(2𝜋𝑥) 𝑠𝑖𝑛(2𝜋𝑦) 𝑠𝑖𝑛(2𝜋𝑧) (5.19) 

 

with a diagonal-anisotropic diffusion tensor defined as: 

 

 𝚱𝑖 = [

𝛽𝑥
𝑖 0 0

0 𝛽𝑦
𝑖 0

0 0 𝛽𝑧
𝑖

] (5.20) 

 

with the parameters 𝛼𝑖, 𝛽𝑥
𝑖 , 𝛽𝑦

𝑖  and 𝛽𝑧
𝑖  being defined according to Table 5, in which 𝑖 is 

the region index. 

 

Table 5 – Parameters for configuration of test 5.1.5 - Four Anisotropic Regions. 

 

𝑖 1 2 3 4 

𝛽𝑥
𝑖  1 1 1 1 

𝛽𝑦
𝑖  10 0.1 0.01 100 

𝛽𝑧
𝑖  0.01 100 10 0.1 

𝛼𝑖 0.1 10 100 0.01 

 

Source: The author (2023). 
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and with a source term computed according to Eq. (5.13). 

In this example, GLS showed again to be the most robust tested interpolation, 

ensuring convergence even solving this hard problem, including achieving higher 

convergence rates, as presented in the Table 6.  

 

Table 6 - Results for the test 5.1.5 - Four Anisotropic Regions. The “unexpected” 

results, in terms of convergence rates, are highlighted in red. 

 

 LPEW2 GLS 

𝓃𝑡𝑒𝑡𝑟𝑎 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 

1,615 1.902 - 2.581 - 0.575 - 0.836 - 

2,896 0.628 5.694 1.591 2.487 0.237 4.555 0.521 2.430 

6,044 1.115 -2.343 2.848 -2.375 0.105 3.336 0.342 1.713 

11,868 4.930 -6.608 14.710 -7.300 0.077 1.333 0.293 0.694 

33,768 0.448 6.881 1.873 5.913 0.029 2.845 0.190 1.242 

72,461 2.359 -6.527 11.491 -7.128 0.020 1.449 0.150 0.935 

 

Source: The author (2023). 

 

Figure 22 – Convergence graphs for the test 5.1.5 - Four Anisotropic Regions. 

 

 

 

 

Source: The author (2023). 
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LPEW1, LPEW2, LPEW3 and LPEW-HAP could not guarantee convergence in 

this case, as shown in Figure 22. Table 6 also shows the unsuccessful results of LPEW2. 

These results confirm the decision to use the GLS interpolation strategy in the context of 

simulation of two-phase flow in fractured porous media, using tetrahedral unstructured 

grids, that is the final objective of this work. 

5.2 MPFA-DNL 

This subsection analysis is still not in the context of fractured reservoirs, but it 

demonstrates the effectiveness of MPFA-DNL (CAVALCANTE et al., 2022) in context 

of avoiding the DMP violation commonly observed in applications of any linear 

formulation, including the linear MPFA family of methods. Beyond the parameters 

defined by Eq. (5.1) to Eq. (5.11), is also necessary for the following analysis to define 

the undershoot and overshoot norm of the error as (QUEIROZ et al., 2014): 

 

 𝜀𝑚 = √ ∑ [max 2(0, 𝑝𝑖̂ − 𝓅max) + max 2(0, 𝓅min − 𝑝𝑖̂)] Ω𝑖̂

𝓃𝑡𝑒𝑡𝑟𝑎

𝑖=1

 (5.21) 

 

where 𝓅max and 𝓅min are, respectively, the maximum and the minimum values for the 

solution defined by the boundary conditions. The gravity effects are not considered. 

All the tested interpolations may lead to DMP violation, depending on the 

problem configuration, but, since GLS interpolation was the most successful in the 

previous tests, it was the applied strategy in this subsection. 

5.2.1 Heterogeneous Diagonal-Anisotropic Media 

This example was proposed by Cavalcante et al. (2022) to show that the MPFA-

DNL corrects the DMP violation without degrading the numerical convergence rate of 

the MPFA-D. It is a one-phase flow problem which has an analytic solution, on pressure, 

over the domain Ω𝑚 = [0,1]3, that implies in a non-homogeneous Dirichlet boundary 

condition, defined as: 

 

 𝓅(𝑥, 𝑦, 𝑧) = 𝑥(1 − 𝑥)𝑦(1 − 𝑦)𝑧(1 − 𝑧) (5.22) 
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with an anisotropic diffusion tensor given by: 

 

 𝚱(𝑥, 𝑦, 𝑧) = [

𝑥 + 1 0 0
0 𝑦 + 1 0

0 0 10(𝑧 + 1)
] (5.23) 

 

and with a source term computed similarly to Eq. (5.13). Thus, in this case, the expected 

minimum pressure is 𝑝𝑚𝑖𝑛 = 0. 

In Tables Table 7 and Table 8, we can see the comparison between some results 

obtained with the MPFA-DNL and with the MPFA-D in its original (non-iterative) 

version. Table 7 shows how the MPFA-DNL succeeds in avoiding the undershoots 

observed when using the MPFA-D, what is reinforced by the norm 𝜀𝑚. 

 

Table 7 - Results for the test 5.2.1 - Heterogeneous Diagonal-Anisotropic Media. The 

“unexpected” results are highlighted in red. 

 

 MPFA-D MPFA-DNL 

𝓃𝑡𝑒𝑡𝑟𝑎 𝑝𝑚𝑖𝑛 𝜀𝑚 𝑝𝑚𝑖𝑛 𝜀𝑚 

215 3.76e-4 0 3.76e-4 0 

2,003 2.29e-5 0 2.29e-5 0 

3,898 -6.84e-5 1.52e-6 3.03e-6 0 

7,711 -3.45e-5 5.68e-7 7.95e-7 0 

15,266 -4.98e-5 4.86e-7 1.00e-6 0 

30,480 -5.02e-5 4.01e-7 0 0 

 

Source: The author (2023). 

 

Table 8 and Figure 23, show that, despite the modifications performed by the 

non-linear defect correction approach on the original MPFA-D matrix, aiming to avoid 

the DMP violation, the convergence rates on pressure (Figure 23a) and on pressure 

gradient (Figure 23b) of our the MPFA-DNL method are not degraded. In fact, for certain 

meshes, the errors on pressure were slightly smaller for the MPFA-DNL when compared 

to the original linear MPFA-D method. 
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Table 8 - Results for the test 5.2.1 - Heterogeneous Diagonal-Anisotropic Media. 

 

 MPFA-D MPFA-DNL 

𝓃𝑡𝑒𝑡𝑟𝑎 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 ℓ𝑝
2  ℛ𝑝 ℓ∇𝑝

2  ℛ∇𝑝 

215 0.207 - 0.568 - 0.206 - 0.568 - 

2,003 0.039 2.246 0.271 0.997 0.037 2.291 0.271 0.997 

3,898 0.024 2.161 0.223 0.877 0.022 2.335 0.223 0.877 

7,711 0.015 2.172 0.168 1.248 0.013 2.486 0.168 1.246 

15,266 0.010 1.911 0.136 0.933 0.008 2.264 0.136 0.932 

30,480 0.006 2.173 0.108 1.007 0.005 1.698 0.108 1.003 

 

Source: The author (2023). 

 

Figure 23 - The mesh convergence graphs for the test 5.2.1 - Heterogeneous Diagonal-

Anisotropic Media. 

 

 

 

 

Source: The author (2023). 

 

In terms of computational cost, for the mesh with 3,898 tetrahedra (the coarsest 

tested mesh with DMP violation by MPFA-D), MPFA-DNL needed 315 iteration steps to 

find the solution without spurious oscillations, while, for the mesh with 30,480 tetrahedra 

(the most refined tested mesh), 836 iterations were necessary. 
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5.2.2 Anisotropic Hollow Domain 

This example was proposed by Danilov and Vassilevski (2009). In this problem, 

there is a cubic domain Ω𝑐 = [0,1]3 with a central cubic hole Ωℎ = [0.4,0.6]
3, so that the 

domain of interest is Ω𝑚 = Ω𝑐 − Ωℎ. At the external boundary 𝜕Ω𝑐, the scalar variable is 

set as 𝑝𝑒 = 0 and, at the internal face 𝜕Ωℎ, the scalar variable is set as 𝑝𝑖 = 2. The 

anisotropic diffusion tensor is defined as: 

 

 𝚱 = 𝑅𝑧
𝑇𝑅𝑦

𝑇𝑅𝑥
𝑇 [
100 0 0
0 10 0
0 0 1

]𝑅𝑥𝑅𝑦𝑅𝑧 (5.24) 

 

where: 

 

 

𝑅𝑥 = [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

] ; 𝑅𝑦 = [
cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
] ;  

𝑅𝑧 = [
cos 𝛿 − sin 𝛿 0
sin 𝛿 cos 𝛿 0
0 0 1

] ; 

(5.25) 

 

with 𝜃 = 𝜋 3⁄ , 𝛽 = 𝜋 4⁄  and 𝛿 = 𝜋 6⁄ . Results for both, the linear MPFA-D and the 

MPFA-DNL are shown in Table 9. 

 

Table 9 - Results for the test 5.2.2 - Anisotropic Hollow Domain. The “unexpected” 

results are highlighted in red. 

 

 MPFA-D MPFA-DNL 

𝓃𝑡𝑒𝑡𝑟𝑎 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 𝜀𝑚 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 𝜀𝑚 

760 -0.530 1.678 6.19e-2 2.43e-5 1.609 0 

1,660 -0.251 1.930 2.46e-2 0 1.902 0 

2,193 -0.165 1.856 1.31e-2 1.76e-6 1.842 0 

4,471 -0.323 1.888 2.41e-2 0 1.890 0 

10,552 -0.146 1.933 8.01e-3 0 1.927 0 

17,544 -0.040 1.983 3.55e-3 0 1.975 0 

 

Source: The author (2023). 
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In Table 9, we can see that the MPFA-D violates the minimum expected pressure 

for all the tested meshes. On the other hand, the MPFA-DNL keeps the solution within 

the limits defined by the boundary conditions. Figure 24 shows the pressure fields got 

from MPFA-D and MPFA-DNL on the most refined tested mesh. As it can be seen, the 

MPFA-DNL clearly produces a smooth solution without spurious oscillations even for 

this test case in which we have a highly anisotropic diffusion tensor while the linear 

MPFA-D produces solutions with undershoots (pressure under the expected minimum).  

In terms of computational cost, for the most refined tested mesh, MPFA-DNL 

needed 251 iteration steps to find the solution without spurious oscillations. 

 

Figure 24 - Pressure field on the mesh with 17,544 tetrahedra for test 5.2.2 - Anisotropic 

Hollow Domain. The domain was clipped in order to highlight the inner hole. The white 

regions indicate undershoots. (a) Solution with the linear MPFA-D method. (b) Solution 

with MPFA-DNL. 

 

 

 

 

 

Source: The author (2023). 
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5.2.3 Two-Halves Anisotropic Hollow Domain 

This test case presents a 3-D example based on the 2-D one of Queiroz et al. 

(2014). Consider a cubic domain Ω𝑐 = [0,1]3 with a central cubic hole Ωℎ = [0.4,0.6]
3, 

so that the domain of interest is Ω𝑚 = Ω𝑐 − Ωℎ. At the external boundary, 𝜕Ω𝑐, the scalar 

variable is set as 𝑝𝑒 = 0 and at the internal edge, 𝜕Ωℎ, the scalar variable is set as 𝑝𝑖 = 2. 

It is a heterogeneous, discontinuous and anisotropic media, with two diffusion tensors 

that are defined as: 

 

 𝚱1 = 𝑅𝑧
𝑇𝑅𝑦

𝑇𝑅𝑥
𝑇 [
100 0 0
0 10 0
0 0 1

] 𝑅𝑥𝑅𝑦𝑅𝑧    ∀ 𝑥 ≤ 0.5 (5.26) 

 

where: 

 

 

𝑅𝑥 = [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

] ; 𝑅𝑦 = [
cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
] ;  

𝑅𝑧 = [
cos 𝛿 − sin 𝛿 0
sin 𝛿 cos 𝛿 0
0 0 1

] 

(5.27) 

 

with 𝜃 = 𝜋 3⁄ , 𝛽 = 𝜋 4⁄  and 𝛿 = 𝜋 6⁄  and: 

 

 𝚱2 = [

𝜉𝕩2 + 𝕪2 + 𝕫2 −(1 − 𝜉)𝕩𝕪 −(1 − 𝜉)𝕩𝕫

−(1 − 𝜉)𝕩𝕪 𝕩2 + 𝜉𝕪2 + 𝕫2 −(1 − 𝜉)𝕪𝕫

−(1 − 𝜉)𝕩𝕫 −(1 − 𝜉)𝕪𝕫 𝕩2 + 𝕪2 + 𝜉𝕫2
]    ∀ 𝑥 > 0.5 (5.28) 

 

where 𝜉 = 1,000, 𝕩 = 𝑥 + 𝜉−1, 𝕪 = 𝑦 + 𝜉−1, 𝕫 = 𝑧 + 𝜉−1.  

Table 10 presents the pressure under and overshoot and the norms of error for 

the linear MPFA-D and for the MPFA-DNL and Figure 25 presents the pressure fields, 

from both strategies, for the mesh with 15,376 control volumes. In Table 10, we can see 

that, again, the linear version of MPFA-D violates the DMP, returning non-physical 

solutions with spurious oscillations for all tested meshes. On the other hand, the MPFA-

DNL, even for this highly anisotropic and discontinuous diffusion tensor, keeps the 

solution between the maximum and the minimum physical bounds for all tested meshes. 
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Table 10 - Results for the test 5.2.3 - Two-Halves Anisotropic Hollow Domain. The 

“unexpected” results are highlighted in red. 

 

 MPFA-D MPFA-DNL 

𝓃𝑡𝑒𝑡𝑟𝑎 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 𝜀𝑚 𝑝𝑚𝑖𝑛 𝑝𝑚𝑎𝑥 𝜀𝑚 

604 -0.974 1.960 1.05e-1 8.85e-6 1.716 0 

4,949 -0.363 2.057 2.59e-2 0 1.994 0 

15,376 -0.304 2.118 8.98e-3 0 1.983 0 

 

Source: The author (2023). 

 

Figure 25 - Pressure field on the mesh with 15,376 tetrahedra for test 5.2.3 - Two-

Halves Anisotropic Hollow Domain. The domain was clipped in order to highlight the 

inner hole. The black regions within the domain indicate overshoots and the white 

regions indicate undershoots. (a) Solution with the linear MPFA-D method. (b) Solution 

with the MPFA-DNL.  

