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ABSTRACT

Source code often is associated with a natural language summary, enabling developers
to understand the behavior and intent of the code. For example, method-level comments
summarize the behavior of a method and test descriptions summarize the intent of a test
case. Unfortunately, the text and its corresponding code sometimes are inconsistent, which
may hinder code understanding, code reuse, and code maintenance. We propose TCID, an
approach for Text-Code Inconsistency Detection, which trains a neural model to distinguish
consistent from inconsistent text-code pairs. Our key contribution is to combine two ways of
training such a model. First, TCID performs weakly supervised pre-training based on large
amounts of consistent examples extracted from code as-is and inconsistent examples created
by randomly recombining text-code pairs. Then, TCID fine-tunes the model based on a
small and curated set of manually labeled examples. This combination is motivated by the
observation that weak supervision alone leads to models that generalize poorly to real-world
inconsistencies. Our evaluation applies the two-step training procedure to four state-of-the-art
models and evaluates it on two text-vs-code problems: 40.7K method-level comments checked
against the corresponding Java method body, and—as a problem not considered in prior work—
338.8K test case descriptions checked against corresponding JavaScript implementations. Our
results show that a small amount of manual labeling enables the approach to significantly
improve effectiveness, outperforming the current state of the art and improving the F1 score
by 5% in Java and by 17% in JavaScript. We validate the usefulness of TCID’s predictions
by submitting pull requests, of which 10 have been accepted so far.

Keywords: inconsistency detection; pre-training; fine-tuning.



RESUMO

O código-fonte geralmente está associado a um resumo em linguagem natural, permitindo
que os desenvolvedores entendam o comportamento e a intenção do código. Por exemplo, co-
mentários em nível de método resumem o comportamento de um método e descrições de teste
resumem a intenção de um caso de teste. Infelizmente, o texto e seu código correspondente
às vezes são inconsistentes, o que pode atrapalhar a compreensão do código, a reutilização
do código e a manutenção do código. Propomos TCID, uma abordagem para Detecção de
Inconsistência de Código e Texto, que treina um modelo neural para distinguir pares de texto-
código consistentes de inconsistentes. Nossa principal contribuição é combinar duas formas de
treinar tal modelo. Primeiro, o TCID executa pré-treinamento fracamente supervisionado com
base em grandes quantidades de exemplos consistentes extraídos do código como está e exem-
plos inconsistentes criados pela recombinação aleatória de pares texto-código. Em seguida, o
TCID faz o ajuste fino no modelo baseado em um conjunto pequeno e curado de exemplos ro-
tulados manualmente. Esta combinação é motivada pela observação de que a supervisão fraca
por si só leva a modelos que generalizam mal a inconsistências do mundo real. Nossa avaliação
aplica o procedimento de treinamento em duas etapas a quatro modelos de última geração e
avalia-os em dois problemas de texto versus código: 40.7K comentários em nível de método
verificados em relação ao corpo do método Java correspondente e—como um problema não
considerado em trabalhos anteriores—338.8K as descrições dos casos de teste são verificadas
em relação às implementações JavaScript correspondentes. Nossos resultados mostram que
uma pequena quantidade de rotulagem manual permite que a eficácia da abordagem melhore
significativamente, superando o estado da arte atual e melhorando a pontuação de F1 em 5%
em Java e em 17% em JavaScript. Validamos a utilidade das previsões do TCID por envio de
pull requests, dos quais 10 foram aceitos até o momento.

Palavras-chaves: detecção de inconsistência; pré-treinamento; afinamento.
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1 INTRODUCTION

Code and natural language text co-exist in software (HINDLE et al., 2012; ERNST, 2017).
Examples of this co-existence are method-level comments that summarize the behavior of
a method, e.g., in the form of Javadoc or Python’s docstrings. Other examples are short
descriptions of test cases, which are popular in JavaScript testing frameworks; such as Jest,
Jasmine, Mocha and QUnit. These frameworks use strings to document test suites and test
cases. For example, consider Listing 1, where the describe function describes a group of test
cases, and the test and it functions describe individual test cases.

Natural language descriptions associated with source code help developers to quickly un-
derstand the behavior and intent of the code, e.g., to quickly find the root cause of a failing
test case. Unfortunately, textual descriptions are not always consistent with their associated
code. We illustrate this problem with two concrete examples.

Listing 1 – Example of test-vs-description Inconsistency

describe ( ’<UserForm />’, () => {
it ( ’ call handleSubmit when the form is submitted’ , ()=>{

renderedComponent();
expect(screen .getByText(/Mock ProfileContainer/i))

.toBeInTheDocument();
});
...

})

Source: TRACK. . . (2021)

Listing 2 – Example of method-vs-comment Inconsistency

/∗∗ @return an Iterator ∗/
public Group[] getGroups() {

Item[] items = super.getItems() ;
Group[] groups = new Group[items.length];
for ( int i = NUM; i < groups.length; i++) {

groups[ i ] = (Group) items[i ];
}
return groups;

}
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Source: APACHE. . . (2022)

Test Code-Description Inconsistency. Listing 1 also shows a UI test of the project
track (TRACK. . . , 2021). This test case uses the renderedComponent function to render the UI
on the screen and then it checks whether the text “Mock ProfileContainer” is present in the
HTML. The description “call handleSubmit when the form is submitted” does not reflect this
behavior. A closer look at the test file reveals that the likely reason for such inconsistency was
copying-and-pasting: The test case declared after this one has the same description, and that
test indeed calls the handleSubmit function upon submission of the form. A better description
for the test case from Listing 1 would be “Check if Mock ProfileContainer is present in DOM”.

Method Code-Comment Inconsistency. Listing 2 shows a method of the lenya (APA-

CHE. . . , 2022) project. This method iterates through an array of items of type Item and casts
that type to the type Group. Each Group element is added to an array named groups. Finally,
the method returns the groups array. Note that the comment “Return an Iterator” is incon-
sistent with what the method does. A better comment for that method would be “Return an

array of groups.”
Techniques for checking code against a natural language description have been propo-

sed, focusing mostly on cross-checking method-level comments against method implementa-
tions (PANTHAPLACKEL et al., 2021; TAN et al., 2012; RATOL; ROBILLARD, 2017; RABBI; SIDDIK,
2020). These techniques roughly fall into three groups. First, pattern-based techniques (TAN

et al., 2012; RATOL; ROBILLARD, 2017) search for instances of pre-defined inconsistency pat-
terns; they are powerful but do not generalize well to other kinds of inconsistencies. Second,
there are learning-based techniques trained on manually labeled datasets (WANG et al., 2019;
RABBI; SIDDIK, 2020). Due to inherent limits of manual labeling, such datasets are too small
to fully exploit the power of deep learning models. Finally, models can be trained exclusively
on automatically gathered datasets (PANTHAPLACKEL et al., 2021), which are large-scale, but
risk including noisy and unrealistic examples, reducing the effectiveness of the resulting model.

