
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE TECNOLOGIA E GEOCIÊNCIAS
DEPARTAMENTO DE ENGENHARIA CIVIL

PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA CIVIL

PEDRO VICTOR PAIXÃO ALBUQUERQUE

Finite Volume Method with Muiltipoint Flux and Stress Approximations Using
Harmonic Points for Solving Poroelasticity Problems

Recife
2023



PEDRO VICTOR PAIXÃO ALBUQUERQUE

Finite Volume Method with Muiltipoint Flux and Stress Approximations Using
Harmonic Points for Solving Poroelasticity Problems

Dissertation submitted to Universidade Fed-
eral de Pernambuco’s Graduate Program in
Civil Engineering as partial fulfilment of the
requirements to obtain the Master of Civil
Engineering Title.

Knowledge Area: Computational Simula-
tion and Modeling Applied to Oil and the
Environment

Supervisor: Darlan Karlo Elisiário de Carvalho, PhD
Co-supervisor: Paulo Roberto Maciel Lyra, PhD

Recife
2023



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalogação na fonte 

Bibliotecário Gabriel Luz, CRB-4 / 2222 

 

 
A345f Albuquerque, Pedro Victor Paixão. 

Finite volume method with muiltipoint flux and stress approximations 

using harmonic points for solving poroelasticity problems / Pedro Victor Paixão 

Albuquerque. 2023. 

  88 f: il. 

 

  Orientador: Prof. Dr. Darlan Karlo Elisiário de Carvalho. 

  Coorientador: Prof. Dr. Paulo Roberto Maciel Lyra. 

  Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. 

Programa de Pós-Graduação em Engenharia Civil, Recife, 2023. 

  Inclui referências e apêndices. 

  Textos em inglês. 

 

  1. Engenharia civil. 2. Método dos volumes finitos. 3. Aproximação de 

fluxo por múltiplos pontos. 4. Simulação de reservatórios. 5. Poroelasticidade. 

6. Geomecânica. I. Carvalho, Darlan Karlo Elisiário de (Orientador). II. Lyra, 

Paulo Roberto Maciel (Coorientador). III. Título. 

 

 UFPE 

 

  624 CDD (22. ed.) BCTG / 2023 - 38 



PEDRO VICTOR PAIXÃO ALBUQUERQUE 
 
 
 

FINITE VOLUME METHOD WITH MUILTIPOINT FLUX AND STRESS 
APPROXIMATIONS USING HARMONIC POINTS FOR SOLVING 

POROELASTICITY PROBLEMS 
 

 
 
Dissertação em Engenharia Civil da 
Universidade Federal de Pernambuco, Centro 
de Tecnologia e Geociências, como requisito 
para obtenção do título de Mestre em 
Engenharia Civil, Área de Concentração 
Simulação e Gerenciamento de Reservatórios 
de Petróleo. 
 
 

Aprovada em 03/02/2023 
 

Orientador: Prof. Dr. Darlan Karlo Elisiário de Carvalho – Universidade Federal de Pernambuco 
Corientador: Prof. Dr. Paulo Roberto Maciel Lyra - Universidade Federal de Pernambuco 
 

 
 
 
 

BANCA EXAMINADORA 
 
 
 

 participação por videoconferência  
Prof. Dr. Leonardo José do Nascimento Guimarães (examinador interno) 

Universidade Federal de Pernambuco 
 
 

 
 

 participação por videoconferência  
Prof. Dr. Alessandro Romário Echevarria Antunes (examinador externo) 

Universidade Federal de Pernambuco 
 
 
 
 
 

 participação por videoconferência  
Prof. Dr. Igor Fernandes Gomes (examinador externo) 

Universidade Federal de Pernambuco 
 
 
 



Dedicado à todos que fizeram
parte dessa jornada junto comigo.



ACKNOWLEDGEMENTS

I thank God for strength, courage and discipline. I especially thank my family for
their support at all times, I thank my parents Antônio Ary de Albuquerque Filho and Ana
Célia Paixão de Albuquerque for not only giving me support but also being an example
and inspiration for my life.

I thank my supervisors Professor Darlan Karlo Elisário de Carvalho and Professor
Paulo Roberto Maciel Lyra, who made a fundamental contribution to my academic
education and to the development of this work. I would also like to thank professors
Lucíolo Vitor Magalhães e Silva, Johantan da Cunha Teixeira and Fernando Raúl Licapa
Contreras, who also contributed fundamentally to my academic training and to this work.

I thank the remaining of PPGEC professors for sharing their knowledge with me,
during my academic training

I would like to thank my friends in the graduate program and my friends outside
the program for their presence and support during this period.

Thanks to the rest of the PADMEC Family and the PPGEC staff for always being
supportive and available.

I would like to thank everyone who participated in my academic training since
graduation, the UFCG professors and colleagues.

Furthermore, this work was carried out with the support of the Coordination for
the Improvement of Higher Education Personnel - Brazil (CAPES) - Financing Code 001
and Energi/Simulation - Code 53/2020.



ABSTRACT

Modeling physical phenomena and how they interact with each another is at the
core of Science and Engineering. In the present work, the phenomena of interest is the so
called Poroelasticy, which is a field of science that studies the relationship between fluid flow
and solid deformation within a porous media. This theory have several applications such
as in Geotechnical and Petroleum Engineering, Hydrogeology and even in Medicine and
Biology, to name a few. In the context of Petroleum Reservoir Engineering, until recently,
the reservoir rocks mechanical response was neglected, to reduce simulations costs, since
the main phenomena of interest was how the fluid flows inside the reservoir. The presence of
a freely moving fluid in a porous rock modifies its mechanical response and, in return, this
mechanical response influences the fluid flow inside the pore. The mathematical modeling
of the aforementioned physical phenomena results in a set of partial differential equations
which only have proper analytical solutions in simple, non-realistic cases. However, with
the development of numerical and computational tools, approximate solutions can be
obtained, thus allowing the understanding and prediction of the behavior of such physical
phenomena. The mathematical model used in the present work is based on Biot’s theory
of poroelasticity with the following assumptions for the solid phase: Quasi-static loading;
Plane Strain; Infinitesimal Strain; Isotropic Linear Elasticity; Compressible Solid Matrix;
and the following assumptions for the fluid phase: Single Phase Fluid; Slightly Compressible
Fluid; Newtonian Fluid; Isotermic flow and; No gravitational effects. The set of Differential
Equations were approximated via a unified finite volume framework, using a Multipoint
Flux Approximation unsing Harmonic Points for both the fluid and solid equations, with a
co-located variable arrangement and the Rhie-Chow interpolation, along with a Backwards
Euler Scheme for temporal integration. The coupling between pressure and displacement
was done via the fixed-strain split. The numerical modeling described in the present
work is verified using benchmark problems found in the Poroelasticiy Literature. The
results presented shows the numerical model is capable of producing robust and accurate
approximated solutions, with both structured and unstructured meshes.

Keywords: finite volume method, multipoint flux approximation, poroelasticity, reservoir
simulation, geomechanics.



RESUMO

Modelar os diversos fenômenos físicos que ocorrem na natureza e como eles interagem
uns com os outros esta no cerne da Ciência e da Engenharia. No presente trabalho, o
fenômeno de interesse é a chamada Poroelasticidade, que é um campo da ciência que estuda
a relação entre escoamento de fluidos em meios porosos e a deformação do mesmo. Esta
teoria tem várias aplicações, como em Engenharia Geotécnica e de Petróleo, Hidrogeologia
e até em Medicina e Biologia. No contexto da Engenharia de Reservatórios de Petróleo, até
recentemente, a resposta mecânica das rochas reservatório era negligenciada, para reduzir
os custos de simulações, uma vez que o principal fenômeno de interesse é o escoamento
de fluido dentro do reservatório. A presença de um fluido em movimento dentro de uma
rocha porosa modifica sua resposta mecânica e, por sua vez, essa resposta mecânica
influencia o fluxo do fluido no interior do poro. A modelagem matemática dos fenômenos
físicos mencionados resulta em um conjunto de equações diferenciais parciais que só
possuem soluções analíticas em casos muito simplificados. Porém, com o desenvolvimento
de ferramentas numéricas e computacionais, soluções aproximadas podem ser obtidas,
permitindo assim a compreensão e previsão do comportamento de tais fenômenos físicos. O
modelo matemático utilizado no presente trabalho é baseado na teoria da poroelasticidade
de Biot com as seguintes considerações para a fase sólida: Carregamento quase-estático;
Estado Plano de Deformação; Deformação infinitesimal; Elasticidade Linear Isotrópica e;
Matriz Sólida Compressível; e as seguintes hipóteses para a fase fluida: Fluido Monofásico;
Fluido levemente compressível; Fluido Newtoniano; Escoamento isotérmico e; Sem efeitos
gravitacionais. O conjunto de equações diferenciais foi aproximado por meio de uma
estrutura unificada em volumes finitos, usando uma aproximação de fluxo por múltiplos
pontos usando pontos harmônicos para as equações de fluido e sólido, e com arranjo co-
localizado para as variaveis e a interpolação de Rhie-Chow, juntamente com um esquema
de Euler implícito para a integração temporal. O acoplamento entre pressão e deslocamento
foi feito via a técnica Fixed-Strain. A modelagem numérica descrita no presente trabalho
é verificada através da solução de problemas de referência encontrados na literatura de
poroelasticidade. Os resultados apresentados mostram que o modelo numérico é capaz
de produzir soluções aproximadas robustas e acuradas, tanto com malhas estruturadas
quanto não estruturadas.

Palavras-chave: método dos volumes finitos, aproximação de fluxo por múltiplos
pontos, simulação de reservatórios, poroelasticidade, geomecânica.
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1 INTRODUCTION

In nature, a plethora of physical phenomena occur and modeling those phenomena
and how they interact with each another is at the core of Science and Engineering. Our
modern lives is a direct result of this practice. In the present work, the phenomena of
interest is the so called Poroelasticy. Poroelasticy is a field of science that studies the
relationship between fluid flow and solid deformation within a porous media. The theory
of Poroelasticity typical application is in Geotechnical and Petroleum Engineering since
it’s the basis of modeling soil consolidation (LIU, 2018) , which can also be used to predict
the behavior of petroleum reservoir rocks. In addition, the theory is used in the field of
Hydrogeology (WANG, 2000) and has several applications in Medicine and Biology such as
modeling the mechanic behavior of: bones (COWIN, 1999), living tissue (MALANDRINO;
MOEENDARBARY, 2019) and cytoplasm (MOEENDARBARY et al., 2013) to name a
few.

The presence of a freely moving fluid in a porous rock modifies its mechanical
response. In return, this mechanical response influences the fluid flow inside the the pore.
Two mechanisms play a key role in this interaction between the interstitial fluid and
the porous material: an increase of pore pressure induces a dilation of the media, and
compression of the media causes a rise of pore pressure, if the fluid is prevented from
escaping the pore network. Moreover, if excess pore pressure induced by compression of
the Media is allowed to dissipate through fluid mass transport, further deformation of the
media progressively takes place (DETOURNAY; CHENG, 1993).

The mathematical modeling of the aforementioned physical phenomena results
in a set of partial differential equations. Such equations only have proper analytical
solutions under simplifying assumptions. However, for most problems faced by scientist and
engineers, such a solution isn’t available. Nonetheless, with the development of numerical
and computational tools, approximate solutions can be obtained with a certain degree of
accuracy, thus allowing the understanding and prediction of the behavior of such physical
phenomena. This is pivotal for scientific development and decision making. Therefore,
it’s natural to apply numerical tools to solve the set of partial differential equations that
comprises the theory of Poroelasticity, in order to understand the mechanical response of
porous media and the interstitial fluid flow, in real life scenarios.

In the context of Petroleum Reservoir Engineering, since the start of the usage of
numerical tools and until the last decade, the reservoir rocks mechanical response was
neglected. This was done to reduce computational costs, and the main phenomena of
interest was how the fluid flows inside the reservoir. The reservoir mechanical response
was reduced to a compressibility coefficient, which allowed the mathematical model to
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capture how that response influenced the interstitial fluid flow. However, phenomena such
as borehole collapse and ocean floor subsidence highlighted the necessity to understand
how oil production affects the reservoir and surrounding rocks and vice-versa (ZOBACK,
2010). Those phenomena can impact significantly the production behavior which can lead
to profit losses and enviromental harzads.

1.1 Literature Review

The theory of Poroelasticity began its development with (TERZAGHI, 1923). In
this work, the author studies the compression of a water saturated soil, which is a gradual
process called consolidation. Moreover, the author models and solves a unidimensional
consolidation problem under the assumptions of homogeneous and isotropic linear elastic
porous media, under constant total stress. However, Terzaghi’s most important contribution
in his paper was the principle that carries his name, Terzaghi’s Effective Stress principle.
This principle states that the load applied to a porous media is shared between the solid
skeleton and the interstitial fluid (TERZAGHI, 1923; TERZAGHI, 1943; DETOURNAY;
CHENG, 1993; WANG, 2000; LIU, 2018), and it’s at the core of any theory modeling flow
inside a non-rigid porous media. Later, Terzaghi’s consolidation theory was extended to
three dimensions by (RENDULIC, 1935; TERZAGHI; FRÖHLICH, 1936; TERZAGHI,
1943).

Another theory of tridimensional consolidation began its development with (BIOT,
1941). Biot’s theory was developed under the same assumptions as Terzaghi’s, even applying
Terzaghi’s Effective Stress principle. However, Biot did not assume constant total stress.
As consequence, the linear momentum conservation equations were introduced, along with
the mass balance equation used by Terzaghi, in order to account the changes in total stress.
Therefore, Biot’s theory leads to a system of partial differential equations. The constant
total stress assumption allowed a decoupling between fluid flow and solid deformation
(VERRUIJT, 2013), thus the mass balance equation was enough to describe the problem
in Terzaghi’s Theory, while deformations were computed via Hooke’s Law and Terzaghi’s
Principle.

In (MANDEL, 1953), the author used Biot’s theroy to derive a solution for the
consolidation of a rectangular sample and, in (CRYER, 1963), the author compares
Terzaghi’s and Biot’s solutions to the consolidation in a spherical soil sample. In the
sphere’s solution Terzaghi’s Theory described a monotone decrease in fluid pressure, while
Biot’s predicted, in both the spherical and rectangular solutions, an initial slightly increase
in fluid pressure followed by its decrease. This difference was precisely because the variation
in total stress. This slightly increase in pressure was later experimentally verified and was
named the Mandel-Cryer effect, after both authors. Thus, Biot’s theory became the main
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theory of consolidation and Poroelasticity.

Howerver, due to being a system of PDEs, Biot’s theory has only a handful of ana-
lytical solutions, only for specific situations: (MCNAMEE; GIBSON, 1960a; MCNAMEE;
GIBSON, 1960b; BOOKER, 1974; WANG; FANG, 2003; SARVA; RANI; KUMAR, 2013;
AMIRI; HAJALI; ESMAEILY, 2014). For most real-life cases, Biot’s theory has no analytic
solutions. As consequence, numerical tools are used to solve the system of PDEs in modern
applications. The Poroelasticity theory can be divided into two separate problems inter-
acting with each other, fluid flow inside pores and solid deformation. Historically speaking,
solid mechanics problems were predominately solved via a Finite Element Method (FEM).
This was due to the fact that the energy conservation principle was commonly used in
solving engineering problems. This, along with the development of variational calculus,
allowed a natural development of FEMs, which have the property of minimizing energy
norm errors in the approximation of self-adjoint (elliptic) operators (GRESHO; SANI,
2000). Furthermore, the early applications of the FEM were in the field of solid mechanics
(TURNER et al., 1956; CLOUGH, 1960). On the other hand, fluid dynamics problems has
been mainly solved via a Finite Volume Method (FVM). This was due to the presence of
advective transport operators (first order derivatives) which pose a problem for standard
Galerkin FEM (SPALDING, 2008). However, due to its definition, FVMs naturally enforces
conservation locally. This property made FVMs, in general, better suited for fluid dynamics
problems. Therefore, a numerical simulation of a poroelastic problem has to reconcile two
different numerical methods into a single simulation. This problem is mainly solved by
(ASADOLLAHI, 2017):

• Using a FEM/FVM scheme, i.e., using a FEM for the solid mechanics problem
and a FVM for the fluid flow problem, which is common practice, specially when
commercial or open source softwares are used.

• Using a FEM/FEM scheme, i.e. employing a FEM to also solve the fluid flow problem.

• Using a FVM/FVM scheme, i.e. employing a FVM to solve both fluid flow and solid
mechanics problems.

They main disadvantage of the FEM/FVM scheme is the usage of different data
structures, which requires a routine to do the information exchange between softwares. Both
FEM/FVM and FEM/FEM suffers from non-physical oscillations, even when using ’even-
odd’ stable FEM formulations, such as Taylor-Hood FEM (ASADI; ATAIE-ASHTIANI,
2016; RODRIGO et al., 2016). FEM/FEM and FVM/FVM have the benefit of a unified
data structure, which avoids unecessary interpolations. It is important to note that FEM
formulations better capable of dealing with standard FEM limitations were developed, such
as Discontinuous Galerkin (DG) and Mixed Finite Element Methods (MFEM) to name a
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few. In their works, (ASADI; ATAIE-ASHTIANI, 2016; RODRIGO et al., 2016) themselves
proposed more stable FEMs. However, despite its advantages, the usage of FVM for solid
mechanics and even more the usage of a FVM/FVM scheme for poroelasticity are relative
unexplored fields of research. The earliest paper using a finite volume method for solid
mechanics was (DEMIRDZIC; MARTINOVIC; IVANKOVIC, 1988), 32 years after the
first application of FEM, in solid mechanics (TURNER et al., 1956) and 17 years after
the first application FVM, in fluid flow (MCDONALD, 1971). FEMs has advantages over
FVMs, some of them being already mentioned, but the rest of them are outside the present
scope of discussion. However FVMs have advantages over FEMs, some of them being
(DEMIRDZIC, 2020): The FVM is developed considering an arbitrary convex polyhedral
element, i. e. the FV discretisation is independent of the cell shape; FVMs have global
and local conservation by definition, while FEMs are conservative, primarily, only globally
and; FVMs usually have less degrees of freedom than FEMs. Furthermore, FVMs can be
as accurate as FEMs (DEMIRDZIC, 2020).

Literature in the application of FVMs for solid mechanics is scarce and for Poroe-
lasticity and Geomechanics is even more scarce. However, since its first development,
FVMs for solid mechanics has been extended to deal with: solid-fluid interaction, e.g.
(TUKOVIĆ et al., 2018); non-elastic materials, e.g (TANG; HEDEDAL; CARDIFF, 2015);
anisotropic materials and finite strains, e.g. (CARDIFF; KARAČ; IVANKOVIĆ, 2014);
fracture mechanics, e.g. (CAROLAN et al., 2013); contact mechanics, e.q. (CARDIFF;
KARAČ; IVANKOVIĆ, 2012) and; wave propagation in porous media (GAO; ZHANG,
2006) to name a few. For a more extensive review of the applications of FVMs in solid
mechanics one can refer to (CARDIFF; DEMIRDŽIĆ, 2021). Another set of noteworthy
contributions were the works of (NORDBOTTEN, 2014b), which extended the family of
classical FVMs called Multipoint Flux Approximations (MPFA) to the problem of solid
mechanics, more precisely the MPFA-O, MPFA-U and the MPFA-L, and later develop a
MPFA method exclusive to the solid mechanics problem, the MPFA-W (KEILEGAVLEN;
NORDBOTTEN, 2017). Regarding FVMs applications in Poroelascity and Reservoir
Geomechanics one can cite the works of (SHAW; STONE, 2005; PIZZOL; MALISKA,
2012; TUKOVIĆ; IVANKOVIĆ; KARAČ, 2013; NORDBOTTEN, 2014a; PIZZOL, 2014;
TANG; HEDEDAL; CARDIFF, 2015), along with more applications of classical FVM such
as the element-based finite volume method (EBFVM) for single phase (TONELLI, 2016;
RIBEIRO, 2016; HONÓRIO, 2018a; HONORIO et al., 2018b; HONÓRIO; MARTINS;
MALISKA, 2021) and multi-phase (GREIN, 2019) flow in poroelastic simulations, and
application of FVM method in simulation softwares such as INMOST (TEREKHOV; VAS-
SILEVSKI, 2019; TEREKHOV; TCHELEPI, 2020a; TEREKHOV, 2020b; TEREKHOV;
VASSILEVSKI, 2022) and OpenFoam (TUKOVIĆ et al., 2018).

Along with the choice of approximation, it is necessary a strategy to deal with
the coupling between fluid flow and solid deformation, since it is necessary to obtain
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pressure and displacement fields that satisfy the system of PDEs at each time step. The
coupling strategies for the Poroelasticity problem can be grouped in four main categories
(ASADI; ATAIE-ASHTIANI; SIMMONS, 2014): fully, iteratively or sequentialy, explicitly
and loosely coupled.

1.1.1 Fully Coupled Strategy

In the fully coupled approach, both discrete equations are assembled in a single
system of equations, which is solved for both unknowns 𝑝 and −→𝑢 simultaneously in each time
step (SETTARI; WALTERS, 2001). The fully coupled option is linearly unconditionally
stable, but it is computationally expensive (KIM; TCHELEPI; JUANES, 2011c).

1.1.2 Iteratively/Sequentialy Coupled Strategy

In the iteratively coupled approach, also called two-way coupling, information
is exchanged between the mechanics and flow equations sequentially until the solution
converges within an acceptable tolerance at each time step. The iteratively coupled option is,
in general, less computationally expensive and allows for the use of different computational
domains for the flow and mechanical problems. However, some iterative schemes can
be conditionally stable, and even non-convergent when stable. The main four sequential
methods are (KIM; TCHELEPI; JUANES, 2011a; KIM; TCHELEPI; JUANES, 2011b;
KIM; TCHELEPI; JUANES, 2011c):

• Drained Split: In this scheme, the solution is obtained sequentially by first solving
the mechanics problem with constant pressure, then the fluid-flow problem is solved
with a frozen displacement field. This split is conditionally stable and can be non-
convergent even when it is stable.