 

 

 

 

 

Source: The author (2023). 

 

In Figure 25, we can see that MPFA-DNL produces a smooth solution without 

spurious oscillations even for this hard test case, while the linear MPFA-D produces 

solutions with both, under and overshoots. 

(a) (b) 
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In terms of computational cost, for the most refined mesh, MPFA-DNL needed 

157 iteration steps to find the solution without spurious oscillations. 

5.3 SINGLE-PHASE FLOW SIMULATION 

This example was included to demonstrate the capability of the methodology 

proposed here (MPFA-D – GLS interpolation – pEDFM – unstructured tetrahedral grids) 

to accurately reproduce the pressure field in context of a fractured reservoir. This example 

is based on the benchmark test case 1 of Berre et al. (2021) with a domain Ω𝑚 = [0,100]3 

m divided into four subdomains Ω𝑚 =∪𝑖=1
4 Ω𝑖 according to Figure 26. 

 

Figure 26 - Domain for test 5.3 - Single-Phase Flow Simulation. 

 

Source: Adapted from Berre et al. (2021). 

 

In Figure 26, Ω2 is a planar fracture with an aperture of 0.01 m. The rock matrix 

domains Ω1 and Ω3 are, respectively, the subdomains above and below to Ω2. The 

subdomain Ω4 represents a heterogeneity within the rock matrix. There are two parts of 

the cube faces that are assigned as Dirichlet boundaries. One has prescribed pressure of 

𝑝𝐼 = 0.4 bar and is marked in blue in Figure 26, while the other has prescribed pressure 

of 𝑝𝑃 = 0.1 bar and is marked in purple in Figure 26. All remaining parts of the boundary 

are assigned no flow conditions. Moreover, the permeability tensors are defined as: 

 

Ω1 

 

Ω2 

 

Ω3 

 

Ω4 
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 𝚱𝑖 = 𝜅𝑖𝑰3×3 in Ω𝑖 with (i = 1…4)  (5.29) 

 

with 𝜅1 = 𝜅3 = 10−6 D (darcy), 𝜅2 = 10
−3 D and 𝜅4 = 10−5 D. Beyond this, 𝑰3×3 is the 

identity matrix. Finally, the porosities are defined as 𝜙1 = 𝜙3 = 0.2, 𝜙3 = 0.25 and 

𝜙4 = 0.4. 

The pressure field obtained in the referred conditions is so that its outline on the 

segment from (0,100,100) to (100,0,0) is as shown in Figure 27. Three unstructured 

tetrahedral meshes were used in this example, respectively with 9,919, 21,648 and 66,495 

cells. Figure 27 shows that, even for the coarsest mesh, the methodology proposed here 

achieve good adherence to the reference solution. As expected, the response obtained 

from the finest grid is the closest one to the reference solution, obtained based on the 

benchmark work of Berre et al. (2021). 

 

Figure 27 – Outline of the solution of test 5.3 - Single-Phase Flow Simulation. 

 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

 

Source: The author (2023). 

 

5.4 TWO-PHASE FLOW SIMULATION 

This subsection finally presents the simulation of immiscible two-phase flow in 

fractured porous media. All the domains modelling the reservoir rocks (Ω𝑚) are 

𝑝 
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discretized by using truly unstructured tetrahedral meshes, while the fractures (Ω𝑓𝑖) are 

considered to be 2-D rectangles discretized using Cartesian grids. There is not any 

operational impediment to using general polygonal meshes in this context, it was just 

chosen to simplify the comparison with pEDFM using Cartesian grids. In the tests in 

which they are relevant, these comparisons are made changing the mesh discretizing Ω𝑚 

(tetrahedral vs. Cartesian), but keeping the meshes discretizing the fractures. Whenever 

necessary, the well model of Peaceman (1977) is used to obtain the well source terms of 

each phase for a rock matrix cell 𝑘̂ as: 

 

 (𝜌𝛼𝑞𝛼)𝑘̂,𝑤 = 𝜌𝛼𝜆𝛼Κ𝑘̂(𝑝𝑤 − 𝑝𝑘̂) (5.30) 

 

in which 𝑝𝑤 (with 𝑤 = 𝐼, 𝑃; for injector or producer, respectively) is the well prescribed 

pressure.  

Beyond this, unless explicitly stated otherwise, consider, in all the tested 

examples, that Κ𝑘̂ = 10−14 m2 to be applied in Eq. (5.30) and 𝑆𝑤𝑖 = 𝑆𝑜𝑟 = 0 to be 

applied in Eq. (2.8). Moreover, the other necessary rock and fluid parameters are defined, 

unless explicitly stated otherwise, as: 𝜙 = 0.2 (rock porosity), 𝜌𝑤 = 1,000 kg/m³ (water 

density), 𝜌𝑜 = 800 kg/m³ (oil density), 𝜇𝑤 = 0.001 Pa ∙ s (water viscosity), 𝜇𝑜 =

0.001 Pa ∙ s (oil viscosity), 𝑐𝑓𝑤 = 0.4 ∙ 10−9 Pa−1 (water compressibility), 𝑐𝑓𝑜 = 0.6 ∙

10−9 Pa−1 (oil compressibility), 𝑆𝑤
0 = 0 (initial water saturation), 𝑆𝑜

0 = 1 (initial oil 

saturation), 𝑝𝑤
0 = 𝑝𝑜

0 = 0.2 GPa (initial phase pressure), while 𝑰3×3 is the identity matrix.  

For comparison purposes, beyond solving the problems using the methodology 

proposed here (MPFA-D for matrix-matrix interactions – GLS interpolation – pEDFM – 

backward Euler time discretization – upwind – unstructured tetrahedral grids), some 

problems were also solved using Cartesian grids and TPFA for matrix-matrix interactions, 

which is a common strategy in context of pEDFM (this scheme was already programed 

in DARSim). In all the examples, applying tetrahedral grids means the application of the 

complete methodology proposed in this work, while applying Cartesian grids means the 

application of TPFA and of the classical pEDFM (ŢENE et al., 2017; HOSSEINIMEHR 

et al., 2022) together with them. Note that MPFA-DNL was not applied on the two-flow 

simulation, not that it is something impractical, it just was not carried out in the period of 

development of this thesis. 
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5.4.1 Phases Segregation 

In order to evaluate if the part of the numerical formulation related to gravity 

effects is correctly implemented, the following test was performed: consider a cubic 

domain Ω𝑚 = [0,100]3 m with null flux at all its boundaries (closed box), with the rock 

matrix permeability (𝚱𝒎) is defined as: 

 

 𝚱𝒎 = 𝑰3×3 ∙ 10
−14 m2 (5.31) 

 

There are two phases within the domain, oil and water, so that, initially, 𝑆𝑤
0 =

𝑆𝑜
0 = 0.5 all over the domain and there is not any injection or extraction of fluid through 

wells. As time goes by, it is expected that the phases will segregate and that the water 

phase, being denser, will accumulate in the lower part of the cube. The test was performed 

using an unstructured tetrahedral grid with 31,475 cells, shown in Figure 28a, and a 

Cartesian grid (40 × 40 × 40), shown in Figure 28b. 

 

Figure 28 - Results of example 5.4.1 - Phases Segregation. Water saturation after 500 

days: (a) Tetrahedral grid. (b) Cartesian grid. 

  

 

 

  

 

 

Source: The author (2023). 
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Figure 28 shows the water saturation after 500 days. As expected, the tops of the 

cubes have lower water saturation than the bottom. Waiting long enough, we would see 

all the water phase in the bottom half of the domain and all the oil in the top half. 

However, the long time needed to reach such a state, under the given conditions, 

discouraged waiting for this result. Despite this, the reproduction of the phenomenon 

occurs in the right (physical) direction, demonstrating the correct implementation of the 

numerical formulation for gravity effects, which was the intention of this test. 

5.4.2 Isotropic Tensor in a Cuboid Domain with One Fracture 

Consider a cubic domain Ω𝑚 = [0,100]3 m with null flux at all its boundaries 

(closed box). There are two wells: the injector one at 𝑥 𝐼 = (10,  90,  100) m have a 

prescribed pressure 𝑝𝐼 = 0.03 GPa, while the producer one at 𝑥 𝑃 = (90,  10,  100) m has 

a prescribed pressure 𝑝𝑃 = 0.01 GPa. The rock matrix permeability (𝚱𝒎) is defined as: 

 

 𝚱𝒎 = 𝑰3×3 ∙ 10
−14 m2 (5.32) 

 

Moreover, within this domain, there is one fracture and two wells, placed 

according to Figure 29. A tetrahedral mesh with 60,963 cells was used to obtain the results 

to be compared with those from a Cartesian grid (47 × 47 × 47) with 103,823 cells (used 

as reference). The fracture was discretized as a 2-D 38 × 38 Cartesian grid and its 

permeability was considered as in two cases: 

 

 𝚱𝒇𝟏 = 𝑰3×3 ∙ 10
−6 m2  and  𝚱𝒇𝟐 = 𝑰3×3 ∙ 10

−22 m2 (5.33) 

 

5.4.2.1 Case 1 – Conductive Fracture 

Considering that the fracture permeability is 𝚱𝒇𝟏 = 𝑰3×3 ∙ 10
−6 m2, the results 

obtained are those shown in Figure 30 and Figure 31. Figure 30 shows the water saturation 

field after 750 days in tetrahedral mesh (Figure 30a) and in Cartesian mesh (Figure 30b). 

These figures are slices on the whole solution made by a parallel plane to axis z and 

crossing both wells. 
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Figure 29 – Domain configuration for test 5.4.2 - Isotropic Tensor in a Cuboid Domain 

with One Fracture. 

 

 

Source: The author (2023). 

 

Figure 30 - Water saturation, after 750 days, field in test 5.4.2.1 - Case 1 – Conductive 

Fracture. It is a slice by a parallel plane to axis z and crossing both wells. (a) 

Tetrahedral grid. (b) Cartesian grid. 

 

 

  

 

 

Source: The author (2023). 

 

The solutions obtained in the two meshes are similar, in terms of water saturation 

field, except for the region around the production well, where water saturation is greater 

when using the tetrahedral mesh. This is in line with the water production shown graph 

in Figure 31b, which indicates an anticipation of about 60 days of the water breakthrough 

𝑝𝑃 = 0.01 GPa 

𝑝𝐼 = 0.03 GPa 
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in the production well, when using the tetrahedral mesh, compared to the Cartesian mesh 

solution. The cumulative oil productions using both grids are around 30,000 m³ after 750 

days of water injection (see Figure 31a). 

 

Figure 31 – Cumulative oil and water production of test 5.4.2.1 - Case 1 – Conductive 

Fracture. (a) Cumulative oil production. (b) Cumulative water production. 

 

   

 

 

Source: The author (2023). 

 

5.4.2.2 Case 2 – Flow Barrier 

Considering that the fracture permeability is 𝚱𝒇𝟏 = 𝑰3×3 ∙ 10
−22 m2, the results 

obtained are those shown in Figure 32 and Figure 33.  

Figure 32 shows the water saturation field after 750 days in tetrahedral mesh 

(Figure 32a) and in Cartesian mesh (Figure 32b). These figures are slices on the whole 

solution made by a parallel plane to axis z and crossing both wells. The solutions obtained 

in the two meshes are similar, in terms of water saturation field, despite the difference of 

about 60 days in time of water breakthrough observed in Figure 33b, with the solution 

using the tetrahedral mesh presenting an anticipated starting of water production, 

compared to the Cartesian mesh solution. The cumulative oil productions using both grids 

are higher than 30,000 m³ after 750 days of water injection (see Figure 33a). 

It is expected that all these differences between solutions from tetrahedral and 

Cartesian grids decrease as the meshes are refined, until the converged solution is reached. 

For this, of course, it would be necessary a large processing capacity or a great 

improvement in the efficiency of the used software. 

(a) (b) 
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Figure 32 - Water saturation, after 750 days, field in test 5.4.2.2 - Case 2 – Flow Barrier. 

It is a slice by a parallel plane to axis z and crossing both wells. (a) Tetrahedral grid. (b) 

Cartesian grid. 

 

 

  

 

 

Source: The author (2023). 

 

Figure 33 – Cumulative oil and water production of test 5.4.2.2 - Case 2 – Flow Barrier. 

(a) Cumulative oil production. (b) Cumulative water production. 

 

   

 

 

Source: The author (2023). 

 

The search for the converged solution can be left for further works, while this 

example was enough to show that the results obtained with the methodology proposed 

here are in line with those obtained by a more established strategy.  

(a) (b) 

(a) (b) 
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Comparing the two cases (high and low permeability fracture), the high 

permeability fracture, as expected, conducts the water saturation front to closer to the 

production well, anticipating the water breakthrough (which occurs before 200 days), 

when compared with the low permeability fracture (see Figure 31b and Figure 33b), 

which enforces the water saturation front to walk around it, as shown in Figure 32a, so 

that the water breakthrough occurs after more than 300 days.  

5.4.3 Isotropic Tensor in a Flat Cuboid Domain with Multiple Fractures 

This test is based on the work of HosseiniMehr et al. (2022). Consider a flat 

cuboid domain (Ω𝑚 = [100 × 100 × 1] m) with two wells: the injector one at 𝑥 𝐼 =

(0,  0,  1) m have a prescribed pressure 𝑝𝐼 = 0.03 GPa, while the producer one at 𝑥 𝑃 =

(100,  100,  1) m have a prescribed pressure 𝑝𝑃 = 0.01 GPa. Beyond this, there are 30 

fractures distributed as shown in Figure 34 (blue lines are conductive fractures and red 

lines are barriers). The fluids are incompressible and can not cross through the boundaries 

of the domain (closed box). The rock matrix permeability (𝚱𝒎) and the fractures 

permeabilities (𝚱𝒇𝟏 and 𝚱𝒇𝟐) are defined as: 

 

 𝚱𝒎 = 𝑰3×3 ∙ 10
−14 m2;  𝚱𝒇𝟏 = 𝑰3×3 ∙ 10

−6 m2;  𝚱𝒇𝟐 = 𝑰3×3 ∙ 10
−22 m2 (5.34) 

 

Moreover, in this case 𝓃𝑡𝑒𝑡𝑟𝑎 = 81,455 and each fracture is discretized as a 2-

D Cartesian grid (40 × 1), so that 𝓃𝑝𝑜𝑙𝑦𝑔
𝑘 = 40 with 𝑘 = 1…30. Figure 35 presents the 

water saturation field obtained using the referred tetrahedral mesh after 51 and 291 days 

of injection of water. It is possible to observe that the barriers (low permeability fractures, 

marked as black lines) really prevent the advance of the water saturation front through 

them, forcing it to walk around them, in the same way, the channels (high permeability 

fractures, marked as white lines) really conduct the fluid forward in the reservoir, as 

expected.  

