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ABSTRACT

Solving recursive domain equations over a Cartesian closed 0-category is a way to find
extensional models of the type-free 𝜆-calculus. In this work we seek to generalize these equa-
tions to “homotopy domain equations”; to be able to set about a particular Cartesian closed
“(0,∞)-category”, which we call the Kleisli∞-category, and thus find higher 𝜆-models, which
we call “𝜆-homotopic models”. To achieve this purpose, we had to previously generalize c.p.o’s
(complete partial orders) to c.h.p.o’s (complete homotopy partial orders); complete ordered
sets to complete (weakly) ordered Kan complexes, 0-categories to (0,∞)-categories and the
Kleisli bicategory to a Kleisli ∞-category. Continuing with the semantic line of 𝜆-calculus,
the syntactical 𝜆-models (e.g., the set 𝐷∞), defined on sets, are generalized to “homotopic
syntactical 𝜆-models” (e.g., the Kan complex “𝐾∞”), which are defined on Kan complexes,
and we study the relationship of these models with the homotopic 𝜆-model. Finally, from the
syntactic point of view, what the theory of an arbitrary homotopic 𝜆-model would be like is
explored, which turns out to contain a theory of higher 𝜆-calculus, which we call Homotopy
Type-Free Theory (HoTFT); with higher 𝛽𝜂-contractions and thus with higher 𝛽𝜂-conversions.

Keywords: ordered weakly Kan complex; complete homotopy partial order; homotopic syntac-
tical 𝜆-model; homotopic 𝜆-model; homotopy domain equation; homotopy type-free theory.



RESUMO

A resolução das equações de domínio recursivas sobre uma 0-categoria Cartesiana fe-
chada é uma maneira de encontrar modelos extensionais do 𝜆-cálculo com Type-free. Neste
trabalho buscamos generalizar estas equações para “equações de domínio de homotopia”;
definidas sobre uma determinada “(0,∞)-categoria” fechada Cartesiana, que chamamos de
Kleisli ∞-category, e assim encontrar 𝜆-modelos superiores, que nós chamar “𝜆-modelos ho-
motópicos”. Para atingir este propósito, tivemos que generalizar previamente c.p.o’s (ordens
parciais completos) para c.h.p.o’s (ordens parciais de homotopia completos); conjuntos or-
denados completos para complexos de Kan ordenados (fracamente) completos, 0-categorias
para (0,∞)-categorias e a bicategoria Kleisli para uma Kleisli ∞-categoria. Continuando com
a linha semântica de 𝜆-cálculo, os 𝜆-modelos sintáticos (e.g., o conjunto 𝐷∞), definidos sobre
conjuntos, são generalizados para “𝜆-modelos sintáticos homotópicos” (e.g., o complexo de
Kan “𝐾∞”), que são definidos em complexos de Kan, e estudamos a relação desses modelos
com os 𝜆-modelos homotópicos. Finalmente, do ponto de vista sintático, explora-se como seria
a teoria de um 𝜆-modelo arbitrário, que acaba por conter uma teoria de 𝜆-cálculo superior,
a qual chamamos Teoria não-tipada de Homotopia; com 𝛽𝜂-contrações superiores e daí com
𝛽𝜂-conversões superiores.

Palavras-chaves: complexo de Kan fracamente ordenado; ordem parcial de homotopia com-
pleto; 𝜆-modelo sintáctico homotópico; 𝜆-modelo homotópico; equação de domínio de homo-
topia; teoria no-tipada de homotopia.
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1 INTRODUCTION

Dana Scott’s Domain Theory (ABRAMSKY; JUNG, 1994), was created in the 60s and 70s
with the purpose of finding a semantics for programming languages, specifically for functional
programming languages theorized by type-free 𝜆-calculus. Where each computational program,
which corresponds to a 𝜆-term, is interpreted as a continuous function 𝑓 : 𝐷 → 𝐷 defined
on an ordered set (poset) 𝐷 called Domain, which would come a solution of the Recursive
Domain Equation

𝑋 ∼= [𝑋 → 𝑋],

hence 𝐷 is a model of type-free 𝜆-calculus or also called 𝜆-model, where 𝐷∞ is the first
non-trivial 𝜆-model introduced by Dana Scott. Thus, a computable construction can be more
easily verified in its interpretation as a continuous function.

In addition to the many recursively defined computational objects, type-free 𝜆-calculus
is a classic example of a programming language with recursive definitions of data-types (a
classification that specifies the type of value a variable), since the expression 𝐷 ∼= [𝐷 → 𝐷],

implies a recursive definition of the data-types, in the sense that 𝐷 is the limit of a non-
decreasing sequence of posets 𝐷𝑖 ⊆ 𝐷 recursively defined, where each 𝐷𝑖 interprets a type.
Thus, a recursively defined computational object (e.g, the factorial function) can be seen as
a recursive sequence of partial functions 𝑓𝑖 : 𝐷 → 𝐷 which converges to a total function
𝑓 : 𝐷 → 𝐷 being the interpretation of the 𝜆-term which represents to the computational
object.

In the 1970s, 𝜆-calculus was extended by Martin Löf to Intuitionistic Type Theory (ITT)
with the purpose of formalizing mathematical proofs to computer programs, i.e., it emerged
as a computational alternative to the fundamentals of mathematics. Later, in the 2010s, the
Homotopy Type Theory (HoTT) was proposed as an interaction between ITT and Homotopy
Theory, where we can affirm that HoTT is the most recent version of the theorization of the
notion of algorithm. Finally in (QUEIROZ; OLIVEIRA; RAMOS, 2016) and (RAMOS; QUEIROZ;

OLIVEIRA, 2017) one proposes an alternative to HoTT based on computational paths; as a
finite sequence of rewriting of computational terms according to the ITT axioms.

Thus, as there is a semantics of type-free 𝜆-calculus with Dana Scott’s Domain Theory,
we here want to propose a semantics of a untyped version of HoTT based on computational
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paths starting from a “Domain Theory of Homotopy”, that is, we want to start the way for
an interpretation of the most recent notion of algorithm given by HoTT, starting with the
untyped case.

In (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022a), we introduced a type of topological 𝜆-models
called homotopic 𝜆-models, in a conceptual way, which is for the present work, a candidate for
being a model of this untyped version of HoTT. There 𝜆-terms are interpreted as points and
𝛽𝜂-conversions (or 𝛽𝜂-equality proofs) between 𝜆-terms are interpreted as continuous paths
between two points in the following sense:

Given the 𝛽𝜂-conversion 𝑃 between the 𝜆-terms 𝑀 and 𝑁 , that is,

𝑃 : 𝑀 = 𝑁0 =1𝛽𝜂 · · · =1𝛽𝜂 𝑁𝑛 = 𝑁,

where the relation =1𝛽𝜂 can be a 𝛽-contraction (B1𝛽), reversed 𝛽-contraction (C1𝛽), 𝜂-
contraction (B1𝜂) or reversed 𝜂-contraction (C1𝜂). The proof 𝑃 : 𝑀 =𝛽𝜂 𝑁 can be interpreted
at some homotopic 𝜆-model ⟨𝐷, ∙, J K⟩ as a continuous path 𝑝 : J𝑀K  J𝑁K which passes
through the intermediate points J𝑁1K, J𝑁2K, . . . , J𝑁𝑛−1K.

The authors wonder, if given two 1-proofs 𝑃, 𝑄 : 𝑀 =𝛽𝜂 𝑁 , in space 𝐷, if there is a
homotopy ℎ between the paths 𝑝 := J𝑃 K and 𝑞 := J𝑄K? (see Figure 1).

Figura 1 – Proofs 𝑃, 𝑄 : 𝑀 =𝛽𝜂 𝑁 on a homotopic 𝜆-model D

Sink: (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022a)

More so, if one has some intentional definition of equality between the proofs 𝑃 and 𝑄,
such that the interpretation of any 2-proof of this equality, into 𝐷, is a homotopy from 𝑝 to
𝑞. One could ask again, for the 2-proofs 𝐹 and 𝐺 of the equality 𝑃 =𝐷 𝑄, if there is a 3-path
between homotopies 𝑓 := J𝐹 K and 𝑔 := J𝐺K?.
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And so on, one can continue asking until reaching a getting from a model topology 𝐷, a
theory of higher equality with ∞-groupoid structure, which could be a typed-free version of
the Homotopy Type Theory (HoTT) (PROGRAM, 2013).

It is known that HoTT offers a way of understanding Intuitionistic Type Theory (ITT)
by allowing for an interpretation based on the geometric intuition of Homotopy Theory. For
example, a type 𝐴 is interpreted as a topological space, a term 𝑎 : 𝐴 as a point 𝑎 ∈ 𝐴, a
dependent type 𝑥 : 𝐴 ⊢ 𝐵(𝑥) as the fibration 𝐵 → 𝐴, the identity type 𝐼𝑑𝐴 as the path space
𝐴𝐼 , a term 𝑝 : 𝐼𝑑𝐴(𝑎, 𝑏) as the path 𝑝 : 𝑎→ 𝑏, the term 𝛼 : 𝐼𝑑𝐼𝑑𝐴(𝑎,𝑏)(𝑝, 𝑞) as the homotopy
𝛼 : 𝑝⇒ 𝑞 and so on.

According to Quillen’s Theorem, each CW complex topological space is homotopically equi-
valent to a Kan complex (∞-groupoid), and, conversely, each Kan complex is homotopically
equivalent to a CW complex. Then, instead of working directly with topological spaces, we are
going to work with Kan complexes, which are ∞-categories whose 1-simplexes or edges are
weakly invertible (LURIE, 2009). Thus, to ensure consistency of HoTT (based on topological
spaces), Voevodsky (KAPULKIN; LUMSDAINE, 2012) (see (LUMSDAINE; SHULMAN, 2020) for
higher inductive types) proved that HoTT has a model in the category of Kan complexes (see
(PROGRAM, 2013)).

Consequently, a type 𝐴 can be interpreted by a Kan complex, a term 𝑎 : 𝐴 as the vertex
𝑎 ∈ 𝐴, a dependent type 𝑥 : 𝐴 ⊢ 𝐵(𝑥) as the fibration 𝐵 → 𝐴, the identity type 𝐼𝑑𝐴 as
the space functors 𝐹𝑢𝑛(Δ1, 𝐴), a term 𝑝 : 𝐼𝑑𝐴(𝑎, 𝑏) as the 1-simplex 𝑝 : 𝑎 → 𝑏, the term
𝛼 : 𝐼𝑑𝐼𝑑𝐴(𝑎,𝑏)(𝑝, 𝑞) as the 2-simplex 𝛼 : 𝑝⇒ 𝑞 and so on.

Therefore, this project is a continuation of (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022a), inten-
ding to try to answer all these questions in the initial framework of a higher domain theory
and see how this relates to HoTT.

1.1 MOTIVATION

The initiative to search for 𝜆-models (HINDLEY; SELDIN, 2008) with a ∞-groupoid struc-
ture emerged in (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022a), which studied the geometry of any
complete partial order (c.p.o) (e.g., 𝐷∞), and found that the topology inherent in these mo-
dels generated trivial higher-order groups. From that moment on, the need arose to look for a
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type of model that presented a rich geometric structure; where their higher-order fundamental
groups would not collapse.

It is known in the literature that Dana Scott’s Domain-Theory (ABRAMSKY; JUNG, 1994)
and (ASPERTI; LONGO, 1991), provides general techniques for obtaining 𝜆-models by solving
domain equations over arbitrary Cartesian closed categories. To fulfil the purpose of getting
𝜆-models with non-trivial ∞-groupoid structure, the most natural way would be to adapt
Dana Scott’s Domain Theory to a “Homotopy Domain Theory”. Where the cartesian closed
categories (c.c.c) will be replaced by cartesian closed ∞-categories (c.c.i), the c.p.o’s will
be replaced by “c.h.p.o’s (complete homotopy partial orders)”, the 0-categories by (0,∞)-
categories and the isomorphism between objects in a Cartesian closed 0-categories (at the
recursive domain equation) will be replaced by an equivalence between objects in a cartesian
closed (0,∞)-category, which we call “homotopy domain equation” such as summarized in
Table 1. See (MARTÍNEZ-RIVILLAS; QUEIROZ, 2021a).

Tabela 1 – Generalization of Recursive Domain Equations

Dana Scott’s Domain-Theory Homotopy Domain Theory
Cartesian Closed Category (c.c.c) Cartesian Closed ∞-Category (c.c.i)
Complete Partial Order (c.p.o) Complete Homotopy Partial Order (c.h.p.o)
0-category (0,∞)-category
Recursive Domain Equation:
𝑋 ∼= (𝑋 ⇒ 𝑋)

Homotopy Domain Equation:
𝑋 ≃ (𝑋 ⇒ 𝑋)

Source: The autor (2022)

Just as the recursive Domain Equation 𝑋 ∼= [𝑋 → 𝑋] (in the category of the c.p.o’s)
has an implicit a the recursive definition of the data-types, the “Homotopy Domain Equation”
𝑋 ≃ [𝑋 → 𝑋] (in the “∞-category of the c.h.p.o’s”) would also have a recursive definition
of the data-types. A recursively defined computational object (e.g., a proof by mathematical
induction) would being of a higher order relative to the classical case, whose interpretation
would be recursively defined by a sequence of partial functors 𝐹𝑖 : 𝐾 → 𝐾, over a Kan
complex 𝐾 weakly ordered, which converges to a total functor 𝐹 : 𝐾 → 𝐾, whose details are
not among the objectives of this thesis, but will be developed in future works, when studying
the semantics (case of inductive types) of the version of HoTT based on computational paths.

Thus, intuitively, from the computational point of view, we have that a Kan complex, which
satisfies the Homotopy Domain Equation, is not only capable of verifying the computability
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of constructions typical of classical programming languages, as 𝐷∞ does it, but also, it has
the advantage (over 𝐷∞) of verifying the computability of higher constructions, such as a
mathematical proof of some proposition, the proof of the equivalence between two proofs of
the same proposition etc.

(HYLAND, 2010) lays out several reasons for generalizing the Domain Theory. Particularly,
one prove that the Kleisli bicategory (HYLAND, 2014) is cartesian closed and with enough
points. This fact, also motives a generalization of the Kleisli bicategory to an ∞-category
of Kan complexes which keep the same properties, in order to apply the techniques of the
generalized domain theory to this ∞-category Kleisli and thus obtain a reflexive Kan complex
(homotopic 𝜆-model) with relevant information.

On other hand, since HoTT has models at the category of the Kan complexes, from the
syntactic point of view it would be interesting to see what relationship there is between the
theory of any reflexive Kan complex and HoTT. Especially, in exploring this relationship for
the case of identity types and additionally for the case of identity types based on computa-
tional paths (QUEIROZ; OLIVEIRA; RAMOS, 2016) and (RAMOS; QUEIROZ; OLIVEIRA, 2017). In
(MARTÍNEZ-RIVILLAS; QUEIROZ, 2021b) one can see the first sketches still in the process of
development.

1.2 OBJECTIVES

To answer each of the questions formulated in the contextualization and motivation of this
research project, one proposes the following objectives: To generalize the Kleisli bicategory to
a Kleisli∞-category and to prove that it is Cartesian closed. To initiate a generalization of the
Dana Scott’s domain theory to a “homotopy domain theory”, specifically in the generalization
of the recursive equation domains, where the Cartesian closed category (c.c.c) are transformed
into Cartesian closed ∞-category (c.c.i), the c.p.o’s are replaced by “c.h.p.o’s” and the do-
main equations (isomorphism of objects in a c.c.c) become “equations of homotopy domain”
(equivalence of objects in a c.c.i). Having done all this, we can then apply the techniques of
solving homotopy domain equations to the particular case of the Kleisli ∞-category to find
extensional Kan complexes with relevant information.
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2 THEORETICAL FOUNDATION

Since all the objectives will be carried out within the framework of the∞-categories, some
concepts necessary for the development of this project will be presented.

2.1 ∞-CATEGORIES

The ∞-categories or quasi-categories are a type of simplicial sets, introduced by (BOARD-

MAN; VOGT, 1973) to generalize the classic categories. In the decade of the 2000s, André Joyal
made important advances, e.g. showing some results analogous to classical category theory
in its ∞-categorical version, as can be seen in (JOYAL, 2002) and (JOYAL; TIERNEY, 2008).
In (LURIE, 2009), one can find the most complete treatise written so far on the theory of
∞-categories and in (LURIE, 2017) everything related to the higher operators and algebras on
∞-categories.

2.1.1 Simplicial sets

For a better understanding of the definitions and basic results on ∞-categories, necessary
for the development of this work, we present some notions on simplicial sets (GOERSS; JARDINE,
2009).

Definition 2.1.1 (Simplicial indexing category). Define Δ be the category as follows. The
objects are finite ordinals [𝑛] = {0, 1, . . . , 𝑛}, 𝑛 ≥ 0, and morphisms are the (non strictly)
order preserving maps. Morphisms in Δ are often called simplicial operators.

Remark 2.1.1. There are a coface operator 𝑑𝑖 : [𝑛− 1]→ [𝑛], which skips the i-th element
and a codegeneracy operator 𝑠𝑖 : [𝑛 + 1]→ [𝑛], which maps 𝑖 and 𝑖 + 1 to the same element.
All operator 𝑓 * in Δ can be obtained as a finite composition of coface and codegeneracy
operators.

Definition 2.1.2 (Simplicial set). A simplicial set 𝑋 is a functor 𝑋 : Δ𝑜𝑝 → 𝑆𝑒𝑡 (or presheaf).
A simplicial morphism is just a natural transformation of functors. The category of the simplicial
sets 𝐹𝑢𝑛(Δ𝑜𝑝, 𝑆𝑒𝑡) will be denoted by 𝑠𝑆𝑒𝑡 or 𝑆𝑒𝑡Δ.

It is typical to write 𝑋𝑛 for 𝑋([𝑛]), and call it the set of n-simplexes in 𝑋.
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Remark 2.1.2. Given a simplex 𝑎 ∈ 𝑋𝑛 and a simplicial operator 𝑓 * : [𝑚]→ [𝑛], the function
𝑓 : 𝑋𝑛 → 𝑋𝑚 is given by 𝑓(𝑎) := 𝑋(𝑓 *)(𝑎). In this explicit language, a simplicial set consists
of

• a sequence of sets 𝑋0, 𝑋1, 𝑋2, . . . ,

• functions 𝑓 : 𝑋𝑛 → 𝑋𝑚 for each simplicial operator 𝑓 * : [𝑚]→ [𝑛].

• 𝑖𝑑(𝑎) = 𝑎 and (𝑔𝑓)(𝑎) = 𝑔(𝑓(𝑎)) for all simplex 𝑎 and simplicial operators 𝑓 * and 𝑔*

whenever this makes sense.

For the coface operator 𝑑𝑖 : [𝑛 − 1] → [𝑛], the face map is denoted by 𝑑𝑖 : 𝑋𝑛 → 𝑋𝑛+1,
0 ≤ 𝑖 ≤ 𝑛. For the codegeneracy operator 𝑠𝑖 : [𝑛 + 1] → [𝑛], the degeneracy map is written
by 𝑠𝑖 : 𝑋𝑛 → 𝑋𝑛+1, 0 ≤ 𝑖 ≤ 𝑛.

Definition 2.1.3 (Product of simplicial sets (FRIEDMAN, 2012)). Let 𝑋 and 𝑌 be simplicial
sets. Their product 𝑋 × 𝑌 is defined by

1. (𝑋 × 𝑌 )𝑛 = 𝑋𝑛 × 𝑌𝑛 = {(𝑥, 𝑦) |𝑥 ∈ 𝑋𝑛, 𝑦 ∈ 𝑌𝑛},

2. if (𝑥, 𝑦) ∈ (𝑋 × 𝑌 )𝑛, then 𝑑𝑖(𝑥, 𝑦) = (𝑑𝑖𝑥, 𝑑𝑖𝑦),

3. if (𝑥, 𝑦) ∈ (𝑋 × 𝑌 )𝑛, then 𝑠𝑖(𝑥, 𝑦) = (𝑠𝑖𝑥, 𝑠𝑖𝑦).

Notice that there are evident projection maps 𝜋1 : 𝑋 × 𝑌 → 𝑋 and 𝜋2 : 𝑋 × 𝑌 → 𝑌

given by 𝜋1(𝑥, 𝑦) = 𝑥 and 𝜋2(𝑥, 𝑦) = 𝑦. These maps are clearly simplicial morphisms.

Definition 2.1.4 (Standard n-simplex). The standard n-simplex Δ𝑛 is the simplicial set defi-
ned by

Δ𝑛 := Δ(−, [𝑛]).

That is, the standard n-simplex is exactly the functor represented by the object [𝑛].

The standard 0-simplex Δ0 is the terminal object in 𝑠𝑆𝑒𝑡; i.e., for every simplicial set 𝑋

there is a unique map 𝑋 → Δ0. Sometimes we write * instead of Δ0 for this object. The
empty simplicial set ∅ is the functor Δ𝑜𝑝 → 𝑆𝑒𝑡 sending each [𝑛] to the empty set. It is the
initial object in 𝑠𝑆𝑒𝑡, i.e., for every simplicial set 𝑋 there is a unique map ∅ → 𝑋. Besides,
there is a bijection 𝑠𝑆𝑒𝑡(Δ𝑛, 𝑋) ∼= 𝑋𝑛; applying the Yoneda Lemma to category Δ (CISINSKI,
2019).
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A graphical representation of the convex hull of Δ𝑛 is made up of the n+1 vertices
⟨0⟩, ⟨1⟩, . . . , ⟨𝑛⟩ and the faces are the injective simplicial operators, which are called non-
degenerated cells. In the Figure 2, we have some “pictures” of Δ𝑛 for 𝑛 = 0, . . . , 3, which
show their non-degenerate 1-cells as arrows.

Figura 2 – Standard 𝑛-simplexes from 𝑛 = 0 to 𝑛 = 3

Source: (REZK, 2017)

Definition 2.1.5 ((GOERSS; JARDINE, 2009)). For two simplicial sets 𝑋, 𝑌 we have a mapping
simplicial set, 𝑀𝑎𝑝(𝑋, 𝑌 ) defined as:

𝑀𝑎𝑝(𝑋, 𝑌 )𝑛 := 𝑠𝑆𝑒𝑡(𝑋 ×Δ𝑛, 𝑌 ).

Note that in particular 𝑀𝑎𝑝(𝑋, 𝑌 )0 = 𝑠𝑆𝑒𝑡(𝑋 × Δ0, 𝑌 ) ∼= 𝑠𝑆𝑒𝑡(𝑋, 𝑌 ) (bijection of
sets). Sometimes to simplify notation, the simplicial set 𝑀𝑎𝑝(𝑋, 𝑌 ) will be written as 𝑋𝑌 or
[𝑋 → 𝑌 ].

Next, a collection of sub-objects of the standard simplexes, called “horns” is defined.

Definition 2.1.6 (Horns). For each 𝑛 ≥ 1, there are subcomplexes Λ𝑛
𝑖 ⊂ Δ𝑛 for each

0 ≤ 𝑖 ≤ 𝑛. The horn Λ𝑛
𝑖 is the subcomplex of Δ𝑛 such that this is the largest sub-object that

does not include the face opposing the 𝑖-th vertex.

When 0 < 𝑖 < 𝑛 one says that Λ𝑛
𝑖 ⊂ Δ𝑛 is an inner horn. One also says that it is a left

horn if 𝑖 < 𝑛 and a right horn if 0 < 𝑖.

For example, the horns inside Δ1 are just the vertices: the left horn, the right horn Λ1
0 =

{0} ⊂ Δ1 and Λ1
1 = {1} ⊂ Δ1. Neither is an inner horn.

Other example. Δ2 has three horns: The left horn Λ2
0, the internal horn Λ2

1 and the right
horn Λ2

1, see Figure 3.
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Figura 3 – Horns inside Δ2

Source: (REZK, 2017)

2.1.2 Definition of ∞-category and Kan complex

Definition 2.1.7 (∞-category (LURIE, 2009)). An ∞-category is a simplicial set 𝑋 which
has the following property: for any 0 < 𝑖 < 𝑛, any map 𝑓0 : Λ𝑛

𝑖 → 𝑋 admits an extension
𝑓 : Δ𝑛 → 𝑋.

Definition 2.1.8. From the definition above, we have the following special cases:

• 𝑋 is a Kan complex if there is an extension for each 0 ≤ 𝑖 ≤ 𝑛.

• 𝑋 is a category if the extension exists uniquely (REZK, 2022).

• 𝑋 is a groupoid if the extension exists for all 0 ≤ 𝑖 ≤ 𝑛 and is unique (REZK, 2022).

Next is the definition of Cartesian product of∞-categories, which generalizes the Cartesian
product of categories.

By the bijective correspondence between the set 𝑠𝑆𝑒𝑡(𝐾, 𝑋×𝑌 ) and 𝑠𝑆𝑒𝑡(𝐾 → 𝑋, 𝐾 →

𝑌 ) one has the following proposition (see (REZK, 2017)).

Proposition 2.1.1. The product of two ∞-categories (as simplicial sets) is an ∞-category.

2.1.3 Categorical constructions in ∞-categories

Next, one approaches the ∞-categories from the basic notions of the classical categories.

Definition 2.1.9. A functor of∞-categories 𝑋 → 𝑌 is exactly a morphism of simplicial sets.
Thus, 𝐹𝑢𝑛(𝑋, 𝑌 ) = 𝑀𝑎𝑝(𝑋, 𝑌 ) must be a simplicial set of the functors from 𝑋 to 𝑌 .
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Notation 2.1.1. The notation 𝑀𝑎𝑝(𝑋, 𝑌 ) is usually used for simplicial sets, while 𝐹𝑢𝑛(𝑋, 𝑌 )

is for ∞-categories. One will refer to morphisms in 𝐹𝑢𝑛(𝑋, 𝑌 ) as natural transformations of
functors, and equivalences in 𝐹𝑢𝑛(𝑋, 𝑌 ) as natural equivalences.

The composition from n-simplex 𝑓 : Δ𝑛 → 𝑋 (or 𝑓 ∈ 𝑋𝑛) with a functor 𝐹 : 𝑋 → 𝑌 ,
will be denoted as the image 𝐹 (𝑓) ∈ 𝑌𝑛, where 𝑛 ≥ 0.

A 1-simplex 𝑓 : Δ1 → 𝑋, such that 𝑓(0) = 𝑥 and 𝑓(1) = 𝑦 will be denoted as a morphism
𝑓 : 𝑥→ 𝑦 in the ∞-category 𝑋.

An inner horn Λ2
1 → 𝑋, which corresponds to composable morphisms 𝑥

𝑓−→ 𝑦
𝑔−→ 𝑧 in the

∞-category 𝑋, will be denoted by (𝑔,−, 𝑓) or in some cases to simplify notation it will be
denoted by 𝑔.𝑓 .

Proposition 2.1.2 ((LURIE, 2009) and (CISINSKI, 2019)). For every ∞-category 𝑌 , the sim-
plicial set 𝐹𝑢𝑛(𝑋, 𝑌 ) is an ∞-category.

Definition 2.1.10 (Trivial Fibration). A morphism 𝑝 : 𝑋 → 𝑆 of simplicial sets is a trivial
fibration if it has the right lifting property with respect to every inclusion 𝜕Δ𝑛 ⊆ Δ𝑛, i.e., if
given any diagram

Δ𝑛
� _

��

// 𝑋

𝑝

��

>>

Δ𝑛 // 𝑆

there exists a dotted arrow as indicated, rendering diagram commutative.

The proof of the following theorem can be found in (LURIE, 2009) and (CISINSKI, 2019).

Theorem 2.1.1 (Joyal). A simplicial set 𝑋 is an ∞-category if and only if the canonical
morphism

𝐹𝑢𝑛(Δ2, 𝑋)→ 𝐹𝑢𝑛(Λ2
1, 𝑋),

is a trivial fibration. Thus, each fibre of this morphism is contractible.

The above theorem guarantees the laws of coherence of the composition of 1-simplexes
or morphisms of an ∞-category. In the sense that the composition of morphisms is unique
up to homotopy, i.e., the composition is well-defined up to a space of choices is contractible
(equivalent to Δ0).
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With respect to the Kan complexes, we have the following equivalence.

Proposition 2.1.3 (Homotopy extension lifting property (LURIE, 2009)). The simplicial set
𝑋 is a Kan complex if and only if the induced map

𝐹𝑢𝑛(Δ1, 𝑋)→ 𝐹𝑢𝑛({0}, 𝑋)

is a trivial fibration of simplicial sets.

Definition 2.1.11 (Space of morphisms (REZK, 2017)). For two vertices 𝑥, 𝑦 in an∞-category
𝑋, define the space of morphisms 𝑋(𝑥, 𝑦) by the following pullback diagram

𝑋(𝑥, 𝑦)

��

// 𝐹𝑢𝑛(Δ1, 𝑋)
(𝑠,𝑡)
��

Δ0
(𝑥,𝑦)

// 𝑋 ×𝑋

in the category 𝑠𝑆𝑒𝑡.