• Undrained Split: In this scheme, the solution is obtained sequentially by first solving
the mechanics problem with constant fluid mass content, then the fluid-flow problem
is solved with a frozen displacement field. This assumption yields a different pressure
predictor in contrast to the Drained Split. This method is unconditionally stable
though it requires an increased number of iterations as coupling strength between fluid
and solid problem increases and is non-convergent in case of a fully incompressible
system.

• Fixed-Strain Split: In this scheme, the solution is obtained sequentially by first solving
the fluid-flow problem with constant volumetric deformation, then the mechanics
problem is solved with a frozen pressure field. This split also is conditionally stable
and can be non-convergent even when it is stable.
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• Fixed-Stress Split: In this scheme, the solution is obtained sequentially by first
solving the fluid-flow problem with constant total mean stress, then the mechanics
problem is solved with a frozen pressure field. This assumptions yields a additional
term summed to the accumulation term in the mass balance equation. This split is
as accurate and stable as fully coupled scheme.

1.1.3 Explicitly Coupled Strategy

In the explicitly coupled approach, also called one-way coupling, any operator
split defined in Section 1.1.2 can be employed. However, the solution obtained in the first
iteration is considered the converged solution for the time step. The exchange of information
is unidirectional, thus one-way coupling. This strategy have reduced computational costs
along with reduced accuracy, when compared with two-way coupling strategies.

1.1.4 Loosely Coupled Strategy

In the loosely coupled approach, also known as sub-cycling technique, different
time steps are used in the fluid flow and solid deformation problem. The flow equation is
calculated for each time step but mechanical updates are performed after multiple flow time
steps. This strategy can be employed since fluid flow parameters (pressure) change over
shorter time frames than mechanics parameters (displacement) which progress more slowly.
Thus, pressure variations impose restriction on the growth of time step size throughout the
course of simulation (MINKOFF; KRIDLER, 2006). The main three strategies to control
when perform the mechanical updates are (ASADI; ATAIE-ASHTIANI; SIMMONS, 2014):

• Constant step size: In this method, the displacements are updated after a fixed
amount of pressure time steps, regardless of the solution.

• Pore pressure method: In this method, current pore pressure is compared to the pore
pressure in the last mechanical update. When this difference exceeds a threshold
value, mechanical variables are updated.

• Local error method: In this method, a relative error is computed using displacement
from two consecutive mechanical steps. Then, this error is compared to a goal local
error, and based on this comparison, the time step for the next mechanical update is
increased, decreased or unchanged, or the current mechanical update is redone with
a smaller time step.
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1.2 Objectives

The main objective of the present work is to develop a unified finite volume
framework for solving poroelasticity problems, capable of handling unstructured meshes
and full permeability and constitutive tensors.

The specific objectives of the present work are:

• Develop a FVM, based in the MPFA method using harmonic points (MPFA-H), for
the solid mechanics problem.

• Employ the developed FVM for solid mechanics in solving Poroelasticity problems
using the Fixed-Strain Split.

• Develop a software in python for numerical modeling of Poroelasticity problems.

• Verify the numerical model against benchmark problems.

• Analysis of the numerical convergence rates of the FVM/FVM scheme.

• Analysis of the numerical simulation results conformation with the expected physics
of the problem.

1.3 Dissertation Outline

The present Dissertation is organized as follows:

• In Chapter 2, a description of the mathematical model is presented: the hypothesis
used, governing equations, constitutive relationships and auxiliary conditions (initial
and boundary conditions). In addition, a discussion about the coupling between
variables is presented, along with the methodology used in the present work;

• In Chapter 3, the set of PDE’s are discretized using the MPFA-H FVM, and the
solution algorithm is presented;

• In Chapter 4, the numerical modeling discussed in the present work is verified against
elementary problems found in the Poroelasticity literature;

• In Chapter 5, closing remarks and suggestions for future works are presented;
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2 MATHEMATICAL MODEL

The mathematical model used in this work is based on Biot’s theory of Consolidation.
The model is comprised by two main partial differential equations, one describing the
in-pore fluid behaviour and another describing the porous media mechanical response,
along with the necessary constitutive relationships. The equations are derived under a
Eulerian description of the problem. On the following description of the mathematical
model, the equations pertaining to the fluid flow are called the fluid subsystem, and
the ones that describe the the porous media mechanical response are called the solid
subsystem.

2.1 Solid Subsystem

The hypothesis adopted to describe the porous media mechanical behavior are:

• Quasi-static loading;

• Plane Strain;

• Infinitesimal Strain;

• Isotropic Linear Elasticity;

• Compressible Solid Matrix;

2.1.1 Governing Equation

Since there is no changes in solid temperature (Isotermic Deformation), the only
equation modelling the mechanical behavior of the porous media is the conservation of
linear momentum, more precisely the Cauchy’s Law of Motion. By assuming a quasi-static
loading on the porous media, even tho the stress field changes over time, any given
representative elementary volume is in a state of static force (translational and rotational)
equilibrium at any point in time. Therefore, due to translational equilibrium, Cauchy’s
equations reduce to the stress equilibrium equations (WANG, 2000):

∇ · 𝜎 + −→
𝑓 = 0 (2.1)

with 𝜎 being the Cauchy’s Stress Tensor, −→
𝑓 comprising the body forces acting on the

elastic body, and ∇· is the divergence operator . Under spatial coordinates (Eulerian
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Description) Cauchy’s Stress Tensor is sufficient to describe the elastic body stress state
and can be written as (WANG, 2000):

𝜎 =

⎡⎢⎢⎢⎣
𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

⎤⎥⎥⎥⎦ (2.2)

Moreover, the rotational equilibrium implies Cauchy’s tensor is symmetric. Thus
𝜎𝑥𝑦 = 𝜎𝑦𝑥, 𝜎𝑥𝑧 = 𝜎𝑧𝑥 and 𝜎𝑧𝑦 = 𝜎𝑦𝑧 (WANG, 2000).

2.1.2 Terzaghi’s Effective Stress Principle

Terzaghi’s Effective Stress Principle states that the total stress 𝜎 on a porous media
has two components: one acting on the in-pore fluid, which is its pressure 𝑝 and one acting
exclusively on the solid phase (solid matrix), called effective stress 𝜎′ (WANG, 2000).
When adopting the convention of tension loads having positive signs, this contributions
can be computed using the following expression:

𝜎′ = 𝜎 − 𝛼𝑝I (2.3)

where 𝜎′ is called the Effective Stress, 𝛼 is Biot’s coefficient, 𝑝 is the fluid pressure and I
is the identity matrix. Furthermore, according to Terzaghi’s Principle, the porous media
mechanical behaviour under 𝜎 is equivalent to a non-porous material under 𝜎′. Therefore,
𝜎′ is the one being used in the stress-strain relationship. Moreover, Biot’s coefficient can
be expressed as:

𝛼 = 1 − 𝑐𝑠
𝑐𝑚

(2.4)

where 𝑐𝑠 is the solid particles compressibility and 𝑐𝑚 is the compressibility of the whole
porous media.

By substituting Eq. (2.3) into Equation (2.1), one can arrive at the following
expression:

∇ · 𝜎′ − 𝛼∇𝑝+ −→
𝑓 = 0 (2.5)

where ∇ is the gradient operator.
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2.1.3 Infinitesimal Strain

Under the Eulerian description of the problem, strain is measured by the Almansi-
Hamel strain tensor (SLAUGHTER, 2012). Furthermore, by imposing the assumption of
the Infinitesimal Strain Theory, which means the displacement gradients are infinitesimal
(∇−→𝑢 << 1) throughout the whole elastic body, the Almansi-Hamel strain tensor can be
defined as (SLAUGHTER, 2012):

𝜀 = ∇−→𝑢 + (∇−→𝑢 )⊤

2 (2.6)

with −→𝑢 = [𝑢 𝑣 𝑤]⊤ being the displacement vector, whose components are 𝑢, 𝑣 and 𝑤. The
displacement vector gives the changes in particle position, where 𝑢 = 𝛿𝑥, 𝑣 = 𝛿𝑦 and
𝑤 = 𝛿𝑧. Due to the it’s definition, along with Cauchy’s stress tensor, the Almansi-Hamel
(also known as the Eulerian strain tensor) is also symmetric.

2.1.4 Hooke’s Law

Under the assumptions of linear elasticity, the constitutive relation between effective
stress and strain is given by the Generalized Hooke’s Law (SLAUGHTER, 2012), which is
represented by the following tensor contraction:

𝜎′ = C : 𝜀 (2.7)

In Equation (2.7), C is a rank 4 constitutive tensor. Under the assumption of
isotropic linear elasticity, all 81 entries of C can be written as functions of only two
parameters, 𝜆 and 𝐺, which are called respectively Lamé’s first and second parameters. 𝐺
is also know as the shear modulus. Using the Lamé parameters, Eq. (2.7) can be written
as (IRGENS, 2008):

𝜎′ = 𝜆𝑡𝑟 (𝜀) I + 2𝐺𝜀 (2.8)

where 𝑡𝑟(·) represents a matrix trace. Furthermore, the Lamé parameters can be expressed
in term of other two material properties: the Young modulus 𝐸 and Poisson’s ratio 𝜈:

𝜆 = 𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) , 𝐺 = 𝐸

2 (1 + 𝜈) (2.9)

Another important relationship is the one between effective isotropic stress 𝜎′
𝑣 and

the volumetric strain 𝜀𝑣:



23

𝜎′
𝑣 = 𝐾𝜀𝑣 (2.10)

where 𝐾 = 1/𝑐𝑚 is known as the Bulk modulus, 𝜎′
𝑣 = 𝑡𝑟(𝜎′)/3 and 𝜀𝑣 = 𝑡𝑟(𝜀) . The

variables 𝜎′
𝑣 and 𝜀𝑣 are the stress and strain components that contribute to changes in the

elastic body’s volume. The other stress and strain components, called shear components,
only contributes to changes in the elastic body’s shape. Furthermore, any pair of material
properties (𝜆, 𝐺, 𝐸, 𝜈 and 𝐾) is enough to define Hooke’s law for a isotropic elastic body.

2.1.5 Plane Strain

The Plane Strain (also called Plane Displacements) hypothesis implies that strain
is restricted to a single plane: −→𝑢 = [𝑢(𝑥,𝑦,𝑡) 𝑣(𝑥,𝑦,𝑡)]⊤ and 𝑤 = 0 (IRGENS, 2008). Thus,
𝜀𝑥𝑧 = 𝜀𝑦𝑧 = 𝜀𝑧𝑥 = 𝜀𝑧𝑦 = 𝜀𝑧𝑧 = 0. Therefore, 𝜀 and 𝜎′ become:

𝜀 =

⎡⎢⎢⎢⎣
𝜀𝑥𝑥 𝜀𝑥𝑦 0
𝜀𝑦𝑥 𝜀𝑦𝑦 0
0 0 0

⎤⎥⎥⎥⎦ , 𝜎′ =

⎡⎢⎢⎢⎣
𝜎′
𝑥𝑥 𝜎′

𝑥𝑦 0
𝜎′
𝑦𝑥 𝜎′

𝑦𝑦 0
0 0 𝜎′

𝑧𝑧

⎤⎥⎥⎥⎦ (2.11)

The non-zero 𝜎′
𝑧𝑧 is necessary in order to ensure 𝜀𝑧𝑧 = 0. Its value can be obtained

via Hooke’s Law as 𝜎′
𝑧𝑧 = 𝜈(𝜎′

𝑥𝑥 + 𝜎′
𝑦𝑦). Moreover, 𝜎′

𝑧𝑧 can be removed from the analysis,
which turns the 3D problem into a much simpler 2D problem (IRGENS, 2008):

𝜀 =
⎡⎣𝜀𝑥𝑥 𝜀𝑥𝑦

𝜀𝑦𝑥 𝜀𝑦𝑦

⎤⎦ , 𝜎′ =
⎡⎣𝜎′

𝑥𝑥 𝜎′
𝑥𝑦

𝜎′
𝑦𝑥 𝜎′

𝑦𝑦

⎤⎦ (2.12)

where:

𝜎′
𝑥𝑥 = 𝜆𝜀𝑣 + 2𝐺𝜀𝑥𝑥, 𝜎′

𝑦𝑦 = 𝜆𝜀𝑣 + 2𝐺𝜀𝑦𝑦, 𝜎′
𝑥𝑦 = 𝜎′

𝑦𝑥 = 2𝐺𝜀𝑥𝑦 (2.13)

𝜀𝑥𝑥 = 𝜕𝑢

𝜕𝑥
, 𝜀𝑦𝑦 = 𝜕𝑣

𝜕𝑦
, 𝜀𝑥𝑦 = 𝜀𝑦𝑥 = 1

2

(︃
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦

)︃
(2.14)

2.1.6 Navier-Cauchy Equation

By substituting Equation (2.8) into Equation (2.5) and doing the necessary algebraic
manipulations, one can arrive at a poromechanical equivalent of the Navier-Cauchy
Equation, which is given by:
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(𝜆+𝐺) ∇ (∇ · −→𝑢 ) +𝐺∇ · (∇−→𝑢 ) − 𝛼∇𝑝 = −→
𝑓 (2.15)

2.1.7 Boundary Conditions

A proper set of boundary conditions for Eq. (2.5) is given by:

−→𝑢 (𝑥,𝑡) = −→𝑔 𝑢
𝐷 𝑖𝑛 Γ𝑢𝐷

𝜎′ · −→𝑛 = −→𝑔 𝑢
𝑁 𝑖𝑛 Γ𝑢𝑁

(2.16)

where −→𝑛 is the unit outward normal vector to the boundary, Γ𝑢𝐷 denotes the Dirichlet
Boundary and Γ𝑢𝑁 denotes the Neumann Boundary, both for the geomechanical problem.
−→𝑔 𝑢

𝐷 along with −→𝑔 𝑢
𝑁 are the prescribed values of the displacement −→𝑢 and traction 𝜎′ · −→𝑛

at the boundary, respectively.

Even though there is no time derivative in Eq. (2.5) due to the elastostatic condtion,
−→𝑢 still changes over time, which entails a initial condition, which is given by:

−→𝑢 (𝑥,0) = −→𝑢 0 𝑖𝑛 Ω (2.17)

where −→𝑢 0 is the initial values of displacement.

2.2 Fluid Subystem

The hypothesis adopted to describe the fluid behavior are:

• Single Phase Fluid;

• Slightly Compressible Fluid;

• Newtonian Fluid;

• No gravitational effects;

2.2.1 Governing Equation

Since there are no changes in fluid temperature (Isotermic Flow), the only equation
modelling the fluid flow inside a porous media is the mass conservation. For the fluid
phase, the mass conservation inside the pore is given by (VERRUIJT, 2013):
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𝜕 (𝜑𝜌𝑓 )
𝜕𝑡

+ ∇ · (𝜑𝜌𝑓−→𝑣𝑓 ) = 𝑞𝑓 (2.18)

where 𝜑 is the porosity of the porous media, 𝜌𝑓 is the fluid density, −→𝑣𝑓 is the fluid velocity
and 𝑞𝑓 is the source (or sink) term.

The fluid compressibility 𝑐𝑓 can be expressed as follows:

𝑐𝑓 = 1
𝜌𝑓

𝑑𝜌𝑓
𝑑𝑝

(2.19)

Due to the slightly compressible fluid consideration, 𝑐𝑓 has a non-zero, constant
value. By substituting Eq. (2.19), and doing some algebraic manipulation, Eq. (2.18)
becomes:

𝜕𝜑

𝜕𝑡
+ 𝜑𝑐𝑓

𝜕𝑝

𝜕𝑡
+ ∇ · (𝜑−→𝑣𝑓 ) = 𝑄𝑓 (2.20)

where 𝑄𝑓 = 𝑞𝑓/𝜌𝑓 .

The mass conservation principle applied to the solid material yields (VERRUIJT,
2013):

𝜕 [(1 − 𝜑) 𝜌𝑠]
𝜕𝑡

+ ∇ · [(1 − 𝜑) 𝜌𝑠−→𝑣𝑠 ] = 0 (2.21)

where 𝜌𝑠 and −→𝑣𝑠 are the solid particles density and velocity respectively.

Then, it’s assumed that 𝜌𝑠 is a function of the total isotropic stress 𝜎𝑣 and the
fluid pressure 𝑝 such that (VERRUIJT, 2013):

(1 − 𝜑) 𝜕𝜌𝑠
𝜕𝑡

= 𝜌𝑠𝑐𝑠

(︃
−𝜕𝜎𝑣
𝜕𝑡

− 𝜑
𝜕𝑝

𝜕𝑡

)︃
(2.22)

where 𝑐𝑠 is the solid particle compressibility and 𝜎𝑣 = 𝑡𝑟(𝜎)/3.

By using Eq. (2.22), Eq. (2.21) can be written as:

−𝜕𝜑

𝜕𝑡
+ 𝑐𝑠

(︃
−𝜕𝜎𝑣
𝜕𝑡

− 𝜑
𝜕𝑝

𝜕𝑡

)︃
− ∇ · [(1 − 𝜑) −→𝑣𝑠 ] = 0 (2.23)

By adding Eq. (2.20) and Eq. (2.21), one gets:
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𝜑 (𝑐𝑓 − 𝑐𝑠)
𝜕𝑝

𝜕𝑡
− 𝑐𝑠

𝜕𝜎𝑣
𝜕𝑡

+ ∇ · −→𝑣𝑡 + ∇ · −→𝑣𝑠 = 𝑄𝑓 (2.24)

where −→𝑣𝑡 = 𝜑 (−→𝑣𝑓 − −→𝑣𝑠 ) is the Darcy velocity for a fluid in a non-rigid porous media. In a
rigid porous media ( −→𝑣𝑠 = 0 ) the Darcy velocity is just −→𝑣𝑡 = 𝜑−→𝑣𝑓 .

By using the following relations: 𝜎𝑣 = 𝜎′
𝑣 − 𝛼𝑝 (Terzaghi’s Principle); 𝜎′

𝑣 = 𝜀𝑣/𝑐𝑚 ;
𝑡𝑟(𝜀) = ∇ · −→𝑢 ; Eq. (2.24) becomes (VERRUIJT, 2013):

𝑆
𝜕𝑝

𝜕𝑡
+ ∇ · −→𝑣𝑡 + 𝛼

𝜕𝜀𝑣
𝜕𝑡

= 𝑄𝑓 (2.25)

where 𝑆 = 𝜑𝑐𝑓 + (𝛼− 𝜑) 𝑐𝑠 is called the storage coefficient and Eq. (2.25) is also called
The Storage Equation.

2.2.2 Darcy’s Law

Darcy’s Law is a constitutive relation between the in-pore fluid Darcy Velocity and
the pressure gradient inside same pore. For a single phase fluid and neglecting gravitational
effects, Darcy’s Law can be written as (EWING, 1983):

−→𝑣𝑡 = − 1
𝜇
𝐾∇𝑝 (2.26)

with 𝜇 being the fluid viscosity and 𝐾 being the porous media permeability tensor. Due to
the Newtonian Fluid hypothesis, 𝜇 assumes a constant value throughout the simulation.

2.2.3 Boundary Conditions

A proper set of boundary conditions for Eq. (2.25) is given by:

𝑝 (𝑥,𝑡) = 𝑔𝑝𝐷 𝑖𝑛 Γ𝑝𝐷

−→𝑣𝑡 · −→𝑛 = 𝑔𝑝𝑁 𝑖𝑛 Γ𝑝𝑁

(2.27)

where −→𝑛 is the unit normal vector to the boundary, Γ𝑝𝐷 denotes the Dirichlet Boundary
and Γ𝑝𝑁 denotes the Neumann Boundary, both for the flow problem. −→𝑔 𝑝

𝐷 along with −→𝑔 𝑝
𝑁

are the prescribed values of the pressure 𝑝 and flux −→𝑣𝑡 · −→𝑛 at the boundary.