1.1 PROPOSAL

This dissertation proposes TCID, a neural network-based approach for detecting text-code
inconsistencies by learning a classifier that distinguishes consistent from inconsistent text-code
pairs. The key challenge is how to obtain large amounts of adequate training data. In contrast
to prior work, which relies either on manually labeled data alone (WANG et al., 2019; RABBI;
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SIDDIK, 2020) or on automatically gathered data alone (PANTHAPLACKEL et al., 2021), TCID

combines two complementary training strategies. At first, TCID performs weakly supervised1

pre-training on a large-scale dataset of hundreds of thousands of automatically generated
examples of consistent and inconsistent text-code pairs. TCID assigns “consistent” labels
to the pairs that originate from open-source code as-is, and it assigns “inconsistent” labels
to pairs obtained via random re-combination of text and code. Then, TCID fine-tunes the
model on a small-scale dataset of manually labeled examples. These examples are curated
to maximize the chance to fix high-confidence-but-wrong predictions during the fine-tuning,
e.g., by sampling examples that the initial model is particularly certain about. Training models
with this two-step procedure combines the benefits of (1) automatically gathered training
data (a robust model able to generalize across diverse code examples) and of (2) human-
provided (realistic) labels, while imposing a very moderate labeling effort. The two-step training
procedure of TCID can be applied to arbitrary neural models and to different kinds of text-vs-
code problems. In terms of models, we apply the approach to four state-of-the-art models: off-
the-shelf LSTM and transformer models, and two models used in prior work (PANTHAPLACKEL

et al., 2021) (a CodeBERT-based bag-of-words model and a GRU model). In terms of text-
vs-code problems, we apply TCID to two problems and to datasets from two programming
languages. One problem is to detect method-level Javadoc comments that are inconsistent
with the method implementation. As a problem addressed in prior work (PANTHAPLACKEL et

al., 2021), it allows for a direct comparison with the state-of-the-art. The other problem is to
detect test descriptions in JavaScript that are inconsistent with the corresponding test cases.
To the best of our knowledge, test-description inconsistencies have not been considered by
any prior work, showing that TCID not only improves the state-of-the-art but also addresses
a novel, practical problem.

1.2 RESULTS

Our evaluation applies the approach to 40,688 method-level comments from 1,518 Java
projects and 338,761 test-description pairs gathered from 20,543 JavaScript projects. We find
that a model trained only in a weakly supervised manner, i.e., on automatically generated
and labeled examples, fails to perform well on a manually curated dataset (F1=67% and
F1=57%). Fine-tuning the model on a small set of only 300 (for Java methods) and 194
1 Weak supervision refers to supervised training with noisy labels (ZHOU, 2018).
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(for JavaScript tests) manually labeled pairs, however, significantly improves the prediction
accuracy (F1=72% and F1=74%). In particular, we show that our two-step training is beneficial
across different models, and improves the effectiveness of state-of-the-art models for code-
comment inconsistency detection (PANTHAPLACKEL et al., 2021). On the same dataset as
previous work (PANTHAPLACKEL et al., 2021), our model improves the previously reported
state-of-the-art accuracy from an F1-score of 0.68 to 0.72. Finally, we validate the usefulness
of TCID’s predictions by submitting 34 pull requests, of which 10 have been accepted by the
project owners so far.

1.3 OUTLINE

The remainder of this document is organized as follows:
Chapter 2 motivates the investigation of test-description inconsistencies. Chapter 3 ex-

plains how TCID works and how it was built. Chapter 4 evaluates TCID based on research
questions. Chapter 5 presents the threats to validity of this work and Chapter 6 discusses
related work. Finally, Chapter 7 concludes this dissertation.
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2 STUDY ON TEST-VS-DESCRIPTION INCONSISTENCIES

This chapter reports on a preliminary study about the importance of detecting inconsisten-
cies between test descriptions and corresponding test code. We investigate how common it is
for developers to update test descriptions of JavaScript test cases. The rationale is that we are
the first to investigate test-description inconsistencies, whereas the importance of detecting
method-comment inconsistencies has already been established (TAN et al., 2007; TAN; YUAN;

ZHOU, 2007; TAN et al., 2012).

2.1 PREVALENCE OF DESCRIPTION-ONLY UPDATES

This section addresses the question: How common are updates of test descriptions only,

i.e, updates that do not change the corresponding test code? Answering this question gives
an estimate of how commonly developers improve test descriptions.

To answer this question, we manually annotate a set of commits to test files. At first,
we randomly mine popular JavaScript projects from GitHub that use the Jest test framework
until we find 10 projects that each contain at least 20 commits updating Jest files. Then, we
choose the 20 most recent commits updating Jest files from these 10 projects. The resulting 200
commits are split evenly between three of the authors, such that each commit gets annotated by
two authors to answer the question: “Is there at least one test case where only the description
was changed?”. Cohen’s kappa agreement among the three pairs of annotators ranges from
0.63 to 1.00, and after resolving disagreements, we find that 13 out of 200 commits (i.e.,
roughly one in every 15 commits) contain at least one instance of a description-only change.

Listing 3 – Example of description-only change

describe (
− ’Run jest test runner in watch mode. Passes through all flags directly to Jest ’
+ ’Run jest test runner. Passes through all flags directly to Jest ’

)
. action(async () => {

// Do this as the first thing so that any code reading it knows the right env.
process .env.BABEL_ENV = ’test’;
process .env.NODE_ENV = ’test’;
// Makes the script crash on unhandled rejections instead of silently
// ignoring them. In the future , promise rejections that are not handled will
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// terminate the Node.js process with a non−zero exit code.
process .on(’unhandledRejection’ , err => {

throw err ;
});

const argv = process.argv. slice (2) ;
let jestConfig = {

... createJestConfig (
relativePath => path.resolve(__dirname, ’.. ’ , relativePath ) ,
paths.appRoot

) ,
... appPackageJson.jest,

};
try {

// Allow overriding with jest . config
const jestConfigContents = require(paths. jestConfig ) ;
jestConfig = { ... jestConfig , ... jestConfigContents };

} catch {}

argv.push(
’−−config’,
JSON.stringify({

... jestConfig ,
})

) ;

const [, ... argsToPassToJestCli ] = argv;
jest .run(argsToPassToJestCli) ;

});

Source: TSDX (2023)

Listing 4 – Removed code block

if (! process .env.CI) {
argv.push(’−−watch’); // run jest in watch mode unless in CI

}

Source: TSDX (2023)

Listing 3 shows an example of a description-only change that we found from the project
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TSdx (TSDX, 2023). Notice that the description was changed from “Run jest test runner in

watch mode. Passes through all flags directly to Jest” to “Run jest test runner. Passes through

all flags directly to Jest”. The previous description, “Run jest test runner in watch mode. Passes

through all flags directly to Jest”, specifies that the Jest test runner is ran in watch mode.
However, the watch mode is not declared on the arguments passed to the Jest test runner. A
closer look at the test file reveals that the watch mode was previously passed as argument to
the Jest test runner and that during code evolution the code block presented in Listing 4 was
removed from the test and the description was not modified to reflect the new behaviour of
the test. In the commit where only the description is modified to “Run jest test runner. Passes

through all flags directly to Jest”, the commit message states that the test description was
modified to properly reflect the behaviour of the test.