Proposition 2.1.4 ((LURIE, 2009) and (REZK, 2017)). The morphism spaces 𝑋(𝑥, 𝑦) are Kan
complexes.

2.1.4 Equivalences in ∞-categories

In category theory, we have the concept of isomorphism of objects. For the case of the
∞-categories, we will have the equivalence of objects (vertices) in the following sense.

Definition 2.1.12 (Equivalent vertices). A morphism (1-simplex) 𝑓 : 𝑥→ 𝑦 in an∞-category
𝑋 is invertible (an equivalence) if there is morphism 𝑔 : 𝑦 → 𝑥 in 𝑋, a pair of 2-simplexes
𝛼, 𝛽 ∈ 𝑋2 such that (𝑔,−, 𝑓) 𝛼−→ 1𝑥 and (𝑓,−, 𝑔) 𝛽−→ 1𝑦, i.e., we can fill out following diagram

𝑥

1𝑥

��

𝑓 // 𝑦

1𝑦

��

𝑔

��
𝑥

𝑓
// 𝑦

with the 2-simplexes 𝛼 and 𝛽.

Theorem 2.1.2 ((LURIE, 2009) and (CISINSKI, 2019)). Let 𝑋 be an∞-category. The following
are equivalent
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1. Every morphism (1-simplex) in 𝑋 is an equivalence.

2. 𝑋 is a Kan complex.

2.1.5 Natural transformations and natural equivalence

Definition 2.1.13 ((CISINSKI, 2019) and (REZK, 2017)). If 𝑋 and 𝑌 are ∞-categories, and
if 𝐹, 𝐺 : 𝑋 → 𝑌 are two functors, a natural transformation from 𝐹 to 𝐺 is a map 𝐻 :

𝑋 ×Δ1 → 𝑌 such that

𝐻(𝑥, 0) = 𝐹 (𝑥), 𝐻(𝑥, 1) = 𝐺(𝑥),

for each vertex 𝑥 ∈ 𝑋. Such a natural transformation is invertible or it is a natural equivalence
if for any vertex 𝑥 ∈ 𝑋, the induced morphism 𝐹 (𝑥)→ 𝐺(𝑥) (corresponding to the restriction
of 𝐻 to Δ1 ∼= {𝑥} ×Δ1) is invertible in 𝑌 . If there is a natural equivalence from 𝐹 to 𝐺, we
write 𝐹 ≃ 𝐺.

Remark 2.1.3. This means that for each vertex 𝑥 ∈ 𝑋, one chooses a morphism 𝐻𝑥 :

𝐹 (𝑥)→ 𝐺(𝑥) such that the following diagram

𝐹 (𝑥)

𝐹 (𝑓)

��

𝐻𝑥 //

𝑔

""

𝐺(𝑥)

𝐺(𝑓)

��
𝐹 (𝑥′)

𝐻𝑥′
// 𝐺(𝑥′)

commutes under some 2-simplexes 𝛼 : 𝑔 → (𝐺(𝑓),−, 𝐻𝑥) and 𝛽 : (𝐻𝑥′ ,−, 𝐹 (𝑓))→ 𝑔.

2.1.6 Categorical equivalences and homotopy equivalences

Definition 2.1.14 (Categorical equivalence (REZK, 2017) and (LURIE, 2009)). A functor of
∞-categories 𝐹 : 𝑋 → 𝑌 is a categorical equivalence if there is another functor 𝐺 : 𝑌 → 𝑋,
such that 𝐺𝐹 ≃ 1𝑋 and 𝐹𝐺 ≃ 1𝑌 .

Remark 2.1.4. From the definition above, if 𝐹 : 𝑋 → 𝑌 is a functor of Kan complexes, we
say that 𝐹 is a homotopy equivalence.

Lemma 2.1.1 ((REZK, 2017) and (CISINSKI, 2019)). A functor of ∞-categories 𝐹 : 𝑋 → 𝑌

is a categorical equivalence if it satisfies the following two conditions:
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• Fully Faithful (Embedding): For two objects 𝑥, 𝑦 ∈ 𝑋 the induced functor of Kan
complexes

𝑋(𝑥, 𝑦)→ 𝑌 (𝐹𝑥, 𝐹𝑦),

is a homotopy equivalence.

• Essentially Surjective: For every object 𝑦 ∈ 𝑌 there exists an object 𝑥 ∈ 𝑌 such that
𝐹𝑥 is equivalent to 𝑦.

2.1.7 The join of ∞-categories

Next, the extension from join of categories to ∞-categories. This will make us able to
define limit and colimit in an ∞-category.

Definition 2.1.15 (Join (LURIE, 2009)). Let 𝐾 and 𝐿 be simplicial sets. The join 𝐾 ⋆ 𝐿 is
the simplicial set defined by

(𝐾 ⋆ 𝐿)𝑛 := 𝐾𝑛 ∪ 𝐿𝑛 ∪
⋃︁

𝑖+1+𝑗=𝑛

𝐾𝑖 × 𝐿𝑗, 𝑛 ≥ 0.

Example 2.1.1. (GROTH, 2015)

1. If 𝐾 ∈ 𝑠𝑆𝑒𝑡 and 𝐿 = Δ0, then 𝐾B = 𝐾 ⋆ Δ0 is the cocone or the right cone on 𝐾.
Dually, If 𝐿 ∈ 𝑠𝑆𝑒𝑡 then 𝐿C = Δ0 ⋆ 𝐿 is the cone or the left cone on 𝐿.

2. Let 𝐾 = Λ2
0. If we see this left horn as a pushout, the cocone (Λ2

0)B is isomorphic to
the square � = Δ1 ×Δ1, that is, to the filled in diagram

(0, 0)

��

//

""

(1, 0)

��
(0, 1) // (1, 1)

Proposition 2.1.5. (LURIE, 2009)

(i) For the standard simplexes one has an isomorphism Δ𝑖 ⋆ Δ𝑗 ∼= Δ𝑖+1+𝑗, 𝑖, 𝑗 ≥ 0, and
these isomorphisms are with the obvious inclusions of Δ𝑖 and Δ𝑗.

(ii) If 𝑋 and 𝑌 are ∞-categories, then the join 𝑋 ⋆ 𝑌 is an ∞-category.
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2.1.8 The slice ∞-category

In the case of the classical categories, if 𝐴, 𝐵 are categories and 𝑝 : 𝐴 → 𝐵 is any
functor, one can form the slice category 𝐵/𝑝 of the object over 𝑝 or cones on 𝑝. The following
propositions allow us to define the slice ∞-category.

Proposition 2.1.6 ((JOYAL, 2002)). Let 𝐾 and 𝑆 be simplicial sets, and 𝑝 : 𝐾 → 𝑆 be an
arbitrary map. There is a simplicial set 𝑆/𝑝 such that there exists a natural bijection

𝑠𝑆𝑒𝑡(𝑌, 𝑆/𝑝) ∼= 𝑠𝑆𝑒𝑡𝑝(𝑌 ⋆ 𝐾, 𝑆),

where the subscript on right hand side indicates that we consider only those morphisms 𝑓 :

𝑌 ⋆ 𝐾 → 𝑆 such that 𝑓 |𝐾 = 𝑝.

Proposition 2.1.7 (Joyal). Let 𝑋 be an∞-category and 𝐾 be a simplicial set. If 𝑝 : 𝐾 → 𝑋

be a map of simplicial sets, then 𝑋/𝑝 is an∞-category. Moreover, if 𝑞 : 𝑋 → 𝑌 is a categorical
equivalence, then the induced map 𝑋/𝑝 → 𝑌/𝑞𝑝 is a categorical equivalence as well.

Definition 2.1.16 (Slice ∞-Categorical (LURIE, 2009)). Given 𝑋 be an ∞-category, 𝐾 be a
simplicial set and 𝑝 : 𝐾 → 𝑋 be a map of simplicial sets. Define the slice ∞-category 𝑋/𝑝 of
the objects over 𝑝 or cones on 𝑝. Dually, 𝑋𝑝/ is the ∞-category of objects under 𝑝 or cocones
on 𝑝.

Example 2.1.2. Let 𝑋 be an∞-category and 𝑥 ∈ 𝑋 be an object, which correspond to map
𝑥 : Δ0 → 𝑋. The objects of the ∞-category 𝑋/𝑥 of cones on 𝑥 are morphism 𝑦 → 𝑥 in 𝑋,
and the morphism from 𝑦 → 𝑥 to 𝑧 → 𝑥 in 𝑋/𝑥, are the 2-simplexes

𝑦

�� ��
𝑧 // 𝑥

in the ∞-category 𝑋.

2.1.9 Limits and colimits

An object 𝑡 of a category is final if for each object 𝑥 in this category, there is a unique
morphism 𝑥 → 𝑡. Next, one defines the final objects at ∞-categories, under a contractible
space of morphisms.
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Definition 2.1.17 (Final object (LURIE, 2009)). An object 𝜔 ∈ 𝑋 in an ∞-category 𝑋, is a
final object if for any object 𝑥 ∈ 𝑋, the Kan complex of morphisms 𝑋(𝑥, 𝜔) is contractible.

Theorem 2.1.3 (Joyal). Let an object 𝜔 ∈ 𝑋 in a ∞-category 𝑋 and 𝜋 : 𝑋/𝜔 → 𝑋 the
canonical projection. The following conditions are equivalent.

(i) The object 𝜔 ∈ 𝑋 is final.

(ii) The map 𝜋 : 𝑋/𝜔 → 𝑋 is a trivial fibration.

(iii) The map 𝜋 : 𝑋/𝜔 → 𝑋 is a categorical equivalence.

(iv) The map 𝜋 : 𝑋/𝜔 → 𝑋 has a section which sends 𝜔 to 1𝜔.

(v) Any map 𝑓0 : 𝜕Δ𝑛 → 𝑋, such that 𝑛 > 0 and 𝑓(𝑛) = 𝜔, has an extension 𝑓 : Δ𝑛 → 𝑋.

Corollary 2.1.1 ((CISINSKI, 2019)). The final objects of an∞-category 𝑋 form a Kan complex
which is either empty or equivalent to the point.

Corollary 2.1.2 ((CISINSKI, 2019)). Let 𝑥 be a final object in an ∞-category 𝑋. For any
simplicial set 𝐴, the constant map 𝐴→ 𝑋 with value 𝑥 is a final object in 𝑀𝑎𝑝(𝐴, 𝑋).

Definition 2.1.18 (Limit and colimit (JOYAL, 2002)). Let 𝑋 be an ∞-category and let
𝑝 : 𝐾 → 𝑋 a map of simplicial sets. A colimit for 𝑝 is an initial object of 𝑋𝑝/, and a limit for
𝑝 is a final object of 𝑋/𝑝.

By the dual of Corollary 2.1.1, if the colimit exists, then the Kan complex of initial objects
is contractible, i.e., the initial object is unique up to contractible choice.

2.1.10 ∞-categories of presheaves

Definition 2.1.19 (∞-categories of presheaves (LURIE, 2009)). Let 𝑆 be a simplicial set. One
lets 𝑃 (𝑆) or 𝑃𝑆 denote simplicial set 𝐹𝑢𝑛(𝑆𝑜𝑝, S); where S denotes the ∞-category of the
small Kan complexes or ∞-groupoids, also called the ∞-category of spaces. One will say that
𝑃 (𝑆) is the ∞-category of the presheaves on 𝑆.

Proposition 2.1.8 ((LURIE, 2009)). Let 𝑆 be a simplicial set. The ∞-category 𝑃 (𝑆) of the
presheaves on 𝑆 admits all small limits and colimits.
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Proposition 2.1.9 (∞-Categorical Yoneda Lemma (LURIE, 2009)). Let 𝑆 be a simplicial set.
Then the Yoneda embedding 𝑗 : 𝑆 → 𝑃𝑆 is fully faithful.

Notation 2.1.2. Let 𝑋 be an ∞-category and 𝑆 be a simplicial set. One lets 𝐹𝑢𝑛𝐿(𝑃𝑆, 𝑋)

denote the full subcategory of 𝐹𝑢𝑛(𝑃𝑆, 𝑋) spanning those functors 𝑃𝑆 → 𝑋 which preserve
small colimits.

The motivation for this notation stems from Adjoint Functor Theorem (will be seen later),
where 𝐹𝑢𝑛𝐿(𝑃𝑆, 𝑋) also denotes the full subcategory of 𝐹𝑢𝑛(𝑃𝑆, 𝑋) spanning those functors
which are left adjoints.

Theorem 2.1.4 ((LURIE, 2009)). Let 𝑆 be a small simplicial set and let 𝑋 be an∞-category
which admits small colimits. The composition with the Yoneda embedding 𝑗 : 𝑆 → 𝑃𝑆

induces an equivalence of ∞-categories

𝐹𝑢𝑛𝐿(𝑃𝑆, 𝑋)→ 𝐹𝑢𝑛(𝑆, 𝑋).

Another fundamental result is the following (LURIE, 2009): given a collection of simplicial
sets K, R ⊆ K and 𝐴 an ∞-category, there exists an ∞-category 𝑃K

R 𝐴 and a functor
𝑗 : 𝐴→ 𝑃K

R 𝐴 with the following properties:

1. 𝑃K
R 𝐴 admits K-indexed colimits, i.e., admits 𝐾-indexed colimits for each 𝐾 ∈ K.

2. For every ∞-category 𝐵 which admits K-indexed colimits, composition with 𝑗 induces
an equivalence of ∞-categories

𝐹𝑢𝑛K(𝑃K
R 𝐴, 𝐵) ≃ 𝐹𝑢𝑛R(𝐴, 𝐵).

If 𝐴 admits all the R-indexed colimits, we also have

3. The functor 𝑗 is fully faithful.

where 𝐹𝑢𝑛R(𝐴, 𝐵) is the full subcategory of 𝐹𝑢𝑛(𝐴, 𝐵) spanned by those functors which
preserve R-indexed colimits, i.e., which preserve 𝐾-indexed colimits for each 𝐾 ∈ R; the
same applies to 𝐹𝑢𝑛K(𝑃K

R 𝐴, 𝐵).

Example 2.1.3. Let R = ∅ and K be the class of all small simplicial sets. If 𝐴 is a small
∞-category, then 𝑃K

R 𝐴 ≃ 𝑃𝐴.
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Example 2.1.4. Let R = ∅ and K be the class of all small 𝜅-filtered simplicial sets for some
regular cardinal 𝜅. If 𝐴 is a small ∞-category, then 𝑃K

R 𝐴 ≃ 𝐼𝑛𝑑𝜅𝐴. For the category case,
see (GABRIEL; ULMER, 1971).

Example 2.1.5. Let R = ∅ and K be the class of all 𝜅-small simplicial sets for some regular
cardinal 𝜅. If 𝐴 is a small ∞-category, then 𝑃K

R 𝐴 ≃ 𝑃 𝜅𝐴, where 𝑃 𝜅𝐴 is the full subcategory
of all 𝜅-compact elements (for more details see Section 2.1.12) of 𝑃𝐴.

Example 2.1.6. Let R be the class of all 𝜅-small simplicial sets for some regular cardinal 𝜅 and
let K be the collection of all small simplicial sets. Let 𝐴 be a small ∞-category which admits
𝜅-small colimits, then 𝑃K

R 𝐴 ≃ 𝐼𝑛𝑑𝜅𝐴. Also, we have 𝐴 ≃ 𝑃 𝜅𝐶 for some small ∞-category
𝐶 which does not necessarily admit 𝜅-small colimits.

2.1.11 Adjoint Functors

Next is the definition of adjoint functors; motivated from classical definition of functors
between categories.

Definition 2.1.20 (Adjunction (CISINSKI, 2019)). Let 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 → 𝑋 be
functors between ∞-categories. One will say that (𝐹, 𝐺) form an adjoint pair, or that 𝐹 is
the left adjoint of 𝐺, or that 𝐺 is the right adjoint of 𝐹 , if there exists a functorial invertible
map of the form

𝛼𝑥,𝑦 : 𝑋(𝑥, 𝐺𝑦)→ 𝑌 (𝐹𝑥, 𝑦)

in the ∞-category Ŝ of all Kan complexes (not necessarily small), where the word functorial
means that this map is the evaluation at (𝑥, 𝑦) of a morphism 𝛼 in the ∞-category of the
functors 𝐹𝑢𝑛(𝑋𝑜𝑝 × 𝑌, Ŝ).

An adjunction from 𝐴 to 𝐵 is a triple (𝐹, 𝐺, 𝛼), where 𝐹 and 𝐺 are the functors as above,
while 𝛼 is an invertible map from 𝑋(−, 𝐺(−)) to 𝑌 (𝐹 (−),−) which exhibits 𝐺 as a right
adjoint of 𝐹 .

Proposition 2.1.10 ((CISINSKI, 2019)). Let 𝐹 : 𝑋 → 𝑌 be a functor between small ∞-
categories. For two adjunctions (𝐹, 𝐺, 𝛼) and (𝐹, 𝐺′, 𝛼′), the functorial maps 𝐺𝑦 → 𝐺′𝑦

which are compatibles with 𝛼 and 𝛼′ form a contractible Kan complex (i.e., there is unique
way to identify 𝐺 with 𝐺′ as right adjoint of 𝐹 ).
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Proposition 2.1.11 ((LURIE, 2009)). Let 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 → 𝑋 be functors between
∞-categories. The following conditions are equivalent:

1. The functor 𝐹 is a left adjoint to 𝐺.

2. There is a unit transformation 𝑢 : 𝑖𝑑𝑋 → 𝐺 ∘ 𝐹

Proposition 2.1.12 ((LURIE, 2009)). Let 𝐹 : 𝑋 → 𝑌 be a functor between ∞-categories
which has a right adjoint 𝐺 : 𝑌 → 𝑋. Then 𝐹 preserves all the colimits which exist in 𝑋,
and 𝐺 preserves all the limits which exist in 𝑌 .

Definition 2.1.21 ((LURIE, 2009)). Let 𝑋 and 𝑌 be ∞-categories. One lets 𝐹𝑢𝑛𝐿(𝑋, 𝑌 ) ⊆

𝐹𝑢𝑛(𝑋, 𝑌 ) denote the full subcategory of 𝐹𝑢𝑛(𝑋, 𝑌 ) spanned by those functors 𝐹 : 𝑋 → 𝑌

which are left adjoints. Similarly, one will define 𝐹𝑢𝑛𝑅(𝑋, 𝑌 ) to be the full subcategory of
𝐹𝑢𝑛(𝑋, 𝑌 ) spanned by those functors which are right adjoints.

Proposition 2.1.13 ((LURIE, 2009)). Let 𝑋 and 𝑌 be∞-categories. Then the∞-categories
𝐹𝑢𝑛𝐿(𝑋, 𝑌 ) and 𝐹𝑢𝑛𝑅(𝑋, 𝑌 )𝑜𝑝 are (canonically) equivalent.

2.1.12 Filtered ∞-Categories and Compact Objects

Recall that the filtered categories are the generalization of the partially ordered set 𝐴 which
are filtered, i.e., those that satisfy the condition: every finite subset of 𝐴 has an upper bound
in 𝐴. Next is the definition of filtered ∞-category which generalizes the classical version to
categories.

Definition 2.1.22 (𝜅-Filtered (LURIE, 2009)). Let 𝜅 be a regular cardinal and let 𝑋 be an
∞-category. We say that 𝑋 is 𝜅-filtered if, for every 𝜅-small set simplicial 𝑆 and all map
𝑓 : 𝑆 → 𝑋 there is a map 𝑓 : 𝑆� → 𝑋 (with 𝑆� = 𝑆 ⋆ Δ0) which extends to 𝑓 . (i.e., 𝑋 is
filtered if this the extension property with respect to the inclusion 𝑆 ⊆ 𝑆� for every 𝜅-small
simplicial set 𝑆). One will say that 𝑋 is filtered if this is 𝜔-filtered.

Definition 2.1.23 (Weakly contractible). A ∞-category 𝑋 is weakly contractible if its geo-
metric realization |𝑋| ∈ 𝑇𝑜𝑝 is contractible.

Proposition 2.1.14 ((LURIE, 2009)). Let 𝑋 be a filtered ∞-category. Then 𝑋 is weakly
contractible.
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Definition 2.1.24 ((LURIE, 2009)). Let 𝜅 be a regular cardinal and 𝑋 be an ∞-category.
One will say that 𝑋 admits 𝜅-filtered colimits if it admits colimits of all indexed diagrams on
any 𝜅-filtered ∞-category.

Definition 2.1.25 (Continuity (LURIE, 2009)). Let 𝑋 be an ∞-category which admits 𝜅-
filtered colimits. One will say a functor 𝑓 : 𝑋 → 𝑌 is 𝜅-continuous if it preserves 𝜅-filtered
colimits.

Definition 2.1.26 (𝜅-Compact (LURIE, 2009)). Let 𝑋 be an ∞-category, 𝑥 ∈ 𝑋 and let
𝑋(𝑥,−) : 𝑋 → Ŝ be the corepresented by 𝑥. If 𝑋 admits 𝜅-filtered colimits, then one will say
that 𝑥 is 𝜅-compact if the functor corepresented by it is 𝜅-continuous. One will say that 𝑥 is
compact if it is 𝜔-compact (and 𝑋 admits filtered colimits).

Remark 2.1.5. Let 𝑋 be an accessible ∞-category and 𝜅 be a regular cardinal. The full
subcategory 𝑋𝜅 ⊆ 𝑋 consisting of all the 𝜅-compact objects of 𝑋 is essentially small, i.e.,
there exists a small ∞-category 𝑌 equivalent to 𝑋𝜅.

Notation 2.1.3. Let 𝑋 be an∞-category and 𝜅 be regular cardinal. Denote by 𝐼𝑛𝑑𝜅(𝑋) the
closure of 𝑋 under 𝜅-filtered colimits.

Proposition 2.1.15 ((LURIE, 2009)). Let 𝑋 be a small ∞-category and 𝜅 a regular cardinal.
The∞-category 𝑃 𝜅(𝑋) of 𝜅-compact objects of 𝑃 (𝑋) is essentially small: that is, there exists
a small ∞-category 𝑌 and an equivalence 𝑖 : 𝑌 → 𝑃 𝜅(𝑋). Let 𝐹 : 𝐼𝑛𝑑𝜅(𝑌 ) → 𝑃 (𝑋) be a
𝜅-continuous functor such that the composition of 𝐹 with the Yoneda embedding

𝑌 → 𝐼𝑛𝑑𝜅(𝑌 )→ 𝑃 (𝑋)

is equivalent to 𝑖. Then 𝐹 is an equivalence of ∞-categories.

2.1.13 Accessible ∞-category

In this section, we define everything related to accessibility, necessary to define presentable
∞-categories.

Definition 2.1.27 (Accessible ∞-Category (LURIE, 2009)). Let 𝜅 be a regular cardinal. An
∞-category 𝑋 is 𝜅-accessible if there exists a small ∞-category 𝑋0 and an equivalence

𝐼𝑛𝑑𝜅(𝑋0)→ 𝑋.
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One will say that 𝑋 is accessible if it is 𝜅-accessible for some regular cardinal 𝜅.

Definition 2.1.28 (Accessible Functor (LURIE, 2009)). Let 𝑋 be an accessible ∞-category,
then a functor 𝐹 : 𝑋 → 𝑋 ′ is accessible if it is 𝜅-continuous for some regular cardinal 𝜅.

Example 2.1.7. The ∞-category S of spaces is accessible. More generally, for any small
∞-category 𝑋, the ∞-category 𝑃 (𝑋) is accessible.

Notation 2.1.4. Denote by 𝐶𝑎𝑡∞ the ∞-category of all small ∞-categories, and by 𝐶𝐴𝑇∞

the ∞-category of the all the ∞-categories.

Definition 2.1.29 ((LURIE, 2009)). Let 𝜅 be a regular cardinal. We let 𝐴𝑐𝑐𝜅 ⊆ 𝐶𝐴𝑇∞ denote
the subcategory defined as follows:

1. The objects of 𝐴𝑐𝑐𝜅 are the 𝜅-accessible ∞-categories.

2. A functor 𝐹 : 𝑋 → 𝑌 between accessible ∞-categories belongs to 𝐴𝑐𝑐𝜅 if and only if
𝐹 is 𝜅-continuous and preserves 𝜅-compact objects.

Let 𝐴𝑐𝑐 = ⋃︀
𝜅 𝐴𝑐𝑐𝜅 . We will refer to 𝐴𝑐𝑐 as the ∞-category of accessible ∞-categories.

2.1.14 Presentable ∞-Categories

Next, we define presentable ∞-categories and their characterizations.

Definition 2.1.30 (Presentable∞-category (LURIE, 2009)). An∞-category 𝑋 is presentable
if 𝑋 is accessible and admits small colimits.

Theorem 2.1.5 ((SIMPSON, 1999) and (LURIE, 2009)). Let 𝑋 be an ∞-category. The fol-
lowing conditions are equivalent:

1. The ∞-category 𝑋 is presentable.

2. The ∞-category 𝑋 is accessible, and for every regular cardinal 𝜅 the full subcategory
𝑋𝜅 admits 𝜅-small colimits.

3. There exists a regular cardinal 𝜅 such that 𝑋 is 𝜅-accessible and 𝑋𝜅 admits 𝜅-small
colimits.

4. There exists a regular cardinal 𝜅, a small ∞-category 𝑌 which admits 𝜅-small colimits,
and an equivalence 𝐼𝑛𝑑𝜅𝑋 → 𝑌 .
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Proposition 2.1.16 ((LURIE, 2009)). Let 𝐹 : 𝑋 → 𝑌 be a functor between presentable
∞-categories. Suppose that 𝑋 is 𝜅-accessible. The following conditions are equivalent:

1. The functor 𝐹 preserves small colimits.

2. The functor 𝐹 is 𝜅-continuous, and the restriction 𝐹 |𝑋𝜅 preserves 𝜅-small colimits.

Theorem 2.1.6 (Adjoint Functor Theorem (LURIE, 2009)). Let 𝐹 : 𝑋 → 𝑌 be a functor
between presentable ∞-categories.

1. The functor 𝐹 has a right adjoint if and only it preserves small colimits.

2. The functor 𝐹 has a left adjoint if and only if it is accessible and preserves small limits.

Definition 2.1.31. Define the subcategories P𝑟𝐿,P𝑟𝑅 ⊆ 𝐶𝐴𝑇∞ as follows:

1. The objects of both P𝑟𝐿 and P𝑟𝑅 are the presentable ∞-categories.

2. A functor 𝐹 : 𝑋 → 𝑌 between presentable ∞-categories is a morphism in P𝑟𝐿 if and
only if 𝐹 preserves small colimits. Hence 𝐹 ∈ 𝐹𝑢𝑛𝐿(𝑋, 𝑌 ).

3. A functor 𝐺 : 𝑋 → 𝑌 between presentable ∞-categories is a morphism in P𝑟𝑅 if and
only if 𝐺 is accessible and preserves small limits. Thus 𝐺 ∈ 𝐹𝑢𝑛𝑅(𝑋, 𝑌 ).

Proposition 2.1.17 ((LURIE, 2009)). The∞-categories P𝑟𝐿 and P𝑟𝑅 admits all small limits,
and the inclusion functors P𝑟𝐿,P𝑟𝑅 ⊆ 𝐶𝐴𝑇∞ preserve all small limits.

Proposition 2.1.18 ((LURIE, 2009)). Let 𝑋 be an presentable ∞-category and let 𝑆 be a
small simplicial set. Then 𝐹𝑢𝑛(𝑆, 𝑋) and 𝐹𝑢𝑛𝐿(𝑆, 𝑋) are presentable.

Remark 2.1.6 ((LURIE, 2009)). The presentable ∞-category 𝐹𝑢𝑛𝐿(𝑋, 𝑌 ) can be regarded
as an internal mapping object in 𝑃𝑟𝐿. That is, there exists an operation ⊗ that endows 𝑃𝑟𝐿

with the structure of a symmetric monoidal∞-category. Proposition 2.1.18 can be interpreted
as asserting that this monoidal structure is closed.

2.1.15 Compactly Generated ∞-Categories

Definition 2.1.32 ((LURIE, 2009)). Let 𝜅 be a regular cardinal. We will say that an ∞-
category 𝑋 is 𝜅-compactly generated if it is presentable and 𝜅-accessible. When 𝜅 = 𝜔, we
will simply say that 𝑋 is compactly generated.
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Proposition 2.1.19 ((LURIE, 2009)). Let 𝜅 be a regular cardinal and let 𝐹 : 𝑋 � 𝑌 : 𝐺

be a pair of adjoint functors, where 𝑋 and 𝑌 admit small 𝜅-filtered colimits and these are
𝜅-compactly generated.