Moreover, initial conditions is for the fluid flow problem are given by:

𝑝 (𝑥,0) = 𝑝0 𝑖𝑛 Ω (2.28)

where 𝑝0 is the initial values of pressure.
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2.3 Complete Poroelastic Model

In short, the coupled poroelastic model used in the present work involves the
following equations:

• Stress Equilibrium Equation ,Eq. (2.5):

∇ · 𝜎′ − 𝛼∇𝑝+ −→
𝑓 = 0

• Hooke’s Law, Eq. (2.8):
𝜎′ = 𝜆𝑡𝑟 (𝜀) I + 2𝐺𝜀

• Strain-Displacement Relationship , Eq. (2.6):

𝜀 = ∇−→𝑢 + ∇−→𝑢 ⊤

2

• The Storage Equation, Eq. (2.25):

𝑆
𝜕𝑝

𝜕𝑡
+ ∇ · −→𝑣𝑡 + 𝛼

𝜕𝜀𝑣
𝜕𝑡

= 𝑄𝑓

• Darcy’s Law, Eq. (2.26):
−→𝑣𝑡 = − 1

𝜇
𝐾∇𝑝

• Boundary conditions, Eq. (2.27) and Eq. (2.16):
−→𝑢 (𝑥,𝑡) = −→𝑔 𝑢

𝐷 𝑖𝑛 Γ𝑢𝐷

𝜎′ · −→𝑛 = −→𝑔 𝑢
𝑁 𝑖𝑛 Γ𝑢𝑁

𝑝 (𝑥,𝑡) = 𝑔𝑝𝐷 𝑖𝑛 Γ𝑝𝐷

−→𝑣 · −→𝑛 = 𝑔𝑝𝑁 𝑖𝑛 Γ𝑝𝑁

• Initial Conditions, Eq. (2.28) and Eq. (2.17):
−→𝑢 (𝑥,0) = −→𝑢 0 𝑖𝑛 Ω

𝑝 (𝑥,0) = 𝑝0 𝑖𝑛 Ω

The mathematical description above has two coupling terms: 𝛼∇𝑝 in the solid
equation, which comes from the solution of the fluid subsystem and 𝛼𝜀𝑣 in the fluid
equation, comes from the solution of the solid subsystem. It is important to note that
both terms are multiplied by Biot’s coefficient 𝛼. Physically speaking, 𝛼 represents how
the momentum transferred through the porous media is shared by both the solid and the
fluid phases.
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3 NUMERICAL FORMULATION

This work uses a collocated cell-centred finite volume scheme. The main unknowns
are 𝑝, cell pressure, 𝑢 and 𝑣, cell displacements. The first step is to split the computational
domain Ω into 𝑁𝑐𝑣 computational cells 𝐿̂, with 𝑁𝑐𝑣 being the number of cells. Next step
is to work with the integral formulation of the PDEs. Then the integral over the whole
domain Ω is split into 𝑁𝑐𝑣 integrals over a cell domain Ω𝐿̂. The following description is
how each term of each PDE is approximated inside the cell domain Ω𝐿̂. The integral
formulation of Eq. (2.5) and Eq. (2.25) for a control volume 𝐿̂ is as follows:

∫︁
Ω𝐿̂

∇𝜎′ 𝑑Ω𝐿̂ −
∫︁

Ω𝐿̂

𝛼∇𝑝 𝑑Ω𝐿̂ =
∫︁

Ω𝐿̂

−→
𝑓 𝑑Ω𝐿̂ (3.1)

∫︁
Ω𝐿̂

𝑆
𝜕𝑝

𝜕𝑡
𝑑Ω𝐿̂ +

∫︁
Ω𝐿̂

∇ · −→𝑣𝑡 𝑑Ω𝐿̂ +
∫︁

Ω𝐿̂

𝛼
𝜕𝜀𝑣
𝜕𝑡

𝑑Ω𝐿̂ =
∫︁

Ω𝐿̂

𝑄𝑓 𝑑Ω𝐿̂ (3.2)

3.1 Solid Subsystem

3.1.1 Multipoint Stress Approximation using Harmonic Points (MPSA-H)

To approximate the effective stress divergent (first term of Eq. (3.1)) integral over
a cell domain Ω𝐿̂, under a Finite Volume approximation, first the Divergence Theorem is
applied as follows:

∫︁
Ω𝐿̂

∇𝜎′ 𝑑Ω𝐿̂ =
∫︁

Γ𝐿̂

𝜎′ · −→𝑛 𝑑Γ𝐿̂ (3.3)

In Equation (3.3), Γ𝐿̂ is the computational cell 𝐿̂ boundary, and −→𝑛 is the unit
outward normal vector to Γ𝐿̂. Since the computational cells 𝐿̂ are star-shaped polygons,
the following identity holds:

∫︁
Γ𝐿̂

𝜎′ · −→𝑛 𝑑Γ𝐿̂ =
∑︁

𝐼𝐽∈Γ𝐿̂

∫︁
𝐼𝐽
𝜎′ · −→𝑛 𝑑𝑠 (3.4)

where 𝐼𝐽 is a cell’s face (edge in 2D). Furthermore, the integral over a cell face can be
approximated via the Mean Value Theorem as follows:
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∫︁
𝐼𝐽
𝜎′ · −→𝑛 𝑑𝑠 ≈ |𝐼𝐽 |𝜎′ · −→𝑛 𝐼𝐽 = |𝐼𝐽 |

−→
𝒯 𝐼𝐽 (3.5)

where −→
𝒯 𝐼𝐽 = 𝜎′ · −→𝑛 𝐼𝐽 is known as the traction vector. When |𝐼𝐽 | → 0, the aforementioned

approximation becomes exact. Furthermore, one can write the traction vector as follows:

−→
𝒯 𝐼𝐽 =

⎡⎣C : ∇−→𝑢 + ∇−→𝑢 ⊤

2

⎤⎦ · −→𝑛 𝐼𝐽 =
⎡⎣∇𝑢 · 𝐶𝑥𝑥−→𝑛 𝐼𝐽 + ∇𝑣 · 𝐶𝑥𝑦−→𝑛 𝐼𝐽

∇𝑢 · 𝐶𝑦𝑥−→𝑛 𝐼𝐽 + ∇𝑣 · 𝐶𝑦𝑦−→𝑛 𝐼𝐽

⎤⎦ (3.6)

where 𝐶𝑥𝑥, 𝐶𝑥𝑦, 𝐶𝑦𝑥, 𝐶𝑦𝑦 are diffusion coefficients constructed from C. Therefore, 𝐶𝑥𝑥−→𝑛 𝐼𝐽 ,
𝐶𝑥𝑦−→𝑛 𝐼𝐽 , 𝐶𝑦𝑥−→𝑛 𝐼𝐽 , 𝐶𝑦𝑦−→𝑛 𝐼𝐽 are co-normal vectors. The aforementioned diffusion coefficients
are defined, under the isotropic linear elasticity assumption, as:

𝐶𝑥𝑥 =
⎡⎣𝜆+ 2𝐺 0

0 𝐺

⎤⎦ , 𝐶𝑥𝑦 = 𝐶𝑦𝑥⊤

⎡⎣0 𝐺

𝜆 0

⎤⎦ , 𝐶𝑦𝑦 =
⎡⎣𝐺 0

0 𝜆+ 2𝐺

⎤⎦ (3.7)

The next step is to use the approximation for a generic diffusion term defined in
(GAO; WU, 2014). Considering two generic computational cells 𝐿̂ and 𝑅̂, which shares
the common edge 𝐼𝐽 , one can write the stress vector on 𝐼𝐽 using the properties of each
cell as:

−→
𝒯 𝐿̂
𝐼𝐽 =

⎡⎣∇𝑢𝐿̂ · 𝐶𝑥𝑥
𝐿̂

−→𝑛 𝐼𝐽 + ∇𝑣𝐿̂ · 𝐶𝑥𝑦

𝐿̂

−→𝑛 𝐼𝐽

∇𝑢𝐿̂ · 𝐶𝑦𝑥

𝐿̂

−→𝑛 𝐼𝐽 + ∇𝑣𝐿̂ · 𝐶𝑦𝑦

𝐿̂

−→𝑛 𝐼𝐽

⎤⎦ (3.8)

−→
𝒯 𝑅̂
𝐼𝐽 =

⎡⎣∇𝑢𝑅̂ · 𝐶𝑥𝑥
𝑅̂

−→𝑛 𝐽𝐼 + ∇𝑣𝑅̂ · 𝐶𝑥𝑦

𝑅̂

−→𝑛 𝐽𝐼

∇𝑢𝑅̂ · 𝐶𝑦𝑥

𝑅̂

−→𝑛 𝐽𝐼 + ∇𝑣𝑅̂ · 𝐶𝑦𝑦

𝑅̂

−→𝑛 𝐽𝐼

⎤⎦ (3.9)

where −→𝑛 𝐽𝐼 = −−→𝑛 𝐼𝐽 . Next, we decompose each co-normal vector as follows:

𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 = 𝛼𝜂
𝐿̂,𝑖(𝐼𝐽)

−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) + 𝛼𝜂
𝐿̂,𝑗(𝐼𝐽)

−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽), 𝜂 = 𝑥𝑥, 𝑥𝑦, 𝑦𝑥, 𝑦𝑦 (3.10)

where 𝑥𝐿̂,𝑖(𝐼𝐽) and 𝑥𝐿̂,𝑗(𝐼𝐽) are auxiliary points inside 𝐿̂, which may or may not belong
to 𝐼𝐽 (See Fig. 1. In the Finite Volume method presented in this work, the auxiliary
points are the Harmonic Point. A harmonic point 𝑥𝐿̂,𝑖(𝐼𝐽) is a point belonging to the edge
𝐼𝐽 in which the value of the solution field (e.g. Displacement) is a function of only the
two computational cells that share 𝐼𝐽 . However, to construct the average stress vector in
each face 𝐼𝐽 , two harmonic points are necessary. The pair of harmonic points used in the
approximation are required to satisfy the following conditions:
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1. With 𝜃1
𝐿̂,𝐼𝐽

and 𝜃2
𝐿̂,𝐼𝐽

being the angles between 𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 and −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽), and between
𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 and −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽), respectively (See Fig 1), each angle and their sum, 𝜃1
𝐿̂,𝐼𝐽

+𝜃2
𝐿̂,𝐼𝐽

,
must lie in the interval [0,𝜋)

2. The Cross products 𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 × −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) and 𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 × −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽) must have positive
sign.

Figure 1 – Points used in the stress approximation

Source: Own authorship (2023)

Furthermore, 𝛼𝜂
𝐿̂,𝑖(𝐼𝐽) and 𝛼𝜂

𝐿̂,𝑗(𝐼𝐽) are defined as:

𝛼𝜂
𝐿̂,𝑖(𝐼𝐽) =

(︁
𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 ,
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁

(︁−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁ (3.11)

𝛼𝜂
𝐿̂,𝑗(𝐼𝐽) =

(︁
𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 ,
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),

−→𝑒𝑧
)︁

(︁−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁ (3.12)

where (−→𝑎 ,−→𝑏 ,−→𝑐 ) is the mixed product between vectors −→𝑎 , −→
𝑏 and −→𝑐 . Also, −→𝑒𝑧 is the

unit vector normal to the 𝑥𝑦 plane. By substituting Eq. (3.10) in one diffusive term (e.g.
𝐶𝑥𝑥
𝐿̂

−→𝑛 𝐼𝐽 · ∇𝑢𝐿̂ in Eq. (3.8)) , one gets:

𝐶𝑥𝑥
𝐿̂

−→𝑛 𝐼𝐽 · ∇𝑢𝐿̂ = 𝛼𝑥𝑥
𝐿̂,𝑖(𝐼𝐽)∇𝑢𝐿̂ · −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) + 𝛼𝑥𝑥

𝐿̂,𝑗(𝐼𝐽)∇𝑢𝐿̂ · −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽) (3.13)

Then, by using the following Taylor Series approximations ∇𝑢𝐿̂ · −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) ≈
𝑢𝐿̂,𝑖(𝐼𝐽) − 𝑢𝐿̂ and ∇𝑢𝐿̂ · −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽) ≈ 𝑢𝐿̂,𝑗(𝐼𝐽) − 𝑢𝐿̂, Eq. (3.13) becomes:
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𝐶𝑥𝑥
𝐿̂

−→𝑛 𝐼𝐽 · ∇𝑢𝐿̂ ≈ 𝛼𝑥𝑥
𝐿̂,𝑖(𝐼𝐽)

(︁
𝑢𝐿̂,𝑖(𝐼𝐽) − 𝑢𝐿̂

)︁
+ 𝛼𝑥𝑥

𝐿̂,𝑗(𝐼𝐽)

(︁
𝑢𝐿̂,𝑗(𝐼𝐽) − 𝑢𝐿̂

)︁
(3.14)

When |𝐼𝐽 | → 0, the approximation in Eq. (3.14) becomes exact. By following
similar procedure, one can also define an approximation for the diffusive term in regards
to the computational cell 𝑅̂ as:

𝐶𝑥𝑥
𝑅̂

−→𝑛 𝐽𝐼 · ∇𝑢𝑅̂ ≈ 𝛼𝑥𝑥
𝑅̂,𝑖(𝐼𝐽)

(︁
𝑢𝑅̂ − 𝑢𝑅̂,𝑖(𝐼𝐽)

)︁
+ 𝛼𝑥𝑥

𝑅̂,𝑗(𝐼𝐽)

(︁
𝑢𝑅̂ − 𝑢𝑅̂,𝑗(𝐼𝐽)

)︁
(3.15)

Remark. Even though the same label, 𝑖 and 𝑗, are used to refer to harmonic points in
both 𝐿̂ and 𝑅̂ for simplicity sake, the points used in each approximation are not the same.
They can share, at most, one point. That only happens if both use the harmonic point
belonging to 𝐼𝐽 .

Furthermore, Eq. (3.14) and Eq. (3.15) can be written as:

𝐶𝑥𝑥
𝐿̂

−→𝑛 𝐼𝐽 · ∇𝑢𝐿̂ ≈ 𝒟𝑥𝑥
𝐿̂,𝐼𝐽

− 𝒜𝑥𝑥
𝐿̂,𝐼𝐽

𝑢𝐿̂ (3.16)

𝐶𝑥𝑥
𝑅̂

−→𝑛 𝐼𝐽 · ∇𝑢𝑅̂ ≈ 𝒜𝑥𝑥
𝑅̂,𝐼𝐽

𝑢𝑅̂ − 𝒟𝑥𝑥
𝐿̂,𝐼𝐽

(3.17)

where

𝒜𝑥𝑥
𝐿̂,𝐼𝐽

=
(︁
𝛼𝑥𝑥
𝐿̂,𝑖(𝐼𝐽) + 𝛼𝑥𝑥

𝐿̂,𝑗(𝐼𝐽)

)︁
, 𝒜𝑥𝑥

𝑅̂,𝐼𝐽
=
(︁
𝛼𝑥𝑥
𝑅̂,𝑖(𝐼𝐽) + 𝛼𝑥𝑥

𝑅̂,𝑗(𝐼𝐽)

)︁
(3.18)

𝒟𝑥𝑥
𝐿̂,𝐼𝐽

=
(︁
𝛼𝑥𝑥
𝐿̂,𝑖(𝐼𝐽)𝑢𝐿̂,𝑖(𝐼𝐽) + 𝛼𝑥𝑥

𝐿̂,𝑗(𝐼𝐽)𝑢𝐿̂,𝑗(𝐼𝐽)

)︁
(3.19)

𝒟𝑥𝑥
𝑅̂,𝐼𝐽

=
(︁
𝛼𝑥𝑥
𝑅̂,𝑖(𝐼𝐽)𝑢𝑅̂,𝑖(𝐼𝐽) + 𝛼𝑥𝑥

𝑅̂,𝑗(𝐼𝐽)𝑢𝑅̂,𝑗(𝐼𝐽)

)︁
(3.20)

By applying the MPFA-H method to each diffusive term in Eq. (3.8) and in Eq.
(3.9), one can approximate the average stress vectors defined in said equations. The
resulting discrete stress is as follows:
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−→
𝒯 𝐿̂
𝐼𝐽 ≈

⎡⎣𝒟𝑥𝑥
𝐿̂,𝐼𝐽

− 𝒜𝑥𝑥
𝐿̂,𝐼𝐽

𝑢𝐿̂ + 𝒟𝑥𝑦

𝐿̂,𝐼𝐽
− 𝒜𝑥𝑦

𝐿̂,𝐼𝐽
𝑣𝐿̂

𝒟𝑦𝑥

𝐿̂,𝐼𝐽
− 𝒜𝑦𝑥

𝐿̂,𝐼𝐽
𝑢𝐿̂ + 𝒟𝑦𝑦

𝐿̂,𝐼𝐽
− 𝒜𝑦𝑦

𝐿̂,𝐼𝐽
𝑣𝐿̂

⎤⎦ (3.21)

−→
𝒯 𝑅̂
𝐼𝐽 ≈

⎡⎣𝒜𝑥𝑥
𝑅̂,𝐼𝐽

𝑢𝑅̂ − 𝒟𝑥𝑥
𝑅̂,𝐼𝐽

+ 𝒜𝑥𝑦

𝑅̂,𝐼𝐽
𝑣𝑅̂ − 𝒟𝑥𝑦

𝑅̂,𝐼𝐽

𝒜𝑦𝑥

𝑅̂,𝐼𝐽
𝑢𝑅̂ − 𝒟𝑦𝑥

𝑅̂,𝐼𝐽
+ 𝒜𝑦𝑦

𝑅̂,𝐼𝐽
𝑣𝑅̂ − 𝒟𝑦𝑦

𝑅̂,𝐼𝐽

⎤⎦ (3.22)

3.1.1.1 Harmonic Points Interpolation for Linear Elasticity Problems

To construct the Finite Volume Method used in this paper to approximate the
Stress Vector, First we must arrive at a definition for the position of said points in the
computational cell edge 𝐼𝐽 , and a definition for the displacement value in said edge, as a
function only of the two computational cell 𝐿̂ and 𝑅̂. In (AGÉLAS; EYMARD; HERBIN,
2009), the authors proposed the harmonic points definition for simple diffusive problems.
Later, (TEREKHOV; TCHELEPI, 2020a) extended this concept to the Linear Elasticity
problem. The procedure used in this paper is based of (TEREKHOV; TCHELEPI, 2020a).

First, each co-normal vector given in Eq. (3.8) and in (3.9) is decomposed in a
normal(𝑛 superscript) and a tangential(𝑡 superscript) component to 𝐼𝐽 , as follows:

𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 =
−−−→
𝐶
𝜂(𝑛)
𝐿̂

+
−−→
𝐶
𝜂(𝑡)
𝐿̂

, 𝐶𝜂

𝑅̂

−→𝑛 𝐽𝐼 =
−−−→
𝐶𝑅̂(𝑛)
𝜂 +

−−−→
𝐶𝑅̂(𝑡)
𝜂 (3.23)

with 𝜂 = 𝑥𝑥, 𝑥𝑦, 𝑦𝑥, 𝑦𝑦. Furthermore, the normal part of the co-normal vector can be
written as

−−−→
𝐶
𝜂(𝑛)
𝐿̂

= 𝐶
𝜂(𝑛)
𝐿̂

−→𝑛 𝐼𝐽 with 𝐶
𝜂(𝑛)
𝐿̂

=
(︁
𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽

)︁
· −→𝑛 𝐼𝐽 and

−−→
𝐶
𝜂(𝑡)
𝐿̂

= 𝐶𝜂

𝐿̂

−→𝑛 𝐼𝐽 −
−−−→
𝐶
𝜂(𝑛)
𝐿̂

.

Then, each gradient vector is also split into a normal and tangential components:

∇𝑢𝑉 = ∇𝑢(𝑛)
𝑉

+ ∇𝑢(𝑡)
𝑉
, ∇𝑣𝑉 = ∇𝑣(𝑛)

𝑉
+ ∇𝑣(𝑡)

𝑉
(3.24)

with 𝑉 = 𝐿̂, 𝑅̂.

To reduce the notation used in the following steps, the following matrices are
defined:

𝐶𝐿̂,𝐼𝐽 =
⎡⎣𝐶𝑥𝑥(𝑛)

𝐿̂
𝐶
𝑥𝑦(𝑛)
𝐿̂

𝐶
𝑦𝑥(𝑛)
𝐿̂

𝐶
𝑥𝑥(𝑛)
𝐿̂

⎤⎦ , 𝑇𝐿̂,𝐼𝐽 =

⎡⎢⎢⎢⎢⎣
(︃−−−→
𝐶
𝑥𝑥(𝑡)
𝐿̂

)︃⊤ (︃−−−→
𝐶
𝑥𝑦(𝑡)
𝐿̂

)︃⊤

(︃−−−→
𝐶
𝑦𝑥(𝑡)
𝐿̂

)︃⊤ (︃−−−→
𝐶
𝑦𝑦(𝑡)
𝐿̂

)︃⊤

⎤⎥⎥⎥⎥⎦ (3.25)
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Remark. The matrix 𝑇𝐿̂,𝐼𝐽 is a 2x4 matrix, whose components are the transpose of the
co-normals tangential parts, since vectors are defined as column matrices.