Given the total number of commits to Jest files on GitHub (more than 400,000 according
to a search (SEARCH. . . , 2022)), and the fact that our annotations provide an underestimate
of the prevalence of description-only updates, we conclude that developers commonly update
test descriptions.
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3 TCID: TEXT-CODE INCONSISTENCY DETECTION

This chapter describes TCID, our approach to detect text-code inconsistencies. TCID

takes a pair of text and code as input and predicts the probability of them being inconsistent.

Figure 1 – Overview of the four-step workflow of TCID.

Source: Prepared by the author (2022)

Figure 1 illustrates the input and output of TCID at the far right. The large gray-colored
rectangle in the figure shows the four-step workflow of TCID. In the first step, TCID

mines code artifacts (e.g., methods or tests) from GitHub, parses the code, and extracts text-

code pairs (Section 3.1). In the second step, TCID cleans and pre-processes the previously
extracted pairs. The output of this step is a dataset of unlabeled pairs (Section 3.2). In the
third step, TCID produces an initial model using weakly supervised learning, based on labels
that a heuristic automatically produces for a given pair (Section 3.3). In more detail, TCID

selects a large subset of the unlabeled data produced in the previous step, automatically labels
the data, and then trains the initial neural model in a supervised manner on the automatically
labeled text-code pairs. In the fourth and final step, TCID fine tunes the model using manual
supervision (Section 3.4). To this end, human annotators label a small subset of pairs from
the unlabeled dataset that have not been used to train the initial model.

3.1 STEP 1: DATA COLLECTION

Given a corpus of code artifacts (e.g., methods or tests), TCID extracts text-code pairs.

Definition 1 (Text-code pair) A text-code pair (𝑡, 𝑐) consists of a textual description 𝑡

associated with a code artifact 𝑐.

To gather such pairs, we mine JavaScript projects from GitHub that use Jest as the test
framework. For each repository, we run a lightweight static analysis to extract pairs of test case
descriptions and code. The analysis searches for files that use the APIs for defining a test case
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and then parses each file into an abstract syntax tree (AST). Jest primarily uses three APIs
to associate descriptions with test cases: describe(), which defines a block of several related
tests, as well as test() and it() to define a single test. TCID identifies calls to these APIs in
the AST and then extracts the relevant string literals. To form the test description, we merge
the text associated with the describe() block and the it() (or test()) block of the test.
Likewise, to form the test code, we merge the code from the following blocks: beforeEach()
(or beforeAll()), it() (or test()), and AfterEach() (or AfterAll()). Figure 2 shows an
example text-code pair. We mine 354,616 of such pairs distributed across 20,543 projects.

Figure 2 – Text-code pair for project track (TRACK. . . , 2021).

describe('<UserForm />', () => {
it('Mock ProfileContainer is present in DOM', () => {

renderedComponent();
expect(screen.getByText(/Mock ProfileContainer/i)).toBeInTheDocument();

}); ... }

Test Description:
<UserForm />
Mock ProfileContainer is present in DOM

Test Body:
renderedComponent();
expect(screen.getByText(/Mock ProfileContainer/i)).toBeInTheDocument();

Test-description extraction

Source: Prepared by the author (2022)

3.2 STEP 2: DATA PRE-PROCESSING

To reduce noise in the dataset, we filter and preprocess the text-code pairs mined in
Step 1. First, we discard pairs with empty descriptions, as those are not useful for checking
consistency. Second, we discard pairs with a description in a language other than English, which
we check using the FastText language model (BOJANOWSKI et al., 2017). FastText provides
models for language identification, which can recognize 176 languages. We use the faster,
slightly more accurate, and larger model provided (126 MB). Through experimentation, we
noticed that some descriptions written in English are misidentified by this model due to camel
case identifiers (e.g. ‘get text’ would be identified as English, and ‘getText’ would be identified
as non-English but with low probability). Therefore, we keep descriptions identified as English
or non-English with probability ≤ 0.15. After this process, we end up with a total of 338,761
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pairs. Third, we tokenize the text and the code of each pair. Finally, we remove stop words
appearing in the lists of tokens using the NLTK (NATURAL. . . , 2021) list of English stop words.
Figure 3 shows the lists of pre-processed tokens for the text-code pair presented on Figure 2.

Figure 3 – List of tokens for the text-code pair from Figure 2.

Source: Prepared by the author (2022)

3.3 STEP 3: INITIAL TRAINING WITH WEAK SUPERVISION

Next, we describe the initial training step of TCID, which trains a neural model on an
automatically labeled dataset. Section 3.3.1 describes the heuristic that we use to label pairs,
and Section 3.3.2 elaborates on training the models.

3.3.1 Automatic Labeling

Deep neural models have been shown to be effective for reasoning about natural language
and its relation to code (ALLAMANIS et al., 2018; PRADEL; CHANDRA, 2022). However, training
an effective model in a supervised manner requires large amounts of labeled data, much
more than can realistically be created via manual labeling. To obtain a large-scale labeled
dataset of test-description pairs, we use 259,309 of the 338,761 (about 75%) pre-processed
test-description pairs as a basis for labeling consistent and inconsistent examples.

The labeling procedure we use is as follows. All pairs mined from GitHub are kept as-is
and receive the label 1, indicating that the test description and code are consistent.

To create pairs with the label 0, i.e., inconsistent test-description pairs, we proceed as
follows. For each consistent pair, we create a copy of the pair and replace its description with
the description of some other pair in the dataset. The rationale is that a random combination
of a test and a description very likely results in an inconsistent pair.

The resulting dataset obtained with this procedure has 518,618 (=2*259,309) entries. The



22

dataset is balanced by construction: (1) it contains the same number of positive and negative
examples and (2) each test body is represented twice (in a positive example and in a negative
example). We call this dataset the automatically labeled dataset.