Figure 36 presents the comparison between the water saturation fields obtained 

by using tetrahedral and Cartesian grids (classically used in context of pEDFM). The used 

Cartesian grid has the following discretization: 206 × 206 × 2 (leading to 84,872 

hexahedral control volumes, that is close to the number of degrees of freedom of the 

tetrahedral mesh). We can observe that all the effects of the presence of fractures that are 

captured using Cartesian meshes are also captured when using tetrahedral ones. 
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Figure 34 - 2D top visualization of the fractures distribution for the test 5.4.3 - Isotropic 

Tensor in a Flat Cuboid Domain. 

 

 

 
 

 

Source: The author (2023). 

 

Figure 35 - Results (on tetrahedral mesh) of the test 5.4.3 - Isotropic Tensor in a Flat 

Cuboid Domain. Conductive fractures as white lines and barriers as black lines. Water 

saturation field after: (a) 51 days. (b) 291 days. 

  

 

 

   

 

 

Source: The author (2023). 
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Figure 37 presents the comparison between the solutions obtained with 

tetrahedral and Cartesian grids, in terms of cumulative oil and water production. The 

curves relative to oil extraction are very close to each other, achieving about 800 m³ of 

cumulative production after 500 days (see Figure 37a). 

 

Figure 36 - Results of the test 5.4.3 - Isotropic Tensor in a Flat Cuboid Domain. 

Conductive fractures as white lines and barriers as black lines. Water saturation field 

after 291 days using: (a) Tetrahedral Grid. (b) Cartesian Grid. 

  

 

 

  

 

 

Source: The author (2023). 

 

Beyond this, the solutions obtained with both meshes indicate an almost 

simultaneous water breakthrough (see Figure 37b). This is one more example showing 

that the results obtained with the methodology proposed here are in line with those 

obtained by a more established strategy. Moreover, the proximity of the results in this 

case seems to indicate the expected tendency, announced in previous examples, that the 

results obtained in the two types of mesh should approach, as refinement degree of the 

meshes increases and the number of degrees of freedom of the tetrahedral grid approaches 

that of the Cartesian one. Evidently, this hypothesis should be adequately tested in the 

future. 

(a) (b) 
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Figure 37 – Cumulative oil and water production of test 5.4.3 - Isotropic Tensor in a 

Flat Cuboid Domain with Multiple Fractures. (a) Cumulative oil production. (b) 

Cumulative water production. 

 

   

 

 

Source: The author (2023). 

 

5.4.4 Full Tensor in a Non-Cuboid Domain 

Consider a domain geometry shown in Figure 38 with a full tensor for the rock 

matrix permeability (𝚱𝒎) defined in Eq. (5.35). There are three wells, one injector well 

at 𝑥 𝐼 = (10,  10,  100) m with a prescribed pressure 𝑝𝐼 = 0.03 GPa and two producer 

wells at 𝑥 𝑃1 = (40,  40,  40) m and at 𝑥 𝑃2 = (0,  0,  0) m with prescribed pressures 𝑝𝑃1 =

𝑝𝑃2 = 0.01 GPa. Beyond this, there are 6 fractures distributed as shown in Figure 38. 

 

 𝚱𝒎 = [
0.3889 0.2823 −0.3112
0.2823 0.3759 −0.3041
−0.3112 −0.3041 0.4352

] ∙ 10−13 m2 (5.35) 

 

The fractures are placed as shown in Figure 38, in which the blue ones are the 

conductive fractures and the red ones are the flow barriers, whose permeabilities are 

defined as: 

 

 𝚱𝒇𝟏 = 𝑰3×3 ∙ 10
−6 m2  and  𝚱𝒇𝟐 = 𝑰3×3 ∙ 10

−22 m2 (5.36) 

 

(a) (b) 
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Besides, the fluids are incompressible and can not cross through the boundaries 

of the domain. Finally, the tetrahedral grid here used have the following number of cells: 

𝓃𝑡𝑒𝑡𝑟𝑎 = 26,913. Figure 39 shows the water saturation fields in two situations: 

considering and not considering the presence of the fractures. Figure 39a and Figure 39c 

show the water saturation field in the case of fractures "turned off", respectively after 51 

and 500 days, so that we can see the expected behavior of the referred fluid due to the 

anisotropic permeability tensor presented in Eq. (5.35). Note (in Figure 39a) that, in this 

condition, the water saturation front clearly achieve the well P1 during the first 51 days 

of injection, while, when considering the presence of the fractures, it seems to do not 

achieve, according to Figure 39b. 

 

Figure 38 – Main domain and fractures and wells positions for the test 5.4.4 - Full 

Tensor in a Non-Cuboid Domain. The red rectangles represent low permeabilities 

fractures, while the blue ones represent high permeabilities fractures. 

 

 

 

 

Source: The author (2023). 

 

However, Figure 40b indicates that there was already water production in P1 at 

that time, even considering the presence of the fractures. Nevertheless, the water 

production is lower in the second than in the first situation. On the other hand, the 

highlighted barrier in Figure 39b prevents that the water saturation front walks directly to 

P1, enforcing it to walk around the barrier and sweep parts of the reservoir that would not 

𝑝𝑃1 = 0.01 GPa 

𝑝𝐼 = 0.03 GPa 

𝑝𝑃2 = 0.01 GPa 
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be reached by it, increasing the cumulative oil production, as shown in Figure 40a. 

Disregarding fractures, oil production at P1 would be underestimated. 

Also note (in Figure 40c) that, when fractures are "turned off", the water 

breakthrough does not occur in well P2 during the first 500 days of injection, what is 

confirmed by the graph of cumulative water production in P2 (Figure 40d). The 

conductive fractures carry the water saturation front to the vicinity of P2, as shown in 

Figure 39d. The presence of a highlighted barrier, however (in Figure 40d), enforces the 

water saturation front to walk around it, in order to access P2. 

 

Figure 39 – Water saturation field in test 5.4.4 - Full Tensor in a Non-Cuboid Domain. 

(a) Fractures “turned off” condition at 51 days. (b) Fractures “turned on” condition at 51 

days. (c) Fractures “turned off” condition at 500 days. (d) Fractures “turned on” 

condition at 500 days. 

  

 

 

 

 

 

 

 

 

Source: The author (2023). 
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The water production in this last situation is confirmed in Figure 40d. The arrival 

of water in P2 harms its cumulative oil production, as shown in Figure 40c. Disregarding 

fractures, oil production at P2 would be overestimated. 

 

Figure 40 – Cumulative oil and water production of test 5.4.4 - Full Tensor in a Non-

Cuboid Domain. (a) Cumulative oil production in P1. (b) Cumulative water production 

in P1. (c) Cumulative oil production in P2. (d) Cumulative water production in P2. 

 

   

 

   

 

 

Source: The author (2023). 
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6 CONCLUSIONS 

This thesis presents the development of a numerical tool for the simulation of two-phase 

flow in naturally fractured reservoirs using unstructured tetrahedral meshes. Some stages had to 

be overcome until reaching the major objective of this work. First, it was necessary to develop a 

finite volume formulation, suitable for tetrahedral control volumes, to discretize the so-called 

“pressure terms” of the mathematical model that, under some simplifications, describes the 

aforementioned physical phenomenon (see chapter 2). It was developed a multipoint flux 

approximation scheme that uses a “diamond stencil” (MPFA-D) to be applied on tetrahedral 

meshes (LIRA FILHO et al., 2021). The formulation presented here includes the possibility to 

add the gravity effects to the flux calculation. Since MPFA-D involves nodal interpolations, it 

was also necessary to develop interpolation strategies that met the desired requirements, such as 

the preservation of linearity. Other interpolation strategies found in the literature were also tested, 

in order to select the most robust one. Among the tested interpolation strategies, namely, LPEW1, 

LPEW2, LPEW3 (LIRA FILHO et al., 2021), LPEW-HAP (YANG; GAO, 2020) and 

GLS (DONG; KANG, 2021, 2022), the last one presented the best results. All these 

strategies showed to be linearity preserving, but not all of them reach the second order 

convergence rate for pressure on any tetrahedral meshes or permeability tensors. LPEW-

HAP has its convergence condition strictly dependent on the mesh, even for mild 

anisotropic tensors. LPEW1, LPEW2 and LPEW3 are capable to handle highly 

heterogeneous and mild anisotropic tensors, achieving second order accuracy for pressure 

and first order accuracy for fluxes, but are not adequate to applications with strongly 

anisotropic tensors. Thus, GLS was the chosen interpolation to compute the vertex 

unknowns in context of MPFA-D, because ensures convergence in all the tested situations 

with satisfactory convergence rates. Despite the remarkably good results presented by it, 

the linear MPFA-D scheme using GLS does not ensure the respect to DMP and may give 

rise to undershoots and overshoots depending on the conditions in which it is applied. 

In this context, the MPFA-DNL (CAVALCANTE et al., 2022) method was 

developed, which is a modified nonlinear version of the original linear MPFA-D method 

of Lira Filho et al. (2021). It was designed to avoid the violation of the DMP that may 

occur in MPFA-D solutions, since it is not guaranteed to be a monotone scheme, 

particularly for highly heterogeneous and anisotropic diffusion tensors or distorted 

meshes. The original linear MPFA-D was modified through of a flux splitting strategy 

(PAL; EDWARDS, 2006, 2011) that splits the flux in a Two-Point Flux Approximation 

(TPFA) flux contribution and the Cross Diffusion Terms (CDT). Since the latter part is 
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the potential source of spurious oscillations in the scalar field, a flux limiting (KUZMIN; 

SHASHKOV; SVYATSKIY, 2009) was performed on the CDT part. These 

modifications gave rise to a method which is capable to satisfy the Discrete Maximum 

Principle eliminating spurious oscillations for the scalar field, even for highly 

heterogeneous and arbitrary anisotropic diffusion tensors, without harming the 

convergence rates of the original MPFA-D. Thus, MPFA-DNL method is still capable to 

achieve second order of accuracy for pressure and first order for fluxes. 

Since the objective of this thesis is to study fluid flow in fractured reservoirs, it 

was necessary to develop strategies to handle this type of entities in context of the 

computational simulation intended. After investigating several alternatives developed 

over the years for this purpose, it was decided to use the pEDFM (JIANG; YOUNIS, 

2017; ŢENE et al., 2017; RAO et al., 2020; HOSSEINIMEHR et al., 2022) as fracture 

model. When using this model, it is not necessary to build the mesh fitting the fracture 

positions, which makes this task simpler and less susceptible to local over refinements. 

This model is also capable of reproducing the effects of the presence of both high and 

low permeability fractures. Thus, a pEDFM adapted to unstructured tetrahedral meshes 

was developed and is presented here. 

This way, in context of a fully implicit scheme, it was possible to satisfactorily 

simulate immiscible two-phase flow in fractured reservoirs using unstructured tetrahedral 

meshes, MPFA-D and pEDFM. It should be noted that the MPFA-DNL was not applied 

in context of two-phase flow simulation, not that it is something impractical, it just was 

not carried out in the period of development of this thesis. 

The simulation tool we developed proved to be able to handle general tetrahedral 

meshes and full (mild anisotropic) permeability tensors, besides presenting results that 

are in line with those obtained using TPFA and Cartesian grids (classically used in 

pEDFM context), reproducing adequately the effects of the presence of both high and low 

permeability fractures and resulting in similar water saturation fields and production 

curves. 

As further works, the fractures discretization could be modified, in order to build 

2-D unstructured grids and apply 2-D MPFA on it. The MPFA-DNL could be also 

adapted to be coupled to the main simulation tool and make it capable to deal with highly 

anisotropic tensors. The implementation and testing of those more sophisticated 

transmissibility terms, according to Eq. (4.14) to Eq. (4.16). It would be also interesting 

and useful to extend the presented MPFA-D to other polyhedral elements, such as 
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hexahedral meshes. Beyond this, the developed formulations could be applied in context 

of multiscale modelling, making it suitable for real field applications. Moreover, it is 

important to perform a convergence study on the presented simulation tool, using highly 

refined meshes, and, in this context, work on efficiency increasing of it. It could also be 

investigated some non-Darcy models for flow inside fractures, as well as more adequate 

relative permeability and mobility models for these media, since they are quite different 

from the porous rock matrix. 
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APPENDIX A – INTERPOLATION EXPRESSIONS DERIVATION 

This appendix presents the derivation of the weighting expressions used to turn 

Eq. (3.47) in a completely cell-centered formulation. Considering a node 𝑄, the pressure 

value at it can be written as a weighted average of the values at the cells sharing 𝑄. Idea 

which can be generically described by the following expression: 

 

 𝑝𝑄 = ∑𝜔𝑘̂𝑝𝑘̂
𝑘̂∈ℚ̂

 (A.1) 

 

in which ℚ̂ is the set of cells sharing 𝑄. The next subsections present some expressions 

to determine 𝜔𝑘̂. 

 

A.1 Linearity Preserving Explicit Weights Type 1 (LPEW1) 

 

The first strategy is the natural extension, by analogy, to 3-D of the LPEW1 

presented by Gao and Wu (2011), in 2-D. For this, in each tetrahedron sharing 𝑄, we 

define a subregion delimited by 6 tetrahedrons, as shown in Figure A.1: 𝑡̂1 = 𝑇1𝑇2𝑘̂𝑄, 

𝑡̂2 = 𝑇2𝑇3𝑘̂𝑄, 𝑡̂3 = 𝑇3𝑇4𝑘̂𝑄, 𝑡̂4 = 𝑇4𝑇5𝑘̂𝑄, 𝑡̂5 = 𝑇5𝑇6𝑘̂𝑄 and 𝑡̂6 = 𝑇6𝑇1𝑘̂𝑄, where 𝑇1 is 

on the edge 𝑄𝐼, 𝑇2 is on the face 𝑄𝐼𝐾, 𝑇3 is on the edge 𝑄𝐾, 𝑇4 is on the face 𝑄𝐽𝐾, 𝑇5 is 

on the edge 𝑄𝐽, 𝑇6 is on the face 𝑄𝐼𝐽, where 𝐼𝐽𝐾 is the opposite face to 𝑄 in the 𝑘-th 

tetrahedron sharing it (with a colocation point 𝑘̂). The points 𝐼, 𝐽 and 𝐾 are named so that 

𝑁⃗⃗ = (𝐽𝐼⃗⃗⃗  × 𝐽𝐾⃗⃗⃗⃗ ) 2⁄  is the outward area vector of the face 𝐼𝐽𝐾. Then, we can also define, in 

the subregion shown in Figure A.1, the subfaces 𝑘̅1 = 𝑇1𝑇2𝑄, 𝑘̅2 = 𝑇2𝑇3𝑄, 𝑘̅3 = 𝑇3𝑇4𝑄, 

𝑘̅4 = 𝑇4𝑇5𝑄, 𝑘̅5 = 𝑇5𝑇6𝑄, 𝑘̅6 = 𝑇6𝑇1𝑄. Beyond this, we also define the faces 𝑄̅1 =

𝑇1𝑇2𝑘̂, 𝑄̅2 = 𝑇2𝑇3𝑘̂, 𝑄̅3 = 𝑇3𝑇4𝑘̂, 𝑄̅4 = 𝑇4𝑇5𝑘̂, 𝑄̅5 = 𝑇5𝑇6𝑘̂ and 𝑄̅6 = 𝑇6𝑇1𝑘̂, in case of 

LPEW1. The neighbor cells sharing faces and the node 𝑄 with 𝑘̂ are named as 𝑜̂𝐽 (the 

neighbor cell sharing the face opposing vertex 𝐽), 𝑜̂𝐼 (the neighbor cell sharing the face 

opposing vertex 𝐼), 𝑜̂𝐾 (the neighbor cell sharing the face opposing vertex 𝐾), as shown 

in Figure A.2a. 