By using Eq.(3.25), substituting Eq. (3.23) and Eq. (3.24) into Eq. (3.8) and
Eq. (3.9), and doing the proper algebraic manipulation, one can arrive at the following
expressions for each cell average stress vector:

−→
𝒯 𝐿̂
𝐼𝐽 = 𝐶𝐿̂,𝐼𝐽

⎡⎣|∇𝑢(𝑛)
𝐿̂

|
|∇𝑣(𝑛)

𝐿̂
|

⎤⎦+ 𝑇𝐿̂,𝐼𝐽

⎡⎣∇𝑢(𝑡)
𝐿̂

∇𝑣(𝑡)
𝐿̂

⎤⎦ (3.26)

−→
𝒯 𝑅̂
𝐼𝐽 = 𝐶𝑅̂,𝐼𝐽

⎡⎣|∇𝑢(𝑛)
𝑅̂

|
|∇𝑣(𝑛)

𝑅̂
|

⎤⎦+ 𝑇𝑅̂,𝐼𝐽

⎡⎣∇𝑢(𝑡)
𝑅̂

∇𝑣(𝑡)
𝑅̂

⎤⎦ (3.27)

where |−→𝑎 | represents vector −→𝑎 norm

Furthermore, the Eq. 3.26 and Eq. 3.27 must satisfy the stress vector continuity,−→
𝒯 𝐿̂
𝐼𝐽 =

−→
𝒯 𝑅̂
𝐼𝐽 . Therefore:

𝐶𝐿̂,𝐼𝐽

⎡⎣|∇𝑢(𝑛)
𝐿̂

|
|∇𝑣(𝑛)

𝐿̂
|

⎤⎦+ 𝑇𝐿̂,𝐼𝐽

⎡⎣∇𝑢(𝑡)
𝐿̂

∇𝑣(𝑡)
𝐿̂

⎤⎦ = 𝐶𝑅̂,𝐼𝐽

⎡⎣|∇𝑢(𝑛)
𝑅̂

|
|∇𝑣(𝑛)

𝑅̂
|

⎤⎦+ 𝑇𝑅̂,𝐼𝐽

⎡⎣∇𝑢(𝑡)
𝑅̂

∇𝑣(𝑡)
𝑅̂

⎤⎦ (3.28)

Moreover, the displacement vector continuity can be expressed as:

−→𝑢𝐿̂ +𝐺𝐿̂ (𝑥− 𝑥𝐿̂) = −→𝑢𝑅̂ −𝐺𝑅̂ (𝑥𝑅̂ − 𝑥) (3.29)

where 𝑥 is a point belonging to 𝐼𝐽 and:

𝐺𝐿̂ =

⎡⎢⎢⎣
𝜕𝑢
𝜕𝑥

⃒⃒⃒⃒
𝐿̂

𝜕𝑢
𝜕𝑦

⃒⃒⃒⃒
𝐿̂

𝜕𝑣
𝜕𝑥

⃒⃒⃒⃒
𝐿̂

𝜕𝑣
𝜕𝑦

⃒⃒⃒⃒
𝐿̂

⎤⎥⎥⎦ , 𝐺𝑅̂ =

⎡⎢⎢⎣
𝜕𝑢
𝜕𝑥

⃒⃒⃒⃒
𝑅̂

𝜕𝑢
𝜕𝑦

⃒⃒⃒⃒
𝑅̂

𝜕𝑣
𝜕𝑥

⃒⃒⃒⃒
𝑅̂

𝜕𝑣
𝜕𝑦

⃒⃒⃒⃒
𝑅̂

⎤⎥⎥⎦ (3.30)

By defining ℎ𝐿̂,𝐼𝐽 and ℎ𝑅̂,𝐼𝐽 as the distances between 𝐼𝐽 and 𝑥𝐿̂ and between 𝐼𝐽

and 𝑥𝑅̂ respectively (Fig. 2), points 𝑦𝐿̂,𝐼𝐽 and 𝑦𝑅̂,𝐼𝐽 such as 𝑦𝐿̂,𝐼𝐽 = 𝑥𝐿̂ + ℎ𝐿̂,𝐼𝐽
−→𝑛 𝐼𝐽 and

𝑦𝑅̂,𝐼𝐽 = 𝑥𝑅̂ − ℎ𝑅̂,𝐼𝐽
−→𝑛 𝐼𝐽 , along with the displacement gradient split defined in Eq. (3.24),

Eq. (3.29) can be written as:

−→𝑢𝐿̂ + ℎ𝐿̂,𝐼𝐽

⎡⎣|∇𝑢(𝑛)
𝐿̂

|
|∇𝑣(𝑛)

𝐿̂
|

⎤⎦− 𝑌𝐿̂,𝐼𝐽

⎡⎣∇𝑢(𝑡)
𝐿̂

∇𝑣(𝑡)
𝐿̂

⎤⎦ = −→𝑢𝑅̂ − ℎ𝑅̂,𝐼𝐽

⎡⎣|∇𝑢(𝑛)
𝑅̂

|
|∇𝑣(𝑛)

𝑅̂
|

⎤⎦− 𝑌𝑅̂,𝐼𝐽

⎡⎣∇𝑢(𝑡)
𝑅̂

∇𝑣(𝑡)
𝑅̂

⎤⎦ (3.31)
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The 2x4 matrices 𝑌𝐿̂,𝐼𝐽 and 𝑌𝑅̂,𝐼𝐽 are defined as 𝑌𝐿̂,𝐼𝐽 =
[︁
𝐼 ⊗ 𝑦⊤

𝐿̂,𝐼𝐽

]︁
and 𝑌𝑅̂,𝐼𝐽 =[︁

𝐼 ⊗ 𝑦⊤
𝑅̂,𝐼𝐽

]︁
, where the symbol ⊗ represents the Kronecker product.

Figure 2 – Distances from cell edge 𝐼𝐽 to cell centers 𝑥𝐿̂ and 𝑥𝑅̂

Source: Own authorship (2023)

From the displacement continuity, Eq. (3.29), it follows that ∇𝑢(𝑡)
𝐿̂

= ∇𝑢(𝑡)
𝑅̂

= ∇𝑢(𝑡)

and ∇𝑣(𝑡)
𝐿̂

= ∇𝑣(𝑡)
𝑅̂

= ∇𝑣(𝑡). Thus, we can write Eq. (3.28) as:

⎡⎣|∇𝑢(𝑛)
𝑅̂

|
|∇𝑣(𝑛)

𝑅̂
|

⎤⎦ = 𝐶𝑅̂,𝐼𝐽
−1

⎛⎝𝐶𝐿̂,𝐼𝐽
⎡⎣|∇𝑢(𝑛)

𝐿̂
|

|∇𝑣(𝑛)
𝐿̂

|

⎤⎦+
(︁
𝑇𝐿̂,𝐼𝐽 − 𝑇𝑅̂,𝐼𝐽

)︁ ⎡⎣∇𝑢(𝑡)

∇𝑣(𝑡)

⎤⎦⎞⎠ (3.32)

By substituting Eq. (3.32) into Eq. 3.31, and doing the proper algebraic manipula-
tion, one gets:

−→𝑢 𝐿̂ − −→𝑢 𝑅̂ +
(︁
ℎ𝐿̂,𝐼𝐽𝐼 + ℎ𝑅̂,𝐼𝐽𝐶𝑅̂,𝐼𝐽

−1𝐶𝐿̂,𝐼𝐽
)︁ ⎡⎣|∇𝑢(𝑛)

𝐿̂
|

|∇𝑣(𝑛)
𝐿̂

|

⎤⎦+ 𝑈

⎡⎣∇𝑢(𝑡)

∇𝑣(𝑡)

⎤⎦ = 0 (3.33)

𝑈 =
[︁
𝑌𝑅̂,𝐼𝐽 − 𝑌𝐿̂,𝐼𝐽 + ℎ𝑅̂,𝐼𝐽𝐶𝑅̂,𝐼𝐽

−1
(︁
𝑇𝐿̂,𝐼𝐽 − 𝑇𝑅̂,𝐼𝐽

)︁]︁
(3.34)

Moreover, Eq. 3.33 can be written as:

⎡⎣|∇𝑢(𝑛)
𝐿̂

|
|∇𝑣(𝑛)

𝐿̂
|

⎤⎦ =
(︁
ℎ𝐿̂,𝐼𝐽𝐼 + ℎ𝑅̂,𝐼𝐽𝐶𝑅̂,𝐼𝐽

−1𝐶𝐿̂,𝐼𝐽
)︁−1

⎛⎝−→𝑢 𝑅̂ − −→𝑢 𝐿̂ − 𝑈

⎡⎣∇𝑢(𝑡)

∇𝑣(𝑡)

⎤⎦⎞⎠ (3.35)

If −→𝑢 𝐼𝐽 is the displacement evaluated at 𝐼𝐽 , the displacement continuity, Eq. 3.29,
can be written as:
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−→𝑢𝐿̂ +𝐺𝐿̂ (𝑥− 𝑥𝐿̂) = −→𝑢 𝐼𝐽 (3.36)

By introducing the 2x4 matrix 𝑌𝐼𝐽 , Eq. 3.36 can be written as:

−→𝑢𝐿̂ +
(︁
𝑌𝐼𝐽 −𝑋𝐿̂

)︁ ⎡⎣∇𝑢𝐿̂
∇𝑣𝐿̂

⎤⎦ = −→𝑢 𝐼𝐽 (3.37)

where 𝑋𝐿̂ =
[︁
𝐼 ⊗ 𝑥⊤

𝐿̂

]︁
. By introducing Eq. 3.24 into Eq. 3.37, one gets:

−→𝑢𝐿̂ + ℎ𝐿̂,𝐼𝐽

⎡⎣|∇𝑢(𝑛)
𝐿̂

|
|∇𝑣(𝑛)

𝐿̂
|

⎤⎦+
(︁
𝑌𝐼𝐽 − 𝑌𝐿̂,𝐼𝐽

)︁ ⎡⎣∇𝑢(𝑡)

∇𝑣(𝑡)

⎤⎦ = −→𝑢 𝐼𝐽 (3.38)

Furthermore, by introducing the expression for
[︁
|∇𝑢(𝑛)

𝐿̂
||∇𝑣(𝑛)

𝐿̂
|
]︁⊤

, Eq. 3.35, into
Eq. 3.38, and by doing some algebraic manipulation, one gets:

−→𝑢 𝐼𝐽 = 𝑊𝐿̂,𝐼𝐽
−→𝑢 𝐿̂ +𝑊𝑅̂,𝐼𝐽

−→𝑢 𝑅̂ +
(︁
𝑌𝐼𝐽 − 𝑌

)︁ ⎡⎣∇𝑢(𝑡)

∇𝑣(𝑡)

⎤⎦ (3.39)

𝑌 = 𝑊𝐿̂,𝐼𝐽𝑌𝐿̂,𝐼𝐽 +𝑊𝑅̂,𝐼𝐽𝑌𝑅̂,𝐼𝐽 +𝑊𝐼𝐽

(︁
𝑇𝐿̂,𝐼𝐽 − 𝑇𝑅̂,𝐼𝐽

)︁
(3.40)

where:

𝑊𝐿̂,𝐼𝐽 =
(︁
ℎ𝐿̂,𝐼𝐽𝐶𝑅̂,𝐼𝐽 + ℎ𝑅̂,𝐼𝐽𝐶𝐿̂,𝐼𝐽

)︁−1
ℎ𝑅̂,𝐼𝐽𝐶𝐿̂,𝐼𝐽 (3.41)

𝑊𝑅̂,𝐼𝐽 =
(︁
ℎ𝐿̂,𝐼𝐽𝐶𝑅̂,𝐼𝐽 + ℎ𝑅̂,𝐼𝐽𝐶𝐿̂,𝐼𝐽

)︁−1
ℎ𝐿̂,𝐼𝐽𝐶𝑅̂,𝐼𝐽 (3.42)

𝑊𝐼𝐽 = ℎ𝐿̂,𝐼𝐽ℎ𝑅̂,𝐼𝐽
(︁
ℎ𝐿̂,𝐼𝐽𝐶𝑅̂,𝐼𝐽 + ℎ𝑅̂,𝐼𝐽𝐶𝐿̂,𝐼𝐽

)︁−1
(3.43)

The sufficient condition for the displacement −→𝑢 𝐼𝐽 being a function of only −→𝑢 𝐿̂ and
−→𝑢 𝑅̂ is 𝑌𝐼𝐽 = 𝑌 . Therefore:

𝑌𝐼𝐽 = 𝑊𝐿̂,𝐼𝐽𝑌𝐿̂,𝐼𝐽 +𝑊𝑅̂,𝐼𝐽𝑌𝑅̂,𝐼𝐽 +𝑊𝐼𝐽

(︁
𝑇𝐿̂,𝐼𝐽 − 𝑇𝑅̂,𝐼𝐽

)︁
(3.44)
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By using the definitions of 𝑌𝐿̂,𝐼𝐽 , 𝑌𝑅̂,𝐼𝐽 , 𝑦𝐿̂,𝐼𝐽 , 𝑦𝑅̂,𝐼𝐽 , 𝑇𝐿̂,𝐼𝐽 , 𝑇𝑅̂,𝐼𝐽 and doing some
algebraic manipulation, Eq. 3.44 can be written as:

𝑌 = 𝑊𝐿̂,𝐼𝐽𝑋𝐿̂,𝐼𝐽 +𝑊𝑅̂,𝐼𝐽𝑋𝑅̂,𝐼𝐽 +𝑊𝐼𝐽

(︁
𝐶𝐿̂ − 𝐶𝑅̂

)︁
(3.45)

where:

𝐶𝐿̂ =

⎡⎢⎣
(︁
𝐶𝑥𝑥
𝐿̂

−→𝑛 𝐼𝐽

)︁⊤ (︁
𝐶𝑥𝑦

𝐿̂

−→𝑛 𝐼𝐽

)︁⊤(︁
𝐶𝑦𝑥

𝐿̂

−→𝑛 𝐼𝐽

)︁⊤ (︁
𝐶𝑦𝑦

𝐿̂

−→𝑛 𝐼𝐽

)︁⊤

⎤⎥⎦ , 𝐶𝑅̂ =

⎡⎢⎣
(︁
𝐶𝑥𝑥
𝑅̂

−→𝑛 𝐼𝐽

)︁⊤ (︁
𝐶𝑥𝑦

𝑅̂

−→𝑛 𝐼𝐽

)︁⊤(︁
𝐶𝑦𝑥

𝑅̂

−→𝑛 𝐼𝐽

)︁⊤ (︁
𝐶𝑦𝑦

𝑅̂

−→𝑛 𝐼𝐽

)︁⊤

⎤⎥⎦ (3.46)

It’s important to notice that Eq. 3.45 is analogous to the definition for harmonic
points in (AGÉLAS; EYMARD; HERBIN, 2009; GAO; WU, 2013), but for a vector field
−→𝑢 instead of a scalar field 𝑝. Moreover, the displacement −→𝑢 𝐼𝐽 is given by:

−→𝑢 𝐼𝐽 = 𝑊𝐿̂,𝐼𝐽
−→𝑢 𝐿̂ +𝑊𝑅̂,𝐼𝐽

−→𝑢 𝑅̂ (3.47)

3.1.1.2 Unique Stress Vector

The unique Stress Vector in 𝐼𝐽 , −→
𝒯 𝐼𝐽 , is given by a convex combination of the

unilateral Stress Vectors −→
𝒯 𝐿̂
𝐼𝐽 and −→

𝒯 𝑅̂
𝐼𝐽 :

−→
𝒯 𝐼𝐽 = 𝑊𝑅̂,𝐼𝐽

−→
𝒯 𝐿̂
𝐼𝐽 +𝑊𝐿̂,𝐼𝐽

−→
𝒯 𝑅̂
𝐼𝐽 (3.48)

Eq. 3.48 satisfies the convex condition because:

𝑊𝐿̂,𝐼𝐽 +𝑊𝑅̂,𝐼𝐽 = 𝐼 (3.49)

3.1.1.3 Treatment of Boundary Conditions

When the computational cell edge 𝐼𝐽 belongs to the domain Ω boundary, one of
the following may happen:

1. If 𝐼𝐽 belongs to a Dirichlet Boundary, the stress vector is unknown, therefore is
approximated by the one-sided stress vector, Eq. 3.21, as follows:

−→
𝒯 𝐼𝐽 = −→

𝒯 𝐿̂
𝐼𝐽 ≈

⎡⎣𝒟𝑥𝑥
𝐿̂,𝐼𝐽

− 𝒜𝑥𝑥
𝐿̂,𝐼𝐽

𝑢𝐿̂ + 𝒟𝑥𝑦

𝐿̂,𝐼𝐽
− 𝒜𝑥𝑦

𝐿̂,𝐼𝐽
𝑣𝐿̂

𝒟𝑦𝑥

𝐿̂,𝐼𝐽
− 𝒜𝑦𝑥

𝐿̂,𝐼𝐽
𝑢𝐿̂ + 𝒟𝑦𝑦

𝐿̂,𝐼𝐽
− 𝒜𝑦𝑦

𝐿̂,𝐼𝐽
𝑣𝐿̂

⎤⎦ (3.50)
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Furthermore, the displacement in the harmonic point pertaining to 𝐼𝐽 is known,
therefore it has the prescribed value at the boundary. Thus:

⎡⎣𝑢𝐿̂,𝑖(𝐼𝐽)

𝑣𝐿̂,𝑖(𝐼𝐽)

⎤⎦ = −→𝑔 𝑢
𝐷 𝑜𝑟

⎡⎣𝑢𝐿̂,𝑗(𝐼𝐽)

𝑣𝐿̂,𝑗(𝐼𝐽)

⎤⎦ = −→𝑔 𝑢
𝐷 (3.51)

2. If 𝐼𝐽 belongs to a Neumann Boundary, the stress is known, therefore is has the
prescribed value at said boundary. Thus:

−→
𝒯 𝐼𝐽 = −→𝑔 𝑢

𝑁 (3.52)

Furthermore, the displacement in 𝐼𝐽 is unknown, therefore it’s recovered from the
following expression:

⎡⎣𝒟𝑥𝑥
𝐿̂,𝐼𝐽

− 𝒜𝑥𝑥
𝐿̂,𝐼𝐽

𝑢𝐿̂ + 𝒟𝑥𝑦

𝐿̂,𝐼𝐽
− 𝒜𝑥𝑦

𝐿̂,𝐼𝐽
𝑣𝐿̂

𝒟𝑦𝑥

𝐿̂,𝐼𝐽
− 𝒜𝑦𝑥

𝐿̂,𝐼𝐽
𝑢𝐿̂ + 𝒟𝑦𝑦

𝐿̂,𝐼𝐽
− 𝒜𝑦𝑦

𝐿̂,𝐼𝐽
𝑣𝐿̂

⎤⎦ = −→𝑔 𝑢
𝑁 (3.53)

Remark. Accordingly to the boundary conditions of a given problem, Eq.3.53 leads
to a local system of equations, with up to 4 unknowns, whose solution yields the
interpolation of all harmonic points.

3.2 Fluid Subsystem

3.2.1 Implicit Euler

The pressure time derivative, first term in Eq. (3.2), in a computational cell 𝐿̂ is
approximated, via the Mean Value Theorem and Finite Difference, as follows:

∫︁
Ω𝐿̂

𝑆
𝜕𝑝

𝜕𝑡
𝑑Ω𝐿̂ ≈ 𝑉𝐿̂𝑆𝐿̂

Δ𝑡
(︁
𝑝𝑛+1
𝐿̂

− 𝑝𝑛
𝐿̂

)︁
(3.54)

where 𝑝𝑛+1
𝐿̂

and 𝑝𝑛
𝐿̂

are the pressure values at cell 𝐿̂ on the respective times 𝑡𝑛+1 and 𝑡𝑛,
with Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. 𝑉𝐿̂ is the computation cell area. Furthermore, a Backwards Euler
scheme is used to evaluate spatial terms. Therefore:

∫︁
Ω𝐿̂

𝑆
𝜕𝑝

𝜕𝑡
𝑑Ω𝐿̂ +

∫︁
Ω𝐿̂

∇ · −→𝑣𝑡 𝑑Ω𝐿̂ ≈ 𝑉𝐿̂𝑆𝐿̂
Δ𝑡

(︁
𝑝𝑛+1
𝐿̂

− 𝑝𝑛
𝐿̂

)︁
+
∫︁

Ω𝐿̂

∇ · −→𝑣𝑡 𝑑Ω𝐿̂

⃒⃒⃒⃒
⃒⃒
𝑛+1

(3.55)

It is possible to trace a parallel between the fluid terms in Eq. (2.25) and a general
diffusion equation. For the 1D case:
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𝜕𝑝

𝜕𝑡
= 𝑘

𝑆𝜇

𝜕2𝑝

𝜕𝑥2 (3.56)

𝜕𝜃

𝜕𝑡
= 𝜔

𝜕2𝜃

𝜕𝑥2 (3.57)

where 𝜃 = 𝑝 and 𝜔 = 𝑘/𝑆𝜇. In the context of a general diffusion problem, 𝜃 is the unknown
variable(e.g. Temperature, Pressure) and 𝜔 is a diffusion coefficient. In the context of
Poroelasticity, more precisely in Soil Mechanics, the quantity 𝜔 = 𝑘/𝑆𝜇 is known as the
consolidation coefficient (WANG, 2000). This similarity was first noted by Terzaghi himself.
The time evolution of the pressure profile for Terzaghi’s experiment was the same as the
analogous thermal problem of a sudden step change (WANG, 2000).

In numerical simulations of diffusion problems, the stability of a numerical scheme
is related to the Fourier’s number (HENSEN; NAKHI, 1994):

𝐹𝑜𝐿̂ = 𝜔𝐿̂
Δ𝑡
ℎ2
𝐿̂

(3.58)

ℎ𝐿̂ is cell 𝐿̂ characteristic length, and 𝜔𝐿̂ is cell 𝐿̂ diffusive coefficient. The value of 𝐹𝑜
that corresponds to the limit of stability in a diffusion problem is give by:

𝐹𝑜 = 1
4(1 − 𝑑) (3.59)

where 𝑑 = 0 for the Forwards Euler scheme, 𝑑 = 0.5 for the Crank-Nicholson scheme and
𝑑 = 1 for the Backwards Euler scheme. Thus, the Backwards Euler scheme is unconditionally
stable. Fourier’s number establishes a relationship between time step and mesh resolution,
which will be evident in section

3.2.2 Multipoint Flux Approximation using Harmonic Points (MPFA-H)

The Darcy Flux term (second term in Eq. (3.2)) is approximated using the original
MPFA-H defined in (GAO; WU, 2014; CONTRERAS et al., 2017). First we use The
Divergence theorem as follows:

∫︁
Ω𝐿̂

∇ · −→𝑣𝑡 𝑑Ω𝐿̂ =
∫︁

Γ𝐿̂

−→𝑣𝑡 · −→𝑛 𝑑Γ𝐿̂ =
∑︁

𝐼𝐽∈Γ𝐿̂

∫︁
𝐼𝐽

−→𝑣𝑡 · −→𝑛 𝑑𝑠 (3.60)

Next, we use the Mean Value theorem to approximate the Darcy Flux on the cell
edge 𝐼𝐽 . Furthermore, after substituting Darcy’s Law, Eq (2.26), in the result, one gets:



39

∫︁
𝐼𝐽

−→𝑣𝑡 · −→𝑛 𝑑𝑠 ≈ |𝐼𝐽 |−→𝑣𝑡 · −→𝑛 𝐼𝐽 = |𝐼𝐽 |(− 1
𝜇
𝐾∇𝑝) · −→𝑛 𝐼𝐽 (3.61)

Furthermore one can write the unilateral flux in regards to the cells 𝐿̂ and 𝑅̂ as:

−→𝑣𝑡 𝐿̂ · −→𝑛 𝐼𝐽 = − 1
𝜇
𝐾⊤
𝐿̂

∇𝑝 · −→𝑛 𝐼𝐽 = − 1
𝜇

∇𝑝 ·𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 (3.62)

−→𝑣𝑡 𝑅̂ · −→𝑛 𝐽𝐼 = − 1
𝜇
𝐾⊤
𝑅̂

∇𝑝 · −→𝑛 𝐽𝐼 = − 1
𝜇

∇𝑝 ·𝐾⊤
𝑅̂

−→𝑛 𝐽𝐼 (3.63)

where 𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 and 𝐾⊤
𝑅̂

−→𝑛 𝐽𝐼 are co-normal vectors corresponding to the diffusion coefficients
𝐾𝐿̂ and 𝐾𝑅̂. Similarly to Eq. (3.10), each co-normal vector is decomposed as follows:

𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 = 𝛼𝐾
𝐿̂,𝑖(𝐼𝐽)

−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) + 𝛼𝐾
𝐿̂,𝑗(𝐼𝐽)

−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽) (3.64)

where:

𝛼𝐾
𝐿̂,𝑖(𝐼𝐽) =

(︁
𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 ,
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁

(︁−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁ (3.65)

𝛼𝐾
𝐿̂,𝑗(𝐼𝐽) =

(︁
𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 ,
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),

−→𝑒𝑧
)︁

(︁−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁ (3.66)

Remark. Due to the use of shared notation, 𝑥𝐿̂,𝑙(𝐼𝐽) and 𝑥𝐿̂,𝑗(𝐼𝐽), the reader can infer that
the points used in the stress and flux approximations are the same, which may or may not
be the case. The Linear Elasticity problem has its set of harmonic points, corresponding to
C, and those points come in pairs for each cell edge 𝐼𝐽 . Meanwhile Darcy Flow problem
has a different set of harmonic points, now corresponding to 𝐾, which are unique for each
edge 𝐼𝐽 .