3.3.1.1 Alternative Automatic Labeling Strategies

Beyond the automatic labeling described in Section 3.3.1, we consider three other labeling
heuristics to address the mismatch between the automatically labeled training dataset and the
more realistic, manually labeled test dataset. (1) We create inconsistent pairs by combining
test code with descriptions of other test cases from the same file. The intuition is to create
inconsistent pairs with more subtle changes relative to the base test description and code, so
that the model can improve its discriminative power. As in the default automatic labeling,
we consider all examples from GitHub as consistent. (2) In another attempt, for a given
description-test pair (𝑑, 𝑡), we use the description embedding model, which is pre-trained on
all the test descriptions, to find a description 𝑑′ that was most similar to 𝑑 (according to the
cosine similarity) and then create a negative pair (𝑑′, 𝑡) from it. Again, we consider all examples
from GitHub as consistent. (3) Lastly, instead of considering all pairs mined from GitHub as
consistent, we discard pairs with descriptions that are likely generic. Specifically, we manually
create a list of words that are often used in generic test descriptions: “work”, “success”, “test”,
“filter”, “failure”, “explodes”, “case”, “scenario”, and “screen”. Then, we use the description
embedding model to assess whether a given description has a similar embedding to one of
these words, and if similarity is above 0.5, then we discard the pair. For each positive pair that
remains, we create a negative pair by randomly combining the body of the test with a random
description or by combining the body with one of the words above.

Unfortunately, all of these heuristics yield models that perform poorly, and none of them
outperforms the default automatic labeling described in Section 3.3.1, which randomly com-
bines test descriptions and test code to produce inconsistent pairs. We conclude from these
experiments that fully automatically creating a dataset that yields an effective model is hard,
which provides empirical motivation for the two-step labeling strategy of TCID.
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3.3.2 Model Training

In the following, we describe the neural models TCID uses and how they are trained with
the automatically labeled dataset to build the initial model. TCID supports four models, all
sharing the same overall structure: at first, they encode the given text and code into summary
vectors, and then, they predict the probability that the two are consistent. The models are as
follows:

• LSTM. The LSTM model uses two pre-trained FastText (BOJANOWSKI et al., 2017) mo-
dels to embed the tokens of code and the text. FastText has been shown to be more
effective on source code than other popular embeddings (WAINAKH; RAUF; PRADEL, 2021),
such as Word2vec (MIKOLOV et al., 2013). The LSTM model then encodes the two resul-
ting sequences of vectors into two summary vectors using a bi-directional recurrent neural
network based on LSTM units (HOCHREITER; SCHMIDHUBER, 1997). Finally, the model
predicts whether the text and code are consistent by feeding the summary vectors through
one or more fully connected layers, which produce the classification result.

• Transformer. The Transformer model differs from the LSTM model by using a transformer-
based module to encode the text and code (VASWANI et al., 2017). Transformers use multi-
head attention to selectively focus on specific parts of the input and a positional encoding
to communicate the order of the input vectors to the model.

• CodeBERT BOW. This model and the following are adapted from recent work (PANTHA-

PLACKEL et al., 2021) on identifying inconsistencies between a comment and code of a
method. The CodeBERT BOW model computes the average CodeBERT (FENG et al., 2020)
embedding vectors of the text and the code,1 concatenates them, and feeds them through
a feedforward neural network, which makes the final prediction.

• SEQ. The SEQ model encodes the text and the code with a Gated Recurrent Unit
(GRU) (CHO et al., 2014) and then reasons about the relationship between the two by
computing multi-head attention between each hidden state of the text encoder and the
hidden states of the code encoder. The context vectors resulting from both attention mo-

1 Consider the following embedding of a test, including only two tokens, for simplicity:
[[𝑎1, . . . , 𝑎𝑚], [𝑏1, . . . , 𝑏𝑚]]. The BOW embedding for this test is [(𝑎1 + 𝑏1)/2, . . . , (𝑎𝑚 + 𝑏𝑚)/2].
The BOW embedding makes the token order irrelevant as the resulting embedding contains a single
element.
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Table 1 – Range of hyper-parameters considered during optimization.

Parameter Range

Learning rate 1e-2, 1e-3, 1e-4
Max. num. of epochs 10, 15, 20
Mini-batch size 100, 200
Max. num. of tokens in test descriptions 5, 10, 15, 20
Max. num. of tokens in test bodies 10, 30, 50, 60, 70, 100
Num. of layers of description encoder 1, 2, 3
Num. of hidden layers of description encoder 50, 100, 150
Num. of hidden layers of test encoder 50, 100, 150
Joint size of linear layer 100, 200
Num. of layers of test encoder 1, 2, 3
Dimension of the feedforward test encoder layer 100, 200
Num. of heads of the test encoder layer 2, 3, 4

dules are then passed through another GRU encoder. The final state of this encoder is fed
through fully-connected and softmax layers to obtain the final prediction.

Training Procedure. We use 80% of the data for training and 20% of the data for
testing, respecting the distributions of classes within each partition, i.e., 50% consistent and
50% inconsistent. As the results obtained from untuned models can often be refuted, we
followed the DSE/DUO approach (NAIR et al., 2018; AGRAWAL et al., 2020) and evaluated
different hyperparameters of the model, as follows. We consider the parameters and range
of values presented in Table 1 for the LSTM and transformer models. The highlighted rows
are specific to the transformer model; the other rows are common to LSTM and transformer.
To optimize model accuracy, we search for configurations (i.e., combinations of parameter
assignments such as [learning rate=1e-2, max. num. of epochs=10, ...]) in the configuration
space defined by the these parameters and ranges. It takes ∼25 min to train each model on a
given configuration. Because of the high combinatorial cost of exploring all configurations, we
randomly sample 30 configurations. Table 1 highlights in bold face the best configurations for
the LSTM and transformer models. For the CodeBERT BOW and SEQ models, we use their
default hyperparameters (PANTHAPLACKEL et al., 2021), which were already tuned. Chapter 4
reports results on those configurations.

3.4 STEP 4: FINE-TUNING WITH MANUAL SUPERVISION

The automatically labeled dataset suffers limitations, as many of the negative examples
are easy to identify as inconsistent. The reason is that randomly recombining text and code
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often leads to pairs that obviously do not match. To address these inherent limitations of
automatically labeling, we fine tune the model with a small set of manually annotated examples.

3.4.1 Selecting Pairs for Manual Labeling

Because manual labeling is expensive, we aim at maximizing the impact that fine-tuning on
a small set of manually labeled examples will have. To this end, we select for manual labeling
those examples for which the initial model provides high-confidence predictions, i.e., which, if
proven to be wrong by a manual label, will cause the model to improve the most. Considering
the task of detecting inconsistent test-description pairs, first, we select pairs from the 79,452
remaining pairs from the 338,761 pre-processed pairs. These pairs are distributed across 435
projects not overlapping with the ones on the automatically labeled dataset. Second, we sort
the 79,452 pairs according to the predictions that the LSTM model of TCID produces when
trained on the automatically labeled dataset. Third, we select 225 pairs from the top of the
ranked-list of pairs and 225 pairs from the bottom of the list. The output of this step is a set
of 450 pairs to label.

