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ABSTRACT

The present thesis proposes a method to automatically construct Multilayer Per-
ceptron Artificial Neural Networks (MLP) to help non-expert users to still create robust
models without the need to worry about the best combination of the number of neurons
and activation functions by using specific splitting strategies, training parallelization, and
multi-criteria model selection techniques. In order to do that, a data splitting algorithm
(Similarity Based Stratified Splitting) was developed to produce statistically similar splits
in order to better explore the feature space and consequently train better models. These
splits are used to independently train several MLPs with different architectures in par-
allel (ParallelMLPs), using a modified matrix multiplication that takes advantage of the
principle of locality to speed up the training of these networks from 1 to 4 orders of
magnitude in CPUs and GPUs, when compared to the sequential training of the same
models. It allowed the evaluation of several architectures for the MLPs in a very short
time to produce a pool with a considerable amount of complex models. Furthermore, we
were able to analyze and propose optimality conditions of theoretical optimal models and
use them to automatically define MLP architectures by performing a multi-criteria model
selection, since choosing a single model from an immense pool is not a trivial task. The
code will be available at <https://github.com/fariasfc/parallel-mlps>.

Keywords: neural networks; neural networks architectures; neural networks topologies;
parallelization; matrix multiplication; multi-criteria model selection.

https://github.com/fariasfc/parallel-mlps


RESUMO

A presente tese propõe um método para construir automaticamente Redes Neurais
Artificiais Multilayer Perceptron (MLP) para ajudar os usuários não-especialistas a criar
modelos robustos sem a necessidade de se preocupar com a melhor combinação do número
de neurônios e funções de ativação, utilizando estratégias de particionamento de dados
específicas, paralelização de treinamento e técnicas de seleção de modelos multicritério.
Para isso, foi desenvolvido um algoritmo de particionamento de dados (Similarity Based
Stratified Splitting) para produzir divisões estatisticamente semelhantes, a fim de explorar
melhor o espaço de características e, conseqüentemente, treinar melhores modelos. Estas
partições são usadas para treinar, de forma independente, várias MLPs com diferentes
arquiteturas em paralelo (ParallelMLPs), usando uma multiplicação matricial modificada
que faz uso do princípio da localidade para acelerar o treinamento destas redes de 1 a 4
ordens de magnitude em CPUs e GPUs, quando comparado ao treinamento seqüencial dos
mesmos modelos. Isto permitiu a avaliação de várias arquiteturas de MLPs em um tempo
muito curto para produzir um conjunto com uma quantidade considerável de modelos
complexos. Além disso, pudemos analisar e propor condições de otimalidade de modelos
ótimos teóricos, e usá-las para definir automaticamente arquiteturas de MLPs realizando
uma seleção multi-critérios de modelos, uma vez que escolher um único modelo de um
imenso conjunto não é uma tarefa trivial. O código estará disponível em <https://github.
com/fariasfc/parallel-mlps>.

Palavras-chaves: redes neurais; arquiteturas de redes neurais; topologias de redes neu-
rais; paralelização; multiplicação matricial; seleção de modelos multi-critérios.

https://github.com/fariasfc/parallel-mlps
https://github.com/fariasfc/parallel-mlps
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1 INTRODUCTION

Machine Learning is a research field that tries to extract knowledge from data and save it into
a model that can be used to predict values from unseen data in the future. Usually, several
models are created in order to find the best model possible to be used in production, solving
a real-world problem. One of the most important challenges is how to select the model that
we are going to use in production among several possibilities.

This knowledge is extracted during the model training process. We can resume the training
process by understanding four core components of a Machine Learning system:

• Data: The data collected from a specific task that we want a model for.

• Model: Entity that is capable of storing information in its parameters and predict outputs
for the task that it is trained for.

• Loss Function: A function to measure the success of the model or how close the predic-
tions are from the targets in the data.

• Optimizer: A mechanism to adapt the model’s parameters in order to minimize the loss
function for a given specific Data.

If any component changes, it will directly affect the produced machine learning model. The
role of the training algorithm is to use the Optimizer to update the Model’s parameter in order
to minimize the Loss when the Model is applied to the Data.

There are several Machine Learning models available with different complexities such as
Decision Trees (DT) (QUINLAN, 1987), Random Forest (RF) (BREIMAN, 2001), K-Nearest
Neighbors (KNN) (FIX; HODGES, 1989), Support Vector Machine (SVM) (CORTES; VAPNIK,
1995), Artificial Neural Network (NN) (GOODFELLOW; BENGIO; COURVILLE, 2016), Linear Re-
gression (WEISBERG, 2005), Logistic Regression (KLEINBAUM et al., 2002), Gradient Boost-
ing (FRIEDMAN, 2002), etc. All of these algorithms during the training process are affected
by the Hyper-Parameters. We can define the Hyper-Parameters as the configurations regard-
ing the model definition and the variables that guide the learning process. When creating a
Machine Learning system, the user usually has to try a different set of hyper-parameters to
find the best possible model for a given task he wants to solve. Depending on the model,
the training process can be very computationally intensive and the Hyper-Parameter selection
starts to become a challenge due to time restrictions.

The NN is a very common model used in Machine Learning due to its flexibility and
good overall performance. There are several theoretical studies proving that NN are universal
approximators (HORNIK; STINCHCOMBE; WHITE, 1989; SONTAG, 1992; LESHNO et al., 1993;
PINKUS, 1999; NIELSEN, 2015) and, given enough resources, NN with a single hidden layer
is capable of approximating every continuous function at some degree. Those are the main
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reasons why we choose to work and optimize the NN training procedures. Training a NN is
hard, but tricks can be used to enable a successful training (LIVNI; SHALEV-SHWARTZ; SHAMIR,
2014) such as (i) choosing the activation function, (ii) over-specification (larger than needed
networks are easier to train), and (iii) regularization – regularizing the networks’ weights speeds
up the convergence.

There are several types of Neural Networks (GOODFELLOW; BENGIO; COURVILLE, 2016) such
as Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), Graph Neural Networks (GNN), Deep Neural Networks (DNN), etc. The
correct Neural Network family will depend on the type of data that you are trying to learn and
the inductive bias used by the model.

The usually good Neural Network performance comes with the price of finding the best
Hyper-Parameters. We can divide the NN Hyper-Parameters into two types: (i) architec-
tural hyper-parameters (define the NN architecture), (ii) learning procedure hyper-parameters
(define variables related to the optimization process). The most critical architecture Hyper-
Parameters that define a NN architecture can be summarized by (i) number of layers, (ii)
number of neurons in each layer, (iii) activation functions in each layer. There are also other
very important parameters for the learning process such as the (i) learning rate, (ii) number
of epochs, (iii) regularization strengths, etc. The architectural hyper-parameters are directly
related to the complexity of the model.

The user usually has to find the best architecture in a multi-criteria scenario. Optimizing
it regarding the model performance (low errors) and efficiency (computational complexity).

In this work, we have tried to democratize the NN architecture definition, since NN is a
powerful and widely used ML technique applied to a variety of different problems, by selecting
the best architecture given a hyper-parameter bounded space and a specific dataset. We
proposed strategies to create minimal yet accurate MLPs in an automatic way, such that the
user could rely on the machine to find the best architecture of the model for a given dataset.
To do that, we have proposed some strategies that one could use to better split the dataset, to
train several different MLPs in parallel, and to select robust models from an immense pool of
candidates avoiding over-search (YING, 2019) using a multi-criteria decision-making process.

The remaining of this chapter is organized as follows. The Section 1.1 presents the moti-
vation for our work. The Section 1.2 contains existing solutions related to the problems that
we have investigated. The Section 1.3 we list the objectives of the thesis. The organization of
this thesis is described in Section 1.4.

1.1 MOTIVATION

With the advance in the field, we can realize that the NN complexity has been growing through
time, mainly after the Deep Learning advent. It is common to use models with millions/billions
of parameters. Alongside with that, several researches with pruning techniques (BLALOCK et al.,
2020) that are able to discard many parameters of the model and still maintain a comparable
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or even better performance were published. If pruning methods are effective, it means that
we are probably using more resources than needed, and it can directly impact the training
algorithm, leading to under or over-fitting (BEJANI; GHATEE, 2021) issues.

Another important and recent topic is the Lottery-Ticket Hypothesis (FRANKLE; CARBIN,
2018). It states that in a randomly initialized neural network, a sub-network exists which, if iso-
lated trained, its performance is comparable with the original network. The works (RAMANUJAN

et al., 2020; MALACH et al., 2020) found that a random initialized sufficiently over-parameterized
neural network contains a sub-network (without any training) that achieves competitive accu-
racy if compared to the trained large network.

During the last years, several papers were published about AutoML (HE; ZHAO; CHU, 2021).
AutoML is a research area that explores techniques used to search for ML models (and their
hyper-parameters) that better solve a specific problem. Regarding NN, AutoML can try dif-
ferent architectural and non-architectural hyper-parameters to find the best combination that
better describes a dataset.

Several search algorithms were also assessed to perform model search/selection for NN such
as Evolutionary Algorithms optimizing the NN weights, architecture and/or activation functions
(SCHAFFER; WHITLEY; ESHELMAN, 1992). Usually, those methods are chosen because knowing
the entire architecture hyper-parameter search space might be very expensive. Therefore, those
search algorithms try to find good solutions based on a few point measurements.

If we deeply analyze any function optimization problem, we can investigate three extreme
scenarios: (i) we know the formation rule (equation) that maps the search space and the
optimized variable. In this scenario, we could just calculate the derivative of the function
and find the critical points; (ii) we know all the measurement points mapping the search
space and the optimized variable where we could pick the point that maximizes/minimizes
all the measured points. This is usually very expensive to compute; And (iii) we know very
few measurement points and we need to choose the most promising region to explore next.
This is often a sequential approach in which the decision of the next region will depend on all
the previous knowledge about the search space (all the previous measurement points are used
to guide the search process). Since we don’t know the mathematical equation that dictates
the NN architectural hyper-parameter mapping to model performance from the scenario (i),
people usually try the scenario (iii) when optimizing the architecture of the model because
scenario (ii) tends to be much more time consuming, usually infeasible when assessing the
models sequentially, and often suffers from over-searching problems (YING, 2019) leading to
the selection of over-fitted models. Theoretically, the scenario (ii) would be the best one, since
we would assess all the possible architectures. That’s why we have proposed the algorithm in
(FARIAS; LUDERMIR; BASTOS-FILHO, 2022a), which differ from the other mentioned approaches
when performing the search in scenario (ii), but several magnitudes faster than the sequential
approach would take.

As the NN are capable of learning non-linear complex and/or hidden relationships between



16

input-output pairs in order to make predictions, they are suited to solve real-world problems
and help during the decision-making process.

Therefore, this thesis focus on the development of techniques to improve the learning
process of machine learning models, NN architecture search through training parallelization,
and multi-criteria model selection procedures that perform a cost–benefit analysis regarding
performance and model complexity.

1.2 EXISTING SOLUTIONS

1.2.1 Automatic Architecture Neural Network Definition

The challenge to automatically find the most suited architecture for a NN given a specific
dataset is a problem that attracted attention to various researchers. This is an important step
during modeling with NN. It tends to be very time-consuming and non-experts have difficulties
to optimize the compromise between the number of neurons and the performance of the model
due to the bias-variance trade-off. In order to automatically suggest the architecture of NNs,
multiple researchers proposed Constructive Neural Network (SHARMA; CHANDRA, 2010) algo-
rithms, such as the Cascade Correlation (FAHLMAN; LEBIERE, 1989), Dynamic Node Creation
(ASH, 1989) and C-MANTEC (SUBIRATS; FRANCO; JEREZ, 2012). Those works commonly try
to create a NN in an incremental way such as adding or removing neurons/layers in a greedy
process. One of the most common ways to define NN architectures is to use Evolutionary
Algorithms to optimize the network topology and also the weights (STANLEY; MIIKKULAINEN,
2002; ZANCHETTIN; LUDERMIR; ALMEIDA, 2011; DING et al., 2013).

Recently, the field of Neural Architecture Search (NAS) emerged (REN et al., 2021). In this
field, the authors are often searching algorithms with a better defined process that divides the
framework into small components and use intelligent search algorithms to optimize. Another
approach, is to use Reinforcement Learning (RL) (ZOPH; LE, 2016) to guide the search process.

Most of the previously cited solutions contain sequential steps to be performed that use
the accumulated knowledge of the previous steps to decide the next direction in the search
process. Furthermore, they usually use a single-criterion approach to optimize, which might
lead to over-fitted solutions potentially caused by over-searching. In our proposal, we parallelize
the architectures to speed up the training and use a multi-criteria strategy to overcome the
over-searching problem.

1.2.2 Neural Networks Training Parallelization

Since the search for the best architecture implies the training of several NN, decreasing the
required amount of time to train the models is very important. One of the ways to decrease the
training time is through parallelization (BEN-NUN; HOEFLER, 2019; FARKAS; KERTÉSZ; LOVAS,
2020). The recent advance of computational power is prominently noticed as parallelization
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of Central Processing Unit (CPU) and Graphics Processing Unit (GPU). We can classify the
parallelization in two different strategies:

• Single Machine: The parallelization happens in a single computer in the form of GPU
and multi-core or multi-thread processors with a shared memory space.

• Multiple Machines: In this setup, parallelization emerges from using several machines in-
terconnected by a network. This setup comes with several challenges of synchronization,
data sharding, communication overhead and other difficulties.

We can also analyze the concurrency in the entire network evaluation by dividing it into 3
classes:

• Data Parallelism: Mostly related to mini-batching in Stochastic Gradient Descent (SGD)
optimizers and data partitioning across different processes/machines.

• Model Parallelism: Divides the network into different parts that are calculated by different
processes.

• Pipelining: Uses overlapping computations of different parts of the NN. It can compute
the forward phase in consecutive layers using previously calculated values from previous
layers or assign each layer to a specific processor.

In this thesis, we have proposed another type of parallelism and concurrency which is
the Architecture Parallelism in our ParallelMLP work (FARIAS; LUDERMIR; BASTOS-FILHO,
2022a). This approach allows us to use a Single Machine parallelization to concurrently train
heterogeneous architectures that vary the number of neurons and activation functions.

1.2.3 Multi-Criteria Model Selection

Once several models were trained and evaluated, the task to choose the best model is usually
a complicated challenge. Most of the time the model selection relies on a single-criterion that
must be maximized or minimized. This can be very problematic due to the inherent presence
of noise in real-world data that can lead to over-fitted choices.

Although single-criterion is probably the most common approach to select machine learning
models, there are works that try to perform a multi-criteria model selection such as in (ALI; LEE;

CHUNG, 2017), that proposed a multi-criteria decision making methodology using accuracy,
time and consistency of each model to select the best one. It uses the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) ranking to measure the distance to the
ideal classifier(TZENG; HUANG, 2011). The TOPSIS were also used in (VAZQUEZL et al., 2020)
to model selection, but only used different performance metrics for a specific set.

We argue that the machine learning algorithms must be interpreted as a whole, instead
of summarizing it into a single number in order to select it as the best model. That’s the
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reason we have proposed a multi-criteria model selection procedure that includes not only the
Validation/Holdout set, but also the Training set alongside with the architectural complexity
to the decision process.

1.3 OBJECTIVES

This work aims to develop methodologies to automatically define specialized MLP architectures
for each dataset, without the intervention of specialists, to be used in production, predicting
real world data. To do that we rely on parallel model training, and strategies to improve the
learning process and select good models.

Some specific objectives of this thesis are:

• Propose data splitting approaches to better train machine learning models.

• Investigate how we can accelerate the training process given our current computational
power, software and hardware resources.

• Propose techniques to automatically define MLP architectures (number of neurons and
activation functions).

• Discuss specific characteristics that a good model should have.

• Run experiments to validate the proposals.

1.4 ORGANIZATION

This work is organized as a set of articles. Some chapters were included to summarize the
techniques and also to present additional information.

In Chapter 2 we present our key contributions and discuss their importance to accomplish
different objectives, briefly explaining each produced paper and their most important results.
In Chapter 3 we give our conclusions and future work directions to improve our proposals.

The content of the Appendices from A to F are given with the entire production with
details of each work. These papers defined the work developed in this thesis.

In Appendix A we present a survey relating Machine Learning, Neural Network, Deep
Learning and Complex Networks/Network Science.

The Appendix B investigated how to better represent output data labels to be used in
supervised training of classifiers. We have tried to group cohesive patterns into their respective
clusters assigning them sub-labels.

The Appendix C extends the Appendix B and investigates how to define NN architectures
in a data-driven approach using clustering to create sub-labels to facilitate the learning process
and discover the number of neurons needed to compose the layers.

The Appendix D analyzes a technique responsible for splitting the data using both the
output and input space information. It generates splits where the data may better represent
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the task to the models during the training phase, probably leading to more realistic performance
estimation when used in real-world applications.

The Appendix E shows a way to parallelize the training of heterogeneous MLP architectures.
We were able to increase from 1 to 4 orders of magnitude the trainings in CPUs and GPUs by
using strategies that explores the principle of locality.

Finally, the Appendix F we propose to perform model selection based on a multi-criteria
decision making procedure. We have shown that it mitigates problems such as over-searching
and over-fitting when selecting a model in a large pool of candidates. Problems which usually
happen when a single-criterion model selection procedure is used.
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2 MAIN CONTRIBUTIONS

In this chapter, we present the main contributions of this research, which resulted in 6 ar-
ticles and contributed to the method development of the automatic definition of Multilayer
Perceptron (MLP) Artificial Neural Network models.

• We proposed a stratified data splitting process that uses the similarity of the features to
assign samples to each split. It is beneficial because it tries to cover the entire feature
space during the training and tends to produce better metrics estimation for the splits.

• We suggested a modification to the default matrix multiplication applied inside the MLP
layers projections. This is crucial to allow the training parallelization of individual MLPs
with heterogeneous architectures and decrease the time by several orders of magnitude.

• We defined optimality conditions that theoretical optimal models are expected to have.
We use them to select models as a multi-criteria decision process. It is important because
it alleviates the chance of selecting over-fitted models due to over-search problems.

We first train a large set of MLPs with different architectures on different portions of
the data in parallel using the ParallelMLP technique. After that, we select the best model
according to a multi-criteria model ranking procedure.

2.1 ACADEMIC PRODUCTIONS

We list in this section the papers written during the course of the PhD. We have produced 6
papers, 1 was not published, 2 of them were published, and the remaining 3 are in the review
process.

• Not Published

– Survey on Network Science and Machine Learning

• Published

– Analyzing the impact of data representations in classification problems using clus-
tering (International Joint Conference on Neural Networks – IJCNN 2019) (FARIAS

et al., 2019)

– Clustering for Data-driven Unraveling Artificial Neural Networks (Encontro Na-
cional de Inteligencia Artificial e Computacional – ENIAC 2020) (FARIAS; LUDER-

MIR; BASTOS-FILHO, 2020a)

• Submitted – In Review Process
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– Embarrassingly Parallel Independent Training of Multi-Layer Perceptrons with Het-
erogeneous Architectures (also in ArXiv (FARIAS; LUDERMIR; BASTOS-FILHO, 2022a))

• To be Submitted

– Similarity Based Stratified Splitting: an approach to train better classifiers (ArXiV) (FARIAS;

LUDERMIR; BASTOS-FILHO, 2020b)

– Have we been Naive to Select Machine Learning Models?

2.1.1 Survey on Network Science and Machine Learning

In this survey, we investigated 87 papers published between 2005 to 2017. We have tried to
highlight evidences on the connections between Network Science, Machine Learning/Neural
Networks/Deep Learning by focusing on Complex Networks measurements, the metrics to
evaluate performances, the Machine Learning/Neural Networks/Deep Learning and Network
Science techniques often used and where these algorithms were applied.

Although the subject of this thesis diverged from this topic, it was very important to analyze
the NN from a Network Science standpoint by representing them as a graph of interconnected
nodes which we could use Network Science techniques to better understand the learning
dynamics. It gave us the opportunity to better understand what happens during the learning
process, since we had to think about the “information flow" of each neuron, their interaction
with activation functions, and the gradient flowing back during the back-propagation in the
low-level of tensor operations. With this detailed understanding of the learning dynamics, we
were able to suggest different ideas in order to improve the training of NN. The first idea
resulted in the IJCNN publication detailed in the next section.

2.1.2 Analyzing the impact of data representations in classification problems using
clustering

The motivation of this paper was to start investigating how we could better train models by
looking into the data perspective.

In this paper (FARIAS et al., 2019), we investigated how to better represent output data
labels to be used in the supervised training of classifiers. We have tried to group cohesive
patterns into their respective clusters assigning them sub-labels. Twelve benchmark datasets
were used. The technique first creates clusters, and when appropriate, new sub-labels are
generated according to Fuzzy-CMeans and Silhouette score thresholds. After that, MLPs were
employed to model the 12 datasets with the cluster-generated sub-labels. We observed that,
whenever the algorithm created sub-labels, the performance increased in 22 cases, remaining
statistically equivalent in 14 cases, according to statistical tests with significance p-value=
0.05.

The results of this paper are summarized in Table 1.
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Table 1 – Accuracy rates (%) for MLP architecture by dataset and number of hidden neurons. Each cell contains
the averaged accuracy over 5x 10-fold cross-validations in the first row, in cases where sub-labels were
created, new accuracy in the second row and Wilcoxon statistical test result in the third row – perfor-
mance increase (▲), performance statistically equivalent (=).

MLP Number of Hidden Neurons
Dataset 10 30 50 100 150 200

balance-scale 88.17 93.18 95.24 96.67 96.89 96.86

breast 95.79 95.85
95.91
96.08

=

95.88
96.05

=

95.82
96.08

=

95.76
96.19

=

breast-cancer-wisconsin
96.88
97.44
▲

97.13
97.72
▲

97.19
97.76
▲

97.37
97.79
▲

97.40
97.80
▲

97.65
97.76

=
diabetes 76.92 77.05 77.28 77.67 77.13 77.46

dna 94.17 94.71 95.07 95.28 95.24 95.31

ecoli 86.73 87.48
88.28
88.65

=

87.78
88.38

=
87.92 87.96

iris
94.80
96.27

=

95.60
96.67
▲

96.27
96.80

=

96.40
97.20
▲

96.67
97.33
▲

96.67
97.33
▲

mushroom
99.92
99.98
▲

99.99
100
▲

99.99
100
▲

99.99
100
▲

100
100
=

100
100
=

pendigits
97.20
97.46
▲

98.74
98.82

=

98.98
99.00

=

99.12
99.19
▲

99.16
99.20
▲

99.20
99.25

=
pima 76.67 77.14 77.08 77.16 77.08 76.96

satimage
83.67
84.86
▲

84.76
85.80
▲

85.71
86.67
▲

85.93
86.79
▲

86.25
87.14
▲

86.12
87.57
▲

vehicle 78.27 79.73 80.06 80.30 80.11 80.25

Source: Author’s

own elaboration.
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The sub-label process was able to create better representations of the output labels, im-
proving the MLP performance during the learning process. This performance increase may also
happen due to more tight groups of data of the same sub-label, after the clustering phase.

2.1.3 Clustering for Data-driven Unraveling Artificial Neural Networks

We started this work (FARIAS; LUDERMIR; BASTOS-FILHO, 2020a) as an extension of the lat-
est paper (FARIAS et al., 2019). Given the results obtained, we start exploring methods to
automatically define the architecture of a NN.

Here we have performed an investigation on how to define NN architectures in a data-driven
approach using clustering to create sub-labels to facilitate the learning process and discover
the number of neurons needed to compose the layers. The model depth was also increased
in order to better represent the samples the deeper their representations flow into the model.
The clustering process using Gaussian Mixture Models (GMM) was firstly applied to create
sub-labels. After finding the sub-labels, another GMM clustering process was applied to define
the number of neurons to be individually trained in a one vs. all fashion, and finally combining
them to create the layer. After that, we try to reapply the whole process but now with the
updated representation of the samples to create consequent layers. We used 7 benchmark
datasets and 3x10-fold cross-validation to experiment and test our hypothesis. The proposed
model increased the performance in some scenarios while never decreasing it in the remaining
cases with statistical significance considering p-value=0.05.

The results of this approach are reported in Table 2.
In this work, we have done a preliminary study on how one could define a Data-Driven

Neural Network Architecture using GMMs clustering to define the width of each layer and
iteratively append layers, increasing depth, aiming to find better and possibly disentangled
representations, without the need to create several different NN.

We have realized that the validation metrics increased more often than test metrics, prob-
ably indicating a bad splitting procedure. Also, the training was very slow since we had to train
individual neurons to combine them after. In order to tackle those two limitations, we have
developed the papers (FARIAS; LUDERMIR; BASTOS-FILHO, 2020b) and (FARIAS; LUDERMIR;

BASTOS-FILHO, 2022a), respectively.

2.1.4 Similarity-Based Stratified Splitting

In a tentative to remedy the issues we have raised in the last paper, we have tried to create
strategies to improve the splitting procedure.

In this article (FARIAS; LUDERMIR; BASTOS-FILHO, 2020b) we proposed the Similarity-Based
Stratified Splitting (SBSS). A technique responsible for splitting the data using both the output
and input space information. SBSS generates splits where the data may better represent the
task to the models during the training phase, probably leading to more realistic performance
estimation when used in real-world applications. We have evaluated the application of SBSS in
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Table 2 – Experiment Results comparing ordinary MLPs against our Data-driven Unraveling (DDU) proposal.

Model Dataset Train Validation Test
DDU pima 77.99 (0.01) + 78.48 (0.02) 76.74 (0.03)
MLP pima 78.07 (0.01) 76.71 (0.03) 76.39 (0.02)
DDU vehicle + 84.12 (0.02) + 80.98 (0.03) + 80.90 (0.04)
MLP vehicle 82.81 (0.01) 79.34 (0.02) 79.40 (0.03)
DDU glass 66.88 (0.05) + 65.01 (0.05) 62.16 (0.10)
MLP glass 66.09 (0.03) 60.83 (0.06) 62.33 (0.09)
DDU tic-tac-toe 82.33 (0.06) 77.89 (0.06) 67.14 (0.11)
MLP tic-tac-toe 82.46 (0.04) 77.98 (0.05) 70.79 (0.10)
DDU iris 96.04 (0.02) 97.16 (0.03) 95.33 (0.06)
MLP iris + 97.36 (0.01) 95.98 (0.03) 95.56 (0.06)
DDU satimage + 91.16 (0.01) + 89.52 (0.01) + 88.86 (0.02)
MLP satimage 89.58 (0.01) 88.17 (0.01) 88.06 (0.01)
DDU ionosphere 93.50 (0.02) + 89.37 (0.03) 84.82 (0.08)
MLP ionosphere 93.70 (0.01) 88.06 (0.03) 85.96 (0.08)

Source:

Author’s own elaboration.

a 10-fold splitting called Similarity-Based Stratified 10-Fold Splitting in 22 benchmark datasets
from UCI (DUA; GRAFF, 2017), on Multi-Layer Perceptrons, Support Vector Machine, Random
Forests, and K-Nearest Neighbors, comparing five different similarity functions: Cityblock,
Chebyshev, Cosine, Correlation, and Euclidian. According to the Wilcoxon tests, our approach
consistently outperformed ordinary stratified 10-fold cross-validation in 75% of the assessed
scenarios. It was also able to decrease the generalization gap of the models.

The results for each similarity function are summarized in Table 3.

Table 3 – Number of losses, ties and wins regarding the models and similarities of the SBSS over 10-fold splitting.

Model Chebyshev Cityblock Euclidean Cosine Correlation
loss tie win loss tie win loss tie win loss tie win loss tie win

KNN 2 4 16 0 3 19 0 6 16 3 2 17 1 5 16
MLP 3 4 15 1 7 14 2 1 19 3 3 16 1 4 17
RF 0 5 17 0 4 18 0 6 16 1 8 13 0 5 17

SVM 1 5 16 0 3 19 0 5 17 1 5 16 0 6 16

Total 6 18 64 1 17 70 2 18 68 8 18 62 2 20 66
% 6.82 20.45 72.73 1.14 19.32 79.55 2.27 20.45 77.27 9.09 20.45 70.45 2.27 22.73 75

Source: Author’s own elaboration.
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Table 4 – Average of 10 epochs to train 10,000 models using a CPU.

Number of Samples
100 1000 10000

Batch Size
32 128 256 32 128 256 32 128 256

Features Parallel (Seconds)
5 0.525 0.463 0.472 5.248 4.709 4.717 52.737 46.929 47.133

10 0.539 0.466 0.475 5.338 4.722 4.742 53.351 47.089 47.153
50 0.658 0.505 0.501 6.144 4.943 4.887 62.664 49.791 48.85

100 0.809 0.547 0.551 7.373 5.366 5.1 74.661 53.09 50.965
Sequential (Seconds)

5 13.437 6.097 5.994 112.054 56.999 48.852 1097.599 564.428 483.278
10 13.36 6.115 6.01 111.84 57.094 49.015 1097.503 564.701 484.91
50 13.884 6.571 6.467 116.303 58.993 49.546 1134.955 583.468 491.269

100 14.283 6.671 6.592 120.297 59.259 50.371 1179.405 586.267 493.744
Parallel/Sequential (%)

5 3.91 7.59 7.88 4.684 8.262 9.656 4.805 8.314 9.753
10 4.038 7.625 7.905 4.773 8.27 9.674 4.861 8.339 9.724
50 4.739 7.69 7.753 5.282 8.379 9.863 5.521 8.534 9.944

100 5.664 8.198 8.362 6.129 9.056 10.126 6.33 9.056 10.322

Source: Author’s own elaboration.

2.1.5 Embarrassingly Parallel Independent Training of Multi-Layer Perceptrons
with Heterogeneous Architectures

Since the training execution times were an issue in (FARIAS; LUDERMIR; BASTOS-FILHO, 2020a),
we have tried to speed up the MLP training process.

In this paper (FARIAS; LUDERMIR; BASTOS-FILHO, 2022a), we proposed an algorithm called
ParallelMLPs to train heterogeneous MLPs (with different architectures w.r.t. the number of
neurons and activation functions) in an Embarrassingly Parallel way by aggregating several
MLPs into a single architecture that uses a modified matrix multiplication procedure to make
the gradient flow independent. We have also used strategies that maximize the principle of
locality to speed up the training process. We were able to see 2-4 orders of training speed up
when training 10,000 models with a different number of neurons (from 1 to 100) in the hidden
layer; 10 different activation functions in simulated datasets containing 100, 1000, and 10000
samples; 5, 10, 50, and 100 features presented as batches of size 32, 128, and 256 in both
CPU and GPU devices.

The main results of this paper are summarized in Tables 4 and 5
In this work, we tackled the problem of training time when using grid-search by using the

parallelism of our current computing devices (CPUs and GPUs) combined with several tricks to
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Table 5 – Average of 10 epochs to train 10,000 models using a GPU.