Then, by substituting Eq. 3.64 into the diffusive term, ∇𝑝 ·𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 , in Eq. 3.62
one gets:

∇𝑝 ·𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 = 𝛼𝐾
𝐿̂,𝑖(𝐼𝐽)∇𝑝 · −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) + 𝛼𝐾

𝐿̂,𝑗(𝐼𝐽)∇𝑝 · −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽) (3.67)
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By doing a Taylor Series expansion of ∇𝑝 in the directions of −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽) and −−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),
one can approximate the Darcy flux as:

−→𝑣𝑡 𝐿̂ · −→𝑛 𝐼𝐽 ≈ 1
𝜇

[︁
𝛼𝐾
𝐿̂,𝑖(𝐼𝐽)

(︁
𝑝𝐿̂ − 𝑝𝐿̂,𝑖(𝐼𝐽)

)︁
+ 𝛼𝐾

𝐿̂,𝑗(𝐼𝐽)

(︁
𝑝𝐿̂ − 𝑝𝐿̂,𝑗(𝐼𝐽)

)︁]︁
(3.68)

Similarly for the cell 𝑅̂:

−→𝑣𝑡 𝑅̂ · −→𝑛 𝐽𝐼 ≈ 1
𝜇

[︁
𝛼𝐾
𝑅̂,𝑖(𝐼𝐽)

(︁
𝑝𝑅̂,𝑖(𝐼𝐽) − 𝑝𝑅̂

)︁
+ 𝛼𝐾

𝑅̂,𝑗(𝐼𝐽)

(︁
𝑝𝑅̂,𝑗(𝐼𝐽) − 𝑝𝐿̂

)︁]︁
(3.69)

Moreover, each one sided flux can be written as:

−→𝑣𝑡 𝐿̂ · −→𝑛 𝐼𝐽 ≈ 1
𝜇

(︁
𝒜𝐾
𝐿̂,𝐼𝐽

𝑝𝐿̂ − 𝒟𝐾
𝐿̂,𝐼𝐽

)︁
, −→𝑣𝑡 𝑅̂ · −→𝑛 𝐽𝐼 ≈ 1

𝜇

(︁
𝒟𝐾
𝑅̂,𝐼𝐽

− 𝒜𝐾
𝑅̂,𝐼𝐽

𝑝𝑅̂
)︁

(3.70)

where:

𝒜𝐾
𝐿̂,𝐼𝐽

=
(︁
𝛼𝐾
𝐿̂,𝑖(𝐼𝐽) + 𝛼𝐾

𝐿̂,𝑗(𝐼𝐽)

)︁
, 𝒜𝐾

𝑅̂,𝐼𝐽
=
(︁
𝛼𝐾
𝑅̂,𝑖(𝐼𝐽) + 𝛼𝐾

𝑅̂,𝑗(𝐼𝐽)

)︁
(3.71)

𝒟𝐾
𝐿̂,𝐼𝐽

=
(︁
𝛼𝐾
𝐿̂,𝑖(𝐼𝐽)𝑝𝐿̂,𝑖(𝐼𝐽) + 𝛼𝐾

𝐿̂,𝑗(𝐼𝐽)𝑝𝐿̂,𝑗(𝐼𝐽)

)︁
(3.72)

𝒟𝐾
𝑅̂,𝐼𝐽

=
(︁
𝛼𝐾
𝑅̂,𝑖(𝐼𝐽)𝑝𝑅̂,𝑖(𝐼𝐽) + 𝛼𝐾

𝑅̂,𝑗(𝐼𝐽)𝑝𝑅̂,𝑗(𝐼𝐽)

)︁
(3.73)

3.2.2.1 Harmonic Points Interpolation for general diffusion problems

As previously mentioned, in (AGÉLAS; EYMARD; HERBIN, 2009), the authors
proposed the harmonic points definition for simple diffusive problems with a sketch proof
for the equations. Latter, in (GAO; WU, 2013), the authors proposed a proper derivation
for the Harmonic Points, which is where the methodology used in the present work is
based upon.

First, similarly to Eq. (3.23), each co-normal vector is decomposed in a normal and
a tangential part, as follows:

𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 = 𝑎𝐾
𝐿̂

(𝑦𝐼𝐽 − 𝑥𝐿̂) + 𝑏𝐾
𝐿̂

−→
𝐼𝐽, 𝐾⊤

𝑅̂
−→𝑛 𝐽𝐼 = 𝑎𝐾

𝑅̂
(𝑦𝐼𝐽 − 𝑥𝑅̂) − 𝑏𝐾

𝑅̂

−→
𝐼𝐽 (3.74)
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where:

𝑎𝐾
𝐿̂

=
𝐾

(𝑛)
𝐿̂

ℎ𝐿̂,𝐼𝐽
, 𝑎𝐾

𝑅̂
=
𝐾

(𝑛)
𝑅̂

ℎ𝑅̂,𝐼𝐽
, 𝐾

(𝑛)
𝐿̂

= −→𝑛 ⊤
𝐼𝐽𝐾𝐿̂

−→𝑛 𝐼𝐽 , 𝐾
(𝑛)
𝑅̂

= −→𝑛 ⊤
𝐽𝐼𝐾𝑅̂

−→𝑛 𝐽𝐼 (3.75)

Furthermore, 𝑦𝐼𝐽 is a point in the cell edge 𝐼𝐽 . In order for 𝑦𝐼𝐽 to be a Harmonic
Point, the pressure 𝑝𝐼𝐽 at 𝑦𝐼𝐽 should be a combination of only the pressures 𝑝𝐿̂ and 𝑝𝑅̂ at
the adjacent cells 𝐿̂ and 𝑅̂. By substituting Eq. (3.74) into Eq. 3.62 and Eq. 3.63, we get
for the each cell:

∇𝑝 ·𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 = 𝑎𝐾
𝐿̂

∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝐿̂) + 𝑏𝐾
𝐿̂

∇𝑝 ·
−→
𝐼𝐽 (3.76)

∇𝑝 ·𝐾⊤
𝑅̂

−→𝑛 𝐽𝐼 = 𝑎𝐾
𝑅̂

∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝐿̂) − 𝑏𝐾
𝑅̂

∇𝑝 ·
−→
𝐼𝐽 (3.77)

Due to flux continuity through 𝐼𝐽 , ∇𝑝 ·𝐾⊤
𝐿̂

−→𝑛 𝐼𝐽 = −∇𝑝 ·𝐾⊤
𝑅̂

−→𝑛 𝐽𝐼 . Thus:

𝑎𝐾
𝐿̂

∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝐿̂) + 𝑏𝐾
𝐿̂

∇𝑝 ·
−→
𝐼𝐽 = −𝑎𝐾

𝑅̂
∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝑅̂) + 𝑏𝐾

𝑅̂
∇𝑝 ·

−→
𝐼𝐽 (3.78)

A sufficient condition for 𝑝𝐼𝐽 being a function of only 𝑝𝐿̂ and 𝑝𝑅̂ is 𝑏𝐾
𝐿̂

= 𝑏𝐾
𝑅̂

. That
implies:

𝑎𝐾
𝐿̂

∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝐿̂) = −𝑎𝐾
𝑅̂

∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝑅̂) (3.79)

The terms ∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝐿̂) and ∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝑅̂) can be approximated using a Taylor
Series expansion as ∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝐿̂) ≈ 𝑝𝐼𝐽 − 𝑝𝐿̂ and ∇𝑝 · (𝑦𝐼𝐽 − 𝑥𝑅̂) ≈ 𝑝𝐼𝐽 − 𝑝𝑅̂. Using said
approximation, Eq. 3.79 can be written as:

𝑎𝐾
𝐿̂

(𝑝𝐼𝐽 − 𝑝𝐿̂) = −𝑎𝐾
𝑅̂

(𝑝𝐼𝐽 − 𝑝𝑅̂) (3.80)

By isolating 𝑝𝐼𝐽 from Eq. 3.80, one get the expression for the pressure value 𝑝𝐼𝐽 in
the harmonic point 𝑦𝐼𝐽 as:

𝑝𝐼𝐽 =
𝑎𝐾
𝐿̂
𝑝𝐿̂ + 𝑎𝐾

𝑅̂
𝑝𝑅̂

𝑎𝐾
𝐿̂

+ 𝑎𝐾
𝑅̂

(3.81)
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Furthermore, Eq. 3.81 can be written as:

𝑝𝐼𝐽 = 𝑤𝐾
𝐿̂,𝐼𝐽

𝑝𝐿̂ + 𝑤𝐾
𝑅̂,𝐼𝐽

𝑝𝑅̂ (3.82)

where:

𝑤𝐾
𝐿̂,𝐼𝐽

=
𝑎𝐾
𝐿̂

𝑎𝐾
𝐿̂

+ 𝑎𝐾
𝑅̂

, 𝑤𝐾
𝑅̂,𝐼𝐽

=
𝑎𝐾
𝑅̂

𝑎𝐾
𝐿̂

+ 𝑎𝐾
𝑅̂

(3.83)

By substituting Eq. (3.75) into Eq. (3.83) and doing the necessary algebraic
manipulations, one gets:

𝑤𝐾
𝐿̂,𝐼𝐽

=
ℎ𝑅̂,𝐼𝐽𝐾

(𝑛)
𝐿̂

ℎ𝑅̂,𝐼𝐽𝐾
(𝑛)
𝐿̂

+ ℎ𝐿̂,𝐼𝐽𝐾
(𝑛)
𝑅̂

, 𝑤𝐾
𝑅̂,𝐼𝐽

=
ℎ𝐿̂,𝐼𝐽𝐾

(𝑛)
𝑅̂

ℎ𝑅̂,𝐼𝐽𝐾
(𝑛)
𝐿̂

+ ℎ𝐿̂,𝐼𝐽𝐾
(𝑛)
𝑅̂

(3.84)

Its worth noticing that 𝑤𝐾
𝐿̂,𝐼𝐽

+ 𝑤𝐾
𝑅̂,𝐼𝐽

= 1. In order to compute the coordinates for
𝑦𝐼𝐽 , first we add 𝐾⊤

𝑅̂
−→𝑛 𝐼𝐽 to 𝐾⊤

𝐿̂
−→𝑛 𝐽𝐼 defined in Eq. (3.74):

(︁
𝐾⊤
𝐿̂

−𝐾⊤
𝑅̂

)︁−→𝑛 𝐼𝐽 =
(︁
𝑎𝐾
𝐿̂

+ 𝑎𝐾
𝑅̂

)︁
𝑦𝐼𝐽 − 𝑎𝐾

𝐿̂
𝑥𝐿̂ − 𝑎𝐾

𝑅̂
𝑥𝑅̂ +

(︁
𝑏𝐾
𝑅̂

− 𝑏𝐾
𝐿̂

)︁−→
𝐼𝐽 (3.85)

Since 𝑏𝐾
𝐿̂

= 𝑏𝐾
𝑅̂

, one can extract from Eq. (3.85) the expression for the Harmonic
Point 𝑦𝐼𝐽 pertaining to the edge 𝐼𝐽 as:

𝑦𝐼𝐽 =
𝑎𝐾
𝐿̂
𝑥𝐿̂ + 𝑎𝐾

𝑅̂
𝑥𝑅̂ +

(︁
𝐾⊤
𝐿̂

−𝐾⊤
𝑅̂

)︁−→𝑛 𝐼𝐽

𝑎𝐾
𝐿̂

+ 𝑎𝐾
𝑅̂

(3.86)

By substituting Eq. (3.75) into Eq. ((3.86)) and doing the necessary algebraic
manipulations, one gets:

𝑦𝐼𝐽 =
ℎ𝑅̂,𝐼𝐽𝐾

(𝑛)
𝐿̂
𝑥𝐿̂ + ℎ𝐿̂,𝐼𝐽𝐾

(𝑛)
𝑅̂
𝑥𝑅̂ + ℎ𝐿̂,𝐼𝐽ℎ𝑅̂,𝐼𝐽

(︁
𝐾⊤
𝐿̂

−𝐾⊤
𝑅̂

)︁−→𝑛 𝐼𝐽

ℎ𝑅̂,𝐼𝐽𝐾
(𝑛)
𝐿̂

+ ℎ𝐿̂,𝐼𝐽𝐾
(𝑛)
𝑅̂

(3.87)

3.2.2.2 Unique Flux Construction

The unique flux through the cell edge 𝐼𝐽 is constructed via a convex combination
using the one sided flux definitions in Eq. 3.70 and the weights defined in Eq. 3.83 as such:

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 𝑤𝐾
𝑅̂,𝐼𝐽

−→𝑣𝑡 𝐿̂ · −→𝑛 𝐼𝐽 + 𝑤𝐾
𝐿̂,𝐼𝐽

−→𝑣𝑡 𝑅̂ · −→𝑛 𝐼𝐽 (3.88)
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3.2.2.3 Treatment of Boundary Conditions

When the computational cell edge 𝐼𝐽 belongs to the domain Ω boundary, one of
the following may happen:

1. If 𝐼𝐽 belongs to a Dirichlet Boundary, the flux is unknown, therefore is approximated
by the one-sided flux, Eq. 3.68, as follows:

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = −→𝑣𝑡 𝐿̂ · −→𝑛 𝐼𝐽 ≈ 1
𝜇

(︁
𝒜𝐾
𝐿̂,𝐼𝐽

𝑝𝐿̂ − 𝒟𝐾
𝐿̂,𝐼𝐽

)︁
(3.89)

Furthermore, the pressure in the harmonic point pertaining to 𝐼𝐽 is known, therefore
it has the prescribed value at the boundary. Thus:

𝑝𝐿̂,𝑖(𝐼𝐽) = 𝑔𝑝𝐷 𝑜𝑟 𝑝𝐿̂,𝑗(𝐼𝐽) = 𝑔𝑝𝐷 (3.90)

2. If 𝐼𝐽 belongs to a Neumann Boundary, the flux is known, therefore is has the
prescribed value at said boundary. Thus:

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 𝑔𝑝𝑁 (3.91)

Furthermore, the pressure in 𝐼𝐽 is unknown, therefore it’s recovered from the
following expression:

1
𝜇

(︁
𝛼𝐾
𝐿̂,𝑖(𝐼𝐽)

(︁
𝑝𝐿̂ − 𝑝𝐿̂,𝑖(𝐼𝐽)

)︁
+ 𝛼𝐾

𝐿̂,𝑗(𝐼𝐽)

(︁
𝑝𝐿̂ − 𝑝𝐿̂,𝑗(𝐼𝐽)

)︁)︁
= 𝑔𝑝𝑁 (3.92)

Remark. If both 𝑝𝐿̂,𝑖(𝐼𝐽) and 𝑝𝐿̂,𝑗(𝐼𝐽) in Eq.3.92 belong to a edge in the Neumann
Boundary, this leads to a local system of equations whose solution yields the interpo-
lation of both harmonic points.

3.3 Coupling Terms

3.3.1 Pressure Gradient

The pressure gradient, second term in Eq. (3.1), is approximated via the Divergence
Theorem and the Mean Value Theorem as follows:

∫︁
Ω𝐿̂

𝛼∇𝑝 𝑑Ω𝐿̂ = 𝛼𝐿̂

∫︁
Γ𝐿̂

𝑝−→𝑛 𝑑Γ𝐿̂ = 𝛼𝐿̂
∑︁

𝐼𝐽∈Γ𝐿̂

∫︁
𝐼𝐽
𝑝−→𝑛 𝐼𝐽 𝑑𝑠 ≈

≈ 𝛼𝐿̂
∑︁

𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |𝑝𝐼𝐽−→𝑛 𝐼𝐽 (3.93)

where 𝑝𝐼𝐽 is the pressure value in 𝐼𝐽 . In the present work, 𝑝𝐼𝐽 is interpolated via the
Harmonic points interpolation.
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3.3.2 Solid Velocity

This subsection is dedicated to the discretization of solid velocity term, third term
in Eq. (3.2). Since Integration and Differenciation are linear operators their order can be
swapped, leading to:

∫︁
Ω𝐿̂

𝜕𝜀𝑣
𝜕𝑡

𝑑Ω𝐿̂ = 𝜕

𝜕𝑡

∫︁
Ω𝐿̂

𝜀𝑣 𝑑Ω𝐿̂ = 𝜕

𝜕𝑡

∫︁
Ω𝐿̂

∇ · −→𝑢 𝑑Ω𝐿̂ = 𝜕𝐸𝐿̂
𝜕𝑡

(3.94)

where 𝐸𝐿̂ =
∫︀

Ω𝐿̂
∇ · −→𝑢 𝑑Ω𝐿̂. A first order finite difference method is used to approximate

𝐸𝐿̂ time derivative, as follows:

𝜕𝐸𝐿̂
𝜕𝑡

=
𝐸𝑛+1
𝐿̂

− 𝐸𝑛
𝐿̂

Δ𝑡 (3.95)

where the superscript 𝑛 indicates the value of 𝐸𝐿̂ at the time level 𝑡, and the superscript
𝑛+ 1 indicates the value of 𝐸𝐿̂ at the time level 𝑡+ Δ𝑡. Furthermore, 𝐸𝐿̂ can be computed,
using the Divergence Theorem, with the following expression:

𝐸𝐿̂ =
∫︁

Ω𝐿̂

∇ · −→𝑢 𝑑Ω𝐿̂ =
∫︁

Γ𝐿̂

−→𝑢 · −→𝑛 𝑑Γ𝐿̂ =
∑︁

𝐼𝐽∈Γ𝐿̂

∫︁
𝐼𝐽

−→𝑢 · −→𝑛 𝑑𝑠 (3.96)

where Γ𝐿̂ is the computational cell boundary, and 𝐼𝐽 is a edge belonging to said boundary,
since the computational cells are star-shaped polygons. −→𝑛 is the unit normal vector to 𝐼𝐽
Furthermore, the integral over 𝐼𝐽 defined in Equation 3.96 is approximated by the Mean
Value Theorem, as follows:

∫︁
𝐼𝐽

−→𝑢 · −→𝑛 𝑑𝑠 ≈ |𝐼𝐽 |−→𝑢 𝐼𝐽 · −→𝑛 𝐼𝐽 (3.97)

with |𝐼𝐽 | being the size of 𝐼𝐽 , −→𝑢 𝐼𝐽 and −→𝑛 𝐼𝐽 being, respectively, the displacement and
unit normal vectors pertaining to the computational edge 𝐼𝐽 .

The scheme proposed in this work uses a cell-center, co-located variable arrangement
with a the same order of approximation for the Linear Momentum and Mass Conservation
Equations. This leads to a violation of the Ladyzhenskaya–Babuška–Brezzi (LBB for short)
condition, which incurs in non-physical oscillations in the solution field. This problem is
commonly known as "Even-Odd decoupling". In order to work around the LBB condition,
the edge velocity −→𝑢 𝐼𝐽 is computed using a interpolation method based of the Modified
Rhie-Chow interpolation (ZHANG; ZHAO; BAYYUK, 2014), to increase the coupling
strength between the variables 𝑝 and −→𝑢 .
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3.3.2.1 Modified Rhie-Chow interpolation

The first step to the Modified Rhie-Chow interpolation (ZHANG; ZHAO; BAYYUK,
2014) is to write Equation (2.15) for the computational edge 𝐼𝐽 as if it was a center
of a computational cell in a staggered grid. By neglecting the term (𝜆+𝐺) ∇ (∇ · −→𝑢 ),
Equation (2.15) can be written as:

𝐺∇ · (∇−→𝑢 ) = 𝛼∇𝑝 (3.98)

Remark. The suppression of (𝜆+𝐺) ∇ (∇ · −→𝑢 ) is a reasonable approximation, that is
done only in the interpolation step. The governing equation for the Solid Subsystem still is
Equation (2.5) along with Equation (2.8).