3.4.2 Manual Labeling

Each of the 450 pairs is labeled by two developers, enabling us to discard the cases where
consensus cannot be reached. This task requires a total of 900 labels (as each pair requires two
labels). To create an assignment to developers, we use a pairwise experimental design (MONT-

GOMERY, 2008), where each example is assigned to two developers. We recruited 12 developers
to label text-code pairs according to their availability: half of the developers labeled 100 pairs
(=6*100 labels) and the other half labeled 50 pairs (=6*50 labels). When assigning pairs
to developers, we ensure that everybody receives an equal number of likely consistent and
likely inconsistent pairs and, to reduce the risk of guessing labels, we shuffle the pairs before
assigning them to developers.

To help developers with the labeling task, we prepare a guideline on how to execute the
task, including examples. Each developer receives a separate spreadsheet containing the list
of pairs (s)he needs to label. The spreadsheet contains a link to the test file on GitHub and
the name of the test case declared within that file. Participants are expected to answer “Yes”
or “No” to the question: Does the test description explain the intent of the test code? The
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rationale for using a Yes/No answer as opposed to a level scale is to reduce imprecision.
Intuitively, the higher the number of options, the higher the chances of disagreement that
could emerge from the different criteria used by humans during grading tasks.

At the end of the labeling task and after discarding the cases where participants disagree
on the labels, we reach a total of 97 inconsistent pairs and 208 consistent pairs. There was
disagreement in 145 (=450-(97+208)) of the 450 pairs (∼32% of the total) and we discard
them. Furthermore, the ratio of consistent pairs is higher in this case compared to the ratio
in the automatically labeled dataset (68% versus 50%).

As we aim at a balanced dataset, we randomly select 97 consistent pairs (of the 208 ones)
to match the 97 inconsistent pairs. Thus, the small dataset consists of 194 examples, evenly
distributed between consistent and inconsistent classes. We call the result of this labeling
process the manually labeled dataset.

3.4.3 Model Fine-Tuning

TCID fine tunes the initial, already pre-trained model with the manually labeled dataset.
This step allows the model to benefit both from the large amount of training data we obtain
automatically and from the higher quality labels we obtain manually. Our evaluation shows
that combining pre-training and fine-tuning is beneficial.

We consider the same set of parameters described in Section 3.3.2 and the same set of
values assigned to them, except for mini-batch size, for which we reduce the list of options
from [100, 200] to [10, 30, 50] because of the small size of the new set of examples. It takes ∼5
minutes to retrain each model on a given configuration in our setup. As in the initial training
phase (Section 3.3), we randomly sample 30 configurations from our configuration space for
the hyper-parameter optimization. The optimal configurations are the same as those reported
in Section 3.3.2, except for mini-batches=10 and learning rate=1e-2. The results we report
are based on these configurations.
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4 EVALUATION

This Chapter presents the evaluation of TCID.

4.1 RESEARCH QUESTIONS

To better structure our evaluation, we rely on the Goal, Question, Metrics methodo-
logy (BASILI; CALDIERA; ROMBACH, 1994). The goal of our experiment consists of analyzing
the effectiveness and usefulness of our approach to identify text-code inconsistencies when
considering models trained with the two step training approach and in a weakly supervised
manner only.

To achieve this goal, we address the following research questions:

RQ1. How effective is TCID at identifying text-code inconsistencies?

RQ2. How does TCID compare to training state-of-the-art models only in a weakly supervised

manner, i.e., without fine-tuning with a small amount of human-labeled data?

RQ3. Are the inconsistencies detected by TCID useful to software developers?

4.2 EXPERIMENTAL SETUP

4.2.1 Metrics

We use standard metrics to evaluate our models, discussed below.

Accuracy. This metric indicates the number of correct predictions the model makes overall.
The higher the value of this metric the better.

As Panthaplackel et al. (PANTHAPLACKEL et al., 2021), we measure precision, recall, and
F1 with respect to the “Inconsistent” class. Intuitively, this class is important to the developer
who looks to repair inconsistencies as opposed to confirm consistencies. More precisely, we
report the following metrics.

Precision. This metric measures the number of predictions of inconsistency made by the
model that are correct, i.e., that match the ground-truth label. The higher the value of this
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metric the better. High values indicate that the model should be trusted when it classifies a
test-description pair as inconsistent.

Recall. This metric measures the number of examples with the label 0 (for “Inconsistent”)
that the model correctly predicted. The higher the value of this metric the better. High values
indicate that the model missed few cases of inconsistent test-description pairs. More precisely,
Recall measures the relative number of examples with label 0 that are correctly classified by
the model.

F1. As usual, precision is a proxy for soundness whereas recall is a proxy for completeness.
The F1-measure (DERCZYNSKI, 2016) considers these two complementary metrics together.
It is the harmonic mean of precision and recall, given by 2 × (𝑝 × 𝑟)/(𝑝 + 𝑟), where 𝑝 and 𝑟

denote precision and recall, respectively.

4.2.2 Baseline

The closest existing work is by Panthaplackel et al. (PANTHAPLACKEL et al., 2021). Their
main contribution is an approach for just-in-time text-code inconsistency detection that analy-
zes commits to determine whether they introduce an inconsistency into code assumed to be
free of inconsistencies before the commit. We here consider a different, stationary usage scena-
rio, which checks a code base in its current state for inconsistencies. A benefit of this stationary
scenario is that it does not assume that the code base is consistent at some point in time.
Panthaplackel et al. also present models, called “post hoc” (PANTHAPLACKEL et al., 2021), to
be used in the stationary usage scenario. Their models are trained in a weakly supervised man-
ner only. We consider these models, called CodeBERT BOW and SEQ, along with the weakly
supervised training strategy as a baseline to compare TCID against the state-of-the-art.

4.2.3 Implementation and Hardware

Our implementation is based on PyTorch (PYTORCH, 2021), and we run all experiments
on an NVIDIA Tesla P100 PCIe 16GB GPU.



29

Table 2 – Effectiveness of TCID (left) and weakly supervised pre-training only (right).

Model Supervision
Weak + Manual Weak Only

Inconsistency Type: Method-vs-comment (Java)
Acc. Pr. Rec. F1 Acc. Pr. Rec. F1

LSTM 0.55 0.56 0.67 0.55 0.59 0.62 0.48 0.54
Transformer 0.56 0.61 0.77 0.62 0.58 0.61 0.44 0.51
CodeBERT BOW 0.73 0.73 0.72 0.72 0.67 0.68 0.66 0.67
SEQ 0.63 0.68 0.54 0.60 0.57 0.56 0.66 0.61

Inconsistency Type: Test-vs-comment (JavaScript)
Acc. Pr. Rec. F1 Acc. Pr. Rec. F1

LSTM 0.73 0.75 0.72 0.74 0.63 0.69 0.49 0.57
Transformer 0.70 0.74 0.68 0.71 0.66 0.72 0.51 0.59
CodeBERT BOW 0.68 0.68 0.68 0.67 0.62 0.77 0.35 0.47
SEQ 0.60 0.60 0.72 0.64 0.52 0.51 0.81 0.63

4.2.4 RQ1: Effectiveness of TCID

This section addresses the RQ “How effective is TCID at identifying text-code inconsis-
tencies?”. We evaluate the effectiveness of TCID at detecting method-vs-comment inconsis-
tencies and on test-vs-description inconsistencies.