All this defined, we can start the development of our explicit weighting by the 

divergence free imposition on the node 𝑄 through the following expression: 
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 ∑F𝑄
𝑘̂

𝑘̂∈ℚ̂

= 0 (A.2) 

 

where F𝑄
𝑘̂  is defined according to the subregion definition shown in Figure A.1. In this 

case, F𝑄
𝑘̂  is defined as: 

 

 F𝑄
𝑘̂ = F𝑄̅1

𝑘̂ + F𝑄̅2
𝑘̂ + F𝑄̅3

𝑘̂ + F𝑄̅4
𝑘̂ + F𝑄̅5

𝑘̂ + F𝑄̅6
𝑘̂  (A.3) 

 

 

Figure A.1 - LPEW1 subregion comprising node 𝑄 in 𝑘̂ (the 𝑘-th cell sharing 𝑄). 

 

 

Source: The author (2023). 

 

where F𝑄̅1
𝑘̂ = 𝑣 𝛼 ∙ 𝑆 𝑄

𝑡̂1  is the flux through the face 𝑄̅1, which can to be defined, disregarding 

phase mobility (see Assumption A4 in section 2.1), analogously to Eq. (3.32), as: 

 

F𝑄̅1
𝑘̂ =

1

3Ω𝑡̂1
𝚱𝑘̂ [𝑆 𝑇1

𝑡̂1(𝑝𝑇1 − 𝑝𝑄) + 𝑆
 
𝑇2

𝑡̂1(𝑝𝑇2 − 𝑝𝑄) + 𝑆
 
𝑘̂

𝑡̂1(𝑝𝑘̂ − 𝑝𝑄)] ∙ 𝑆 𝑄
𝑡̂1 (A.4) 

 

where 𝑆 𝑄
𝑡̂1 is the outward area vector of the opposite face to the node 𝑄 (analogously to 

other vertices) in tetrahedron 𝑡̂1 (Figure A.1) and Ω𝑡̂1 is the volume of the tetrahedron 𝑡̂1. 

Note that, since we are going to define the fluid pressure at the vertices (𝑝𝐼, 𝑝𝐽, 𝑝𝐾) from 

𝑄 
𝑇1 

𝑇2 

𝑇3 

𝑇5 𝑇6 

𝑘̂ 

𝐽 

𝐾 

𝑇4 

𝐼 
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the fluid pressure at the grid cells (𝑝𝑘̂), we disregard the gravity effects in this divergence 

free imposition and just consider the flux in consequence of 𝑝. The equation above can 

be simplified as: 

 

 F𝑄̅1
𝑘̂ = ξ𝑇1

𝑘̂,1(𝑝𝑇1 − 𝑝𝑄) + ξ𝑇2
𝑘̂,1(𝑝𝑇2 − 𝑝𝑄) + ξ𝑘̂

𝑘̂,1(𝑝𝑘̂ − 𝑝𝑄) (A.5) 

 

where: 

 

 ξ𝑇𝑗
𝑘̂,𝑖 =

(𝑆 𝑄
𝑡̂𝑖)

𝑇

𝚱𝑘̂𝑆 𝑇𝑗
𝑡̂𝑖

3Ω𝑡̂𝑖
;   ξ

𝑘̂
𝑘̂,𝑖 =

(𝑆 𝑄
𝑡̂𝑖)

𝑇

𝚱𝑘̂𝑆 𝑘̂
𝑡̂𝑖

3Ω𝑡̂𝑖
;   𝑖, 𝑗 = 1…6 (A.6) 

 

 

Figure A.2 - Neighbor cells sharing faces and node 𝑄 with 𝑘̂. (a) 𝑜̂𝐼, 𝑜̂𝐽 and 𝑜̂𝐾. (b) 

Sketch of tetrahedra participating in flux continuity imposition on faces 𝑘̅1 and 𝑘̅2. 

 

 

 

 

Source: The author (2023). 

 

Writing the same expression for 𝑄̅2 to 𝑄̅6, we have: 

 

𝐽 

𝐼 

𝐾 

𝑜̂𝐼  

𝑄 

𝑜̂𝐽  

𝑜̂𝐾  

𝑘̂ 

𝐴 𝐵 

𝐶 

𝑘̂ 

𝑜̂𝐽  

𝐾 

𝐼 

𝐽 

𝑄 

𝑇3 

𝑇2 

𝑇1 

𝐴 

(a) (b) 
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{
 
 
 
 

 
 
 
 F𝑄̅1

𝑘̂ = ξ𝑇1
𝑘̂,1(𝑝𝑇1 − 𝑝𝑄) + ξ𝑇2

𝑘̂,1(𝑝𝑇2 − 𝑝𝑄) + ξ𝑘̂
𝑘̂,1(𝑝𝑘̂ − 𝑝𝑄)

F𝑄̅2
𝑘̂ = ξ𝑇2

𝑘̂,2(𝑝𝑇2 − 𝑝𝑄) + ξ𝑇3
𝑘̂,2(𝑝𝑇3 − 𝑝𝑄) + ξ𝑘̂

𝑘̂,2(𝑝𝑘̂ − 𝑝𝑄)

F𝑄̅3
𝑘̂ = ξ𝑇3

𝑘̂,3(𝑝𝑇3 − 𝑝𝑄) + ξ𝑇4
𝑘̂,3(𝑝𝑇4 − 𝑝𝑄) + ξ𝑘̂

𝑘̂,3(𝑝𝑘̂ − 𝑝𝑄)

F𝑄̅4
𝑘̂ = ξ𝑇4

𝑘̂,4(𝑝𝑇4 − 𝑝𝑄) + ξ𝑇5
𝑘̂,4(𝑝𝑇5 − 𝑝𝑄) + ξ𝑘̂

𝑘̂,4(𝑝𝑘̂ − 𝑝𝑄)

F𝑄̅5
𝑘̂ = ξ𝑇5

𝑘̂,5(𝑝𝑇5 − 𝑝𝑄) + ξ𝑇6
𝑘̂,5(𝑝𝑇6 − 𝑝𝑄) + ξ𝑘̂

𝑘̂,5(𝑝𝑘̂ − 𝑝𝑄)

F𝑄̅6
𝑘̂ = ξ𝑇6

𝑘̂,6(𝑝𝑇6 − 𝑝𝑄) + ξ𝑇1
𝑘̂,6(𝑝𝑇1 − 𝑝𝑄) + ξ𝑘̂

𝑘̂,6(𝑝𝑘̂ − 𝑝𝑄)

 (A.7) 

 

Summing these 6 fluxes, following Eq. (A.3), and rewriting the expression in the 

matrix form, we have the expression for F𝑄
𝑘̂  to be substituted in Eq. (A.2): 

 

 F𝑄
𝑘̂ = [𝚨𝑘̂]

𝑇

[
 
 
 
 
 
𝑝𝑇1 − 𝑝𝑄
𝑝𝑇2 − 𝑝𝑄
𝑝𝑇3 − 𝑝𝑄
𝑝𝑇4 − 𝑝𝑄
𝑝𝑇5 − 𝑝𝑄
𝑝𝑇6 − 𝑝𝑄]

 
 
 
 
 

+ 𝒞 𝑘̂(𝑝𝑘̂ − 𝑝𝑄) (A.8) 

 

where: 

 

 𝚨𝑘̂ =

[
 
 
 
 
 
 
 
 ξ𝑇1
𝑘̂,1 + ξ𝑇1

𝑘̂,6

ξ𝑇2
𝑘̂,1 + ξ𝑇2

𝑘̂,2

ξ𝑇3
𝑘̂,2 + ξ𝑇3

𝑘̂,3

ξ𝑇4
𝑘̂,3 + ξ𝑇4

𝑘̂,4

ξ𝑇5
𝑘̂,4 + ξ𝑇5

𝑘̂,5

ξ𝑇6
𝑘̂,5 + ξ𝑇6

𝑘̂,6
]
 
 
 
 
 
 
 
 

; 𝒞 𝑘̂ =∑ξ
𝑘̂
𝑘̂,𝑖

6

𝑖=1

 (A.9) 

 

However, Eq. (A.8) is still not a cell-centered expression to be substituted in Eq. 

(A.2). Then, to eliminate these auxiliary variables 𝑝𝑇𝑖 in Eq. (A.8), it is necessary to 

impose the flux continuity condition on the subfaces 𝑘̅1 to 𝑘̅6. 

For the face 𝑘̅1 = 𝑇1𝑇2𝑄 (see Figure A.2b), for example, the continuity 

imposition can be made based on the construction of the tetrahedra 𝑘̂𝑇1𝑇2𝑄 and 𝑜̂𝐽𝑇1𝑇2𝑄. 

Thus, it is possible to determine the expressions for the flow through the face 𝑘̅1 with 

respect to both tetrahedra, based in Eq. (3.40) and Eq. (3.41): 
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𝑣 𝛼 ∙ 𝑁⃗⃗ 𝑘̅1 =
1

2ℎ
𝑘̂

𝑘̅1|𝑁⃗⃗ 𝑘̅1|
[(
〈𝜏 
𝑘̅1

𝑄𝑇1 , 𝑘̂𝑄⃗⃗⃗⃗  ⃗〉

|𝑁⃗⃗ 𝑘̅1|
2 𝑁⃗⃗ 𝑘̅1

𝑇 𝚱𝑘̂𝑁⃗⃗ 𝑘̅1 −
ℎ
𝑘̂

𝑘̅1

|𝑁⃗⃗ 𝑘̅1|
𝑁⃗⃗ 𝑘̅1
𝑇 𝚱𝑘̂𝜏 𝑘̅1

𝑄𝑇1)(𝑝𝑄

− 𝑝𝑇2) − 2𝑁⃗⃗
 
𝑘̅1
𝑇 𝚱𝑘̂𝑁⃗⃗ 𝑘̅1(𝑝𝑄 − 𝑝𝑘̂)

+ (
〈𝜏 
𝑘̅1

𝑄𝑇2 , 𝑘̂𝑄⃗⃗⃗⃗  ⃗〉

|𝑁⃗⃗ 𝑘̅1|
2 𝑁⃗⃗ 𝑘̅1

𝑇 𝚱𝑘̂𝑁⃗⃗ 𝑘̅1 −
ℎ
𝑘̂

𝑘̅1

|𝑁⃗⃗ 𝑘̅1|
𝑁⃗⃗ 𝑘̅1
𝑇 𝚱𝑘̂𝜏 𝑘̅1

𝑄𝑇2)(𝑝𝑇1 − 𝑝𝑄)] 

(A.10) 

 

and: 

 

𝑣 𝛼 ∙ 𝑁⃗⃗ 𝑘̅1 =
1

2ℎ𝑜̂𝐽
𝑘̅1|𝑁⃗⃗ 𝑘̅1|

[(
〈𝜏 
𝑘̅1

𝑄𝑇1 , 𝑄𝑜̂𝐽⃗⃗⃗⃗⃗⃗  ⃗〉

|𝑁⃗⃗ 𝑘̅1|
2 𝑁⃗⃗ 𝑘̅1

𝑇 𝚱𝑜̂𝐽𝑁⃗⃗
 
𝑘̅1
−

ℎ𝑜̂𝐽
𝑘̅1

|𝑁⃗⃗ 𝑘̅1|
𝑁⃗⃗ 𝑘̅1
𝑇 𝚱𝑜̂𝐽𝜏 𝑘̅1

𝑄𝑇1)(𝑝𝑄

− 𝑝𝑇2) − 2𝑁⃗⃗
 
𝑘̅1
𝑇 𝚱𝑜̂𝐽𝑁⃗⃗

 
𝑘̅1
(𝑝𝑜̂𝐽 − 𝑝𝑄)

+ (
〈𝜏 
𝑘̅1

𝑄𝑇2 , 𝑄𝑜̂𝐽⃗⃗⃗⃗⃗⃗  ⃗〉

|𝑁⃗⃗ 𝑘̅1|
2 𝑁⃗⃗ 𝑘̅1

𝑇 𝚱𝑜̂𝐽𝑁⃗⃗
 
𝑘̅1
−

ℎ𝑜̂𝐽
𝑘̅1

|𝑁⃗⃗ 𝑘̅1|
𝑁⃗⃗ 𝑘̅1
𝑇 𝚱𝑜̂𝐽𝜏 𝑘̅1

𝑄𝑇2)(𝑝𝑇1 − 𝑝𝑄)] 

(A.11) 

 

with 𝑁⃗⃗ 𝑘̅1 being outward from 𝑘̂ and 𝜏 
𝑘̅1

𝑄𝑇𝑗
 (with 𝑗 = 1,2) being defined as indicated in Eq. 