Number of Samples
100 1000 10000

Batch Size
32 128 256 32 128 256 32 128 256

Features Parallel (Seconds)
5 0.024 0.002 0.001 0.269 0.177 0.203 2.676 1.756 2.426

10 0.025 0.002 0.001 0.276 0.178 0.206 2.745 1.767 2.439
50 0.033 0.002 0.001 0.351 0.193 0.218 3.483 1.926 2.569

100 0.043 0.002 0.001 0.449 0.215 0.233 4.438 2.128 2.75
Sequential (Seconds)

5 22.911 8.646 8.511 189.411 73.503 57.02 1857.653 722.915 566.592
10 22.983 8.619 8.515 188.966 73.462 56.941 1859.14 722.925 568.583
50 23.025 8.628 8.519 189.147 73.364 57.134 1858.07 719.359 567.847

100 22.993 8.581 8.503 189.015 72.849 57.129 1854.881 717.543 566.248
Parallel/Sequential (%)

5 0.106 0.019 0.017 0.142 0.241 0.355 0.144 0.243 0.428
10 0.11 0.019 0.017 0.146 0.243 0.362 0.148 0.245 0.429
50 0.142 0.019 0.017 0.185 0.264 0.381 0.187 0.267 0.452

100 0.186 0.018 0.017 0.237 0.294 0.408 0.239 0.297 0.486

Source: Author’s own elaboration.

explore the principle of locality. With that, we could test several possibilities of MLPs instead
of trying to create the model step by step as in the previously mentioned papers (FARIAS et al.,
2019; FARIAS; LUDERMIR; BASTOS-FILHO, 2020a).

2.1.6 Have we been Naive to Select Machine Learning Models? Noisy Data are
here to Stay!

Since we were able to train the MLPs very quickly with the proposed technique in (FARIAS;

LUDERMIR; BASTOS-FILHO, 2022a), we start to examine how to select the best model given a
large pool of complex models trained on a specific dataset.

In this work (FARIAS; LUDERMIR; BASTOS-FILHO, 2022b), we discuss the expected character-
istics that theoretical optimal models should have and assessed several ways to perform model
selection once we were able to train several models at the same time when using (FARIAS;

LUDERMIR; BASTOS-FILHO, 2022a). In this work, we argue that the over-searching problem
that often leads to the selection of over-fitted models can be alleviated if using a multi-criteria
model selection procedure instead of a single-criterion, which is commonly used. We assessed
the techniques in 14 UCI(DUA; GRAFF, 2017) benchmark datasets. Each dataset experiment
was repeated 18 times. For each experiment, we have created 5,600 models. Here we list the
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four optimality conditions that we expect our theoretical optimal models should ideally have:

• High Generalization Performance: Holdout and Test sets should have the highest per-
formance possible;

• High Robustness: Train, Validation, Holdout and Test performances should be similar;

• Low Complexity: Models with a low number of neurons should be preferred;

• No Premature Early Stopping: Models that stopped learning at the beginning of the
process probably have initialized in a bad place.

To study the relationship of those optimality conditions in an immense pool of NN models,
we have used three aggregation policies:

• Individual: the models are not aggregated by architecture;

• Local: the models are aggregated by architecture within each run;

• Global: the models are aggregated by architecture considering all the runs.

and several ranking policies in order to compare the single-criterion model selection against
multi-criteria model selections using the Multi-Criteria Decision Making (MCDM) (TRIANTA-

PHYLLOU, 2000; ARULDOSS; LAKSHMI; VENKATESAN, 2013) algorithm called TOPSIS (TZENG;

HUANG, 2011). In this algorithm, we select the model that minimizes the geometric distance
from the Positive Ideal Solution (PIS) and simultaneously maximizes the geometric distance
from the Negative Ideal Solution (NIS). The PIS and NIS can be understood as the best pos-
sible model (maximum metrics, one neuron, maximum stopped epoch) and the worst possible
model (minimum metrics, one hundred neurons, minimum stopped epoch), respectively. After
ranking the models, a Pareto Dominance filter is applied to remove the dominated solutions
and select the best-ranked model among the non-dominated models.

The Figure 1 present the non-dominated models for each dataset. We can realize that if one
would select the model based only on the Holdout performance, usually the Test performance
is not the best possible, supporting our hypothesis that single-criterion model selection is not
the best approach for model selection.

To analyze the following results, we have compared single-criterion policies (Holdout, Test)
against multi-criteria policies where the first T comes from the TOPSIS algorithm, then we
might have different letters meaning different things. The first T stands for Training metrics,
V for Validation, H for Holdout, the last T for Test, and N for Number of Neurons included
in the multi-criteria decision process.

One of the most important findings of this work is depicted in Table 6. When comparing the
aggregation policies, it seems that analyzing the best architecture for a given data combination
(the Individual grouping) is preferable to aggregating the architecture results and taking the
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Figure 1 – Pareto front for each dataset.
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average to choose the “best architecture". It contributes to our hypothesis that freezing the
NN architecture is not the best approach. The models will experience different initialization
and be exposed to slightly different training data. Therefore, they will experience different
error landscapes, subjected to their learning dynamics.

The Individual, Local, and Global Holdout policies contain equivalent Test accuracies, but
the Individual–Holdout also decreased the Number of Neurons. Since we did not need to
perform cross-validation to group architectures within the k-fold splitting to select reasonable
models, we could use the time invested into the k-fold repetitions to actually try different
hyper-parameters.

We can see in Table 7 that if we compare the single-criterion Holdout with the TTVH
policy – which simultaneously try to maximize not only the Holdout set metrics, but also the
Training and Validation set metrics –, TTVH could select models with statistically equivalent
results regarding the Test performance, while at the same time it was able to decrease the
Disagreement (average absolute difference of the sets performances) if compared to the Hold-
out significantly, probably indicating more robust models. In order to analyze the best model
on the Test set (which maximizes the Test metric), we can compare the Test vs. the TTVHT
policy (which uses the Train, Validation, Holdout, and Test metrics at the same time to make
a decision). We can see that the Test policy probably has selected an over-estimated model
since the Train, Validation, and Holdout sets presented very poor performances. We advocate
that TTVHT would be the closest to the real best model since it performs similarly in all the
sets and still present an interesting Test metric, while decreasing the Disagreement.

If we include the Number of Neurons to be minimized in the decision-making process,
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Table 6 – Results for High Generalization Performance policies.

Policy # Neurons ↓ # Epochs ↑ Accuracy ↑ Disagreement ↓
Train Validation Holdout Test Train-Validation Holdout-Test All

Individual

Train 73.47
(29.13)

86.02
(24.6)

92.45
(7.72)

87.47
(7.8)

91.28
(7.71)

85.06
(9.5)

5.03
(4.21)

6.4
(6.84)

4.66
(4.05)

Validation 47.02
(34.84)

62.99
(35.21)

87.85
(8.8)

91.86
(6.85)

88.97
(7.98)

84.25
(9.78)

4.26
(3.96)

5.21
(6.76)

4.38
(3.83)

Holdout 76.41
(27.5)

84.79
(25.13)

92.08
(7.92)

89.94
(7.79)

91.76
(7.66)

85.54
(9.29)

2.77
(2.66)

6.37
(6.53)

3.94
(3.51)

Test 42.8
(33.91)

63.72
(34.72)

87.42
(8.8)

87.07
(7.64)

87.68
(7.98)

90.61
(7.05)

2.67
(3.25)

4.29
(3.51)

3.13
(2.41)

THT 75.5
(24.61)

78.21
(27.19)

91.22
(8.36)

89.05
(7.89)

90.9
(8.07)

89.65
(7.34)

2.83
(2.67)

3.52
(3.26)

2.67
(2.0)

Local

Train 85.19
(18.79)

80.42
(26.98)

91.75
(8.21)

88.0
(7.93)

90.95
(8.0)

85.21
(9.43)

3.86
(3.6)

5.98
(7.27)

4.12
(4.09)

Validation 80.45
(20.88)

62.89
(33.46)

89.07
(8.9)

90.8
(7.08)

89.65
(8.21)

85.14
(9.38)

2.68
(2.69)

4.94
(6.1)

3.52
(3.19)

Holdout 86.41
(17.5)

78.35
(27.47)

91.52
(8.01)

89.37
(7.6)

91.2
(7.71)

85.01
(9.6)

2.76
(2.76)

6.36
(7.27)

3.94
(3.97)

Test 68.52
(30.98)

61.08
(34.2)

88.61
(9.19)

88.13
(7.81)

88.77
(8.51)

89.05
(7.49)

2.28
(2.62)

3.46
(3.28)

2.48
(2.11)

THT 82.75
(19.23)

68.67
(30.14)

90.56
(8.51)

88.58
(7.57)

90.28
(8.03)

88.76
(7.59)

3.26
(3.32)

3.58
(3.79)

2.86
(2.4)

Global

Train 91.86
(11.95)

75.19
(27.65)

91.43
(8.26)

87.85
(7.9)

90.69
(8.01)

85.34
(9.22)

3.73
(3.9)

5.55
(6.55)

3.85
(3.87)

Validation 92.29
(13.52)

61.85
(29.62)

89.17
(8.28)

90.13
(7.42)

89.51
(7.95)

84.91
(9.8)

1.96
(1.89)

5.19
(6.77)

3.33
(3.48)

Holdout 87.36
(23.97)

75.85
(26.96)

90.99
(8.93)

88.78
(7.87)

90.83
(8.02)

85.48
(9.18)

3.08
(2.75)

5.49
(6.39)

3.67
(3.47)

Test 85.0
(21.18)

62.13
(32.4)

89.37
(8.82)

88.26
(8.03)

89.24
(8.46)

87.69
(8.17)

2.24
(3.15)

3.4
(4.4)

2.42
(2.74)

THT 89.36
(12.43)

69.11
(30.22)

90.04
(10.02)

88.45
(7.74)

90.21
(8.2)

87.44
(8.42)

3.59
(3.66)

3.9
(4.9)

3.18
(2.9)

Source: Author’s own elaboration.

Table 7 – Results for High Robustness policies.

Policy # Neurons ↓ # Epochs ↑ Accuracy ↑ Disagreement ↓
Train Validation Holdout Test Train-Validation Holdout-Test All

Holdout 76.41
(27.5)

84.79
(25.13)

92.08
(7.92)

89.94
(7.79)

91.76
(7.66)

85.54
(9.29)

2.77
(2.66)

6.37
(6.53)

3.94
(3.51)

TTVH 75.98
(27.06)

82.64
(26.28)

91.49
(8.4)

91.1
(7.09)

91.5
(7.91)

85.42
(9.39)

2.26
(2.36)

6.26
(6.91)

3.84
(3.59)

Test 42.8
(33.91)

63.72
(34.72)

87.42
(8.8)

87.07
(7.64)

87.68
(7.98)

90.61
(7.05)

2.67
(3.25)

4.29
(3.51)

3.13
(2.41)

THT 75.5
(24.61)

78.21
(27.19)

91.22
(8.36)

89.05
(7.89)

90.9
(8.07)

89.65
(7.34)

2.83
(2.67)

3.52
(3.26)

2.67
(2.0)

TTVHT 76.5
(24.32)

77.75
(27.45)

91.05
(8.5)

90.47
(7.21)

91.05
(8.0)

88.88
(7.78)

2.52
(2.45)

3.42
(3.53)

2.48
(2.11)

Source: Author’s own elaboration.
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we can see in Table 8 that although we had some Test metric decrease, the models largely
dropped the number of neurons. This indicates that the models with a high number of neurons
are probably in a diminishing returns regime.

Table 8 – Results for Low Complexity policies.

Policy # Neurons ↓ # Epochs ↑ Accuracy ↑ Disagreement ↓
Train Validation Holdout Test Train-Validation Holdout-Test All

TTVH 75.98
(27.06)

82.64
(26.28)

91.49
(8.4)

91.1
(7.09)

91.5
(7.91)

85.42
(9.39)

2.26
(2.36)

6.26
(6.91)

3.84
(3.59)

TTVHN 10.27
(9.27)

78.08
(28.3)

87.59
(7.94)

88.36
(7.13)

87.83
(7.66)

82.9
(9.96)

2.14
(1.93)

5.54
(7.19)

3.54
(3.74)

THT 75.5
(24.61)

78.21
(27.19)

91.22
(8.36)

89.05
(7.89)

90.9
(8.07)

89.65
(7.34)

2.83
(2.67)

3.52
(3.26)

2.67
(2.0)

THTN 8.75
(7.24)

78.35
(27.0)

86.78
(7.93)

85.97
(8.22)

86.7
(7.8)

86.9
(7.94)

2.37
(2.65)

2.75
(2.11)

2.2
(1.6)

TTVHT 76.5
(24.32)

77.75
(27.45)

91.05
(8.5)

90.47
(7.21)

91.05
(8.0)

88.88
(7.78)

2.52
(2.45)

3.42
(3.53)

2.48
(2.11)

TTVHTN 11.37
(9.44)

77.48
(27.79)

87.54
(7.92)

88.14
(7.13)

87.76
(7.61)

86.44
(8.35)

2.09
(1.93)

3.15
(3.58)

2.3
(1.93)

Source: Author’s own elaboration.
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3 CONCLUSIONS AND FUTURE WORK

3.1 CONCLUSION

In this thesis, we were able to analyze and propose optimality conditions of theoretical opti-
mal models and use that to perform a multi-criteria model selection in an immense pool of
heterogeneous MLP architectures (FARIAS; LUDERMIR; BASTOS-FILHO, 2022b), therefore auto-
matically defining the architecture. The MLP architectures were trained in parallel (FARKAS;

KERTÉSZ; LOVAS, 2020) using a splitting algorithm (FARIAS; LUDERMIR; BASTOS-FILHO, 2020b)
that better explores the feature space among the different sets of the data.

This is useful because the training time was reduced, allowing to perform a grid-search
in the architectural hyper-parameters of several MLPs in a reasonable time that could be
prohibitive depending on the size of the dataset and the number of models we would like to
assess. With that, we can reduce the time for the laborious task of model selection that the
user would perform with a manual search. This also allows non-expert users to easily create
good NN models in an automatic way.

We have proposed the model agnostic SBSS procedure that can increase the performance
of classifiers by using input and output distribution information of the data.

Furthermore, we present a strategy to embarrassingly parallelize the training of heteroge-
neous MLP architectures in CPUs or GPUs. Improving the training time by several order of
magnitudes, when compared to the sequential approach. The parallelization was possible due
to a modification that we have proposed in the matrix multiplication operator that explores the
principle of locality. This modification can also be used in other scenarios, such as in Sparse
Neural Networks.

We also surprisingly found that fixing MLP parameters using a 10-fold cross-validation, as
is usually done, might limit the learning capacity of the models if we are able to train several
models in an acceptable time and be careful when selecting them to avoid over-fitting due to
over-searching issues.

We have defined four optimality conditions that are expected for a theoretical optimal
model to have. To analyze the influence of each one, we used different selection policies to
emphasize the contrast between using or not a specific optimality condition during the selection
procedure. The multi-criteria model selection procedure can mitigate over-searching problems
since it will dilute the noise fitting usually responsible for the selection of over-fitted models.
We have also had the opportunity to investigate the behavior of a very large pool of complex
models to examine what we should look from the model and training procedure perspective to
select good models. We are usually fooling ourselves when using the best model in a given set
to be the gold standard, since real-world data usually contains inevitable noise and the model
that maximizes the set performance is probably counting the noise as correct predictions.
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The over-search problem and knowing more about the function that we want to optimize
(architectural hyper-parameter search space) seem not to be the root problem of selecting bad
models, but selecting a model based on a single criterion seems to be. Because real-world data
is noisy, selecting the best model based solely on a specific set of the data is a sub-optimal
procedure, since it is probably selecting a model that is also wrongly maximizing the noise
term 𝜖 of that specific set.

3.1.1 Future Works

Throughout the analysis, we have realized that models with a very simple architecture some-
times had a very good performance. Which informs us that smaller models should be sufficient.
The problem seems to be related to the initialization process. In models with a small number
of neurons, we cannot afford small mistakes in the parameter initialization. If we compare to
models with high complexity, we might have a few neurons that started in a very promising
region and the overall performance of the model is very correlated with a few good neurons
inside the whole network. This also corroborates with the Lottery Ticket Hypothesis and why
pruning works. In order to investigate it, we plan to use our ParallelMLPs framework to create
thousands of small models and look into the relationship between good models and their pa-
rameter initialization. We expect that very few models will have outstanding performance just
because they started in a very promising region. Smaller models are also a way to increase the
model robustness since it decreases the variance of the model and increase the bias, if it’s not
at the double-descent regime (BELKIN et al., 2019).

The ParallelMLPs framework can also be extended to perform feature selection if one uses
a boolean mask at the beginning of the process. Another possibility is to use several MLP heads
to train on top of an encoder simultaneously flowing the gradients of different architectures
into the encoder to study how it would affect the learning dynamics of the encoder model.
For Sparse Neural Networks, ParallelMLPs strategies might also be useful to not waste time
with mask multiplications and increase the efficiency of the training algorithms. It allowed us
to observe intriguing behaviors during the model selection procedure. We believe that using
an immense pool of candidates opens a research avenue to study the distribution of machine
learning models at a large scale and better understand what properties we should consider
when selecting robust and accurate models.

We also plan to use ParallelMLPs to automatically find not only the number of neurons for
a MLP, but we would like to create deeper networks, stacking layer-by-layer. Appending them
while the model performance increases. Each layer can be a ParallelMLP training to choose
the best number of neurons for that specific depth. Likewise, we would like to experiment with
ensembles instead of selecting a single MLP and see if we can have better performances.

It is also worthwhile to extend the ParallelMLPs to work with Recurrent Neural Net-
works (YU et al., 2019) or to use a similar idea to speed up the attention mechanisms (NIU;

ZHONG; YU, 2021) present in Transformers (TAY et al., 2020) architectures.



33

The multi-criteria model selection can also be further explored by using different normaliza-
tion techniques or ever other MCDM algorithms and the inclusion/exclusion of other variables
that usually impact the learning dynamics of MLP models. A comparison with AutoML tech-
niques using single-criterion and multi-criteria model selection seems to be interesting.

In order to collect more evidence on our optimality conditions and the multi-criteria against
the single-criterion model selection policy to select robust models and have better performance
estimation – with smaller fluctuations among the sets, we would like to partition a big dataset
into Train, Validation, Holdout, and several disjoint Test subsets with a considerable amount
of data to simulate the application of the model in different real-world scenarios. We expect a
higher variance in the performance of the Test subsets – indicating a lack of robustness and
poor performance estimation – for the single-criterion model selection policy. If a multi-criteria
model selection is used, we expect smaller performance fluctuations for the Test subsets –
indicating robust models and probably a better performance estimation when exposing the
model to real unseen data in production. Analyzing the influence of adversarial attacks in
single-criterion selected models and multi-criteria selected models (expected to be more robust)
seems to be an interesting research direction.

A compelling extension of the SBSS procedure is to support regression problems given the
promising results obtained for classification models.
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1. Introduction

Computational Intelligence studies adaptive mechanisms to enable or fa-
cilitate intelligent behavior in complex and changing environments. A sub-
field of this area, called Machine Learning, can be defined as a type of Com-
putational Intelligence that enables computers or machines to learn without
being explicitly programmed by the intensive use of data [1]. Machine Learn-
ing research field is growing fast due to the amount of available data created
by the increasing number of devices and sensors, and the proliferation of the
Internet of Things and Big Data technologies [2, 3]. Another relevant field
that is attracting attention is the Deep Learning field, which may be seen
as a sub-field of Machine Learning in which the process of information hap-
pens in multiple stages/layers, often learned hierarchically. The models of
Deep Learning are commonly associated with a massive number of learnable
parameters.

Over the last years, the need to analyze large complex graph-like struc-
tures, also called Complex Networks, attracted the attention of researches
and many tools were developed from different disciplines like statistical physics,
graph theory, control theory, among others. The National Research Council
defined Network Science as the study of network representations of physi-
cal, biological, and social phenomena leading to predictive models of these
phenomena [4]. The Network Science studies Complex Networks, which
has as core principles its nodes, which are discrete entities with internal fea-
tures/resources and its links, possibly weighted or unweighted, directed or
undirected connections between the nodes, where the information/resources
between them can be exchanged. The Network Science can analyze and
describe complex systems by the structure (how the nodes are connected
through links), behavior (what results from information exchange) and dy-
namics (the temporal attributes of nodes and links) of Complex Networks.
There are many applications of Network Science in different areas of knowl-
edge like computer science and engineering, social networks, business, biol-
ogy, public health, Internet, epidemiology, physics.

In this paper, our goal is to discuss how Network Science and Machine
Learning are correlated focusing primarily on how Network Science can
benefit Machine Learning algorithms, especially the Neural Networks/Deep
Learning because of their relative success in diverse areas. As they provide
tools to solve complex problems, it may be useful to understand how they
may act together.
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1.1. Need for the study

In this paper, we perform a quantitative and qualitative analysis on sev-
eral papers published since 2005 until 2017. The review appears to be nec-
essary due to the increasing number of researches published over the years
and the popularity that the two areas are presenting. This article is a sur-
vey that discusses the main ideas used in Machine Learning, Artificial Neural
Networks, Deep Learning, and Network Science simultaneously to solve com-
plex problems. Since the use of techniques related to Neural Networks are
growing and obtaining outstanding results on many different areas and the
Network Science also are calling the attention of many researchers, the union
of these two areas may be appealing, once Neural Networks can be consid-
ered Complex Networks with many nodes and connections between them.
We perform systematic research considering three scientific bases: Science
Direct, ACM, IEEE.

1.2. Objective of the study

This paper evidences the connections between Network Science, Machine
Learning/Neural Networks/Deep Learning by focusing on Complex Networks
measurements, the metrics to evaluate performances, the Machine Learn-
ing/Neural Networks/Deep Learning and Network Science techniques often
used and where these algorithms were applied.

1.3. Structure of the paper

We have organized the remainder of this work as follows: we present
the methodology used to collect the papers used in the survey in Section 2;
in Section 3 we describe the inclusion and exclusion criteria and perform a
quantitative analysis, presenting charts containing information about each
one of the discussed papers; in Section 4 we analyzed each one of the pa-
pers individually, grouping the papers whether Network Science was used to
improve Machine Learning techniques or the opposite and commentaries on
previously published books/overviews/surveys; in Section 5 we discussed the
subject of the survey; We present a conclusion of the survey in Section 6; We
list the references used in this survey in Section 7.

2. Methodology

We have applied a systematic methodology to search for papers on IEEE [5],
ACM [6] and ScienceDirect [7] databases using year – newest to oldest – as

3
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the sorting criteria. The search strings and the number of papers found for
each database are presented in Table 1. Initially, the papers were evaluated
by title, keywords and abstract. After this first analysis, we selected 149 pa-
pers to be entirely read and evaluated. During the reading, we selected 67
papers to remain in this survey, and we observed that we must have included
other 20 interesting papers not found in the first round of search. Thus, we
have considered 87 papers related to the subject of this survey.

Database Search String
Number

of
Papers

IEEE
(”machine learning” OR ”neural network”

OR ”deep learning”) AND (”complex
network” OR ”network science”)

136

ACM
(”machine learning” OR ”neural network”

OR ”deep learning”) AND (”complex
network” OR ”network science”)

379

Science
Direct

TITLE-ABSTR-KEY(”machine learning”
OR ”neural network” OR ”deep learning”)
AND TITLE-ABSTR-KEY(”complex

network” OR ”network science”)

40

TOTAL 555

Table 1: Search Strings and number of papers found in Databases.

3. Review of Literature

In this section, we describe the criteria used to include or exclude the pa-
pers, with exception from books and overviews, and we present a quantitative
analysis.

3.1. Inclusions Criteria

• Studies that use Network Science for Machine Learning/Neural Net-
works/Deep Learning;

• Studies that combine Network Science techniques with Machine Learn-
ing/Neural Networks/Deep Learning;

4
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• Researches on Classification, Clustering or Prediction associated with
Network Science;

• Comparisons on Network Science against purely Machine Learning/Neural
Networks/Deep Learning techniques;

• Studies published in conferences or journals.

3.2. Exclusions Criteria

• Papers with the term Complex Networks just mentioning a big network,
without concerning about Network Science;

• Machine Learning/Neural Networks/Deep Learning studies without re-
lations on Network Science;

• Papers about synchronization;

• Studies without experiments;

• Papers written in language different from English.

3.3. Quantitative Analysis

Among the 87 studies, we found three books [8, 9, 10], one survey on
Complex Networks measurements [11], three overviews papers, [12] that cov-
ers community detection algorithms, [13] that relates Data Mining and Com-
plex Networks and [14], which compares some algorithms for community de-
tection implemented in the IGraph library. The 80 remaining studies are
ordinary papers that relate Network Science and Machine Learning/Neural
Networks/Deep Learning.

As one can observe in Figure 1, the number of papers published since
2005 has been growing. We were expecting this behavior since the research
interest in both fields of Network Science and Machine Learning, separately,
have been increasing.
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Figure 1: Histogram of papers published over the years.

Regarding the publication vehicle, Figure 2 depicts the distribution of the
studies. It is interesting to observe that, even though it is a new field, there
are a good amount of publications in Journals.

Machine Learning (ML) techniques may be used to solve Network Science
(NS) problems (ML applied to NS end), and NS aspects and techniques also
may be used to solve ML problems (NS applied to ML end). We present
some information concerning the application of ML to solve an NS problem
and the opposite in Figure 3. One can observe the prominence of the use of
NS to solve ML problems.
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Journal (31)

35.6%

Conference (53)

60.9%

Book (3)3.4%

Figure 2: Distribution of studies regarding the publication vehicle.

ML for NS END

30.0%

NS for ML END

70.0%

Figure 3: Application goals of the techniques.
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Figure 4 details the authors that have at least two papers published on
the subject of this survey. It is worth to notice that there are only five
researches that have at least three papers on the subject, possibly indicating
great opportunities for further researches.
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The ML techniques, or slight modifications of the original technique, that
appeared explicitly at least two times among the articles are grouped in
Figure 5. One can observe that Artificial Neural Network is the most used
ML technique.
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Figure 5: Number of times each Machine Learning technique appears in the references
used in the survey.

The NS aspects like network topologies and techniques like Clustering
Coefficients that appeared explicitly at least two times among the articles are
grouped in Figure 6. Statistical measures extracted from complex network
measures, e.g., Average Degree, Skewness of Degree Distribution, among
others, were grouped only as Degree. The Clustering Coefficient and Degree
were the most used NS measurements while the topologies highlighted were
the Small-World and Scale-Free.
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Figure 6: Number of times each Network Science concept appears in the references used
in the survey.

We depict the most used evaluation metrics that appeared at least two
times among the articles in Figure 7. Accuracy is the most used evaluation
metric over all the works presented in this survey, followed by Precision and
F1-Score.
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Figure 7: Number of times each Evaluation Metrics appears in the references used in the
survey.

We show the most used tools/libraries that appeared among the articles in
Figure 8. WEKA is an open-source collection of Machine Learning algorithms
for data mining tasks [15], LIBSVM is a famous library that implements a
Support Vector Machine [16]. Scikit-Learn is a Machine Learning package
written in optimized C-code, and Python [17] and NetworkX is a Python
package for the creation, manipulation, and study of structure, dynamics,
and functions of Complex Networks [18].
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Figure 8: Number of times each computational tool appears in the references used in the
survey.

4. Papers Analysis

Each one of the papers used in this survey is individually analysed in this
section.

4.1. Machine Learning applied to Network Science

The papers that use Machine Learning techniques to solve problems of
Network Science nature are listed in this section.

4.1.1. Communications Networks

The first paper found in this survey is [19], that used Artificial Neural
Networks to control packet routing in a computer network with scale-free,
randomized, and irregular topologies.
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Another work on the same subject [20] used Artificial Neural Networks to
dynamically route data in a scale-free network using Path Length and local
information of the nodes.

A model proposed by [21] predicts Link Quality for Wireless Sensor Net-
works, using Matrix Factorizations and Gradient Descent to minimize a func-
tion, through the evaluation of the following coefficients: Common Neighbors,
Adamic-Adar, and Resource Allocation. They also compared their approach
to other techniques of unsupervised link prediction models: Common Neigh-
bors Index, Salton Index, Preferential Attachment Index, Adamic-Adar In-
dex, and Karz Index.

4.1.2. Complex Network Generation

We list in this section the papers that use Machine Learning models to
guide the Complex Network Generation process.

The research in [22] used a Neural Network with Least Mean Square learn-
ing algorithm to generate a model of gene regulatory networks to identify and
understand functions and mechanisms at the molecular level in organisms by
analyzing the Average Path Length, Average Clustering Coefficient, Average
Degree, Modularity and Non-Isolated Node Ratio metrics of the networks.

The work in [23] employs a Stochastic Block Model to generate random
graphs to detect communities using Active Learning.

4.1.3. Link Prediction

We list in this section the papers which use approaches that try to find
links between nodes of a Complex Network using Machine Learning tech-
niques.

Intending to assess links on social networks, [24] used topological features
like Number of Common Neighbors, Resource Allocation, Adamic-Adar Co-
efficient, Jacard’s Index, Preferential Attachment, and Network Density as
inputs to Machine Learning techniques such as Logistic Regression, Random
Forest, Naive Bayes, and Decision Tree. In [25], the authors used Evolution-
ary Algorithms with non-topological features, and combinations of them, and
compared their results with Decision Tree, Random Forest, Support Vector
Machine and Neural Networks aiming to verify if two given nodes are linked.

In [26], the authors used Principal Component Analysis and Feature For-
ward Selection as a preprocessing stage to build binary classification models,
using the following Machine Learning algorithms: Support Vector Machine,
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Naive Bayes, K Nearest Neighbors and Decision Tree. They deployed the fol-
lowing measures to assess the classification: Common Neighbors, Resource
Allocation, Adamic-Adar Coefficient, Jaccard’s Coefficient, Preferential At-
tachment and Network Density.

4.1.4. Discovering of Network Properties

In this section, we present the papers that use Machine Learning tech-
niques to find Network Properties/Measurements.

The relationships between the information diffusion among people using
Artificial Neural Networks was studied in [27, 28]. They predict the rate and
time convergence of the network using Potential Edges, Degree, Clustering
Coefficient, Path Length, and Assortativity, whereas a Decision Tree reveals
the statistical indicator that has a strong effect on the information diffusion.

In [29], the authors used support Vector Machine to predict communities
at time t + 1 using evolution snapshots of a given network a time t.