4.2.4.1 Method-vs-comment Inconsistencies

We use the dataset provided by previous work (PANTHAPLACKEL et al., 2021) on identifying
inconsistencies between a comment and the code of a method. In total, this dataset contains
40,688 method-comment pairs from 1,518 Java projects. These pairs are automatically labeled
based on commit histories of open-source Java projects (PANTHAPLACKEL et al., 2021). 300 of
these pairs, from the testing partition of the full dataset, are manually labeled by humans. As
for the datasets introduced in Sections 3.3.1 3.4, 50% of the pairs are consistent and 50% are
inconsistent.

Initially, we train the models TCID uses on 32,988 automatically labeled pairs (the training
partition of the dataset as provided by previous work (PANTHAPLACKEL et al., 2021)). Then,
given the small amount of human-labeled data, i.e., 300 pairs, we fine-tune and evaluate the
models using 𝑘-fold (𝑘=10) stratified cross validation (BURMAN, 1989). That is, we partition
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the human-labeled dataset into 𝑘 folds, each fold containing 300/𝑘 samples and repeat the
following experiment for every one of the 𝑘 folds. We select one fold for testing, train the
model on the 𝑘 − 1 remaining folds, and evaluate the model on the initially-selected testing
fold. Results are then averaged across the 𝑘 experiments.

Table 2 shows the results under the section “Inconsistency Type: Method-vs-comment”. For
this task, TCID with the CodeBERT BOW model obtained the best result overall achieving
an F1 measure of 0.72.

4.2.4.2 Test-vs-description Inconsistencies

Initially, we train the models TCID uses on 80% of the automatically labeled dataset that
we mine from GitHub (Section 3.3.1). Then, to fine-tune and evaluate the models, we use the
manually labeled dataset described on Section 3.4. Given the small amount of human-labeled
data, we use 𝑘-fold (𝑘=10) stratified cross validation, as we do for the method-vs-comment
inconsistency task (Section 4.2.4.1). The difference here is that each fold contains 194/𝑘

samples. Table 2 shows the results under the section “Inconsistency Type: Test-vs-description”.
For this task, TCID with the LSTM model obtained the best result overall achieving an F1
measure of 0.74.

4.2.4.3 Examples

Listing 5 and Listing 6 show examples of real-world text-code inconsistencies found by the
fine-tuned models, but not by the models trained with weak supervision only.

Listing 5 shows a method-vs-comment inconsistency from the Android External Spongy-
castle (ANDROID. . . , 2022) project. The method receives a Certificate as argument, encodes
it and passes the encoded certificate as an argument to the ASN1InputStream constructor.
Finally, the readObject method from the ASN1InputStream is called. This method returns an
ASN1Object, which is the return type of the toASN1Object method. The comment, however,
says that the method “Return[s] a DERObject containing the encoded certificate.”, which is in-
consistent with what the method does. A consistent comment would be “Return a ASN1Object

containing the encoded certificate.”.
Listing 6 shows a test-vs-description inconsistency found in a unit test of the React-Redux-

Jest Boilerplate project. This test case expects the log of the “test” message to be undefined.
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However, the description “should console log our msg” does not reflect this behavior, but
instead suggests that there is a message. A better description for this test case would be
“Expects log of the ’test’ message to be undefined”.

The two examples, which the models fail to detect when being trained with weak supervision
only, illustrate the benefits of fine-tuning the models with manual supervision. At a cursory
look, both text-code pairs appear to be consistent: In the example in Listing 5, both the
method name and the comment are about some Object. In the example in Listing 6, both
the test and its description are about logging. Only a more thorough inspection shows the
semantic mismatch between the text and the code.

Listing 5 – Method-vs-comment Inconsistency identified only by the fine-tuned models

/∗∗ Return a DERObject containing the encoded certificate . ∗/
private ASN1Object toASN1Object(X509Certificate cert)

throws CertificateEncodingException {
try {

return new ASN1InputStream(cert.getEncoded()).readObject();
} catch (Exception e) {

throw new CertificateEncodingException(\"Exception while encoding certificate : \" +
e.toString ()) ;

}
}

}

Source: ANDROID. . . (2022)

Listing 6 – Test-vs-description Inconsistency identified only by the fine-tuned models

describe ( ’Log’, () => {
it ( ’should console log our msg’, ()=>{

expect(log( ’ test ’ )) .toBe(undefined);
}); ...})

Source: REACT. . . (2022)

Summary of RQ1: TCID effectively detects both
method-vs-comment inconsistencies (F1=0.72) and

test-vs-description inconsistencies (F1=0.74).
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4.2.5 RQ2: Comparison with Weakly Supervised Training Only

This section focuses on the RQ “How does TCID compare to training state-of-the-art
models only in a weakly supervised manner, i.e., without fine-tuning with a small amount of
human-labeled data?”. As in Section 4.2.4, we apply all models that TCID uses to method-
vs-comment and test-vs-description inconsistency detection.

4.2.5.1 Method-vs-comment Inconsistencies

With weakly supervised training only, we train the models on the training partition of the
automatically labeled Java dataset and evaluate them on the manually labeled Java dataset.
Table 2 shows the results in the “Weakly supervised pre-training only” columns under the
“Method-vs-comment” inconsistency type. Overall, the results indicate that the models trained
only on a large dataset of automatically labeled data are clearly weaker than TCID. For
example, the F1-score of the CodeBERT BOW model drops from 0.72 to 0.67, and for the
Transformer model it drops from 0.62 to 0.51. In particular, this result shows that TCID

outperforms the baseline approach by Panthaplackel et al. (PANTHAPLACKEL et al., 2021) on
their dataset.

4.2.5.2 Test-vs-description Inconsistencies

We train the models TCID uses on 80% of the training partition of the automatically labe-
led JavaScript dataset and evaluate them on the manually labeled JavaScript dataset. Table 2
shows the results in the “Weakly supervised pre-training only” columns under the “Test-vs-
description” inconsistency type. As for the method-vs-comment inconsistency detection task,
the results indicate that the models trained only on a large dataset of automatically labeled
data are clearly worse than TCID: F1=0.57 versus F1=0.74 for the LSTM model, F1=0.59
versus F1=0.71 for the Transformer model, F1=0.47 versus F1=0.67 for the CodeBERT BOW
model, and F1=0.63 versus F1=0.64 for the SEQ model.
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Summary of RQ2: State-of-the-art models trained only
with weakly supervised training do not reach the same

level of effectiveness as TCID, both for
method-vs-comment inconsistencies (F1=0.67 versus
F1=0.72) and for test-vs-description inconsistencies

(F1=0.57 versus F1=0.74).