(3.37) and subsequent text. The continuity imposition would be made by equaling the 

right-hand sides of Eq. (A.10) and Eq. (A.11). These expressions above can be written, 

generically, for the subface 𝑘̅𝑖 = 𝑇𝑖𝑇𝑗𝑄, shared by the cells 𝑘̂ and 𝑜̂𝛽, as: 

 

 

𝑣 𝛼 ∙ 𝑁⃗⃗ 𝑘̅𝑖 =
1

2ℎ
𝑘̂

𝑘̅𝑖|𝑁⃗⃗ 𝑘̅𝑖|
[(
〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑖 , 𝑘̂𝑄⃗⃗⃗⃗  ⃗〉

|𝑁⃗⃗ 𝑘̅𝑖|
2 𝑁⃗⃗ 𝑘̅𝑖

𝑇𝚱𝑘̂𝑁⃗⃗ 𝑘̅𝑖 −
ℎ
𝑘̂

𝑘̅𝑖

|𝑁⃗⃗ 𝑘̅𝑖|
𝑁⃗⃗ 𝑘̅𝑖
𝑇𝚱𝑘̂𝜏 𝑘̅𝑖

𝑄𝑇𝑖)(𝑝𝑄

− 𝑝𝑇𝑗) − 2𝑁⃗⃗
 
𝑘̅𝑖

𝑇𝚱𝑘̂𝑁⃗⃗ 𝑘̅𝑖(𝑝𝑄 − 𝑝𝑘̂)

+ (
〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑗 , 𝑘̂𝑄⃗⃗⃗⃗  ⃗〉

|𝑁⃗⃗ 𝑘̅𝑖|
2 𝑁⃗⃗ 𝑘̅𝑖

𝑇𝚱𝑘̂𝑁⃗⃗ 𝑘̅𝑖 −
ℎ
𝑘̂

𝑘̅𝑖

|𝑁⃗⃗ 𝑘̅𝑖|
𝑁⃗⃗ 𝑘̅𝑖
𝑇𝚱𝑘̂𝜏 𝑘̅𝑖

𝑄𝑇𝑗)(𝑝𝑇𝑖 − 𝑝𝑄)] 

(A.12) 

 

and: 
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𝑣 𝛼 ∙ 𝑁⃗⃗ 𝑘̅𝑖 =
1

2ℎ
𝑜̂𝛽

𝑘̅𝑖 |𝑁⃗⃗ 𝑘̅𝑖|
[(
〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑖 , 𝑄𝑜̂𝛽⃗⃗ ⃗⃗ ⃗⃗  ⃗〉

|𝑁⃗⃗ 𝑘̅𝑖|
2 𝑁⃗⃗ 𝑘̅𝑖

𝑇𝚱𝑜̂𝛽𝑁⃗⃗
 
𝑘̅𝑖
−
ℎ𝑜̂𝛽
𝑘̅𝑖

|𝑁⃗⃗ 𝑘̅𝑖|
𝑁⃗⃗ 𝑘̅𝑖
𝑇𝚱𝑜̂𝛽𝜏 𝑘̅𝑖

𝑄𝑇𝑖)(𝑝𝑄

− 𝑝𝑇𝑗) − 2𝑁⃗⃗
 
𝑘̅𝑖

𝑇𝚱𝑜̂𝛽𝑁⃗⃗
 
𝑘̅𝑖
(𝑝𝑜̂𝛽 − 𝑝𝑄)

+ (
〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑗 , 𝑄𝑜̂𝛽⃗⃗ ⃗⃗ ⃗⃗  ⃗〉

|𝑁⃗⃗ 𝑘̅𝑖|
2 𝑁⃗⃗ 𝑘̅𝑖

𝑇𝚱𝑜̂𝛽𝑁⃗⃗
 
𝑘̅𝑖
−
ℎ𝑜̂𝛽
𝑘̅𝑖

|𝑁⃗⃗ 𝑘̅𝑖|
𝑁⃗⃗ 𝑘̅𝑖
𝑇𝚱𝑜̂𝛽𝜏 𝑘̅𝑖

𝑄𝑇𝑗)(𝑝𝑇𝑖 − 𝑝𝑄)] 

(A.13) 

 

By equaling the right-hand sides of Eq. (A.12) and Eq. (A.13), and with some 

algebraic manipulation: 

 

[
〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑗 , 𝑘̂𝑄⃗⃗⃗⃗  ⃗〉

2ℎ
𝑘̂

𝑘̅𝑖|𝑁⃗⃗ 𝑘̅𝑖|
𝐾𝑘̂𝑘̅𝑖
𝑛 −

〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑗 , 𝑄𝑜̂𝛽⃗⃗ ⃗⃗ ⃗⃗  ⃗〉

2ℎ
𝑜̂𝛽

𝑘̅𝑖 |𝑁⃗⃗ 𝑘̅𝑖|
𝐾𝑜̂𝛽𝑘̅𝑖
𝑛 −

1

2
𝐾
𝑘̂𝑘̅𝑖

𝑄𝑇𝑗 +
1

2
𝐾
𝑜̂𝛽𝑘̅𝑖

𝑄𝑇𝑗 ] (𝑝𝑇𝑖 − 𝑝𝑄)

− [
〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑖 , 𝑘̂𝑄⃗⃗⃗⃗  ⃗〉

2ℎ
𝑘̂

𝑘̅𝑖|𝑁⃗⃗ 𝑘̅𝑖|
𝐾𝑘̂𝑘̅𝑖
𝑛 −

〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑖 , 𝑄𝑜̂𝛽⃗⃗ ⃗⃗ ⃗⃗  ⃗〉

2ℎ
𝑜̂𝛽

𝑘̅𝑖 |𝑁⃗⃗ 𝑘̅𝑖|
𝐾𝑜̂𝛽𝑘̅𝑖
𝑛 −

1

2
𝐾
𝑘̂𝑘̅𝑖

𝑄𝑇𝑖

+
1

2
𝐾
𝑜̂𝛽𝑘̅𝑖

𝑄𝑇𝑖 ] (𝑝𝑇𝑗 − 𝑝𝑄) +
|𝑁⃗⃗ 𝑘̅𝑖|

ℎ
𝑘̂

𝑘̅𝑖
𝐾𝑘̂𝑘̅𝑖
𝑛 (𝑝𝑘̂ − 𝑝𝑄)

+
|𝑁⃗⃗ 𝑘̅𝑖|

ℎ
𝑜̂𝛽

𝑘̅𝑖
𝐾𝑜̂𝛽𝑘̅𝑖
𝑛 (𝑝𝑜̂𝛽 − 𝑝𝑄) = 0 

(A.14) 

 

that can be simplified as: 

 

 𝜂𝑖𝑗
𝑘̂ (𝑝𝑇𝑖 − 𝑝𝑄) − 𝜂𝑖𝑖

𝑘̂ (𝑝𝑇𝑗 − 𝑝𝑄) + 𝜎𝑖
𝑘̂(𝑝𝑘̂ − 𝑝𝑄) + 𝜎𝑖

𝑜̂𝛽 (𝑝𝑜̂𝛽 − 𝑝𝑄) = 0 (A.15) 

 

where: 

 

 𝜎𝑖
𝑥̂ =

|𝑁⃗⃗ 𝑘̅𝑖|

ℎ
𝑥̂

𝑘̅𝑖
𝐾𝑥̂𝑘̅𝑖
𝑛    with   𝑥 = 𝑘, 𝑜𝛽 (A.16) 

 

and: 
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 𝜂𝑖𝑗
𝑘̂ =

〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑗 , 𝑘̂𝑄⃗⃗⃗⃗  ⃗〉

2ℎ
𝑘̂

𝑘̅𝑖|𝑁⃗⃗ 𝑘̅𝑖|
𝐾𝑘̂𝑘̅𝑖
𝑛 −

〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑗 , 𝑄𝑜̂𝛽⃗⃗ ⃗⃗ ⃗⃗  ⃗〉

2ℎ
𝑜̂𝛽

𝑘̅𝑖 |𝑁⃗⃗ 𝑘̅𝑖|
𝐾𝑜̂𝛽𝑘̅𝑖
𝑛 −

1

2
𝐾
𝑘̂𝑘̅𝑖

𝑄𝑇𝑗 +
1

2
𝐾
𝑜̂𝛽𝑘̅𝑖

𝑄𝑇𝑗
 (A.17) 

 

with 𝐾𝑘̂𝑘̅𝑖
𝑛  and 𝐾

𝑘̂𝑘̅𝑖

𝑄𝑇𝑗
 and other analogous terms defined according to Eq. (3.44). Finally, 

𝑖 = 1,2 → 𝛽 = 𝐽, 𝑖 = 3,4 → 𝛽 = 𝐼 and 𝑖 = 5,6 → 𝛽 = 𝐾. Then, applying the Eq. (A.15) 

to all the 6 subfaces 𝑘̅𝑖 defined according Figure A.1, we have: 

 

 

{
 
 
 
 

 
 
 
 𝜂12

𝑘̂ (𝑝𝑇1 − 𝑝𝑄) − 𝜂11
𝑘̂ (𝑝𝑇2 − 𝑝𝑄) + 𝜎1

𝑘̂(𝑝𝑘̂ − 𝑝𝑄) + 𝜎1
𝑜̂𝐽(𝑝𝑜̂𝐽 − 𝑝𝑄) = 0

𝜂23
𝑘̂ (𝑝𝑇2 − 𝑝𝑄) − 𝜂22

𝑘̂ (𝑝𝑇3 − 𝑝𝑄) + 𝜎2
𝑘̂(𝑝𝑘̂ − 𝑝𝑄) + 𝜎2

𝑜̂𝐽(𝑝𝑜̂𝐽 − 𝑝𝑄) = 0

𝜂34
𝑘̂ (𝑝𝑇3 − 𝑝𝑄) − 𝜂33

𝑘̂ (𝑝𝑇4 − 𝑝𝑄) + 𝜎3
𝑘̂(𝑝𝑘̂ − 𝑝𝑄) + 𝜎3

𝑜̂𝐼(𝑝𝑜̂𝐼 − 𝑝𝑄) = 0

𝜂45
𝑘̂ (𝑝𝑇4 − 𝑝𝑄) − 𝜂44

𝑘̂ (𝑝𝑇5 − 𝑝𝑄) + 𝜎4
𝑘̂(𝑝𝑘̂ − 𝑝𝑄) + 𝜎4

𝑜̂𝐼(𝑝𝑜̂𝐼 − 𝑝𝑄) = 0

𝜂56
𝑘̂ (𝑝𝑇5 − 𝑝𝑄) − 𝜂55

𝑘̂ (𝑝𝑇6 − 𝑝𝑄) + 𝜎5
𝑘̂(𝑝𝑘̂ − 𝑝𝑄) + 𝜎5

𝑜̂𝐾(𝑝𝑜̂𝐾 − 𝑝𝑄) = 0

𝜂61
𝑘̂ (𝑝𝑇6 − 𝑝𝑄) − 𝜂66

𝑘̂ (𝑝𝑇1 − 𝑝𝑄) + 𝜎6
𝑘̂(𝑝𝑘̂ − 𝑝𝑄) + 𝜎6

𝑜̂𝐾(𝑝𝑜̂𝐾 − 𝑝𝑄) = 0

 (A.18) 

 

which, in matrix form, we have: 

 

 

[
 
 
 
 
 
 
 𝜂12

𝑘̂ −𝜂11
𝑘̂ 0 0 0 0

0 𝜂23
𝑘̂ −𝜂22

𝑘̂ 0 0 0

0 0 𝜂34
𝑘̂ −𝜂33

𝑘̂ 0 0

0 0 0 𝜂45
𝑘̂ −𝜂44

𝑘̂ 0

0 0 0 0 𝜂56
𝑘̂ −𝜂55

𝑘̂

−𝜂66
𝑘̂ 0 0 0 0 𝜂61

𝑘̂ ]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑝𝑇1 − 𝑝𝑄
𝑝𝑇2 − 𝑝𝑄
𝑝𝑇3 − 𝑝𝑄
𝑝𝑇4 − 𝑝𝑄
𝑝𝑇5 − 𝑝𝑄
𝑝𝑇6 − 𝑝𝑄]

 
 
 
 
 

+

[
 
 
 
 
 
 
 
 𝜎1

𝑘̂ 𝜎1
𝑜̂𝐽 0 0

𝜎2
𝑘̂ 𝜎2

𝑜̂𝐽 0 0

𝜎3
𝑘̂ 0 𝜎3

𝑜̂𝐼 0

𝜎4
𝑘̂ 0 𝜎4

𝑜̂𝐼 0

𝜎5
𝑘̂ 0 0 𝜎5

𝑜̂𝐾

𝜎6
𝑘̂ 0 0 𝜎6

𝑜̂𝐾]
 
 
 
 
 
 
 
 

[

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] =

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 

(A.19) 

 

Then: 
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[
 
 
 
 
 
𝑝𝑇1 − 𝑝𝑄
𝑝𝑇2 − 𝑝𝑄
𝑝𝑇3 − 𝑝𝑄
𝑝𝑇4 − 𝑝𝑄
𝑝𝑇5 − 𝑝𝑄
𝑝𝑇6 − 𝑝𝑄]

 
 
 
 
 

= 𝚩𝑘̂

[
 
 
 
 
 
 
 
 −𝜎1

𝑘̂ −𝜎1
𝑜̂𝐽 0 0

−𝜎2
𝑘̂ −𝜎2

𝑜̂𝐽 0 0

−𝜎3
𝑘̂ 0 −𝜎3

𝑜̂𝐼 0

−𝜎4
𝑘̂ 0 −𝜎4

𝑜̂𝐼 0

−𝜎5
𝑘̂ 0 0 −𝜎5

𝑜̂𝐾

−𝜎6
𝑘̂ 0 0 −𝜎6

𝑜̂𝐾]
 
 
 
 
 
 
 
 

[

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] (A.20) 

 

where: 

 

 𝚩𝑘̂ =

[
 
 
 
 
 
 
 𝜂12

𝑘̂ −𝜂11
𝑘̂ 0 0 0 0

0 𝜂23
𝑘̂ −𝜂22

𝑘̂ 0 0 0

0 0 𝜂34
𝑘̂ −𝜂33

𝑘̂ 0 0

0 0 0 𝜂45
𝑘̂ −𝜂44

𝑘̂ 0

0 0 0 0 𝜂56
𝑘̂ −𝜂55

𝑘̂

−𝜂66
𝑘̂ 0 0 0 0 𝜂61

𝑘̂ ]
 
 
 
 
 
 
 
−1

 (A.21) 

 

This way, each entry of this matrix can be defined as: 

 

 

{
 
 

 
 Β𝑖𝑗

𝑘̂ = (
1

∏ 𝜂𝑛 𝑛+1
𝑘̂6

𝑛=1 −∏ 𝜂𝑛𝑛
𝑘̂6

𝑛=1

)(∏𝜂𝑛𝑛
𝑘̂
∏ 𝜂𝑛 𝑛+1

𝑘̂𝑖−1
𝑛=𝑗+1

∏ 𝜂𝑛𝑛
𝑘̂𝑖−1

𝑛=𝑗

6

𝑛=1

)     if    𝑖 > 𝑗

Β𝑖𝑗
𝑘̂ = (

1

∏ 𝜂𝑛 𝑛+1
𝑘̂6

𝑛=1 −∏ 𝜂𝑛𝑛
𝑘̂6

𝑛=1

)(∏𝜂𝑛 𝑛+1
𝑘̂

∏ 𝜂𝑛𝑛
𝑘̂𝑗−1

𝑛=𝑖

∏ 𝜂𝑛 𝑛+1
𝑘̂𝑗

𝑛=𝑖

6

𝑛=1

)     if    𝑖 ≤ 𝑗

 (A.22) 