An experimental study on the correlation between the complex network
metrics and its correlations were performed in [30]. They evaluated the per-
formance using the following complex network metrics: Pearson Correlation,
Clustering Coefficient, Degree, Scale-Free Network, Assortativity, Between-
ness Centrality, Closeness Centrality, Neighborhood Connectivity, Eigenvec-
tor Centrality, Network Density, Path Length and Diameter. To assess the
correlations, they have used the algorithms K-Means, Ward, PCA, CART
and Naive Bayes, using the full matrix with features and a reduced matrix
with few complex network metrics in order to compare the Rand Index and
the Adjusted Mutual Information.

An approach to approximate real complex network metric values using
other metrics as attributes to an artificial Neural Network and a Regression
Tree was proposed by [31]. Several combinations of the following metrics were
used to predict the others: Eigenvector Centrality, Information Centrality,
Eccentricity Centrality, Sub-graph Centrality, Walk-Based Betweenness Cen-
trality, Betweenness Centrality, Closeness Centrality, Degree Centrality.

Deep Learning techniques, such as Search Convolutional Neural Network,
node2vec, and Convolutional Neural Networks, were used in [32] to classify
graphs topologies. In some experiments, the Degree, Clustering Coefficient,
and Assortativity of the networks were added as attributes to the models.

A generative model based in Markov Chains were used in [33] to infer la-
tent features of a given graph to learn Social Circles and perform a Multilabel
Classification.
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The identification of infection states of nodes in Complex Networks was
examined in [34], that developed techniques to identify the latently infected
nodes in the presence of missing infection time-and-state data. They used
Naive-Bayes, Decision Tree, and Stacking as classifiers, analyzing the follow-
ing Complex Networks measures: Infection Betweenness Centrality, Number
of Nodes, Number of Edges, Clustering Coefficient, Degree, and Diameter.

An approach to detect communities using a distributed, sparse and non-
negative symmetric Encoder-Decoder derived from a modified Autoencoder
was proposed in [35].

A Framework, named Deep Aligned Autoencoder based Embedding, which
learns the embedding representation of a Complex Network from its Meta
Paths was proposed in [36].

An online content prediction from a group-level popularity perspective
was studied in [37] which consists of two steps: (i) group users into clusters
with Part Graph K Way and (ii) predict content popularity via a novel
constrained tensor decomposition technique (PARAFAC), optimizing it via
Gradient Descent.

In [38], the authors proposed a methodology for task-focused model se-
lection resulting in a great increase in performance. The methodology works
as follows: (i) node attributes, labels and, possibly, an edge-set sare used as
inputs, generating a collection of networks inferred from functions on these
attributes and labels, outputting an edge-set; (ii) for each inferred network
model, a classification method was built on attributes and labels for each
node of interest, constraining attributes and labels available according to the
network structures to produce predictions for some task (collective classifi-
cation, link prediction, among others); (iii) select the appropriate network
model to the tasks of interest. The deployed Machine Learning methods
were: Support Vector Machine, Random Forest, K Nearest Neighbors, and
Threshold Network, while the Network Science techniques mentioned were:
Collective classification, Link Prediction, Intersection of attributes, Degree,
Sum of Attributes (most active nodes) and Unique attribute count (most
diverse nodes)

A work that estimates values of network measurements in the future based
in small windows of measurements in the past was done in [39]. They have
used an artificial Neural Network to predict the Shortest Path, Network
Density, Degree, Clustering Coefficient, Network Transitivity, Modularity,
Effective Diameter, Assortativity, and Degree distribution based on its past
values.

15

52



An investigation of the distribution of distances in intrinsically high-
dimensional spaces was conducted in [40] and leveraged this analysis to gain
knowledge of phenomena related to the so-called dimensionality curse. They
also concluded that for some real-life large-scale networks, the distribution of
the incoming node degree is closely related to the derived infinite-dimensional
k-occurrences function. To accomplish this study, they have used the Direct
and Reverse Nearest Neighbors as Machine Learning techniques and ana-
lyzed the Degree and Hubness of the nodes and the Scale-free structure of
the network.

A simulation of a chaotic trajectory tracking of a Scale-free network was
performed in [41]. The trajectory tracking of dynamical complex networks
were done combining Recurrent Neural Networks and slide-mode control.

Due to the lack of methods to decide whether the usage of networks
abstractions are justified, a solution was proposed by [42], where they gener-
alized standard network abstractions to multi-order graphical models. They
introduced a multi-order graphical modeling framework that captures multi-
ple variable-length pathways in networks. Their approach combines multiple
higher-order Markov models into a multi-layer model consisting of De Bruijn
graphs with multiple dimensions, allowing them to capture temporal corre-
lations with multiple correlations length, simultaneously. Using PageRank,
they show that correlations in sequential data can invalidate the application
of graph-analytics methods. It is possible to decide when a network abstrac-
tion is justified and infer the optimal high-order graphical model that may
be used to generalize network analysis techniques.

4.2. Network Science applied to Machine Learning

In this section, we present the papers that use Network Science as an aid
to Machine Learning algorithms.

4.2.1. Network Science Measures in Features

The papers that extract/select features to be used as inputs to classifiers
are listed in this section.

The work in [43] summarizes text using the following Network Science
measures: Degree, Clustering Coefficient, Minimal Paths, Locality Index,
Matching Index, Dilation, Hubs, K-cores, W-cuts and Communities as fea-
tures to the following Machine Learning algorithms: Flexible-Bayes, C4.5,
Support Vector Machine, Logistic Regression.
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In [44], a Neural Network was used to assess the performances of a WDM
network using Algebraic Connectivity, Natural Connectivity, Average Path
Length, Clustering Coefficient, Diameter, and Entropy as features.

A Support Vector Machine, in combination with graph kernel, was used
in [45] to classify Multiple Sclerosis Clinical Forms using Shortest Path mea-
sure.

In [46], a technique to characterize time series data using graphs, called
Weight Visibility Graph, was used to model EEG data and extract the follow-
ing complex network measures: Modularity and Average Weighted Degree.
These two features are used as inputs for an SVM and a KNN to detect
epilepsy.

A Support Vector Machine and a Linear Discriminant Analysis were used
in [47] to perform epilepsy detection from EEG data, previously transformed
into a Complex Network, by the analysis of the Average Weighted Degree.

A framework named Mashup was proposed in [48]. This framework ana-
lyzes the topology of multiple interaction networks from heterogeneous data
sources, representing multiple networks using low dimensional vectors that
can be used as inputs to a machine learning algorithm. They evaluated the
Degree, Clustering Coefficient, Centrality, Betweenness Centrality, Eigenvec-
tor Centrality, Stress Centrality, Bridging Centrality, Information Central-
ity, Current-Flow Betweenness Centrality in a Support Vector Machine and
Random Forest algorithms, and evaluated the proposal in several genetical
datasets.

The paper in [49] developed a Diffusion Network and used a Neural Net-
work to predict possible future attacks to understand the distribution and
trending of historical terrorist attacks.

The classification of Electromyogram using a Neural Network with De-
gree, Clustering Coefficient, Transitivity, and Efficiency as inputs was pre-
sented in [50]. They also used the Weight Visibility Algorithm to transform
time-series into Complex Networks.

A very well written paper [51] proposed to select the best features through
the construction of a Feature Vector Graph from a dataset and analyze the
Modularity measure. Preferring measures that have small distance within
the same class, while choosing long distances for elements of other classes.

The characterization of the complexity of datasets in Machine Learning
applications was introduced in [52]. They used the Number of Nodes, Num-
ber of Edges, Diameter, Shortest Path, Clustering Coefficient, Degree and
Class Change Ratio to analyze what would be the best classifier to be used
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among K Nearest Neighbors, Radius Nearest Neighbors, Decision Tree, Lo-
gistic Regression, Naive Bayes and Support Vector Machine. The goal is
to investigate the adoption of measures used to evaluate complex network
properties in the characterization of the complexity of datasets in machine
learning applications aiming to select the best type of classifier. The Matrix
data is converted into a Graph representation to apply the measures.

The sentiment analysis in text, as positive or negative opinions, taking
into account the relationship between concepts regardless of the semantics of
each word was conducted by [53]. The text is transformed into a Complex
Network and the Degree, Clustering Coefficient, Shortest Path, Betweenness
Centrality and Efficiency were extracted as features to be used as inputs to
Decision Tree, RIP, and Naive Bayes.

A proposal of Network Motif Model that extracts features from relational
data to present them to a Support Vector Machine was presented in [54].
They also compared the technique with Bayesian Networks.

An investigation of linear and non-linear systems control using a Small-
World Neural Networks Controller was done in [55].

The classification of electroencephalogram data using Small-World Neural
Networks was compared with Radial Basis Function Neural Network, stan-
dard Multi Layer Perceptron and Least Squares Support Vector Machine
in [56].

An interesting work that creates features from 3D images, using Complex
Network Theory, of several objects was proposed in [57]. They have used
KNN and the Degrees of the nodes inside the network.

In [58], 53 different meta-path similarity measures were used to assess the
proximity of entities in heterogeneous Information Networks. Using them as
features to a Spectral Clustering and an SVM, they compared the results
achieved in text-based datasets.

4.2.2. Analytics in Metrics

The papers that analyze Network Science metrics and use this information
to support Machine Learning models are listed in this section.

An very interesting work was done in [59]. They proposed a framework
that uses Network Science to perform a Supervised Data Classification con-
sidering not only the inherent attributes and class topologies but also pattern
formations since the data relationships may present useful structures inside
the same class data points. The authors named it a high level classifica-
tion. They combined a low level classification, performed by any traditional
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Machine Learning algorithm. with a high level classification, using com-
plex network measures to exploit complex topological properties of data. In
this work they used: Fuzzy Decision Tree, Fuzzy Support Vector Machine,
Weighted K-Nearest Neighbors and Neural Networks as low level classifiers
and the network measures: Assortativity, Clustering Coefficient, and Aver-
age Degree as high level classification. These three measures were chosen
because they can characterize the local and global behaviors of a network.
At the training phase, the high level classification needs a transformation
of a matrix-based dataset into a graph-based dataset which is generated by
applying a combination of ε-radius and K-Nearest Neighbors. In the clas-
sification phase, the new data point is inserted in the network of the high
level classifier and every class evaluates the impact of the insertion and the
changes that occurred in the class pattern formation. If a small or no change
occurred in the previously calculated measures, then the new data point is
said in compliance with that class pattern. The low level classifier also cal-
culates the membership of the test instance for every class present in the
problem. The output of the two classification levels can be linearly com-
bined to perform a fuzzy classification. The combination of the outputs also
considers the dataset class balance, giving more importance proportionally
to the class frequency. Several artificial and real datasets were used to show
that the performance of the framework may help the final classification. They
suggest that the high level term is especially useful in complex situations of
classifications.

Further research of [59] were conducted in [60, 61], where they create a
network using the K-Associated Optimal Graph, that uses the Purity Mea-
sure to represent the ”lass purity” of each component, and a complex network
measure called Component Efficiency, performing the analysis of low and high
level in an embedded way. The advantages are the reduction of the compu-
tational cost and the absence of parameters. In [60], several data cluster-
ing algorithms were compared: CHAMELEON, Expectation-Maximization,
Fuzzy C-Means, Optimized K-Means, Modularity, and Particle Swarm Op-
timization, while in [61], the following techniques were compared with their
method: Decision Tree and SVM.

A stochastic and non-linear model for competitive learning applied in
data clustering, and community detection problems were proposed in [62].
They used particles biologically inspired by the competitions that occur in
many social and natural systems. These particles are designed to behave
like flag carriers to conquer vertices and defend its current dominated ver-
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tices, emerging a competitive behavior. When a particle visits a vertex, it
strengthens its domination level on that vertex and weakens the domination
of its rivals in the same vertex. The expectation is that each particle domi-
nates a community in the network. The visitation walk inside the network is
guided by a combination of random (adventuring behavior) and preferential
movements (defensive behavior). The particles may operate in two states:
active (can navigate) or exhausted (cannot navigate). Each particle carries
an energy term which is increased when it visits an already dominated vertex
and decreased when it visits a vertex owned by a rival particle. If this energy
drops under a threshold, the particle changes its state to exhausted and is
teleported back to one of the vertices dominates by this particle.

The proposal in [63] also uses the idea of low and high level classification.
The difference is that at the high level classification, Tourist Walks’ dynamics
(transient and cycle length), which can capture local-to-global topological
properties of the data, are used instead of all the complex network measures
adopted in the researches as mentioned earlier. The results were compared
with: Bayesian Networks, Weighted KNN, Neural Network and Fuzzy SVM.

The work in [64] classifies patterns using Logistic Regression and K Near-
est Neighbors with the following topological features as inputs: Closeness
Centrality, Assortativity, and Clustering Coefficient. They also used a So-
cial Learning Particle Swarm Optimization algorithm to (i) define the value
for the coefficients for each metric, and (ii) to map the feature vectors to
networks.

An approach to detect overlapping communities combining the Largest
Eigenvalue of a matrix (Network Spectral Semi-Diameter), to be used in the
calculation of the threshold, and epidemic spreading models was proposed
in [65].

Learning in a Semi-Supervised way using Modularity measure from com-
plex networks constructed by a K Nearest Neighbors was done by [66].

The usage of particles with Random and Deterministic movements, per-
formed by a Random Walk, competing with each other to occupy a large
number of nodes to cluster data was done by [67].

A semi-supervised data classification model based on the combination of
Random and Preferential Walk of particles in a network constructed from the
input dataset was proposed in [68]. This algorithm is biologically inspired in
a competition-cooperation process, where the particles within the same class
cooperate and the particles of different classes compete against themselves
to propagate class labels to the network. An extension to detect overlapping
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structures or vertices in a network was proposed in [69].
The usage of Small-World Coefficients as features was presented to Linear

and Quadratic Discriminant Analysis, K Nearest Neighbors and Support Vec-
tor Machine to classify motor imagery-based Brain-Computer Interface [70].

4.2.3. Network Science in Machine Learning Structures

The papers that use Network Science tools to modify the internal struc-
tures of Machine Learning algorithms are presented in this section.

The influence of Regular, Small-World and Random topologies applied
to the structure of a Self-Organizing Map to classify digits, analyzing the
Clustering Coefficient and Mean Shortest Path of the networks and their
error rate on the problem was investigated in [71]. On their experiments,
the network performance is weakly controlled by its topology. They have
also used Genetic Algorithms to evolve the network structure and found that
the networks are more random than initial small-world topology and their
connectivity distribution is more heterogeneous.

In [72], the neurons of a Hopfield network was connected using a modifi-
cation proposed in this article of Watts-Strogatz rule to create a Small-World
network topology. They claim that the retrieval of patterns is successful for
low values of the Clustering Coefficient. During the construction of the net-
work, many connections weights are lost, reducing the computational cost of
the technique. While decreasing the Clustering Coefficient, the edges were
reconnected over the network, enabling efficient retrievals.

Research conducted by [73] analyzed the Degree Distribution, Clustering
Coefficient, and Sparsity and suggested that a small-world Neural Network,
as diluted Hopfield Networks, may perform as well as fully-connected net-
works, consuming only a small fraction of connections. They calculate the
overlap on the recognition of a dataset composed of 20 Chinese Characters.

An analysis of the topological features of Restricted Boltzmann Machines
(RBM) and Gaussian Restricted Botzmann Machines (GRBM) using Net-
work Science metrics (Degree, Shortest Path and Clustering Coefficient)
in [74] revealed that if the topology of an RBM or a GRBM is restricted
to a scale-free, the number of parameters may be lower with virtually no
performance degradation. To verify the proposal, they evaluated the tech-
niques on several datasets and extracted the Root Mean Square Error and
the Pearson Correlation Coefficient.

The usage of EEG data to classify gait, among running, walking, and
standing, was assessed in [75]. They combined Common Spatial Patterns and
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FastICA methods and used a Small-World Neural Network, which rewires the
connections between its neurons during the training, based on a Rewiring
Probability.

Self-Organizing Maps in [76] were assessed in time-series prediction with
different Complex Network topologies: Small-world, Scale-Free, Regular and
Random Networks. They claim that most regular topology and not to update
all neurons at the same time lead to better results.

An investigation of the dynamical behavior of a Chaotic Neural Network
(a modification of the Hopfield Recurrent Neural Network) where the under-
lying network of neurons presents community structure that resembles the
ones found in biological neural networks was done by [77]. The Modularity
measure was used to evaluate the quality of the communities

The structure of Small-World networks was used in [78] to reconnect
the neurons of a Neural Network using the distance to give probabilities of
reconnections, where near layers have more chance to reconnect than distant
layers. In their simulations, the Small-World Neural Network achieved better
performances than the ones that use Regular/Random connections. Also,
in [79], a Small-World Neural Network, RBF Neural Network, and a Support
Vector Machine, were used to classify EEG data.

The Community Discovery algorithm known as Fast GN, which tries to
maximize the Modularity measure, was used in Complex Networks to de-
termine the center and width of an RBF Neural Network, using Closeness
Centrality, Node Center and Node Distance measures to predict data in [80].
They also compared their results with the combination of K-Means and Neu-
ral Network solution.

Immune Programming was used in [81] to evolve a Complex Network,
based on a Scale-Free topology, and a Particle Swarm Optimization was used
to fine-tuning parameters to perform a classification task. A comparison
of the proposed method was performed with Flexible Neural Tree, Neural
Network, and Wavelet Neural Network.

A Complex Network model [82], with Scale-Free topology, was evolved,
using Genetic Algorithms, and fine-tuned, using Particle Swarm Optimiza-
tion, to predict network traffic

The classification of Internet Traffic using Complex Network’s Commu-
nity Detection algorithm was done in [83]. They used the Modularity measure
and K-Means, DBSCAN, and NFC algorithms.

A comparison of Regular, Random and Small-World connectivity in an
artificial Neural Network [84], using Efficiency measures, concludes that the
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Small-World topology reduces the learning error and time.
A preliminary study was conducted in [85] to evolve Artificial Neural

Networks with Scale-Free topologies. They showed on one hand that con-
nectivity has little influence on the network performance, while on the other
hand, the input connectivity seems to be more effective.

An extended Echo State Network model that contains a naturally evolved
state reservoir with Scale-Free property, Small-World effect and the hierar-
chically distributed structure was proposed in [86]. Another study investigat-
ing the performance of an ESN with a Small-World topology as its reservoir
in time series prediction was done in [87]. They found that the ESN exhib-
ited high performance even when reduced the number of nodes, while the
standard random or fully connected ESN declined.

The topology of a power grid was simulated in [88] using Small-World
networks aiming to evaluate the performance of a Recurrent Neural Network.

A Small-World Neural Network was used in [89] to control cursor move-
ment in a three-dimensional scene using Electroencephalogram.

A Small-World Feed-forward Neural Networks was applied for diabetes
diagnosis [90, 91] and had better performance than conventional Feed-forward
Neural Networks.

4.2.4. Other Utilization

A Group Search Optimization (GSO) trained an artificial Neural Network
with Small-World scheme to build a soft sensor model for inferring the outlet
ammonia concentration in the fertilizer plant was discussed in [92].

A Multi-Agent Reinforcement Learning system combined with Complex
Networks, with Scale-Free features, Simulated Annealing, Queuing Theory,
and Markov Decision Processes were evolved by [93].

Given a set of entities, labeled and unlabeled, the goal of [94] was to as-
sign class labels to unlabeled entities. In other words, the goal is to perform
classification on networked entities. Modularity Kernel was proposed to ex-
ploit latent community structure of networked entities. They used a Support
Vector Machine and Logistic Regression.

The dissertation in [95] proposed a learning model using an interaction
network by evolving it using a Noisy Preferential Attachment. They also
used an artificial Neural Network in their agents to learn classification tasks.
To validate their method of evolution, they compared with Small-World,
Scale-Free, and Regular Networks.
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The Purity Measure was used in k-Associated Optimal Graph [96] to
reduce the dimensionality of images and present them to a K-Nearest Neigh-
bors.

A time-series prediction technique based on Network Science theory was
proposed in [97]. First mapping the time series into a network representa-
tion, extracting fluctuation features, and finally constructing models with
these features to predict the time series. Their approach was compared to:
Grey Prediction, Exponential Smoothing, Auto-regressive Integrated Moving
Average (ARIMA) and Radial Basis Function Neural Network.

The problem of insider threat event detection was addressed by [98]. They
proposed a framework that uses graph mining analytics to detect anomalous
events, analyzing time-series of several graph properties: Intra-community
Edges, Inter-community Edges, Infomap, Degree, Connected Components,
Maximum Weight.

4.3. Commentaries on previously published books/overviews/surveys

The book Machine Learning in Complex Networks [9] discuss techniques
to perform Unsupervised, Semi-Supervised, and Supervised Learning using
only Complex Network analysis.

The dynamics of processes executed on the network are characterized by
its connectivity and its topological features which can be assessed by the ex-
traction of network measurements. A survey including general considerations
on complex network characterization, principal models, and the presentation
of the main existing techniques was done in [11]. They also have analyzed
correlations between some of the most traditional measurements, perturba-
tion analysis and multivariate statistics for feature selection and network
classification.

Data Mining and Complex Networks generally aim to study complex
systems in order to extract information of them, an overview of these two
similar areas was presented in [13]. It presents several contexts where both
Complex Network Theory and Data Mining were used synergistically.

The Community Structure, also known as Clustering, is one of the es-
sential feature extracted from graphs. They can be viewed as independent
compartments of a graph that share similarities. The detection of these
communities is extremely relevant in many research areas, such as Computer
Science, Sociology, Biology, Physics, among others. An overview of the main
Communities Detection algorithms is presented in [12].
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A discussion on how Machine Learning, Data Mining, and Information
Theory may support Complex Network analysis is presented in [8]. An in-
troduction to complex networks-measures, statistical properties, and models
are also provided in this study.

A comparison of several community detection algorithms implemented in
the IGraph library was made in [14]. They also ranked the algorithms based
on their performance extracted from several scenarios.

A fully available material discussing the Network Science area, present-
ing an overview of the main features, metrics, topologies and other topics
regarding the field can be visited in [10].

The works presented in this session that discuss both Machine Learning,
or some related area, and Network Science fields together. They are focused
on (i) how to use Complex Network analysis in tasks which Machine Learning
techniques were being successfully applied; (ii) how to use Machine Learning
to gather information of Complex Networks. None of them targets on: (i)
how the field of Network Science can be used inside existing Machine Learning
techniques and vice-versa; (ii) the conduction of a Systematic Review of both
areas being used side-by-side.

5. Discussions

There are many studies regarding both areas of Machine Learning and
Network Science fields. Some use techniques of one field to solve problems of
the other, while others use techniques of one field to support techniques of
the other field aiming to facilitate the original task that one is generally used
to perform by itself. Another point that deserves attention is the growth over
the years of both areas, making we believe that both are prosperous fields.

The number of studies that use Network Science in Machine Learning is
higher than the opposite, probably because the field of Machine Learning
is older than Network Science, consequently, the number of problems evalu-
ated by the Machine Learning community is much larger than the problems
already researched in the area of Network Science, naturally leading the ap-
plication of a new tool in older and well-known problems.

Some problems solved by Machine Learning field may overlap with so-
lutions from Network Science and vice-versa, for example, Clustering and
Community Detection, both areas are using its tools to solve the problem,
and both with exciting performances.
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As previously written, Machine Learning techniques, specially Neural
Networks, have a considerable resemblance to Complex Networks studied
by Network Science. The relations between Machine Learning and Network
Science are shown in Figure 9. The first common feature is the NN Neu-
rons or DT Split Nodes that we can represent them as NS Nodes, which are
connected by NN Weights or DT Paths represented by weighted and non-
weighted NS Links, respectively. The forward/backward phase of NNs, which
activate neurons/nodes and communicate them between the Weights/Links,
may be represented as the NS Network Regime. The clustering techniques,
found in Unsupervised Machine Learning are also related to Community De-
tection belonging to Network Science techniques.

ML
Neural Networks Network Science

Architectures vs. Topologies

Neurons vs. Nodes

Weights vs. Links

Clustering vs. Community Detection

Figure 9: Current Relation between Machine Learning/Neural Networks and Network
Science.

We believe that in the future there is space to increase the similarities of
the two areas as depicted in Figure 10.
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ML
Neural Networks Network Science

Architectures vs. Topologies

Neurons vs. Nodes

Weights vs. Links

Learning Process

Network Generation

Metrics

Clustering vs. Community Detection

Figure 10: Possible Future Relations between Machine Learning/Neural Networks and
Network Science.

One possible approach might be the Learning Process of Machine Learn-
ing techniques, such as Backpropagation, which updates parameters in order
to decrease a loss function being used to generate topologies of NS optimiz-
ing some aspect of this Complex Network. The Network Generation such
as Power-law and Small-world processes can be used to create complex ar-
chitectures of Neural Networks. Another feature that deserves attention are
the NS Metrics, which may be used during the training phase of ML al-
gorithms, being part of the loss function to be optimized or even acting
as regularizers. One old, but still present, concern in the Machine Learn-
ing community, specifically at the Artificial Neural Networks/Deep Learning
field is the problem of the vanishing/exploding gradients, in which the gra-
dient values that guide the process of learning during the back-propagation
increase wildly or decrease unbridled as these gradients traverse the layers
due to multiplications that the Chain Rule produces. Some strategies have
been proposed to alleviate this problem. One of them that has been used
successfully in some tasks is the presence of Skip-Connections or Shortcut
Connections [99, 100, 101, 102]. The Artificial Neural Networks with specific
Complex Network topologies that were covered in this survey generally had
better results than the variants with a regular topology. A possible explana-
tion of this behavior is that these topologies, for example, the Small-World,
may benefit the network behaving like Skip-Connections, once the nodes of
a specific layer can be connected to nodes of the next layers, not necessarily
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being the closer layer, auxiliating the propagation of gradients through the
weights of the initial layers.

6. Conclusions

In this paper, we conducted a Systematic Review on the Network Sci-
ence/Complex Network and Machine Learning areas, showing how one field
could help the other to better perform their tasks. Initially, 555 papers were
selected, after analyzing all of them, we selected 67 papers and included 20
more papers related to this survey found in the references of these 67 papers.
Thus, we used 87 pieces of research.

We have found studies that used Network Science techniques to (i) Ex-
tract Features that could be presented to classical Machine Learning tech-
niques, (ii) analyze metrics in order to classify data and (iii) guide Machine
Learning algorithms that present graph structures internally. Also, we found
Machine Learning techniques applied into Network Science field in order to
(iv) analyze Complex Networks structures, (v) guide the process of Network
Generation, (vi) perform Link Prediction and (vii) to discover several prop-
erties of Complex Networks. We hope that this survey arouses interest in the
scientific community to develop techniques that use or be inspired by exciting
ideas of Network Science field to improve Machine Learning field. We also
believe that good ideas of Machine Learning can be used to improve Network
Science researches. We have pointed some directions which we believe that
could be adopted to improve one field by using mechanisms and tools of the
other.
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[25] D. Jesenko, M. Mernik, B. Žalik, D. Mongus, Two-level evolution-
ary algorithm for discovering relations between nodes’ features in a
complex network, Applied Soft Computing Journal 56 (2017) 82–93.
doi:10.1016/j.asoc.2017.02.031.

[26] A. Pecli, B. Giovanini, C. Pacheco, C. Moreira, F. Ferreira, F. Tosta,
J. Tesolin, M. Dias, S. Filho, M. Cavalcanti, R. Goldschmidt, Dimen-
sionality reduction for supervised learning in link prediction problems,
ICEIS 2015 - 17th International Conference on Enterprise Information
Systems, Proceedings 1 (March 2017). doi:10.5220/0005371802950302.

[27] K. Nagata, S. Shirayama, Analysis method of influence of potential
edge on information diffusion, Procedia Computer Science 4 (2011)
241–250. doi:10.1016/j.procs.2011.04.026.

[28] K. Nagata, S. Shirayama, Method of analyzing the influence of
network structure on information diffusion, Physica A: Statisti-
cal Mechanics and its Applications 391 (14) (2012) 3783–3791.
doi:10.1016/j.physa.2012.02.031.

[29] B. Ngonmang, E. Viennet, Toward Community Dynamic through
Interactions Prediction in Complex Networks, in: Sitis, SITIS ’13,
IEEE Computer Society, Washington, DC, USA, 2013, pp. 462–469.
doi:10.1109/SITIS.2013.81.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6727230

[30] A. Garcia-Robledo, A. Diaz-Perez, G. Morales-Luna, Correlation
analysis of complex network metrics on the topology of the Inter-
net, in: 2013 10th International Conference and Expo on Emerging

31

68



Technologies for a Smarter World (CEWIT), IEEE, 2013, pp. 1–6.
doi:10.1109/CEWIT.2013.6713749.
URL http://ieeexplore.ieee.org/document/6713749/

[31] F. Grando, L. C. Lamb, Estimating complex networks central-
ity via neural networks and machine learning, Proceedings of
the International Joint Conference on Neural Networks 2015-Septe.
doi:10.1109/IJCNN.2015.7280334.

[32] S. Pal, Y. Dong, B. Thapa, N. V. Chawla, A. Swami, R. Ramanathan,
Deep learning for network analysis: Problems, approaches and chal-
lenges, in: MILCOM 2016 - 2016 IEEE Military Communications Con-
ference, 2016, pp. 588–593. doi:10.1109/MILCOM.2016.7795391.
URL http://ieeexplore.ieee.org/document/7795391/

[33] C. Tsourakakis, Provably Fast Inference of Latent Features from
Networks, in: Proceedings of the 24th International Confer-
ence on World Wide Web - WWW ’15, 2015, pp. 1111–1121.
doi:10.1145/2736277.2741128.
URL http://dl.acm.org/citation.cfm?doid=2736277.2741128

[34] Y.-s. Lim, B. Ribeiro, D. Towsley, Classifying latent infection states
in complex networks, Computational Social Networks 2 (1) (2015) 8.
arXiv:1402.0013v1, doi:10.1186/s40649-015-0015-6.
URL http://www.computationalsocialnetworks.com/content/2/1/8

[35] B.-J. Sun, H. Shen, J. Gao, W. Ouyang, X. Cheng, A Non-negative
Symmetric Encoder-Decoder Approach for Community Detection, in:
Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management - CIKM ’17, ACM Press, New York, New
York, USA, 2017, pp. 597–606. doi:10.1145/3132847.3132902.
URL http://dl.acm.org/citation.cfm?doid=3132847.3132902

[36] J. Zhang, C. Xia, C. Zhang, L. Cui, Y. Fu, P. S. Yu, BL-MNE:
Emerging heterogeneous social network embedding through broad
learning with aligned autoencoder, Proceedings - IEEE International
Conference on Data Mining, ICDM 2017-Novem (2017) 605–614.
doi:10.1109/ICDM.2017.70.