4.2.6 RQ3: Usefulness

This section focuses on the RQ “Are the inconsistencies detected by TCID useful to
software developers?”. Since we are the first to investigate inconsistencies between test des-
criptions and the corresponding test case implementations, we address this question by applying
TCID to open-source projects not used during training, and by creating pull requests (PRs)
suggesting to improve test descriptions that TCID found to be inconsistent.

To identify candidate test-description pairs to prepare PRs, we first rank the predictions
TCID makes on the validation partition of the automatically labeled dataset. Recall that half
of the examples in this dataset are consistent test-description pairs (labeled as consistent);
the other half of the pairs consists of random combinations of tests and descriptions (labeled
as inconsistent). To detect issues in the existing open-source projects, we select (from the
first partition of examples from the automatically labeled dataset) the 500 pairs that TCID

predicts with highest probability to be inconsistent. Then, we keep only pairs from different
projects, which leaves us with a total of 392 pairs. Finally, we manually analyze 50 of these
392 pairs. From the 50 analyzed pairs, we consider 36 to be indeed inconsistent, which roughly
matches the precision of TCID found in RQ1. From these 36 inconsistent pairs, we discard
two pairs. For one of them, the project from which it was extracted has been archived at
GitHub. For the other one, the test from which the pair was extracted has been removed in
the meantime.

For each of the remaining 34 inconsistent pairs, we prepare a PR suggesting an improved
test description, which we manually create based on our understanding of the test intent. To
preserve anonymity, we use an anonymous GitHub account to submit the PRs, and to avoid
being considered a bot or having the account blocked, we contact the project owner prior to
the PR with a personalized email explaining that we are working on a research project. Out
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Table 3 – Merged pull requests.

aalluinmar/vue-test-jest/pull/1
aldeste/CrossWindowAuthPrototype/pull/1
AlexandrPristupa/Today-I-Learned/pull/7
anderfilth/payment-service-provider/pull/17
Gapur/place-management/pull/3
GroceriStar/json-file-schema-validator/pull/161
JelenaStrbac/customer-manager/pull/10
kmiloarguello/product-page-jumbo/pull/2
ozovalihasan/track/pull/4
rosivaldo9/node-com-jest/pull/10

of the 34 created PRs, 10 PRs have been accepted so far by the developers (29.4%). For
two out of the 10 accepted PRs, the developers left a “Thank you” comment on the PR,
suggesting gratefulness for the contribution. The remaining 24 PRs are still to be reviewed by
the developers. None of our PRs has been rejected. Table 3 shows the 10 accepted PRs. The
changes proposed to the test description from the “Track” project correspond to the example
given in Chapter 1.

Summary of RQ3: Out of 34 submitted PRs, 10 have
been accepted so far by the developers, and none were

rejected. This result suggests that developers are receptive
to test-description inconsistencies, and that TCID can be

a useful addition to developer’s toolkit.
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5 THREATS TO VALIDITY

This chapter presents a summary of the potential threats to validity of our study, including
external and internal validity.

5.1 EXTERNAL VALIDITY

TCID is affected by two threats to external validity. First, because our preliminary study
is based on small samples of commits to test files and test description changes, it is possible
that this data is not representative of all updates to test descriptions. The fact that developers
accept PRs improving test descriptions, provides additional support for our hypothesis that
developers care about updating test descriptions and that the inconsistencies identified by
TCID can be useful. Second, to select inconsistencies to create pull requests, we manually
inspect 50 pairs from the 500 predictions that TCID predicts with highest confidence as
inconsistent. Moreover, we created PRs only for the 34 of these 50 pairs that we manually
confirmed as inconsistent and for which the test case and project are still publicly available at
GitHub. This experiment may not fully capture the usefulness of TCID, and in the future,
we plan to analyze more cases detected as inconsistent and create a larger number of PRs.

5.2 INTERNAL VALIDITY

There are three potential threats to internal validity, i.e., reasons why our experiment may
be ill-designed. We select pairs for manual labeling based on the predictions that the LSTM
model of TCID produces when trained on the automatically labeled dataset. Additionally,
our automatically labeled dataset is labeled based on the assumption that pairs mined from
GitHub are consistent. While convenient for data collection, this assumption does not always
hold in practice. However, in the labeling task of our manually labeled dataset, we find that the
ratio of consistent pairs mined from GitHub is higher than the ratio of inconsistent pairs (68%
versus 32%), which indicates that our assumption is valid for most cases. Finally, our manually
labeled dataset is labeled by humans and may suffer from subjectivity bias. To mitigate this
threat, (1) the manual labeling of each pair is independently performed by two developers
and (2) we discard all the pairs for which no consensus is reached. Our results show that
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our manually labeled dataset improves effectiveness across different models, i.e., not only the
model used to select pairs of test descriptions to manually label.
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6 RELATED WORK

In this chapter, we describe some related work. We organized it in two groups: Training
strategies in machine learning and text-code inconsistency detection.

6.1 TRAINING STRATEGIES IN MACHINE LEARNING

Our combination of large-scale weak supervision and manual fine-tuning relates to other
training strategies in machine learning. One related idea is the general combination of pre-
training and fine-tuning, as popularized, e.g., by large-scale language models (DEVLIN et al.,
2018; CHEN et al., 2021). For these models, the pre-training task usually differs from the
fine-tuning task, e.g., by pre-training on a next-token-prediction task and then fine-tuning on
some classification task. Instead, TCID trains on the same task during both training phases.
Another related idea is active learning, where the model actively and iteratively requests a user
to annotate specific examples. In contrast, TCID does not require any interaction and can
benefit from a pre-existing set of manually labeled examples, as in the method-vs-comment part
of our evaluation. Finally, our approach relates to anomaly detection via one-class classification,
but we formulate the problem as a binary classification task.

6.2 TEXT-CODE INCONSISTENCY DETECTION

Tan et al. (TAN et al., 2007; TAN; YUAN; ZHOU, 2007; TAN et al., 2012) pioneered in the area
of code-documentation consistency. Their iComment technique (TAN et al., 2007) uses natu-
ral language processing, machine learning, and program analysis to extract implicit program
rules from source code comments. iComment then uses these rules to detect inconsistencies
between source code and comments related to the use of locking mechanisms. Many resear-
chers have followed in Tan et al.’s footsteps over the last decade. Tan et al.’s own follow-up
work @tcomment (TAN et al., 2012) can test the consistency between Javadoc comments rela-
ted to null values and exceptions with the behavior of the corresponding code through a two
step process: inferring a set of likely properties for a method from its comment, and generating
random tests for these methods to check the inferred properties. Although there is bulk of
work detecting inconsistencies between source code and documentation (TREUDE; MIDDLE-
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TON; ATAPATTU, 2020), we are the first to look for inconsistencies between test code and its
documentation. Test code has unique properties such as the often linear Arrange-Act-Assert
(AAA) structure (GARVIN, 2021).