1. If 𝐺 is 𝜅-continuous, then 𝐹 carries 𝜅-compact objects of 𝑋 to 𝜅- compact objects of
𝑌 .

2. Conversely, if 𝑋 is 𝜅-accessible and 𝐹 preserves 𝜅-compactness, then 𝐺 is 𝜅-continuous.

Definition 2.1.33. If 𝜅 is a regular cardinal, define the subcategories P𝑟𝐿
𝜅 ,P𝑟𝑅

𝜅 ⊆ 𝐶𝐴𝑇∞ as
follows

1. The objects of both P𝑟𝐿
𝜅 and P𝑟𝑅

𝜅 are 𝜅-compactly generated ∞-categories.

2. The morphisms in P𝑟𝑅
𝜅 are 𝜅-continuous limit-preserving functors.

3. The morphisms in P𝑟𝐿
𝜅 are functors which preserve small colimits and 𝜅- compact objects.

Proposition 2.1.20. The ∞-category P𝑟𝑅
𝜅 admits all the limits and the inclusion P𝑟𝐿

𝜅 ⊆

𝐶𝐴𝑇∞ preserves small limits.

Definition 2.1.34 ((LURIE, 2009)). Define the subcategory 𝐶𝐴𝑇 𝑅𝑒𝑥(𝜅)
∞ whose objects are

(not necessarily small) ∞-categories which admit 𝜅-small colimits and whose morphisms are
functors which preserve 𝜅-small colimits, and let 𝐶𝑎𝑡𝑅𝑒𝑥(𝜅)

∞ = 𝐶𝐴𝑇 𝑅𝑒𝑥(𝜅)
∞ ∩ 𝐶𝑎𝑡∞.

Proposition 2.1.21 ((LURIE, 2009)). Let 𝜅 be a regular cardinal and let

𝜃 : P𝑟𝐿
𝜅 → 𝐶𝐴𝑇 𝑅𝑒𝑥(𝜅)

∞

be the functor which associates to a 𝜅-compactly generated∞-category 𝑋 the full subcategory
𝑋𝜅 ⊆ 𝑋 spanned by the 𝜅-compact objects of 𝑋. Then the functor 𝜃 is fully faithful.

2.2 THE KLEISLI BICATEGORY

Next, we introduce the Kleisli bicategory according to the works of (HYLAND, 2014) and
(HYLAND, 2010).

A Kleisli structure is a 2-dimensional version of a restricted monad, as follows below.
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Definition 2.2.1 (Kleisli structure (HYLAND, 2014)). Let 𝒦 be a bicategory and 𝒜 be a
bicategory contained in 𝒦. A Kleisli structure 𝑃 on 𝒜 ⊆ 𝒦 is the following.

• For each object 𝑎 ∈ 𝒜 an arrow 𝑦𝑎 : 𝑎→ 𝑃𝑎 in 𝒦.

• For each 𝑎, 𝑏 ∈ 𝒜 a functor

𝒦(𝑎, 𝑃𝑏)→ 𝒦(𝑃𝑎, 𝑃𝑏), 𝑓 ↦→ 𝑓#.

• Families of invertible 2-cells

𝜂𝑓 : 𝑓 → 𝑓#𝑦𝑎, 𝜅𝑎 : (𝑦𝑎)# → 1𝑃 𝑎, 𝜅𝑔,𝑓 : (𝑔#𝑓)# → 𝑔#𝑓#,

where 𝑓 : 𝑎 → 𝑃𝑏 and 𝑔 : 𝑏 → 𝑃𝑐 be 1-cells at 𝒦, and subject to unit and pentagon
coherence conditions.

It is clear that 𝑃 is a pseudo-functor from 𝒜 to 𝒦 such that for each 1-cell 𝑓 : 𝑎 → 𝑏 of
𝒜, set 𝑃𝑓 = (𝑦𝑏𝑓)# : 𝑃𝑎→ 𝑃𝑏.

Definition 2.2.2 (Kleisli bicategory (HYLAND, 2014)). Given a Kleisli structure 𝑃 on 𝒜 ⊆ 𝒦,
define its Kleisli bicategory 𝐾𝑙(𝑃 ) as follows: The objects of 𝐾𝑙(𝑃 ) are the objects of 𝒜. For
the objects 𝑎, 𝑏 one has 𝐾𝑙(𝑃 )(𝑎, 𝑏) = 𝒦(𝑎, 𝑃𝑏). The identities of 𝐾𝑙(𝑃 ) are the 𝑦𝑎 : 𝑎→ 𝑃𝑎.
The Kleisli composition of 𝑓 : 𝑎→ 𝑃𝑏 and 𝑔 : 𝑏→ 𝑃𝑐, is 𝑔 ·𝑓 = 𝑔#𝑓 : 𝑎→ 𝑃𝑐. This extends
to 2-cells so one has composition.

Theorem 2.2.1 ((HYLAND, 2014)). Let 𝑃 be a Kleisli structure on 𝒜 ⊆ 𝒦. Then 𝐾𝑙(𝑃 ) is
a bicategory.

Example 2.2.1 ((HYLAND, 2014)). The pseudo-functor 𝑃 : 𝐶𝑎𝑡 → 𝐶𝐴𝑇 , given by 𝑃𝐴 =

[𝐴𝑜𝑝, 𝑆𝑒𝑡] the category of presheaves over 𝐴 with the usual Yoneda embedding 𝑦𝐴 : 𝐴→ 𝑃𝐴,
is a Kleisli structure on 𝐶𝑎𝑡 ⊆ 𝐶𝐴𝑇 .

Remark 2.2.1 ((HYLAND, 2014)). In classical category theory, the Kleisli construction is one
universal way to associate an adjunction with a monad. In the 2-dimensional setting of Kleisli
structures one gets a restricted (pseudo)adjunction as follows: There is a ‘forgetful’ pseudo-
functor 𝑈 : 𝐾𝑙(𝑃 )→ 𝐾 taking 𝑓 : 𝑎→ 𝑃𝑏 in 𝐾𝑙(𝑃 ) to 𝑓# : 𝑃𝑎→ 𝑃𝑏 in 𝒦. And there is a
‘free’ pseudo-functor 𝐹 : 𝐴→ 𝐾𝑙(𝑃 ) , taking 𝑓 : 𝑎→ 𝑏 in 𝐴 to 𝑦𝑏𝑓 : 𝑎→ 𝑃𝑏 considered as
a map from 𝑎 to 𝑏 in 𝐾𝑙(𝑃 ). One omits the 2-dimensional structure which is routine, but note
that the fact that 𝐹 is a restricted left pseudo-adjoint is immediate from the identification
𝐾𝑙(𝑃 )(𝑎, 𝑏) = 𝒦(𝑎, 𝑃𝑏).
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That said, the first objective of our work is to generalize the Kleisli structure 𝑃 on 𝐶𝑎𝑡 ⊆

𝐶𝐴𝑇 to a Kleisli structure on 𝐶𝑎𝑡∞ ⊆ 𝐶𝐴𝑇∞, where 𝐶𝑎𝑡∞ is the ∞-category of small ∞-
categories and 𝐶𝐴𝑇∞ the ∞-category of ∞-categories. Thus getting the Kleisli ∞-category
𝐾𝐿(𝑃 ).

2.2.1 Categories with finite limits

In (HYLAND, 2010)], one gets an example of a Kleisli bicategory on a comonad, which
closes small categories to small categories with finite colimit, as we present below.

Let 𝐿 : 𝐶𝑎𝑡→ 𝐶𝑎𝑡 be the restriction of the 2-monad on 𝐶𝐴𝑇 which sends categories to
categories with finite limits. The Kleisli structure 𝑃 on 𝐶𝑎𝑡 ⊆ 𝐶𝐴𝑇 lifts to the 2-category
𝐿-Alg of 𝐿-algebras by reason of the following observations.

• Any presheaf category 𝑃𝐴 has finite limits, and if 𝐴 has finite limits then the Yoneda
embedding 𝑦𝐴 : 𝐴→ 𝑃𝐴 preserves finite limits.

• If 𝐴 and 𝐵 have finite limits and the functor 𝑓 : 𝐴→ 𝑃𝐵 preserves finite limits, then the
left Kan extension 𝑓# : 𝑃𝐴→ 𝑃𝐵 preserves finite limits, since 𝑓# preserves colimits.

This immediately gives a lift of the presheaf Kleisli structure 𝑃 to 𝐿-Alg and hence an extension
of 𝐿 : 𝐶𝑎𝑡→ 𝐶𝑎𝑡 to a pseudo-monad 𝐿𝑃 : 𝐾𝑙(𝑃 )→ 𝐾𝑙(𝑃 ).

For 𝐿*
𝑃 be the pseudo-comonad (here the term ‘pseudo’ refers to a functor between 2-

categories) of the pseudo-monad 𝐿𝑃 . This leads to the following results.

Proposition 2.2.1. (HYLAND, 2010) The bicategory 𝐾𝑙(𝐿*
𝑃 ) is Cartesian closed and does

have enough points.

Taking advantage of the properties of presentable ∞-categories, in our work, instead of
addressing an ∞-category 𝐾𝑙(𝐿*

𝑃 ), we will work directly with the Kleisli ∞-category 𝐾𝑙(𝑃 )

and prove that it is cartesian closed.
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2.3 RECURSIVE DOMAIN EQUATIONS

2.3.1 Fixed Point Theorem

Definition 2.3.1. 1. An 𝜔-diagram in a category 𝒦 is a diagram with the following struc-
ture:

𝑘0
𝑓0−→ 𝑘1

𝑓1−→ 𝑘2 −→ · · · −→ 𝑘𝑛
𝑓𝑛−→ 𝑘𝑛+1 −→ · · ·

(dually, one defines 𝜔𝑜𝑝-diagrams by just reversing the arrows).

2. A category 𝒦 is 𝜔-complete (𝜔-cocomplete) if it has limits (colimits) for all 𝜔-diagrams.

3. A functor 𝐹 : 𝒦 → 𝒦 is 𝜔-continuous if it preserves all colimits of 𝜔-diagrams.

Theorem 2.3.1 ((ASPERTI; LONGO, 1991)). Let 𝒦 be a category with an initial object
0. Let 𝐹 : 𝒦 → 𝒦 be a 𝜔-continuous (covariant) functor and let the unique morphism
𝛿 ∈ 𝒦(0, 𝐹0). Assume also that (𝑘, {𝛿𝑖,𝜔 ∈ 𝒦(𝐹 𝑖0, 𝑘)}𝑖∈𝜔) is a colimit for the 𝜔-diagram
({𝐹 𝑖0}𝑖∈𝜔, {𝐹 𝑖𝛿}𝑖∈𝜔), where 𝐹 00 = 0 and 𝐹 0𝛿 = 𝛿. Then 𝑘 ∼= 𝐹𝑘 (isomorphic objects).

To apply the Theorem 2.3.1 on the domain equation

𝑋 ∼= (𝑋 ⇒ 𝑋) = 𝐹𝑋

in a c.c.c 𝒦, we first need to guarantee that the functor 𝐹 : 𝒦 → 𝒦 is 𝜔-continuous. For
that, the contravariant functor problem of the exponential ⇒: 𝒦𝑜𝑝×𝒦 → 𝒦 must be solved,
so that its composition with the diagonal Δ : 𝒦 → 𝒦×𝒦 makes sense.

2.3.2 0-Categories

Definition 2.3.2 (c.p.o.). A set 𝐴 is a complete partial order (c.p.o.) if it is a partial order,
which has supremum for all 𝜔-chain:

𝑎0 ≤ 𝑎1 ≤ 𝑎2 ≤ · · · 𝑎𝑛 ≤ · · ·

Its supremum is denoted by ⋃︀
𝑖∈𝜔 𝑎𝑖.

Definition 2.3.3. A category 𝒦 is a 0-category if

1. every hom-set 𝒦(𝑎, 𝑏) is a c.p.o., with a least element 0𝑎,𝑏,
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2. composition of morphisms is a continuous operation with respect to the order,

3. for every 𝑓 in 𝒦(𝑎, 𝑏), 0𝑏,𝑐 ∘ 𝑓 = 0𝑎,𝑐.

Definition 2.3.4 (Projection). Let 𝒦 be a 0-category, and let 𝑓+ : 𝑎 → 𝑏 and 𝑓− : 𝑏 → 𝑎

be two morphisms in 𝒦. Then (𝑓+, 𝑓−) is a projection pair (from 𝑎 to 𝑏) if 𝑓− ∘ 𝑓+ = 𝐼𝑎 and
𝑓+ ∘𝑓− ≤ 𝐼𝑏. If (𝑓+, 𝑓−) is a projection pair, 𝑓+ is an embedding and 𝑓− is a projection. The
projections composition is defined by (𝑓+, 𝑓−) ∘ (𝑔+, 𝑔−) = (𝑓+ ∘ 𝑔+, 𝑔− ∘ 𝑓−).

Definition 2.3.5 (Projections pair 0-category.). Let 𝒦 be a 0-category. The 0-category 𝒦𝑃 𝑟𝑗

has the same object as 𝒦, projection pairs as morphisms.

Remark 2.3.1 ((ASPERTI; LONGO, 1991)). Every embedding 𝑖 has unique associated projec-
tion 𝑗 = 𝑖𝑅 (and, conversely, every projection 𝑗 has a unique associated embedding 𝑖 = 𝑗𝐿),
𝒦𝑃 𝑟𝑗 is equivalent to a subcategory 𝒦𝐸 of 𝒦 that has embeddings as morphisms (as well to a
subcategory 𝒦𝑃 of 𝒦 which has projections as morphisms). The uniqueness of the projection
𝑗, given the embedding 𝑖, one has by the isomorphism (𝒦𝐸)𝑜𝑝 ∼= 𝒦𝑃 , and reciprocally given a
projection 𝑗, the uniqueness of the associated embedding one has by (𝒦𝑃 )𝑜𝑝 ∼= 𝒦𝐸.

Definition 2.3.6. Given a 0-category 𝒦, and a contravariant functor in the first component
𝐹 : 𝒦𝑜𝑝 ×𝒦 → 𝒦, the functor covariant 𝐹 +− : 𝒦𝑃 𝑟𝑗 ×𝒦𝑃 𝑟𝑗 → 𝒦𝑃 𝑟𝑗 is defined by

𝐹 +−(𝐴, 𝐵) = 𝐹 (𝐴, 𝐵),

𝐹 +−((𝑓+, 𝑓−), (𝑔+, 𝑔−)) = (𝐹 (𝑓−, 𝑔+), 𝐹 (𝑓+, 𝑔−)),

Theorem 2.3.2 ((ASPERTI; LONGO, 1991)). Let 𝒦 be a 0-category. Let ({𝑘𝑖}𝑖∈𝜔, {𝑓𝑖}𝑖∈𝜔) be
an 𝜔-diagram in𝒦𝑃 𝑟𝑗. If (𝑘, {𝛾𝑖}𝑖∈𝜔) is a limit for ({𝑘𝑖}𝑖∈𝜔, {𝑓−

𝑖 }𝑖∈𝜔) in𝒦, then (𝑘, {(𝛿𝑖, 𝛾𝑖)}𝑖∈𝜔)

is a colimit for ({𝑘𝑖}𝑖∈𝜔, {𝑓𝑖}𝑖∈𝜔) in 𝒦𝑃 𝑟𝑗 (that is, every 𝛾𝑖 is a right member of a projection
pair).

Definition 2.3.7 (Locally monotonic). Let 𝒦 be a 0-category. A functor 𝐹 : 𝒦𝑜𝑝×𝒦 → 𝒦

is locally monotonic if it is monotonic on the hom-set, i.e., for 𝑓, 𝑓 ′ ∈ 𝒦𝑜𝑝(𝐴, 𝐵) and 𝑔, 𝑔′ ∈

𝒦(𝐶, 𝐷) one has
𝑓 ≤ 𝑓 ′ , 𝑔 ≤ 𝑔′ =⇒ 𝐹 (𝑓, 𝑔) ≤ 𝐹 (𝑓 ′, 𝑔′).

Proposition 2.3.1 ((ASPERTI; LONGO, 1991)). If 𝐹 : 𝒦𝑜𝑝×𝒦 → 𝒦 is locally monotonic and
(𝑓+, 𝑓−), (𝑔+, 𝑔−) are projection pairs, then 𝐹 +−((𝑓+, 𝑓−), (𝑔+, 𝑔−)) is also a projection pair.
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Definition 2.3.8 (Locally continuous). Let 𝒦 be a 0-category. A 𝐹 : 𝒦𝑜𝑝×𝒦 → 𝒦 is locally
continuous if it is 𝜔-continuous on the hom-set. That is, for every directed diagram {𝑓𝑖}𝑖∈𝜔

in 𝒦𝑜𝑝(𝐴, 𝐵), and every directed diagram {𝑔𝑖}𝑖∈𝜔 in 𝒦(𝐶, 𝐷), one has

𝐹 (⋃︀
𝑖∈𝜔{𝑓𝑖},

⋃︀
𝑖∈𝜔{𝑔𝑖}) = ⋃︀

𝑖∈𝜔 𝐹 (𝑓𝑖, 𝑔𝑖).

Remark 2.3.2. If 𝐹 is locally continuous, then it is also locally monotonic.

Theorem 2.3.3 ((ASPERTI; LONGO, 1991)). Let 𝒦 be a 0-category. Let also 𝐹 : 𝒦𝑜𝑝×𝒦 → 𝒦

be a locally continuous functor. Then the functor 𝐹 +− : 𝒦𝑃 𝑟𝑗×𝒦𝑃 𝑟𝑗 → 𝒦𝑃 𝑟𝑗 is 𝜔-continuous.

Let 𝒦 be a Cartesian closed 0-category, 𝜔𝑜𝑝-complete and with final object. Since the
exponential functor ⇒: 𝒦𝑜𝑝 × 𝒦 → 𝒦 and the diagonal functor Δ : 𝒦 → 𝒦 × 𝒦 are locally
continuous, by the Theorem 2.3.3, the associated functors

(⇒)+− : 𝒦𝑃 𝑟𝑗 ×𝒦𝑃 𝑟𝑗 → 𝒦𝑃 𝑟𝑗, (Δ)+− : 𝒦𝑃 𝑟𝑗 → 𝒦𝑃 𝑟𝑗 ×𝒦𝑃 𝑟𝑗

are 𝜔-continuous. But composition of 𝜔-continuous functors is still an 𝜔-continuous functor.
Thus, the functor

𝐹 = (⇒)+− ∘ (Δ)+− : 𝒦𝑃 𝑟𝑗 → 𝒦𝑃 𝑟𝑗,

is 𝜔-continuous. By Theorem 2.3.1 the functor 𝐹 has a fixed point, that is, there is an object
𝑘 ∈ 𝒦 such that 𝑘 ∼= (𝑘 ⇒ 𝑘). The category of the fixed points of 𝐹 is denoted by 𝐹𝑖𝑥(𝐹 ).

Remark 2.3.3. 𝑆𝑒𝑡 is a c.c.c and cocomplete, but it has no fixed points for the functor
𝐹 (𝑋) = 𝑋𝑋 with cardinality |𝑋| > 1. Since if there exists a set 𝑋 such that 𝑋 ∼= 𝑋𝑋 (set
isomorphisms), this contradicts Cantor’s Theorem |𝑋| < |𝑋𝑋 |.

Example 2.3.1. (ASPERTI; LONGO, 1991) The category 𝐶𝑃𝑂 of c.p.o.’s with least (bottom)
element and continuous functions for morphisms is a 0-category with respect to the pointwise
ordering of morphisms. 𝐶𝑃𝑂 is a c.c.c and it has limits for every diagram. The functor
⇒: 𝐶𝑃𝑂 × 𝐶𝑃𝑂 → 𝐶𝑃𝑂 is defined by:

⇒ (𝐴, 𝐵) = (𝐴⇒ 𝐵), ⇒ (𝑓, 𝑔) = 𝜆ℎ.𝑔 ∘ ℎ ∘ 𝑓,

is locally continuous. The diagonal functor Δ : 𝐶𝑃𝑂 → 𝐶𝑃𝑂 × 𝐶𝑃𝑂, defined by Δ(𝐴) =

(𝐴, 𝐴) and Δ(𝑓) = (𝑓, 𝑓) is locally continuous too. Thus, by Theorem 2.3.2 and conclude
that the associated functors
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1. (⇒)+− : (𝐶𝑃𝑂)𝑃 𝑟𝑗 × (𝐶𝑃𝑂)𝑃 𝑟𝑗 → (𝐶𝑃𝑂)𝑃 𝑟𝑗

(⇒)+−((𝑓+, 𝑓−), (𝑔+, 𝑔−)) = (𝜆ℎ.𝑔+ ∘ ℎ ∘ 𝑓−, 𝜆ℎ.𝑔− ∘ ℎ ∘ 𝑓+)

2. (Δ)+− : (𝐶𝑃𝑂)𝑃 𝑟𝑗 → (𝐶𝑃𝑂)𝑃 𝑟𝑗 × (𝐶𝑃𝑂)𝑃 𝑟𝑗

(Δ)+−(𝑓+, 𝑓−) = ((𝑓+, 𝑓−), (𝑓+, 𝑓−))

are 𝜔-continuous. But the composition of 𝜔-continuous functors is still an 𝜔-continuous func-
tor, thus, the functor 𝐹 = (⇒)+− ∘ (Δ)+− : (𝐶𝑃𝑂)𝑃 𝑟𝑗 → (𝐶𝑃𝑂)𝑃 𝑟𝑗 is 𝜔-continuous.
Explicitly, 𝐹 is defined by

𝐹 (𝑋) = (𝑋 ⇒ 𝑋)

𝐹 (𝑓+, 𝑓−) = (𝜆ℎ.𝑓+ ∘ ℎ ∘ 𝑓−, 𝜆ℎ.𝑓− ∘ ℎ ∘ 𝑓+)

Thus, there is an 𝑋 such that 𝑋 ∼= (𝑋 ⇒ 𝑋) in (𝐶𝑃𝑂)𝑃 𝑟𝑗.

Other examples of 0-categories (Cartesian closed) with fixed points for 𝐹 (𝑋) = (𝑋 ⇒ 𝑋)

are:

Example 2.3.2. The subcategory 𝐶𝑃𝑂𝑆 ⊆ 𝐶𝑃𝑂 with only the function strict functions,
i.e., morphisms always take the least element ⊥ to the least of the target space.

Example 2.3.3. The subcategory 𝐷 ⊆ 𝐶𝑃𝑂 with Scott Domains (bounded complete al-
gebraic c.p.o’s) for objects and continuous functions for morphisms. Where a c.p.o. (𝑋,≤)

is algebraic (finite) if for every 𝑥 ∈ 𝑋 the set 𝑥 ↓= {𝑥0 ∈ 𝑋0 |𝑥0 ≤ 𝑥} is directed and⋃︀(𝑥 ↓) = 𝑥, with 𝑋0 being the collection of compact elements of 𝑋; a point 𝑥 ∈ 𝑋 is
compact if for every directed set 𝐷 such that 𝑥 ≤ ⋃︀

𝐷, there is a 𝑦 ∈ 𝐷 such that 𝑥 ≤ 𝑦.
And, a c.p.o (𝑋,≤) is bound complete if every bound subset of 𝑋 has a least upper bound
(supremum).

2.4 COMPUTATIONAL PATHS FOR SIMPLE TYPED

Definition 2.4.1 (𝜆𝛽𝜂-theory of equality (HINDLEY; SELDIN, 2008)). The extensional 𝜆-theory
consists of the all 𝜆-terms and a relation symbol =, where the 𝜆-formulas are just 𝑀 = 𝑁 for
all 𝜆-terms 𝑀 and 𝑁 . The axioms are the cases 𝛼, 𝛽, 𝜂 and 𝜌 below, for all 𝜆-terms 𝑀 , 𝑁 and
all variables 𝑥, 𝑦. The axiom-schemas for rules 𝜇, 𝜈, 𝜉, 𝜏 and 𝜎 are below. Axiom-schemas:

(𝛼) 𝜆𝑥.𝑀 = 𝜆𝑦.[𝑦/𝑥]𝑀 if 𝑦 /∈ 𝐹𝑉 (𝑀);
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(𝛽) (𝜆𝑥.𝑀)𝑁 = [𝑁/𝑥]𝑀 ;

(𝜂) 𝜆𝑥.𝑀𝑥 = 𝑀 if 𝑥 /∈ 𝐹𝑉 (𝑀);

(𝜌) 𝑀 = 𝑀 ,

Rules of inference:

(𝜇) 𝑀 = 𝑀 ′

𝑁𝑀 = 𝑁𝑀 ′ ; (𝜏) 𝑀 = 𝑁 𝑁 = 𝑃

𝑀 = 𝑃
;

(𝜈) 𝑀 = 𝑀 ′

𝑀𝑁 = 𝑀 ′𝑁
; (𝜎) 𝑀 = 𝑁

𝑁 = 𝑀
;

(𝜉) 𝑀 = 𝑀 ′

𝜆𝑥.𝑀 = 𝜆𝑥.𝑀 ′ .

Definition 2.4.2 (𝛽𝜂-equality). We say that 𝑃 is 𝛽𝜂-equal (or 𝛽𝜂-convertible) to 𝑄, 𝑃 =𝛽𝜂

𝑄, if there exists 𝑃1, 𝑃2, . . . , 𝑃𝑛 such that

(∀𝑖 ≤ 𝑛− 1)(𝑃𝑖 B1𝛽𝜂 𝑃𝑖+1 𝑜𝑟 𝑃𝑖+1 B1𝛽𝜂 𝑃𝑖 𝑜𝑟 𝑃𝑖 ≡𝛼 𝑃𝑖+1),

where 𝑃1 = 𝑃 and 𝑃𝑛 = 𝑄.

Definition 2.4.3 (Theory TA→
𝜆=𝛽𝜂 of equality (HINDLEY; SELDIN, 2008)). The theory TA→

𝜆=𝛽𝜂

consists of the following rules for the type-assignment system TA→
𝜆 :

Axiom-schemas:

(𝛽) Let 𝑀 : 𝐴 and 𝑁 : 𝐵. If 𝑥 : 𝐴, then (𝜆𝑥.𝑀)𝑁 = [𝑁/𝑥]𝑀 : 𝐵;

(𝜂) Let 𝑀 : 𝐴→ 𝐵. If 𝑥 : 𝐴, then 𝜆𝑥.𝑀𝑥 = 𝑀 : 𝐴→ 𝐵, with 𝑥 /∈ 𝐹𝑉 (𝑀);

(𝜌) Let 𝑀 : 𝐴. Then 𝑀 = 𝑀 : 𝐴,

Rules of inference:

(𝜇) 𝑀 = 𝑀 ′ : 𝐴 𝑁 : 𝐴→ 𝐵

𝑁𝑀 = 𝑁𝑀 ′ : 𝐵
; (𝜏) 𝑀 = 𝑁 : 𝐴 𝑁 = 𝑃 : 𝐴

𝑀 = 𝑃 : 𝐴
;

(𝜈) 𝑁 : 𝐴 𝑀 = 𝑀 ′ : 𝐴→ 𝐵

𝑀𝑁 = 𝑀 ′𝑁 : 𝐵
; (𝜎) 𝑀 = 𝑁 : 𝐴

𝑁 = 𝑀 : 𝐴
;

(𝜉) 𝑀 = 𝑀 ′ : 𝐵 [𝑥 : 𝐴]
𝜆𝑥.𝑀 = 𝜆𝑥.𝑀 ′ : 𝐴→ 𝐵

.

Here, instead of working with Martin Löf’s types as in (QUEIROZ; OLIVEIRA; RAMOS, 2016),
one will define the computational paths for simple types as follows.
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Definition 2.4.4 (Computational path (QUEIROZ; OLIVEIRA; RAMOS, 2016)). Let 𝑎 and 𝑏 be
elements of a type 𝐴. Then, a computational path 𝑠 from 𝑎 to 𝑏 is a composition of rewrites
(each rewrite is an application of the inference rules of the equality theory of type theory in
the Definition 2.4.3 or is a change of bound variables). One denotes that by 𝑎 =𝑠 𝑏.

Therefore, all the definitions and theorems referred to in this section should be generalized
to the case of ∞-categories, as a prelude to a Homotopy Domains Theory.

2.5 CATEGORICAL 𝜆-MODELS

The definitions, theorems and lemmas should generalize in the framework of the ∞-
categories, in the sense that the c.p.o’s would be replaced by Kan complexes, the continuous
maps by functors and the Cartesian closed category (c.c.c) by Cartesian closed ∞-category
(i.c.c).