32

69



[37] M. X. Hoang, X.-H. Dang, X. Wu, Z. Yan, A. K. Singh, GPOP:
Scalable Group-level Popularity Prediction for Online Content in
Social Networks, in: Proceedings of the 26th International Confer-
ence on World Wide Web, WWW ’17, International World Wide
Web Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 2017, pp. 725–733. arXiv:arXiv:1603.07016v1,
doi:10.1145/3038912.3052626.
URL https://doi.org/10.1145/3038912.3052626

http://dl.acm.org/citation.cfm?doid=3038912.3052626

[38] I. Brugere, C. Kanich, T. Y. Berger-Wolf, Network Model Selection
for Task-Focused Attributed Network Inference, in: 2017 IEEE In-
ternational Conference on Data Mining Workshops (ICDMW), Vol.
2017-Novem, IEEE, 2017, pp. 118–125. arXiv:arXiv:1708.06303v2,
doi:10.1109/ICDMW.2017.21.
URL http://ieeexplore.ieee.org/document/8215652/

[39] S. Mohamadyari, N. Attar, S. Aliakbary, On feature prediction in
temporal social networks based on artificial neural network learning,
in: 2017 7th International Conference on Computer and Knowledge
Engineering (ICCKE), Vol. 2017-Janua, IEEE, 2017, pp. 303–307.
doi:10.1109/ICCKE.2017.8167896.
URL http://ieeexplore.ieee.org/document/8167896/

[40] F. Angiulli, On the Behavior of Intrinsically High-dimensional Spaces:
Distances, Direct and Reverse Nearest Neighbors, and Hubness, J.
Mach. Learn. Res. 18 (1) (2017) 6209–6268.
URL http://dl.acm.org/citation.cfm?id=3122009.3242027

[41] C. J. Vega, O. J. Suarez, E. N. Sanchez, G. Chen, Trajectory
tracking on complex networks via neural sliding-mode pinning
control, in: 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Vol. 64, IEEE, 2017, pp. 995–1000.
doi:10.1109/SMC.2017.8122740.
URL https://ieeexplore.ieee.org/document/8357436/

http://ieeexplore.ieee.org/document/8122740/

[42] I. Scholtes, When is a Network a Network?: Multi-Order Graphical
Model Selection in Pathways and Temporal Networks, in: Proceedings

33

70



of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’17, ACM, New York, NY, USA,
2017, pp. 1037–1046. arXiv:1702.05499, doi:10.1145/3097983.3098145.
URL http://doi.acm.org/10.1145/3097983.3098145

[43] D. S. Leite, L. H. M. Rino, Combining multiple features for automatic
text summarization through machine learning, in: A. Teixeira, V. L. S.
de Lima, L. C. de Oliveira, P. Quaresma (Eds.), Computational Pro-
cessing of the Portuguese Language, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 122–132.

[44] D. R. B. de Araujo, J. F. Martins, C. J. A. Bastos, Using Multi-Layer
Perceptron and Complex Network Metrics to Estimate the Performance
of Optical Networks, 2013 Sbmo/Ieee Mtt-S International Microwave
& Optoelectronics Conference (Imoc).

[45] C. Stamile, G. Kocevar, S. Hannoun, F. Durand-Dubief, D. Sappey-
Marinier, A graph based classification method for multiple sclerosis
clinical forms using support vector machine, in: Revised Selected Pa-
pers of the First International Workshop on Machine Learning Meets
Medical Imaging - Volume 9487, Springer-Verlag, Berlin, Heidelberg,
2015, pp. 57–64. doi:10.1007/978-3-319-27929-9 6.

[46] S. Supriya, S. Siuly, H. Wang, J. Cao, Y. Zhang, Weighted Visibility
Graph With Complex Network Features in the Detection of Epilepsy,
IEEE Access 4 (2016) 6554–6566. doi:10.1109/ACCESS.2016.2612242.

[47] S. Supriya, S. Siuly, Y. Zhang, Automatic epilepsy detection from
EEG introducing a new edge weight method in the complex network,
Electronics Letters 52 (17) (2016) 1430–1432. doi:10.1049/el.2016.1992.
URL http://digital-library.theiet.org/content/journals/10.1049/el.2016.1992

[48] H. Cho, B. Berger, J. Peng, Compact Integration of Multi-Network
Topology for Functional Analysis of Genes, Cell Systems 3 (6) (2016)
1–9. doi:10.1016/j.cels.2016.10.017.
URL http://dx.doi.org/10.1016/j.cels.2016.10.017

[49] Z. Li, D. Sun, H. Chen, S. Y. Huang, Identifying the socio-spatial dy-
namics of terrorist attacks in the Middle East, in: 2016 IEEE Confer-
ence on Intelligence and Security Informatics (ISI), 2016, pp. 175–180.
doi:10.1109/ISI.2016.7745463.

34

71



[50] P. Artameeyanant, S. Sultornsanee, K. Chamnongthai, Classifica-
tion of electromyogram using weight visibility algorithm with multi-
layer perceptron neural network, in: 2015 7th International Confer-
ence on Knowledge and Smart Technology (KST), 2015, pp. 190–194.
doi:10.1109/KST.2015.7051485.

[51] G. Zhao, Y. Wu, F. Chen, J. Zhang, J. Bai, Effective feature selection
using feature vector graph for classification, Neurocomputing 151 (P1)
(2015) 376–389. doi:10.1016/j.neucom.2014.09.027.

[52] G. Morais, R. C. Prati, Complex Network Measures for Data Set
Characterization, in: 2013 Brazilian Conference on Intelligent Sys-
tems, no. OCTOBER 2013 in BRACIS ’13, IEEE Computer Society,
Washington, DC, USA, 2013, pp. 12–18. doi:10.1109/BRACIS.2013.11.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6726419

[53] D. R. Amancio, R. Fabbri, O. N. Oliveira Jr., M. G. V. Nunes, L. da
F. Costa, Distinguishing between positive and negative opinions with
complex network features, in: Proceedings of the 2010 Workshop on
Graph-based Methods for Natural Language Processing, no. July in
TextGraphs-5, Association for Computational Linguistics, Strouds-
burg, PA, USA, 2010, pp. 83–87.
URL http://dl.acm.org/citation.cfm?id=1870490.1870503

[54] C. W. Huang, C. C. Yu, C. H. Mao, H. M. Lee, Network motif model:
An efficient approach for extracting features from relational data, Con-
ference Proceedings - IEEE International Conference on Systems, Man
and Cybernetics 6 (2007) 5141–5146. doi:10.1109/ICSMC.2006.385124.

[55] X. Li, F. Xu, J. Zhang, S. Wang, A multilayer feed forward small-
world neural network controller and its application on electrohy-
draulic actuation system, Journal of Applied Mathematics 2013.
doi:10.1155/2013/872790.

[56] T. Li, J. Hong, J. Zhang, F. Guo, Brain-machine interface control
of a manipulator using small-world neural network and shared con-
trol strategy, Journal of Neuroscience Methods 224 (2014) 26–38.
doi:10.1016/j.jneumeth.2013.11.015.
URL http://dx.doi.org/10.1016/j.jneumeth.2013.11.015

35

72



[57] C. A. B. P. Filho, F. S. Osorio, Complex network shape descriptor for
3D objects classification, Proceedings - 2017 LARS 14th Latin Ameri-
can Robotics Symposium and 2017 5th SBR Brazilian Symposium on
Robotics, LARS-SBR 2017 - Part of the Robotics Conference 2017
2017-Decem (2017) 1–5. doi:10.1109/SBR-LARS-R.2017.8215280.

[58] C. Wang, Y. Song, H. Li, Y. Sun, M. Zhang, J. Han, Distant Meta-
Path Similarities for Text-Based Heterogeneous Information Networks,
in: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management - CIKM ’17, ACM Press, New York, New
York, USA, 2017, pp. 1629–1638. doi:10.1145/3132847.3133029.
URL http://dl.acm.org/citation.cfm?doid=3132847.3133029

[59] T. C. Silva, L. Zhao, Network-based high level data classification, IEEE
Transactions on Neural Networks and Learning Systems 23 (6) (2012)
954–970. doi:10.1109/TNNLS.2012.2195027.

[60] M. G. Carneiro, L. Zhao, High level classification totally based
on complex networks, Proceedings - 1st BRICS Countries Congress
on Computational Intelligence, BRICS-CCI 2013 (2013) 507–
514doi:10.1109/BRICS-CCI-CBIC.2013.90.

[61] M. G. Carneiro, J. L. G. Rosa, A. A. Lopes, L. Zhao, Network-based
data classification : combining K -associated optimal graphs and high-
level prediction, Journal of the Brazilian Computer Society 20 (14)
(2014) 1–14. doi:10.1186/1678-4804-20-14.

[62] T. C. Silva, L. Zhao, Stochastic competitive learning in complex net-
works, IEEE Transactions on Neural Networks and Learning Systems
23 (3) (2012) 385–398. doi:10.1109/TNNLS.2011.2181866.

[63] T. C. Silva, L. Zhao, High-level pattern-based classification via
tourist walks in networks, Information Sciences 294 (2015) 109–126.
arXiv:1305.1679, doi:10.1016/j.ins.2014.09.048.

[64] M. G. Carneiro, L. Zhao, R. Cheng, Y. Jin, Network structural opti-
mization based on swarm intelligence for highlevel classification, Pro-
ceedings of the International Joint Conference on Neural Networks
2016-Octob (2016) 3737–3744. doi:10.1109/IJCNN.2016.7727681.

36

73



[65] X. Deng, Y. Wen, Y. Chen, Highly efficient epidemic spreading model
based LPA threshold community detection method, Neurocomputing
210 (2016) 3–12. doi:10.1016/j.neucom.2015.10.142.

[66] T. C. Silva, L. Zhao, Semi-supervised learning guided by the modularity
measure in complex networks, Neurocomputing 78 (1) (2012) 30–37.
doi:10.1016/j.neucom.2011.04.042.

[67] T. C. Silva, L. Zhao, Network-based learning through par-
ticle competition for data clustering, Proceedings of the In-
ternational Joint Conference on Neural Networks (2011) 45–
52doi:10.1109/IJCNN.2011.6033198.

[68] T. C. Silva, L. Zhao, Network-based stochastic semisupervised learning,
IEEE Transactions on Neural Networks and Learning Systems 23 (3)
(2012) 451–466. doi:10.1109/TNNLS.2011.2181413.

[69] T. C. Silva, L. Zhao, Uncovering overlapping cluster structures via
stochastic competitive learning, Information Sciences 247 (2013) 40–
61. doi:10.1016/j.ins.2013.06.024.

[70] L. Santamaria, C. James, Use of graph metrics to clas-
sify motor imagery based BCI, 2016 International Conference
for Students on Applied Engineering, ICSAE 2016 (2017) 469–
474doi:10.1109/ICSAE.2016.7810237.

[71] F. Jiang, H. Berry, M. Schoenauer, The impact of network topology
on self-organizing maps, in: Proceedings of the first ACM/SIGEVO
. . . , GEC ’09, ACM, New York, NY, USA, 2009, pp. 247–253.
doi:10.1145/1543834.1543869.
URL http://dl.acm.org/citation.cfm?id=1543869

[72] K. Omachi, T. Isokawa, N. Kamiura, N. Matsui, H. Nishimura,
Retrieval performance of complex-valued associative memory with
complex network structure, International Conference on Emerging
Trends in Engineering and Technology, ICETET 1 (2) (2012) 40–43.
doi:10.1109/ICETET.2012.26.

[73] P. Zheng, W. Tang, J. Zhang, A simple method for designing efficient
small-world neural networks, Neural Networks 23 (2) (2010) 155–159.

37

74



doi:10.1016/j.neunet.2009.11.005.
URL http://dx.doi.org/10.1016/j.neunet.2009.11.005

[74] D. C. Mocanu, E. Mocanu, P. H. Nguyen, M. Gibescu, A. Liotta, A
topological insight into restricted Boltzmann machines, Machine Learn-
ing 104 (2-3) (2016) 243–270. arXiv:1604.05978, doi:10.1007/s10994-
016-5570-z.
URL https://doi.org/10.1007/s10994-016-5570-z

[75] C. Zhang, J. Zhang, J. Hong, Classification of EEG Signals using mul-
tiple gait features based on Small-world Neural Network, International
Conference on Ubiquitous Robots and Ambient Intelligence (URAl)
(2016) 61–66.

[76] J. C. Burguillo, Using self-organizing maps with complex network
topologies and coalitions for time series prediction, Soft Computing
(2013) 695–705doi:10.1007/s00500-013-1171-y.
URL http://link.springer.com/10.1007/s00500-013-1171-y

[77] F. B. de Sousa, L. Zhao, Investigation of complex dynamics in a recur-
rent neural network with network community structure and asymmetric
weight matrix, The 2013 International Joint Conference on Neural
Networks (IJCNN) (2013) 1–7doi:10.1109/IJCNN.2013.6706846.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6706846

[78] X. Li, X. Li, J. Zhang, Y. Zhang, M. Li, A new multilayer feedforward
small-world neural network with its performances on function approx-
imation, Proceedings - 2011 IEEE International Conference on Com-
puter Science and Automation Engineering, CSAE 2011 3 (50905136)
(2011) 353–357. doi:10.1109/CSAE.2011.5952696.

[79] L. Ting, H. Jun, J. Zhang, EEG Classification Based on Small-world
Neural Network for Brain-Computer Interface, 2010 Sixth International
Conference on Natural Computation (ICNC 2010) (Icnc) (2010) 252–
256.

[80] B. Wu, W. Ma, T. Zhu, J. Yang, Predicting mechanical properties
of hot-rolling steel by using RBF network method based on complex
network theory, 2010 Sixth International Conference on Natural Com-
putation 4 (Icnc) (2010) 1759–1763. doi:10.1109/ICNC.2010.5584387.
URL http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=5584387

38

75



[81] P. Wu, Y. Chen, T. Xu, H. Tang, Evolving Complex Network for
Classification Problems, 2009 International Conference on Com-
putational Intelligence and Natural Computing 1 (2009) 287–290.
doi:10.1109/CINC.2009.171.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5231129

[82] P. Wu, Y. Chen, Q. Meng, Q. Z. Liu, Small-Time Scale Network Traf-
fic Prediction Using Complex Network Models, Natural Computation,
2009. ICNC ’09. Fifth International Conference on 3 (2009) 303–307.
doi:10.1109/ICNC.2009.122.

[83] J. Cai, S. Z. Yu, Internet traffic identification using community de-
tecting algorithm, in: Proceedings - 2010 2nd International Conference
on Multimedia Information Networking and Security, MINES 2010,
MINES ’10, IEEE Computer Society, Washington, DC, USA, 2010,
pp. 164–168. doi:10.1109/MINES.2010.43.
URL http://dx.doi.org/10.1109/MINES.2010.43
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Abstract— This work presents an investigation about how to 
better represent output data labels to be used in supervised 
training of classifiers. The posed hypothesis is that grouping 
cohesive patterns into clusters and assigning them sub-labels, 
may improve the classifier performance. We used 12 
benchmark datasets to test our hypothesis. First, we create the 
clusters, and when appropriate, new sub-labels were generated, 
according to Fuzzy-CMeans and Silhouette score thresholds. 
After that, Multilayer Perceptrons were employed to model 
each dataset with cluster generated sub-labels, obtaining 
promising results. From results, we observed that in cases where 
the sub-labels were used, the accuracy increased with statistical 
significance with p=0.05 in 22 cases and remained statistically 
equivalent in 14 cases, presenting no decrease in accuracy.   

Keywords—: machine learning, data representations, fuzzy-
cmeans, multilayer perceptron, sub-labels. 

I. INTRODUCTION 
Machine Learning algorithms allow computers to learn 

how to solve complex problems by examining data. Learning 
processes can be of, at least, three different kinds: (i) 
Supervised Learning, (ii) Unsupervised Learning and (iii) 
Reinforcement Learning. Concerning Supervised Learning, 
the system to be trained needs data samples comprised of 
inputs to be presented to the model and the expected targets 
(labels) as model outputs. The process of dataset preparation, 
usually involves a human specialist to label all data samples, 
either manually or automatically according to programmatic 
means. This sample annotation is related, for example, to 
assigning patient records with sick or not sick tags for a given 
medical problem.  

 The process of label annotation may lead to at least 2 
problems: (i) it is commonly a time-consuming task to 
manually label all data, therefore a person can become tired 
which may cause mistakes along the labeling task or; (ii) a 
given specialist may create labels that make sense to him/her, 
but in some cases, the machine learning algorithm could better 
tackle the learning task if one splits a given label into other 
labels which better characterize the problem decision 
boundaries. That kind of problem can also be caused due to 

lack of expertise in the area to be modeled. For example, one 
specialist could label a financial dataset with two labels - buy 
and sell, but machine learning algorithms might learn better if 
the dataset had been annotated with buy, sell and hold labels, 
producing more concise groups of input data for each class. 
This work presents an investigation about the impact of 
creating independent sub-labels in a dataset to address this 
problem of how to better assign labels to a given dataset, 
through previous data clustering.  

We organized the remainder of this work as follows: we 
present the background information in Section 2; in Section 3, 
we describe the deployed methodology, concerning clustering 
and classification phases; in Section 4, we present the 
experimental arrangement and the results; and finally, in 
Section 5, we present the discussion, conclusions and future 
works. 

II. BACKGROUND 
In this section, we present a brief background on machine 

learning and clustering algorithms, and we introduce some 
previous works from the literature related to our proposal. 

A. Machine Learning 
The Machine Learning field has many techniques that can 

learn the behavior of a system using data produced by this 
system, such as Decision Trees, Support Vector Machines, 
Artificial Neural Networks [1]. In this work, we have selected 
the last technique as our classifier, as it is one of the most 
successful techniques widely used to model complex systems 
[2]–[4]. 

Fig. 1 Fig. 1 shows a simple architecture of a Neural 
Networks, which can be seen as a system of interconnected 
nodes, called neurons, weighted by parameters learned from 
data presented at the learning phase to the model. It is inspired 
by the functioning of the brain, where signals are propagated 
from the input layer over the neurons through the layers of the 
model in order to activate specific output neurons on the 
output layer where each output neuron is responsible for a 
single class.
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B. Clustering 
Clustering is a type of Unsupervised Learning that aims to 

automatically group data based on its similarities. Several 
techniques can be used to group data, such as K-Means, Self-
Organizing Maps, Fuzzy-CMeans [5]. We have chosen the 
last technique to perform automatic clustering on our data. 

Usually, the clustering algorithms need the number of 
clusters desired as a parameter of the technique. As we do not 
know the best number of clusters for each dataset, we have 
assessed a range for the number of clusters and evaluated the 
quality of the clustered data. There are several ways to assess 
the quality of the clusters found by the clustering algorithms 
such as Homogeneity Score, Mutual Information Score, V-
measure Score, Calinski-Harabaz Score, Silhouette Score [6]. 
We have chosen the Silhouette Score because it relates the 
mean intra-cluster distance and the mean nearest-cluster 
distance for each sample. 

C. Related Works 
There are some approaches to subdivide the output space 

to facilitate the decision on several classifiers. This procedure 
is known as Class Decomposition. The goal in [7] was to 
expand binary problems into the multi-class classification 
aiming to increase the accuracy of the models. Their approach 
is divided into three steps: (i) separate a class into some 
subclasses using an unsupervised learning technique and re-
label each sample as a function of the new subclasses. (ii) a 
supervised learning algorithm is applied to each version of 
these new problems. (iii) Combine and decide by voting. They 
used k-means in the unsupervised step with two possible 
values for k=3 and k=5, dividing the positive and negative 
classes into three and five subclasses, respectively. The C5.0 
and C5.0-Boosted were used as classifiers. They found that it 
may increase accuracy, but it may be unfair to assume that it 
was caused only by the subdivision of classes as they are using 
several specialized classifiers, thus, applying more resources 
to classify the data with an approach that resembles an 
ensemble system. 

The study in [8], a K-means algorithm is applied in 
imbalanced classes, clustering each large class locally, with 
the goal to produce sub-classes with equal sizes to ease the 
learning phase of supervised learning algorithms, such as 
Support Vector Machines (SVMs). 

In [9] they applied a class decomposition via clustering in 
three steps: (i) decompose classes into clusters, (ii) search for 

optimal class assignment configuration and (iii) a function 
mapping predictions to the original set of class labels. They 
used a Naïve Bayes and a Support Vector Machine to classify 
the data divided by an Expectation Maximization technique. 

 The work in [10] used the Clustering Inside Classes 
approach and shown that it can improve accuracy on linear 
classifiers, they evaluate the number of clusters per class and 
the size of the training set. Their approach used the same 
number of clusters for each label. 

The paper in [11] proposed a technique called K Best 
Cluster-Based Neighbor (KB-CB-N) that integrate three 
different similarity measures for cluster-based classifications 
(distance, density, and gravity). They divided the approach 
into two steps: (i) apply Expectation Maximization technique 
to cluster the data for the member of each class and (ii) predict 
with their technique. They also show good improvements on 
the field. 

A clustering based class decomposition was proposed in 
[12] to improve the performance of classifiers. They focus on 
the investigation of the effect of the k-means and hierarchical 
unsupervised techniques. They combined K-Means to cluster 
and Naïve Bayes to predict the data. They also assessed the 
number of clusters from 2 to 5, assigning the same number of 
clusters for classes in each trial. 

The work in [13] uses a K-means clustering algorithm to 
decompose the classes to be presented to the Random Forests 
ensemble learning algorithm and shows that their method had 
significantly improved the accuracy of Random Forests. 

An approach that exploits subclass information in the 
optimization process of the Support Vector Data Description 
(SVDD) was evaluated in [14]. They have evaluated it in face 
recognition and human action recognition, obtaining better 
performances. An extension of the aforementioned work, 
combined global and local geometric data relationships to 
regularize the process and applied it to image and video 
classification [15].  

 

III. METHODOLOGY 
In this section, we present details about the proposal, 

comprised of clustering and classification phases and also 
studied datasets. 

The main idea of Divide-and-Conquer is to break 
problems into 2 or more sub-problems of the same type until 
these problems can be easily solved. These partial solutions 
can thus be combined to solve the whole original problem. 
Fig. 2 shows a toy problem with two labels (circles and 
triangles) and a decision boundary of a simple classifier. As 
one can observe, there is no way to properly separate circles 
and triangles as the feature space is entangled when 
considering the original labels.  

 
Fig. 1. Simple Neural Network with 3 inputs, 4 hidden 

nodes and 2 outputs. 
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Using this traditional approach, the classifier must learn 
how to model data of a given label, even containing patterns 
drastically different concerning its input space. However, if 
sub-labels were used as depicted in Fig. 3, one or more 
classifiers could focus on specific regions of input space. This 
work aims at verifying if this Divide-and-Conquer approach 
could make the learning process more natural and/or could 
produce more accurate classifiers. 

Inspired by this idea, two phases were combined: a 
clustering phase (subsection A - Clustering Phase) and a 
classification phase (subsection B – Classification Phase). An 
overview of this approach can be seen in Fig. 4. First, an 
unsupervised algorithm was used to cluster data, aiming to 
break the problem of a complex classification into simpler 
ones. After that, we used a classifier to predict the final label 
considering the generated sub-labels as intermediate results. 
Finally, we extracted the evaluation metrics to be analyzed. In 
order to investigate the suitability of this Divide-and-Conquer 
approach, we used (a) several numbers of clusters, and (b) 
several thresholds. 

 

A. Clustering Phase 
 A central part of the proposal comprises clustering input 
data and possibly creating sub-labels for each original label to 
match generated cohesive clusters. We sub-divided the 
original N output labels in M >= N sub-labels to assess this, 
so that the classifier may learn better the features of cohesive 
groups. When M = N no subdivisions occurred in original 
labels. 

 In order to avoid clusters of sub-labels containing different 
original labels inside, patterns of different classes were 
clustered separately. Another argument to cluster each class 
individually is that the number of clusters to transform the 
original class into more cohesive ones, and probably easier to 
learn, may vary from class to class. 

 To assess cluster quality, the Silhouette Score was 
evaluated and compared with threshold levels to decide about 
using that cluster as a sublabel or not. 

 The equations used to calculate the Silhouette Score are 
given in (1) and (2). 

 Si = (bi  - ai) / max {ai, bi} (1) 

 S = ∑i=N Si / N, (2) 

 where ai is the average distance between i and all other 
data within the same cluster; bi is the smallest average distance 
of i to all points in any other cluster, of which i is not a 
member; N is the total number of data samples; Si is the 
Silhouette Score for data i and S is the average of the 
Silhouette Scores regarding all the data. 

 Tested number of clusters ranged from 2 to 10 and 20 
thresholds between 0 and 1 were used to assess the Silhouette 
Score of each cluster inside each class. If this threshold level 
is smaller than the Silhouette Score of a cluster, this cluster is 
used as sublabel. Otherwise, no sublabel is created for that 
cluster. Also, it is worth mentioning that if threshold = 0, each 
cluster is always used as a sublabel. 

 A pseudo-code of this clustering phase is presented in Alg. 
1. 

  

 
Fig. 3. Sub-labels created on the previous problem, transforming the 2 

original labels into a problem with 7 labels (3 sub-labels for the 
circles and 4 sub-labels for the triangle) 

 

 
Fig 2. Example of a two labels problem and a decision boundary 

 

 
Fig. 4. Overview of proposed approach 
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Algorithm 1 Clustering Phase 
Input: threshold: threshold of Silhouette Score, labels: list 
of unique labels, X: features, Y: labels 
Output: Y’: the possible recoded output 
 
1. Y’ = Y 
3. for label in labels do 
4.     x = X[Y==label] 
5.     for k in [2 … 10] do 
6.         c = find_clusters(k, x) 
7.         s = silhouette_score(c) 
8.         clusters.append(c) 
9.         silhouettes.append(s) 
10.    best_idx = argmax(silhouettes) 
11.    if silhouettes[best_idx] >= threshold: 
12.        Y’[Y==label] = apply_sublabels(clusters[best_idx]) 

 

B. Classification Phase 
A After the clustering phase, the classification was 

performed using the Scikit-Learn MLP implementation with 
standard parameters, only varying the number of hidden 
neurons.  The difference that the MLP may experience is the 
recoding of the output layer, increasing the number of neurons 
according to the possible created sub-labels. For example, 
when the original labels are [0, 1, 2], totaling 3 labels that 
would require 3 output neurons at the output layer. After the 
clustering phase, the same data may have outputs recoded to 
[0, 0, 0, 1, 2, 2], totaling 6 virtually different sub-labels, thus 
needing 6 output neurons at the output layer. 

C. Studied Datasets 
In order to evaluate this proposal, we employed 12 public 

benchmark datasets. The number of instances, features, and 
labels for each dataset were summarized in the Table I. Those 
datasets were selected to encompass a large number of 
different characteristics, concerning the number of instances, 
features, and classes, thus allowing to better analyze the 
impact of the proposed approach in classification 
performance. 

TABLE I.  DATASETS 

Dataset # Instances # Features # Labels 
balance-scale 625 4 3 
breast 699 10 2 
breast-cancer-wisconsin 569 30 2 
diabetes 768 8 2 
dna 3186 180 3 
ecoli 327 7 5 
iris 150 4 3 
mushroom 8124 22 2 
pendigits 10992 16 10 
pima 768 8 2 
satimage 6435 36 6 
vehicle 846 18 4 

IV. EXPERIMENTS AND RESULTS 
 To assess our hypothesis, we have simulated five times 10-
fold cross-validations with 20 equally spaced thresholds 
between 0 and 1 to decide about using or not created clusters. 

For each dataset, six possible MLP architectures with 10, 30, 
50, 100, 150 and 200 hidden neurons were employed. 

Experimental results were summarized in Table II. The 
first column contains the dataset analyzed. The following 
columns contain the results for the MLP architecture 
described above. Each cell may contain up to 3 lines: (i) in the 
first line, it can be seen the averaged accuracy without sub-
labels creation; (ii) in the second line, it can be seen the 
averaged accuracy of threshold level with greatest averaged 
accuracy; and (iii) the third line shows absolute difference 
between the proposed method and the method without the sub-
labels method. When there are no second or third lines, it 
means that the best threshold level (with the highest averaged 
accuracy) created no sublabel for any original label, keeping 
the same output labels as the original ones. The results show 
that in the cases where sub-labels were used, the absolute 
accuracy rate increased in 34 cases, remaining the same in 2 
and have not decreased in any case. The average value for the 
threshold level was 0.24. 

TABLE II.  ACCURACY RATES (%) FOR MLP ARCHITECTURES BY 
DATASET AND NUMBER OF HIDDEN NEURONS  

Dataset 10 30 50 100 150 200 
balance-scale 88.17 93.18 95.24 96.67 96.89 96.86 

breast 
95.79 95.85 

95.91 
96.08 
0.17 

95.88 
96.05 
0.17 

95.82 
96.08 
0.26 

95.76 
96.19 
0.43 

breast-cancer-
wisconsin 

96.88 
97.44 
0.56 

97.13 
97.72 
0.59 

97.19 
97.76 
0.57 

97.37 
97.79 
0.42 

97.40 
97.80 
0.40 

97.65 
97.76 
0.11 

diabetes 76.92 77.05 77.28 77.67 77.13 77.46 
dna 94.17 94.71 95.07 95.28 95.24 95.31 

ecoli 
86.73 87.48 

88.28 
88.65 
0.37 

87.78 
88.38 

0.6 
87.92 87.96 

iris 94.80 
96.27 
1.47 

95.60 
96.67 
1.07 

96.27 
96.80 
0.53 

96.40 
97.20 

0.8 

96.67 
97.33 
0.66 

96.67 
97.33 
0.66 

mushroom 99.92 
99.98 
0.06 

99.99 
100 
0.01 

99.99 
100 
0.01 

99.99 
100 
0.01 

100 
100 

0 

100 
100 

0 
pendigits 97.20 

97.46 
0.26 

98.74 
98.82 
0.08 

98.98 
99.00 

0.2 

99.12 
99.19 
0.07 

99.16 
99.20 
0.04 

99.20 
99.25 
0.05 

pima 76.67 77.14 77.08 77.16 77.08 76.96 
satimage 83.67 

84.86 
1.19 

84.76 
85.80 
1.04 

85.71 
86.67 
0.96 

85.93 
86.79 
0.86 

86.25 
87.14 
0.89 

86.12 
87.57 
1.45 

vehicle 78.27 79.73 80.06 80.30 80.11 80.25 

 
 Wilcoxon test with a statistical significance of 0.05 was 
employed to assess the quality of the proposed method. 
Results of Wilcoxon test are presented in Table III where ▲ 
means that the accuracy of sub-labels is greater than the 
accuracy without sub-labels with 0.05 significance level. The 
= symbol means that there is no statistical evidence that 
accuracies are different with a 0.05 significance level. The 
absence of second or third lines means that the best threshold 
level (with the highest averaged accuracy) created no sublabel 
for any original label, keeping the same output labels as the 
original ones. The accuracy increased with statistical 
significance in 22 cases, remaining statistically equivalent in 
14 cases while there was no decrease in any case. 