 

In case of LPEW1, substituting Eq. (A.20) in Eq. (A.8), we have: 

 

F𝑄
𝑘̂ = [𝚨𝑘̂]

1×6

𝑇
[𝚩𝑘̂]

6×6

[
 
 
 
 
 
 
 
 −𝜎1

𝑘̂ −𝜎1
𝑜̂𝐽 0 0

−𝜎2
𝑘̂ −𝜎2

𝑜̂𝐽 0 0

−𝜎3
𝑘̂ 0 −𝜎3

𝑜̂𝐼 0

−𝜎4
𝑘̂ 0 −𝜎4

𝑜̂𝐼 0

−𝜎5
𝑘̂ 0 0 −𝜎5

𝑜̂𝐾

−𝜎6
𝑘̂ 0 0 −𝜎6

𝑜̂𝐾]
 
 
 
 
 
 
 
 

[

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

]

+ 𝒞 𝑘̂(𝑝𝑘̂ − 𝑝𝑄) 

(A.23) 
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which results, through Eq. (A.22), in: 

 

 F𝑄
𝑘̂ =

[
 
 
 
 
 
 
 
 
 
 
 
 
−∑𝜎𝑗

𝑘̂∑Α𝑖
𝑘̂Β𝑖𝑗

𝑘̂

6

𝑖=1

6

𝑗=1

−∑𝜎
𝑗

𝑜̂𝐽∑Α𝑖
𝑘̂Β𝑖𝑗

𝑘̂

6

𝑖=1

2

𝑗=1

−∑𝜎𝑗
𝑜̂𝐼∑Α𝑖

𝑘̂Β𝑖𝑗
𝑘̂

6

𝑖=1

4

𝑗=3

−∑𝜎𝑗
𝑜̂𝐾∑Α𝑖

𝑘̂Β𝑖𝑗
𝑘̂

6

𝑖=1

6

𝑗=5 ]
 
 
 
 
 
 
 
 
 
 
 
 
𝑇

[

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] + 𝒞 𝑘̂(𝑝𝑘̂ − 𝑝𝑄) (A.24) 

 

So, imposing the divergence-free condition on 𝑄, according to Eq. (A.2), we 

have: 

 

∑F𝑄
𝑘̂

𝑘̂∈ℚ̂

= ∑{[−∑𝜎𝑗
𝑘̂∑Α𝑖

𝑘̂Β𝑖𝑗
𝑘̂

6

𝑖=1

6

𝑗=1

] + ∑ [− ∑ 𝜎𝑗
𝑘̂∑Α

𝑖

𝑜̂𝛽Β
𝑖𝑗

𝑜̂𝛽

6

𝑖=1

𝑚𝛽+1

𝑗=𝑚𝛽

]

𝛽=𝐼,𝐽,𝐾𝑘̂∈ℚ̂

+ 𝒞 𝑘̂} (𝑝𝑘̂ − 𝑝𝑄) = 0 

(A.25) 

 

where 𝑚𝛽 = 1 if 𝑘̂ is opposing the node named as 𝐽 in 𝑜̂𝛽, 𝑚𝛽 = 3 if 𝑘̂ is opposing the 

node named as 𝐼 in 𝑜̂𝛽, 𝑚𝛽 = 5 if 𝑘̂ is opposing the node named as 𝐾 in 𝑜̂𝛽. Thus, we can 

write the LPEW1 explicit interpolation expression for 𝑝𝑄: 

 

 𝑝𝑄 = ∑
𝑤𝑘̂

∑ 𝑤𝑘̂𝑘̂∈ℚ̂
𝑘̂∈ℚ̂

𝑝𝑘̂ (A.26) 

 

where: 

 𝑤𝑘̂ = [−∑𝜎𝑗
𝑘̂∑Α𝑖

𝑘̂Β𝑖𝑗
𝑘̂

6

𝑖=1

6

𝑗=1

] + ∑ [− ∑ 𝜎𝑗
𝑘̂∑Α

𝑖

𝑜̂𝛽Β
𝑖𝑗

𝑜̂𝛽

6

𝑖=1

𝑚𝛽+1

𝑗=𝑚𝛽

]

𝛽=𝐼,𝐽,𝐾

+ 𝒞 𝑘̂ (A.27) 
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with Α𝑖
𝑘̂ defined as in Eq. (A.9).   

However, if the vertex unknown to be interpolated is on a Neumann boundary, 

we need to consider the prescribed flux in the interpolation. Consider, for example, that 

the subface 𝑘̅𝑖, in 𝑘̂, is now on a Neumann boundary. Then, we can impose the flux 

continuity, based in Eq. (A.15), by the following expression: 

 

 𝜂̃𝑖𝑗
𝑘̂ (𝑝𝑇𝑖 − 𝑝𝑄) − 𝜂̃𝑖𝑖

𝑘̂ (𝑝𝑇𝑗 − 𝑝𝑄) + 𝜎𝑖
𝑘̂(𝑝𝑘̂ − 𝑝𝑄) −𝒩𝑖

𝑘̂ = 0 (A.28) 

 

with: 

 

 𝜂̃𝑖𝑗
𝑘̂ =

〈𝜏 
𝑘̅𝑖

𝑄𝑇𝑗 , 𝑘̂𝑄⃗⃗⃗⃗  ⃗〉

2ℎ
𝑘̂

𝑘̅𝑖|𝑁⃗⃗ 𝑘̅𝑖|
𝐾𝑘̂𝑘̅𝑖
𝑛 −

1

2
𝐾
𝑘̂𝑘̅𝑖

𝑄𝑇𝑗
 (A.29) 

 

For the faces which are not on the boundary, we can define 𝜂̃𝑖𝑗
𝑘̂  in the same way 

that 𝜂𝑖𝑗
𝑘̂  in Eq. (A.17). Besides that: 

 

 𝒩𝑖
𝑘̂ = |𝑁⃗⃗ 𝑘̅𝑖|𝑔𝑁

𝑘̅𝑖 (A.30) 

 

where 𝑔𝑁
𝑘̅𝑖 is the prescribed flux value (disregarding gravity effects) for the subface 𝑘̅𝑖 in 

𝑘̂. Thus, the Eq. (A.19) becomes: 

 

 [𝚮𝑘̂]

[
 
 
 
 
 
𝑝𝑇1 − 𝑝𝑄
𝑝𝑇2 − 𝑝𝑄
𝑝𝑇3 − 𝑝𝑄
𝑝𝑇4 − 𝑝𝑄
𝑝𝑇5 − 𝑝𝑄
𝑝𝑇6 − 𝑝𝑄]

 
 
 
 
 

+ [𝚾𝑘̂] [

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] +

[
 
 
 
 
 
 
 −(1 − 𝜒1

𝑘̂)𝒩1
𝑘̂

−(1 − 𝜒2
𝑘̂)𝒩2

𝑘̂

−(1 − 𝜒3
𝑘̂)𝒩3

𝑘̂

−(1 − 𝜒4
𝑘̂)𝒩4

𝑘̂

−(1 − 𝜒5
𝑘̂)𝒩5

𝑘̂

−(1 − 𝜒6
𝑘̂)𝒩6

𝑘̂]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 (A.31) 

 

where: 
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 𝚮𝑘̂ =

[
 
 
 
 
 
 
 𝜂̃12

𝑘̂ −𝜂̃11
𝑘̂ 0 0 0 0

0 𝜂̃23
𝑘̂ −𝜂̃22

𝑘̂ 0 0 0

0 0 𝜂̃34
𝑘̂ −𝜂̃33

𝑘̂ 0 0

0 0 0 𝜂̃45
𝑘̂ −𝜂̃44

𝑘̂ 0

0 0 0 0 𝜂̃56
𝑘̂ −𝜂̃55

𝑘̂

−𝜂̃66
𝑘̂ 0 0 0 0 𝜂̃61

𝑘̂ ]
 
 
 
 
 
 
 

 (A.32) 

 

and: 

 

 𝚾𝑘̂ =

[
 
 
 
 
 
 
 
 𝜎1

𝑘̂ 𝜒1
𝑘̂𝜎1

𝑜̂𝐽 0 0

𝜎2
𝑘̂ 𝜒2

𝑘̂𝜎2
𝑜̂𝐽 0 0

𝜎3
𝑘̂ 0 𝜒3

𝑘̂𝜎3
𝑜̂𝐼 0

𝜎4
𝑘̂ 0 𝜒4

𝑘̂𝜎4
𝑜̂𝐼 0

𝜎5
𝑘̂ 0 0 𝜒5

𝑘̂𝜎5
𝑜̂𝐾

𝜎6
𝑘̂ 0 0 𝜒6

𝑘̂𝜎6
𝑜̂𝐾]
 
 
 
 
 
 
 
 

 (A.33) 

 

where 𝜒𝑖
𝑘̂ = 0 if the subface 𝑘̅𝑖 in 𝑘̂ is on a Neumann boundary and 𝜒𝑖

𝑘̂ = 1 else. Then: 

 

 

[
 
 
 
 
 
𝑝𝑇1 − 𝑝𝑄
𝑝𝑇2 − 𝑝𝑄
𝑝𝑇3 − 𝑝𝑄
𝑝𝑇4 − 𝑝𝑄
𝑝𝑇5 − 𝑝𝑄
𝑝𝑇6 − 𝑝𝑄]

 
 
 
 
 

= 𝚩̃𝑘̂[𝚾𝑘̂] [

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] + 𝚩̃𝑘̂

[
 
 
 
 
 
 
 (1 − 𝜒1

𝑘̂)𝒩1
𝑘̂

(1 − 𝜒2
𝑘̂)𝒩2

𝑘̂

(1 − 𝜒3
𝑘̂)𝒩3

𝑘̂

(1 − 𝜒4
𝑘̂)𝒩4

𝑘̂

(1 − 𝜒5
𝑘̂)𝒩5

𝑘̂

(1 − 𝜒6
𝑘̂)𝒩6

𝑘̂]
 
 
 
 
 
 
 

 (A.34) 

 

in which 𝚩̃𝑘̂ = [𝚮𝑘̂]
−1

. Then, in case of LPEW1, the Eq. (A.24) becomes: 
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F𝑄
𝑘̂ =

[
 
 
 
 
 
 
 
 
 
 
 
 
−∑𝜎𝑗

𝑘̂∑Α𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

6

𝑗=1

−∑𝜒𝑗
𝑘̂𝜎
𝑗

𝑜̂𝐽∑Α𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

2

𝑗=1

−∑𝜒𝑗
𝑘̂𝜎𝑗

𝑜̂𝐼∑Α𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

4

𝑗=3

−∑𝜒𝑗
𝑘̂𝜎𝑗

𝑜̂𝐾∑Α𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

6

𝑗=5 ]
 
 
 
 
 
 
 
 
 
 
 
 
𝑇

[

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] + 𝒞 𝑘̂(𝑝𝑘̂ − 𝑝𝑄)

+∑(1 − 𝜒𝑗
𝑘̂)𝒩𝑗

𝑘̂∑A𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

6

𝑗=1

 

(A.35) 

 

where Β̃𝑖𝑗
𝑘̂  defined analogously to Β𝑖𝑗

𝑘̂  in Eq. (A.22). Then imposing the divergence free 

surrounding the node 𝑄, now considering the flux through the boundary, we have: 

 

 ∑F𝑄
𝑘̂

𝑘̂∈ℚ̂

= ∑𝑤𝑘(𝑝𝑘̂ − 𝑝𝑄)

𝑘̂∈ℚ̂

+∑∑(1 − 𝜒𝑗
𝑘̂)𝒩𝑗

𝑘̂ (1 +∑A𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

)

6

𝑗=1𝑘̂∈𝔹̂

= 0 (A.36) 

 

where: 

 

 𝑤𝑘 = [−∑𝜎𝑗
𝑘̂∑Α𝑖

𝑘̂Β̃𝑖𝑗
𝑘̂

6

𝑖=1

6

𝑗=1

] + ∑ [− ∑ 𝜒𝑗
𝑘̂𝜎𝑗

𝑘̂∑Α
𝑖

𝑜̂𝛽Β̃
𝑖𝑗

𝑜̂𝛽

6

𝑖=1

𝑚𝛽+1

𝑗=𝑚𝛽

]

𝛽=𝐼,𝐽,𝐾

+ 𝒞 𝑘̂ (A.37) 

 

𝑚𝛽 is defined in the same way that for Eq. (A.25) and 𝔹̂ is the set of boundaries tetrahedra 

sharing the node 𝑄. Thus, we can write the LPEW1 explicit interpolation expression for 

𝑝𝑄 if 𝑄 is on a Neumann boundary: 

 

 𝑝𝑄 = ∑
𝑤𝑘

∑ 𝑤𝑘𝑘̂∈ℚ̂

𝑝𝑘̂
𝑘̂∈ℚ̂

+
∑ ∑ (1 − 𝜒𝑗

𝑘̂)𝒩𝑗
𝑘̂(1 + ∑ A𝑖

𝑘̂Β̃𝑖𝑗
𝑘̂6

𝑖=1 )6
𝑗=1𝑘̂∈𝔹̂

∑ 𝑤𝑘𝑘̂∈ℚ̂

 (A.38) 

 

A.2 Linearity Preserving Explicit Weights Type 2 (LPEW2) 
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The first strategy is the natural extension, by analogy, to 3-D of the LPEW2 

presented by Gao and Wu in 2-D (GAO; WU, 2011), which is also analogous to the 

LPEW3 presented by Lira Filho et al. (2021). For this, in each tetrahedron sharing 𝑄, we 

define a subregion delimited by 4 tetrahedrons, as shown in Figure A.3: 𝑡̂1 = 𝑇1𝑇2𝑇6𝑄, 

𝑡̂2 = 𝑇2𝑇3𝑇4𝑄, 𝑡̂3 = 𝑇4𝑇5𝑇6𝑄 and 𝑡̂4 = 𝑇2𝑇4𝑇6𝑄, where 𝑇1 is on the edge 𝑄𝐼, 𝑇2 is on the 

face 𝑄𝐼𝐾, 𝑇3 is on the edge 𝑄𝐾, 𝑇4 is on the face 𝑄𝐽𝐾, 𝑇5 is on the edge 𝑄𝐽, 𝑇6 is on the 

face 𝑄𝐼𝐽, where 𝐼𝐽𝐾 is the opposite face to 𝑄 in the 𝑘-th tetrahedron sharing it (with a 

colocation point 𝑘̂).  

 

Figure A.3 - LPEW2 subregion comprising node 𝑄 in 𝑘̂ (the 𝑘-th cell sharing 𝑄). 

 

 

Source: The author (2023). 