2.5.1 𝜆-Models in Concrete Cartesian Closed Categories

Definition 2.5.1 (Extensional 𝜆-models). An extensional 𝜆-model is a triple ⟨𝐷, ∙, J K⟩, where
𝐷 is a set, ∙ : 𝐷×𝐷 → 𝐷 is a binary operation and J K is a mapping which assigns to 𝜆-term
𝑀 and each valuation 𝜌 : 𝑉 𝑎𝑟 → 𝐷, a element J𝑀K𝜌 of 𝐷 such that

(a ) J𝑥K = 𝜌(𝑥);

(b ) J𝑃𝑄K𝜌 = J𝑃 K𝜌 ∙ J𝑄K𝜌;

(c ) J𝜆𝑥.𝑃 K𝜌 ∙ 𝑑 = J𝑃 K[𝑑/𝑥]𝜌 for all 𝑑 ∈ 𝐷;

(d ) J𝑀K𝜌 = J𝑀K𝜎 if 𝜌(𝑥) = 𝜎(𝑥) for 𝑥 ∈ 𝐹𝑉 (𝑀);

(e ) J𝜆𝑥.𝑀K𝜌 = J𝜆𝑦.[𝑦/𝑥]𝑀K𝜌 if 𝑦 /∈ 𝐹𝑉 (𝑀);

(f ) if (∀𝑑 ∈ 𝐷)
(︁
J𝑃 K[𝑑/𝑥]𝜌 = J𝑄K[𝑑/𝑥]𝜌

)︁
, then J𝜆𝑥.𝑃 K𝜌 = J𝜆𝑥.𝑄K𝜌;

(g ) J𝜆𝑥.𝑀𝑥K𝜌 = J𝑀K𝜌 if 𝑥 /∈ 𝐹𝑉 (𝑀),

where [𝑑/𝑥]𝜌 means: replace 𝜌(𝑥) with 𝑑 in the interpretation of 𝜆-term in question.

Remark 2.5.1. In the definition above, if ⟨𝐷, ∙, J K⟩ does not necessarily satisfy (g), one says
that it is a 𝜆-model.
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Definition 2.5.2 (Reflexive c.p.o (BARENDREGT, 1984)). A c.p.o 𝐷 is called reflexive if
[𝐷 → 𝐷] is retract of 𝐷 i.e., there are continuous maps

𝐹 : 𝐷 → [𝐷 → 𝐷], 𝐺 : [𝐷 → 𝐷]→ 𝐷

such that 𝐹 ∘𝐺 = 𝑖𝑑[𝐷→𝐷].

Remark 2.5.2. In the definition above, if additionally 𝐺 ∘ 𝐹 = 𝑖𝑑𝐷, the c.p.o 𝐷 is called
extensional.

Definition 2.5.3 ((BARENDREGT, 1984)). Let 𝐷 be a reflexive c.p.o via the morphisms 𝐹 , 𝐺

1. For 𝑎, 𝑏 ∈ 𝐷 define
𝑎 ∙ 𝑏 = 𝐹 (𝑎)(𝑏),

2. Let 𝜌 be a valuation in 𝐷. Define the interpretation J K𝜌 : Λ → 𝐷 by induction as
follows

a) J𝑥K𝜌 = 𝜌(𝑥),

b) J𝑀𝑁K𝜌 = J𝑀K𝜌 ∙ J𝑁K𝜌,

c) J𝜆𝑥.𝑀K𝜌 = 𝐺(𝜆𝑑.J𝑀K[𝑑/𝑥]𝜌), where 𝜆𝑑.J𝑀K[𝑑/𝑥]𝜌 = J𝑀K[−/𝑥]𝜌.

Lemma 2.5.1 ((BARENDREGT, 1984)). 𝜆𝑑.J𝑀K[𝑑/𝑥]𝜌 is continuous; hence J𝜆𝑥.𝑀K𝜌 is well-
defined.

Theorem 2.5.1 ((BARENDREGT, 1984) and (HINDLEY; SELDIN, 2008)). Let 𝐷 be a reflexive
c.p.o via the morphisms 𝐹 , 𝐺, and let M = ⟨𝐷, ∙, J K⟩. Then M is a 𝜆-model.

2.5.2 𝜆-Models in Cartesian Closed Categories

Definition 2.5.4 (Cartesian Closed Category (BARENDREGT, 1984)). Let 𝒞 be a category.

1. 𝒞 is a Cartesian closed category (c.c.c) iff

a) 𝒞 has a terminal object 𝑇 , i.e., 𝑇 is such that for every object 𝐴 ∈ 𝑇 there is a
unique map !𝐴 : 𝐴→ 𝑇 .
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b) For 𝐴1, 𝐴2 ∈ 𝒞 there is an object 𝐴1 × 𝐴2 (Cartesian product) with maps 𝑝𝑖 :

𝐴1 × 𝐴2 → 𝐴𝑖 (projections) such that for all 𝑓𝑖 : 𝑐 → 𝐴𝑖 (𝑖 = 1, 2) there is a
unique map (𝑓1, 𝑓2) : 𝐶 → 𝐴1 × 𝐴2 with 𝑝𝑖 ∘ (𝑓1, 𝑓2) = 𝑓𝑖.

Notation. If 𝑔𝑖 : 𝐴𝑖 → 𝐵𝑖 (𝑖 = 1, 2), then 𝑔1 × 𝑔2 = (𝑔1 ∘ 𝑝1, 𝑔2 ∘ 𝑝2) : 𝐴1 ×𝐴2 →

𝐵1 ×𝐵2.

c) For 𝐴, 𝐵 ∈ 𝒞 there is an object 𝐵𝐴 ∈ 𝒞 (exponent) with the map 𝑒𝑣𝐴,𝐵 : 𝐵𝐴×𝐴→

𝐵 such that for all 𝑓 : 𝐶 × 𝐴 → 𝐵 there is a unique map Λ𝑓 : 𝐶 → 𝐵𝐴 such
satisfying 𝑓 = 𝑒𝑣𝐴,𝐵 ∘ 𝑖𝑑𝐴.

2. Suppose 𝒞 has a terminal object 𝑇 . A point 𝐴 ∈ 𝒞 is a map 𝑥 : 𝑇 → 𝐴. The set of
points of i denoted by |𝐴|. An object 𝐴 has enough points if for all 𝑓, 𝑔 : 𝐴→ 𝐴 on has

∀𝑥 ∈ |𝐴|, 𝑓 ∘ 𝑥 = 𝑔 ∘ 𝑥⇒ 𝑓 = 𝑔.

It then follows that the same holds for all 𝑓, 𝑔 : 𝐴→ 𝐵.

Definition 2.5.5 (Reflexive object (BARENDREGT, 1984)). Let 𝒞 be a c.c.c. An object 𝑈 ∈ 𝒞

is reflexive if 𝑈𝑈 is a retract of 𝑈 , i.e, there are maps 𝐹 : 𝑈 → 𝑈𝑈 and 𝐺 : 𝑈𝑈 → 𝑈 such
that

𝐹 ∘𝐺 = 𝑖𝑑𝑈𝑈 .

If additionally 𝐺 ∘ 𝐹 = 𝑖𝑑𝑈 , we say that 𝑈 is extensional.

2.6 IDENTITY TYPES

Homotopy Types Theory (HoTT) (PROGRAM, 2013) corresponds to the axioms and rules
of the intensional version of Intuitionistic Type Theory (ITT) plus the univalence axiom and
higher inductive types. It was created to give a new foundation of mathematics and facilitate
the translation of mathematical proofs into computer programs. In this way, it allows computers
to verify mathematical proofs with high deductive complexity.

HoTT facilitates the understanding of ITT by allowing for an interpretation based on
the geometric intuition of Homotopy Theory. For example, a type 𝐴 is interpreted as the
topological space, a term 𝑎 : 𝐴 as the point 𝑎 ∈ 𝐴, a dependent type 𝑥 : 𝐴 ⊢ 𝐵(𝑥) as the
fibration 𝐵 → 𝐴, the identity type 𝐼𝐴 as the space path 𝐴𝐼 , a term 𝑝 : 𝐼𝐴(𝑎, 𝑏) as the path
𝑝 : 𝑎→ 𝑏, the term 𝛼 : 𝐼𝐼𝐴(𝑎,𝑏)(𝑝, 𝑞) as the homotopy 𝛼 : 𝑝⇒ 𝑞 and so on.
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Among the dependent types arise the identity types, which were inductively defined by
Martin-Löf analogously to the inductive definition of natural numbers, according to the rules:

R1. (I-Formation). If 𝐴 is a type, and 𝑎 and 𝑏 are terms that inhabit it, writing 𝑎, 𝑏 : 𝐴,
there is an identity type denoted by 𝐼𝐴(𝑎, 𝑏) (or 𝑎 =𝐴 𝑏).

R2. (I-Introduction). If 𝐴 is a type and 𝑎 : 𝐴, there is a term 𝑟𝑒𝑓(𝑎) : 𝑎 =𝐴 𝑎 (reflexivity).

R3. (I-Elimination). If 𝐴 is a type, 𝑎 : 𝐴 and 𝑃 (𝑏, 𝑒) is a family of types depending on
parameters 𝑏 : 𝐴 and 𝑒 : 𝐼𝐴(𝑎, 𝑏). In order to define any term 𝑓(𝑏, 𝑒) : 𝑃 (𝑏, 𝑒), it suffices
to provide a term 𝑝 : 𝑃 (𝑎, 𝑟𝑒𝑓(𝑎)). The resulting term 𝑓 may be regarded as having
been completely defined by the single definition 𝑓(𝑎, 𝑟𝑒𝑓(𝑎)) := 𝑝.

Since the theory of an extensional Kan complex, 𝐾 ≃ (𝐾 → 𝐾), will have higher conver-
sions, these will belong in some iteration from identity type 𝐼𝐾 , whose rules must be adapted
for 𝜆-terms with free-typed or unique typed 𝐾.

The problem is that these higher conversions in HoTT are judgmental equalities (𝑎 ≡ 𝑏),
which could lead to a loss of information. To avoid this situation, we would choose to work
with identity types based on computational paths, where the higher conversions are intentional
equalities (𝑎 =𝑠 𝑏, with 𝑠 being an equality proof), which could best preserve the information.

2.6.1 Path-based construction

The identity types based on computational paths are given by the following rules (QUEIROZ;

OLIVEIRA; RAMOS, 2016):

• (Id-Formation). Let 𝐴 a type, 𝑎 : 𝐴 and 𝑏 : 𝐵. Then 𝐼𝑑𝐴(𝑎, 𝑏) is a type.

• (Id-Introduction). Let 𝑎 =𝑠 𝑏 : 𝐴. Then 𝑠(𝑎, 𝑏) : 𝐼𝑑𝐴(𝑎, 𝑏).

• (Id-Elimination). Let 𝑚 : 𝐼𝑑𝐴(𝑎, 𝑏) and ℎ(𝑔) : 𝐶. If 𝑎 =𝑠 𝑏 : 𝐴,

then 𝑅𝐸𝑊𝑅(𝑚, 𝑔.ℎ(𝑔)) : 𝐶.

• (Reduction 𝛽). If 𝑎 =𝑚 𝑏 : 𝐴 and [𝑎 =𝑔 𝑏 : 𝐴] ℎ(𝑔) : 𝐶.

Then 𝑅𝐸𝑊𝑅(𝑚, 𝑔.ℎ(𝑔)) B𝛽 [𝑎 =𝑚 𝑏 : 𝐴] ℎ(𝑚/𝑔).
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• (Reduction 𝜂). 𝑒 : 𝐼𝑑𝐴(𝑎, 𝑏) and [𝑎 =𝑡 𝑏 : 𝐴] 𝑡 : 𝐼𝑑𝐴(𝑎, 𝑏). Then 𝑅𝐸𝑊𝑅(𝑒, 𝑡.𝑡(𝑎, 𝑏)) B𝛽

𝑒 : 𝐼𝑑𝐴(𝑎, 𝑏).

Since the identity types based on computational paths admit higher conversions as inten-
tional equalities, it remains to adapt the rules of these identity types to the case of untyped
𝜆-terms.
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3 𝜆-MODEL HOMOTOPIC AND KLEISLI ∞-CATEGORY

In this chapter we define the necessary concepts for a higher semantic of 𝜆-calculus on
framework of the Cartesian closed∞-category. We adopt the notion of Kleisli structure to the
case of the ∞-categories and we define the Kleisli ∞-category of a structure. And, finally, we
propose a particular ∞-category and prove that it is Cartesian closed. These first results can
also be consulted at (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022b).

3.1 HOMOTOPIC 𝜆-MODELS

Next, we define Cartesian closed ∞-category, points and paths of a ∞-category and ho-
motopic 𝜆-model.

Definition 3.1.1 (Cartesian Closed ∞-Category (LURIE, 2017)). Let C be an ∞-category
whose objects are small∞-categories. We say that C is a Cartesian closed∞-category (c.c.i.)
if:

1. C has a terminal object 𝑇 , i.e., C(𝑋, 𝑇 ) is contractible for each 𝑋 ∈ C.

2. For 𝑋, 𝑌 ∈ C, the Cartesian product 𝑋 × 𝑌 belongs to C,

3. For 𝑋, 𝑌, 𝑍 ∈ C, there exists an internal morphism spaces 𝑌 ⇒ 𝑍 in C such that it sets
the natural equivalence

C(𝑋 × 𝑌, 𝑍) ≃ C(𝑋, 𝑌 ⇒ 𝑍).

Definition 3.1.2 (Enough points and 𝑛-paths). Let C be an ∞-category with a terminal
object 𝑇 . A point of an object 𝑋 is a morphism 𝑥 : 𝑇 → 𝑋. The class of points of 𝑋 is
denoted by |𝑋|0.

1. We say that C does have enough points if for each pair of morphisms 𝑓, 𝑔 : 𝑋 → 𝑌 of
C such that for each point 𝑥 : 𝑇 → 𝑋 there is an equivalence 𝜎𝑥 : 𝑓 ∘ 𝑥 ≃ 𝑔 ∘ 𝑥 in
C(𝑇, 𝑌 ), then there is an equivalence 𝜎 : 𝑓 ≃ 𝑔 in C(𝑋, 𝑌 ).

2. An object 𝑋 ∈ C does have enough points if one has (1) in the case that 𝑌 = 𝑋.

3. Let the points 𝑥, 𝑦 ∈ |𝑋|0 = C(𝑇, 𝑋). A 1-path 𝑝 : 𝑥 → 𝑦 in 𝑋 is a 1-simplex at
C(𝑇, 𝑋). The class of the 1-paths of 𝑋 is denoted by |𝑋|1 = (C(𝑇, 𝑋))1. Inductively
the class of 𝑛-paths of 𝑋 is correspond to |𝑋|𝑛 = (C(𝑇, 𝑋))𝑛.
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Remark 3.1.1. Note that in Definition 3.1.2 (3), since C is an ∞-category then all the 1-
paths in 𝑋 (2-simplexes in 𝑋) are invertible. Then we say that 𝑋 ∈ C has a ‘ homotopic
structure’. If C is an ∞-bicategory with an terminal object, we say that an object 𝑋 ∈ C has
‘∞-categorical structure’.

Definition 3.1.3 (Reflexive object). Let C be a c.c.i. An object 𝐾 ∈ C is called reflexive if
(𝐾 ⇒ 𝐾) is a weak retract of 𝐾 i.e., there are morphisms

𝐹 : 𝐾 → (𝐾 ⇒ 𝐾), 𝐺 : (𝐾 ⇒ 𝐾)→ 𝐾

such that there is a natural equivalence 𝜀 : 𝐹𝐺→ 𝑖𝑑(𝐾⇒𝐾).

If there is a natural equivalence 𝜂 : 𝑖𝑑𝐾 → 𝐺𝐹 , then 𝐾 is an extensional object.

Definition 3.1.4 (Homotopic 𝜆-model). A homotopic 𝜆-model of a c.c.i. C is a quadruple
K = ⟨𝐾, 𝐹, 𝐺, 𝜀⟩ where 𝐾 ∈ C is a reflexive object via 𝐹 , 𝐺 and 𝜀 of the definition above.
The quintuple K = ⟨𝐾, 𝐹, 𝐺, 𝜀, 𝜂⟩ is an extensional homotopic 𝜆-model, with 𝜂 being the
natural equivalence of the same definition.

Remark 3.1.2. By virtue of the Remark 3.1.1, if 𝑈 is a reflexive object in a Cartesian closed
∞-bicategory C, we say that 𝐾 is an ‘∞-categorical 𝜆-model’.

3.2 KLEISLI ∞-CATEGORIES

Next, we define the Kleisli structures on the ∞-categories; a general and direct version of
those initially introduced by (HYLAND, 2014) for the case of bicategories.

Definition 3.2.1 (Kleisli structure). Let 𝒦 be an ∞-category and 𝒜 be an ∞-subcategory
of 𝒦. A Kleisli structure 𝑃 on 𝒜 ⊆ 𝒦 is the following.

• For each vertex 𝑎 ∈ 𝒜 an arrow 𝑦𝑎 : 𝑎→ 𝑃𝑎 in 𝒦.

• For each 𝑎, 𝑏 ∈ 𝒜 a functor

𝒦(𝑎, 𝑃𝑏)→ 𝒦(𝑃𝑎, 𝑃𝑏), 𝑓 ↦→ 𝑓#.

• A subcategory 𝒦𝐿 ⊆ 𝒦 which sets, for all the vertices 𝑎, 𝑏 ∈ 𝒜, the homotopy equiva-
lence

𝒦(𝑎, 𝑃𝑏)
(−)#
//
𝒦𝐿(𝑃𝑎, 𝑃𝑏).

(−)𝑦𝑎

oo
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such for each horn (𝑔#,−, 𝑓#) : Λ2
1 → 𝒦𝐿 one has the equality of fibres

𝐹 𝐿
𝑔#,𝑓# = 𝐹𝑔#,𝑓# ,

where 𝐹 𝐿
𝑔#,𝑓# and 𝐹𝑔#,𝑓# are the fibres of the canonical maps 𝐹𝑢𝑛(Δ2,𝒦𝐿)→ 𝐹𝑢𝑛(Λ2

1,𝒦𝐿)

and 𝐹𝑢𝑛(Δ2,𝒦) → 𝐹𝑢𝑛(Λ2
1,𝒦) respectively, with 𝑓 : 𝑎 → 𝑃𝑏 and 𝑔 : 𝑏 → 𝑃𝑐 be

edges in 𝒦.

It is clear that 𝑃 is a functor from 𝒜 to 𝒦 such that for each 1-simplex 𝑓 : 𝑎 → 𝑏 of 𝒜,
sets 𝑃𝑓 = (𝑦𝑏𝑓)# : 𝑃𝑎→ 𝑃𝑏.

Example 3.2.1. The functor 𝑃 : 𝐶𝑎𝑡∞ → 𝐶𝐴𝑇∞, given by 𝑃𝐴 = [𝐴𝑜𝑝, S], is a Kleisli
structure on 𝐶𝑎𝑡∞ ⊆ 𝐶𝐴𝑇∞, where 𝒦𝐿 = P𝑟𝐿.

We have the categorical equivalence

𝐹𝑢𝑛(𝐴, 𝑃𝐵)
(−)#
//
𝐹𝑢𝑛𝐿(𝑃𝐴, 𝑃𝐵),

(−)𝑦𝐴

oo

where 𝐹𝑢𝑛𝐿(𝑃𝐴, 𝑃𝐵) is the∞-category of functors which preserve small colimits. Restricting
to the subcategory P𝑟𝐿 ⊆ 𝐶𝐴𝑇∞, whose objects are presentable∞-categories and morphisms
are functors which preserve small colimits, then the categorical equivalence is restricted to the
homotopy equivalence

𝐶𝐴𝑇∞(𝐴, 𝑃𝐵)
(−)#

//
P𝑟𝐿(𝑃𝐴, 𝑃𝐵).

(−)𝑦𝐴

oo

Example 3.2.2. The Kleisli structure 𝑃 on 𝐶𝑎𝑡∞ ⊆ 𝐶𝐴𝑇∞ of the previous example, satisfies
the three conditions of the version bicategory of Kleisli structure of the Chapter 2, That is:

• The arrows 𝑦𝑎 : 𝑎→ 𝑃𝑎 are represented by the Yoneda embedding 𝑦𝐴 : 𝐴→ 𝑃𝐴.

• The functors 𝒦(𝑎, 𝑃𝑏) → 𝒦(𝑃𝑎, 𝑃𝑏) are represented by the functors induced by the
Yoneda extensions (−)# : 𝐶𝐴𝑇∞(𝐴, 𝑃𝐵)→ 𝐶𝐴𝑇∞(𝑃𝐴, 𝑃𝐵).

• The family of invertible 2-cells 𝜂𝑓 : 𝑓 → 𝑓#𝑦𝑎 and 𝜅𝑎 : (𝑦𝑎)# → 1𝑃 𝑎 are given by the
definition of the categorical equivalences (−)# : 𝐹𝑢𝑛(𝐴, 𝑃𝐵)→ 𝐹𝑢𝑛𝐿(𝑃𝐴, 𝑃𝐵), and
the invertible 2-cells 𝜅𝑔,𝑓 : (𝑔#𝑓)# → 𝑔#𝑓# are had, since the functor 𝑔#𝑓 : 𝐴→ 𝑃𝐶

can be extended in two ways along of 𝑦𝐴, i.e., 𝑔#𝑓 → (𝑔#𝑓)#𝑦𝐴 and 𝑔#𝑓 → (𝑔#𝑓#)𝑦𝐴.
But the functor (−)𝑦𝐴 is an equivalence, hence (𝑔#𝑓)# ≃ 𝑔#𝑓#.
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Definition 3.2.2 (Kleisli ∞-category). Given a Kleisli structure 𝑃 on 𝒜 ⊆ 𝒦. We define
𝐾𝑙(𝑃 ) as the simplicial set embedded in 𝒦𝐿, where the objects of 𝐾𝑙(𝑃 ) are the objects of
𝒜, the morphism spaces is defined by

𝐾𝑙(𝑃 )(𝑎, 𝑏) := 𝒦(𝑎, 𝑃𝑏).

for the all objects 𝑎, 𝑏 ∈ 𝒜. The embedding 𝐾𝑙(𝑃 ) →˓ 𝒦𝐿 is induced by definition of
𝐾𝑙(𝑃 )(𝑎, 𝑏) and the homotopy equivalence 𝒦(𝑎, 𝑃𝑏) → 𝒦𝐿(𝑃𝑎, 𝑃𝑏) of the third item in
the Definition 3.2.1. Thus, all the n-simplexes in 𝐾𝑙(𝑃 ) are defined by the inverse image (of
the embedding) of the n-simplexes in 𝒦𝐿.

Remark 3.2.1. By Definition 3.2.1, the homotopy equivalence 𝐾𝑙(𝑃 )(𝑎, 𝑏) → 𝒦𝐿(𝑃𝑎, 𝑃𝑏)

gets to establish that 𝐾𝑙(𝑃 ) is the ∞-category embedded in 𝒦𝐿. Another interesting way
would be to define 𝐾𝑙(𝑃 ) as a weighted colimit or the pushout of diagram

(𝐶𝑎𝑡∞ ⊆ 𝐶𝐴𝑇∞
𝑃←− 𝐶𝑎𝑡∞)

in the category of simplicial sets 𝑆𝑒𝑡Δ = 𝐹𝑢𝑛(Δ𝑜𝑝, 𝑆𝑒𝑡) (complete and cocomplete) and so
𝐾𝑙(𝑃 ) would be an ∞-category.

Proposition 3.2.1. 𝑃 (𝐴×𝐵) ≃ 𝑃𝐴⊗ 𝑃𝐵 in the ∞-category P𝑟𝐿.

Proof.

𝐹𝑢𝑛𝐿(𝑃 (𝐴×𝐵), 𝐶) ≃ 𝐹𝑢𝑛(𝐴×𝐵, 𝐶)

≃ 𝐹𝑢𝑛(𝐴, 𝐶𝐵)

≃ 𝐹𝑢𝑛𝐿(𝑃𝐴, 𝐹𝑢𝑛𝐿(𝑃𝐵, 𝐶))

Thus, P𝑟𝐿(𝑃 (𝐴×𝐵), 𝐶) ≃ P𝑟𝐿(𝑃𝐴, 𝑃𝐵 ( 𝐶) ≃ P𝑟𝐿(𝑃𝐴⊗ 𝑃𝐵, 𝐶).

3.3 A CARTESIAN CLOSED ∞-CATEGORY (C.C.I)

In this section we prove that the Kleisli ∞-category 𝐾𝑙(𝑃 ) generated by the structure 𝑃

on 𝐶𝑎𝑡∞ ⊆ 𝐶𝐴𝑇∞ is Cartesian closed. Thus, 𝐾𝑙(𝑃 ) is a candidate for a higher 𝜆-model.

Lemma 3.3.1. The ∞-category 𝐾𝑙(𝑃 ) is cartesian closed.
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Proof.

𝐹𝑢𝑛(𝐴×𝐵, 𝑃𝐶) ≃ 𝐹𝑢𝑛(𝐴, [𝐵, 𝑃𝐶])

= 𝐹𝑢𝑛(𝐴, [𝐵, S𝐶𝑜𝑝 ])

≃ 𝐹𝑢𝑛(𝐴, [𝐵 × 𝐶𝑜𝑝, S])

= 𝐹𝑢𝑛(𝐴, 𝑃 (𝐵𝑜𝑝 × 𝐶)).

Thus 𝐾𝑙(𝑃 )(𝐴×𝐵, 𝐶) ≃ 𝐾𝑙(𝑃 )(𝐴, 𝐵𝑜𝑝 × 𝐶) = 𝐾𝑙(𝑃 )(𝐴, 𝐵 ⇒ 𝐶).

Proposition 3.3.1. The ∞-category 𝐾𝑙(𝑃 ) does have enough points.

Proof. A morphism 𝐴→ 𝐵 in 𝐾𝑙(𝑃 ) corresponds to a functor 𝐴→ 𝑃𝐵. Since 𝑃𝐴 is a closure
of 𝐴 under small colimits, such a functor corresponds to a small colimit preserving functor
𝑃𝐴→ 𝑃𝐵. Since 𝑃𝐴 is weakly contractible; (𝑃𝐴)(𝑎, 𝑏) is contractible for all 𝑎, 𝑏 ∈ 𝑃𝐴, the
functor 𝑃𝐴→ 𝑃𝐵 is sufficiently determined by all the vertices of 𝑃𝐴 (points of 𝐴).
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4 SOLVING HOMOTOPY DOMAIN EQUATIONS

The purpose of this chapter is to give a follow-up on the project of generalization of
Dana Scott’s Domain Theory (ABRAMSKY; JUNG, 1994) and (ASPERTI; LONGO, 1991), to a
Homotopy Domain Theory, which began in (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022b), in the
sense of providing methods to find 𝜆-models that allow raising the interpretation of equality
of 𝜆-terms (e.g., 𝛽-equality, 𝜂-equality etc.) to a semantics of higher equalities.

In theoretical terms, one would be looking for a type of 𝜆-models with∞-groupoid proper-
ties, such as CW complexes, Kan complexes etc. For this task, the strategy is to search in the
Cartesian closed∞-category (cci) 𝐾𝑙(𝑃 ) (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022b) (generalized
version of the Kleisli bicategory of (HYLAND, 2010)), reflexive Kan complexes with relevant
information, by means of the solution of domain equations proposed in this cci, which we call
homotopy domain equations.

To guarantee the existence of Kan complexes with good information, we define the non-
trivial Kan complexes, which in intuitive terms, are those that have holes in all higher di-
mensions and also have holes in the locality or class of any vertex. We establish conditions
to prove the existence of non-trivial Kan complexes which are reflexive, which we call homo-
topy 𝜆-models -stronger than the homotopic 𝜆-models initially defined in (MARTÍNEZ-RIVILLAS;

QUEIROZ, 2022a), and developed in (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022b).

It should be clarified that the literature around Kan complexes is related to some com-
putational theories, such as Homotopy Type Theory (HoTT) (PROGRAM, 2013), so that to
ensure the consistency of HoTT, Voevodsky (KAPULKIN; LUMSDAINE, 2012) (see (LUMSDAINE;

SHULMAN, 2020) for higher inductive types) proved that HoTT has a model in the category
of Kan complexes (see (PROGRAM, 2013)).

To meet the goal of getting homotopy 𝜆-models, in Section 4.1 we define the complete
homotopy partial orders (c.h.p.o’s), in Section 4.2, we propose a method for solving homotopy
domain equations on any c.c.i., namely: first, one solves the contravariant functor problem in a
similar way to classical Domain Theory, and later one uses a version from fixed point theorem
to find some solutions of this equation. Finally, in Section 4.3, the methods of the previous
section are applied in a particular c.c.i., and thus one ends up guaranteeing the existence of
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homotopy 𝜆-models which, as previously mentioned, present an ∞-groupoid structure with
relevant information in higher dimensions.

4.1 COMPLETE HOMOTOPY PARTIAL ORDERS

In this section we introduce the complete homotopy partial orders (c.h.p.o) as a direct
generalization of the c.p.o’s, where the sets are replaced by Kan complexes and the order
relations ≤ by weak order relations -. The proofs of the propositions, lemmas and theorems
are very similar to the classical case of the c.p.o’s (BARENDREGT, 1984).