 In cases of datasets balance-scale, diabetes, dna, pima, and 
vehicle, no subclasses were created because the best threshold 
found was not sufficient to create more than 1 cluster. When 
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sub-labels were effectively used, almost all the MLP 
architectures in that dataset had used subdivisions. This 
probably indicates that data was better represented in the new 
sub-labels space than in original labels. This is the case of 
breast, breast-cancer-wisconsin, ecoli, iris, mushroom, 
pendigits and satimage datasets. 

TABLE III.  WILCOXON TEST BY DATASET  

Dataset 10 30 50 100 150 200 
balance-scale 88.17 93.18 95.24 96.67 96.89 96.86 

breast 
95.79 95.85 

95.91 
96.08 

= 

95.88 
96.05 

= 

95.82 
96.08 

= 

95.76 
96.19 

= 
breast-cancer-

wisconsin 
96.88 
97.44 

▲ 

97.13 
97.72 

▲ 

97.19 
97.76 

▲ 

97.37 
97.79 

▲ 

97.40 
97.80 

▲ 

97.65 
97.76 

= 
diabetes 76.92 77.05 77.28 77.67 77.13 77.46 

dna 94.17 94.71 95.07 95.28 95.24 95.31 
ecoli 

86.73 87.48 
88.28 
88.65 

= 

87.78 
88.38 

= 
87.92 87.96 

iris 94.80 
96.27 

= 

95.60 
96.67 

▲ 

96.27 
96.80 

= 

96.40 
97.20 

▲ 

96.67 
97.33 

▲ 

96.67 
97.33 

▲ 
mushroom 99.92 

99.98 
▲ 

99.99 
100 
▲ 

99.99 
100 
▲ 

99.99 
100 
▲ 

100 
100 
= 

100 
100 
= 

pendigits 97.20 
97.46 

▲ 

98.74 
98.82 

= 

98.98 
99.00 

= 

99.12 
99.19 

▲ 

99.16 
99.20 

▲ 

99.20 
99.25 

= 
pima 76.67 77.14 77.08 77.16 77.08 76.96 

satimage 83.67 
84.86 

▲ 

84.76 
85.80 

▲ 

85.71 
86.67 

▲ 

85.93 
86.79 

▲ 

86.25 
87.14 

▲ 

86.12 
87.57 

▲ 
vehicle 78.27 79.73 80.06 80.30 80.11 80.25 

 

Chosen sub-labels that appeared in at least one of 
experimental runs given the best threshold levels are presented 
in Table IV. It is possible to realize that the number of created 
sub-labels (clusters) was different for each class. For example, 
in the satimage dataset, the original labels 2 and 3 were not 
subdivided into other labels in any situation, probably because 
these classes are well defined and cohesive. 

TABLE IV.  CHOSEN SUB-LABELS 

Dataset Chosen Sub-labels 
balance-scale  
breast [[0, 0, 0, 1, 1], [0, 0, 1, 1]] 
breast-cancer-
wisconsin 

[[0, 0, 1, 1, 1], [0, 0, 1, 1]] 

diabetes  
dna  
ecoli [[0, 1, 2, 3, 4], [0, 1, 2, 3, 3, 4], [0, 1, 2, 2, 3, 4]] 
iris [[0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 2, 2, 2]] [[0, 1, 1, 2, 2, 2], 

[0, 1, 1, 2, 2], [0, 0, 1, 1, 2, 2, 2]] 
mushroom [[0, 0, 0, 0, 1, 1, 1]] 
pendigits [[0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9]] 
pima  
satimage [[0, 0, 1, 1, 2, 3, 4, 5, 5], [0, 0, 1, 1, 2, 3, 4, 4, 5, 5]] 
Vehicle  

 

Fig. 5 and Fig. 6 shows, for each MLP architecture, the 
sum and the average of the absolute differences between the 
accuracies with and without sublabel usage.  

 

As can be seen, the highest sum and average are perceived 
in the architecture with the lowest number of hidden neurons, 
suggesting that the use of sub-labels probably facilitates the 
learning process, optimizing learning capability usage. The 
number of hidden neurons on the larger architectures may 
already have been more than enough to handle the problems, 
in their original label representation. 

V. CONCLUSIONS 
Considering Divide-and-Conquer strategy inspiration, this 

work evaluated the suitability of creating, possibly different 
number of sub-labels, for each original label/class, based on 
clustering metrics to improve model feature learning and thus 
classification performance. 

 It is possible to observe that in the breast, breast-cancer-
wisconsin, ecoli, iris, mushroom, pendigits and satimage 
datasets the use of sub-labels improved accuracy. This may 
suggest that a better representation of the output labels 
improved MLP learning. This performance increase may also 
happen due to more tight groups of data of the same sublabel, 
after clustering phase. 

Fig. 5. Sum of absolute differences and the sum of the averages 
of the absolute differences between results with and without the 
sub-labels creation. 
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Fig. 6. Average of absolute differences and the sum of the averages 
of the absolute differences between results with and without 
the sub-labels creation. 
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 Accuracy improvements were more significant on models 
with a smaller number of hidden neurons, probably indicating 
that the use of sub-labels optimized model use of learning 
units. 

 The process of clustering inherently uses distance metrics, 
which may not be entirely appropriate for some types of 
dataset. The usage of another method for grouping similar 
labels, which does not use distance metrics, may have more 
success in defining the sub-labels. 

Considering the promising results, it is reasonable to 
extend this study further. Future works shall comprise: (i) 
using different classifiers, such as Radial Basis Function 
Networks,  which may help to better segment clusters; (ii) 
analyzing other cluster metrics, other than silhouette, to infer 
cluster quality; (iii) developing a method to automatically 
choose the threshold of employed metric to decide about 
considering or not a cluster as sublabel; (iv) using other cluster 
techniques without distance metrics; (v) increase the number 
of neurons in the hidden layer to better understand the trend 
of the improvements; (vi) evaluate the procedure on deep 
learning tasks; and (vii) compare results with other Machine 
Learning techniques, such as SVM. 
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Abstract. This work presents an investigation on how to define Neu-
ral Networks (NN) architectures adopting a data-driven approach using
clustering to create sub-labels to facilitate the learning process and to
discover the number of neurons needed to compose the layers. We also
increase the depth of the model aiming to represent the samples bet-
ter, the more in-depth it flows into the model. We hypothesize that the
clustering process identifies sub-regions in the feature space in which
the samples belonging to the same cluster have strong similarities. We
used seven benchmark datasets to validate our hypothesis using 10-fold
cross validation 3 times. The proposed model increased the performance,
while never decreased it, with statistical significance considering the p-
value < 0.05 in comparison with a Multi-Layer Perceptron with a single
hidden layer with approximately the same number of parameters of the
architectures found by our approach.

Keywords: Neural networks · Data-driven architecture · Sub-labels ·
Clustering · Representation learning.

1 Introduction

Computational Intelligence studies adaptive mechanisms to facilitate intelligent
behavior in complex and dynamic environments. It is often applied in situations
where heuristics are insufficient to solve a problem associated with uncertainty or
stochastic behavior. Machine Learning is a branch of Computational Intelligence
that allows computers to learn by experience (data) without being explicitly pro-
grammed [3]. The research’s attention has grown due to the amount of available
data and the proliferation of technologies, such as Internet of Things and Big
Data [6]. Consequently, we have experienced the proposal of sophisticated models
to learn from datasets with a large number of examples.
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There are several types of Machine Learning algorithms. In Supervised Ma-
chine Learning, the algorithms during the training phase try to process inputs
X and create an association with known outputs Y . One of the most used fam-
ilies of algorithms to perform this task is Artificial Neural Networks (ANN) [5].
Several works investigate the automatic construction of ANN architectures. This
problem is known as Neural Architecture Search (NAS). The NAS approaches
aim to decrease human intervention during the modeling process of an ANN. It
offers mechanisms to propose ANN architecture automatically. However, most
of the strategies presented in the literature does not consider the characteristics
of the data involved in the problem to build the ANN architecture.

Among the strategies for solving the NAS problem, we observed the appli-
cation of global optimizers such as Genetic Algorithms (GA) [11]. We highlight
three works that use Genetic Algorithms and Reinforcement Learning to per-
form this task. The NeuroEvolution of Augmenting Topologies (NEAT) [14, 15]
uses GAs to find the structure and weights of ANNs, encoding these attributes
as part of the individual deployed in the evolutionary process. The strategy of
Reinforcement Learning was used in [16]. Despite the good results, they have
used 800 NVidia K-40 GPUs for 28 days, needing 22,400 GPU hours of pro-
cessing time. The same strategy was proposed in [17]. However, they used the
concept of transferability to allow learning from a simple dataset and applying
it to a more complex dataset. Again, the processing time is a big challenge.
They used 500 NVidia P100 GPUs for four days, totaling 2,000 GPU hours.
In order to explore the architecture space based on the current network and
reusing its weights, a Reinforcement Learning meta-controller was used to grow
the network depth/layer width in [1]. They used 5 GPUs during 2 days, training
450 networks. These methods can achieve reasonable results, but they are often
time-consuming.

In a different branch, we have the work [9] that focuses on searching for the
architecture composition progressively, starting from the simplest candidates to
the more complex ones. This proposal is based on Blocks constructing Cells that
will compose entire Networks. A Binary Particle Swarm Optimization (BPSO)
algorithm was used in [10] to define the architecture of an ANN that has no
regular layers. These proposal are interesting but does not explicitly take into
account the distribution information regarding the dataset. It is important to
observe this information since the model will use samples of the dataset to train
and the neurons should behave plausibly with respect to its inputs. For example,
the neurons should neither explode or vanish its activations for all the dataset
but have specific activation patterns for each label.

Even though the NAS has good results, these methods try several architec-
tures to find which one is the best through a search algorithm, often using several
GPUs for several hours. Differently from NAS approaches, in this work we inves-
tigate how to design a data-driven ANN Architecture using clustering to discover
the number of neurons of a given layer and iteratively increase the depth of this
ANN without the need to initializing and training many different architectures.
We only start with the inputs and apply our strategy to create the subsequent
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hidden and output layers. The layer that will be created is based on the current
data representation that this layer will have as inputs. We use the dataset distri-
bution in order to start with weights that activates more to specific labels and
less to all the other labels. We have focused on tabular datasets since several
real-world applications share this data representation. To investigate this prob-
lem, We have used benchmark datasets to evaluate our hypothesis. Our goals
are to infer (i) the width (number of neurons) through clustering of the feature
space to find sub-labels that share strong similarities, creating specific neurons
that activate to specific sub-labels; and (ii) the depth (number of layers) of an
ANN regarding the specificity of each dataset. The main idea concerns on each
layer representing the samples in a more straightforward manner to the next
ones. We aim to disentangle the representations into a space that is easier for
the classifier on the last layers of the model to recognize the patterns. We name
this process as Clustering for Data-driven Unraveling (DDU) Artificial Neural
Networks.

The remainder of this work was organized as follows. We present the back-
ground information in Section 2. We describe the proposed methodology to
data-driven evolve a ANN architecture in Section 3. We show the experimental
arrangement and the results in Section 4. Finally, we present the discussion,
conclusions, and future works in Section 5.

2 Our proposal

In this section, we present the proposal’s details, comprising the creation of
sub-labels and the definition of the layers.

Since some samples of a specific label can lay near the same region while
other samples of the same label may be in other regions, it may harm the learn-
ing process. We have used clustering techniques to find the essential regions of
interest. The clustering process aims to create sub-labels based on the proposal
presented in [4]. The primary goal is to enhance the learning process. We use the
clusters to map each one of the sub-labels to a single neuron in the forward layer
and compose the entire layer. We add layers composed of neurons from cluster-
ing in an iterative manner. Fig. 1 presents an example of a possible data-driven
defined architecture of a ANN through the processing of our proposal.

The width of each layer is defined by the number of neurons that compose a
specific layer. We find the number of layers by applying the clustering process. On
the other hand, the depth of the DDU ANN is the number of layers. The number
of layers is also determined automatically in the appending new layers process.
The appending process is applied iteratively until we reach a stop criterion. Fig. 2
shows the steps that compose our proposal.

Given the inputs xi ∈ X and the outputs yi ∈ Y , we use GMMs (Gaussian
Mixture Models) clustering algorithm to create sub-labels as shown in [4] using
the X as inputs. This process create the clusters regarding each label separately
and apply the prediction of each created cluster to all the data in order to
calculate the scores discussed in the next paragraph. We generate GMMs with
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(clustering)

Depth: defined number of 
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Fig. 1. Example of architecture found by the Data-driven Unraveling technique. The
inputs are the features of the samples, while the outputs are its labels.
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Resets the Patience
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Updates X to the new representation
(the last layer before the temporary
output) and use it to build another
layer.

Fig. 2. Diagram of the proposed methodology.

the number of clusters in [2, 3, 4, 5] repeating the process for 2 times, totaling 8
GMMs generation. We decided to deploy the GMM technique since it presented
the highest Calinski-Harabasz score [2] when compared to Silhouette Score for
related. We also expect that the samples of the same label could converge to the
same spatial region as the samples are processed by layers and we believe that
it could be approximated by Gaussian distributions due to the Central Limit
Theorem.

We defined purity and belongingness metrics, combining them into a single
score assigned to each cluster. Since each cluster is assigned to a specific label
or sub-label (responsible label), the score is related to that specific responsible
label inside the cluster found. Purity is defined as the percentage of a specific
label regarding all the elements inside this cluster. Belongingness is the percent-
age of a specific label within the cluster regarding all samples of this label. For
each responsible label, we assign the cluster with maximum score. The rationale
relies on the idea that the maximum score value returns all the samples of a sin-
gle label (belongingness=100%) in a cohesive region without other labels inside
(purity=100%). The score is minimum when it has a low number of an assigned
label inside this cluster, regarding all the feature space (low belongingness), and
the cluster has a significant number of samples not belonging to the assigned
responsible label (low purity). As we need to define a single indicator in our
methodology to assess the clustering process, we decided to combine these two
metrics as follows:

score = kappa ∗ purity + (1− kappa) ∗ belongingness (1)

kappa is automatically calculated using the following strategy to give the same
importance to the two metrics:
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kappa = kp (2)

kb = (1− kp) (3)

kp ∗ p = kb ∗ b (4)

where kp is the kappa regarding the purity and kb is the kappa regarding the
belongingness, b is the average belongingness and p is the average purity for each
label.

It is easy to observe that Eq. (4) can be rewritten as

kappa = 1− 1

( b
p + 1)

(5)

After defining the sub-labels, we evaluate if the sublabeled scenario is better
than the original one. For each sub-label, we evaluate if the average score regard-
ing the clusters with this responsible sub-label has increased compared to the
averaged score of the clusters responsible for its original label that derived the
sub-label. In this process, we may have chosen some, all, or none of the created
sub-labels.

If we have chosen some sub-labels, we adjust the Y to use the proposed sub-
labels, treating them as different labels because it has shown different features
to be considered for the same class. By doing this, we believe we can create more
concise groups of samples, facilitating the classifier’s learning process.

After the generation of possible sub-labels, we apply the GMMs clustering
algorithm with the number of clusters in [L,L + 1, L + 2, ...L + 7] for 2 times,
totaling 16 GMMs generation. We analyze each one of the clusters independently
of the GMM generation process. We calculate their scores and assign their re-
sponsible labels. Then, we sort them, for each label, from the highest to lowest
score. After this, for each label (or sub-label), we select the clusters until the
intersection of the elements of the responsible label inside the specific cluster -
we save the indexes of the responsible labels handled by each cluster - is less
than 85% of the union of the responsible labels already retained by the clusters
already chosen for this specific label (or sub-label).

Each one of the retained clusters is mapped into a neuron and pre-trained
for 5 epochs with a higher learning rate of 0.01 trying to activate 1 for the re-
sponsible label elements inside this cluster and 0 otherwise. Our goal is to make
this neuron trigger specifically for activations of this label (or sub-label) when
the model processes a sample near that region of clustering. So we applied a
traditional SGD training with this modified outputs. This process finishes with
a layer created based on the clusters and the weights pre-trained to activate in
the responsible labels. We append this layer with a SELU [8] function activation
since it appears to self-normalize the network, into the model, and append a tem-
porary output layer with the number of labels of the original problem together
with a LogSoftmax activation.
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We train the model for 300 epochs and select the model with the lowest
validation loss. If the global loss in this validation set decreases, we reset the
patience parameter and do the same process to add another layer using the
activations of the last layer (before the temporary output) as inputs to the new
layer. If the loss increases, we increment the patience counter and stops the depth
growing when the patience counter reaches 3.

We present the pseudo-code describing the algorithm to perform the DDU
method in Algorithm 1.

Algorithm 1 Algorithm for DDU

Require: X, Y
1: C = []
2: patience = 0
3: while patience < 3 do
4: current y = Y
5: Y subs = generate sublabels(X)
6: if better performance(Y subs) then
7: current y = Y subs
8: end if
9: clusters = create GMMs(X)

10: calculate scores(clusters, Y subs)
11: sort(clusters) // from highest to lowest score
12: for label in labels: do
13: for cluster in clusters[label]: do
14: if responsible label intersection < 85% then
15: C.append(cluster)
16: end if
17: end for
18: end for
19: Pretrain neurons regarding C
20: Append temporary output
21: Train entire model for 300 epochs
22: loss = model(validation split)
23: if loss decreased then
24: best model = model
25: patience = 0
26: else
27: patience++
28: end if
29: X = model.represent(X)
30: end while
31: return best model.
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3 Experiments and Results

We select seven benchmark datasets to validate our proposal. We present the
datasets in Table 1.

Table 1. Datasets used as benchmarks

Dataset # Instances # Features # Labels

Glass 214 9 6

Ionosphere 315 34 2

Iris 150 4 3

Pima 768 8 2

Satimage 6430 36 6

Tic-tac-toe 958 9 2

Vehicle 846 18 4

We have used a Stratified 10-Fold and repeated it three times, resulting in
30 trials. In the process of the Stratified 10-fold, we divided the entire dataset
into ten mutually exclusive splits. We maintained the proportion of labels in
each subset. The first run uses the first split for test, whereas the other nine
are used for Train/Validation. In the second run, the split number 2 is used
for test, whereas the other nine are used for train/Validation. We repeat the
process until the last run uses the split number 10 for test and the first nine
splits are used for train/Validation. We also have saved the indexes that were
presented in each fold to be used during the comparison with a different model:
Multilayer Perceptrons (MLPs) with only one hidden layer with the number of
weights approximately the same of the architecture generated by our proposal,
regarding the samples presented in that arrangement.

We have used the PyTorch [12] and Scikit-Learn [13] libraries to implement
our proposal. We have chosen the ADAM optimizer [7] with a learning rate of
0.001 for the training of the entire model with the Negative Log-likelihood loss
and 0.1 for the pre-training of each neuron given their related clusters with the
Mean Squared Error loss.

Table 2 compares the results of the proposed technique (DDU) and MLPs
with only one hidden layer with the number of weights - and not the number of
neurons - approximately equal to each one of the architectures created by the
DDU. We have used this strategy to compare the neuron arrangement’s impor-
tance in different layers, with approximately the same number of parameters. For
each dataset, the average accuracy of 30 runs for each set (train, validation, and
test) is given, and its standard deviation appears between parenthesis. We also
have applied the Wilcoxon statistical test between the two techniques comparing
the same dataset, highlighting the text where it presented a p− value < 0.05.

We split the data into Train, Validation and Test sets, and we expect these
three splits to share the same sample distribution. The Validation Set is often
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Table 2. Results in Train, Validation and Test sets regarding DDU and MLP models
for each dataset

Model Dataset Train Validation Test

DDU pima 77.99 (0.01) + 78.48 (0.02) 76.74 (0.03)

MLP pima 78.07 (0.01) 76.71 (0.03) 76.39 (0.02)

DDU vehicle + 84.12 (0.02) + 80.98 (0.03) + 80.90 (0.04)

MLP vehicle 82.81 (0.01) 79.34 (0.02) 79.40 (0.03)

DDU glass 66.88 (0.05) + 65.01 (0.05) 62.16 (0.10)

MLP glass 66.09 (0.03) 60.83 (0.06) 62.33 (0.09)

DDU tic-tac-toe 82.33 (0.06) 77.89 (0.06) 67.14 (0.11)

MLP tic-tac-toe 82.46 (0.04) 77.98 (0.05) 70.79 (0.10)

DDU iris 96.04 (0.02) 97.16 (0.03) 95.33 (0.06)

MLP iris + 97.36 (0.01) 95.98 (0.03) 95.56 (0.06)

DDU satimage + 91.16 (0.01) + 89.52 (0.01) + 88.86 (0.02)

MLP satimage 89.58 (0.01) 88.17 (0.01) 88.06 (0.01)

DDU ionosphere 93.50 (0.02) + 89.37 (0.03) 84.82 (0.08)

MLP ionosphere 93.70 (0.01) 88.06 (0.03) 85.96 (0.08)

used as a proxy to decide when to stop the learning process of a model because
we assume that it would share the distribution/behavior of the unseen test data.
Our technique presented better accuracies in the Validation Set, which was not
necessarily reflected in the Test Set. It maybe has occurred due to our process
of K-Fold splitting. As we have used the Stratified K-Fold, we expected that
the train, validation and test splits should have approximately the same fea-
ture distribution. Still, it probably has not happened since it guarantees the
same percentage of labels in each split, but each split may still not be statisti-
cally equivalent in the feature space distribution. Also, the split was based on
the original labels. That probably could generate completely different sub-labels
during the process once the feature space distribution information was not used
at the splitting process, as it is based solely on the output labels. Considering
that in each trial, the same indexes were presented to both techniques, the DDU
appears to have a better knowledge extraction since the validation accuracy im-
proved and is statistically significant, and the training accuracy not necessarily
accompanied. Maybe a better way to split the data should be a stratification
based in regions that each sample occupies in the feature space. In this way,
inside the same region/cluster, we should stratify the samples into the K splits.

As one can see in Table 3, the DDU generated some architectures, including
ones with more than one hidden layer, that show better accuracies in different
splits. It is worth remembering that the number of neurons of the MLPs was
calculated to match the number of parameters (weights) found by DDU in each
run. As it shows, meaning that not only the learning capacity (stored in weights)
matters but also the arrangement of neurons in different layers influences the
results.
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The architectures with the minimum, median, and maximum number of neu-
rons/layers generated for each dataset by the DDU are presented in Table 3.
The column Architecture shows the complete NN architecture starting from
the input layer to the output layer. The column Weights presents the number
of weights existent in that specific architecture. The columns Train, Val. and
Test show the accuracy for each split.

Table 3. Minimum, Median and Maximum number of weights in found Architectures

Dataset Architecture Weights Train Val. Test

glass [9 9 6] 216 64,58 60,42 50,00

glass [9 12 12 6] 405 67,36 65,31 71,43

glass [9 11 14 16 13 13 10 6] 1125 72,92 73,47 71,43

ionosphere [34 2 3 2] 1236 92,83 88,61 80,00

ionosphere [34 5 4 2] 1354 92,41 88,61 94,29

ionosphere [34 5 8 6 2 6 3 5 2] 1481 96,20 89,87 82,86

iris [4 3 3] 37 97,03 97,06 93,33

iris [4 4 5 3] 67 96,04 97,06 100,00

iris [4 9 6 7 6 5 3] 235 97,03 100,00 100,00

pima [8 2 2] 84 77,22 78,61 76,62

pima [8 5 3 4 3 5 2] 168 77,22 76,88 79,22

pima [8 6 7 5 5 2 7 5 3 4 2] 308 76,88 79,77 77,63

satimage [36 10 11 6] 1832 89,91 88,80 88,02

satimage [36 13 12 15 6] 2190 90,90 89,15 88,18

satimage [36 11 12 15 13 14 18 13 13 12 13 12 13 12 11 6] 4014 93,32 90,81 90,67

tic-tac-toe [9 5 8 2] 182 73,99 75,00 71,88

tic-tac-toe [9 7 6 6 5 7 3 2] 314 87,62 82,41 72,92

tic-tac-toe [9 8 8 3 3 5 5 5 5 3 4 4 4 3 4 2] 431 88,08 86,57 47,92

vehicle [18 12 4] 588 79,82 78,53 78,82

vehicle [18 13 12 4] 762 82,84 81,15 86,90

vehicle [18 12 15 9 8 4] 959 83,19 81,15 89,29

We highlight that the generated architectures do not necessarily create shapes
that always increase or decrease the number of hidden neurons. It might increase,
decrease, and increase again if the representation became locally worse at a given
depth. The layers near the output tend to have a low number of hidden neurons,
probably indicating that less resource is needed to treat the problem at that
depth. It happens since representations of the samples were facilitated by the
possible disentanglement of the feature space done by all the previous layers.

Regarding the Validation split, the accuracy increased as the architecture
used more weights and/or layers in most cases. It occurs since the samples
are processed through the layers, thus probably creating better representations
which the final output layer can classify with fewer efforts. On the other hand,
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the layers near the input tend to have a larger number of neurons due to the
high entanglement of the features at the early stages.

4 Conclusions

In this paper, we presented a preliminary study on how to define a Data-Driven
Neural Network Architecture without creating several Networks. To assess this,
we have used GMMs clustering to define each layer’s width and iteratively ap-
pending layers, increasing depth, aiming to find better and possibly disentangled
representations, easing the model learning process.

As presented in Table 2, the performance has increased statistically (Wilcoxon
significance test with alpha = 0.05) on two occasions in the Test split while never
decreased it. It also corroborates with our initial hypothesis that clustering the
feature space may reveal the number of necessary neurons representing the sam-
ples in a more organized way. The quantity of neurons seems correlated with
the high non-linearity entanglement at the first layers and with the possible low
entanglement at the last layers of the model. If we consider the Validation split,
that is considered as a proxy to the accuracy in Test split, our approach was
better in 5 cases out of 7.

Our proposal has shown some exciting results, and our hypothesis could be
evaluated in these initial experiments. For future works, we intend to assess
the technique in more benchmark datasets and adapt the method to work with
datasets usually used in Deep Learning tasks such as MNIST and CIFAR10. We
also want to perform more evaluations using the data-driven found architectures
to evaluate if a pruning process would perform successfully or if it would fail,
leading us to believe that the DDU is capable of creating effective architectures
with a small number of useless neurons/weights. Another valid investigation is to
split the data stratified by region and by labels inside each region. The evaluation
of other Clustering Techniques and strategies to retain the cluster may impact
the performances. Also, more tests on hyperparameters values need to be done
to have more robust conclusions about its impact on the learning process. We
also plan to compare the technique with other approaches, such as the NEAT.
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APPENDIX D – SIMILARITY BASED STRATIFIED SPLITTING: AN
APPROACH TO TRAIN BETTER CLASSIFIERS



Highlights
Similarity Based Stratified Splitting: an approach to train better classifiers
Felipe C. Farias,Teresa B. Ludermir,Carmelo J. A. Bastos-Filho

• Split the data using input and output distribution information;
• An approach to train better classifiers;
• Classifier agnostic and low-cost proposal to increase models’ performance.
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A B S T R A C T
We propose a Similarity-Based Stratified Splitting (SBSS) technique, which uses both the output
and input space information to split the data. The splits are generated using similarity functions
among samples to place similar samples in different splits. This approach allows for a better
representation of the data in the training phase. This strategy leads to a more realistic perfor-
mance estimation when used in real-world applications. We evaluate our proposal in twenty-two
benchmark datasets with classifiers such as Multi-Layer Perceptron, Support Vector Machine,
Random Forest and K-Nearest Neighbors, and five similarity functions Cityblock, Chebyshev,
Cosine, Correlation, and Euclidean. According to the Wilcoxon Sign-Rank test, our approach
consistently outperformed ordinary stratified 10-fold cross-validation in 75% of the assessed
scenarios.

1. Introduction
Machine Learning systems use data to extract knowledge. The goal is to store information in the internal parameters

to analyze future unseen data. Some learning paradigms have been used in machine learning. In Supervised learning,
the inputs and desired outputs (targets) are presented to the model. In Unsupervised learning, no output is given—the
model clusters data based on the similarity among the elements. Conversely, in the Reinforcement learning paradigm,
the model acts in an environment and evaluates if the last actions led to a better environment metric, receiving a reward
or a punishment. Modeling a supervised learning system requires a dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)|𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 }, where 𝑋 is
the input in the feature space, and 𝑌 is the output, which may be labeled for classification or real values for regression
applications.

We may define a Machine Learning system as a combination of three elements: (i) a model𝑀 , which is a mathemat-
ical function mapping the domain 𝑋 into image 𝑌 , processing the input 𝑋 using its internal parameters 𝑊 ; (ii) an Er-
ror/Cost/Loss Function 𝐿 = 𝑒𝑟𝑟𝑜𝑟(𝑀(𝑋), 𝑌 ), which evaluates the performance of 𝑀 in 𝐷; and (iii) an Optimizer (𝑂),
which minimizes the function 𝐿. The training phase of a Learning System tries to find the best 𝑊 for a model 𝑀 using
data 𝐷 to estimate the parameters 𝑊 , minimizing the error 𝐿 using 𝑂. In other words, 𝑊 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐿(𝑀(𝑋), 𝑌 ))
with 𝑊 estimated by 𝑂(𝐿).

A typical approach to conceive a Supervised Learning System needs to have data 𝑋𝑡𝑟𝑎𝑖𝑛 (training set) presented
to the model to estimate the parameters 𝑊 and different data 𝑋𝑡𝑒𝑠𝑡 (validation set or test set), which is not used
to modify the models’ parameters 𝑊 , but to evaluate its performance, serving as an estimation of real-world data
during the inference phase. Several strategies have been developed to split data better (Kohavi et al., 1995). The error
considering the training set should never be used alone as a model’s performance estimator since some problems during
the training phase may arise. The most common problems are over-fitting and under-fitting (Bishop, 2006; Russell &
Norvig, 2020). To mitigate these problems, we can split the data into two or more subsets. We briefly discuss some
split data methods in the next paragraphs.

One of the most common split data methods, probably due to its simplicity, is the Holdout Splitting. Holdout
randomly divides the original dataset into a training set from which the algorithm produces the model 𝑀 and a test
set on which the performance of 𝑀 is evaluated (Russell & Norvig, 2020). A common choice is to use 75% of the
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samples to the training set and 25% to the test set. It is desired that the training and test sets contain different samples
and follow approximately the same distribution, which is not always the case.