 

The points 𝐼, 𝐽 and 𝐾 are named so that 𝑁⃗⃗ = (𝐽𝐼⃗⃗⃗  × 𝐽𝐾⃗⃗⃗⃗ ) 2⁄  is the outward area 

vector of the face 𝐼𝐽𝐾. Then, we can also define, in the subregion shown in Figure A.3, 

the subfaces 𝑘̅1 = 𝑇1𝑇2𝑄, 𝑘̅2 = 𝑇2𝑇3𝑄, 𝑘̅3 = 𝑇3𝑇4𝑄, 𝑘̅4 = 𝑇4𝑇5𝑄, 𝑘̅5 = 𝑇5𝑇6𝑄, 𝑘̅6 =

𝑇6𝑇1𝑄. Beyond this, we also define the faces 𝑄̅1 = 𝑇1𝑇2𝑇6, 𝑄̅2 = 𝑇2𝑇3𝑇4, 𝑄̅3 = 𝑇4𝑇5𝑇6 

and 𝑄̅4 = 𝑇2𝑇4𝑇6. The neighbor cells sharing faces and the node 𝑄 with 𝑘̂ are named as 

𝑜̂𝐽 (the neighbor cell sharing the face opposing vertex 𝐽), 𝑜̂𝐼 (the neighbor cell sharing the 

face opposing vertex 𝐼), 𝑜̂𝐾 (the neighbor cell sharing the face opposing vertex 𝐾), as 

shown in Figure A.2a. The method presented by Lira Filho et al. (2021), called LPEW3, 

𝑇4 

𝑄 
𝑇1 

𝑇2 

𝑇3 

𝑇5 𝑇6 

𝑘̂ 

𝐼 𝐽 

𝐾 
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is an variation of the LPEW2 in which 𝑇1 = 𝐼, 𝑇3 = 𝐾, 𝑇5 = 𝐽, 𝑇2 is on edge 𝐼𝐾, 𝑇4 is on 

edge 𝐽𝐾 and 𝑇6 is on edge 𝐼𝐽. 

All this defined, we can start the development of our explicit weighting by the 

divergence free imposition on the node 𝑄 through the Eq. (A.2). If we consider the case 

of LPEW2, or even LPEW3, (Figure A.3), F𝑄
𝑘̂  is defined as: 

 

 F𝑄
𝑘̂ = F𝑄̅1

𝑘̂ + F𝑄̅2
𝑘̂ + F𝑄̅3

𝑘̂ + F𝑄̅4
𝑘̂  (A.39) 

 

with F𝑄̅1
𝑘̂  defined, in this case, as: 

 

F𝑄̅1
𝑘̂ =

1

3Ω𝑡̂1
𝚱𝑘̂ [𝑆 𝑇1

𝑡̂1(𝑝𝑇1 − 𝑝𝑄) + 𝑆
 
𝑇2

𝑡̂1(𝑝𝑇2 − 𝑝𝑄) + 𝑆
 
𝑇6

𝑡̂1(𝑝𝑇6 − 𝑝𝑄)] ∙ 𝑆
 
𝑄
𝑡̂1 (A.40) 

 

that can be simplified as: 

 

 F𝑄̅1
𝑘̂ = ξ𝑇1

𝑘̂,1(𝑝𝑇1 − 𝑝𝑄) + ξ𝑇2
𝑘̂,1(𝑝𝑇2 − 𝑝𝑄) + ξ𝑇6

𝑘̂,1(𝑝𝑇6 − 𝑝𝑄) (A.41) 

 

Writing the same expression for 𝑄̅2, 𝑄̅3 and 𝑄̅4, we have: 

 

 

{
 
 

 
 F𝑄̅1

𝑘̂ = ξ𝑇1
𝑘̂,1(𝑝𝑇1 − 𝑝𝑄) + ξ𝑇1

𝑘̂,1(𝑝𝑇2 − 𝑝𝑄) + ξ𝑇1
𝑘̂,1(𝑝𝑇6 − 𝑝𝑄)

F𝑄̅2
𝑘̂ = ξ𝑇2

𝑘̂,2(𝑝𝑇2 − 𝑝𝑄) + ξ𝑇3
𝑘̂,2(𝑝𝑇3 − 𝑝𝑄) + ξ𝑇4

𝑘̂,2(𝑝𝑇4 − 𝑝𝑄)

F𝑄̅3
𝑘̂ = ξ𝑇4

𝑘̂,3(𝑝𝑇4 − 𝑝𝑄) + ξ𝑇5
𝑘̂,3(𝑝𝑇5 − 𝑝𝑄) + ξ𝑇6

𝑘̂,3(𝑝𝑇6 − 𝑝𝑄)

F𝑄̅4
𝑘̂ = ξ𝑇2

𝑘̂,4(𝑝𝑇2 − 𝑝𝑄) + ξ𝑇4
𝑘̂,4(𝑝𝑇4 − 𝑝𝑄) + ξ𝑇6

𝑘̂,4(𝑝𝑇6 − 𝑝𝑄)

 (A.42) 

 

Summing these 4 fluxes, following Eq. (A.39), and rewriting the expression in 

the matrix form, we have the expression for F𝑄
𝑘̂  to be substituted in Eq. (A.2): 

 

 F𝑄
𝑘̂ = [𝚨̃𝑘̂]

𝑇

[
 
 
 
 
 
𝑝𝑇1 − 𝑝𝑄
𝑝𝑇2 − 𝑝𝑄
𝑝𝑇3 − 𝑝𝑄
𝑝𝑇4 − 𝑝𝑄
𝑝𝑇5 − 𝑝𝑄
𝑝𝑇6 − 𝑝𝑄]

 
 
 
 
 

 (A.43) 
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where, in this case of LPEW2 (or LPEW3), 𝚨̃𝑘̂ is defined as: 

 

 𝚨̃𝑘̂ =

[
 
 
 
 
 
 
 
 ξ𝑇1

𝑘̂,1

ξ𝑇2
𝑘̂,1 + ξ𝑇2

𝑘̂,2 + ξ𝑇2
𝑘̂,4

ξ𝑇3
𝑘̂,2

ξ𝑇4
𝑘̂,2 + ξ𝑇4

𝑘̂,3 + ξ𝑇4
𝑘̂,4

ξ𝑇5
𝑘̂,3

ξ𝑇6
𝑘̂,1 + ξ𝑇6

𝑘̂,3 + ξ𝑇6
𝑘̂,4
]
 
 
 
 
 
 
 
 

 (A.44) 

 

Substituting Eq. (A.20) in Eq. (A.43), we have: 

 

 F𝑄
𝑘̂ = [𝚨̃𝑘̂]

1×6

𝑇
[𝚩𝑘̂]

6×6

[
 
 
 
 
 
 
 
 −𝜎1

𝑘̂ −𝜎1
𝑜̂𝐽 0 0

−𝜎2
𝑘̂ −𝜎2

𝑜̂𝐽 0 0

−𝜎3
𝑘̂ 0 −𝜎3

𝑜̂𝐼 0

−𝜎4
𝑘̂ 0 −𝜎4

𝑜̂𝐼 0

−𝜎5
𝑘̂ 0 0 −𝜎5

𝑜̂𝐾

−𝜎6
𝑘̂ 0 0 −𝜎6

𝑜̂𝐾]
 
 
 
 
 
 
 
 

[

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] (A.45) 

 

which results, through Eq. (A.22), in: 

 

 F𝑄
𝑘̂ =

[
 
 
 
 
 
 
 
 
 
 
 
 
−∑𝜎𝑗

𝑘̂∑Α̃𝑖
𝑘̂Β𝑖𝑗

𝑘̂

6

𝑖=1

6

𝑗=1

−∑𝜎
𝑗

𝑜̂𝐽∑Α̃𝑖
𝑘̂Β𝑖𝑗

𝑘̂

6

𝑖=1

2

𝑗=1

−∑𝜎𝑗
𝑜̂𝐼∑Α̃𝑖

𝑘̂Β𝑖𝑗
𝑘̂

6

𝑖=1

4

𝑗=3

−∑𝜎𝑗
𝑜̂𝐾∑Α̃𝑖

𝑘̂Β𝑖𝑗
𝑘̂

6

𝑖=1

6

𝑗=5 ]
 
 
 
 
 
 
 
 
 
 
 
 
𝑇

[

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] (A.46) 

 

So, imposing the divergence-free condition on 𝑄, according to Eq. (A.2), we 

have: 
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∑F𝑄
𝑘̂

𝑘̂∈ℚ̂

= ∑{[−∑𝜎𝑗
𝑘̂∑Α̃𝑖

𝑘̂Β𝑖𝑗
𝑘̂

6

𝑖=1

6

𝑗=1

] + ∑ [− ∑ 𝜎𝑗
𝑘̂∑Α̃

𝑖

𝑜̂𝛽Β
𝑖𝑗

𝑜̂𝛽

6

𝑖=1

𝑚𝛽+1

𝑗=𝑚𝛽

]

𝛽=𝐼,𝐽,𝐾

} (𝑝𝑘̂
𝑘̂∈ℚ̂

− 𝑝𝑄) = 0 

(A.47) 

 

where again 𝑚𝛽 = 1 if 𝑘̂ is opposing the node named as 𝐽 in 𝑜̂𝛽, 𝑚𝛽 = 3 if 𝑘̂ is opposing 

the node named as 𝐼 in 𝑜̂𝛽, 𝑚𝛽 = 5 if 𝑘̂ is opposing the node named as 𝐾 in 𝑜̂𝛽. Thus, we 

can write the LPEW2 explicit interpolation expression for 𝑝𝑄: 

 

 𝑝𝑄 = ∑
𝑤̃𝑘

∑ 𝑤̃𝑘𝑘̂∈ℚ̂
𝑘̂∈ℚ̂

𝑝𝑘̂ (A.48) 

 

where: 

 

 𝑤̃𝑘 = [−∑𝜎𝑗
𝑘̂∑Α̃𝑖

𝑘̂Β𝑖𝑗
𝑘̂

6

𝑖=1

6

𝑗=1

] + ∑ [− ∑ 𝜎𝑗
𝑘̂∑Α̃

𝑖

𝑜̂𝛽Β
𝑖𝑗

𝑜̂𝛽

6

𝑖=1

𝑚𝛽+1

𝑗=𝑚𝛽

]

𝛽=𝐼,𝐽,𝐾

 (A.49) 

 

with Α̃𝑖
𝑘̂ defined as in Eq (A.44).  

In case of the node being on a Neumann boundary condition, through the 

application of Eq. (A.34) in Eq. (A.43), the Eq. (A.46) becomes: 

 

 F𝑄
𝑘̂ =

[
 
 
 
 
 
 
 
 
 
 
 
 
−∑𝜎𝑗

𝑘̂∑Α̃𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

6

𝑗=1

−∑𝜒𝑗
𝑘̂𝜎
𝑗

𝑜̂𝐽∑Α̃𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

2

𝑗=1

−∑𝜒𝑗
𝑘̂𝜎𝑗

𝑜̂𝐼∑Α̃𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

4

𝑗=3

−∑𝜒𝑗
𝑘̂𝜎𝑗

𝑜̂𝐾∑Α̃𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

6

𝑗=5 ]
 
 
 
 
 
 
 
 
 
 
 
 
𝑇

[

𝑝𝑘̂ − 𝑝𝑄
𝑝𝑜̂𝐽 − 𝑝𝑄
𝑝𝑜̂𝐼 − 𝑝𝑄
𝑝𝑜̂𝐾 − 𝑝𝑄

] +∑(1 − 𝜒𝑗
𝑘̂)𝒩𝑗

𝑘̂∑Α̃𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

6

𝑗=1

 (A.50) 
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where again Β̃𝑖𝑗
𝑘̂  is defined analogously to Β𝑖𝑗

𝑘̂  in Eq. (A.22). Then imposing the 

divergence free surrounding the node 𝑄, now considering the flux through the boundary, 

we have: 

 

 ∑F𝑄
𝑘̂

𝑘̂∈ℚ̂

= ∑ 𝑤̃𝑘(𝑝𝑘̂ − 𝑝𝑄)

𝑘̂∈ℚ̂

+∑∑(1 − 𝜒𝑗
𝑘̂)𝒩𝑗

𝑘̂ (1 +∑Α̃𝑖
𝑘̂Β̃𝑖𝑗

𝑘̂

6

𝑖=1

)

6

𝑗=1𝑘̂∈𝔹̂

= 0 (A.51) 

 

where: 

 

 𝑤̃𝑘 = [−∑𝜎𝑗
𝑘̂∑Α̃𝑖

𝑘̂Β̃𝑖𝑗
𝑘̂

6

𝑖=1

6

𝑗=1

] + ∑ [− ∑ 𝜒𝑗
𝑘̂𝜎𝑗

𝑘̂∑Α̃
𝑖

𝑜̂𝛽Β̃
𝑖𝑗

𝑜̂𝛽

6

𝑖=1

𝑚𝛽+1

𝑗=𝑚𝛽

]

𝛽=𝐼,𝐽,𝐾

 (A.52) 

 

and 𝑚𝛽 is defined in the same way that for Eq. (A.47) and 𝔹̂ is the set of boundaries 

tetrahedra sharing the node 𝑄. Thus, we can write the LPEW2 explicit interpolation 

expression for 𝑝𝑄 if 𝑄 is on a Neumann boundary: 

 

 𝑝𝑄 = ∑
𝑤̃𝑘

∑ 𝑤̃𝑘𝑘̂∈ℚ̂

𝑝𝑘̂
𝑘̂∈ℚ̂

+
∑ ∑ (1 − 𝜒𝑗

𝑘̂)𝒩𝑗
𝑘̂(1 + ∑ Α̃𝑖

𝑘̂Β̃𝑖𝑗
𝑘̂6

𝑖=1 )6
𝑗=1𝑘̂∈𝔹̂

∑ 𝑤̃𝑘𝑘̂∈ℚ̂

 (A.53) 

 

A.3 Global Least Square (GLS) 

 

The Global Least Square (GLS) interpolation was presented by Dong ang Kang 

(2021, 2022) and give us another interpolation for 𝑝𝑄 that is linearity preserving under 

some conditions they detailed in their papers. Consider that the node 𝑄 is shared by 𝓃ℚ̂ 

cells, 𝓃ℚ̅ faces and that there are 𝓃ℚ nodes sharing faces with it. Thus, a piecewise linear 

approximation for pressure in the 𝑖-th cell surrounding 𝑄, 𝑃𝑖̂(𝑥 𝑖̂), can be introduced as 

follows: 

 