Definition 4.1.1 (h.p.o). Let 𝐾̂ be an ∞-category. The largest Kan complex 𝐾 ⊆ 𝐾̂ is a
homotopy partial order (h.p.o), if for every 𝑥, 𝑦 ∈ 𝐾 one has that 𝐾̂(𝑥, 𝑦) is contractible or
empty. Hence, the Kan complex 𝐾 admits a relation of h.p.o - defined for each 𝑥, 𝑦 ∈ 𝐾

as follows: 𝑥 - 𝑦 if 𝐾̂(𝑥, 𝑦) ̸= ∅, hence the pair (𝐾,-) is a h.p.o. (we denote only 𝐾). The
∞-category 𝐾̂ is also called a h.p.o.

Definition 4.1.2 (c.h.p.o). Let 𝐾 be a h.p.o.

1. A h.p.o 𝑋 ⊆ 𝐾 is directed if 𝑋 ̸= ∅ and for each 𝑥, 𝑦 ∈ 𝑋, there exists 𝑧 ∈ 𝑋 such
that 𝑥 - 𝑧 and 𝑦 - 𝑧.

2. 𝐾 is a complete homotopy partial order (c.h.p.o) if

a) There are initial objects, i.e., ⊥ ∈ 𝐾 is an initial object if for each 𝑥 ∈ 𝐾, ⊥ - 𝑥.

b) For each directed 𝑋 ⊆ 𝒦 the supremum (or colimit)
b

𝑋 ∈ 𝒦 exists.

Definition 4.1.3 (Continuity). Let 𝐾 and 𝐾 ′ be c.h.p.o’s. A functor 𝑓 : 𝐾 → 𝐾 ′ is conti-
nuous if 𝑓(

b
𝑋) ≃

b
𝑓(𝑋), where 𝑓(𝑋) is the essential image.

Proposition 4.1.1. Continuous functors on c.h.p.o’s are always monotonic.

Proof. Let 𝑓 : 𝐾 → 𝐾 ′ be a continuous functor between c.h.p.o’s and suppose the non-trivial
case 𝑎 - 𝑏 in 𝐾. Since the h.p.o {𝑎, 𝑏} ⊆ 𝐾 is directed, by continuity of 𝑓 we have

𝑓(𝑎) -
j
{𝑓(𝑎), 𝑓(𝑏)} ≃ 𝑓(

j
{𝑎, 𝑏}) = 𝑓(𝑏).

The Cartesian product between c.h.p.o’s can be considered again as a c.h.p.o.
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Proposition 4.1.2. Given the c.h.p.o’s 𝐾, 𝐾 ′, let 𝐾 × 𝐾 ′ the Cartesian product partially
ordered by

(𝑥, 𝑥′) - (𝑦, 𝑦′) if 𝑥 - 𝑦 and 𝑥′ -′ 𝑦′.

Then 𝐾 ×𝐾 ′ is a c.h.p.o with for directed 𝑋 ⊆ 𝐾 ×𝐾 ′

j
𝑋 = (

j
𝑋0,

j
𝑋1)

where 𝑋0 is the projection of 𝑋 on 𝐾, and 𝑋1 is the projection of 𝑋 on 𝐾 ′.

Proof. (⊥,⊥′) is an initial object of 𝐾 ×𝐾 ′. On the other hand, if 𝑋 ⊆ 𝐾 ×𝐾 ′ is directed,
by definition of order on 𝐾×𝐾 ′ is also directed, so the supremum

b
𝑋 ∈ 𝐾×𝐾 ′ exists.

Definition 4.1.4. Let 𝐾, 𝐾 ′ be c.h.p.o’s. Define the full subcategory [𝐾 → 𝐾 ′] ⊆ 𝐹𝑢𝑛(𝐾, 𝐾 ′)

of the continuous functors. Since 𝐾̂ has enough points (is weakly contractible), we can define
the order pointwise on [𝐾 → 𝐾 ′] by:

𝑓 - 𝑔 ⇐⇒ ∀𝑥 ∈ 𝐾, 𝑓(𝑥) -′ 𝑔(𝑥).

Notation 4.1.1. Let 𝐾 be a h.p.o and 𝑃 a predicate. Denote by ⟨𝑥 ∈ 𝐾 |𝑃 (𝑥)⟩ the h.p.o
induced by the order of 𝐾, whose objects are the 𝑥 ∈ 𝐾 which satisfy the property 𝑃 .

Lemma 4.1.1. Let ⟨𝑓𝑖⟩𝑖 ⊆ [𝐾 → 𝐾 ′] be a indexed directed of functors. Define

𝑓(𝑥) =
j

𝑖

𝑓𝑖(𝑥).

Then 𝑓 is well defined and continuous.

Proof. Since ⟨𝑓𝑖⟩𝑖 is directed, ⟨𝑓𝑖(𝑥)⟩𝑖 is directed for each 𝑥 ∈ 𝐾, and since 𝐾̂ has enough
points, the functor 𝑓 exists. One other hand, for directed 𝑋 ⊆ 𝐾

𝑓(
j

𝑋) =
j

𝑖

𝑓𝑖(
j

𝑋) ≃
j

𝑖

j
𝑓𝑖(𝑋) ≃

j j

𝑖

𝑓𝑖(𝑋) =
j

𝑓(𝑋).

Proposition 4.1.3. [𝐾 → 𝐾 ′] is a c.h.p.o with supremum of a directed 𝐹 ⊆ [𝐾 → 𝐾 ′]

defined by
(
j

𝐹 )(𝑥) =
j
⟨𝑓(𝑥) | 𝑓 ∈ 𝐹 ⟩.

Proof. The constant functor 𝜆𝑥.⊥′ is a initial object of [𝐾 → 𝐾 ′] . By Lemma 4.1.1 the
functor 𝜆𝑥.

b
⟨𝑓(𝑥) | 𝑓 ∈ 𝐹 ⟩ is continuous, which is the supremum of 𝐹 .
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Lemma 4.1.2. Let 𝑓 : 𝐾 × 𝐾 ′ → 𝐾 ′′. Then 𝑓 is continuous iff 𝑓 is continuous in its
arguments separately, that is, iff 𝜆𝑥.𝑓(𝑥, 𝑥′

0) and 𝜆𝑥′.𝑓(𝑥0, 𝑥′) are continuous for all 𝑥0, 𝑥′
0.

Proof. (⇒) Let 𝑔 = 𝜆𝑥.𝑓(𝑥, 𝑥′
0). Then for the directed 𝑋 ⊆ 𝐾

𝑔(
j

𝑋) = 𝑓(
j

𝑋, 𝑥′
0)

≃
j

𝑓(𝑋 × {𝑥0}); 𝑓 is continuous and 𝑋 × {𝑥0} is directed

=
j

𝑔(𝑋).

Similarly 𝜆𝑥′.𝑓(𝑥0, 𝑥′) is continuous.

(⇐) Let 𝑋 ⊆ 𝐾 ×𝐾 ′ be directed. So

𝑓(
j

𝑋) = 𝑓(
j

𝑋0,
j

𝑋1)

≃
j

𝑓(𝑋0,
j

𝑋1); by hypothesis,

≃
j j

𝑓(𝑋0, 𝑋1); by hypothesis,

=
j

𝑓(𝑋); 𝑋 is directed.

Proposition 4.1.4 (Continuity of application). Define application

𝐴𝑝 : [𝐾 → 𝐾 ′]×𝐾 → 𝐾 ′

by the functor 𝐴𝑝(𝑓, 𝑥) = 𝑓(𝑥). The 𝐴𝑝 is continuous.

Proof. The functor 𝜆𝑥.𝑓(𝑥) = 𝑓(𝑥) is continuous by continuity of 𝑓 . Let ℎ = 𝜆𝑓.𝑓(𝑥). Then
for directed 𝐹 ⊆ [𝐾 → 𝐾 ′]

ℎ(
j

𝐹 ) = (
j

𝐹 )(𝑥)

=
j
⟨𝑓(𝑥) | 𝑓 ∈ 𝐹 ⟩ by Proposition 4.1.3,

=
j
⟨ℎ(𝑓) | 𝑓 ∈ 𝐹 ⟩

=
j

ℎ(𝐹 ).

So ℎ is continuous, and by Lemma 4.1.2 the functor 𝐴𝑝 is continuous.

Proposition 4.1.5 (Continuity of abstraction). Let 𝑓 ∈ [𝐾 ×𝐾 ′ → 𝐾 ′′]. Define the functor
𝑓(𝑥) = 𝜆𝑦 ∈ 𝐾 ′.𝑓(𝑥, 𝑦). Then
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1. 𝑓 is continuous, i.e., 𝑓 ∈ [𝐾 → [𝐾 ′ → 𝐾 ′′]];

2. 𝜆𝑓.𝑓 : [𝐾 ×𝐾 ′ → 𝐾 ′′]→ [𝐾 → [𝐾 ′ → 𝐾 ′′]] is continuous.

Proof. (1) Let 𝑋 ⊆ 𝐾 be directed. Then

𝑓(
j

𝑋) = 𝜆𝑦.𝑓(
j

𝑋, 𝑦)

≃ 𝜆𝑦.
j

𝑓(𝑋, 𝑦)

≃
j

𝜆𝑦.𝑓(𝑋, 𝑦); by Proposition 4.1.3: takes 𝐹 = 𝜆𝑦.𝑓(𝑋, 𝑦),

(2) Let 𝐿 = 𝜆𝑓.𝑓 . Then for 𝐹 ⊆ [𝐾 ×𝐾 ′ → 𝐾 ′′] directed

𝐿(
j

𝐹 ) = 𝜆𝑥𝜆𝑦.(
j

𝐹 )(𝑥, 𝑦)

= 𝜆𝑥𝜆𝑦.
j

𝑓∈𝐹

𝑓(𝑥, 𝑦)

≃
j

𝑓∈𝐹

𝜆𝑥𝜆𝑦.𝑓(𝑥, 𝑦)

=
j

𝐿(𝐹 ).

Definition 4.1.5 (𝐶𝐻𝑃𝑂). Define the subcategory 𝐶𝐻𝑃𝑂 ⊆ 𝐶𝐴𝑇∞ whose objects are the
c.h.p.o’s and the morphisms are the continuous functors.

Proposition 4.1.6. 𝐶𝐻𝑃𝑂 is a Cartesian closed ∞-category.

Proof. One has that the product of c.h.p.o’s 𝐾 ×𝐾 ′ ∈ 𝐶𝐻𝑃𝑂. The singleton c.h.p.o Δ0 is
a terminal object. By 4.1.4 and 4.1.5 for each continuous functor 𝑓 : 𝐾 ×𝐾 ′ → 𝐾 ′′ there is
an unique continuous functor 𝑓 : 𝐾 → [𝐾 ′ → 𝐾 ′′] such that

𝐾 ×𝐾 ′

𝑓×𝑖𝑑𝐾′

��

𝑓 // 𝐾 ′′

[𝐾 ′ → 𝐾 ′′]×𝐾 ′

𝐴𝑝
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commutes in 𝑠𝑆𝑒𝑡 (functors are morphisms of simplicial sets). Thus, the functor 𝐾× (−) has
a right adjoint functor [𝐾 → (−)].

Another alternative:
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Remark 4.1.1. Let 𝑔 ∈ [𝐾 → [𝐾 ′ → 𝐾 ′′]]. Define the functor 𝑔(𝑥, 𝑦) = 𝜆(𝑥, 𝑦) ∈ 𝐾 ×

𝐾 ′.𝑔(𝑥)(𝑦) . Then

1. 𝑔 is continuous, i.e., 𝑔 ∈ [𝐾 ×𝐾 ′ → 𝐾 ′′]];

2. 𝜆𝑔.𝑔 : [𝐾 → [𝐾 ′ → 𝐾 ′′]]→ [𝐾 ×𝐾 ′ → 𝐾 ′′]] is continuous.

3. 𝜆𝑔.𝑔 is an inverse of 𝜆𝑓.𝑓 .

Hence, 𝐶𝐻𝑃𝑂 is Cartesian closed.

Now, one shows that in 𝐶𝐻𝑃𝑂, the projective limits exist.

Definition 4.1.6 (The Kan complex 𝐾∞). Let {𝐾𝑖}𝑖∈𝜔 be countable sequence of c.h.p.o’s
and let 𝑓𝑖 ∈ [𝐾𝑖 → 𝐾𝑖+1] for each 𝑖 ∈ 𝜔.

1. The diagram (𝐾𝑖, 𝑓𝑖) is called a projective (or inverse) system of c.h.p.o’s.

2. The projective (or inverse) limit of the system (𝐾𝑖, 𝑓𝑖) (notation 𝑙𝑖𝑚←−(𝐾𝑖, 𝑓𝑖)) is the h.p.o
(𝐾∞,-∞), where 𝐾∞ is the full subcategory of Π𝑖𝐾𝑖 (𝜔-times Cartesian product)
whose objects are the sequences (𝑥𝑖)𝑖∈𝜔 (or 𝑥 : 𝜔 → ⋃︀

𝑖 𝐾𝑖) such that 𝑥𝑖 ∈ 𝐾𝑖,
𝑓(𝑥𝑖+1) ≃ 𝑥𝑖 and

(𝑥𝑖)𝑖 -∞ (𝑦𝑖)𝑖 if ∀𝑖. 𝑥𝑖 -𝑖 𝑦𝑖 (in 𝐾𝑖).

Proposition 4.1.7. Let (𝐾𝑖, 𝑓𝑖) be a projective system. Then 𝑙𝑖𝑚←−(𝐾𝑖, 𝑓𝑖) = 𝐾∞ is c.h.p.o
with

j
𝑋 = 𝜆𝑖.

j
⟨𝑥(𝑖) |𝑥 ∈ 𝑋⟩,

for directed 𝑋 ⊆ 𝑙𝑖𝑚←−(𝐾𝑖, 𝑓𝑖).

Proof. If 𝑋 is directed, then ⟨𝑥(𝑖) |𝑥 ∈ 𝑋⟩ is directed for each 𝑖. Let

𝑦𝑖 =
j
⟨𝑥(𝑖) |𝑥 ∈ 𝑋⟩.

Then by continuity of 𝑓𝑖

𝑓𝑖(𝑦𝑖+1) ≃
j

𝑓𝑖(⟨𝑥(𝑖 + 1) |𝑥 ∈ 𝑋⟩)

=
j
⟨𝑥(𝑖) |𝑥 ∈ 𝑋⟩

= 𝑦𝑖

Thus, (𝑦𝑖)𝑖 ∈ 𝑙𝑖𝑚←−(𝐾𝑖, 𝑓𝑖). Clearly it is the supremum of 𝑋.
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Therefore, the c.h.p.o 𝐾∞ satisfies the equation 𝑋 ≃ [𝑋 → 𝑋] in the ∞-category
𝐶𝐻𝑃𝑂.

Definition 4.1.7 (Compact objects and Algebraic c.h.p.o’s). 1. 𝑥 ∈ 𝐾 is compact if for
every directed 𝑋 ⊆ 𝐾 one has

𝑥 -
j

𝑋 =⇒ 𝑥 - 𝑥0 for some 𝑥0 ∈ 𝑋.

2. 𝐾 is an algebraic c.h.p.o if for all 𝑥 ∈ 𝐾 the h.p.o 𝑥 ↓= ⟨𝑦 - 𝑥 | 𝑦 compact⟩ is directed
and 𝑥 ≃

b
(𝑥 ↓).

Proposition 4.1.8. Let 𝐾 be algebraic and 𝑓 : 𝐾 → 𝐾. Then 𝑓 is continuous iff 𝑓(𝑥) ≃
b
⟨𝑓(𝑒) | 𝑒 - 𝑥 and 𝑒 compact⟩.

Proof. (⇒) Let 𝑓 be continuous. Then

𝑓(𝑥) = 𝑓(
j
⟨𝑒 - 𝑥 | 𝑒 compact⟩)

≃
j
⟨𝑓(𝑒) | 𝑒 - 𝑥 and 𝑒 compact⟩.

(⇐) First we check that 𝑓 is monotonic. If 𝑥 - 𝑦, then

⟨𝑒 - 𝑥 | 𝑒 compact⟩ ⊆ ⟨𝑒 - 𝑦 | 𝑒 compact⟩,

hence

𝑓(𝑥) ≃
j
⟨𝑓(𝑒) | 𝑒 - 𝑥 and 𝑒 compact⟩

-
j
⟨𝑓(𝑒) | 𝑒 - 𝑦 and 𝑒 compact⟩

≃ 𝑓(𝑦).

Now let 𝑋 ⊆ 𝐾 directed. Then

𝑓(
j

𝑋) ≃
j
⟨𝑓(𝑒) | 𝑒 -

j
𝑋 and 𝑒 compact⟩

-
j
⟨𝑓(𝑥) |𝑥 ∈ 𝑋⟩; by compactness and monotonicity of 𝑓

- 𝑓(
j

𝑋); by monotonicity and definition of supremum.

Thus, 𝑓(
b

𝑋) ≃
b

𝑓(𝑋).

Proposition 4.1.9. Let 𝐾, 𝐾 ′ be c.h.p.o’s.

1. (𝑥, 𝑦) ∈ 𝐾 ×𝐾 ′ is compact iff 𝑥 and 𝑦 are compact.
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2. 𝐾 and 𝐾 ′ are algebraic, then 𝐾 ×𝐾 ′ is algebraic.

Proof. 1. (⇒) Let 𝑋 ⊆ 𝐾 and 𝑌 ⊆ 𝐾 ′ be directed such that 𝑥 -
b

𝑋 and 𝑦 -
b

𝑌 . Hence

(𝑥, 𝑦) - (
j

𝑋,
j

𝑌 ) =
j

(𝑋 × 𝑌 ).

By hypothesis, (𝑥, 𝑦) - (𝑥0, 𝑦0) for some (𝑥0, 𝑦0) ∈ 𝑋 × 𝑌 . Thus, 𝑥 and 𝑦 are compact.

(⇐) Let 𝑋 ⊆ 𝐾 ×𝐾 ′ be directed such that

(𝑥, 𝑦) -
j

𝑋 = (
j

𝑋0,
j

𝑋1) =
j

(𝑋0 ×𝑋1).

By hypothesis, there are 𝑥0 ∈ 𝑋0 and 𝑦0 ∈ 𝑋1 such that 𝑥 - 𝑥0 and 𝑦 - 𝑦0. Since (𝑥0, 𝑦0) -
b

(𝑋0 ×𝑋1) =
b

𝑋, there exists (𝑥1, 𝑦1) ∈ 𝑋 such that (𝑥, 𝑦) - (𝑥0, 𝑦0) - (𝑥1, 𝑦1). Hence
(𝑥, 𝑦) is compact.

2. Let (𝑥, 𝑦) ∈ 𝐾 ×𝐾 ′. Then
j

((𝑥, 𝑦) ↓) =
j
⟨(𝑒, 𝑑) - (𝑥, 𝑦) | (𝑒, 𝑑) compact⟩

=
j
⟨(𝑒, 𝑑) - (𝑥, 𝑦) | 𝑒 and 𝑑 are compact⟩; by 1.

≃ (
j

(𝑥 ↓),
j

(𝑦 ↓))

≃ (𝑥, 𝑦); by hypothesis.

Definition 4.1.8 (𝐴𝑙𝑔). Define the subcategory 𝐴𝑙𝑔 ⊆ 𝐶𝐻𝑃𝑂, whose object are the alge-
braic c.h.p.o’s and the morphisms are continuous functors.

Note that 𝐴𝑐𝑐, the ∞-category of accessible ∞-categories, is the generalization of 𝐴𝑙𝑔,
since all directed is filtered, all supremum is a filtered colimit, and for each 𝑋 ∈ 𝐴𝑙𝑔, 𝑋

has all supremum and the full subcategory 𝑋𝑐 ⊆ 𝑋 of compacts objects generates 𝑋 under
supremum.

4.2 HOMOTOPY DOMAIN EQUATION ON AN ARBITRARY CARTESIAN CLOSED ∞-
CATEGORY

This section is a direct generalization of the traditional methods for solving domain equa-
tions in Cartesian closed categories (see (ASPERTI; LONGO, 1991) and (ABRAMSKY; JUNG,



58

1994)), in the sense of obtaining solutions for certain types of equations, which we call Ho-
motopy Domain Equations in any Cartesian closed ∞-category.

Definition 4.2.1. (ASPERTI; LONGO, 1991)

1. An 𝜔-diagram in an ∞-category 𝒦 is a diagram with the following structure:

𝐾0
𝑓0−→ 𝐾1

𝑓1−→ 𝐾2 −→ · · · −→ 𝐾𝑛
𝑓𝑛−→ 𝐾𝑛+1 −→ · · ·

(dually, one defines 𝜔𝑜𝑝-diagrams by just reversing the arrows).

2. An ∞-category 𝒦 is 𝜔-complete (𝜔-cocomplete) if it has limits (colimits) for all 𝜔-
diagrams.

3. A functor 𝐹 : 𝒦 → 𝒦 is 𝜔-continuous if it preserves (under equivalence) all colimits of
𝜔-diagrams.

Theorem 4.2.1. Let 𝒦 be an ∞-category. Let 𝐹 : 𝒦 → 𝒦 be a 𝜔-continuous (covariant)
functor and take a vertex 𝐾0 ∈ 𝒦 such that there is an edge 𝛿 ∈ 𝒦(𝐾0, 𝐹𝐾0). Assume
also that (𝐾, {𝛿𝑖,𝜔 ∈ 𝒦(𝐹 𝑖𝐾0, 𝐾)}𝑖∈𝜔) is a colimit for the 𝜔-diagram ({𝐹 𝑖𝐾0}𝑖∈𝜔, {𝐹 𝑖𝛿}𝑖∈𝜔),
where 𝐹 0𝐾0 = 𝐾0 and 𝐹 0𝛿 = 𝛿. Then 𝐾 ≃ 𝐹𝐾.

Proof. We have that (𝐹𝐾, {𝐹𝛿𝑖,𝜔 ∈ 𝒦(𝐹 𝑖+1𝐾0, 𝐹𝐾)}𝑖∈𝜔) is a colimit for

({𝐹 𝑖+1𝐾0}𝑖∈𝜔, {𝐹 𝑖+1𝛿}𝑖∈𝜔)

and (𝐾, {𝛿𝑖+1,𝜔 ∈ 𝒦(𝐹 𝑖+1𝐾0, 𝐾)}𝑖∈𝜔) is a cocone for the same diagram. Then, there is a
unique edge (under homotopy; the space of choices is contractible) ℎ : 𝐹𝐾 → 𝐾 such that
ℎ.𝐹𝛿𝑖,𝜔 ≃ 𝛿𝑖+1,𝜔, for each 𝑖 ∈ 𝜔. We add to (𝐹𝐾, {𝐹𝛿𝑖,𝜔 ∈ 𝒦(𝐹 𝑖+1𝐾0, 𝐹𝐾)}𝑖∈𝜔) the edge
𝐹𝛿0,𝜔.𝛿 ∈ 𝒦(𝐾0, 𝐹𝐾). This gives a cocone for ({𝐹 𝑖𝐾0}𝑖∈𝜔, {𝐹 𝑖𝛿}𝑖∈𝜔) and, since (𝐾, {𝛿𝑖,𝜔 ∈

𝒦(𝐹 𝑖𝐾0, 𝐾)}𝑖∈𝜔) is its colimit, there is a unique edge (under homotopy) 𝑘 : 𝐾 → 𝐹𝐾 such
that 𝑘.𝛿𝑖+1,𝜔 ≃ 𝐹𝛿𝑖 and 𝑘.𝛿0,𝜔 ≃ 𝐹𝛿0,𝜔.𝛿, for each 𝑖 ∈ 𝜔. But, ℎ.𝑘.𝛿𝑖+1,𝜔 ≃ ℎ.𝐹𝛿𝑖,𝜔 ≃ 𝛿𝑖+1,𝜔

and ℎ.𝑘.𝛿0,𝜔 ≃ 𝛿0,𝜔, for each 𝑖 ∈ 𝜔, thus ℎ.𝑘 is a mediating edge between the colimit
(𝐾, {𝛿𝑖,𝜔 ∈ 𝒦(𝐹 𝑖𝐾0, 𝐾)}𝑖∈𝜔) and itself (besides 𝐼𝐾). Hence, by unicity (under homotopy)
ℎ.𝑘 ≃ 𝐼𝐾 . In the same way, we prove that 𝑘.ℎ ≃ 𝐼𝐹 𝐾 , and we conclude that 𝐹 has a fixed
point.

Definition 4.2.2. An ∞-category 𝒦 is a (0,∞)-category if
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1. every Kan complex 𝒦(𝐴, 𝐵) is a c.h.p.o with a least element 0𝐴,𝐵 under homotopy,

2. composition of morphisms is a continuous operation with respect to the homotopy order,

3. for every 𝑓 in 𝒦(𝐴, 𝐵), 0𝐵,𝐶 .𝑓 ≃ 0𝐴,𝐶 .

Definition 4.2.3 (h-projection par). Let 𝒦 be a (0,∞)-category, and let 𝑓+ : 𝐴 → 𝐵

and 𝑓− : 𝐵 → 𝐴 be two morphisms in 𝒦. Then (𝑓+, 𝑓−) is a homotopy projection (or h-
projection) pair (from 𝐴 to 𝐵) if 𝑓−.𝑓+ ≃ 𝐼𝐴 and 𝑓+.𝑓− - 𝐼𝐵. If (𝑓+, 𝑓−) is an h-projection
pair, 𝑓+ ∈ 𝒦𝐻𝐸(𝐴, 𝐵) is an h-embedding (homotopy embedding) and 𝑓− ∈ 𝒦𝐻𝑃 (𝐴, 𝐵) is
an h-projection (homotopy projection). Where 𝒦𝐻𝐸 is the subcategory of 𝒦 with the same
objects and the h-embeddings as morphisms, and 𝒦𝐻𝑃 is the subcategory of 𝒦 with the same
objects and the h-projections as morphisms.

Definition 4.2.4 (h-projections pair (0,∞)-category.). Let 𝒦 be a (0,∞)-category. The
(0,∞)-category 𝒦𝐻𝑃 𝑟𝑗 is the∞-category embedding in 𝒦𝐻𝐸 with the same objects of 𝒦 and
h-projection pairs (𝑓+, 𝑓−) as morphisms.

Remark 4.2.1. Every h-embedding 𝑖 has unique (under homotopy) associated h-projection
𝑗 = 𝑖𝑅 (and, conversely, every h-projection 𝑗 has a unique (under homotopy) associated h-
embedding 𝑖 = 𝑗𝐿), since if there is 𝑗0 such that 𝑗0.𝑖 ≃ 𝐼 and 𝑖.𝑗0 - 𝐼 (under homotopy),
so 𝑗0 % 𝑗0.𝑖.𝑗 ≃ 𝑗 and 𝑗0 - 𝑗 (under homotopy). Thus, 𝑗0 ≃ 𝑗 under homotopy (and, in the
same way, we have 𝑖0 ≃ 𝑖 under homotopy). 𝒦𝐻𝑃 𝑟𝑗 and is equivalent to a subcategory 𝒦𝐻𝐸

of 𝒦 that has h-embeddings as morphisms (as well to a subcategory 𝒦𝐻𝑃 of 𝒦 which has
h-projections as morphisms).

Definition 4.2.5. Given a (0,∞)-category 𝒦, and a contravariant functor in the first com-
ponent 𝐹 : 𝒦𝑜𝑝 ×𝒦 → 𝒦, the functor covariant 𝐹 +− : 𝒦𝐻𝑃 𝑟𝑗 ×𝒦𝐻𝑃 𝑟𝑗 → 𝒦𝐻𝑃 𝑟𝑗 is defined
by

𝐹 +−(𝐴, 𝐵) = 𝐹 (𝐴, 𝐵),

𝐹 +−((𝑓+, 𝑓−), (𝑔+, 𝑔−)) = (𝐹 (𝑓−, 𝑔+), 𝐹 (𝑓+, 𝑔−)),

where 𝐴, 𝐵 are vertices and (𝑓+, 𝑓−), (𝑔+, 𝑔−) are n-simplexes pairs in 𝒦𝐻𝑃 𝑟𝑗.

Given the 𝜔-chain ({𝐾𝑖}𝑖∈𝜔, {𝑓𝑖}𝑖∈𝜔) in an h-projective (0,∞)-category. Let (𝐾, {𝛾𝑖}𝑖∈𝜔)

be a limit for ({𝐾𝑖}𝑖∈𝜔, {𝑓−
𝑖 }𝑖∈𝜔) in 𝒦. Note that 𝛿𝑖.𝛾𝑖 ≃ 𝛿𝑖+1.𝑓

+
𝑖 .𝑓−

𝑖 .𝛾𝑖+1 - 𝛿𝑖+1.𝛾𝑖+1, for
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each 𝑖 ∈ 𝜔. Then, {𝛿𝑖.𝛾𝑖} is an 𝜔-chain and its colimit is Θ =
b

𝑖∈𝜔{𝛿𝑖.𝛾𝑖}. Now for each
𝑗 ∈ 𝜔 one has

𝛾𝑗.Θ𝑗 = 𝛾𝑗.
j

𝑖∈𝜔

{𝛿𝑖.𝛾𝑖}

≃ 𝛾𝑗.
j

𝑖≥𝑗

{𝛿𝑖.𝛾𝑖}

≃
j

𝑖≥𝑗

{(𝛾𝑗.𝛿𝑖).𝛾𝑖}

≃
j

𝑖≥𝑗

{𝑓𝑖,𝑗.𝛾𝑖}

≃ 𝛾𝑗.