The diffusive term in Equation (3.98), under a finite volume framework, is ap-
proximated using a standard MPFA-H method (GAO; WU, 2014). First we apply the
Divergence Theorem to the Integral formulation of Equation (3.98). For the 𝑢 component
of the displacement vector, one can write:

∫︁
Ω𝐿̂

𝐺∇ · (∇𝑢) 𝑑Ω𝐿̂ =
∫︁

Γ𝐿̂

𝐺∇𝑢 · −→𝑛 𝑑Γ𝐿̂ =
∑︁

𝐼𝐽∈Γ𝐿̂

∫︁
𝐼𝐽
𝐺∇𝑢 · −→𝑛 𝑑𝑠 (3.99)

where 𝐺 = 𝐺𝐼. Furthermore, the integral over 𝐼𝐽 defined in Equation 3.99 can be
approximated via the Mean Value Theorem as:

∫︁
𝐼𝐽
𝐺∇𝑢 · −→𝑛 𝑑𝑠 ≈ |𝐼𝐽 |𝐺∇𝑢 · −→𝑛 𝐼𝐽 = |𝐼𝐽 |∇𝑢 ·𝐺−→𝑛 𝐼𝐽 (3.100)

The diffusive term ∇𝑢 ·𝐺−→𝑛 𝐼𝐽 is now written as a convex combination of the one
sided diffusive terms ∇𝑢 ·𝐺𝐿̂

−→𝑛 𝐼𝐽 and ∇𝑢 ·𝐺𝑅̂
−→𝑛 𝐽𝐼 as follows:

∇𝑢 ·𝐺−→𝑛 𝐼𝐽 ≈ 𝑤𝐺
𝑅̂,𝐼𝐽

∇𝑢 ·𝐺𝐿̂
−→𝑛 𝐼𝐽 + 𝑤𝐺

𝐿̂,𝐼𝐽
∇𝑢 ·𝐺𝑅̂

−→𝑛 𝐽𝐼 (3.101)

where:

𝑤𝐺
𝐿̂,𝐼𝐽

=
ℎ𝑅̂,𝐼𝐽𝐺

(𝑛)
𝐿̂

ℎ𝑅̂,𝐼𝐽𝐺
(𝑛)
𝐿̂

+ ℎ𝐿̂,𝐼𝐽𝐺
(𝑛)
𝑅̂

, 𝑤𝐺
𝑅̂,𝐼𝐽

=
ℎ𝐿̂,𝐼𝐽𝐺

(𝑛)
𝑅̂

ℎ𝑅̂,𝐼𝐽𝐺
(𝑛)
𝐿̂

+ ℎ𝐿̂,𝐼𝐽𝐺
(𝑛)
𝑅̂

(3.102)

and
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𝐺
(𝑛)
𝐿̂

= −→𝑛 ⊤
𝐼𝐽𝐺𝐿̂

−→𝑛 𝐼𝐽 , 𝐺
(𝑛)
𝑅̂

= −→𝑛 ⊤
𝐽𝐼𝐺𝑅̂

−→𝑛 𝐽𝐼 (3.103)

Furthermore, each one sided diffusive term can be approximated as follows:

∇𝑢 ·𝐺𝐿̂
−→𝑛 𝐼𝐽 ≈ 𝛼𝐺

𝐿̂,𝑖(𝐼𝐽)

(︁
𝑢𝐿̂,𝑖(𝐼𝐽) − 𝑢𝐿̂

)︁
+ 𝛼𝐺

𝐿̂,𝑗(𝐼𝐽)

(︁
𝑢𝐿̂,𝑗(𝐼𝐽) − 𝑢𝐿̂

)︁
(3.104)

∇𝑢 ·𝐺𝑅̂
−→𝑛 𝐽𝐼 ≈ 𝛼𝐺

𝑅̂,𝑖(𝐼𝐽)

(︁
𝑢𝑅̂ − 𝑢𝑅̂,𝑖(𝐼𝐽)

)︁
+ 𝛼𝐺

𝑅̂,𝑗(𝐼𝐽)

(︁
𝑢𝑅̂ − 𝑢𝑅̂,𝑗(𝐼𝐽)

)︁
(3.105)

where:

𝛼𝐺
𝐿̂,𝑖(𝐼𝐽) =

(︁
𝐺𝐿̂

−→𝑛 𝐼𝐽 ,
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁

(︁−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁ (3.106)

𝛼𝐺
𝐿̂,𝑗(𝐼𝐽) =

(︁
𝐺𝐿̂

−→𝑛 𝐼𝐽 ,
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),

−→𝑒𝑧
)︁

(︁−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑖(𝐼𝐽),
−−−−−−→𝑥𝐿̂𝑥𝐿̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁ (3.107)

𝛼𝐺
𝑅̂,𝑗(𝐼𝐽) =

(︁
𝐺𝑅̂

−→𝑛 𝐽𝐼 ,
−−−−−−→𝑥𝑅̂𝑥𝑅̂,𝑖(𝐼𝐽),

−→𝑒𝑧
)︁

(︁−−−−−−→𝑥𝑅̂𝑥𝑅̂,𝑖(𝐼𝐽),
−−−−−−→𝑥𝑅̂𝑥𝑅̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁ (3.108)

𝛼𝐺
𝑅̂,𝑖(𝐼𝐽) =

(︁
𝐺𝑅̂

−→𝑛 𝐽𝐼 ,
−−−−−−→𝑥𝑅̂𝑥𝑅̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁

(︁−−−−−−→𝑥𝑅̂𝑥𝑅̂,𝑖(𝐼𝐽),
−−−−−−→𝑥𝑅̂𝑥𝑅̂,𝑗(𝐼𝐽),

−→𝑒𝑧
)︁ (3.109)

Similar to Eq. 3.68 and Eq. 3.69, both Eq. 3.104 and Eq. 3.105 can be written as:

∇𝑢 ·𝐺𝐿̂
−→𝑛 𝐼𝐽 ≈ 𝒟𝐺,𝑢

𝐿̂,𝐼𝐽
− 𝒜𝐺

𝐿̂,𝐼𝐽
𝑢𝐿̂, ∇𝑢 ·𝐺𝑅̂

−→𝑛 𝐼𝐽 ≈ 𝒜𝐺
𝑅̂,𝐼𝐽

𝑢𝐿̂ − 𝒟𝐺,𝑢

𝑅̂,𝐼𝐽
(3.110)

where:

𝒜𝐺
𝐿̂,𝐼𝐽

=
(︁
𝛼𝐺
𝐿̂,𝑖(𝐼𝐽) + 𝛼𝐺

𝐿̂,𝑗(𝐼𝐽)

)︁
, 𝒜𝐺

𝑅̂,𝐼𝐽
=
(︁
𝛼𝐺
𝑅̂,𝑖(𝐼𝐽) + 𝛼𝐺

𝑅̂,𝑗(𝐼𝐽)

)︁
(3.111)

𝒟𝐺,𝑢

𝐿̂,𝐼𝐽
=
(︁
𝛼𝐺
𝐿̂,𝑖(𝐼𝐽)𝑢𝐿̂,𝑖(𝐼𝐽) + 𝛼𝐺

𝐿̂,𝑗(𝐼𝐽)𝑢𝐿̂,𝑗(𝐼𝐽)

)︁
(3.112)
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𝒟𝐺,𝑢

𝑅̂,𝐼𝐽
=
(︁
𝛼𝐺
𝑅̂,𝑖(𝐼𝐽)𝑢𝑅̂,𝑖(𝐼𝐽) + 𝛼𝐺

𝑅̂,𝑗(𝐼𝐽)𝑢𝑅̂,𝑗(𝐼𝐽)

)︁
(3.113)

and 𝑢𝐿̂,𝑖(𝐼𝐽) = 𝑢𝑅̂,𝑖(𝐼𝐽) = 𝑤𝐺
𝐿̂,𝐼𝐽

𝑢𝐿̂ + 𝑤𝐺
𝑅̂,𝐼𝐽

𝑢𝑅̂, 𝑢𝐿̂,𝑗(𝐼𝐽) = 𝑤𝐺
𝐿̂,𝐻𝐼

𝑢𝐿̂ + 𝑤𝐺
𝑀̂,𝐻𝐼

𝑢𝑀̂ and 𝑢𝐿̂,𝑗(𝐼𝐽) =
𝑤𝐺
𝐿̂,𝐽𝐾

𝑢𝐿̂ + 𝑤𝐺
𝑁̂,𝐽𝐾

𝑢𝑁̂ . 𝐻𝐼 and 𝐽𝐾 are the edges belonging to 𝐿̂ and 𝑅̂ respectively, whose
harmonic point are used in the MPFA-H interpolation. In addition, 𝑀̂ and 𝑁̂ are other
volumes in the MPFA-H stencil that shares 𝐻𝐼 and 𝐽𝐾 with 𝐿̂ and 𝑅̂ respectively. All
of those points can be seen in Fig. To reduce notation in the remaining of this section,
the subsequent definitions are used: 𝑤𝐺

𝐿̂,𝑖(𝐼𝐽) = 𝑤𝐺
𝐿̂,𝐼𝐽

, 𝑤𝐺
𝐿̂,𝑗(𝐼𝐽) = 𝑤𝐺

𝑀̂,𝐻𝐼
, 𝑤𝐺

𝑅̂,𝑖(𝐼𝐽) = 𝑤𝐺
𝑅̂,𝐼𝐽

,
𝑤𝐺
𝑅̂,𝑗(𝐼𝐽) = 𝑤𝐺

𝑁̂,𝐽𝐾
.

Figure 3 – Points used in the MPFA-H approximation.

Source: Own authorship (2023)

By substituting Eq. 3.104 and Eq. 3.105 into Eq. 3.101, and doing some albegraic
manipulations, one gets:

∇𝑢 ·𝐺−→𝑛 𝐼𝐽 ≈ 𝑤𝐺
𝐿̂,𝑖(𝐼𝐽)𝒜

𝐺
𝑅̂,𝐼𝐽

𝑢𝑅̂ − 𝑤𝐺
𝑅̂,𝑖(𝐼𝐽)𝒜

𝐺
𝐿̂,𝐼𝐽

𝑢𝐿̂ + 𝑤𝐺
𝑅̂,𝑖(𝐼𝐽)𝒟

𝐺,𝑢

𝐿̂,𝐼𝐽
− 𝑤𝐺

𝐿̂,𝑖(𝐼𝐽)𝒟
𝐺,𝑢

𝑅̂,𝐼𝐽

(3.114)

Furthermore, the pressure gradient in Eq. 3.98 is approximated by using Eq. 3.93
and Eq. 3.82. After the discretization of all terms in Eq. 3.98, one can write for the cell 𝐿̂
the following expression:
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∑︁
𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |
[︁
𝑤𝐺
𝐿̂,𝑖(𝐼𝐽)𝒜

𝐺
𝑅̂,𝐼𝐽

𝑢𝑅̂ − 𝑤𝐺
𝑅̂,𝑖(𝐼𝐽)𝒜

𝐺
𝐿̂,𝐼𝐽

𝑢𝐿̂ + 𝑤𝐺
𝑅̂,𝑖(𝐼𝐽)𝒟

𝐺,𝑢

𝐿̂,𝐼𝐽
− 𝑤𝐺

𝐿̂,𝑖(𝐼𝐽)𝒟
𝐺,𝑢

𝑅̂,𝐼𝐽

]︁
=

= 𝛼𝐿̂
∑︁

𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥 (3.115)

where 𝑛𝐼𝐽,𝑥 is the 𝑥 component of −→𝑛 𝐼𝐽 .

Similarly, for the 𝑣 component of the displacement vector, one can write:

∑︁
𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |
[︁
𝑤𝐺
𝐿̂,𝑖(𝐼𝐽)𝒜

𝐺
𝑅̂,𝐼𝐽

𝑣𝑅̂ − 𝑤𝐺
𝑅̂,𝑖(𝐼𝐽)𝒜

𝐺
𝐿̂,𝐼𝐽

𝑣𝐿̂ + 𝑤𝐺
𝑅̂,𝑖(𝐼𝐽)𝒟

𝐺,𝑣

𝐿̂,𝐼𝐽
− 𝑤𝐺

𝐿̂,𝑖(𝐼𝐽)𝒟
𝐺,𝑣

𝑅̂,𝐼𝐽

]︁
=

= 𝛼𝐿̂
∑︁

𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑦 (3.116)

where 𝑛𝐼𝐽,𝑦 is the 𝑦 component of −→𝑛 𝐼𝐽 . By isolating 𝑢𝐿̂ from Eq. 3.115, one gets:

𝑎𝑢,𝐿̂𝑢𝐿̂ =
∑︁
𝑛𝑏

(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝐿̂ + 𝛼𝐿̂
∑︁

𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥 (3.117)

where:

∑︁
𝑛𝑏

(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝐿̂ =

=
∑︁

𝐼𝐽∈Γ𝐿̂

𝑤𝐺
𝐿̂,𝑖(𝐼𝐽)

(︁
𝑏𝑢,𝐿̂𝑢𝑅̂ + 𝛼𝐺

𝐿̂,𝑗(𝐼𝐽)𝑤𝐿̂,𝑗(𝐼𝐽)𝑢𝑀̂ − 𝛼𝐺
𝑅̂,𝑗(𝐼𝐽)𝑤𝑅̂,𝑗(𝐼𝐽)𝑢𝑁̂

)︁
(3.118)

𝑏𝑢,𝐿̂ = 𝒜𝐺
𝑅̂,𝐼𝐽

+ 𝛼𝐺
𝐿̂,𝑖(𝐼𝐽)𝑤

𝐺
𝑅̂,𝑖(𝐼𝐽) −

∑︁
𝛾=𝑖,𝑗

𝛼𝐺
𝑅̂,𝛾(𝐼𝐽)𝑤

𝐺
𝑅̂,𝛾(𝐼𝐽) (3.119)

𝑎𝑢,𝐿̂ =
∑︁

𝐼𝐽∈Γ𝐿̂

𝑤𝐺
𝑅̂,𝑖(𝐼𝐽)

⎛⎝𝒜𝐺
𝐿̂,𝐼𝐽

−
∑︁
𝛾=𝑖,𝑗

𝛼𝐺
𝐿̂,𝛾(𝐼𝐽)𝑤

𝐺
𝐿̂,𝛾(𝐼𝐽) + 𝛼𝐺

𝑅̂,𝑖(𝐼𝐽)𝑤
𝐺
𝐿̂,𝑖(𝐼𝐽)

⎞⎠ (3.120)

By doing similar procedure for 𝑢𝑅̂, one can write:

𝑎𝑢,𝑅̂𝑢𝑅̂ =
∑︁
𝑛𝑏

(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑅̂ + 𝛼𝑅̂
∑︁

𝐼𝐽∈Γ𝑅̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥 (3.121)

where:
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∑︁
𝑛𝑏

(𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑅̂ =

=
∑︁

𝐼𝐽∈Γ𝑅̂

𝑤𝐺
𝑅̂,𝑖(𝐼𝐽)

(︁
𝑏𝑢,𝑅̂𝑢𝐿̂ − 𝛼𝐺

𝐿̂,𝑗(𝐼𝐽)𝑤𝐿̂,𝑗(𝐼𝐽)𝑢𝑀̂ + 𝛼𝐺
𝑅̂,𝑗(𝐼𝐽)𝑤𝑅̂,𝑗(𝐼𝐽)𝑢𝑁̂

)︁
(3.122)

𝑏𝑢,𝑅̂ = 𝒜𝐺
𝐿̂,𝐼𝐽

+ 𝛼𝐺
𝑅̂,𝑖(𝐼𝐽)𝑤

𝐺
𝐿̂,𝑖(𝐼𝐽) −

∑︁
𝛾=𝑖,𝑗

𝛼𝐺
𝐿̂,𝛾(𝐼𝐽)𝑤

𝐺
𝐿̂,𝛾(𝐼𝐽) (3.123)

𝑎𝑢,𝑅̂ =
∑︁

𝐼𝐽∈Γ𝑅̂

𝑤𝐺
𝐿̂,𝑖(𝐼𝐽)

⎛⎝𝒜𝐺
𝑅̂,𝐼𝐽

−
∑︁
𝛾=𝑖,𝑗

𝛼𝐺
𝑅̂,𝛾(𝐼𝐽)𝑤

𝐺
𝑅̂,𝛾(𝐼𝐽) + 𝛼𝐺

𝐿̂,𝑖(𝐼𝐽)𝑤
𝐺
𝑅̂,𝑖(𝐼𝐽)

⎞⎠ (3.124)

Furthermore, we define the following auxiliary variables:

𝑀𝐿̂ =
∑︀
𝑛𝑏 (𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝐿̂

𝑎𝑢,𝐿̂
, 𝑀𝑅̂ =

∑︀
𝑛𝑏 (𝑎𝑢,𝑛𝑏𝑢𝑛𝑏)𝑅̂

𝑎𝑢,𝑅̂
(3.125)

Using the definitions of Eq. 3.125, one can write Eq. 3.117 and Eq. 3.121 as follows:

𝑢𝐿̂ = 𝑀𝐿̂ + 𝛼𝐿̂
𝑎𝑢,𝐿̂

∑︁
𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥 (3.126)

𝑢𝑅̂ = 𝑀𝑅̂ + 𝛼𝑅̂
𝑎𝑢,𝑅̂

∑︁
𝐼𝐽∈Γ𝑅̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥 (3.127)

Similarly, one can write the approximation of the Linear Momentum Conservation
Equation for the middle point of 𝐼𝐽 :

𝑢𝐼𝐽 = 𝑀𝐼𝐽 + 𝛼𝐼𝐽𝑉𝐼𝐽
𝑎𝑢,𝐼𝐽

𝜕𝑝

𝜕𝑥

⃒⃒⃒⃒
⃒
𝐼𝐽

(3.128)

where the coefficients 𝑀𝐼𝐽 and 𝑉𝐼𝐽/𝑎𝑢,𝐼𝐽 are obtained via interpolation as follows (ZHANG;
ZHAO; BAYYUK, 2014):

𝑀𝐼𝐽 = (1 − 𝛽)𝑀𝐿̂ + 𝛽𝑀𝑅̂,
𝛼𝐼𝐽𝑉𝐼𝐽
𝑎𝑢,𝐼𝐽

= (1 − 𝛽) 𝛼𝐿̂𝑉𝐿̂
𝑎𝑢,𝐿

+ 𝛽
𝛼𝑅̂𝑉𝑅̂
𝑎𝑢,𝑅

(3.129)
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In the present work, we have chosen 𝛽 = 1
2 . By isolating 𝑀𝐿̂ and 𝑀𝐿̂ and then

substituting them on Eq. 3.128 one gets:

𝑢𝐼𝐽 = (1 − 𝛽)
⎛⎝𝑢𝐿̂ − 𝛼𝐿̂

𝑎𝑢,𝐿̂

∑︁
𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥

⎞⎠+

+ 𝛽

⎛⎝𝑢𝑅̂ − 𝛼𝑅̂
𝑎𝑢,𝑅̂

∑︁
𝐼𝐽∈Γ𝑅̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥

⎞⎠ + 𝛼𝐼𝐽𝑉𝐼𝐽
𝑎𝑢,𝐼𝐽

𝜕𝑝

𝜕𝑥

⃒⃒⃒⃒
⃒
𝐼𝐽

(3.130)

Furthermore, rearranging the terms in Eq. 3.130, it’s possible to write:

𝑢𝐼𝐽 = 𝑢𝐼𝐽 − (1 − 𝛽) 𝛼𝐿̂
𝑎𝑢,𝐿̂

∑︁
𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥−

− 𝛽
𝛼𝑅̂
𝑎𝑢,𝑅̂

∑︁
𝐼𝐽∈Γ𝑅̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑥 + 𝛼𝐼𝐽𝑉𝐼𝐽
𝑎𝑢,𝐼𝐽

𝜕𝑝

𝜕𝑥

⃒⃒⃒⃒
⃒
𝐼𝐽

(3.131)

where:

𝑢𝐼𝐽 = (1 − 𝛽)𝑢𝐿̂ + 𝛽𝑢𝑅̂ (3.132)

Similarly, for 𝑣𝐼𝐽 :

𝑣𝐼𝐽 = 𝑣𝐼𝐽 − (1 − 𝛽) 𝛼𝐿̂
𝑎𝑣,𝐿̂

∑︁
𝐼𝐽∈Γ𝐿̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑦−

− 𝛽
𝛼𝑅̂
𝑎𝑣,𝑅̂

∑︁
𝐼𝐽∈Γ𝑅̂

|𝐼𝐽 |𝑝𝐼𝐽𝑛𝐼𝐽,𝑦 + 𝛼𝐼𝐽𝑉𝐼𝐽
𝑎𝑢,𝐼𝐽

𝜕𝑝

𝜕𝑦

⃒⃒⃒⃒
⃒
𝐼𝐽

(3.133)

where:

𝑣𝐼𝐽 = (1 − 𝛽) 𝑣𝐿̂ + 𝛽𝑣𝑅̂ (3.134)

Moreover, the following approximation is used for the pressure gradient at 𝐼𝐽
(ZHANG; ZHAO; BAYYUK, 2014):

∇𝑝
⃒⃒⃒⃒
𝐼𝐽

≈ 𝜕𝑝

𝜕−→𝑛

⃒⃒⃒⃒
⃒
𝐼𝐽

=
(︂

∇𝑝
⃒⃒⃒⃒
𝐼𝐽

· −→𝑛 𝐼𝐽

)︂
−→𝑛 𝐼𝐽 = 𝑝𝑅̂ − 𝑝𝐿̂

|−→𝑟 𝐿̂,𝑅̂ · −→𝑛 𝐼𝐽 |
−→𝑛 𝐼𝐽 (3.135)

where −→𝑟 𝐿̂,𝑅̂ = 𝑥𝑅̂ − 𝑥𝐿̂. Finally, by using Eq. 3.131 and Eq. 3.133 as the interpolation
functions for 𝑢𝐼𝐽 and 𝑣𝐼𝐽 respectively, the edge displacements depend not only of −→𝑢 𝐿̂ and
−→𝑢 𝑅̂, but also of 𝑝𝐿̂ and 𝑝𝑅̂ directly, which should increase the coupling strength between
the solution fields 𝑝 and −→𝑢 , thus preventing the "Even-Odd decoupling" from happening.
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3.4 Solution Procedure

The solution algorithm used in the present work is based on the fixed-strain operator
split. First the solution is obtained by first solving the fluid-flow problem with constant
volumetric deformation rate, then the mechanics problem is solved with a frozen pressure
field. This choice of operator split was based on the ease of implementation and natural
migration towards a better operator split, the Fixed-Stress Split. The Fixed-Strain split is
conditionally stable, where the coupling strength between pressure and displacement, for
a Backward Euler time integration, is given by (KIM; TCHELEPI; JUANES, 2011b):

𝒞 = 𝛼

𝑆𝐾
≤ 1 (3.136)

where 𝒞 is the coupling strength. The split stability is dependant only of material properties.