Automated attempts at mitigating the inconsistencies include DocRef by Zhong and
Su (ZHONG; SU, 2013), which combines natural language and code analysis techniques to
detect API documentation errors by identifying mismatches between code names in natural
language documentation and code. AdDoc by Dagenais and Robillard (DAGENAIS; ROBILLARD,
2014) automatically discovers documentation patterns, i.e., coherent sets of code elements that
are documented together. They found these patterns through the recovery of implicit links, and
report violations of the patterns as the code and the documentation evolve. Similarly aimed
at identifying inconsistencies between code and documentation, Ratol and Robillard (RATOL;

ROBILLARD, 2017) presented Fraco, a tool to detect source code comments that are fragile
with respect to identifier renaming, taking into account the type of identifier, its morphology,
the scope of the identifier, and the location of comments.

A line of work by Zhou et al. (ZHOU et al., 2017; ZHOU et al., 2018; ZHOU et al., 2019) focused
on detecting and repairing defects in Java API documentation. Their first approach (ZHOU et al.,
2017) detects defects in API documents by leveraging techniques from program comprehension
and natural language processing, with a particular focus on directives related to parameter
constraints and exception throwing declarations. The authors employed a first-order logic
based constraint solver to detect such defects. Their follow-up work (ZHOU et al., 2018; ZHOU

et al., 2019) introduced a solution to repair the detected defects, focusing on situations when
the constraint description of API usage is incomplete, or when the description exists but is
semantically incorrect with respect to the code.

Focusing on a particular type of source code comment, i.e., TODO comments,
Sridhara (SRIDHARA, 2016) presented a technique that can automatically detect the status
of a TODO comment by employing a combination of information retrieval, linguistics and
semantics. Along similar lines, Maipradit et al. (MAIPRADIT et al., 2020) defined the concept of
“on-hold” self-admitted technical debt, i.e., debt which contains a condition to indicate that a
developer is waiting for a certain event or an updated functionality having been implemented
elsewhere, followed by an approach to check if the “on-hold” instances are superfluous and can
be removed, e.g., because the referenced issue has been closed (MAIPRADIT et al., ). Recent
work by Gao et al. (GAO et al., 2021) follows in a similar direction and introduces an approach
called TDCleaner to identify obsolete TODO comments by enabling just-in-time checking of
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the status of TODO comments.
Similar to the work by Gao et al. and our work, much of the recent work on detec-

ting and mitigating inconsistencies between natural language documentation and source code
has focused on employing machine learning and deep learning approaches. Panthaplackel et
al. (PANTHAPLACKEL et al., 2021) proposed an approach that learns to correlate changes across
two distinct language representations, to generate a sequence of edits that are applied to exis-
ting comments to reflect code modifications. Rabbi and Siddik (RABBI; SIDDIK, 2020) proposed
an approach for resolving the inconsistencies between code and comments using a Siamese
recurrent network, which uses word tokens in code and comments as well as their sequences
in corresponding code or comments. In follow-up work, Rabbi et al. (RABBI et al., 2020) propo-
sed an ensemble approach for detecting inconsistencies using topic modeling by automatically
extracting dominant topics and identifying the consistency between a code snippet and its
corresponding comment. Patra and Pradel (PATRA; PRADEL, 2022) propose to find inconsis-
tencies between the name of a variable and the values it refers to. None of these approaches
addresses the problem of test-description inconsistencies.

To enable just-in-time updating of comments when the corresponding code changes, Liu
et al. (LIU et al., 2020) introduced Comment UPdater (CUP), a tool which leverages a neural
sequence-to-sequence model to learn comment update patterns from existing code-comment
co-changes and can automatically generate a new comment based on its corresponding old
comment and code change. Lin et al. (LIN et al., 2021) found that the overall effectiveness of
CUP is largely contributed by its success on updating comments via a single token change.
From that, the authors proposed HEBCUP as a heuristic-based alternative to CUP, finding
that it outperforms CUP.

To assist developers in writing natural language documentation that is less likely to suffer
from inconsistencies, Nassif et al. (NASSIF et al., 2021) introduced an approach called DScribe
which allows developers to combine unit tests and documentation templates, and to invoke
those templates to generate documentation and unit tests. The tool supports the detection and
replacement of outdated documentation, and the use of templates can encourage extensive
test suites with a consistent style.
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7 CONCLUSION AND FUTURE WORK

Source code is often accompanied by natural language text, e.g., in the form of source code
comments or test code descriptions. Unfortunately, code and text are not always consistent,
which can mislead developers during program comprehension tasks and can be indicative of
faults. To support the automated detection of such inconsistencies, we present TCID, which
trains a neural model that classifies text-code pairs as consistent or inconsistent. Since models
trained only on automatically labeled data often suffer from low accuracy caused by many of
the automatically generated data points not being representative of real-world mistakes, TCID

employs a two-phase training strategy: At first, the model is trained using weak supervision
on a large-scale dataset of automatically generated and labeled examples of text-code pairs.
Then, the model is fine-tuned using manual supervision based on a small-scale dataset of
manually labeled examples.

Our evaluation with 40,688 method-comment pairs in Java and 338,761 test-description
pairs in JavaScript shows that a small amount of manual labeling can significantly improve
the detection of inconsistencies. In particular, TCID outperforms the state-of-the-art on the
method-vs-comment task, and is the first to address the test-vs-description task. To validate
the usefulness of the approach, we prepared and submitted pull requests, of which 10 have
been accepted so far.

7.1 CONTRIBUTIONS

⋆ A two-step training approach combining the benefits of weakly supervised pre-training
on large-scale, automatically-gathered data with the benefits of fine-tuning on ma-
nually labeled data, which we find crucial for effective learning.

⋆ The first to address the problem of identifying inconsistencies between test descrip-
tions and corresponding test case implementations.

⋆ Empirical evidence that the approach effectively detects inconsistent text-code pairs,
outperforms the state-of-the-art, and provides value to developers.
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7.2 FUTURE WORK

⋆ Investigate how to improve TCID’s effectiveness by considering (1) other heuristics
to automatically label consistent and inconsistent text-code pairs, (2) multiple fine-
tuning iterations and (3) fine-tuning large pre-trained models, e.g. CodeT5 (WANG et

al., 2021).

⋆ Evaluate TCID in other scenarios by considering (1) different text-code pairs such
as requirement and implementation, (2) a larger number of PRs.
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