In the K-Fold cross-validation, the data is divided into 𝑘 subsets. Then 𝑘 rounds of learning are performed. On
each round, 1∕𝑘 of the data is used as the test set, while the remaining samples are used as the training data. The
average test set performance of the 𝑘 rounds should be calculated. Popular values for 𝑘 are 5 and 10 (Breiman &
Spector, 1992; Wong, 2015; Russell & Norvig, 2020). An interesting analysis of K-Fold cross-validation estimates
can be found in (Wong & Yang, 2017; Jung, 2018; Wong & Yeh, 2019).

Leave One Out is K-Fold cross-validation when 𝑘 assumes the original dataset number of samples (Russell &
Norvig, 2020). Consequently, it uses a test set with just one sample and the training set with all others. The process
is repeated until every single sample belongs to the test set once. Then, the model’s performances in the test sets are
also averaged.

If the dataset is imbalanced, a stratified splitting may be recommended since it divides the dataset, maintaining the
class proportion in each of the subsets created. It is even worse when there is a small number of samples to be trained.

Cross-validation is used to estimate the model generalization to an independent dataset. It is commonly applied
to learning systems to predict its future performance or how accurate it would be when used in the real world, where
the model never received the data during the training phase. It can also be used to (i) stop the training phase at a
point which if the model was trained below or above that quantity, and it could present under-fitting or over-fitting
behaviors, respectively; (ii) compare the performance of different models submitted to the same data; (iii) select the
best model over several runs when there is a stochastic component intrinsic to the model; (iv) choose the classifiers
that will compose an ensemble system.

Since it is a common approach to use cross-validation to obtain the best model to run on real-world problems, we
should expect that our data during the training phase could have approximately the same distribution of data received in
real-world applications. Besides, several algorithms rely on the fact that the samples in each subset are Independent and
Identically Distributed (Haykin & Haykin, 2009; Japkowicz & Shah, 2011). These are reasonable assumptions since
the process of learning means to model the distribution of the training data as close as possible, expecting that future
data seen in the real-world follow the approximated distribution. None of those mentioned earlier strategies grants it
or even have robust mechanisms to partially induce this assumption since they use the labels or the output distribution
to split the data, ignoring all the input space distribution information. The DUPLEX algorithm (Snee, 1977) uses the
input space information to divide the data into two disjoint sets with statistical similarity and cover almost the same
region of input space. It uses the Euclidean distance between all pairs of samples to place the most distant samples
in the same set, alternating from the train set and test set. As it was created to solve regression problems, it does not
consider the output distribution of the labels nor the stratification process.

Our research question is posed as follows:
RQ: Can we use input and output space information during the data splitting process to cover all the regions
where samples exist, aiming to maintain approximately the same statistical properties, and to generate better
data to create better classifiers?
Consider a real-world intelligent system. The most common approach to train an Artificial Neural Network in

this task is to (i) split the data into train and validation sets; (ii) define an upper bound limit of epochs for the model
to be trained, and (iii) define a patience threshold for early stopping the training before the limit of epochs based on
how many times the model presented consecutive performance decreases. At the end of each epoch, considering the
training set, the validation set is used to assess the model’s performance. As the validation set is not used to change
the model’s parameters, it acts as a proxy set of the data that the model will be presented in real-world operation. It
is natural to expect that higher performances in the validation set consequently generate better models in real-world
usage, leading us to use the model that shows the smallest error in the validation set. In order to happen what we
expect, it is a necessary condition that the validation set has samples drawn from approximately the same distribution
of the real-world data that the model will see in the future. In other words, our splitting process should look not only
to the output space but also the input distribution of samples plays an essential role in the model’s performance. In
this work, we propose a low-cost method to increase the model’s performance by better selecting the training data to
be presented using similarity functions to place similar samples in different splits.

We organized the remainder of this work as follows. We present the background information, describe the proposed
methodology to split the data using similarity functions, and provide experiment details in Section 2. We show the
results and discussions in Section 3. Finally, we present conclusions and future works in Section 4.
FC Farias, TB Ludermir, CJA Bastos-Filho. Page 2 of 14
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2. Material and Methods
2.1. Our Proposal

In our proposal, we consider the output space and the distribution of inputs/features space to create the splits to
validate our hypothesis. We call it Similarity-Based Stratified Splitting (SBSS). Even though our technique is not
limited to a specific data splitting strategy, we focused our evaluations on Stratified 10-Fold. We used its folds to
compose the train and test set, the latest mimicking the model’s real-world usage.

To illustrate our hypothesis, in Figure 1, we show a dataset with 20 samples divided into two labels.

Label 1
Label 2

Figure 1: Example of dataset with 2 labels.

If we use a conventional stratified split process that does not consider the input space distribution, at worst case, we
can create two bad splits, as shown in Figure 2. If we use Split 1 as the training set and Split 2 as the test set, the model
will probably perform poorly since the samples lie in a region that the model was not exposed to data and did not learn
how to separate the samples at this sub-space. The splitting process is also used to select the hyper-parameters of a
model in a proxy subset of the data not presented in the training phase. This proxy subset should follow approximately
the same distribution of the real data that the model will be presented when inferring in production. If the samples are
not carefully chosen, we may not have consistent performance metrics compared to the real-world deployed scenario,
even when the validation/test set presents high-performance measurements.

Split 1
Split 2

Figure 2: Stratified splits ignoring the feature space.

We try to place similar elements belonging to the same label in different splits to maintain the input and output
distribution over all the splits approximately equal. First, we create N splits and we calculate the similarity matrix of
samples’ features. For each label, we find the pivot sample (the sample with the largest similarity to all other samples
of the same label) and the next N-1 most similar samples. Then we shuffle these picked samples to guarantee the
stochastic behavior and append each sample to each split. After, we remove the picked samples and repeat the process
FC Farias, TB Ludermir, CJA Bastos-Filho. Page 3 of 14
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until there is no sample left in the dataset. This process is summarized in Algorithm 1. The Python code is also
available in 1. In Figure 3, we have an expected scenario of our approach outcome. The distributions of both splits
contain more relevant data/information to be learned by the model than the ones in Figure 2.

Split 1
Split 2

Figure 3: One expected splitting scenario of our approach.

One could argue that this approach has no value since we are not randomly picking samples and the real-world
usage of the model the outcomes are random; therefore, we could not assume that it will follow the same distribution.
We believe that if this happens remarkably, probably the dataset does not represent the task’s population. In this case,
more data should be collected before start modeling in order to represent the task to be learned better. Once Learning
Systems recognizes patterns in the data, it will probably fail to recognize these patterns when using the real-world
model if it does not have similar patterns to learn. For example, an application of object recognition trained with
only one color of a specific object may have difficulties to detect colored objects of the same nature and vice-versa.
The model would probably perform better if the same ratios of one color and colored objects are presented during
the training and validation phase. As this information may not be explicit, one could use the similarities between the
objects’ colors to drive this behavior. Also, perhaps the real-world application is not generating random outcomes. The
samples can be drawn from a distribution that classical statistical probability distributions have difficulties handling or
representing graphically. It could give us the notion of distribution that we would like them to have.

Note that any similarity/distance function can be used. We have assessed five similarity functions, namely (i)
Cityblock, (ii) Chebyshev, (iii) Euclidean, (iv) Cosine, (v) Correlation to show this. The equations of each function
are presented in Eq. 1-5.

𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 = 𝑚𝑎𝑥|𝑢𝑖 − 𝑣𝑖| (1)
𝐶𝑖𝑡𝑦𝑏𝑙𝑜𝑐𝑘 =

∑
𝑖
|𝑢𝑖 − 𝑣𝑖| (2)

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 =
√∑

𝑖
(𝑢𝑖 − 𝑣𝑖)2 (3)

𝐶𝑜𝑠𝑖𝑛𝑒 = 1 − 𝑢 ⋅ 𝑣
‖𝑢‖2 ‖𝑣‖2 (4)

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 1 − (𝑢 − 𝑢̄) ⋅ (𝑣 − 𝑣̄)
‖(𝑢 − 𝑢̄)‖2 ‖(𝑣 − 𝑣̄)‖2 (5)

where 𝑢 and 𝑣 are two input vectors; 𝑖 is the dimension index; | ⋅ | is the absolute value and ‖⋅‖2 refers to a L2-norm.
2.2. Classifiers

We have assessed different families of classifiers to show the transversality of our proposal. We deployed the
following algorithms: (i) a K-Nearest Neighbors (KNN) (Cover & Hart, 1967) (ii) Random Forest (RF) (Breiman,

1https://github.com/felipefariax/sbss
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Algorithm 1 Algorithm for Similarity Based Stratified K-Fold Splitting
Require: X, Y, k // Normalized Inputs, Outputs, number of splits

1: splits = [[]*k] // Create a list with K sublists
2: split_labels = []
3: similarity_matrix = similarity(X, X) // Calculate the similarity between all the samples
4: for label in labels: do
5: while exist_samples_dataset(X, Y, label) do
6: //Index of the most similar sample to all samples not already picked of this label. i.e. largest similarity sum

to other samples of the same label
7: pivot_idx = get_pivot_sample_idx(X, Y, label)
8: picked_samples.append(pivot_idx)
9: //Get the next N-1 most similar samples

10: for split in N-1: do
11: closest_ix = get_most_similar_sample(X, Y, label, picked_samples)
12: picked_samples.append(closest_ix)
13: end for

14: shuffle(picked_samples)
15: // Filling splits
16: for i = 0...k-1 do
17: splits[i].append(picked_samples[i])
18: split_labels.append(label)
19: end for

20: X, Y = remove_samples_from_dataset(X, Y, picked_samples)
21: end while
22: end for

23: // Contains the index of each sample belonging to each split as a “k” by “nb_samples” matrix. Each col has indexes
of the samples belonging to approximately the same region in the same label regarding the original dataset.

24: return splits, split_labels

2001) classifier with 100 trees; (iii) Support Vector Machine (SVM) (Cortes & Vapnik, 1995) and (iv) Multilayer
Perceptron (MLP) (Haykin & Haykin, 2009) with 20 hidden neurons without a validation set to early stop the model,
300 epochs and 0.001 as the learning rate. All the other hyperparameters were used with the default values available
in the Scikit-Learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg
et al., 2011) Python library. As we intend to show that SBSS can improve the classifiers’ performance, we have not done
much hyperparameter experimentation, meaning that we could achieve even better performances if the hyperparameters
were carefully chosen. We have chosen these classifiers due to their different nature bases such as instance-based,
decision tree, hyperplane separation, and regression-based methodologies.
2.3. Datasets

We assessed the proposed algorithm in several situations, such as many features and labels, a low number of
samples, and dataset imbalance. We have used 22 datasets from UCI (Dua & Graff, 2017) presented in Table 1. We
calculated the Imbalance of each dataset by adapting the suggestion in (Romano, 2016) according to Eq. 6, resulting
in 0 when the dataset is balanced and 1 otherwise.
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Table 1
Datasets used as benchmarks

Dataset # Features # Labels # Samples Imbalance

balance-scale 4 3 625 0.17
blood-transfusion-service-center (btsc) 4 2 748 0.21
car 6 4 1728 0.40
diabetes 8 2 768 0.07
tic-tac-toe 9 2 958 0.07
ilpd 10 2 583 0.14
vowel 12 11 990 0.00
australian 14 2 690 0.01
climate-model-simulation-crashes (cmsc) 18 2 540 0.58
vehicle 18 4 846 0.00
credit-g 20 2 1000 0.12
wdbc 30 2 569 0.05
ionosphere 34 2 351 0.06
satimage 36 6 6430 0.04
libras move 90 15 360 0.00
hill-valley 100 2 1212 0.00
musk 167 2 6598 0.38
lsvt 310 2 126 0.08
madelon 500 2 2600 0.00
cnae-9 856 9 1080 0.00
dbworld-bodies 4702 2 64 0.01
arcene 10000 2 200 0.01

1 −
∑𝑘

𝑖=1
𝑐𝑖
𝑛 𝑙𝑜𝑔(

𝑐𝑖
𝑛 )

𝑙𝑜𝑔(𝑘)
(6)

where 𝑛 is the number of samples; 𝑘 is the number of labels, and 𝑐𝑖 is the number of samples in label 𝑖.
2.4. Experiments

We have simulated ten experiments applying SBSS to 10-Fold cross-validation, which we called Similarity-Based
Stratified 10-Fold (SBSF), totaling 100 executions – 10 simulations of 10 splits, each split being used as the testing set
once. As we have 22 datasets, five similarity measures, and four classifiers, we have done 44,000 SBSF and 10,000
ordinary 10-fold simulations. Although several metrics (Seliya, Khoshgoftaar & Van Hulse, 2009) can be used, we
have used the average accuracy of the 10-fold averaged splits to compare our approach against the original stratified
10-fold splitting. We have applied the Wilcoxon Signed-Rank test to assess if our approach significantly increases the
classifier’s performance with 𝛼 = 0.05. We use nine folds to compose the train set and one fold as the test set.

3. Results and Discussions
In this section, we evaluate and discuss the results of our experiments briefly, comparing the scenarios with and

without applying the SBSF split strategy.
We present in Table 2 the training and test set average accuracy. We present average accuracy, and the average

standard deviation of 10 evaluations of 10-fold applied to SBSF and original 10-fold stratified splitting inside the
parenthesis. We also show the averaged accuracy difference between SBSF and 10-fold. We can see that the Correlation
similarity yields the best test accuracy, while the Euclidean had the worst accuracy among the similarity functions used
in the SBSF strategy, even though it is still more significant than the 10-fold strategy. Also, the accuracy increase in
the test set was more prominent than in the training set, probably indicating a better generalization of the model since
FC Farias, TB Ludermir, CJA Bastos-Filho. Page 6 of 14
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Table 2
Similarity accuracy averaged over all datasets and models.

Similarity
Train Test

10-fold SBSF Difference
(SBSF-10-fold) 10-fold SBSF Difference

(SBSF-10-fold)

Chebyshev
90.129
(1.16)

90.492
(1.104)

0.363
(-0.056)

82.027
(4.326)

83.050
(3.758)

1.023
(-0.568)

Cityblock
90.129
(1.16)

90.378
(1.085)

0.249
(-0.075)

82.027
(4.326)

83.086
(3.644)

1.059
(-0.682)

Euclidean
90.129
(1.16)

90.385
(1.104)

0.256
(-0.056)

82.027
(4.326)

82.988
(3.678)

0.961
(-0.648)

Cosine
90.129
(1.16)

90.380
(1.102)

0.251
(-0.058)

82.027
(4.326)

83.188
(3.440)

1.161
(-0.886)

Correlation
90.129
(1.16)

90.536
(1.101)

0.407
(-0.059)

82.027
(4.326)

83.363
(3.574)

1.336
(-0.752)

Average
90.129
(1.16)

90.434
(1.099)

0.305
(-0.061)

82.027
(4.326)

83.135
(3.619)

1.108
(-0.707)

it tends not to have high-density regions that would give more importance due to a bad data splitting. The standard
deviation was also reduced in SBSF.

The averaged accuracy for all datasets and models for each similarity compared to the 10-fold strategy is presented
in Figure 4. It is easy to notice that the Correlation presented the most remarkable performance among all similarities.

chebyshev cityblock correlation cosine euclidean
Similarity
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Figure 4: Averaged accuracy over datasets and models for each SBSF similarity compared to 10-fold strategy.

The boxplots comparing absolute accuracy for each similarity and model, regarding all datasets are shown in
Figure 5. The median values in SBSF with Correlation similarity was always more significant than the 10-fold strategy
for every model. The same occurs with other similarity/model scenarios.

In Figure 6, the boxplots depict the differences between the accuracies of the SBSF and 10-fold. In general, the
similarities had few negative differences, with some of them treated as outliers.
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Figure 5: Boxplots with accuracies for each similarity and model of SBSF compared to 10-fold strategy.
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Figure 6: Boxplots with accuracies differences SBSF - 10-fold.
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Table 3
Averaged difference of accuracy between train and test
sets for each splitting strategy.

Strategy Difference Train-Test

SBSF + Chebyshev 7.442
SBSF + Cityblock 7.292
SBSF + Correlation 7.173
SBSF + Cosine 7.192
SBSF + Euclidean 7.397
10-fold 8.103

Table 4
Number of losses, ties and wins regarding the models and similarities of the SBSF over 10-fold splitting.

Model Chebyshev Cityblock Euclidean Cosine Correlation
loss tie win loss tie win loss tie win loss tie win loss tie win

KNN 2 4 16 0 3 19 0 6 16 3 2 17 1 5 16
MLP 3 4 15 1 7 14 2 1 19 3 3 16 1 4 17
RF 0 5 17 0 4 18 0 6 16 1 8 13 0 5 17

SVM 1 5 16 0 3 19 0 5 17 1 5 16 0 6 16

Total 6 18 64 1 17 70 2 18 68 8 18 62 2 20 66
% 6.82 20.45 72.73 1.14 19.32 79.55 2.27 20.45 77.27 9.09 20.45 70.45 2.27 22.73 75

In Table 3, we can see that the average difference between the accuracy in the training - test set for SBSF is less
than the 10-fold. It may indicate that the training and test set distributions are closer in the SBSF strategy than ordinary
10-fold. It can also indicate that SBSF intrinsically regularizes the training as the more significant this difference, the
greater the chance of overfitting.

In Table 4, the scores of SBSF vs. 10-fold are presented for each model and each similarity. The MLP is probably
the most sensible technique to its hyperparameters between the assessed models. Specifically the learning rate, number
of neurons, and number of epochs, which we have fixed as 0.001, 20, and 300, respectively. As we have assessed this
simple architecture regardless of the dataset, which has several numbers of samples/features, this probably led to the
most significant number of losses without any hyperparameter exploration. The similarity Cityblock appears to be the
best similarity since it got the highest number of wins (79.55%). However, due to the highest accuracy of Correlation
similarity shown in Table 2, we have chosen the Correlation similarity with 75% of wins, 22.73% of ties, and only
2.27% of losses with an average increase in test set accuracy of 1.336% for the next analysis. The Correlation similarity
probably had better performances because the vectors’ mean of 𝑢 and 𝑣 are subtracted, which led to smaller magnitudes
of the vectors, facilitating the calculation of L2-norms better-extracting similarities information among the samples.

In the following subsections, we present a detailed comparative analysis of each model using the Correlation sim-
ilarity with SBSF and ordinary 10-fold.
3.1. K-Nearest Neighbors

The train and test accuracies with their respective differences (SBSF-10-fold) of SBSF with Correlation similarity
in KNN, presented in Table 5, increased the test accuracy in 17 datasets, remaining the same in 4 and losing in 1 case
when compared with 10-fold splitting according to Wilcoxon statistical test. An increase in the training set did not
necessarily accompany the test set’s increase with the same magnitude. For example, in the vehicle dataset, the test
accuracy increased 2.071% while the training stayed almost the same. The standard deviation also decreased in SBSF.
The average difference of train-test accuracies of SBSF and 10-fold is 1−(87.028−81.222)∕(86.322−79.791) = 11.1%
lower than the ordinary 10-fold.
3.2. Multi-layer Perceptron

Table 6 shows the accuracies of train and test set with their differences of SBSF with Correlation similarity in
MLP. The test accuracy increased in 17 cases, persisted the same in 4, and lost in 1. As in KNN, the difference in
FC Farias, TB Ludermir, CJA Bastos-Filho. Page 9 of 14

111



Similarity Based Stratified Splitting

Table 5
Average accuracy for KNN with SBSF using Correlation similarity. Highlighted values are higher according to Wilcoxon
Significance test.

Dataset Train Test
SBSF 10fold Difference SBSF 10fold Difference

australian 88.851 (0.447) 87.902 (0.614) 0.949 (-0.167) 86.397 (2.603) 84.536 (4.562) 1.861 (-1.959)
arcene 92.38 (1.044) 92.178 (1.025) 0.202 (0.019) 88.526 (6.447) 85.05 (8.313) 3.476 (-1.866)
balance-scale 89.789 (0.864) 86.99 (0.962) 2.799 (-0.098) 85.8 (2.952) 82.624 (4.115) 3.176 (-1.163)
btsc 81.862 (0.774) 81.827 (0.829) 0.035 (-0.055) 77.041 (2.751) 76.912 (3.787) 0.129 (-1.036)
car 98.997 (0.211) 98.914 (0.257) 0.083 (-0.046) 96.661 (1.292) 95.672 (1.638) 0.989 (-0.346)
cmsc 94.797 (0.321) 93.889 (0.419) 0.908 (-0.098) 94.113 (1.771) 92.815 (2.277) 1.298 (-0.506)
cnae-9 91.249 (0.746) 91.118 (0.718) 0.131 (0.028) 84.759 (3.019) 84.185 (2.875) 0.574 (0.144)
credit-g 81.686 (0.58) 81.653 (0.682) 0.033 (-0.102) 74.34 (3.131) 74.04 (3.914) 1.3 (-0.783)
dbworld-bodies 66.022 (2.165) 60.118 (2.712) 5.904 (-0.547) 62.6 (6.114) 54.833 (5.858) 7.767 (0.256)
diabetes 82.386 (0.655) 82.079 (0.7) 0.307 (-0.045) 75.658 (3.738) 73.841 (4.877) 1.817 (-1.139)
hill-valley 72.873 (0.679) 72.833 (0.763) 0.04 (-0.084) 53.442 (3.784) 52.673 (4.487) 0.769 (-0.703)
ilpd 79.23 (1.005) 78.237 (0.931) 0.993 (0.074) 67.123 (4.262) 65.147 (4.379) 1.976 (-0.117)
ionosphere 87.245 (0.582) 87.809 (0.748) -0.564 (-0.166) 84.5 (4.427) 85.211 (5.436) -0.711 (-1.009)
libras move 87.093 (1.046) 85.006 (1.199) 2.087 (-0.153) 77.967 (6.01) 75.083 (7.749) 2.884 (-1.739)
lsvt 90.528 (1.877) 89.021 (1.491) 1.507 (0.386) 82.667 (10.143) 83.647 (10.737) -0.98 (-0.594)
madelon 73.864 (0.656) 73.963 (0.592) -0.099 (0.064) 56.865 (3.122) 57.135 (3.106) -0.27 (0.016)
musk 98.865 (0.069) 98.842 (0.083) 0.023 (-0.014) 98.102 (0.42) 97.825 (0.593) 0.277 (-0.173)
satimage 94.055 (0.141) 93.877 (0.159) 0.178 (-0.018) 91.309 (0.877) 90.88 (1.08) 0.429 (-0.203)
tic-tac-toe 85.021 (0.67) 84.932 (0.688) 0.089 (-0.018) 83.758 (3.596) 83.466 (3.344) 0.292 (0.252)
vehicle 82.02 (0.792) 82.025 (0.753) -0.005 (0.039) 72.183 (3.848) 69.788 (4.101) 2.395 (-0.253)
vowel 98.053 (0.259) 98.038 (0.306) 0.015 (-0.047) 96.263 (1.834) 94.192 (2.459) 2.071 (-0.625)
wdbc 97.742 (0.284) 97.825 (0.294) -0.083 (-0.01) 96.821 (2.141) 96.854 (2.452) -0.033 (-0.311)

Average 87.028 (0.721) 86.322 (0.769) 0.706 (-0.048) 81.222 (3.558) 79.791 (4.188) 1.431 (-0.63)
Losses/Ties/Wins 2L/8T/12W 1L/5T/16W

test and training accuracy was not proportional. For example, in dbworld-bodies dataset, the test accuracy increased
10.424% while the training accuracy only increased 1.423%. The standard deviation of the accuracies also had a large
decrease. As we have not used a validation set to stop the training or choose the best MLP model, we can realize that the
difference between accuracies obtained in the training and testing sets of 10-fold is higher than in SBSF. It is probably
a sign of over-fitting in 10-fold splitting since the training error is much lower than the test error. We believe that, as
we have better sampled the dataset through SBSF, a better knowledge extraction was performed. Thus, SBSF can act
as an intrinsic regularizer difficulting the over-fitting, as the train-test accuracy difference of SBSF in this experiment
is, on average, 1 − (85.958 − 81.8)∕(85.53 − 80.253) = 21.205% lower than the ordinary 10-fold.
3.3. Support Vector Machine

Regarding SVM in Table 7, the usage of SBSF also increased the test set accuracy in 16 datasets, remaining the
same in 6 and with no losses compared with 10-fold splitting. One can observe an increase in the test set performance
without not necessarily having an increase in the training set, as it was the case with previous classifiers. For example,
in the arcene dataset, the test accuracy increased 1.734% while presenting a statistically significant decrease in the
training set, which was 0.283 smaller than with 10-fold. The SBSF strategy performed worse in 4 cases regarding the
training set (arcene, car, credit-g, and ionosphere) while showing statistically significant increases in the same datasets
at the test set, except in ionosphere. The train-test accuracy difference of SBSF in this experiment is, on average,
1 − (89.458 − 84.38)∕(89.029 − 83.259) = 11.993% lower than the ordinary 10-fold.
3.4. Random Forest

Assessing the impact of SBSF to RF, we can see from Table 8 that the test set accuracy increased in 17 datasets,
remaining the same in 5 and with no losses regarding the 10-fold splitting. The corresponding increase behavior in the
training and testing sets of previous classifiers also applies to RF. The train-test accuracy difference of SBSF in this
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Table 6
Average accuracy for MLP with SBSF using Correlation similarity. Highlighted values are higher according to Wilcoxon
Significance test.

Dataset Train Test
SBSF 10fold Difference SBSF 10fold Difference

australian 89.98 (0.932) 90.188 (1.053) -0.208 (-0.121) 88.0 (2.292) 86.652 (4.127) 1.348 (-1.835)
arcene 85.175 (22.52) 84.122 (22.788) 1.053 (-0.268) 74.895 (18.009) 72.1 (16.379) 2.795 (1.63)
balance-scale 97.409 (0.896) 97.031 (1.053) 0.378 (-0.157) 96.5 (2.276) 95.406 (2.682) 1.094 (-0.406)
btsc 80.763 (0.707) 79.979 (0.769) 0.784 (-0.062) 80.23 (2.273) 78.943 (3.204) 1.287 (-0.931)
car 97.394 (0.92) 97.222 (1.021) 0.172 (-0.101) 96.503 (1.537) 96.134 (1.83) 0.369 (-0.293)
cmsc 99.73 (0.345) 99.265 (0.643) 0.465 (-0.298) 96.132 (2.185) 94.722 (2.718) 1.41 (-0.533)
cnae-9 99.897 (0.045) 99.889 (0.046) 0.008 (-0.001) 92.287 (2.158) 91.898 (2.279) 0.389 (-0.121)
credit-g 87.772 (1.943) 87.996 (1.846) -0.224 (0.097) 73.66 (3.781) 72.74 (4.031) 0.92 (-0.25)
dbworld-bodies 100.0 (0.0) 98.577 (0.695) 1.423 (-0.695) 99.4 (1.897) 88.976 (12.706) 10.424 (-10.809)
diabetes 79.863 (0.736) 79.674 (0.964) 0.189 (-0.228) 77.276 (3.709) 76.886 (4.195) 0.39 (-0.486)
hill-valley 63.855 (4.764) 64.449 (5.4) -0.594 (-0.636) 62.725 (5.963) 63.848 (7.206) -1.123 (-1.243)
ilpd 75.774 (1.069) 74.704 (0.928) 1.07 (0.141) 73.211 (4.147) 71.496 (4.169) 1.715 (-0.022)
ionosphere 99.15 (0.387) 99.161 (0.374) -0.011 (0.013) 91.912 (4.341) 92.048 (4.345) -0.136 (-0.004)
libras move 66.163 (11.839) 60.639 (10.532) 5.524 (1.307) 60.533 (12.558) 52.667 (10.987) 7.866 (1.571)
lsvt 99.972 (0.062) 99.991 (0.028) -0.019 (0.034) 86.917 (8.747) 85.462 (9.689) 1.455 (-0.942)
madelon 59.112 (10.967) 59.407 (11.629) -0.295 (-0.662) 53.546 (4.572) 53.023 (4.181) 0.523 (0.391)
musk 99.997 (0.009) 99.997 (0.008) 0.0 (0.001) 99.997 (0.01) 99.986 (0.03) 0.011 (-0.02)
satimage 85.368 (1.583) 85.015 (1.53) 0.353 (0.053) 84.611 (1.787) 84.062 (1.64) 0.549 (0.147)
tic-tac-toe 91.989 (2.371) 92.149 (2.525) -0.16 (-0.154) 86.579 (3.627) 86.285 (4.408) 0.294 (-0.781)
vehicle 77.016 (2.689) 76.824 (2.159) 0.192 (0.53) 74.39 (4.133) 73.099 (4.117) 1.291 (0.016)
vowel 55.879 (7.081) 56.663 (7.298) -0.784 (-0.217) 53.152 (7.265) 51.626 (8.279) 1.526 (-1.014)
wdbc 98.813 (0.302) 98.719 (0.32) 0.094 (-0.018) 97.143 (1.98) 97.505 (1.993) -0.362 (-0.013)

Average 85.958 (3.28) 85.53 (3.346) 0.428 (-0.066) 81.8 (4.511) 80.253 (5.236) 1.547 (-0.725)
Losses/Ties/Wins 1L/12T/9W 1L/4T/17W

experiment is, on average, 1 − (99.701 − 86.051)∕(99.637 − 84.803) = 7.982% lower than the ordinary 10-fold.
The test accuracy of each classifier applied to each dataset using SBSF with Correlation similarity is summarized

in Table 9. The RF presented better results in 8 of 22 cases. Since Decision Trees are used internally to divide spaces,
and SBSF acts improving these spatial representations, most improvements were achieved.

Considering MLP, SVM, KNN and RF techniques and all the similarities scores, SBSF significantly increased the
test accuracy in 330 cases (75%), remained statistically similar in 91 (20.68%), and decreased in 19 cases (4.32%).
3.5. Generalization Gap

The generalization gap can be understood as the ability of the model to make good predictions on unseen data. It
can be measured as the difference between the Train and Test performances Jiang, Krishnan, Mobahi & Bengio (2018).
We present the generalization gap for each model, dataset, and splitting strategy are displayed in Table 10. Bold values
indicate smaller differences.

Smaller differences mean that the Train and Test accuracy are closer. When the gap is larger, it might be an
indication of under/over-fitting of the model. The SBSF approach consistently delivers smaller differences.

4. Conclusion
We believe that every model, including research and/or industrial applications, could benefit from this strategy

to prepare the data to be learned, generating better models with increased real-world usage performance. After the
model is trained, the real-world data to be presented should follow approximately the same distribution of the prepared
training set. If this happens, probably the model could increase its performance if it uses the SBSS.

The SBSF showed statistically significant performance increases in the test set in 75% of the cases. It also was
able to decrease the generalization gap. We believe that the a-posteriori distribution of the input space regions can be
FC Farias, TB Ludermir, CJA Bastos-Filho. Page 11 of 14
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Table 7
Average accuracy for SVM with SBSF using Correlation similarity. Highlighted values are higher according to Wilcoxon
Significance test.