Thus, the 3 *𝑁𝑐𝑣 × 3 *𝑁𝑐𝑣 fully coupled problem is split into a 𝑁𝑐𝑣 ×𝑁𝑣𝑐 fluid flow
problem and 2 *𝑁𝑐𝑣 × 2 *𝑁𝑐𝑣 solid deformation problem (KIM; TCHELEPI; JUANES,
2011b):

⎡⎣−→𝑢 𝑛

𝑝𝑛

⎤⎦𝒜𝑝

−→

⎡⎣ −→𝑢 *

𝑝𝑛+1

⎤⎦𝒜𝑢

−→

⎡⎣−→𝑢 𝑛+1

𝑝𝑛+1

⎤⎦ (3.137)

where:

𝒜𝑝 = 𝜕𝑝

𝜕𝑡
+ ∇ · −→𝑣𝑡 + 𝛼

𝜕𝜀𝑣
𝜕𝑡

= 𝑄𝑓 , 𝛿𝜀𝑣 = 0 (3.138)

𝒜𝑢 = ∇ · 𝜎′ − 𝛼∇𝑝 = −→
𝑓 , 𝑝 : 𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑. (3.139)

The fluid flow problem is solved first while fixing the volumetric strain rate, then
the resulting pressure field is prescribed to the solid deformation problem. 𝛿𝜀𝑣 = 0 means
that 𝛼𝜀𝑣 is evaluated explicitly using the approximation define in section 3.3.2 and the
Modified Rhie-Chow interpolation. A flowchart with the complete solution algorithm can
be seen in Fig. 4. To initialize the solution, the first iteration start from the initial pressure
𝑝0, which is obtained via the analytical solution, then the next value of 𝑝 is computed
with 𝜀𝑣 = 0, then a displacement field is computed via a one way coupling using the
approximation for Eq. (2.5). Then, for remaining time steps, the simulation follows Fig. 4.
Both system of equations are solved using a direct LU method.
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Figure 4 – Flowchart for the fixed-strain solution algorithm

Initialize Solution

Set 𝑡 = 𝑡 + Δ𝑡

Set 𝜀𝑣 = 0

Set 𝑘 = 𝑘 + 1

Solve Storage
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Solve Stress
Equilibrium (𝑢,𝑣)

Check
for con-
vergence

Update 𝜀𝑣 using
the Modified Rhie-
Chow Interpolation

𝑡 ≥ 𝑡𝑓𝑖𝑛𝑎𝑙

Update 𝑝,𝑢 and 𝑣

End Simulation

Yes

Yes

No

No

Source: Own authorship (2023)

Moreover, the convergence criteria is defined as follows:

𝜏 ≥

⃒⃒⃒⃒⃒⃒⃒⃒
𝑝𝑘+1

Ω − 𝑝𝑘Ω

⃒⃒⃒⃒⃒⃒⃒⃒
∞⃒⃒⃒⃒⃒⃒⃒⃒

𝑝𝑘+1
Ω

⃒⃒⃒⃒⃒⃒⃒⃒
∞

(3.140)

where 𝑝Ω is a vector whose components are the pressure value of each cell 𝐿̂. In addition,
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the symbol ||·||∞ represents the 𝐿∞ norm, whose value is the supremum of the set inside
the brackets. 𝜏 is a set tolerance.

The simulations in the present work were done using a Intel i5-8400 CPU 2.80
GHz, 12GB of RAM, and the following software:

• Mesh generation was done using the software Gmsh (GEUZAINE; REMACLE,
2017);

• Mesh pre-processing was done using the software (IMPRESS, 2020);

• Simulation was done using a in-house python software;

• Post processing was done using VisIt (LLNL, 2005);
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4 RESULTS

In the following chapter, the numerical formulation shown in the present work is
used to solve elementary poroelastic problems, all of them with analytic solutions, in order
to assess the formulation’s consistency and accuracy. Those problems are Terzahi’s Problem,
with both a homogeneous (WANG, 2000) and a heterogeneous (VERRUIJT, 2013) porous
media and Mandel’s Problem (ABOUSLEIMAN et al., 1996). All the examples solved uses
the convergence tolerance 𝜏 = 10−8. For the benchmarks solved in the present work, the
Rhie-Chow interpolation was not used and satisfactory results were obtained. However,
more sophisticated problems are going to require a LBB stabilization, which will be tested
in future works.

4.1 Error Evaluation

In order to compare analytical and numeric solutions, where one is available, first
we define a normalized 𝐿2 error norm as follows (HERBIN; HUBERT, 2008):

𝜖𝜓 =
(︃∑︀

𝐿̂∈Ω (𝜓(𝑥𝐿̂) − 𝜓𝐿̂)2 𝑉𝐿̂∑︀
𝐿̂∈Ω 𝜓(𝑥𝐿̂)2𝑉𝐿̂

)︃ 1
2

, 𝜓 = 𝑝, 𝑢, 𝑣 (4.1)

where 𝜓𝐿̂ is the numerical solution associated with the computational cell 𝐿̂, and 𝜓(𝑥𝐿̂)
is the analytical solution evaluated at 𝐿̂ centroid 𝑥𝐿̂. Moreover, the characteristic length
associated with each mesh is given by:

ℎ =
∑︀
𝐿̂∈Ω

√︁
𝑉𝐿̂

𝑁𝑐𝑣

(4.2)

4.2 Terzaghi’s Problem

4.2.1 Problem Description

Terzaghi’s Problems consists in a homogeneous poroelastic column with height
𝐻 and length 𝐿, where, at its top, a load 𝜎0 is applied and drainage occurs (Fig. 5). Its
sides are impermeable and are prevented from lateral movement. Its bottom portion is
fixed and also impermeable. Thus, the columns has a displacement only in the vertical
direction. In Fig. 6, it’s possible to see the dimensions of the poroelastic column and the
boundary conditions, which are explicited in Table 1. Moreover, Table 2 shows solid and
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fluid properties used in the simulation, both sourced from (WANG, 2000). Furthermore,
𝑝0 = 435.2 𝑘𝑃𝑎.

Figure 5 – Terzaghi’s Problem - Description diagram.

Source: Own authorship (2023)

Figure 6 – Terzaghi’s Problem - 𝑎) Domain dimensions and 𝑏) Domain boundaries.

Source: Own authorship (2023)

Table 1 – Terzaghi’s Problem - Boundary conditions.

Boundary Fluid Solid
Γ1 𝑝 = 0 𝑃𝑎 𝒯𝑥 = 0 𝑃𝑎 𝒯𝑦 = −1 × 106 𝑃𝑎
Γ2

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝑢 = 0 𝑚 𝒯𝑦 = 0 𝑃𝑎
Γ3

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝒯𝑥 = 0 𝑃𝑎 𝑣 = 0 𝑚
Γ4

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝑢 = 0 𝑚 𝒯𝑦 = 0 𝑃𝑎
Source: Own authorship (2023)
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Table 2 – Terzaghi’s Problem - Solid and fluid properties.

Property Value
Solid Compressibility (𝑐𝑠) 2.777778 × 10−11 𝑃𝑎−1

Young’s Modulus (𝐸) 14.4 × 109 𝑃𝑎
Poisson’s Coefficient (𝜈) 0.2

Porosity (𝜑) 0.19
Permeability (𝑘) 1.9 × 10−15 𝑚2

Biot’s Coefficient (𝛼) 0.777778
Fluid Compressibility (𝑐𝑓 ) 3.030303 × 10−10 𝑃𝑎−1

Viscosity (𝜇) 1 × 10−3 𝑃𝑎.𝑠
Source: Own authorship (2023)

4.2.2 Results

For this preliminary analysis, three different meshes will be used (Fig. 7): one
structured with quadrilateral elements, called mesh A; one unstructured with triangular
elements, called mesh B, and one unstructured with quadrilateral elements, called mesh C.
Both the structured quadrilateral and the unstructured triangular have a resolution of
3x15, with a total of 45 elements for the structured mesh, 90 for the triangular mesh, and
the unstructured quadrilateral mesh has a total of 58 elements.

Figure 7 – Terzaghi’s Problem - meshes 𝑎) structured with quadrilateral elements; 𝑏) unstructured with
triangular elements; 𝑐) unstructured with quadrilateral elements.

Source: Own authorship (2023)

Fig. 8, Fig. 9 and Fig. 10 show a comparison between the numerical and analytic
pressure solutions, whose description in detail can be found in Appendix A, along the line
𝑥 = 0.5 𝑚 and Δ𝑡 = 1 𝑠.
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Figure 8 – Terzaghi’s Problem - pore pressure distribution for mesh A and Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)

Figure 9 – Terzaghi’s Problem - pore pressure distribution for mesh B and Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)
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Figure 10 – Terzaghi’s Problem - pore pressure distribution for mesh C and Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)

From Fig. 8, Fig. 9 and Fig. 10, one can conclude that the numerical formulation
presented in this work is capable of accurately match the problem’s analytical solution.
The error observed at 𝑡 = 1 𝑠 in the three plots is expected due to the high pressure
gradient that happens at low values of 𝑡. This error can be reduced via the usage of a
higher-order approximation or mesh refinement. The latter option is going to be explored
in section 4.2.3. In addition, the pressure oscillation observed in Fig. 10, between 2 𝑚

and 4 𝑚 is due to the fact that, in its middle portion, mesh C is more coarse and slightly
distorted, which increases error. However, this loss of accuracy is still in the acceptable
range.

Furthermore, the pressure and displacements profiles are shown in Fig. 11 and
Fig. 12 respectively. Fig. 13 shows the displacement field behavior in different time values.
They exhibit the expected behavior of a sample under the conditions describe. The load at
the top promotes a compression of the porous media which drives fluid drainage through
the permeable lid. The lowest values of pressure are closer to the top, where 𝑝 = 0, while
the highest values are close to the bottom, with a decrease in overall fluid pressure over
time. On the other hand, the highest values of displacement are closer to the top, where
the load is applied, while the lowest values of displacement are at the bottom, where the
sample is fixed.
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Figure 11 – Terzaghi’s Problem - pore pressure profiles for mesh A and Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)

Figure 12 – Terzaghi’s Problem - Vertical displacement profiles for different times with for mesh A and
Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)
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Figure 13 – Terzaghi’s Problem - Displacement field for different times with for mesh A and Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)

4.2.3 Convergence Analysis

For the convergence analysis, mesh A was systematically refined as follows:

Table 3 – Terzaghi’s Problem - mesh resolution for convergence analysis.

Mesh Name Resolution Characteristic Length (m)
Mesh A1 3 × 15 0.365
Mesh A2 6 × 30 0.183
Mesh A3 12 × 60 0.091
Mesh A4 18 × 90 0.061
Mesh A5 24 × 120 0.046

Source: Own authorship (2023)

Moreover, for each mesh, the pressure error was computed using Eq. (4.1) in the
times 𝑡 = 1 𝑠 and 𝑡 = 10 𝑠, using the time steps Δ𝑡 = 1 𝑠, Δ𝑡 = 0.5 𝑠, Δ𝑡 = 0.25 𝑠,
Δ𝑡 = 0.1 𝑠, Δ𝑡 = 0.05 𝑠 and Δ𝑡 = 0.025 𝑠. The results are shown in Table 4 and Table
5. Table 6 shows the Fourier’s number associated with choice of time step and mesh
resolution.



61

Table 4 – Terzaghi’s Problem - pressure error computation for 𝑡 = 1 𝑠.

Δ𝑡 1 𝑠 0.5 𝑠 0.25 𝑠 0.1 𝑠 0.05 𝑠 0.025 𝑠
A1 1.68 × 10−2 1.43 × 10−2 1.32 × 10−2 1.27 × 10−2 1.25 × 10−2 1.25 × 10−2

A2 2.42 × 10−2 1.62 × 10−2 1.16 × 10−2 8.76 × 10−3 7.90 × 10−3 7.5 × 10−3

A3 1.62 × 10−2 8.64 × 10−3 4.48 × 10−3 2.06 × 10−3 1.44 × 10−3 1.26 × 10−3

A4 1.47 × 10−2 7.76 × 10−3 3.97 × 10−3 1.60 × 10−3 8.55 × 10−4 5.74 × 10−4

A5 1.41 × 10−2 7.56 × 10−3 3.88 × 10−3 1.55 × 10−3 7.67 × 10−4 4.14 × 10−4

Source: Own authorship (2023)

Table 5 – Terzaghi’s Problem - pressure error computation for 𝑡 = 10 𝑠.

Δ𝑡 1 𝑠 0.5 𝑠 0.25 𝑠 0.1 𝑠 0.05 𝑠 0.025 𝑠
A1 5.52 × 10−3 4.41 × 10−3 4.06 × 10−3 3.93 × 10−3 3.92 × 10−3 3.91 × 10−3

A2 2.94 × 10−3 1.54 × 10−3 9.90 × 10−4 8.46 × 10−4 8.51 × 10−4 8.64 × 10−4

A3 2.87 × 10−3 1.41 × 10−3 6.89 × 10−4 2.96 × 10−4 2.16 × 10−4 2.07 × 10−4

A4 2.89 × 10−3 1.43 × 10−3 7.02 × 10−4 2.71 × 10−4 1.43 × 10−4 1.01 × 10−4

A5 2.89 × 10−3 1.44 × 10−3 7.12 × 10−4 2.71 × 10−4 1.35 × 10−4 7.50 × 10−5

Source: Own authorship (2023)

Table 6 – Terzaghi’s Problem - Fourier’s number associated with each choice of time step and mesh
resolution.

𝐹𝑜 1 𝑠 0.5 𝑠 0.25 𝑠 0.1 𝑠 0.05 𝑠 0.025 𝑠
A1 1.28 × 10−1 6.38 × 10−2 3.19 × 10−2 1.28 × 10−2 6.38 × 10−3 3.19 × 10−3

A2 5.08 × 10−1 2.54 × 10−1 1.27 × 10−1 5.08 × 10−2 2.54 × 10−2 1.27 × 10−2

A3 2.05 × 100 1.02 × 100 5.13 × 10−1 2.05 × 10−1 1.02 × 10−1 5.13 × 10−2

A4 4.57 × 100 2.28 × 100 1.14 × 100 4.57 × 10−1 2.28 × 10−1 1.14 × 10−1

A5 8.03 × 100 4.02 × 100 2.00 × 100 8.03 × 10−1 4.02 × 10−1 2.00 × 10−1

Source: Own authorship (2023)

Furthermore, two plots were constructed using the data from Table 4 and 5, to
aid in the data analysis. Fig. 14 and Fig. 15 show the mesh convergence behaviour for
pressure, for different time steps, at times t = 1 s and t = 10 s, respectively. Fig. 16 and
Fig. 17 the mesh convergence behaviour for pressure, for different time steps, at times t =
1 s and t = 10 s, respectively.
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Figure 14 – Terzaghi’s Problem - pressure spatial convergence for 𝑡 = 1 𝑠.

Source: Own authorship (2023)

Figure 15 – Terzaghi’s Problem - pressure spatial convergence for 𝑡 = 10 𝑠.

Source: Own authorship (2023)
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Figure 16 – Terzaghi’s Problem - pressure time convergence for 𝑡 = 1 𝑠.

Source: Own authorship (2023)

Figure 17 – Terzaghi’s Problem - pressure time convergence for 𝑡 = 10 𝑠.

Source: Own authorship (2023)

From the analysis of data, as expected, one can conclude that mesh refinements
and time step reductions, lead to overall decrease in error. Also, it is evident that the
spatial and time discretization are not independent and without proper choice the expected
convergence behavior is jeopardized. In addition, a increase in mesh resolution leads to
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a greater error reduction than a time step reduction. This is due to the fact that the
Backward Euler scheme uses a first order approximation for time while the MPFA-H is
a second order approximation. As stated in section 4.2.2 a mesh refinement and a time
step reduction increase the accuracy of the numerical method, which reduces the error
associated with high pressure gradients.

For 𝑡 = 10 𝑠, it is possible to see the effects of excessive mesh refinement and
excessive time step reduction. This can lead to a increase in numerical diffusion, which can
compromise the numerical solution. The error increase due to excessive mesh refinement
can be seen for Δ𝑡 = 1 𝑠, Δ𝑡 = 0.5 𝑠, Δ𝑡 = 0.25 𝑠, Δ𝑡 = 0.1 𝑠, where the values of
the Fourier number are relatively high compared to the stability limit for a Forwards
Euler scheme, which is 𝐹𝑜 = 0.25. The numerical scheme still converges to the numerical
solution, since a Backwards Euler is unconditionally stable. In Fig. 15, it’s possible to see
that the accuracy increase due to mesh refinement reaches a plateau, to the point that,
in Fig. 17, the plots for meshes A3, A4 and A5 almost coincide. However, Table 5 shows
that error is actually starting to increase with further mesh refinement. A plateau can
also be seen for time step reductions in meshes A1 and A2. However, like mesh refinement,
Table 5 shows that error is actually starting to increase with further time step reduction.
For times Δ𝑡 = 0.05 𝑠 and Δ𝑡 = 0.025 𝑠, the accuracy gained from time step reduction is
able to postpone the effect. Furthermore, the effect of excessive time step reduction can
be seen for mesh A2. Mesh A3, Mesh A4 and Mesh A5 have enough resolution so that the
numerical diffusion associated wasn’t enough to compromise the solution. However, due
to being a coarse mesh, the error associated with Mesh A1 is high enough to where the
numerical diffusion was not capable of producing a noticeable effect. In addition, when
excessive mesh refinement starts to increase error, a time step reduction is necessary and
vice-versa, i.e., a reduction in the Fourier’s number. Thus confirming the relationship
between time step and mesh resolution established by it.

4.3 Two-Layered Terzaghi’s Problem

4.3.1 Problem Description

This problem is similar to the problem described in section 4.2. However the porous
media is now heterogeneous, composed by 2 layers with different properties. Fig. 18 shows
the dimensions of the poroelastic column and the boundary conditions, which are explicited
in Table 7. Table 8 and Table 9 show solid and fluid properties used in the simulation. Both
domains share the same mechanical properties with different values of permeability. Two
cases were studied: one where 𝑘1 > 𝑘2 and the second one where 𝑘1 < 𝑘2. Furthermore,
𝑝0 = 435.2 𝑘𝑃𝑎.
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Figure 18 – Two-Layered Terzaghi’s Problem - 𝑎) Domain dimensions and 𝑏) Domain boundaries.

Source: Own authorship (2023)

Table 7 – Two-Layered Terzaghi’s Problem - Boundary conditions.

Boundary Fluid Solid
Γ1 𝑝 = 0 𝑃𝑎 𝒯𝑥 = 0 𝑃𝑎 𝒯𝑦 = −1 × 106 𝑃𝑎
Γ2

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝑢 = 0 𝑚 𝒯𝑦 = 0 𝑃𝑎
Γ3

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝒯𝑥 = 0 𝑃𝑎 𝑣 = 0 𝑚
Γ4

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝑢 = 0 𝑚 𝒯𝑦 = 0 𝑃𝑎
Source: Own authorship (2023)

Table 8 – Two-Layered Terzaghi’s Problem - Solid and fluid properties.

Property Value
Solid Compressibility (𝑐𝑠) 2.777778 × 10−11 𝑃𝑎−1

Young’s Modulus (𝐸) 14.4 × 109 𝑃𝑎
Poisson’s Coefficient (𝜈) 0.2

Porosity (𝜑) 0.19
Biot’s Coefficient (𝛼) 0.777778

Fluid Compressibility (𝑐𝑓 ) 3.030303 × 10−10 𝑃𝑎−1

Viscosity (𝜇) 1 × 10−3 𝑃𝑎.𝑠
Source: Own authorship (2023)

Table 9 – Two-Layered Terzaghi’s Problem - Permeability values for the different domains.

Permeability Value
Case 1 Domain 1 (𝑘1) 19 × 10−15 𝑚2

Domain 2 (𝑘2) 1.9 × 10−15 𝑚2

Case 2 Domain 1 (𝑘1) 1.9 × 10−15 𝑚2

Domain 2 (𝑘2) 19 × 10−15 𝑚2

Source: Own authorship (2023)
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4.3.2 Results

Fig. 19 and Fig. 20 show a comparison between the numerical and analytic pressure
solutions, whose description in detail can be found in Appendix A, along the line 𝑥 = 0.5 𝑚,
for the mesh A1 with Δ𝑡 = 0.1 𝑠. From Fig. 19 and Fig. 20, one can conclude that the
numerical formulation presented in this work is capable of accurately match the problem’s
analytical solution, even with a discontinuity in the pressure field.

Figure 19 – Two-Layered Terzaghi’s Problem - pore pressure distribution for mesh A1 and Δ𝑡 = 0.1 𝑠:
Case 1.

Source: Own authorship (2023)
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Figure 20 – Two-Layered Terzaghi’s Problem - pore pressure distribution for mesh A1 and Δ𝑡 = 0.1 𝑠:
Case 2.

Source: Own authorship (2023)

Fig. 21 and Fig. 22 show pressure profiles for Case 1 and Case 2 respectively. Both
figures shows the expected physical behavior, where the porous media with highest value
of permeability have the smallest pressure gradient, until the pressure valuer are almost
constant for high values of 𝑡.

Figure 21 – Two-Layered Terzaghi’s Problem - Pore pressure profiles for different times with mesh A1
and Δ𝑡 = 0.1 𝑠: Case 1.

Source: Own authorship (2023)
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Figure 22 – Two-Layered Terzaghi’s Problem - Pore pressure profiles for different times with mesh A1
and Δ𝑡 = 0.1 𝑠: Case 2.