Thus, Θ is a mediating edge between the limit (𝐾, {𝛾𝑖}𝑖∈𝜔) for 𝜔𝑜𝑝-diagram ({𝐾𝑖}𝑖∈𝜔, {𝑓−
𝑖 }𝑖∈𝜔)

and itself (besides 𝐼𝐾). So, by unicity (under equivalence) Θ ≃ 𝐼𝐾 . This result guarantees
the proof of the following theorems of this section. All these proofs are similar to case of
the 0-categories (except for uniqueness proofs, which are under homotopy) and, for that, the
reader is referred to (ASPERTI; LONGO, 1991).

Theorem 4.2.2. Let 𝒦 be a (0,∞)-category. Let ({𝐾𝑖}𝑖∈𝜔, {𝑓𝑖}𝑖∈𝜔) be an 𝜔-diagram in
𝒦𝐻𝑃 𝑟𝑗. If (𝐾, {𝛾𝑖}𝑖∈𝜔) is a limit for ({𝐾𝑖}𝑖∈𝜔, {𝑓−

𝑖 }𝑖∈𝜔) in 𝒦, then (𝐾, {(𝛿𝑖, 𝛾𝑖)}𝑖∈𝜔) is a
colimit for ({𝐾𝑖}𝑖∈𝜔, {𝑓𝑖}𝑖∈𝜔) in 𝒦𝐻𝑃 𝑟𝑗 (that is, every 𝛾𝑖 is a right member of a projection
pair).

Proof. Fix 𝐾𝑗. For each 𝑖 define 𝑓𝑗,𝑖 : 𝐾𝑗 → 𝐾𝑖 by:

𝑓𝑗,𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑓−
𝑖 .𝑓−

𝑖+1 . . . 𝑓−
𝑗−1 𝑖𝑓 𝑖 < 𝑗,

𝐼𝐾𝑗
𝑖𝑓 𝑖 = 𝑗,

𝑓+
𝑖−1 . . . 𝑓+

𝑗+1.𝑓
+
𝑗 𝑖𝑓 𝑖 > 𝑗.

(𝐾𝑖, {𝑓𝑗,𝑖}𝑖∈𝜔) is a cone for ({𝐾𝑖}𝑖∈𝜔, {𝑓−
𝑖 }𝑖∈𝜔), since 𝑓−

𝑖 .𝑓𝑗,𝑖+1 ≃ 𝑓𝑗,𝑖. Thus there is a
unique morphism (under homotopy) 𝛿𝑗 : 𝐾𝑗 → 𝐾 such that 𝛾𝑖.𝛿𝑗 ≃ 𝑓𝑗,𝑖 for each 𝑖 ∈ 𝜔. If
𝑖 = 𝑗, 𝛾𝑗.𝛿𝑗 ≃ 𝐼𝐾𝑗

.

Since Θ =
b

𝑖∈𝜔{𝛿𝑖.𝛾𝑖} ≃ 𝐼𝐾 , 𝛿𝑖.𝛾𝑖 - 𝐼𝐾 for each 𝑖 ∈ 𝜔. Thus, (𝛿𝑖, 𝛾𝑖) is an h-projection
pair for each 𝑖 ∈ 𝜔.

One still has to check that (𝑓+
𝑗 , 𝑓−

𝑗 ).(𝛿𝑗+1, 𝛾𝑗+1) ≃ (𝛿𝑗, 𝛾𝑗). We have that 𝑓−
𝑗 .𝛾𝑗+1 ≃ 𝛾𝑗 by

the definition of a cone in 𝒦. In order of to prove that 𝛿𝑗+1.𝑓
+
𝑗 ≃ 𝛿𝑗, note that 𝛾𝑖.(𝛿𝑗+1.𝑓

+
𝑗 ) ≃
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𝑓𝑗+1,𝑖.𝑓
+
𝑗 ≃ 𝑓𝑗,𝑗 ≃ 𝐼𝐾𝑗

≃ 𝛾𝑖.𝛿𝑗, by unicity (under homotopy) of 𝛿𝑗 : 𝐾𝑗 → 𝐾, 𝛿𝑗+1.𝑓
+
𝑗 ≃ 𝛿𝑗.

Thus, (𝐾, {(𝛿𝑖, 𝛾𝑖)}𝑖∈𝜔) is a cone in 𝒦𝐻𝑃 𝑟𝑗.

One proves next that (𝐾, {(𝛿𝑖, 𝛾𝑖)}𝑖∈𝜔) is a colimit. Let (𝐾 ′, {(𝛿′
𝑖, 𝛾′

𝑖)}𝑖∈𝜔) be another
cocone for ({𝐾𝑖}𝑖∈𝜔, {𝑓𝑖}𝑖∈𝜔). That is, for each 𝑖 ∈ 𝜔:

𝛿′
𝑖.𝛾𝑖 ≃ 𝛿′

𝑖+1.𝑓
+
𝑖 .𝑓−

𝑖 𝛾𝑖+1 - 𝛿′
𝑖+1.𝛾𝑖+1

𝛿𝑖.𝛾
′
𝑖 ≃ 𝛿𝑖+1.𝑓

+
𝑖 .𝑓−

𝑖 𝛾′
𝑖+1 - 𝛿𝑖+1.𝛾

′
𝑖+1.

Define thus:

ℎ =
j

𝑖∈𝜔

{𝛿′
𝑖.𝛾𝑖} : 𝐾 → 𝐾 ′

𝑘 =
j

𝑖∈𝜔

{𝛿𝑖.𝛾
′
𝑖} : 𝐾 ′ → 𝐾.

Observe that (ℎ, 𝑘) is an h-projection pair, since:

𝑘.ℎ =
j

𝑖∈𝜔

{𝛿𝑖.𝛾
′
𝑖}.

j

𝑖∈𝜔

{𝛿′
𝑖.𝛾𝑖}

≃
j

𝑖∈𝜔

{𝛿𝑖.(𝛾′
𝑖.𝛿

′
𝑖).𝛾𝑖}

≃
j

𝑖∈𝜔

{𝛿𝑖.𝛾𝑖}

≃ Θ = 𝐼𝐾

and

ℎ.𝑘 =
j

𝑖∈𝜔

{𝛿′
𝑖.𝛾𝑖}.

j

𝑖∈𝜔

{𝛿𝑖.𝛾
′
𝑖}

≃
j

𝑖∈𝜔

{𝛿′
𝑖.(𝛾𝑖.𝛿𝑖).𝛾′

𝑖}

≃
j

𝑖∈𝜔

{𝛿′
𝑖.𝛾

′
𝑖}

- 𝐼𝐾′

Moreover, (ℎ, 𝑘) is a mediating morphism between (𝐾, {(𝛿𝑖, 𝛾𝑖)}𝑖∈𝜔) and (𝐾 ′, {(𝛿′
𝑖, 𝛾′

𝑖)}𝑖∈𝜔),
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since for each 𝑖 ∈ 𝜔:

(ℎ, 𝑘).(𝛿𝑗, 𝛾𝑗) = (ℎ.𝛿𝑗 , 𝛾𝑗.𝑘)

≃ (
j

𝑖∈𝜔

{𝛿′
𝑖.𝛾𝑖}.𝛿𝑗 , 𝛾𝑗.

j

𝑖∈𝜔

{𝛿𝑖.𝛾
′
𝑖})

≃ (
j

𝑖≥𝑗

{𝛿′
𝑖.𝛾𝑖.𝛿𝑗} ,

j

𝑖≥𝑗

{𝛾𝑗.𝛿𝑖.𝛾
′
𝑖})

≃ (
j

𝑖≥𝑗

{𝛿′
𝑖.𝑓𝑗,𝑖} ,

j

𝑖≥𝑗

{𝛾𝑗.𝑓𝑖,𝑗})

≃ (𝛿′
𝑗, 𝛾′

𝑗).

Thus, for each 𝑗 ∈ 𝜔, 𝒦𝐻𝑃 𝑟𝑗
𝐾𝑗/ ((𝛿𝑗, 𝛾𝑗) , (𝛿′

𝑗, 𝛾′
𝑗)) ̸= ∅, that is 𝒦𝐻𝑃

/𝐾𝑗
(𝛾′

𝑗, 𝛾𝑗) and 𝒦𝐻𝐸
𝐾𝑗/(𝛿𝑗, 𝛿′

𝑗)

spaces that are not empty.

Since 𝒦𝐻𝑃
/𝐾𝑗

(𝛾′
𝑗, 𝛾𝑗) ⊆ 𝒦/𝐾𝑗

(𝛾′
𝑗, 𝛾𝑗) and by hypothesis 𝛾𝑗 is an object final in 𝒦/𝐾𝑗

for all
𝑗 ∈ 𝜔, then 𝒦𝐻𝑃

/𝐾𝑗
(𝛾′

𝑗, 𝛾𝑗) and 𝒦𝐻𝐸
𝐾𝑗/(𝛿𝑗, 𝛿′

𝑗) are contractible for each 𝑗 ∈ 𝜔. Thus, the Kan
complex 𝒦𝐻𝑃 𝑟𝑗

𝐾𝑗/ ((𝛿𝑗, 𝛾𝑗) , (𝛿′
𝑗, 𝛾′

𝑗)) is contractible for each 𝑗 ∈ 𝜔, that is, (ℎ, 𝑘) is unique (under
homotopy) in the mediating morphism between (𝐾, {(𝛿𝑖, 𝛾𝑖)}𝑖∈𝜔) and (𝐾 ′, {(𝛿′

𝑖, 𝛾′
𝑖)}𝑖∈𝜔).

Therefore, the following corollary is an immediate consequence of the previous theorem.

Corollary 4.2.1. The cocone (𝐾, {(𝛿𝑖, 𝛾𝑖)}𝑖∈𝜔) for the 𝜔-chain ({𝐾𝑖}𝑖∈𝜔, {(𝑓+
𝑖 , 𝑓−

𝑖 )}𝑖∈𝜔) in
𝒦𝐻𝑃 𝑟𝑗 is universal (a cocone colimit) iff Θ =

b
𝑖∈𝜔 𝛿𝑖.𝛾𝑖 ≃ 𝐼𝐾 .

Definition 4.2.6 (Locally monotonic). Let 𝒦 be a (0,∞)-category. A functor 𝐹 : 𝒦𝑜𝑝×𝒦 →

𝒦 is locally h-monotonic if it is monotonic on the Kan complexes of 1-simplexes, i.e., for
𝑓, 𝑓 ′ ∈ 𝒦𝑜𝑝(𝐴, 𝐵) and 𝑔, 𝑔′ ∈ 𝒦(𝐶, 𝐷) one has

𝑓 - 𝑓 ′ , 𝑔 - 𝑔′ =⇒ 𝐹 (𝑓, 𝑔) - 𝐹 (𝑓 ′, 𝑔′).

Proposition 4.2.1. If 𝐹 : 𝒦𝑜𝑝×𝒦 → 𝒦 is locally h-monotonic and (𝑓+, 𝑓−), (𝑔+, 𝑔−) are
h-projection pairs, then 𝐹 +−((𝑓+, 𝑓−), (𝑔+, 𝑔−)) is also an h-projection pair.

Proof. By definition 𝐹 +−((𝑓+, 𝑓−), (𝑔+, 𝑔−)) = (𝐹 (𝑓−, 𝑔+), 𝐹 (𝑓+, 𝑔−)). Then

𝐹 (𝑓+, 𝑔−).𝐹 (𝑓−, 𝑔+) ≃ 𝐹 ((𝑓+, 𝑔−).(𝑓−, 𝑔+))

= 𝐹 (𝑓−.𝑓+, 𝑔−.𝑔+)

≃ 𝐹 (𝑖𝑑, 𝑖𝑑)

≃ 𝑖𝑑
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and

𝐹 (𝑓−, 𝑔+).𝐹 (𝑓+, 𝑔−) ≃ 𝐹 ((𝑓−, 𝑔+).(𝑓+, 𝑔−))

= 𝐹 (𝑓+.𝑓−, 𝑔+.𝑔−)

- 𝐹 (𝑖𝑑, 𝑖𝑑)

≃ 𝑖𝑑.

Definition 4.2.7 (Locally continuous). Let 𝒦 be a (0,∞)-category. A 𝐹 : 𝒦𝑜𝑝 × 𝒦 → 𝒦

is locally continuous if it is 𝜔-continuous on the Kan complexes of 1-simplexes. That is, for
every directed diagram {𝑓𝑖}𝑖∈𝜔 in 𝒦𝑜𝑝(𝐴, 𝐵), and every directed diagram {𝑔𝑖}𝑖∈𝜔 in 𝒦(𝐶, 𝐷),
one has

𝐹 (
b

𝑖∈𝜔{𝑓𝑖},
b

𝑖∈𝜔{𝑔𝑖}) ≃
b

𝑖∈𝜔 𝐹 (𝑓𝑖, 𝑔𝑖).

Remark 4.2.2. If 𝐹 is locally continuous, then it is also locally monotonic.

Theorem 4.2.3. Let 𝒦 be a (0,∞)-category. Let also 𝐹 : 𝒦𝑜𝑝 × 𝒦 → 𝒦 be a locally
continuous functor. Then the functor 𝐹 +− : 𝒦𝐻𝑃 𝑟𝑗 ×𝒦𝐻𝑃 𝑟𝑗 → 𝒦𝐻𝑃 𝑟𝑗 is 𝜔-continuous.

Proof. Let ({𝐴𝑖}𝑖∈𝜔, {(𝑓+
𝑖 , 𝑓−

𝑖 )}𝑖∈𝜔) and ({𝐵𝑖}𝑖∈𝜔, {(𝑓+
𝑖 , 𝑓−

𝑖 )}𝑖∈𝜔) be two 𝜔-chains in 𝒦𝐻𝑃 𝑟𝑗

and let (𝐴, {(𝜌+
𝑖 , 𝜌−

𝑖 )𝑖∈𝜔}) and (𝐵, {(𝜎+
𝑖 , 𝜎−

𝑖 )𝑖∈𝜔}) be the respective limits. We have that

Θ =
j

𝑖∈𝜔

{𝜌+
𝑖 .𝜌−

𝑖 } ≃ 𝐼𝐴

Ψ =
j

𝑖∈𝜔

{𝜎+
𝑖 .𝜎−

𝑖 } ≃ 𝐼𝐵.

One must show that

(𝐹 +−(𝐴, 𝐵), {𝐹 +−(𝜌+
𝑖 , 𝜌−

𝑖 ).𝐹 +−(𝜎+
𝑖 , 𝜎−

𝑖 )}𝑖∈𝜔) = (𝐹 (𝐴, 𝐵), {(𝐹 (𝜌−
𝑖 , 𝜎+

𝑖 ), 𝐹 (𝜌+
𝑖 , 𝜎−

𝑖 ))}𝑖∈𝜔)

is a colimit for the 𝜔-chain ({𝐹 +−(𝐴𝑖, 𝐵𝑖)}𝑖∈𝜔, {𝐹 +−((𝑓+
𝑖 , 𝑓−

𝑖 ), (𝑔+
𝑖 , 𝑔−

𝑖 ))}𝑖∈𝜔).

It is clearly a cone, by the property of functors. We show that it is universal by proving
that

b
𝑖∈𝜔{𝐹 (𝜌−

𝑖 , 𝜎+
𝑖 ).𝐹 (𝜌+

𝑖 , 𝜎−
𝑖 )} ≃ 𝐼𝐹 (𝐴,𝐵); according to the Corollary 4.2.1. Computing we
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have

j

𝑖∈𝜔

{𝐹 (𝜌−
𝑖 , 𝜎+

𝑖 ).𝐹 (𝜌+
𝑖 , 𝜎−

𝑖 )} ≃
j

𝑖∈𝜔

{𝐹 (𝜌+
𝑖 .𝜌−

𝑖 , 𝜎+
𝑖 .𝜎−

𝑖 )}

≃ 𝐹 (
j

𝑖∈𝜔

(𝜌+
𝑖 .𝜌−

𝑖 ),
j

𝑖∈𝜔

(𝜎+
𝑖 .𝜎−

𝑖 ))

≃ 𝐹 (Θ, Ψ)

≃ 𝐹 (𝐼𝐴, 𝐼𝐵)

= 𝐼𝐹 (𝐴,𝐵).

Remark 4.2.3. Let 𝒦 be a cartesian closed (0,∞)-category, 𝜔𝑜𝑝-complete and with final
object. Since the exponential functor ⇒: 𝒦𝑜𝑝 × 𝒦 → 𝒦 and the diagonal functor Δ : 𝒦 →

𝒦×𝒦 are locally continuous, by the Theorem 4.2.3, the associated functors

(⇒)+− : 𝒦𝐻𝑃 𝑟𝑗 ×𝒦𝐻𝑃 𝑟𝑗 → 𝒦𝐻𝑃 𝑟𝑗, (Δ)+− : 𝒦𝐻𝑃 𝑟𝑗 → 𝒦𝐻𝑃 𝑟𝑗 ×𝒦𝐻𝑃 𝑟𝑗

are 𝜔-continuous. But composition of 𝜔-continuous functors is still an 𝜔-continuous functor.
Thus, the functor

𝐹 = (⇒)+−.(Δ)+− : 𝒦𝐻𝑃 𝑟𝑗 → 𝒦𝐻𝑃 𝑟𝑗,

is 𝜔-continuous. By Theorem 4.2.1 the functor 𝐹 has a fixed point, that is, there is a vertex
𝐾 ∈ 𝒦 such that 𝐾 ≃ (𝐾 ⇒ 𝐾). The ∞-category of the fixed points of 𝐹 is denoted by
𝐹𝑖𝑥(𝐹 ).

4.3 HOMOTOPY DOMAIN EQUATION ON 𝐾𝑙(𝑃 )

In this section we consider 𝐾𝑙(𝑃 ) of (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022b) to be an
∞-category, in order to apply the homotopy domain theory of the previous section.

For the next proposition, let P𝑟𝐿
𝜅 be the subcategory of 𝐶𝐴𝑇∞ whose objects are 𝜅-

compactly generated ∞-categories and whose morphisms are functors which preserve small
colimits and 𝜅-compact objects. Also, let 𝐶𝐴𝑇 𝑅𝑒𝑥(𝜅)

∞ denote the subcategory of 𝐶𝐴𝑇∞ whose
objects are ∞-categories which admit 𝜅-small colimits and whose morphisms are functors
which preserve 𝜅-small colimits. Finally, let 𝐿* : 𝐶𝑎𝑡∞ → 𝐶𝑎𝑡𝑅𝑒𝑥(𝜅)

∞ the functor which closes
an ∞-category to an ∞-category which admits 𝜅-small colimits, so 𝐿*𝐴 ≃ (𝑃𝐴)𝜅.
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Proposition 4.3.1. The ∞-category 𝐾𝑙(𝑃 ) admits limits for 𝜔𝑜𝑝-diagrams in P𝑟𝐿
𝜅 .

Proof. Given an 𝜔𝑜𝑝-diagram of pro-functors in 𝐾𝑙(𝑃 ) such that this is associated to 𝜔𝑜𝑝-
diagram 𝑝 of functors

𝑃𝐾0
𝑓0←− 𝑃𝐾1

𝑓1←− 𝑃𝐾2
𝑓2←− · · ·

in the ∞-category P𝑟𝐿
𝜅 , which admits all the small limits. Then, there is a limit (𝑇, {𝛾𝑘}𝑘∈𝜔)

in P𝑟𝐿
𝜅 for this 𝜔𝑜𝑝-diagram 𝑝. Since 𝑇 is presentable, so for any regular cardinal 𝜅, the full

subcategory of 𝜅-compacts 𝑇 𝜅 is essentially small (LURIE, 2009). Thus (𝑇 𝜅, {𝛾𝑘.𝑖}𝑘∈𝜔) is a
cone for the 𝜔𝑜𝑝-diagram in 𝐾𝑙(𝑃 ), where 𝑖 is the inclusion functor 𝑇 ⊇ 𝑇 𝜅.

Let (𝑇 ′, {𝜏𝑘}𝑘𝜔) be another cone for ({𝑃𝐾𝑘}𝑘∈𝜔, {𝑓𝑘}𝑘∈𝜔) in 𝐾𝑙(𝑃 ). Then, (𝑃𝑇 ′, {𝜏#
𝑘 ∈

P𝑟𝐿
𝜅 (𝑃𝑇 ′, 𝑃𝐾𝑘)}𝑖∈𝜔) is a cone from 𝜔𝑜𝑝-diagram 𝑝 in P𝑟𝐿

𝜅 . Thus, there is a unique edge (under
homotopy) ℎ : 𝑃𝑇 ′ → 𝑇 in P𝑟𝐿

𝜅 such that 𝛾𝑘.ℎ ≃ 𝜏#
𝑘 , for each 𝑘 ∈ 𝜔. Applying the full faithful

functor (−)𝜅 : P𝑟𝐿
𝜅 → 𝐶𝐴𝑇 𝑅𝑒𝑥(𝜅)

∞ (LURIE, 2009), one has that ℎ𝜅 ∈ 𝐹𝑢𝑛𝜅(𝐿*𝑇 ′, 𝑇 𝜅) ≃

𝐹𝑢𝑛(𝑇 ′, 𝑇 𝜅) is the unique edge (under homotopy) such that (𝛾𝑘.𝑖).ℎ𝜅 ≃ 𝜏#
𝑘 .𝑗, for each 𝑘 ∈ 𝜔

with 𝑗 : 𝐿*𝑇 ′ → 𝑃𝑇 ′ being a Yoneda embedding. Thus, there is a unique (under homotopy)
ℎ′ : 𝑇 ′ → 𝑇 𝜅 such that (𝛾𝑘.𝑖).ℎ′ ≃ 𝜏𝑘.

Since each 𝐹𝑢𝑛(𝐴, 𝑃𝐵) has initial object, any 𝐹𝑢𝑛(𝐴, 𝑃𝐵)(𝐹, 𝐺) is contractible or empty.
Thus, 𝐾(𝑃 )(𝐴, 𝐵) ⊆ 𝐹𝑢𝑛(𝐴, 𝑃𝐵) admits a homotopy partial order (h.p.o.). For the following
theorem, denote by 0𝑃 𝐴,𝑃 𝐵 in 𝐹𝑢𝑛𝐿(𝑃𝐴, 𝑃𝐵) as the constant functor in empty Kan complex
∅, that is

0𝑃 𝐴,𝑃 𝐵𝑓 := 𝜆𝑥 ∈ 𝐵.∅

Theorem 4.3.1. The ∞-category 𝐾𝑙(𝑃 ) is a (0,∞)-category.

Proof. 1. Since 𝑃𝐵 is presentable, 𝐹𝑢𝑛[𝐴, 𝑃𝐵] is presentable, thus ⟨𝐾𝑙(𝑃 )(𝐴, 𝐵),-⟩ is
complete. On the other hand, let 𝐹 be an object in 𝐹𝑢𝑛𝐿(𝑃𝐴, 𝑃𝐵), then

0𝑃 𝐴,𝑃 𝐵𝑓𝑥 = (𝜆𝑥 ∈ 𝐵.∅)𝑥 = ∅ ⊆ 𝐹𝑓𝑥,

for every object 𝑓 in 𝑃𝐴 and 𝑥 in 𝐵. Thus, 0𝑃 𝐴,𝑃 𝐵 is the least element (under homotopy)
in 𝐹𝑢𝑛𝐿(𝑃𝐴, 𝑃𝐵), i.e., 0𝐴,𝐵 is the least element in 𝐾𝑙(𝑃 )(𝐴, 𝐵).

2. Let {𝑝𝑖}𝑖∈𝜔 be a non-decreasing chain of morphisms in 𝐹𝑢𝑛𝐿(𝑃𝐴, 𝑃𝐵). By (1), the
colimit

b
𝑖∈𝜔 𝑝𝑖 exists.
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i. First let’s prove that for each object 𝑧 in 𝑃𝐴, its colimit is given by

(
j

𝑖∈𝜔

𝑝𝑖)𝑧 ≃
j

𝑖∈𝜔

𝑝𝑖𝑧.

Since 𝑝𝑖 -
b

𝑖∈𝜔 𝑝𝑖, given a vertex 𝑧 of 𝑃𝐴, by Definition 4.1.1, 𝑝𝑖𝑧 - (
b

𝑖∈𝜔 𝑝𝑖)𝑧.
On the other hand,

b
𝑖∈𝜔 𝑝𝑖𝑧 is the supremum (under equivalence) of {𝑝𝑖𝑧}, hence

𝑝𝑖𝑧 -
j

𝑖∈𝜔

𝑝𝑖𝑧 - (
j

𝑖∈𝜔

𝑝𝑖)𝑧.

Let 𝑞𝑧 :=
b

𝑖∈𝜔 𝑝𝑖𝑧, by Definition 4.1.1

𝑝𝑖 - 𝑞 -
j

𝑖∈𝜔

𝑝𝑖,

but
b

𝑖∈𝜔 𝑝𝑖 is the supremum (under equivalence) of {𝑝𝑖}𝑖∈𝜔, thus
b

𝑖∈𝜔 𝑝𝑖 ≃ 𝑞, by
Definition 4.1.1,

(
j

𝑖∈𝜔

𝑝𝑖)𝑧 ≃
j

𝑖∈𝜔

𝑝𝑖𝑧.

ii. Now let’s prove that the composition is continuous on the right. Take a functor 𝐹

in 𝐹𝑢𝑛𝜅(𝑃𝐴′, 𝑃𝐴) and a vertex 𝑧 of 𝑃𝐴′, then 𝐹𝑧 is a vertex of 𝑃𝐴, by (i) we
have

((
j

𝑖∈𝜔

𝑝𝑖).𝐹 )𝑧 ≃ (
j

𝑖∈𝜔

𝑝𝑖)(𝐹𝑧)

≃
j

𝑖∈𝜔

𝑝𝑖(𝐹𝑧)

≃
j

𝑖∈𝜔

(𝑝𝑖.𝐹 )𝑧

≃ (
j

𝑖∈𝜔

𝑝𝑖.𝐹 )𝑧,

since 𝐾𝑙(𝑃 ) does have enough points, it follows 𝐹𝑢𝑛𝐿(𝑃𝐴′, 𝑃𝐵),

(
j

𝑖∈𝜔

𝑝𝑖).𝐹 ≃
j

𝑖∈𝜔

𝑝𝑖.𝐹.

iii. Finally let’s prove that the composition is continuous on the right. Let 𝐺 be a
functor in 𝐹𝑢𝑛𝐿(𝑃𝐵, 𝑃𝐶) and 𝑧 an object in 𝑃𝐴. By (i) and the continuity of 𝐺,
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we have

(𝐺.
j

𝑖∈𝜔

𝑝𝑖)𝑧 ≃ 𝐺((
j

𝑖∈𝜔

𝑝𝑖)𝑧)

≃ 𝐺(
j

𝑖∈𝜔

𝑝𝑖𝑧)

≃
j

𝑖∈𝜔

𝐺(𝑝𝑖𝑧)

≃
j

𝑖∈𝜔

(𝐺.𝑝𝑖)𝑧

≃ (
j

𝑖∈𝜔

𝐺.𝑝𝑖)𝑧,

since 𝐾𝑙(𝑃 ) does have enough points, it follows

𝐺.
j

𝑖∈𝜔

𝑝𝑖 ≃
j

𝑖∈𝜔

𝐺.𝑝𝑖.

3. Let 𝐹 be an object in 𝐹𝑢𝑛𝐿(𝑃𝐴, 𝑃𝐵) and 𝑓 in 𝑃𝐴, hence

(0𝑃 𝐵,𝑃 𝐶 .𝐹 )𝑓 = 0𝑃 𝐵,𝑃 𝐶(𝐹𝑓) = 𝜆𝑥 ∈ 𝐶.∅ = 0𝑃 𝐴,𝑃 𝐶𝑓,

that is, 0𝑃 𝐵,𝑃 𝐶 .𝐹 = 0𝑃 𝐴,𝑃 𝐶 .

Proposition 4.3.2. For any small ∞-category 𝐴, there is an h-projection from 𝐴 to 𝐴⇒ 𝐴

in 𝐾𝑙(𝑃 ).