 𝑃𝑖̂(𝑥 𝑖̂) = (𝑥 𝑖̂ − 𝑥 𝑄)
𝑇
∇𝑝𝑖̂ + 𝑝𝑄  ∀  1 ≤ 𝑖 ≤ 𝑛 (A.54) 
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in which 𝑥 𝑄 and 𝑥 𝑖̂ are the position vectors of 𝑄 and of the centroid of the 𝑖-th cell 

surrounding 𝑄. Then we define the functions we intend to minimize: 

 

 {

𝛿𝑃𝑖̂ = 𝑃𝑖̂(𝑥 𝑖̂) − 𝑝𝑖̂

𝛿𝐺𝑖 = (𝑥 𝑖 − 𝑥 𝑄)
𝑇
(∇𝑝𝐿̂ − ∇𝑝𝑅̂)

𝛿𝑉𝑗̅ = 𝑛⃗ 𝑗̅
𝑇(𝚱𝐿̂∇𝑝𝐿̂ − 𝚱𝑅̂∇𝑝𝑅̂)

 (A.55) 

 

where the 𝐿-th and 𝑅-th cells surrounding 𝑄 are sharing the 𝑖-th node and the 𝑗-th face 

surrounding 𝑄. In addition, 𝑛⃗ 𝑗̅ is the unitary normal vector of the 𝑗-th face surrounding 

node 𝑄 and 𝑥 𝑖 is the position vector of the 𝑖-th node surrounding node 𝑄. All the position 

vectors are column vectors. Imposing 𝛿𝑃𝑖̂ = 0 and writing its equation for all the grid 

cells surrounding 𝑄, imposing 𝛿𝐺𝑖 = 0 and writing its equation for all the nodes 

surrounding 𝑄, and, finally, imposing 𝛿𝑉𝑗̅ = 0 and writing its equation (continuity 

imposition) for all the faces surrounding 𝑄, we obtain a system of equations that can be 

written as: 

 

 𝑴

[
 
 
 
 
∇𝑝1̂
∇𝑝2̂
…
∇𝑝𝑛̂
𝑝𝑄 ]

 
 
 
 

= 𝑵 [

𝑝1̂
𝑝2̂
…
𝑝𝑛̂

] (A.56) 

 

with 𝑴 being a sparse matrix defined as: 

 

 𝑴
(𝓃ℚ̂+𝓃ℚ̅+𝓃ℚ)×(3𝓃ℚ̂+1)

=

[
 
 
 
 
[𝑴1]𝓃ℚ̂×(3𝓃ℚ̂+1)

[𝑴2]𝓃ℚ×(3𝓃ℚ̂+1)

[𝑴3]𝓃ℚ̅×(3𝓃ℚ̂+1)]
 
 
 
 

 (A.57) 

 

in which the entries of 𝑴1, 𝑴2 and 𝑴3 are defined by the following expressions. 

 

  {
[𝑴1]𝑖,3(𝑖−1)+1:3(𝑖−1)+3 = (𝑥 𝑖̂ − 𝑥 𝑄)

𝑇

[𝑴1]𝑖,3𝓃ℚ̂+1 = 1
 (A.58) 

 

Beyond this: 
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 {
[𝑴2]𝑖,3(𝑅−1)+1:3(𝑅−1)+3 = −(𝑥 𝑖 − 𝑥 𝑄)

𝑇

[𝑴2]𝑖,3(𝐿−1)+1:3(𝐿−1)+3 = (𝑥 𝑖 − 𝑥 𝑄)
𝑇  (A.59) 

 

Moreover: 

 

 {
[𝑴3]𝑖,3(𝑅−1)+1:3(𝑅−1)+3 = −𝑛⃗ 𝑖̅

𝑇𝚱𝑅̂
[𝑴3]𝑖,3(𝐿−1)+1:3(𝐿−1)+3 = 𝑛⃗ 𝑖̅

𝑇𝚱𝐿̂
 (A.60) 

 

In addition to that, we need to define the entries of 𝑵
(𝓃ℚ̂+𝓃ℚ̅+𝓃ℚ)×𝓃ℚ̂

 as: 

 

 {
𝑁𝑖,𝑖 = 1

𝑁𝑖,𝑗 = 0 ∀ 𝑖 ≠ 𝑗 
 (A.61) 

 

Then, from the solution of the system in Eq. (A.56), we can get the expression 

defining the weights of the GLS interpolation: 

 

 𝜔1×𝓃ℚ̂ = [0 … 0 1]
1×(3𝓃ℚ̂+1)

(𝑴𝑇𝑴)−1𝑴𝑇𝑵 (A.62) 

 

to be applied in the following equation: 

 

 𝑝𝑄 = 𝜔1×𝓃ℚ̂ [

𝑝1̂
𝑝2̂
…
𝑝𝑛̂

] (A.63) 

 

In the case of 𝑄 being on a Neumann boundary, the Eq. (A.56) is modified as 

follows: 

 

 𝑴̃

[
 
 
 
 
∇𝑝1̂
∇𝑝2̂
…
∇𝑝𝑛̂
𝑝𝑄 ]

 
 
 
 

= 𝑵 [

𝑝1̂
𝑝2̂
…
𝑝𝑛̂

] + 𝑭 (A.64) 

 

in which 𝑴̃ is defined as a modification of 𝑴 defined as: 
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 𝑴̃
(𝓃ℚ̂+𝓃ℚ̅+𝓃ℚ̇)×(3𝓃ℚ̂+1)

=

[
 
 
 
 
[𝑴1]𝓃ℚ̂×(3𝓃ℚ̂+1)

[𝑴̃2]𝓃ℚ̇×(3𝓃ℚ̂+1)

[𝑴̃3]𝓃ℚ̅×(3𝓃ℚ̂+1)]
 
 
 
 

 (A.65) 

 

where 𝑴̃2 is defined using only the 𝓃ℚ̇ internal nodes surrounding 𝑄 and 𝑴̃3 is defined 

as: 

 

 {
[𝑴̃3]𝑖,3(𝑅−1)+1:3(𝑅−1)+3 = 0

[𝑴̃3]𝑖,3(𝐿−1)+1:3(𝐿−1)+3 = 𝑛⃗ 𝑖̅
𝑇𝚱𝐿̂

 (A.66) 

 

and 𝑭 is defined as: 

 

 𝑭
(𝓃ℚ̂+𝓃ℚ̅+𝓃ℚ̇)×1

= [
[𝑭1](𝓃ℚ̂+𝓃ℚ̇)×1

[𝑭2]𝓃ℚ̅×1
] (A.67) 

 

where 𝑭1 and 𝑭2 are defined by: 

 

 {

[𝐹1]𝑖 = 0

[𝐹2]𝑖 = |𝑁⃗⃗ 𝑖̅|𝑔𝑁 ∀ 𝑖̅ ∈ Γ𝑚
𝑁

[𝐹2]𝑖 = 0 ∀ 𝑖̅ ∉ Γ𝑚
𝑁

 (A.68) 

 

Then, the Eq. (A.63) becomes: 

 

 𝑝𝑄 = 𝜔1×𝓃ℚ̂ [

𝑝1̂
𝑝2̂
…
𝑝𝑛̂

] + [0 … 0 1]
1×(3𝓃ℚ̂+1)

(𝑴̃𝑇𝑴̃)
−1
𝑴̃𝑇𝑭 (A.69) 

 

with: 

 

 𝜔1×𝓃ℚ̂ = [0 … 0 1]
1×(3𝓃ℚ̂+1)

(𝑴̃𝑇𝑴̃)
−1
𝑴̃𝑇𝑵 (A.70) 
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A.4 Linearity Preserving Explicit Weights Based on Harmonic 

Averaging Points (LPEW-HAP) 

 

The linearity preserving explicit weighting strategy based on harmonic 

averaging points (LPEW-HAP) was presented by Yang and Gao (2020). This strategy 

can also achieve second order accuracy depending on the mesh. This strategy, as 

mentioned, is based on harmonic averaging points, which is necessary to be defined for 

all the faces sharing the node to be interpolated (𝑄). Considering the configuration shown 

in Figure A.2a, the harmonic points are defined on the faces of 𝑘̂ sharing 𝑄 by the 

following expression: 

 

 𝑘̿𝛽 =
ℋ𝑘̂𝑘̅𝛽

𝑥 𝑘̂ +ℋ𝑜̂𝛽𝑘̅𝛽
𝑥 𝑜̂𝛽 + (𝚱𝑘̂ − 𝚱𝑜̂𝛽) 𝑛⃗ 𝑘̅𝛽

ℋ𝑘̂𝑘̅𝛽
+ℋ𝑜̂𝛽𝑘̅𝛽

 (A.71) 

 

in which 𝑘̅𝛽 is the face shared by 𝑘̂ and 𝑜̂𝛽 with 𝛽 = 𝐼, 𝐽, 𝐾. Beyond this: 

 

 ℋ𝑘̂𝑘̅𝛽
=
𝐾𝑘̂𝑘̅𝛽
𝑛

ℎ
𝑘̂

𝑘̅𝛽
 (A.72) 

 

with 𝐾𝑘̂𝑘̅𝛽
𝑛  defined according to Eq. (3.44). Thus: 

 

 𝑝𝑘̿𝛽 = (𝑤
𝑘̂

𝑜̂𝛽) 𝑝𝑘̂ + (1 − 𝑤𝑘̂
𝑜̂𝛽) 𝑝𝑜̂𝛽 (A.73) 

 

with: 

 

 𝑤
𝑘̂

𝑜̂𝛽 =
ℋ𝑘̂𝑘̅𝛽

ℋ𝑘̂𝑘̅𝛽
+ℋ𝑜̂𝛽𝑘̅𝛽

 (A.74) 

 

with ℋ𝑜̂𝛽𝑘̅𝛽
 calculated analogously to Eq. (A.72). This way, the pressure at 𝑄 can be 

approximated, with respect to 𝑘̂, as: 
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 𝑝𝑄
𝑘̂ = 𝜑𝑘̂

𝑘̂𝑝𝑘̂ + 𝜑𝑘̂
𝑜̂𝐼𝑝𝑘̿𝐼 + 𝜑𝑘̂

𝑜̂𝐽𝑝𝑘̿𝐽 + 𝜑𝑘̂
𝑜̂𝐾𝑝𝑘̿𝐾  (A.75) 

 

in which 𝜑𝑘̂
𝑘̂ and 𝜑

𝑘̂

𝑜̂𝛽
 are linear basis functions defined as: 

 

 𝜑𝑘̂
𝑘̂ =

𝜓𝑘̂
𝑘̂

Ψ𝑘̂

;  𝜑
𝑘̂

𝑜̂𝛽 =
𝜓
𝑘̂

𝑜̂𝛽

Ψ𝑘̂

; (A.76) 

 

with: 

 

𝜓𝑘̂
𝑘̂ = det

[
 
 
 
 𝑄𝑥 𝑘̿𝐼𝑥 𝑘̿𝐽𝑥 𝑘̿𝐾𝑥

𝑄𝑦 𝑘̿𝐼𝑦 𝑘̿𝐽𝑦 𝑘̿𝐾𝑦

𝑄𝑧 𝑘̿𝐼𝑧 𝑘̿𝐽𝑧 𝑘̿𝐾𝑧
1 1 1 1 ]

 
 
 
 

;   𝜓
𝑘̂

𝑜̂𝐼 = det

[
 
 
 
 𝑘̂𝑥 𝑄𝑥 𝑘̿𝐽𝑥 𝑘̿𝐾𝑥

𝑘̂𝑦 𝑄𝑦 𝑘̿𝐽𝑦 𝑘̿𝐾𝑦

𝑘̂𝑧 𝑄𝑧 𝑘̿𝐽𝑧 𝑘̿𝐾𝑧
1 1 1 1 ]

 
 
 
 

;  

𝜓
𝑘̂

𝑜̂𝐽 = det

[
 
 
 
 𝑘̂𝑥 𝑘̿𝐼𝑥 𝑄𝑥 𝑘̿𝐾𝑥

𝑘̂𝑦 𝑘̿𝐼𝑦 𝑄𝑦 𝑘̿𝐾𝑦

𝑘̂𝑧 𝑘̿𝐼𝑧 𝑄𝑧 𝑘̿𝐾𝑧
1 1 1 1 ]

 
 
 
 

;  𝜓
𝑘̂

𝑜̂𝐾 = det

[
 
 
 
 𝑘̂𝑥 𝑘̿𝐼𝑥 𝑘̿𝐽𝑥 𝑄𝑥

𝑘̂𝑦 𝑘̿𝐼𝑦 𝑘̿𝐽𝑦 𝑄𝑦

𝑘̂𝑧 𝑘̿𝐼𝑧 𝑘̿𝐽𝑧 𝑄𝑧
1 1 1 1 ]

 
 
 
 

;  

Ψ𝑘̂ = det

[
 
 
 
 𝑘̂𝑥 𝑘̿𝐼𝑥 𝑘̿𝐽𝑥 𝑘̿𝐾𝑥

𝑘̂𝑦 𝑘̿𝐼𝑦 𝑘̿𝐽𝑦 𝑘̿𝐾𝑦

𝑘̂𝑧 𝑘̿𝐼𝑧 𝑘̿𝐽𝑧 𝑘̿𝐾𝑧
1 1 1 1 ]

 
 
 
 

; 

(A.77) 

 

Then, performing an average mean of the approximations indicated in Eq. 

(A.75), considering all the 𝑘̂ ∈ ℚ̂, we can get: 

 

 𝑝𝑄 =
1

𝓃ℚ̂
∑𝑝𝑄

𝑘̂

𝑘̂∈ℚ̂

 (A.78) 

 

expression which can be rewritten from the terms 𝑝𝑘̂ as: 

 

 𝑝𝑄 = ∑𝜔𝑘̂𝑝𝑘̂
𝑘̂∈ℚ̂

 (A.79) 

 

with: 
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𝜔𝑘̂ =
1

𝓃ℚ̂
[𝜑𝑘̂

𝑘̂ + 𝑤
𝑘̂

𝑜̂𝐼𝜑
𝑘̂

𝑜̂𝐼 + 𝑤
𝑘̂

𝑜̂𝐽𝜑
𝑘̂

𝑜̂𝐽 + 𝑤
𝑘̂

𝑜̂𝐾𝜑
𝑘̂

𝑜̂𝐾 + (1 − 𝑤𝑜̂𝐼
𝑘̂ )𝜑𝑜̂𝐼

𝑘̂

+ (1 − 𝑤𝑜̂𝐽
𝑘̂ )𝜑𝑜̂𝐽

𝑘̂ + (1 − 𝑤𝑜̂𝐾
𝑘̂ )𝜑𝑜̂𝐾

𝑘̂ ] 

(A.80) 

 

In the case of 𝑄 being on a Neumann boundary, we follow the development 

shown in Eq. (A.64) to Eq. (A.70). 
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