Dataset Train Test
SBSF 10fold Difference SBSF 10fold Difference

australian 87.843 (0.347) 87.626 (0.567) 0.217 (-0.22) 86.368 (2.152) 85.449 (3.993) 0.919 (-1.841)
arcene 92.573 (0.895) 92.856 (1.09) -0.283 (-0.195) 78.684 (6.468) 76.95 (8.617) 1.734 (-2.149)
balance-scale 92.689 (0.253) 91.561 (0.354) 1.128 (-0.101) 92.133 (1.141) 90.464 (1.546) 1.669 (-0.405)
btsc 78.03 (0.206) 77.594 (0.405) 0.436 (-0.199) 77.5 (0.872) 76.781 (1.827) 0.719 (-0.955)
car 97.973 (0.202) 98.13 (0.16) -0.157 (0.042) 96.778 (1.173) 96.846 (1.312) -0.068 (-0.139)
cmsc 97.57 (0.298) 96.864 (0.379) 0.706 (-0.081) 93.566 (1.271) 92.722 (1.723) 0.844 (-0.452)
cnae-9 99.313 (0.126) 99.298 (0.146) 0.015 (-0.02) 91.852 (2.351) 91.389 (2.624) 0.463 (-0.273)
credit-g 82.409 (0.504) 82.567 (0.541) -0.158 (-0.037) 77.11 (2.853) 76.13 (3.204) 0.98 (-0.351)
dbworld-bodies 100.0 (0.0) 98.577 (0.695) 1.423 (-0.695) 92.6 (9.962) 84.214 (15.234) 8.386 (-5.272)
diabetes 80.553 (0.521) 80.233 (0.555) 0.32 (-0.034) 78.184 (3.807) 76.979 (4.407) 1.205 (-0.6)
hill-valley 53.554 (0.403) 53.295 (0.486) 0.259 (-0.083) 51.317 (2.686) 50.982 (3.326) 0.335 (-0.64)
ilpd 71.93 (0.0) 71.355 (0.084) 0.575 (-0.084) 71.93 (0.0) 71.356 (0.762) 0.574 (-0.762)
ionosphere 95.918 (0.417) 96.075 (0.466) -0.157 (-0.049) 93.588 (2.622) 93.394 (4.226) 0.194 (-1.604)
libras move 91.511 (1.284) 89.917 (0.84) 1.594 (0.444) 82.867 (5.571) 81.306 (5.883) 1.561 (-0.312)
lsvt 88.796 (1.07) 87.187 (1.573) 1.609 (-0.503) 83.0 (9.131) 82.558 (9.329) 0.442 (-0.198)
madelon 95.768 (0.207) 95.767 (0.249) 0.001 (-0.042) 59.681 (2.677) 59.115 (2.859) 0.566 (-0.182)
musk 100.0 (0.0) 100.0 (0.0) 0.0 (0.0) 100.0 (0.0) 100.0 (0.0) 0.0 (0.0)
satimage 91.148 (0.127) 90.951 (0.149) 0.197 (-0.022) 90.172 (0.938) 89.879 (1.083) 0.293 (-0.145)
tic-tac-toe 92.91 (0.464) 92.994 (0.388) -0.084 (0.076) 89.884 (2.31) 89.54 (2.963) 0.344 (-0.653)
vehicle 83.381 (0.671) 81.655 (0.757) 1.726 (-0.086) 77.963 (3.11) 75.297 (4.098) 2.666 (-0.988)
vowel 95.807 (0.406) 95.872 (0.417) -0.065 (-0.011) 93.717 (2.015) 92.687 (2.271) 1.03 (-0.256)
wdbc 98.395 (0.222) 98.258 (0.23) 0.137 (-0.008) 97.464 (2.04) 97.663 (1.97) -0.199 (0.07)

Average 89.458 (0.392) 89.029 (0.479) 0.429 (-0.087) 84.38 (2.961) 83.259 (3.784) 1.121 (-0.823)
Losses/Ties/Wins 4L/5T/13W 0L/6T/16W

better explored, and this information can be incorporated into the model through a careful data splitting process used
during the training phase. It is a low-cost strategy to increase models’ performance by only changing how the training
data is presented. We expect this approach to deploying models in the academy and industry scenarios with better
performances.

As future works, we intend to evaluate SBSS in other classifiers, including investigating their hyperparameters.
We also plan to assess the proposal with different splitting strategies, such as Holdout, with and without stratification.
An analysis of regression models with SBSS is also relevant. Other similarities functions may also benefit the SBSS
strategy. Also, we intend to use the average of similarities instead of the sum in the algorithm that may benefit the
performance.
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Table 8
Average accuracy for RF with SBSF using Correlation similarity. Highlighted values are higher according to Wilcoxon
Significance test.

Dataset Train Test
SBSF 10fold Difference SBSF 10fold Difference

australian 100.0 (0.0) 99.998 (0.005) 0.002 (-0.005) 88.574 (2.773) 87.101 (3.817) 1.473 (-1.044)
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Table 9
Average test accuracy for all classifiers using Correlation similarity with SBSF. Best absolute accuracy for each dataset are
highlighted.

Dataset RF MLP KNN SVM

australian 88.574 (2.773) 88.0 (2.292) 86.397 (2.603) 86.368 (2.152)
arcene 85.263 (6.047) 74.895 (18.009) 88.526 (6.447) 78.684 (6.468)
balance-scale 85.7 (2.874) 96.5 (2.276) 85.8 (2.952) 92.133 (1.141)
btsc 74.743 (3.332) 80.23 (2.273) 77.041 (2.751) 77.5 (0.872)
car 98.737 (0.835) 96.503 (1.537) 96.661 (1.292) 96.778 (1.173)
cmsc 93.283 (1.063) 96.132 (2.185) 94.113 (1.771) 93.566 (1.271)
cnae-9 93.167 (2.235) 92.287 (2.158) 84.759 (3.019) 91.852 (2.351)
credit-g 76.96 (3.019) 73.66 (3.781) 74.34 (3.131) 77.11 (2.853)
dbworld-bodies 97.2 (5.583) 99.4 (1.897) 62.6 (6.114) 92.6 (9.962)
diabetes 76.987 (4.363) 77.276 (3.709) 75.658 (3.738) 78.184 (3.807)
hill-valley 58.442 (4.273) 62.725 (5.963) 53.442 (3.784) 51.317 (2.686)
ilpd 72.246 (3.949) 73.211 (4.147) 67.123 (4.262) 71.93 (0.0)
ionosphere 93.059 (3.5) 91.912 (4.341) 84.5 (4.427) 93.588 (2.622)
Libras move 84.367 (6.373) 60.533 (12.558) 77.967 (6.01) 82.867 (5.571)
lsvt 85.25 (8.986) 86.917 (8.747) 82.667 (10.143) 83.0 (9.131)
madelon 71.492 (2.538) 53.546 (4.572) 56.865 (3.122) 59.681 (2.677)
musk 99.994 (0.019) 99.997 (0.01) 98.102 (0.42) 100.0 (0.0)
satimage 92.092 (0.79) 84.611 (1.787) 91.309 (0.877) 90.172 (0.938)
tic-tac-toe 95.947 (2.034) 86.579 (3.627) 83.758 (3.596) 89.884 (2.31)
vehicle 75.5 (3.478) 74.39 (4.133) 72.183 (3.848) 77.963 (3.11)
vowel 97.99 (1.476) 53.152 (7.265) 96.263 (1.834) 93.717 (2.015)
wdbc 96.125 (2.335) 97.143 (1.98) 96.821 (2.141) 97.464 (2.04)

Average 86.051 (3.267) 81.8 (4.511) 81.222 (3.558) 84.38 (2.961)
Score 8 7 1 6
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Table 10
Absolute difference between Train and Test accuracies. Bold values indicate smaller differences.

Dataset KNN MLP SVM RF
SBSF 10-fold SBSS 10-fold SBSS 10-fold SBSS 10-fold

australian 2.454 3.366 1.98 3.536 1.475 2.177 11.426 12.897
arcene 3.854 7.128 10.28 12.022 13.889 15.906 14.737 17
balance-scale 3.989 4.366 0.909 1.625 0.556 1.097 14.3 17.04
btsc 4.821 4.915 0.533 1.036 0.53 0.813 18.692 19.475
car 2.336 3.242 0.891 1.088 1.195 1.284 1.263 1.528
cmsc 0.684 1.074 3.598 4.543 4.004 4.142 6.713 7.426
cnae-9 6.49 6.933 7.61 7.991 7.461 7.909 6.833 7.389
credit-g 7.346 7.613 14.112 15.256 5.299 6.437 23.04 23.75
dbworld-bodies 3.422 5.285 0.6 9.601 7.4 14.363 2.8 12.458
diabetes 6.728 8.238 2.587 2.788 2.369 3.254 23.012 23.648
hill-valley 19.431 20.16 1.13 0.601 2.237 2.313 41.558 43.045
ilpd 12.107 13.09 2.563 3.208 0 0.001 27.754 29.489
ionosphere 2.745 2.598 7.238 7.113 2.33 2.681 6.941 6.691
libras-move 9.126 9.923 5.63 7.972 8.644 8.611 15.629 16.667
lsvt 7.861 5.374 13.055 14.529 5.796 4.629 14.75 16.032
madelon 16.999 16.828 5.566 6.384 36.087 36.652 28.508 28.385
musk 0.763 1.017 0 0.011 0 0 0.006 0.02
satimage 2.746 2.997 0.757 0.953 0.976 1.072 7.907 8.287
tic-tac-toe 1.263 1.466 5.41 5.864 3.026 3.454 4.053 4.081
vehicle 9.837 12.237 2.626 3.725 5.418 6.358 24.5 24.749
vowel 1.79 3.846 2.727 5.037 2.09 3.185 2.01 2.485
wdbc 0.921 0.971 1.67 1.214 0.931 0.595 3.875 3.796

Average 5.805 6.485 4.158 5.277 5.078 5.770 13.650 14.834
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Abstract

The definition of a Neural Network architecture is one of the most critical and challenging
tasks to perform. In this paper, we propose ParallelMLPs. ParallelMLPs is a procedure to
enable the training of several independent Multilayer Perceptron Neural Networks with a
different number of neurons and activation functions in parallel by exploring the principle
of locality and parallelization capabilities of modern CPUs and GPUs. The core idea of
this technique is to use a Modified Matrix Multiplication that replaces an ordinal matrix
multiplication by two simple matrix operations that allow separate and independent paths
for gradient flowing, which can be used in other scenarios. We have assessed our algorithm
in simulated datasets varying the number of samples, features and batches using 10,000
different models. We achieved a training speedup from 1 to 4 orders of magnitude if
compared to the sequential approach.

Keywords: neural networks, parallelization, scatter add, gpu, supervised learning

1. Introduction

Machine Learning models are used to solve problems in several different areas. The tech-
niques have several knobs that must be chosen before the training procedure to create the
model. The choice of these values, known as hyper-parameters, is a highly complex task
and directly impacts the model performance. It depends on the user experience with the
technique and knowledge about the data itself. Also, it is generally difficult for non-experts
in modelling and the problem to be solved due to a lack of knowledge of the specific problem.
The user usually has to perform several experiments with different hyper-parameter values
to maximize the model’s performance to find the best set of hyper-parameters. Depending
on the size of the model and the data, this can be very challenging.

The hyper-parameter search can be performed manually or using search algorithms.
The manual hyper-parameter search can be done by simply testing different sets of hyper-
parameters. One of the most common approaches is to use a grid search. The grid-search
process assesses the models by testing all the possible combinations given a set of hyper-
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parameters and their values. Search algorithms can also be applied by using knowledge
of previous runs to test promising hyper-parameter space during the next iteration, such
as evolutionary and swarm algorithms, Gaussian processes Bergstra et al. (2015). In this
paper, we focus on the hyper-parameter search for Artificial Neural Networks since it is an
effective and flexible technique due to its universal approximator capabilities Leshno et al.
(1993) applied to tabular datasets since it is a prevalent type of data used in the real world
by several companies.

The best set of hyper-parameters could be chosen if the technique could be assessed
using all the possible values for each variable. However, this is usually prohibitive due to
the model training time. Two paths can be taken to accelerate the process: (i) reducing the
training time of each model or (ii) assessing the model in the most promising points of the
hyper-parameter space. The second point can be challenging because it is hard to perform
a thorough search using a few points.

GPUs are ubiquitous when training Neural Networks, especially Deep Neural Networks.
Given the computational capacity that we have today, we can leverage the parallelization
power of CPUs that contain several cores and threads and GPUs with their CUDA Nickolls
et al. (2008) cores to minimize the training time. The parallelization is commonly applied
during matrix multiplication procedures, increasing the overall speed of the training pro-
cess. However, if the data and the model that is being used do not produce big matrices,
GPUs can decrease the training time if compared to CPUs due to the cost of CPU-GPU
memory transfers Gregg and Hazelwood (2011). Also, the GPUs might not saturate their
usage when using small operations. If we aggregate several MLPs as a single network with
independent sub-networks, the matrices become more extensive, and we can increase the
GPU usage, consequentially increasing the training speed. In this paper, we (i) designed
a single MLP architecture that takes advantage of caching mechanisms to increase speed
in CPUs or GPUs environment, called ParallelMLPs from now on, that contains several
independent internal MLPs and allow us to leverage the parallelization power of CPUs and
GPUs to train individual and independent Neural Networks, containing different architec-
tures (number of hidden neurons and activation functions) simultaneously.

2. Background

In this section, we present important aspects of hyper-parameter search, computer organi-
zation, training speed of machine learning models.

2.1 Hyper-parameter Search

Hyper-parameters can be defined as the general configurations to create the models and
control the learning process. They might be discrete, such as the (i) number of layers,
(ii) number of neurons, (iii) activation functions, or continuous such as (i) learning rate
and (ii) weight regularization penalty, among others. There are several ways to perform
a hyper-parameter search. The most common and simple one is the Manual Search. The
user can run a grid search to try all the possible combinations given a set of possibilities for
every hyper-parameter being searched. In Bergstra and Bengio (2012), the authors claim
that performing a Random Search is more efficient than running a grid search. We believe
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that the random search is more critical for continuous values since it is more difficult to
find the correct answer for that specific hyper-parameter. Nevertheless, a grid search might
be the complete assessment of the best discrete hyper-parameter settings for the discrete
ones. More knowledge regarding the function space leads to a better choice of the optimized
point. In other words, if more architectures are tested, more information is gained about
the hyper-parameter that maximizes the performance on a given task.

2.2 Computer Organization and Model Training Speed

Several factors can impact the computational speed of an algorithm. Consequentially, there
are several ways to improve the efficiency of an algorithm. One of the most important is
through the Big-O analysis Cormen et al. (2022). However, once the algorithm is opti-
mized regarding Big-O, usually hardware efficiency is related to the algorithm speed. The
computer architecture is made up of several components. The Von Neumann model von
Neumann (1993) describes the architecture of digital computers. In this architecture, the
computer must have (i) a Central Processing Unit (CPU) that controls everything, contain-
ing an Arithmetic and Logic Unit (ALU), a program counter (PC), and processor registers
(ii) primary memory to store data and instructions, external mass storage, and input/output
mechanisms. All the communication happens in a shared bus. This shared bus can be a
bottleneck as it can limit the throughput between CPU and memory. Most modern com-
puters operate with multi-core processors containing several cache levels between the CPU
and RAM Edelkamp and Schrödl (2012) to mitigate this bottleneck. Algorithms aware of
memory hierarchy management and computer organization can have severe speedups during
execution Vanhoucke et al. (2011).

The ParallelMLPs training algorithm was designed to mainly take advantage of principle
of locality Ali and Syed (2013). When using several models as a single model (i.e. fusing
several matrices), we store this data contiguously, which can be very useful for caching
mechanisms to exploit the spatial locality, pre-fetching from memory the input data and
model parameters’ neighbourhood. Since we are presenting a specific batch for several
models simultaneously, the temporal locality can also be exploited once this data might be
retained for a certain period. The instructions can also be cached efficiently since, in big
matrix multiplication, the instructions will be repeated several times.

The CPU and GPU processors are an order of magnitudes faster than memory transfer
operations (RAM or VRAM). When training sequentially, the processors can waste several
cycles waiting for specific operations such as batch creation (RAM access, CPU to GPU
transfers, CUDA global memory to CUDA shared memory). When training 10,000 models
sequentially for 10 epochs in 1,000 samples, we will have to randomly access memory (bad
caching locality properties) to create the batches 10, 000 ∗ 10 ∗ 1, 000 = 100, 000, 000 times.
Several cache misses can happen during batch fetching. When we use ParallelMLPs, we
increase the chance of cache hit since we are using the current batch on 10,000 models
simultaneously. Probably the batch is in the cache closest to the processor during the
tensor operations. At the same time, we decrease the number of memory access in case of
cache misses to 10 ∗ 1, 000 = 10, 000 at maximum. Of course, everything described here
depends on the computer it is being applied to due to different memory layouts and the
number of cores.
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2.3 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a prevalent and powerful machine learning model
Goodfellow et al. (2016). There are some challenges to training it since the architecture
definition is not an easy task and is very dependent on the user experience. The training
process achieves the parameter adjustment of an MLP. It can be divided into two phases,
the forward phase. We project the input space into a hidden/latent space, usually applying
a non-linear function to a weighted sum of the inputs, projecting this latent space into the
output space again to have the predictions. These predictions are compared against the
targets that the model is trying to learn through a loss function that measures how good
the models’ predictions are. We perform the backward phase with the error by taking the
partial derivatives of each parameter w.r.t. the error to update the parameters, hopefully
decreasing the prediction errors in the following forward phase.

3. Methodology

In order to facilitate the methodology explanation, we will write the tensors in capital
letters. Their respective dimensions can be presented as subscripts such as W[3,4] meaning
a two-dimensional tensor with three rows and four columns.

An example of a MLP architecture with 4 inputs, 3 hidden neurons and 2 outputs
(4−3−2) can be seen in Figure 1. The weights are also explicit with notation wij meaning
a connection from neuron j in the current layer to neuron i in the next layer. The first weight
matrix with shape [3, 4] projects the input representation (4 dimensions) into the hidden
representation (3 dimensions). In contrast, the second matrix with shape [2, 3] projects the
hidden representation (3 dimensions) into the output representation (2 dimensions).

The training procedure of an MLP is usually performed by the Backpropagation al-
gorithm Werbos (1982). It is divided into two phases. We perform several non-linear
projections in the forward phase until we reach the final representation in the backward
phase. Then, we can calculate the error using a loss function to backpropagate them using
the gradient vector of the error w.r.t. the parameters to update the parameters of the
network in order to minimize its error.

The forward calculation can be described as two consecutive non-linear projections of
the type H = X ×W T

1 . and Y = H ×W T
2 . We need two different weight matrices w1 with

shape [3, 4] and w2 with shape [2, 3]. We also would want two bias vectors, but we will not
use them to facilitate the explanations and figures.

The forward phase in our example can be visualized as a three-step procedure.

1. Input to hidden matrix multiplication, Hbatch,hid = Xbatch,in ×W T
hid,in.

2. Hidden activation function application, H ′
batch,hid = σ(Hbatch,hid).

3. Hidden activated to output matrix multiplication, Ybatch,out = H ′
batch,hid ×W T

out,hid.

To train the model, we need to apply a loss function to compare the numbers in step
3 against the targets which the model is trying to learn. After the loss calculation, the
gradient of each parameter w.r.t. the loss is estimated and used to update the parameters
of the network.
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Figure 1: Simple MLP with 4 inputs, 3 hidden neurons, and 2 outputs and its weight
matrices.

Since MLP architectures usually do not saturate GPUs, we can change the architecture
to create MLPs that share the same matrix instance but have their own independent set of
parameters. It allows them to train in parallel. Suppose we want to train two MLPs in the
same dataset with architectures MLP1 = 4− 1− 2 and MLP2 = 4− 2− 2. To leverage the
GPU parallelization, we can fuse both architectures as a single architecture (ParallelMLPs),
in the form 4− 3− 4. In Figure 2 we can see both internal networks represented as a single
architecture (ParallelMLPs) with different colours. The number of inputs does not change;
the number of hidden neurons is summed, while the number of output neurons is multiplied
by the number of independent MLPs we want to train. The layout of ParallelMLP was
designed to take advantage of temporal and spatial locality principles in caching Ali and
Syed (2013) and overall parallelization mechanisms.

In order to maintain the internal MLPs independent of each other, we cannot follow the
same steps previously described because, in that case, we would mix the gradients of all the
internal models during the backpropagation. The matrix multiplication can be understood
as two consecutive operations: (i) element-wise vector multiplication (rows * columns) and
(ii) reduced sum of the previous vectors. We need to change how we perform the matrix
multiplication in step 3. The main idea is to divide the matrix multiplication into two
procedures: (i) matrix element-wise multiplication and (ii) summation. However, the sum-
mation needs to be carefully designed such that we do not reduce-sum the entire vector but
different portions of the axis. We can use broadcast techniques implemented in every tensor
library, and a special case of summation called Scatter Add to make these two procedures
memory efficient. We will refer to this procedure as Modified Matrix Multiplication (M3).
Ahn et al. (2005).
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Figure 2: Two independent MLPs are represented as a single MLP with four inputs, 1 and
2 hidden neurons, and two outputs. The weight matrices are also highlighted to
understand the parameter mapping from the single MLP architecture to its two
internal MLP architectures. The red colour is related to the 4−1−2 MLP, while
the blue colour is related to the 4 − 2 − 2 MLP. Rout,#models contain the result
after applying the Scatter Add operation.

This M3 procedure might be useful to handle sparse NN. Most of the time, sparsity is
treated with masking. Masking tends to be a waste of resources since the original amount
of floating point calculations are still being done, and additional masking floating point
operations are being added to the process.

The Scatter Add (ϕ(D,S, I)) operation takes a dimension D to apply the operation
and two tensors as inputs. The source tensor S contains the numbers that we want to
sum up and the indices tensor I, which informs which elements in the source tensor must
be summed and stored in the result tensor. When applied to two-dimensional tensors as
ϕ(1, S, I), the result tensor R (initialized as zeros) can be calculated as:

• R[I[i, j], j] = R[I[i, j], j] + S[i, j] if dimension = 0

• R[i, I[i, j]] = R[i, I[i, j]] + S[i, j] if dimension = 1

A very simple example of the scatter add operation would be when:

• D = 1,

• S[1,6] = [[1, 2, 3, 4, 5, 6]],

• I[1,6] = [[0, 1, 1, 2, 2, 2]],

• R[1,3] = ϕ(1, S, I)[1,3] = [[1, 5, 15]],
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with I informing how to accumulate values in the destination tensor R, with the first
element (0) accumulating only the first element of S, the second destination element (1)
accumulating the second and third values of S, and the latest element (2) accumulating
the fourth, fifth and sixth element of S. This operation is implemented in parallel in any
popular GPU tensor library. In our architecture represented in Figure 2, in order to have
the two separated outputs, one for each internal MLP, we would have to sum across the
lines using a matrix I as follows:

I[2,3] =

[
0 1 1
0 1 1

]

It would generate an output matrix [2, 2] where each line is related to each inter-
nal/individual MLP.

The Scatter Add operation is responsible for keeping the gradients after the loss function
application not mixed during the backpropagation algorithm, allowing us to train thousands
of MLPs simultaneously in an independent manner.

To summarize, the steps to perform the parallel training of independent MLPs are:

1. Input to hidden matrix multiplication, Hbatch,hid = Xbatch,in ×W T
hid,in.

2. Hidden activation function application, H ′
batch,hid = σ(Hbatch,hid).

3. Hidden activated element-wise multiplication with multi-output projection matrix,
Sbatch,out,hid = H ′

batch,1,hid ⊙W1,out,hid (broadcasted element-wise multiplication)

4. Scatter Add to construct the independent outputs, Ybatch,model,out = ϕ(1, Sbatch,out,hid, Ibatch,out,hid)

After that, a loss function is applied to calculate the gradients and update all the internal
MLPs parameters independently.

We can go further and use not only a single activation function that should be applied to
all the internal MLPs, but several of them by repeating the original number of architectures
as many times as we have for activation functions. Since this is often not enough to use all
the GPU resources, one can also have repetitions of the same architecture and activation
function. In order to use several activation functions, the last step must be modified such
that we can apply different activation functions to different portions of the matrix O. This
can be done using a tensor split operation, applying each activation function iterativelly in
different continuous portions of the representations, and finally concatenating the activated
representations again.

4. Experiments

Simulations were performed in order to compare the speed of the Parallel training against
the Sequential approach.
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4.1 Computing Environment

A Machine with 16GB RAM, 11GB NVIDIA GTX 1080 Ti, and an I7-8700K CPU @ 3.7GHz
containing 12 threads were used to perform the simulations. All the code was written using
PyTorch Paszke et al. (2019).

4.2 Model Architectures

We have created architectures starting with one neuron at the hidden layer until 100, re-
sulting in 100 different possibilities. For each architecture, we have assessed ten differ-
ent activation functions: Identity, Sigmoid, Tanh, ReLU, ELU, SeLU, GeLU, LeakyReLU,
Hardshrink, Mish. It increases the number of independent architectures to 100∗10 = 1, 000.
We have repeated each architecture 10 times, totalling 1, 000 ∗ 10 = 10, 000 models. It is
worth mentioning that this design is not limited to these circumstances. One could create
arbitrary MLP architectures such as 3 different networks with 3, 19, and 200 hidden neurons
and still would be able to leverage the speedup from ParallelMLPs.

4.3 Datasets

We have created controlled training datasets with 100, 1,000, and 10,000 samples. With
5, 10, 50, and 100 features. Giving a combination of 12 different datasets. For all the
simulations, 12 epochs were used, ignoring the first two epochs as a warm-up period, and
32 as the batch size.

4.4 Training Details

All the samples are stored in GPU at the beginning of the process to not waste much time of
GPU-CPU transfers. It favours the Sequential processing speed more than the Parallel since
the former would have 10,000 more CPU-GPU transfers throughout the entire experiment.

The data is used only as train splits because this phase is where the gradients are cal-
culated, and the two operations of forward and backward are used. Therefore, the training
split processing is much more expensive than validation and test splits.

5. Results and Discussion

The following tables contain the average training time of 10 training epochs (forward and
backward steps, no validation, and no test loops) when varying the number of samples
(columns) and the number of features (rows) for strategies: (i) Parallel (using Paral-
lelMLPs), (ii) Sequential (training one model at the time), and (iii) the percentage of
ParallelMLPs training times against the Sequential strategy (Parallel/Sequential). The
CPU and GPU results are presented in Table 5 and Table 5, respectively.

Suppose one is training for 100 epochs of the previously mentioned 10,000 models in
a dataset with 10,000 samples and 100 features with 32 as the batch size. In that case,
CPU-Sequential can take more than 32 hours (1179.405 ∗ 100/3600 = 32.76), while CPU-
Parallel only 2 hours (100 ∗ 74.661/3600 = 2.07) would be necessary to perform the same
training. The same case with batch size of 256 samples, we would have approximately
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Number of Samples
100 1000 10000

Batch Size
32 128 256 32 128 256 32 128 256

Features Parallel (Seconds)

5 0.525 0.463 0.472 5.248 4.709 4.717 52.737 46.929 47.133

10 0.539 0.466 0.475 5.338 4.722 4.742 53.351 47.089 47.153

50 0.658 0.505 0.501 6.144 4.943 4.887 62.664 49.791 48.85

100 0.809 0.547 0.551 7.373 5.366 5.1 74.661 53.09 50.965

Sequential (Seconds)

5 13.437 6.097 5.994 112.054 56.999 48.852 1097.599 564.428 483.278

10 13.36 6.115 6.01 111.84 57.094 49.015 1097.503 564.701 484.91

50 13.884 6.571 6.467 116.303 58.993 49.546 1134.955 583.468 491.269

100 14.283 6.671 6.592 120.297 59.259 50.371 1179.405 586.267 493.744

Parallel/Sequential (%)

5 3.91 7.59 7.88 4.684 8.262 9.656 4.805 8.314 9.753

10 4.038 7.625 7.905 4.773 8.27 9.674 4.861 8.339 9.724

50 4.739 7.69 7.753 5.282 8.379 9.863 5.521 8.534 9.944

100 5.664 8.198 8.362 6.129 9.056 10.126 6.33 9.056 10.322

Table 1: Average of 10 epochs to train 10,000 models using a CPU.

14 hours and 1.5 hours for CPU-Sequential and CPU-Parallel, respectively. In this case,
the CPU-Parallel is 15.8 for the first scenario and 9.3 for the second scenario times faster
than CPU-Sequential. The CPU-Parallel experiments took between 3.9% and 10.3% of the
CPU-Sequential time, considering all the variations we have performed. As one can see, the
CPU speed improves when using larger batch sizes probably to better exploration of the
principle of locality.

If we analyze the same experiments in GPUs, more than 51 hours (1854.881∗100/3600 =
51.5) would be necessary for GPU-Sequential, and 7.4 minutes when using GPU-ParallelMLPs
for the 32 batch experiment and 15.5 hours for GPU-Sequential and 4.6 minutes for the 256
batch size. It gives us a speed improvement on GPU-Parallel of 417.6 and 202.17 times, re-
spectively, when compared to GPU-Sequential. The GPU-Parallel experiments range from
0.017% to 0.486% of the GPU-Sequential time for all the assessed experiments. As one can
see, the GPU speed improves when using larger batch sizes probably to better exploration
of the principle of locality and also a better parallelization in the GPU kernel.

At first glance, the GPU training time should be faster than the CPU training time.
When comparing GPU-Sequential against the CPU-Sequential, the GPU slowness can be
characterized by the high number of function/kernel calls to perform high-speed operations
(small matrix multiplications). The single-core of a CPU is optimized to perform a specific
computation very quickly, whereas the single-core of a GPU will be much slower due to its
meagre clock rate. However, GPUs contain more cores than the CPU, and they can run the
computation in parallel. It is often the scenario in which GPUs will outperform CPUs. As

9

127



Farias, Ludermir and Bastos-Filho

Number of Samples
100 1000 10000

Batch Size
32 128 256 32 128 256 32 128 256

Features Parallel (Seconds)

5 0.024 0.002 0.001 0.269 0.177 0.203 2.676 1.756 2.426

10 0.025 0.002 0.001 0.276 0.178 0.206 2.745 1.767 2.439

50 0.033 0.002 0.001 0.351 0.193 0.218 3.483 1.926 2.569

100 0.043 0.002 0.001 0.449 0.215 0.233 4.438 2.128 2.75

Sequential (Seconds)

5 22.911 8.646 8.511 189.411 73.503 57.02 1857.653 722.915 566.592

10 22.983 8.619 8.515 188.966 73.462 56.941 1859.14 722.925 568.583

50 23.025 8.628 8.519 189.147 73.364 57.134 1858.07 719.359 567.847

100 22.993 8.581 8.503 189.015 72.849 57.129 1854.881 717.543 566.248

Parallel/Sequential (%)

5 0.106 0.019 0.017 0.142 0.241 0.355 0.144 0.243 0.428

10 0.11 0.019 0.017 0.146 0.243 0.362 0.148 0.245 0.429

50 0.142 0.019 0.017 0.185 0.264 0.381 0.187 0.267 0.452

100 0.186 0.018 0.017 0.237 0.294 0.408 0.239 0.297 0.486

Table 2: Average of 10 epochs to train 10,000 models using a GPU.

we are increasing the size of matrices to be multiplied in GPU-ParallelMLP, a considerable
amount of speed can be delivered compared to CPU-ParallelMLP.