Proof. We have that there is a diagonal functor

𝛿 : 𝑃𝐴→ [𝑃𝐴, 𝑃𝐴]𝐿 ≃ 𝑃 (𝐴𝑜𝑝 × 𝐴) = 𝑃 (𝐴⇒ 𝐴),

where [𝑃𝐴, 𝑃𝐴]𝐿 is the ∞-category of the functors which preserve small colimits or left
adjoints. Since 𝛿 preserves all small colimits, by the Adjoint Functor Theorem, 𝛿 has a right
adjoint 𝛾 (LURIE, 2009). One the other hand, the diagonal functor 𝛿 is an h-embedding, then
the unit is an equivalence, i.e., 𝛾.𝛿 ≃ 𝐼𝑃 𝐴 and the counit is an h.p.o., that is, 𝛿.𝛾 - 𝐼𝑃 (𝐴⇒𝐴)

in the c.h.p.o. 𝐾𝑙(𝑃 )(𝐴 ⇒ 𝐴, 𝐴 ⇒ 𝐴). Thus, (𝛿, 𝛾) is a projection pair of 𝐴 to 𝐴 ⇒ 𝐴 in
𝐾𝑙(𝑃 ), which we call the diagonal projection.

Proposition 4.3.3. There is a reflexive non-contractible object in 𝐾𝑙(𝑃 ).
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Proof. First the trivial Kan complex Δ0 is a fixed point from endofunctor 𝐹𝑋 = (𝑋 ⇒ 𝑋)

on 𝐾𝑙(𝑃 ), since
𝑃Δ0 ≃ 𝑃 (Δ0 ×Δ0) = 𝑃 (Δ0 ⇒ Δ0).

that is, Δ0 ≃ (Δ0 ⇒ Δ0) = 𝐹Δ0 in 𝐾𝑙(𝑃 ). Let’s suppose that all the Kan complexes in
𝐹𝑖𝑥(𝐹 ) are equivalent to Δ0. Since 𝐾𝑙(𝑃 ) contains all the small ∞-categories, then there is
a small non-contractible Kan complex 𝐾0, i.e.,

Δ0 ≺ 𝐾0
(𝛿0,𝛾0)−→ 𝐹𝐾0

in (𝐾𝑙(𝑃 ))𝐻𝑃 𝑟𝑗 for all 𝑛 ∈ 𝜔, where 𝛿0 is the diagonal functor, which has its equivalent functor
in P𝑅

𝜅 = (P𝐿
𝜅 )𝑜𝑝 (LURIE, 2009). Since ({𝐹 𝑖𝐾0}𝑖∈𝜔, {𝐹 𝑖(𝛾0)}𝑖∈𝜔) is an 𝜔𝑜𝑝-diagram in P𝐿

𝜅 , by
Proposition 4.3.1 and Theorem 4.2.2, there is a colimit (𝐾, {(𝛿𝑖,𝜔, 𝛾𝜔,𝑖)𝑖∈𝜔}) in (𝐾𝑙(𝑃 ))𝐻𝑃 𝑟𝑗

for the 𝜔-diagram ({𝐹 𝑖𝐾0}𝑖∈𝜔, {𝐹 𝑖(𝛿0, 𝛾0)}𝑖∈𝜔). Thus,

Δ0 ≺ 𝐾0
𝛿0,𝜔→˓ 𝐾 ∈ 𝐹𝑖𝑥(𝐹 )

which is a contradiction.

Definition 4.3.1. Let 𝑋 be a Kan complex. Define 𝜋0(𝑋) := 𝜋0(|𝑋|) and 𝜋𝑛(𝑋, 𝑥) :=

𝜋𝑛(|𝑋|, 𝑥) for 𝑛 > 0, with | | : 𝐾𝑎𝑛→ 𝑇𝑜𝑝 be the functor of geometric realization from the
category of the Kan complexes to the category of the topological spaces.

The fact that a Kan complex 𝑋 is not contractible does not imply that every vertex 𝑥 ∈ 𝑋

contains relevant information, that is, the higher fundamental groups 𝜋𝑛(|𝑋|, 𝑥) are not trivial,
nor that it contains holes in all the higher dimensions. To guarantee the existence of non-trivial
Kan complexes as higher 𝜆-models, we present the following definition.

Definition 4.3.2 (Non-trivial Kan complex). A small Kan complex 𝑋 is non-trivial if

1. 𝜋0(𝑋) is infinite.

2. for each 𝑛 ≥ 1, there is a vertex 𝑥 ∈ 𝑋 such that 𝜋𝑛(𝑋, 𝑥) � *.

3. for each vertex 𝑥 of some 𝑘-simplex in 𝑋, with 𝑘 ≥ 2, there is 𝑛 ≥ 1 such 𝜋𝑛(𝑋, 𝑥) � *.

Example 4.3.1. For each 𝑛 ≥ 0, let the Kan complex 𝐵𝑛 ∼= 𝜕Δ𝑛
∙ (isomorphic). Where Δ𝑛

∙

have the same vertices and faces of Δ𝑛 but invertible 1-simplexes. Define the non-trivial Kan
complex 𝐵0 as the disjoint union:

𝐵0 =
∐︁

𝑛<𝜔

𝐵𝑛.
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Note that 𝐵𝑛 is “similar"to sphere 𝑆𝑛−1. Furthermore, 𝜋𝑛−1(𝐵𝑛) � * for all 𝑛 ≥ 2, and
there is 𝑘 ≥ 𝑛 such that 𝜋𝑘(𝐵𝑛) � * for each 𝑛 ≥ 3 (HATCHER, 2001).

Example 4.3.2. For each 𝑛 ≥ 2, let 𝐷𝑛 be a Kan complex, such that its 𝑘-th face set the
isomorphism

𝑑𝑘𝐷𝑛 ∼=

⎧⎪⎪⎨⎪⎪⎩
Δ𝑛−1

∙ if 𝑘 = 0,

𝜕Δ𝑛−1
∙ if 1 ≤ 𝑘 ≤ 𝑛,

Define the non-trivial Kan complex 𝐷0 as the disjoint union:

𝐷0 =
∐︁

𝑛<𝜔

𝐷𝑛.

Note that each Kan complex 𝐷𝑛, with 𝑛 ≥ 2, is “similar"to the sphere 𝑆𝑛−1 with 𝑛 holes.
Besides that its higher groups have the same properties from Example 4.3.1, we also have the
additional property 𝜋𝑛−2(𝐷𝑛) � * for all 𝑛 ≥ 3.

Example 4.3.3. For each 𝑛 ≥ 2, let 𝐸𝑛 be a Kan complex, such that its 𝑘-th face set the
isomorphism

𝑑𝑘𝐸𝑛 ∼=

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑛−2Δ𝑛−1

∙ if 0 ≤ 𝑘 ≤ 2,

𝜕𝑛−𝑘Δ𝑛−1
∙ if 3 ≤ 𝑘 ≤ 𝑛.

Define the non-trivial Kan complex 𝐸0 as the disjoint union

𝐸0 =
∐︁

𝑛<𝜔

𝐸𝑛.

Note that 𝐸0 has more information than the non-trivial Kan complexes 𝐵0 and 𝐷0 from
the previous examples, in the sense that for all 𝑛 ≥ 2, it satisfies the property 𝜋𝑘(𝐸𝑛) � * for
each 1 ≤ 𝑘 ≤ 𝑛− 1.

Proposition 4.3.4. For every non-trivial Kan complex 𝐾0, there exists a non-trivial Kan
complex 𝐾 ∈ 𝐹𝑖𝑥(𝐹 ) above 𝐾0.

Proof. Let 𝐾0 be a non-trivial Kan complex and (𝐾, {(𝛿𝑖,𝜔, 𝛿𝜔,𝑖)}𝑖∈𝜔) the colimit from 𝜔-
diagram ({𝐹 𝑖𝐾0}𝑖∈𝜔, {𝐹 𝑖(𝛿0, 𝛾0)}𝑖∈𝜔) in (𝐾𝑙(𝑃 ))𝐻𝑃 𝑟𝑗, with (𝛿0, 𝛾0) the first projection from
𝐾0 to 𝐾1 := 𝐹𝐾0. Let 𝑧 = (𝑥, 𝑦) be a vertex of some 𝑘-simplex in 𝐾𝑖+1, with 𝑘 ≥ 2. By
induction on 𝑖, there is 𝑛1, 𝑛2 ≥ 1, such that 𝜋𝑛1(𝐾𝑖, 𝑥), 𝜋𝑛2(𝐾𝑖, 𝑥) � *. For any 𝑛 ∈ {𝑛1, 𝑛2},
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one has

𝜋𝑛(𝐾𝑖+1, 𝑧) = 𝜋𝑛(𝐾𝑖 ⇒ 𝐾𝑖, 𝑧)

= 𝜋𝑛(𝐾𝑖 ×𝐾𝑖, (𝑥, 𝑦))

∼= 𝜋𝑛(𝐾𝑖, 𝑥)× 𝜋𝑛(𝐾𝑖, 𝑦)

� *

Given any vertex 𝑦 of some 𝑘-simplex in 𝐾, with 𝑘 ≥ 2. There is 𝑖 ≥ 0 and 𝑥 ∈ 𝐾𝑖 such that
𝛿𝑖,𝜔𝑥 ≃ 𝑦. Since there is 𝜋𝑛(𝐾𝑖, 𝑥) � *, then

𝜋𝑛(𝐾, 𝑦) ∼= 𝜋𝑛(𝐾, 𝛿𝑖,𝜔𝑥) � *.

Definition 4.3.3 (Non-Trivial Homotopy 𝜆-Model). Let 𝒦 be a Cartesian closed∞-category
with enough points. A Kan complex 𝐾 ∈ 𝒦 is a non-trivial homotopy 𝜆-model if 𝐾 is a
reflexive non-trivial Kan complex.

Note that every non-trivial homotopy 𝜆-model is a homotopic 𝜆-model as defined in
(MARTÍNEZ-RIVILLAS; QUEIROZ, 2022a) and (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022b), which
only captures information up to dimension 2 (for equivalences (2-paths) of 1-paths between
points). While the non-trivial homotopy 𝜆-models have no dimensional limit to capture relevant
information, and therefore, those can generate a richer higher 𝜆-calculus theory.

Example 4.3.4. Given the non-trivial Kan complexes 𝐵0, 𝐷0 and 𝐸0 of the Examples 4.3.1,
4.3.2 and 4.3.3 respectively. Starting from the diagonal projection as the initial projection
pair, these initial objects will generate the respective non-trivial Kan complexes 𝐵, 𝐷 and 𝐸

in 𝐹𝑖𝑥(𝐹 ). One can see that the non-trivial homotopy 𝜆-model 𝐸 has more information than
the homotopic 𝜆-models 𝐵 and 𝐷.
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5 ARBITRARY SYNTACTICAL HOMOTOPIC 𝜆-MODELS

In this chapter we discuss some consequences of the arbitrary syntactic homotopic lambda
models introduced in (MARTÍNEZ-RIVILLAS; QUEIROZ, 2022a), which correspond to a direct
generalization (2-dimensional) of the traditional structured set models of a Cartesian closed
category (1-dimensional) as can be seen in (BARENDREGT, 1984) and (HINDLEY; SELDIN, 2008).

Notation 5.0.1. For 𝐾 be a Kan simplex and 𝑛 ≥ 0, let 𝐾𝑛 = 𝐹𝑢𝑛(Δ𝑛, 𝐾) be the Kan
complex of the n-simplexes.

Denote by Ω𝑛(𝐾, 𝑎) the class of all the spheres 𝜕Δ𝑛 → 𝐾 with initial vertex 𝑎 ∈ 𝐾.
Let 𝑉 𝑎𝑟 be the set of all variables of 𝜆-calculus, for all 𝑛 ≥ 0, each assignment 𝜌 :

𝑉 𝑎𝑟 → 𝐾𝑛 (𝜌(𝑡) is a n-simplex of 𝐾, for each 𝑡 ∈ 𝑉 𝑎𝑟), 𝑥 ∈ 𝑉 𝑎𝑟 and 𝑓 ∈ 𝐾𝑚. Denote by
[𝑓/𝑥]𝜌 : 𝑉 𝑎𝑟 → 𝐾 the assignment

([𝑓/𝑥]𝜌)(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑓 if 𝑡 = 𝑥

𝜌(𝑡) if 𝑡 ̸= 𝑥.

Definition 5.0.1 (Syntactical Homotopic 𝜆-model). A homotopic 𝜆-model is a triple ⟨𝐾, ∙, J K⟩,
where 𝐾 is a Kan complex, ∙ : 𝐾 ×𝐾 → 𝐾 is a functor, and J K is a mapping which assigns
to 𝜆-term 𝑀 and each assignment 𝜌 : 𝑉 𝑎𝑟 → 𝐾𝑛, an n-simplex J𝑃 K𝜌 in 𝐾 for each 𝑛 ≥ 0

such that

1. J𝑥K𝜌 = 𝜌(𝑥);

2. J𝑀𝑁K𝜌 = J𝑀K𝜌 ∙ J𝑁K𝜌;

3. For each 𝑓 ∈ 𝐾𝑛, there is a limit 𝛽𝑓 : J𝜆𝑥.𝑀K𝜌 ∙ 𝑓 → J𝑀K[𝑓/𝑥]𝜌 from J𝑀K[𝑓/𝑥]𝜌 ∈ 𝐾𝑛;

4. J𝑀K𝜌 = J𝑀K𝜎 if 𝜌(𝑥) = 𝜎(𝑥) for 𝑥 ∈ 𝐹𝑉 (𝑀);

5. J𝜆𝑥.𝑀(𝑥)K𝜌 = J𝜆𝑦.𝑀(𝑦)K𝜌 if 𝑦 /∈ 𝐹𝑉 (𝑀);

6. if (∀𝑎 ∈ 𝐾0)(∀𝑛 ≥ 1)(∀𝜔 ∈ Ω𝑛(𝐾, 𝑎))
(︁
J𝑀K[𝜔/𝑥]𝜌 = J𝑁K[𝜔/𝑥]𝜌

)︁
, then

J𝜆𝑥.𝑀K𝜌 = J𝜆𝑥.𝑁K𝜌.

The homotopic model ⟨𝐾, ∙, J K⟩ is an extensional syntactical homotopic model if it satisfies
the additional property: there is a colimit 𝜂 : J𝑀K𝜌 → J𝜆𝑥.𝑀𝑥K𝜌 from J𝑀K𝜌 ∈ 𝐾𝑛 with
𝑥 /∈ 𝐹𝑉 (𝑀).
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Remark 5.0.1. Note that the condition (3) of the Definition 5.0.1, by the Homotopy Exten-
sion Lifting Property (LURIE, 2009), if 𝑥 ∈ 𝐹𝑉 (𝑃 ) any cone 𝛽𝑓 : J𝜆𝑥.𝑃 K𝜌 ∙ 𝑓 → J𝑃 K[𝑓/𝑥]𝜌 in
𝐾/J𝑃 K[𝑓/𝑥]𝜌 is a limit from n-simplex J𝑃 K[𝑓/𝑥]𝜌. Since 𝐾𝑛 is a Kan complex, by the theorem men-
tioned above, the induced functor 𝐹𝑢𝑛(Δ1, 𝐾𝑛)→ 𝐹𝑢𝑛(Δ0, 𝐾𝑛) is a trivial fibration, hence
the fibre (𝐾𝑛)/J𝑃 K[𝑓/𝑥]𝜌 is contractible, that is 𝐾/J𝑃 K[𝑓/𝑥]𝜌 is contractible. Thus the condition
(3) is reduced to the existence of a cone 𝛽𝑓 : J𝜆𝑥.𝑃 K𝜌 ∙ 𝑓 → J𝑃 K[𝑓/𝑥]𝜌 in (𝐾𝑛)/J𝑃 K[𝑓/𝑥]𝜌 .

Definition 5.0.2. Let M = ⟨𝐾, ∙, J K⟩ be a syntactic homotopic 𝜆-model. The notion of
satisfaction in M is defined as

M, 𝜌 |= 𝑀 = 𝑁 ⇐⇒ J𝑀K𝜌 ≃ J𝑁K𝜌

M |= 𝑀 = 𝑁 ⇐⇒ ∀𝜌 (M, 𝜌 |= 𝑀 = 𝑁)

Lemma 5.0.1. Let M = ⟨𝐾, ∙, J K⟩ be a syntactical homotopic 𝜆-model. Then, for all 𝑀 ,
𝑁 , 𝑥, 𝑛 ≥ 0 and 𝜌 : 𝑉 𝑎𝑟 → 𝐾𝑛,

(i) J[𝑧/𝑥]𝑀K𝜌 = J𝑀K[𝜌(𝑧)/𝑥]𝜌,

(ii) if J[𝑁/𝑥]𝑀K𝜌 = J𝑀K[J𝑁K𝜌/𝑥]𝜌, then J𝜆𝑦.[𝑁/𝑥]𝑀K𝜌 = J𝜆𝑦.𝑀K[J𝑁K𝜌/𝑥]𝜌,

(iii) J[𝑁/𝑥]𝑀K𝜌 = J𝑀K[J𝑁K𝜌/𝑥]𝜌.

Proof. (i) One has that,

J[𝑧/𝑥]𝑀K𝜌 = J[𝑧/𝑥]𝑀K[𝜌(𝑧)/𝑧]𝜌
𝛽𝜌(𝑧)←−− J𝜆𝑧.[𝑧/𝑥]𝑀K𝜌 ∙ 𝜌(𝑧) = J𝜆𝑥.𝑀K𝜌 ∙ 𝜌(𝑧);

J𝑀K[𝜌(𝑧)/𝑥]𝜌
𝛽𝜌(𝑧)←−− J𝜆𝑥.𝑀K𝜌 ∙ 𝜌(𝑧)

That is, J[𝑧/𝑥]𝑀K𝜌 = J𝑀K[𝜌(𝑧)/𝑥]𝜌.

(ii) First suppose 𝑥 /∈ 𝐹𝑉 (𝑁). Let 𝑦 ̸= 𝑥 and 𝑦 /∈ 𝐹𝑉 (𝑁). For 𝜌′ = [J𝑁K𝜌/𝑥]𝜌 and any
𝜔 ∈ Ω𝑛(𝐾, 𝑎), with an arbitrary vertex 𝑎 ∈ 𝐾 and any 𝑛 ≥ 1, one has

J[𝑁/𝑥]𝑀K[𝜔/𝑦]𝜌′ = J[𝑁/𝑥]𝑀K[𝜔/𝑦]𝜌

= J𝑀K[𝜔/𝑦][J𝑁K𝜌/𝑥]𝜌; by hypothesis

= J𝑀K𝜔/𝑦]𝜌′ .

By Definition 5.0.1 (6), J𝜆𝑦.[𝑁/𝑥]𝑀K𝜌′ = J𝜆𝑦.𝑀K𝜌′ , hence

J𝜆𝑦.[𝑁/𝑥]𝑀K𝜌 = J𝜆𝑦.[𝑁/𝑥]𝑀K𝜌′ = J𝜆𝑦.𝑀K[J𝑁K𝜌/𝑥]𝜌.
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If 𝑥 ∈ 𝐹𝑉 (𝑁), the proof is identical to (BARENDREGT, 1984, p.103).

(iii) Follows easily by induction on the 𝜆-term 𝑀 .

Notation 5.0.2. Let 𝜆𝛽 be the theory of 𝛽-equality. The notation 𝜆𝛽 ⊢𝑀 = 𝑁 means that
the equality 𝑀 = 𝑁 is proved from the theory 𝜆𝛽.

Theorem 5.0.1. Let M = ⟨𝐾, ∙, J K⟩ be a syntactical homotopic 𝜆-model. Then

𝜆𝛽 ⊢𝑀 = 𝑁 =⇒ M |= 𝑀 = 𝑁.

Proof. By induction on the length of proof. For the axiom (𝜆𝑥.𝑀)𝑁 = [𝑁/𝑥]𝑀 we proceed

J(𝜆𝑥.𝑀)𝑁K𝜌 = J𝜆𝑥.𝑀K𝜌 ∙ J𝑁K𝜌

𝛽J𝑁K𝜌−−−→ J𝑀K[J𝑁K𝜌/𝑥]𝜌

= J[𝑁/𝑥]𝑀K𝜌

The rule 𝑀 = 𝑁 =⇒ 𝜆𝑥.𝑀 = 𝜆𝑥.𝑁 follows from Definition 5.0.1 (6). The other rules are
trivial.

Definition 5.0.3 (Reflexive and Extensional Kan complex). Let 𝐾 be a c.h.p.o. The Kan
complex 𝐾 is called reflexive if the full subcategory [𝐾 → 𝐾] ⊆ 𝐹𝑢𝑛(𝐾, 𝐾) of the continuous
functors is a retract of 𝐾, i.e., there are continuous functors

𝐹 : 𝐾 → [𝐾 → 𝐾], 𝐺 : [𝐾 → 𝐾]→ 𝐾

such that there is a natural equivalence 𝜀 : 𝐹𝐺→ 𝑖𝑑[𝐾→𝐾].

If there is a natural equivalence 𝜂 : 𝑖𝑑𝐾 → 𝐺𝐹 , we call to 𝐾 an extensional Kan complex.

Example 5.0.1. The c.h.p.o 𝐾∞, of Definition 4.1.6, is an extensional Kan complex. Since
𝐶𝐻𝑃𝑂 is a (0,∞)-category, by Remark 4.2.3, 𝐾∞ is a solution for the Homotopy Domain
Equation 𝑋 ≃ [𝑋 → 𝑋] in 𝐶𝐻𝑃𝑂.

Remark 5.0.2. In the Definition 5.0.3, note that the quadruple ⟨𝐾, 𝐹, 𝐺, 𝜀⟩ is a homotopic
𝜆-model in the c.c.i 𝐶𝐻𝑃𝑂, and the quintuple ⟨𝐾, 𝐹, 𝐺, 𝜀, 𝜂⟩ is an extensional homotopic
𝜆-model in the same ∞-category.

Definition 5.0.4. Let 𝐾 be a reflexive Kan complex (via 𝐹 , 𝐺 and 𝛥).
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1. For 𝑓, 𝑔 : Δ𝑛 → 𝐾 (or also 𝑓, 𝑔 ∈ 𝐾𝑛) define the n-simplex

𝑓 ∙Δ𝑛 𝑔 = 𝐹 (𝑓)(𝑔).

In particular for vertices 𝑎, 𝑏 ∈ 𝐾,

𝑎 ∙ 𝑏 = 𝑎 ∙Δ0 𝑏 = 𝐹 (𝑎)(𝑏),

besides, 𝐹 (𝑎)(−) = 𝑎∙ (−) and 𝐹 (−)(𝑏) = (−)∙ 𝑏 are functors on 𝐾, then for 𝑓 ∈ 𝐾𝑛

one defines the 𝑛-simplexes

𝑎 ∙ 𝑓 = 𝐹 (𝑎)(𝑓), 𝑓 ∙ 𝑏 = 𝐹 (𝑓)(𝑏).

2. For each 𝑛 ≥ 0, let 𝜌 be a valuation at 𝐾𝑛. Define the interpretation J K𝜌 : Λ → 𝐾𝑛

by induction as follows

a) J𝑥K𝜌 = 𝜌(𝑥),

b) J𝑀𝑁K𝜌 = J𝑀K𝜌 ∙ J𝑁K𝜌,

c) J𝜆𝑥.𝑀K𝜌 = 𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌), where 𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌 = J𝑀K[−/𝑥]𝜌.

Lemma 5.0.2. If 𝑛 ≥ 0 and 𝜌 : 𝑉 𝑎𝑟 → 𝐾𝑛, then 𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌 defines a continuous functor
Δ𝑛 → [𝐾 → 𝐾]; hence J𝜆𝑥.𝑀K𝜌 is well-defined in Definition 5.0.4 (2.c).

Proof. By induction on 𝑃 we show that 𝜆𝑓.J𝑃 K[𝑓/(𝑥)(𝑖)]𝜌 defines a continuous functor
𝐾 × {𝑖} → 𝐾 for each vertex 𝑖 ∈ Δ𝑛 and all 𝜌 in 𝐾𝑛, where the map J𝑃 K[−/(𝑥)(−)]𝜌 :

𝐾 ×Δ𝑛 → 𝐾 (with 𝜌(𝑥)(−) : Δ𝑛 → 𝐾) depicts to 𝜆𝑓.J𝑃 K[𝑓/𝑥]𝜌 : 𝐾 → 𝐾𝑛.
For each 𝑓 : Δ𝑚 → 𝐾 one has:

(a) J𝑥K[𝑓/(𝑥)(𝑖)]𝜌 = 𝑓 ∈ 𝐾𝑚. So 𝜆𝑓.J𝑥K[𝑓/(𝑥)(𝑖)]𝜌 = 𝐼𝐾 (Identity functor), which is continuous.

(b) J𝑥K[𝑓/(𝑦)(𝑖)]𝜌 = 𝑠𝑚(𝜌(𝑥)(𝑖)) ∈ 𝐾𝑚, with 𝑠𝑚 the degeneration operator applied m-times
to vertex 𝜌(𝑥)(𝑖). Then 𝜆𝑓.J𝑥K[𝑓/(𝑦)(𝑖)]𝜌 is the constant functor in the vertex 𝜌(𝑥)(𝑖),
which is continuous.

(c) J𝑀𝑁K[𝑓/(𝑥)(𝑖)]𝜌 = J𝑀K[𝑓/(𝑥)(𝑖)]𝜌∙Δ𝑚J𝑁K[𝑓/(𝑥)(𝑖)]𝜌 ∈ 𝐾𝑚; since by I.H (Induction Hypothe-
sis) J𝑀K[𝑓/(𝑥(𝑖))]𝜌, J𝑁K[𝑓/(𝑥)(𝑖)]𝜌 are 𝑚-simplexes (can be degenerates), hence J𝑀𝑁K[𝑓/(𝑥)(𝑖)]𝜌

is a m-simplex. Besides, the functor J𝑀𝑁K[−/(𝑥)(𝑖)]𝜌 = 𝐹 (J𝑀K[−/(𝑥)(𝑖)]𝜌)(J𝑁K[−/(𝑥)(𝑖)]𝜌)

is continuous by I.H and continuity of 𝐹 .



75

(d) J𝜆𝑦.𝑀K[𝑓/(𝑥)(𝑖)]𝜌 = 𝐺(𝜆𝑔.J𝑀K[𝑔/𝑦][𝑓/(𝑥)(𝑖)]𝜌) ∈ 𝐾𝑚; by I.H 𝜆𝑓.𝜆𝑔.J𝑀K[𝑔/𝑦][𝑓/𝑥(𝑖)]𝜌 : 𝐾 →

[𝐾 → 𝐾] is a continuous functor in 𝑓 and 𝑔 separately, so by Lemma 4.1.2 is continu-
ous. Thus, 𝜆𝑔.J𝑀K[𝑔/𝑦][𝑓/(𝑥)(𝑖)]𝜌 is an 𝑚-simplex at [𝐾 → 𝐾], applying the continuous
functor 𝐺 : [𝐾 → 𝐾] → 𝐾 on it, one has an 𝑚-simplex in 𝐾, and hence the functor
J𝜆𝑦.𝑀K[−/(𝑥)(𝑖)]𝜌 = 𝐺 ∘ J𝑀K[−/𝑦][−/𝑥(𝑖)]𝜌 is continuous.

For the proof of Theorem 5.0.2, we make the following remark.

Remark 5.0.3. Just as the category 𝑆𝑒𝑡 has enough points, the ∞-category S has enough
points in the sense: Let 𝑓, 𝑔 : 𝑋 → 𝑌 be functors between Kan complexes.If for each 𝑥 ∈ 𝑋,
𝑛 ≥ 0 one has 𝑓𝑛

𝑥 = 𝑔𝑛
𝑥 , with 𝑓𝑛

𝑥 : 𝜋𝑛(𝑋, 𝑥)→ 𝜋𝑛(𝑌, 𝑓(𝑥)) and 𝑔𝑛
𝑥 : 𝜋𝑛(𝑋, 𝑥)→ 𝜋𝑛(𝑌, 𝑔(𝑥))

as maps induced by 𝑓 and 𝑔 respectively, then one has functorial equivalence 𝑓 ≃ 𝑔. The
property ‘ S has enough points’ can also be interpreted as: given a morphism 𝑓 : 𝑋 → 𝑌 in
S, if induced map 𝑓𝑛

𝑥 : 𝜋𝑛(𝑋, 𝑥) → 𝜋𝑛(𝑌, 𝑓(𝑥)) is an isomorphism of groups for each 𝑛 ≥ 0

and 𝑥 ∈ 𝑋, then 𝑓 is a homotopy equivalence.