Source: Own authorship (2023)

Another interesting result is given by Fig. 23. It compares displacement solutions for
mesh A1 at 𝑡 = 600 𝑠, with Δ𝑡 = 0.1 𝑠, and the analytical solution for the homogeneous case
at 𝑡 = 600 𝑠. No displacement solution is available for the two-layered version of Terzaghi’s
Problem. Since the displacement solutions for the homogeneous and heterogeneous cases
are decoupled from the pressure solution, and also in both heterogeneous cases the two
media share mechanical properties, all three displacement solutions are similar, albeit
some negligible difference.
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Figure 23 – Two-Layered Terzaghi’s Problem - displacement solutions comparison at 𝑡 = 600𝑠 for mesh
A1 and Δ𝑡 = 0.1 𝑠.

Source: Own authorship (2023)

4.4 Mandel’s Problem

4.4.1 Problem Description

Mandel’s Problem consists in a porous media, with height 2𝐻 and length 2𝐿,
sandwiched between two frictionless, impermeable plates. A vertical force 2𝐹 is applied at
the plates and the sample is drained from the sides, where it is free to deform. Due to the
symmetry of the problem, the computational domain can be reduced as shown in Fig. 24

Figure 24 – Mandel’s Problem - Description diagram.

Source: Own authorship (2023)
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Fig. 25 shows the computational domain dimensions and boundaries. The boundary
conditions are shown in Table 10. Table 11 shows the material properties for both solid
and fluid used in the present simulation. A mesh with resolution 30x6 was used in the
simulation (Fig. 25). In addition, 𝑝0 = 6,675 𝑃𝑎.

Figure 25 – Mandel’s Problem - 𝑎) Domain dimensions, 𝑏) Domain Boundaries and 𝑐) Mesh used in the
simulation.

Source: Own authorship (2023)

Table 10 – Mandel’s Problem - Boundary conditions.

Boundary Fluid Solid
Γ1

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝒯𝑥 = 0 𝑃𝑎 𝐹𝑦 = −1 × 106 𝑃𝑎, 𝜕𝑥𝑣 = 0
Γ2

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝑢 = 0 𝑚 𝒯𝑦 = 0 𝑃𝑎
Γ3

−→𝑣𝑡 · −→𝑛 𝐼𝐽 = 0 𝑚𝑠−1 𝒯𝑥 = 0 𝑃𝑎 𝑣 = 0 𝑚
Γ4 𝑝 = 0 𝑃𝑎 𝒯𝑥 = 0 𝑃𝑎 𝒯𝑦 = 0 𝑃𝑎

Source: Own authorship (2023)
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Table 11 – Mandel’s Problem - Solid and fluid properties.

Property Value
Solid Compressibility (𝑐𝑠) 0 𝑃𝑎−1

Young’s Modulus (𝐸) 5 × 109 𝑃𝑎
Poisson’s Coefficient (𝜈) 0.3

Porosity (𝜑) 0.3
Permeability (𝑘) 1 × 10−13 𝑚2

Biot’s Coefficient (𝛼) 1
Fluid Compressibility (𝑐𝑓 ) 4.5 × 10−9 𝑃𝑎−1

Viscosity (𝜇) 1 × 10−3 𝑃𝑎.𝑠
Source: Own authorship (2023)

Mandel’s problem has two unusual boundary conditions at Γ1: 𝐹𝑦 = −1 × 106 and
𝜕𝑥𝑣 = 0. Since the imposed boundary condition is the total vertical force applied 𝐹𝑦, the
load 𝒯𝑦 at Γ1 isn’t necessary constant along the 𝑥 direction. However, the total force at Γ1

can be computed as follows:

𝐹𝑦 =
∫︁ 𝐿

0
𝒯𝑦 𝑑𝑥 (4.3)

where 𝐿 is the domain length.

In order to properly impose the boundary condition, an iterative method is em-
ployed:

1. A initial value of 𝒯𝑦 is uniformly imposed as:

𝒯 𝑘
𝑦 = 𝐹𝑦

𝐿
(4.4)

2. Pressure and Displacement are obtained as usual.

3. A new value of 𝒯𝑦 is computed numerically using the solutions obtained in the last
item.

4. A convergence check is done:
∑︀
𝐼𝐽∈Γ1 |𝐼𝐽 |

−→
𝒯 𝑘
𝐼𝐽,𝑦 − 𝐹𝑦

𝐹𝑦
≤ 𝜏𝑠 (4.5)

where 𝜏𝑠 is a user-defined tolerance, which in the present work is set to 𝜏𝑠 = 10−8 .

If tolerance isn’t achieved, a new value of 𝒯𝑦 is uniformly imposed on the boundary:

𝒯 𝑘+1
𝑦 = 𝒯 𝑘

𝑦 −
∑︀
𝐼𝐽∈Γ1 |𝐼𝐽 |

−→
𝒯 𝑘
𝐼𝐽,𝑦 − 𝐹𝑦

𝐿
(4.6)
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Then the algorithm resumes from step 2.

If tolerance is achieved, the simulation continues to the next value of 𝑡.

The second boundary condition 𝜕𝑥𝑣 = 0 which means 𝑣 has a constant value
along the 𝑥 direction, but this value isn’t necessarily known. In order to impose the
aforementioned condition, one control volume, called 𝑐, belonging to the boundary Γ1

is chosen and every other volume in the boundary, called 𝑏𝑖, is set to have the same
value. This is achieved by changing the entries related to those volumes in the assembled
matrix of the solid problem. The line corresponding to 𝑐 is kept the same and the lines
corresponding to 𝑏𝑖 are changed to have 1 in the column corresponding to themselves, and
−1 on the column corresponding to 𝑐. The remaining columns are set to 0. There is no
theoretical restriction to which volume should be chosen. However, after numerical testing,
the one volume that yields the better results is the one closest to the boundary Γ2 (Fig.
26).

Figure 26 – Mandel’s Problem - Control volume used to impose constant displacement boundary condition.

Source: Own authorship (2023)

4.4.2 Results

Fig. 27 shows a comparison between the numerical and analytic pressure solutions,
whose description in detail can be found in Appendix A, along the line 𝑥 = 0 𝑚 with
Δ𝑡 = 0.1 𝑠. From Fig. 27, one can conclude that the numerical formulation presented in
this work is capable of accurately match the problem’s analytical solution.
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Figure 27 – Mandel’s Problem - Pore pressure distribution with Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)

Fig. 28, Fig. 29 and Fig. 30 show respectively the pressure, horizontal and vertical
displacements profiles at different times. Fig. 31 shows the displacement field in different
time values. From its analysis it is possible to conclude that the solution has the expected
behaviour. Even though the problem is two-dimensional, the the pressure and horizontal
displacements profiles only changes in the 𝑥 direction and the vertical displacement only
changes in the 𝑦 directions. Furthermore, the horizontal displacement decreases over time
due to fluid drainage, and the vertical displacement increases over time due to the solid
compression.

Figure 28 – Mandel’s Problem - Pore pressure profiles for different times with Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)
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Figure 29 – Mandel’s Problem - Horizontal displacement profiles for different times with Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)

Figure 30 – Mandel’s Problem - Vertial displacement profiles for different times with Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)
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Figure 31 – Mandel’s Problem - Displacement field for different times with Δ𝑡 = 1 𝑠.

Source: Own authorship (2023)
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5 CONCLUSION

5.1 Closing Remarks

From the analysis of the results showed in the present work, the numerical modeling
described using a unified finite volume framework for solving poroelasticity problems was
capable of producing accurate results using structured and unstructured meshes with
triangular and quadrilateral elements.

In the homogeneous Terzaghi’s problem, was possible to see the relationship between
time step and mesh resolution, established by Fourier’s number. It was shown that, even
though the time integration scheme is unconditionally stable, high values of Fourier’s
number means mesh refinement has no effect on accuracy gain, as the error associated
with time discretization is dominant, requiring a time step reduction in order to decrease
error further.

In the two-layered Terzaghi’s problem, it was shown how the pressure and dis-
placemenet solutions are decoupled in Terzaghi’s Model, where the displacement solutions
for the homogeneous and heterogeneous cases showed the same behavior, albeit some small
negligible difference.

In Mandel’s problem, the numerical modeling was capable of reproduce the expected
behavior, where pressure and horizontal displacement changes only in the 𝑥 direction and
decreases over time, meanwhile vertical displacement only changes in the 𝑦 direction and
increases over time.

In short, the closing remarks are:

• A Finite Volume Method based on a Multipoint Flux Approximations using harmonic
points was developed for the solid mechanics problem;

• A unified Finite Volume Framework was developed for solving poroelasticity problems,
using the Fixed-Strain operator split;

• The methodology was capable of producing accurate results for the benchmarks
problems analyzed;

• It was possible to observe the relationship between time step size and mesh resolution,
characterized by Fourier’s number.

• By comparing the solutions of both homogeneous and heterogeneous versions of
Terzaghi’s problem, it was shown the decoupling between displacement and pressure
in the Terzaghi’s Model.



77

5.2 Suggestion for Future Works

The present work serves as a basis for future research in the field of poromechanics,
more precisely, the usage of finite volume formulations in solid mechanics problems and
in a unified finite volume framework for poromechanics problems, with applications in
Reservoir Engineering. As suggestion for future works, one can cite a few:

• Verify the Rhie-Chow interpolation efficacy by solving examples where the even-odd
decoupling can impact significantly the numerical solution.

• Introduce a non-linear finite volume formulation in the numerical framework;

• Extend the methodology presented to displacements in three dimensions;

• Modify the methodology to account for porosity and permeability changes;

• Incorporation of a multiphase or even a compositional flow model;

• Incorporation of elastoplastic constitutive model;

• Extend the numerical model to deal with fracture mechanics and fault reativation;

• Implement a solution algorithm base on the Fixed-Stress Split;
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APPENDIX A – ANALITIC SOLUTIONS

A.1 Terzaghi’s Problem

The exact solution for Terzaghi’s Problem can be found in (WANG, 2000). First,
Terzaghi’s Problem is one dimensional. Then, the author chooses the column top as the
origin for the coordinate system and standard sign convention for the 𝑦 axis.

When a load −𝜎0 is applied at the column top, with height 𝐻, the sample reaches
an equilibrium before fluid begins flowing, called undrained response where the initial
pressure 𝑝 = 0 becomes:

𝑝0 = 𝛾𝜎0 (A.1)

where 𝑝0 is the pressure at the equilibrium and 𝛾 is called loading efficiency, which is given
by:

𝛾 = 𝐵 (1 + 𝜈𝑢𝑑)
3 (1 − 𝜈𝑢𝑑)

(A.2)

where 𝐵 is the Skempton’s coefficient and 𝜈𝑢𝑑 is the undrained Poisson’s coefficient. 𝐵
is a measure of how the load applied is shared between fluid and solid particles, during
the undrained response. Furthermore, when the load is applied, the static fluid resist
compression parallel to the load applied and increases stress in the perpendicular direction.
Thus, the Poisson’s coefficient measured during the undrained response is greater than the
sample Poisson’s coefficient (𝜈𝑢𝑑 > 𝜈).

The vertical displacement at the undrained equilibrium is given by:

𝑣0 = 𝜎0 (1 + 𝜈𝑢𝑑) (𝐻 − 𝑦)
3𝐾𝑢𝑑 (1 − 𝜈𝑢𝑑)

(A.3)

where 𝐾𝑢𝑑 is the Bulk modulus measured at the undrained response.

Shortly after the sample reaches the undrained equilibrium, fluid beins flowing,
entering the drained response. Then, the pressure and displacement behaviours are given
by the following equations:

𝑝 (𝑦,𝑡) = 𝑝0Ψ𝑝 (A.4)
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𝑣 (𝑦,𝑡) = 𝑣0 + 𝑝0
𝛼 (1 + 𝜈)

3𝐾 (1 − 𝜈) [(𝐻 − 𝑦) − Ψ𝑣] (A.5)

where:

Ψ𝑝 = 4
𝜋

∞∑︁
𝑚=0

1
2𝑚+ 1𝑠𝑖𝑛

[︃
(2𝑚+ 1) 𝜋𝑦

2𝐻

]︃
𝑒𝑥𝑝

[︃
− (2𝑚+ 1)2 𝜋2𝑐𝑡

4𝐻2

]︃
(A.6)

Ψ𝑣 = 8
𝜋2

∞∑︁
𝑚=0

1
(2𝑚+ 1)2 𝑐𝑜𝑠

[︃
(2𝑚+ 1) 𝜋𝑦

2𝐻

]︃
𝑒𝑥𝑝

[︃
− (2𝑚+ 1)2 𝜋2𝑐𝑡

4𝐻2

]︃
(A.7)

Moreover 𝑐 is called the consolidation coefficient and is given by:

𝑐 = 3𝑘𝛾𝐾 (1 − 𝜈)
𝜇𝛼 (1 + 𝜈) (A.8)

It’s important to note that lim𝑡→0+ 𝑝(𝑦,𝑡) = 𝑝0 and lim𝑡→0+ 𝑣(𝑦,𝑡) = 𝑣0, which
denotes the drained response beginning. The undrained response is instantaneous due
to the quasi-static loading. Correlations for computing 𝐵, 𝜈𝑢𝑑 and 𝐾𝑢𝑑 can be found in
(WANG, 2000).

A.2 Two-Layered Terzaghi’s Problem

The exact solution for the Two-layered Terzaghi’s Problem can be found in (VER-
RUIJT, 2013). Similar to the homogenous case, the whole sample reaches the undrained
equilibrium with 𝑝0 given by Eq. (A.1). First, the material where the load is applied
reaches 𝑝0, thus 𝛾 is computed using its properties, then the other material reaches the
same pressure 𝑝0 at equilibrium. The coordinate system origin is placed at the interface
between the two porous media, and standard sign convention is used for the 𝑦 axis.

Where 𝑦 > 0, the pressure behavior is given by:

𝑝(𝑦,𝑡) = 𝑝0Ψ1
𝑝 (A.9)

where:

Ψ1
𝑝 = 2

∞∑︁
𝑚=1

𝑐𝑜𝑠(𝐴𝑚)𝑐𝑜𝑠(𝛽𝐴𝑚𝑦/𝐻1) − 𝜁𝑠𝑖𝑛(𝐴𝑚)𝑠𝑖𝑛(𝛽𝐴𝑚𝑦/𝐻1)
𝑅𝑚

𝑒𝑥𝑝

(︃
−𝐴2

𝑚𝑡

𝑡2

)︃
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(A.10)

Furthermore, where y < 0, the pressure behavior is given by:

𝑝(𝑦,𝑡) = 𝑝0Ψ2
𝑝 (A.11)

where:

Ψ2
𝑝 = 2

∞∑︁
𝑚=1

𝑐𝑜𝑠(𝐴𝑚)𝑐𝑜𝑠(𝐴𝑚𝑦/𝐻2) − 𝑠𝑖𝑛(𝐴𝑚)𝑠𝑖𝑛(𝐴𝑚𝑦/𝐻2)
𝑅𝑚

𝑒𝑥𝑝

(︃
−𝐴2

𝑚𝑡

𝑡2

)︃
(A.12)

In Eq. (A.10) and Eq. (A.12), 𝐻1 and 𝐻2 are the heights of the upper and bottom
materials respectively, and 𝑅𝑚 is given by:

𝑅𝑚 = (1 + 𝜁𝛽) 𝑐𝑜𝑠(𝛽𝐴𝑚)𝑠𝑖𝑛(𝐴𝑚) + (𝜁 + 𝛽) 𝑐𝑜𝑠(𝐴𝑚)𝑠𝑖𝑛(𝛽𝐴𝑚) (A.13)

where 𝐴𝑚 are the roots of the following equation:

−𝜁𝑠𝑖𝑛(𝛽𝐴)𝑠𝑖𝑛(𝐴) + 𝑐𝑜𝑠(𝛽𝐴)𝑐𝑜𝑠(𝐴) = 0 (A.14)

Furthermore, the coefficients 𝜁 and 𝛽 are defined as:

𝜁 =
√
𝑘2𝑚2√
𝑘1𝑚1

, 𝛽 =
√︃
𝑡1
𝑡2

(A.15)

where:

𝑚𝑖 =
(︂
𝐾𝑖 + 4

3𝐺𝑖

)︂−1
, 𝑡𝑖 = 𝐻2

𝑖

𝑐𝑖
, 𝑖 = 1,2 (A.16)

However, no analytical solution for displacement is supplied by the author.

A.3 Mandel’s Problem

The exact solution for Mandel’s Problem can be found in (ABOUSLEIMAN et al.,
1996). The undrained equilibrium pressure 𝑝0 is given by:
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𝑝0 = 𝐹𝐵(1 + 𝜈𝑢𝑑)
3𝐿 (A.17)

Then, the pressure behavior is given by:

𝑝(𝑥,𝑡) = 𝑝0Ψ𝑝 (A.18)

where:

Ψ𝑝 = 2
∞∑︁
𝑚=0

𝑠𝑖𝑛(𝐴𝑚)
𝐴𝑚 − 𝑠𝑖𝑛(𝐴𝑚)𝑐𝑜𝑠(𝐴𝑚)

[︂
𝑐𝑜𝑠

(︂
𝐴𝑚𝑥

𝐿

)︂
− 𝑐𝑜𝑠(𝐴𝑚)

]︂
𝑒𝑥𝑝

(︃
−𝐴2

𝑚𝑐𝑡

𝐿2

)︃
(A.19)

For Mandel’s problem, the consolidation coefficient is defined as:

𝑐 = 2𝑘𝐵2𝐺(1 − 𝜈)(1 + 𝜈𝑢𝑑)2

9𝜇(1 − 𝜈𝑢𝑑)(𝜈𝑢𝑑 − 𝜈) (A.20)

Furthermore, 𝐴𝑚 are the roots of the following equation:

𝑡𝑎𝑛(𝐴) − (1 − 𝜈)
(𝜈𝑢𝑑 − 𝜈)𝐴 = 0 (A.21)

The displacements behaviors are given by:

𝑢(𝑥,𝑡) =
(︂
𝐹𝜈

2𝐺𝐿 − 𝐹𝜈𝑢𝑑
𝐺𝐿

Ψ𝑣

)︂
𝑥+ 𝐹

𝐺
Ψ𝑢 (A.22)

𝑣(𝑦,𝑡) =
(︃
𝐹 (1 − 𝜈𝑢𝑑)

𝐺𝐿
Ψ𝑣 − 𝐹 (1 − 𝜈)

2𝐺𝐿

)︃
𝑦 (A.23)

where:

Ψ𝑣 =
∞∑︁
𝑚=0

𝑠𝑖𝑛(𝐴𝑚)𝑐𝑜𝑠(𝐴𝑚)
𝐴𝑚 − 𝑠𝑖𝑛(𝐴𝑚)𝑐𝑜𝑠(𝐴𝑚)𝑒𝑥𝑝

(︃
−𝐴2

𝑚𝑐𝑡

𝐿2

)︃
(A.24)

Ψ𝑢 =
∞∑︁
𝑚=0

𝑐𝑜𝑠(𝐴𝑚)
𝐴𝑚 − 𝑠𝑖𝑛(𝐴𝑚)𝑐𝑜𝑠(𝐴𝑚)𝑠𝑖𝑛

(︂
𝐴𝑚𝑥

𝐿

)︂
𝑒𝑥𝑝

(︃
−𝐴2

𝑚𝑐𝑡

𝐿2

)︃
(A.25)
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APPENDIX B – ITERATIONS PER TIME STEP AND AVERAGE SIMULATION
TIME

The following sections shows the results of average number of iterations per time
step and average simulation time for the benchmark examples analysed in the present
work.

B.1 Terzaghi’s Problem

For Terzaghi’s problem, simulations were done up to time 𝑡 = 4000 𝑠 (Table 12),
and for the convergence analysis simulations were done up to time 𝑡 = 20 𝑠 (Table 13 and
Table 14.

Table 12 – Terzaghi’s Problem - Average Iterations per Time Step and Average CPU time with 𝑑𝑡 = 1 𝑠.

Mesh Iterations per time step Simulation time
A 20.03 219.399
B 20.05 250.102
C 35.09 384.286

Source: Own authorship (2023)

Table 13 – Terzaghi’s Problem - Average Iterations per Time Step.

Δ𝑡 1 𝑠 0.5 𝑠 0.25 𝑠 0.1 𝑠 0.05 𝑠 0.025 𝑠
A1 21 20 19.22 18 17.44 16.79
A2 22 21 21 20 19 18.02
A3 22 22 21.52 20.73 20.10 19.29
A4 22 22 21.70 21.02 20.35 19.58
A5 22 22 21.74 21.12 20.47 19.66

Source: Own authorship (2023)

Table 14 – Terzaghi’s Problem - Average CPU Time in Seconds.

Δ𝑡 1 𝑠 0.5 𝑠 0.25 𝑠 0.1 𝑠 0.05 𝑠 0.025 𝑠
A1 2.772 3.904 5.803 11.215 20.169 37.296
A2 4.766 7.233 10.851 20.798 36.913 68.496
A3 13.742 19.736 31.658 65.401 119.905 225.042
A4 30.986 46.348 76.784 161.814 303.789 570.122
A5 58.797 93.488 156.038 346.911 638.797 1215.718

Source: Own authorship (2023)
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B.2 Two-Layered Terzaghi’s Problem

For Two-Layered Terzaghi’s problem, simulations were done up to time 𝑡 = 1200 𝑠.

Table 15 – Two-Layered Terzaghi’s Problem - Average Iterations per Time Step and Average CPU time
with 𝑑𝑡 = 0.1 𝑠.

Mesh Iterations per time step CPU time (𝑠)
Case 1 18.10 607.506
Case 2 17.40 609.796

Source: Own authorship (2023)

B.3 Mandel’s Problem

For Mandel’s problem, simulations were done up to time 𝑡 = 1100 𝑠. Table 16
shows the average number of iterations for the convergence of the fixed-strain algorithm
and the average number of iterations for the convergence of the boundary traction.

Table 16 – Mandel’s Problem - Simulation data with 𝑑𝑡 = 1 𝑠.

Data Value
Fixed Strain Iterations 3.30

Boundary Problem Iterations 6.554
CPU time (𝑠) 589.895

Source: Own authorship (2023)
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