Theorem 5.0.2. Let 𝐾 be a reflexive Kan complex via the morphism 𝐹 , 𝐺, and let M =

⟨𝐾, ∙, J K⟩. Then

1. M is a syntactic homotopic 𝜆-model.

2. M is extensional iff there is a natural equivalence 𝜂 : 𝑖𝑑𝐾 → 𝐺𝐹.

Proof. 1. The conditions in Definition 5.0.1 (1), (2) are trivial. As to (3), given 𝑔 ∈ 𝐾𝑛,

J𝜆𝑥.𝑀K𝜌 ∙ 𝑔 = 𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌) ∙ 𝑔

= 𝐹 (𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌))(𝑔)
(𝜀𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌

)𝑔

−−−−−−−−−→ (𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌)(𝑔)

= J𝑀K[𝑔/𝑥]𝜌,

where 𝜀𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌 is the natural equivalence, induced by 𝜀, between the functors 𝐹 (𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌),
𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌 : 𝐾 → 𝐾𝑛. Hence (𝜀𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌)𝑔 is the equivalence induced by the 𝑛-simplex

𝑔 in 𝐾.
The condition (4) is trivial, since if J𝑀K𝜌 ̸= J𝑀K𝜎 so there is 𝑥 ∈ 𝐹𝑉 (𝑀) such that

𝜌(𝑥) ̸= 𝜎(𝑥). The condition (5), given any vertex 𝑎 ∈ 𝐾 and 𝑦 /∈ 𝐹𝑉 (𝑀)

𝜆𝑓.J𝑀(𝑦)K[𝑓/𝑦]𝜌 = 𝜆𝑓.J𝑀(𝑥)K[𝑓/𝑥]𝜌.
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Applying 𝐺 and by Definition 5.0.4 (c), it follows that

J𝜆𝑦.𝑀(𝑦)K𝜌 = 𝐺(𝜆𝑓.J𝑀(𝑦)K[𝑓/𝑦]𝜌)

= 𝐺(𝜆𝑓.J𝑀(𝑥)K[𝑓/𝑥]𝜌)

= J𝜆𝑥.𝑀(𝑥)K𝜌

Condition (6). By hypothesis, for every vertex 𝑎 ∈ 𝐾, 𝑛 ≥ 1 and 𝜔 ∈ Ω𝑛(𝐾, 𝑎)

(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌)(𝜔) = J𝑀K[𝜔/𝑥]𝜌

= J𝑁K[𝜔/𝑥]𝜌

= (𝜆𝑓.J𝑁K[𝑓/𝑥]𝜌)(𝜔),

since 𝐾 does have enough points, then

𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌 = 𝜆𝑓.J𝑁K[𝑓/𝑥]𝜌

applying 𝐺 and by Definition 5.0.4 (c),

J𝜆𝑥.𝑀K𝜌 = 𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌)

= 𝐺(𝜆𝑓.J𝑁K[𝑓/𝑥]𝜌)

= J𝜆𝑥.𝑁K𝜌

2. Suppose that M is extensional. Let 𝜔 ∈ Ω𝑛(𝐾, 𝑎). Then for all 𝑎 ∈ 𝐾

(𝐺𝐹 (𝜔)) ∙ 𝑎 = 𝐹 (𝐺𝐹 (𝜔))(𝑎) = ((𝐹𝐺)𝐹 (𝜔))(𝑎) (𝜀𝜔𝐹 )𝑎−−−−→ 𝐹 (𝜔)(𝑎) = 𝜔 ∙ 𝑎,

by extensionality
𝐺𝐹 (𝜔) (𝜀𝜔𝐹 )−−−→ 𝜔 = 𝑖𝑑𝐾(𝜔),

since 𝐾 does have enough points, hence

𝐺𝐹
𝜀𝐹−→ 𝐼𝑑𝐾 .

If 𝐺𝐹
𝜂−→ 𝐼𝑑𝐾 . For all 𝜔 ∈ Ω𝑛(𝐾, 𝑎) by hypothesis and Definition 5.0.4

𝐹 (𝑎)(𝜔) = 𝑎 ∙ 𝜔
𝜎𝜔−→ 𝑎′ ∙ 𝜔 = 𝐹 (𝑎′)(𝜔),

since 𝐾 does have enough points, 𝐹𝑎
𝜎−→ 𝐹𝑎′. Applying 𝐺, it follows that

𝑎
𝜂𝑎−→ 𝐺𝐹 (𝑎) 𝐺𝜎−→ 𝐺𝐹 (𝑎′) 𝜂𝑎′−→ 𝑎′,

where 𝜂𝑎′ is an inverse of 𝜂𝑎′ .
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5.1 THE THEORY OF AN ARBITRARY HIGHER 𝜆-MODEL

One takes advantage of some basic properties of every homotopic 𝜆-model (e.g. extensional
Kan complex) to explore the higher 𝛽𝜂-conversions, which would correspond to proofs of
equality between terms of a theory of equality of any extensional Kan complex.

If we understand an arbitrary higher 𝜆-model as an extensional Kan complex, the following
question arises: What would be the syntactic structure of the equality theory of any higher
𝜆-model?. In this chapter we will try to answer this question exploring the theory of any
extensional Kan complex in order to generalize the 𝛽𝜂-conversions to (𝑛)𝛽𝜂-conversions in a
set Λ𝑛−1(𝑎, 𝑏) by (𝑛)𝛽𝜂-contractions induced by the extensionality from a Kan complex.

We shall see some consequences of the equality theory 𝑇ℎ(𝒦) of an extensional Kan
complex 𝒦 with some examples of equality and nonequality of terms. This paves the way for a
definition of the (𝑛)𝛽𝜂-conversions, which will belong to the set of 𝑛-conversions Λ𝑛 induced
by the least theory of equality on all the extensional Kan complexes, denoted by HoTFT.

Let 𝒦 = ⟨𝐾, 𝐹, 𝐺, 𝜀⟩ be a reflexive Kan complex, we have the following remark.

Remark 5.1.1. Given 𝑔 ∈ 𝐾𝑛 and 𝜌 : 𝑉 𝑎𝑟 → 𝐾, the higher 𝛽-contraction is interpreted by

J𝜆𝑥.𝑀K𝜌 ∙ 𝑔 = 𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌) ∙ 𝑔

= 𝐹 (𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌))(𝑔)
(𝜀𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌

)𝑔

−−−−−−−−−→ (𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌)(𝑔)

= J𝑀K[𝑔/𝑥]𝜌,

where 𝜀𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌 is the natural equivalence, induced by 𝜀, between the functors

𝐹 (𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌), 𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌 : 𝐾 → 𝐾.

Hence (𝜀𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌)𝑔 is the equivalence induced by the 𝑛-simplex 𝑔 in 𝐾.

If ⟨𝐾, 𝐹, 𝐺, 𝜀, 𝜂⟩ is extensional, so that the 𝛽-contraction is modelled by 𝜀 : 𝐹𝐺→ 1; the
𝜂-contraction (reverse) is modelled by 𝜂 : 1→ 𝐺𝐹 .
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Proposition 5.1.1. Let 𝑥, 𝑦, 𝑀, 𝑁, 𝑃 be 𝜆-terms. The interpretations of 𝛽-reductions

(𝜆𝑥.𝑀)((𝜆𝑦.𝑁)𝑃 )
1𝛽

��

1𝛽 // [(𝜆𝑦.𝑁)𝑃/𝑥]𝑀
[1𝛽]
��

(𝜆𝑥.𝑀)([𝑃/𝑦]𝑁)
1𝛽

// [([𝑃/𝑦]𝑁)/𝑥]𝑀

are equivalent in every reflexive Kan complex ⟨𝐾, 𝐹, 𝐺, 𝜀⟩.

Proof. Let 𝑎 = J𝑃 K𝜌, J𝜆𝑦.𝑁K𝜌 ∙ 𝑎
𝑓−→ J𝑁K[𝑎/𝑦]𝜌, 𝑅 = 𝐹𝐺(𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌), 𝐿 = 𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌

and 𝜀′ = 𝜀𝜆𝑓.J𝑀K[𝑓/𝑥]𝜌 . One has that the natural equivalence 𝜀′ : 𝑅 → 𝐿 makes the following
diagram (weakly) commute:

𝑅(J𝜆𝑦.𝑁K𝜌 ∙ 𝑎)
𝑅(𝑓)

��

𝜀′
J𝜆𝑦.𝑁K𝜌∙𝑎// 𝐿(J𝜆𝑦.𝑁K𝜌 ∙ 𝑎)

𝐿(𝑓)
��

𝑅(J𝑁K[𝑎/𝑦]𝜌)
𝜀′
J𝑁K[𝑎/𝑦]𝜌

// 𝐿(J𝑁K[𝑎/𝑦]𝜌)

which, by Remark 5.1.1, corresponds to the (weakly) commutative diagram

J𝜆𝑥.𝑀K𝜌 ∙ (J𝜆𝑦.𝑁K𝜌 ∙ 𝑎)
𝑅(𝑓)

��

𝜀′
J𝜆𝑦.𝑁K𝜌∙𝑎// J𝑀K[J𝜆𝑦.𝑁K𝜌∙𝑎/𝑥]

𝐿(𝑓)
��

J𝜆𝑥.𝑀K𝜌 ∙ J𝑁K[𝑎/𝑦]𝜌
𝜀′
J𝑁K[𝑎/𝑦]𝜌

// J𝑀K[J𝑁K[𝑎/𝑦]𝜌/𝑥]

Example 5.1.1. The 𝜆-term (𝜆𝑥.𝑢)((𝜆𝑦.𝑣)𝑧) has two 𝛽-reductions:

(𝜆𝑥.𝑢)((𝜆𝑦.𝑣)𝑧)
1𝛽

��

1𝛽 // [(𝜆𝑦.𝑣)𝑧/𝑥]𝑢
[1𝛽]
��

(𝜆𝑥.𝑢)([𝑧/𝑦]𝑣)
1𝛽

// [𝑣/𝑥]𝑢

making 𝑢 = 𝑀 , 𝑣 = 𝑁 and 𝑧 = 𝑃 , by Proposition 5.1.1, the interpretations of these 𝛽-
reductions are equivalent in all reflexive Kan complexes ⟨𝐾, 𝐹, 𝐺, 𝜀⟩.

Next, we shall give examples where the reductions of 𝜆-terms are not equivalent.

Example 5.1.2. The 𝜆-term (𝜆𝑥.(𝜆𝑦.𝑦𝑥)𝑧)𝑣 has the 𝛽-reductions

(𝜆𝑥.(𝜆𝑦.𝑦𝑥)𝑧)𝑣
1𝛽
��

1𝛽 // (𝜆𝑦.𝑦𝑣)𝑧
1𝛽

��(𝜆𝑥.𝑧𝑥)𝑣 1𝛽 // 𝑧𝑣



79

Given a reflexive Kan complex ⟨𝐾, 𝐹, 𝐺, 𝜀⟩. Let 𝜌(𝑣) = 𝑐, 𝜌(𝑧) = 𝑑 vertices at 𝐾 and
𝑅 = 𝐹𝐺. The interpretation of the 𝛽-reductions of (𝜆𝑥.(𝜆𝑦.𝑦𝑥)𝑧)𝑣 depends on solving the
diagram equation

𝑅(𝜆𝑎.𝑅(𝜆𝑏.𝑏 ∙ 𝑎)(𝑑))(𝑐)
(𝑅(?))𝑐

��

(𝜀𝑓 )𝑐 // 𝑅(𝜆𝑏.𝑏 ∙ 𝑐)(𝑑)
(𝜀𝜆𝑏.𝑏∙𝑐)𝑑

��
𝑅(𝜆𝑎.𝑑 ∙ 𝑎)(𝑐)

(𝜀𝑔)𝑐

// 𝑑 ∙ 𝑐

where 𝑓 = 𝜆𝑎.𝑅(𝜆𝑏.𝑏 ∙ 𝑎)(𝑑) and 𝑔 = 𝜆𝑎.𝑑 ∙ 𝑎 are functors at [𝐾 → 𝐾]. One has
ℎ𝑎 = (𝜀𝜆𝑏.𝑏∙𝑎)𝑑 : 𝑓(𝑎) → 𝑔(𝑎) for each vertex 𝑎 ∈ 𝐾, but ℎ𝑎 is not necessarily a functo-
rial equivalence in any reflexive Kan complex ⟨𝐾, 𝐹, 𝐺, 𝜀⟩ to get the diagram to commute:

𝑅(𝑓)(𝑐)
(𝑅(ℎ?))𝑐

��

(𝜀𝑓 )𝑐 // 𝑓(𝑐)
ℎ𝑐

��
𝑅(𝑔)(𝑐)

(𝜀𝑔)𝑐

// 𝑔(𝑐)

Example 5.1.3. The 𝜆-term (𝜆𝑧.𝑥𝑧)𝑦 has the 𝛽𝜂-contractions

(𝜆𝑧.𝑥𝑧)𝑦
1𝛽

++

1𝜂

33 𝑥𝑦

Take an extensional Kan complex ⟨𝐾, 𝐹, 𝐺, 𝜀, 𝜂⟩. Let 𝜌(𝑥) = 𝑎 and 𝜌(𝑦) = 𝑏 be vertices of
𝐾. The interpretation of a 𝜆-term is given by: J(𝜆𝑧.𝑥𝑧)𝑦K𝜌 = J𝜆𝑧.𝑥𝑧K𝜌 ∙ 𝑏 = 𝐺(𝜆𝑐.𝐹 (𝑎)(𝑐))∙

𝑏 = 𝐺(𝐹 (𝑎)) ∙ 𝑏 = (𝐹𝐺𝐹 )(𝑎)(𝑏). The interpretation of the 𝛽𝜂-contractions corresponds to
the degenerated diagrams

(𝐹𝐺𝐹 )(𝑎)(𝑏)
(𝜀𝐹 (𝑎))𝑏

��

1

((

𝐹 (𝑎)(𝑏)
(𝐹 (𝜂𝑎))𝑏

��

1

''
𝐹 (𝑎)(𝑏)

(𝐹 (𝜂𝑎))𝑏

// (𝐹𝐺𝐹 )(𝑎)(𝑏) (𝐹𝐺𝐹 )(𝑎)(𝑏)
(𝜀𝐹 (𝑎))𝑏

// 𝐹 (𝑎)(𝑏)

But the diagrams do not necessarily commute in any extensional Kan complex ⟨𝐾, 𝐹, 𝐺, 𝜀, 𝜂⟩.

It is known that the types of HoTT correspond to ∞-groupoids. Taking advantage of this
situation, for a reflexive Kan complex, we define the theory of equality on that Kan complex
(∞-groupoid) as follows:

Definition 5.1.1 (Theory of an extensional Kan complex). Let 𝒦 = ⟨𝐾, 𝐹, 𝐺, 𝜀, 𝜂⟩ an exten-
sional Kan complex. Define the theory of 1-equality of 𝒦 as the class

𝑇ℎ1(𝒦) = {𝑀 = 𝑁 | J𝑀K𝜌 ≃ J𝑁K𝜌 for all 𝜌 : 𝑉 𝑎𝑟 → 𝐾}
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where J𝑀K𝜌 ≃ J𝑁K𝜌 be the equivalence between vertices of 𝐾 for some equivalence J𝑠K𝜌 :

J𝑀K𝜌 → J𝑁K𝜌, and “𝑠” denote the conversion between 𝜆-terms 𝑀 and 𝑁 induced by J𝑠K𝜌

for all evaluation 𝜌.

In the Definition 5.1.1, notice that the equivalence J𝑀K𝜌 ≃ J𝑁K𝜌 for all 𝜌, induces the
intentional equality 𝑀 = 𝑁 , which can be seen as an identity type based on computational
paths (QUEIROZ; OLIVEIRA; RAMOS, 2016); the conversion 𝑠 may also be seen as a computati-
onal proof (a finite sequence of basic rewrites (QUEIROZ; OLIVEIRA; RAMOS, 2016) induced by
𝐾) of the proposition 𝑀 = 𝑁 in the theory 𝑇ℎ1(𝒦).

Remark 5.1.2. If 𝑠 is a 𝛽-contraction or 𝜂-contraction and the functor 𝐹 is not surjective for
objects, the equality 𝑀 =1𝛽 𝑁 : 𝐾 or 𝑀 =1𝜂 𝑁 : 𝐾 is not necessarily a judgmental equality
(as it happens in HoTT); J𝑀K𝜌 and J𝑁K𝜌 may be different vertices in 𝐾. Thus, the theory
𝑇ℎ1(𝒦) may be seen as the family of all the identity types which are inhabited by paths which
are not necessarily equal to the reflexive path refl𝑀 .

Notation 5.1.1. Let 𝑀 and 𝑁 be 𝜆-terms (𝑀, 𝑁 ∈ Λ0) and 𝒦 be an extensional Kan
complex. Denote by Λ0(𝐾)(𝑀, 𝑁) is the set of all the 1-conversions from 𝑀 to 𝑁 induced
by 𝒦. We write by Λ1(𝒦) := ⋃︀

𝑀,𝑁∈Λ0 Λ0(𝒦)(𝑀, 𝑁) be the family of all the 1-conversions
induced by 𝒦.

Let 𝑠, 𝑡 ∈ Λ0(𝒦)(𝑀, 𝑁). Denote by Λ0(𝒦)(𝑀, 𝑁)(𝑠, 𝑡) is the set of all the 2-conversions
from 𝑠 to 𝑡. And let Λ2(𝒦) := ⋃︀

𝑠,𝑡∈Λ1

⋃︀
𝑀,𝑁∈Λ0 Λ0(𝒦)(𝑀, 𝑁)(𝑠, 𝑡) is the family of all the

2-conversions induced by 𝒦, and so on we keep iterating for the families Λ3(𝒦), Λ4(𝒦), . . ..

Since 𝒦 is a reflexive Kan complex, 𝑇ℎ1(𝒦) is an intentional 𝜆-theory of 1-equality which
contains the theory 𝜆𝛽𝜂. Iterate again, we have the 𝜆-theory of 2-equality

𝑇ℎ2(𝒦) = {𝑟 = 𝑠 | ∀𝜌 (J𝑟K𝜌 ≃ J𝑠K𝜌) and 𝑟, 𝑠 ∈ Λ0(𝒦)(𝑀, 𝑁)}.

If we keep iterating, we can see that the reflexive Kan complex 𝒦 will certainly induce a
𝜆-theory of higher equality

𝑇ℎ(𝒦) =
⋃︁

𝑛≥1
𝑇ℎ𝑛(𝒦).

Just as 𝑇ℎ1(𝒦) contains 𝜆𝛽𝜂, 𝑇ℎ(𝒦) will contain a (simple version of) ‘Homotopy Type-
Free Theory’, defined as follows.
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Definition 5.1.2 (Homotopy Type-Free Theory). A Homotopy Type-Free Theory (HoTFT)
consists of the least theory of equality, that is

𝐻𝑜𝑇𝐹𝑇 :=
⋂︁
{𝑇ℎ(𝒦) | 𝒦 is an extensional Kan complex}.

And for each 𝑛 ≥ 0 let

Λ𝑛 :=
⋂︁
{Λ𝑛(𝒦) | 𝒦 is an extensional Kan complex}

be the set of 𝑛𝛽𝜂-conversions.

For example, let 𝒦 = ⟨𝐾, 𝐹, 𝐺, 𝜀, 𝜂⟩ be an extensional Kan Complex and 𝑥, 𝑀 and
𝑁 𝜆-terms. By Definition 5.1.2, the 𝛽-contraction (𝜆𝑥.𝑀)𝑁 1𝛽−→ [𝑁/𝑥]𝑀 inhabit the set
Λ0((𝜆𝑥.𝑀)𝑁, [𝑁/𝑥]𝑀);

J1𝛽K𝜌 = (𝜀J𝑀K[−/𝑥]𝜌)J𝑁K𝜌 ∈ 𝐾(J(𝜆𝑥.𝑀)𝑁K𝜌, J[𝑁/𝑥]𝑀K𝜌),

and the 𝜂-contraction 𝜆𝑥.𝑀𝑥
1𝜂−→𝑀 , 𝑥 /∈ 𝐹𝑉 (𝑀), belong to Λ0(𝐾)(𝜆𝑥.𝑀𝑥, 𝑀);

J1𝜂K𝜌 = 𝜂J𝑀K𝜌 ∈ 𝐾(J𝜆𝑥.𝑀𝑥K𝜌, J𝑀K𝜌).

If 𝑡 is a 𝛽𝜂-conversion from 𝜆-term 𝑀 to 𝑁 , by Definition 5.1.2, 𝑡 ∈ Λ0(𝑀, 𝑁). For 𝑥, 𝑃

𝜆-terms, we have the vertices J𝜆𝑥.𝑃 K𝜌 ∈ 𝐾 and J𝑡K𝜌 ∈ 𝐾(J𝑀K𝜌, J𝑁K𝜌). Thus, J(𝜆𝑥.𝑃 )𝑡K𝜌 =

J𝜆𝑥.𝑃 K𝜌∙J𝑡K𝜌 ∈ 𝐾(J(𝜆𝑥.𝑃 )𝑀K𝜌, J(𝜆𝑥.𝑃 )𝑁K𝜌) and J𝑃 K[J𝑡K𝜌/𝑥]𝜌 ∈ 𝐾(J𝑃 K[J𝑀K𝜌/𝑥]𝜌, J𝑃 K[J𝑁K𝜌/𝑥]𝜌),
where [J𝑡K𝜌/𝑥]𝜌 : 𝑉 𝑎𝑟 → 𝐾1 is an evaluation 𝜌′(𝑥) = J𝑡K𝜌 and (n-times degeneration of vertex
𝜌(𝑟)) 𝜌′(𝑟) = 𝑠𝑛(𝜌(𝑟)) if 𝑟 ̸= 𝑥. By Definition 5.1.2, (𝜆𝑥.𝑃 )𝑡 ∈ Λ0((𝜆𝑥.𝑃 )𝑀, (𝜆𝑥.𝑃 )𝑁) and
J𝑃 K[J𝑡K𝜌/𝑥]𝜌 ∈ 𝐾(J𝑃 K[J𝑀K𝜌/𝑥]𝜌, J𝑃 K[J𝑁K𝜌/𝑥]𝜌). But

J(𝜆𝑥.𝑃 )𝑡K𝜌

(𝜀J𝑃 K[−/𝑥]𝜌
)J𝑡K𝜌

−−−−−−−−−→ J𝑃 K[J𝑡K𝜌/𝑥]𝜌,

So (𝜆𝑥.𝑃 )𝑡 = [𝑡/𝑥]𝑃 and induces the 2𝛽-contraction

(𝜆𝑥.𝑃 )𝑡 2𝛽𝑃,𝑡−−−→ [𝑡/𝑥]𝑃,

corresponding to a similar diagram to that of Proposition 5.1.1, i.e.,

(𝜆𝑥.𝑃 )𝑀
(𝜆𝑥.𝑃 )𝑡

��

1𝛽𝑀 //

=⇒2𝛽𝑡

[𝑀/𝑥]𝑃
[𝑡/𝑥]𝑀
��

(𝜆𝑥.𝑃 )𝑁
1𝛽𝑁

// [𝑁/𝑥]𝑃
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Hence 2𝛽𝑡 ∈ Λ0((𝜆𝑥.𝑃 )𝑀, [𝑁/𝑥]𝑃 )(𝜏(1𝛽𝑀 , [𝑡/𝑥]𝑀), 𝜏((𝜆𝑥.𝑃 )𝑡, 1𝛽𝑁)), where 𝜏(𝑟, 𝑠) is the
concatenation of the conversions 𝑟 ∈ Λ(𝑎, 𝑏) and 𝑠 ∈ Λ(𝑏, 𝑐). On the other hand, for 𝑦 /∈

𝐹𝑉 (𝑡) one has the equivalence
J𝑡K𝜌

𝜂J𝑡K𝜌−−→ J𝜆𝑦.𝑡𝑦K𝜌,

that is, (𝜆𝑦.𝑡𝑦) = 𝑡 and induces the 2𝜂-contraction

(𝜆𝑦.𝑡𝑦) 2𝜂𝑡−→ 𝑡,

which corresponds to diagram
𝜆𝑦.𝑀𝑦

𝜆𝑦.𝑡𝑦

��

𝑛𝜂𝑟 //

=⇒2𝜂𝑡

𝑀

𝑡
��

𝜆𝑦.𝑁𝑦 𝑛𝜂𝑠
// 𝑁

In general, if 𝑡 ∈ Λ𝑛−1, the equivalences

J(𝜆𝑥.𝑃 )𝑡K𝜌

(𝜀J𝑃 K[−/𝑥]𝜌
)J𝑡K𝜌

−−−−−−−−−→ J𝑃 K[J𝑡K𝜌/𝑥]𝜌, J𝑡K𝜌

𝜂J𝑡K𝜌−−→ J𝜆𝑦.𝑡𝑦K𝜌

in every extensional Kan complex 𝐾, induce the (𝑛)𝛽𝜂-contractions

(𝜆𝑥.𝑃 )𝑡 𝑛𝛽𝑡−−→ [𝑡/𝑥]𝑃, (𝜆𝑦.𝑡𝑦) 𝑛𝜂𝑡−−→ 𝑡.

which explains the following corollary.

Corollary 5.1.1. If 𝑥, 𝑦, 𝑃 be 𝜆-terms, 𝑛 ≥ 1 and 𝑡 ∈ Λ𝑛(𝑟, 𝑠) with 𝑦 /∈ 𝐹𝑉 (𝑡), then the
interpretation from diagrams

(𝜆𝑥.𝑃 )𝑟
(𝜆𝑥.𝑃 )𝑡

��

𝑛𝛽𝑟 // [𝑟/𝑥]𝑃
[𝑡/𝑥]𝑀
��

𝜆𝑦.𝑟𝑦

𝜆𝑦.𝑡𝑦

��

𝑛𝜂𝑟 // 𝑟

𝑡

��(𝜆𝑥.𝑃 )𝑠
𝑛𝛽𝑠

// [𝑠/𝑥]𝑃 𝜆𝑦.𝑠𝑦 𝑛𝜂𝑠
// 𝑠

commutes in every extensional Kan complex 𝐾.

Thus, any reflexive Kan complex inductively induces, for each 𝑛 ≥ 1, from an (𝑛)𝛽𝜂-
conversion 𝑡 to the (𝑛 + 1)𝛽𝜂-contractions

(𝜆𝑥.𝑃 )𝑟
(𝜆𝑥.𝑃 )𝑡

��

𝑛𝛽𝑟 //

=⇒(𝑛+1)𝛽𝑡

[𝑟/𝑥]𝑃
[𝑡/𝑥]𝑀
��

𝜆𝑦.𝑟𝑦

𝜆𝑦.𝑡𝑦

��

𝑛𝜂𝑟 //

=⇒(𝑛+1)𝜂𝑡

𝑟

𝑡

��(𝜆𝑥.𝑃 )𝑠
𝑛𝛽𝑠

// [𝑠/𝑥]𝑃 𝜆𝑦.𝑠𝑦 𝑛𝜂𝑠
// 𝑠
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and these, in their turn, define the (𝑛 + 1)𝛽𝜂-conversions, of (𝑛)𝛽𝜂-conversion, which would
inhabit the set Λ𝑛+1.

We have previously realized that the homotopic 𝜆-models (e.g., extensional Kan com-
plexes) of Homotopy Domain Theory (HoDT) are able to provide techniques for the gene-
ralization of Church-like conversion relations (such as e.g., 𝛽-equality, 𝜂-equality) to higher
term-contraction induced equivalences. For a future work, it would be interesting to see the
relationship between the higher 𝛽𝜂-conversions and the computation paths, specifically, to
establish a relation between the least theory of all the homotopic 𝜆-models with a type-free
version of computational paths.



84

6 CONCLUSIONS

Some methods were established for solving homotopy domain equations, which further
contributes to the project of a generalization of the Domain Theory to a Homotopy Domain
Theory (HoDT). Besides, using those methods of solving equations, it was possible to obtain
some specific homotopy models in a Cartesian closed ∞-category, which could help to define
a general higher 𝜆-calculus theory.

Specially, we generalize the Kleisli bicategory to a Kleisli ∞-category 𝐾𝑙(𝑃 ) and to prove
that it is Cartesian closed with enough points, in order to apply the techniques of HoDT to
this Kleisli ∞-category and thus obtain homotopic 𝜆-models (e.g., reflexive Kan complexes
in 𝐾𝑙(𝑃 )) with relevant information. Besides, we prove the existence of an extension of the
set 𝐷∞ to a Kan complex 𝐾∞, which models a type-free version of HoTT, which we call
HoTFT (Homotopy Type-Free Theory), which could have the advantage of rescuing the 𝛽𝜂-
conversions as relations of intentional equality and not as relations of judgmental equality as
occurs in HoTT.

On other hand, we define the interpretation of the 𝛽𝜂-contractions in a reflexive Kan
complex, whose∞-groupoid structure induces higher 𝛽𝜂-contractions, which if we type would
inhabit a type of identity (based on computational paths). Therefore, in this work, we would be
facing the beginning of the semantics of another version of HoTT, but, based on computational
paths, its type-free version would be similar to a theory of higher 𝜆-calculus, which would be
pending development.

The above would be for the typed case for future work. For the case type-free, HoDT should
continue to be developed, parallel to Dana Scott’s Domain Theory, and all the semantics of
higher 𝜆-calculus and its relation with HoTFT.
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