It is essential to mention that the GPU memory consumption of the 10,000 parallel
models using 100 features and batch size of 256 (the worst case scenario for our experiments
w.r.t. memory allocation) was less than 4.8GB, meaning that (i) simpler GPUs can be used
and still take advantage of our approach, and (ii) is probably possible to improve the speed
if using more models in parallel to make a better usage of the GPU memory.

As we can perform a very efficient grid-search in the discrete hyper-parameters space
that will define the network architecture, it is much easier for the user to select a suitable
model since several number of neurons and activation functions can be trained in parallel,
mainly for beginners in the field who have difficulties to guess the best number of neurons
and activation function, since the hyper-parameter definition is highly dependent on the
user experience. Also, researchers that use any search method that proposes an MLP ar-
chitecture in a specific problem can now train the models in parallel. The ParalleMLPs can
be applied for both classification and regression tasks. We believe this M3 operation can be
optimized and lead to even more speed improvements if a specialized CUDA kernel could
be written.
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6. Conclusion

We have demonstrated how to parallelize a straightforward core operation of Neural Net-
works by carefully choosing alternative operations with a high degree of parallelization in
modern processors (CPUs or GPUs).

The ParallelMLPs algorithm described in 3 was able to accelerate the training time of
several independent MLPs with a different number of architectures and activation functions
from 1 to 4 orders of magnitude by simply proposing an efficient memory representation lay-
out that fuses several internal MLPs as a single MLP and using the M3 strategy to perform
the matrix projection in an independent way. It allows us to explore better the principle of
locality and the parallelization in modern processors (CPUs and GPUs). The technique can
be helpful in several areas to decrease the training time and increase the number of model
assessments. Since we are able to train thousand of networks in a reasonable time, we can
investigate the distribution of models for a specific dataset in a large scale. Also, it might
be a good way to represent sparse NN.

7. Future Works

We believe the ideas proposed in this paper can inspire other researchers to develop par-
allelization of other necessary core operations/modules such as Convolutions, Attention
Mechanisms, and Ensemble fusion of heterogeneous MLPs.

In future works, we would like to investigate if the M3 operation can be used from
the second transformation until the last layer to train MLPs with more than one hidden
layer since only during the first transformation (from input to the first hidden layer) all
the previous neurons are sum-reduced instead of a sparse version of them. We can see an
example of this idea into Figure 3.

An interesting work would be to perform feature selection using ParallelMLPs by re-
peating the MLP architecture and creating a mask tensor to be applied to the inputs before
the first input to hidden projection. We also plan to perform model selection in the large
pool of trained MLPs in a specific dataset. Also, we plan to automatize the number of neu-
rons and the number of layers. After we finish the ParallelMLP training, we can (i) remove
the output layer or (ii) use the output layer as the new representation of the dataset to be
the input of a new series of ParallelMLP training. It is also possible to use the original fea-
tures concatenated with the previously mentioned outputs like residual connections Szegedy
et al. (2017). After each ParallelMLP training, we can pick the best MLP to create the
current layer, continuously increasing the number of layers until no more improvements are
perceived. A further investigation is needed to verify if similar ideas could be used for con-
volutional and pooling layers since they are basic building blocks for several Deep Learning
architectures. We also would like to investigate what happens if an architecture containing
a backbone representing the input space into a latent space and MLP at the end, such as
Chen et al. (2020) to perform the classification would be replaced by a parallel layer with
several independent set of outputs, but sharing the backbone’s parameters. One hypothesis
is that the backbone would be regularized by different update signals from a heterogeneous
set of MLP heads. This technique can also be similar to a Random Forest Breiman (2001)
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Figure 3: Two independent two hidden layers MLPs represented as a single MLP by Par-
allelMLP. The first with architecture in red being 4− 1− 2− 2 and the second in
blue 4 − 2 − 3 − 2. The weight matrices were removed to ease the readability of
the figure.

of MLPs where during the training phase, the inputs could be masked depending on the
individual network to mimic bagging or mask specific features, or even simulate a Random
Subspace Ho (1998). Our technique can be used to find the best random initialized model
given that Malach et al. (2020) was able to found good sub-networks without any training
– extending the idea of Lottery Ticket Hypothesis Frankle and Carbin (2018). There is
space to parallelize even more hyper-parameters such as batch size, learning rate, weight
decay, and initialization strategies. One straightforward way is to use boolean masks to
treat each case or hooks to change the gradients directly, but it might not be the most
efficient way. A handy extension of our proposition would be to automatically calculate the
hyper-parameter space to saturate the GPU.
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Abstract

The model selection procedure is usually a single-criterion decision making in which we
select the model that maximizes a specific metric in a specific set, such as the Validation
set performance. We claim this is very naive and can perform poor selections of over-fitted
models due to the over-searching phenomenon, which over-estimates the performance on
that specific set. Futhermore, real world data contains noise that should not be ignored
by the model selection procedure and must be taken into account when performing model
selection. Also, we have defined four theoretical optimality conditions that we can pursue
to better select the models and analyze them by using a multi-criteria decision-making
algorithm (TOPSIS) that considers proxies to the optimality conditions to select reasonable
models.

Keywords: neural networks, model selection, parallelization, over-fitting, over-searching,
noise

1. Introduction

Machine Learning methods have been successfully applied to several areas because the
algorithms can learn complex patterns from data. During the model development phase,
we usually try to find the best model to solve a specific task. It is common to assess several
different kinds of models and different combinations of hyper-parameters. After that, we
need to select a model, or a set of models in the case of Ensembles, to deploy it to production
to predict things in the real world.

This paper investigates practical ways to select individual models to put in production
for real-world usage. We call this problem model selection. The book (Hastie et al., 2009)
states that the model selection goal is to estimate the performance of different models to
choose the best one. One common approach is to use all the trained models as an ensemble.
However, we are often interested in choosing a single model instead of several models to be
used as an ensemble during operation.
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We can define over-fitting as a phenomenon that prevents the model from generalizing
well on unseen data. In this case, the model can perfectly describe the Train set but have
inferior performance at the Test set. In (Dietterich, 1995), Dietterich claims that over-fitting
is a phenomenon that emerges as we work too hard to find the best fit to the training data
because there is a risk of fitting the noise by memorizing peculiarities of that training data
instead of learning the general predictive rule.

In (Caruana et al., 2000), the authors claim that MLP models with excess capacity
(number of hidden neurons) generalize well if training with early stopping. An over-fitting
overview was done in (Ying, 2019) where the author discusses potential causes and solu-
tions. To reduce the effects of over-fitting, they suggest the application of 4 perspectives
to mitigate the over-fitting problem: (i) use of early stopping, (ii) network reduction, (iii)
data expansion, and (iv) regularization. In our proposal, we are explicitly using the early
stopping and regularization in the form of weight decay.

From the results of the paper (Zhang et al., 2021), one can confirm how powerful artificial
Neural Networks (ANN) are and how important it is to use procedures to mitigate the over-
fitting potential. They have found that ANN with sufficient parameters can perfectly fit
even random labels. However, when using the trained model in the Validation set, the
performance was terrible (as expected). The gap/disagreement between the random noise
set and the correctly labeled set inspired our current proposal.

If we analyze from the perspective of (Ng et al., 1997), the fact that real data is noisy
makes model selection even harder. Consider an example in which we are performing model
selection using a single-criterion approach to maximize the Holdout performance. Our
Holdout set contains 100 samples, of which 80 samples are correctly labeled without noise,
but 20 samples are noisy/wrong. Theoretically, suppose we have models A and B predicting
80% of the time correctly. In that case, it might be the case that A is better than B in the
Test set because A correctly predicted the 80/80 healthy and 0/20 problematic samples.
In comparison, B correctly predicted 60/80 healthy and 20/20 problematic samples, simply
(over-)fitting the noise. Since we usually do not have the information of which points are
correctly labeled or not. We can analyze the expectations. Now let us imagine that model
A correctly predicted all the samples according to the current labeling (80/80 and 20/20)
and B correctly predicted only 80% (80/80 and 0/20), i.e., model A is over-estimated on
the Holdout set. The most common approach is to select model A since it maximizes the
single criterion. However, if we look into the Test set, model B will probably have a better
performance because it does not fit the same noise present in the Holdout set. Since the
over-estimated model would be selected due to noise in the Holdout set, we expect that it
will correctly predict only 80% of the correctly labeled data and present a bad performance
on the noisy data in the test set. If model B is chosen, we would expect that it would
correctly label roughly 100% of the correctly labeled data and still have approximately
lousy performance in the noisy portion of Test data. It is important to create strategies to
better handle this phenomenom.

Although single-criterion is probably the most common approach to select machine
learning models, there are works that tries to perform a multi-criteria model selection
such as in Ali et al. (2017), that proposed a multi-criteria decision making methodology
using accuracy, time and consistency of each model to select the best one. It uses the
TOPSIS Tzeng and Huang (2011) ranking to measure the distance to the ideal classifier.
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The TOPSIS were also used in (Vazquezl et al., 2020) to model selection, but only used
different performance metrics for a specific set. A fuzzy approach to work alongside with
TOPSIS was proposed in Akinsola et al. (2019). None of the mentioned multi-criterion
proposals look into the training data to perform the model selection. We argue that the
performance equilibrium between the individual sets can be a proxy measurement to the
model robustness.

As far as we know, this is the first work investigating an immense number of NN ar-
chitectures trained for several tabular datasets. The extensive regime of models allowed
observing interesting behaviors during model selection that usually does not happen in
small regime.

The objective of this paper is to compare the commonly used single-criterion against the
multi-criterion model selection procedure. This paper is organized as follow. In Section 2
we present our contribution and define optimality conditions of theoretical optimal models.
In Section 3 we explain the experimental setup. In Section 4 we introduce and discuss the
results. The conclusions are given in Section 5. Finally, in Section 6 we present future
directions and opportunity of investigations on how to improve our contributions.

2. Methodology

This section explains our methodology to study model selection on a large scale. The
primary objective is to generate a partition of the data to analyze the effect of the model
selection procedure in the model put in production.

2.1 Data Splitting

The data splitting procedure is depicted in Figure 1. The first step is to divide the data
into 10-folds. After that, the last fold is used as a Fixed Test set (blue box) among all the
runs for a specific dataset. Another fold is used as a Holdout set (green box). Each of the
remaining eight folds will be used once as a Validation set (red box), and the other seven
will compose the Train set (gray box). It allows us to run nine times with different splits for
the sets. We repeat the experiment twice, totaling 18 independent runs for each dataset.

It is worth mentioning that both Holdout and Fixed Test were never used during model
training (neither was used in early stopping). Therefore, both sets can be seen as proxies
for future unseen data, and can be used to estimate the models’ performance when used in
production.

2.2 Models

We have used the ParallelMLPs (Farias et al., 2022) approach to create several different MLP
architectures and analyze them simultaneously. The ParallelMLP was arranged to create
architectures with 1 to 100 neurons in the hidden layer, using seven different activation
functions (700 architectural possibilities) and eight repetitions (each repetition will use a
different validation set). It creates a total of 100∗7∗8 = 5, 600 MLPs. We use the validation
set to perform early stopping with the patience of 10 epochs.

With this strategy, seven splits are used as train splits. Since we have eight architectural
repetitions (8 sub-networks are identical, they only differ by their random initialization), we
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1 2 3 4 5 6 7 8 9 10
Fixed Test

1 2 3 4 5 6 7 8 9 10

Architectural
Repetition Holdout Fixed Test

1 1 2 3 4 5 6 7 8 9 10
2 1 2 3 4 5 6 7 8 9 10
3 1 2 3 4 5 6 7 8 9 10
4 1 2 3 4 5 6 7 8 9 10
5 1 2 3 4 5 6 7 8 9 10
6 1 2 3 4 5 6 7 8 9 10
7 1 2 3 4 5 6 7 8 9 10
8 1 2 3 4 5 6 7 8 9 10

⋮
Architectural

Repetition Holdout Fixed Test
1 2 3 4 5 6 7 8 9 1 10
2 2 3 4 5 6 7 8 9 1 10
3 2 3 4 5 6 7 8 9 1 10
4 2 3 4 5 6 7 8 9 1 10
5 2 3 4 5 6 7 8 9 1 10
6 2 3 4 5 6 7 8 9 1 10
7 2 3 4 5 6 7 8 9 1 10
8 2 3 4 5 6 7 8 9 1 10

Run 9

N

Run 1

All Dataset

10-fold

Separate Fixed Test

Figure 1: Description of the sets constructions.

round-robin the validation (early-stopping) split such that each one of the eight repetitions
uses a different validation split. In order to accomplish this round-robin, we sample from
training and validation splits (8 splits in total). We also use a train boolean mask that
maps which dataset indices must be used as training samples for each sub-network to ignore
those points during training dynamically. In practical terms, it means that the expected
adequate batch size will proportionally have 7/8 of the original batched samples, e.g., if
batch size = 32, it means that the expected number of training samples that each model
will consider in each batch during back-propagation is 7/8 ∗ 32 = 28 samples, ignoring
1/8 ∗ 32 = 4 samples in expectation since it is marked for validation only. During the
validation phase, we need to invert the training mask to obtain the validation mask. This
procedure allows us to mimic the training of 8 independent trials varying which split is used
to early stop the model. In our specific case, 700 different architectures are being trained 8
times, using a different validation set.

The model selection is a procedure responsible for selecting the best architecture, i.e.,
the one that maximizes the model performance on a specific dataset. The most common
approach is using k-fold cross-validation and selecting the model with the best average per-
formance on the validation set. In our understanding, this approach results in acceptable
model choices, but it limits the learning process because the architecture is fixed. Conse-
quentially, the number of parameters must be the same.

As a Machine Learning system is composed by 4 components: (i) model – including
architectures – to predict the targets; (ii) loss function to measure the success of the model;
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(iii) optimization algorithm to adjust the parameters of the model; and (iv) the data. If
one of these components changes during the learning process, we cannot guarantee that we
will have the same performance – this is probably why k-Fold is a natural choice for ML
hyper-parameter optimization. Even the initialization randomness can be a decisive factor
for successfully learning a task once bad initial conditions difficult the learning dynamics
of the model. Regarding the data, if we change the order in which the batches are chosen,
we might have different learning dynamics. If we are performing a hyper-parameter search
using a Tree or Gradient Boosting methods such as XGBOOST (Chen and Guestrin, 2016),
LightGBM (Ke et al., 2017), and even simple Random Forests (Breiman, 2001), we usually
optimize the number of estimators. However, each estimator can grow to a specific depth,
leading to different architectures and parameters even if we keep the same hyper-parameters.
It is also observed when Support Vector Machines (Cortes and Vapnik, 1995) (SVM) are
used since the same hyper-parameters might create SVMs with different support vectors.
This behavior of using a different number of parameters, even if we use the same hyper-
parameters, mostly happens due to the learning dynamics given the initial conditions and
the samples chosen to train the models, leading to different error landscapes, affecting
the learning process. That is why we believe that forcing a NN to have a fixed number
of parameters that will store the model’s knowledge is not a good idea since the model’s
initialization and the splitting. Even the order of batches being presented will guide the
model to different landscapes.

To the best of our knowledge, this is the first paper to investigate model selection using
a large number of ANN. It was possible because we have used the ParallelMLPs algorithm
to train several independent MLPs in an acceptable time window. Therefore, by looking
into this regime, we could investigate further the relationship between different properties
of NN trained on the same datasets. Due to the regime of a large number of trained models,
we had the opportunity to investigate properties such as over-fitting and over-search on a
large scale.

2.3 Optimality Conditions

We propose four optimality conditions based on desired properties that we believe the
selected ANN models should have:

• High Generalization Performance

• High Robustness

• Low Complexity

• No Premature Early Stopping

We argue that the more conditions a model meet, the more confident we are about its
future performance when deployed in production to be used in the real world.

5

138



Farias, Ludermir and Bastos-Filho

2.3.1 High Generalization Performance

How should one select a model from several possible candidates? Selecting the best Holdout
model would be the best approach?

When performing model selection, we are trying to collect the model that will perform
the best during real-world operation. It means that we want a model with a high general-
ization. Therefore, the model should have good and close performance for the Holdout and
Test sets.

Often only the Validation set is used to perform model selection. As we try to select
the best model among several possibilities, we may incur into a problem if our objective
is solely to maximize the Validation performance. In (Ng et al., 1997) the authors suggest
that selecting the “apparent best” model is problematic because datasets are noisy, and the
“apparent best” model that maximizes the performance is learning the noise in the data.
They suggested an approach to select models based on a percentile of the possibilities called
percentile-cv. However, it is a costly approach since it is based on a Leave-One-Out.

To analyze this optimality condition, we can define the Data Formation Rule Equation
as

Y = M(X) (1)

where the data (Y ) can be explained by a prediction using the theoretical optimal Model
(M) applied to the input data (X). However, real-world data very often contains noise,
that’s why we add the ϵ component to account for noise/aleatoric uncertainty (Hüllermeier
and Waegeman, 2021).

Y = M(X) + ϵ (2)

The noise can be related to the attribute or the targets/labels of the dataset. Therefore,
for real-world data, we are usually influenced by ϵ > 0 and ϵ << M , otherwise the dataset
would probably contain too much noise to be helpful. For an interesting survey on dataset
noise, one can read the (Gupta and Gupta, 2019) work. Since the ϵ is irreducible due to its
stochastic behavior, and therefore the model should not explain, we should avoid the model
to learn ϵ. Consequently, if we have an incredible performance on a specific set of a dataset,
it probably means that our model also has learned the noise of that set instead of learning
what should be learned (model close to the theoretical optimal model). Usually, the more
a model learns noise, the less generalizable it tends to be. We say that the single-criterion
decision-making is naive because it assumes that the model should be able to explain the
entire set, disregarding the actual irreducible error. When performing model selection, we
really should be looking for a model that maximizes the metric performance of Y due to
the M(X) and not the ϵ term.

The NN must have the highest performance possible to solve a specific task when an-
alyzing unseen data. The performance is usually measured only by looking into the Val-
idation/Test set. Since we are using the Holdout and Test set as unseen data w.r.t. the
Training and Validation sets, the models must have the highest performance possi-
ble in those two sets, on top of this assumption, we add that the metrics in both Holdout
and Test sets should agree by having similar values, assuming they were pretty split without
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any biases. We have used a Stratified 10-fold and the Similarity-Based Stratified Splitting
(SBSS) (Farias et al., 2020), both designed to achieve equivalent statistics for their folds.

2.3.2 High Robustness

The Training and Validation set are one of the most important piece for the model to train,
since the former updates the model’s parameters and the latter is applied to early stopping
in order to avoid over-fitting. Since they play such a relevant role, why do we ignore their
information during the model selection procedure? One can argue that Training set per-
formance will be highly overestimated because the parameters are being optimized directly
to fit them. However, we have found that, inside the immense pool of MLP candidates
that we were able to create, we still can find similar models w.r.t the Test set performance,
but with the Train and Validation metrics close to each other that does not seem to be
over-estimated as we would expect.

This condition is an extension of the previous optimality condition, but now looking into
the training data (Train and Validation sets). It is helpful to analyze an extreme case in
which we have the universe of points (all possible points) for a given task, such as all possible
movements in a game. Suppose we train a model on this universe that perfectly fits the
task (without over-fitting), finding the theoretical optimal model. In that case, the optimal
decision boundaries were correctly found. Therefore we would have correctly predicted 100%
on all four sets (Train, Validation, Holdout, and Test). Suppose we randomly sub-sample the
universe data and use only 80% of the original data. In that case, the model could converge
to the same parameters and still have perfect predictions on the four sets (which is very
unlikely) or converge to a point where it can correctly predict 90% of the cases. Since we
randomly sub-sampled the data, we expect statistical properties to be preserved. Therefore,
all four sets should have roughly 90% of the time correct predictions. In other words, all
the Train, Validation, Holdout, and Test sets should have similar performances.
This equilibrium probably increases the robustness of the model and the trustfulness w.r.t.
their estimated performance metrics.

Another way to analyze this condition is to consider two models, A and B, where the
Train, Validation, Holdout, and Test metrics for model A is 0.99, 0.94, 0.92, 0.85 and model B
0.86, 0.85, 0.85, 0.85. Which one should be selected? Model B is probably more robust than
A since model A presents some behaviors usually observed in over-fitted models (very high
Training/Validation performance). Since we usually do not look into the Train and Valida-
tion metrics, we would probably select model A if only looking into the Validation/Holdout
performance metric. That is why we defend the importance of considering more than a
single-criterion to create better decisions.

When we perform model selection using a single set as a single-criterion decision given
a large number of models, we are probably selecting a model that maximizes that metric by
correctly predicting the corrected labeled points, but also “correctly” predicting the noise
on that data.

To better understand this optimality condition, we can decompose and specialize the
Equation 2 by each individual set as follows:
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Ytrain = M(Xtrain) + ϵtrain (3)

Yvalidation = M(Xvalidation) + ϵvalidation (4)

Yholdout = M(Xholdout) + ϵholdout (5)

Ytest = M(Xtest) + ϵtest (6)

It is worth noticing that the model component M is shared among all the sets since we
are using the same model to explain the data.

We can define the model predictions as Ŷ = M(X) = f(X|θ) where θ are the parameters
of the model. When training a NN on Ytrain, we are trying to find the model’s parameters θ
such that f(Xtrain|θ) minimizes the loss function L = loss(Ŷtrain, Ytrain+ϵtrain). Specifically
for the Train set we have:

θ = argmin loss(f(Xtrain|θ), Ytrain + ϵtrain) (7)

Since the data explanation equations are explained by the model M and the ϵ noise,
there is a compromise between both terms. We theoretically should choose the model M
that explains (100%) of set Y . However, in practice, each set Y will have a percentage
explained by M and the remaining percentage by its own ϵ when we select the model M
with a single criterion that maximizes the performance metric or minimizes a loss function
on a single set, e.g., the Train set – explained by Equation 3. It means that the selected
model will probably incorporate the ϵtrain of that set, which is different from all the other
ϵ. This procedure will probably produce an over-fitted model. If we are willing to minimize
the loss between Ytrain and Ŷtrain, we can state that (Ytrain − Ŷtrain) → 0, which is to say
that Ŷ = M(Xtrain) − ϵtrain. The model M learned how to compensate for the noise ϵtrain
of the training data. Therefore M can fully explain Ytrain, also minimizing the loss between
Ytrain and Ŷtrain as can be seen in the following set of equations:

Ytrain = M(Xtrain) + ϵtrain (8)

M(Xtrain) = f(Xtrain|θ) − ϵtrain (9)

Ytrain = (f(Xtrain|θ) − ϵtrain) + ϵtrain (10)

Ytrain = f(Xtrain|θ) (11)

The problem occurs when the previously learned model M is applied to unseen data
in the test set. The part less affected by ϵtest in the Test set (explained mainly by the
theoretical optimal model M term) will perform poorly due to the over-fitted model on the
Training set, presenting a high generalization error as follows

Ytest = M + ϵtest (12)

Ytest = (f(Xtest|θ) − ϵtrain) + ϵtest (13)

To alleviate the problem of over-fitting, we usually use the Validation set constraining
the model learning to minimize the loss function to explain the Train set in Equation 14
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subjected to also minimize the loss in the Validation set simultaneously as in Equation 15,
but without using the Validation data to change the model’s parameters.

θ = argmin loss(f(Xtrain|θ), Ytrain + ϵtrain) (14)

subject to:

θ = argmin loss(f(Xvalidation|θ), Yvalidation + ϵvalidation) (15)

When we perform model selection in a multi-criteria approach, e.g., maximizing all the
sets, we are implicitly taking into account the noise on every set and trying to decrease
the influence of each noise ϵ during the selection procedure such that we can find a model
M which mostly explains all the sets used in the multi-criteria decision. It will select
models with worse results, but we claim that they are closer to reality since most of the
explanation for each set comes from the shared model M instead of a specific noise for a
single set. In other words, we are trying to select the model that simultaneously optimizes
the performance in the Training, Validation, and Holdout sets. We can understand it
as finding M that minimizes (Ytrain − Ŷtrain), (Yvalidation − Ŷvalidation), (Yholdout − Ŷholdout)
simultaneously. In that case we are giving more importance to M term (since it is shared)
relative to each set ϵ: M + ϵtrain +M + ϵvalidation +Mϵtest = 3M + ϵtrain + ϵvalidation + ϵtest.
That is why we believe the selected model when optimizing several sets is closer to the
theoretical optimal model M since it dilutes the influence of different ϵ across the sets.

The separation into several disjoint subsets to be presented to the NN during the learning
process might also be an interesting research avenue to avoid over-fitting and improve model
selection since we will probably decrease the influence of individual subset noises during the
learning and selection process. However, we will leave that as future work.

2.3.3 Low Complexity

The complexity of the model is related to its representational capacity. When increasing
the number of parameters in the model, it is natural to understand that it can store more
information. However, we usually need more data to avoid over-fitting. If fewer parameters
are used, less data is needed to train the model successfully. It is less prone to over-fit
while decreasing the bias and increasing the difficulty for the model to fit the data. We
can also analyze it through the lenses of the bias-variance tradeoff (Hastie et al., 2009).
Generally, when model complexity increases, the variance increases, and the bias decreases.
Ideally, the model should have low variance and low bias. The best model should have the
lowest complexity and the highest performance. It is usually hard to achieve due to the
bias-variance trade-off. The model should have the lowest number of neurons as
possible.

2.3.4 No Premature Early Stopping

Model initialization is very important to the training dynamics. We can analyze it using
the same data, learning algorithm, and the number of epochs, only varying the random
initialization of the model. We can divide the initialization into four categories: (i) the
model starts in a sweet spot, and no further training is needed (early stopping on epoch 0)

9

142



Farias, Ludermir and Bastos-Filho

to predict the data (this is very unlikely) correctly; (ii) the model starts in a good region and
a few epochs would be sufficient to optimize it, causing an early stopping in the beginning,
because of the fast convergence due to a good initial guess (also unlikely); (iii) the model
starts in a decent/moderate region and can be optimized for several epochs with late or no
early stoppings; (iv) the model starts in an awful place that difficult the learning process
causing early stoppings at the beginning of the training phase for various convergence issues
such as vanishing/exploding gradients; The third case is more likely to happen since the
training using Stochastic Gradient Descent algorithms tends to converge to a minimum due
to the error decreasing (and therefore the gradients) throughout the number of epochs.

If a model starts in a bad region (due to the random initialization), it might not be able
to be adequately adjusted. Suppose we randomize a model and assess its performance in
a dataset without the training phase. In that case, the chances that this model produces
bad predictions is much larger than hitting a good spot and correctly predicting the data.
Suppose we train using this bad randomly initialized model. In that case, it will probably
stop training earlier than a good initialized model unless it randomly started very close to
its convergence point in the parameters space (which is also unlikely). Therefore, we expect
the best model to be produced by a more extended training session (without
premature early stoppings).

We believe that a multi-criteria model selection is better than a single-criterion be-
cause when we perform a multi-objective optimization, we usually will have a Pareto Front
containing several non-dominated solutions. The solution that we will select using a multi-
criteria method will probably not correspond to any extreme case in any dimension, which
would be the natural choice in a single-criterion approach. Therefore, we expect that it
alleviates the chance of selecting a model that is also fitting the noise of a specific set,
consequently avoiding over-fitted models.

In order to select the best model among the 5,600 independently trained (in parallel)
MLPs, we have analyzed several model selection policies related to the optimality conditions
proposed in this paper.

2.4 Selection Policies

Here we describe the strategies we have used to select the models.

2.4.1 Aggregation Policies

To rank the models, we can aggregate them by the architecture, locally or globally, or treat
them individually. In order to compare the aggregation at different levels, we proposed
three aggregation policies to study each optimality condition. Each aggregation group has
different approaches on how to aggregate metrics in order to find the best architecture:

• Individual: Rankings are treated as individual models’ ranks in each run for each
dataset, without any aggregation. For each run and dataset, we compare 5,600 indi-
vidual models to find the one that maximizes the objectives the most.

• Local: Rankings are averaged by architecture (8 repetitions of the same architecture,
defined by the number of neurons and activation function), containing a mutually ex-
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clusive validation set for early stoppings. For each run and dataset, we are comparing
between 5, 600/8 = 700 different architectures.

• Global: In this aggregation, we averaged the rankings of each eight architectural
repetitions of all the 18 runs, leading to 18 ∗ 8 = 144 architectures trained in different
folds but sharing the same Fixed Test set. Once we find the best architecture given
all the runs w.r.t. their rankings, we select the model among its eight architectural
repetitions for each run. This strategy allows us to understand if we have a ”best
architecture” regarding a specific dataset and an applied ranking.

.

2.4.2 Ranking Policies

In order to rank models, we proposed several ranking policies that use different strategies
to study our optimality conditions.

Even though policies that use the Test metric should be avoided in real life because
we would be selecting a model based on the Test set, it serves as an upper bound or an
approximation of the theoretical optimal model to compare with and analyze the relation-
ship between other policies that do not include the Test set metric as part of the decision
criteria.

• Single Sets
Here, we pick the models that maximize the performance metric on a specific set.

– Train: Selects the model with the best performance on the train set. Even
though it is not a common approach, we can use it to study over-fitting.

– Validation: Selects the model with the best performance on their respective
validation set that was used to early stop the model training.

– Holdout: Selects the model with the best performance on the holdout set.

– Test: Selects the model with the best performance on the Test set for comparison
purposes.

Local Validation is the most common approach, where the average performance of the
same model architecture is calculated on the validation set. In our case, we calculate the
average of the eight repetitions trained using a mutually exclusive validation set. Once
we have defined the architecture, we select the model with the best performance on its
validation set.

We argue that ML models contain several important intrinsic aspects usually neglected
when performing the model selection. Summarizing the model and its idiosyncrasies by
naively treating model selection as a single-criterion decision task when we only look into
a specific set performance metric such as Validation or Holdout accuracy is probably an
oversimplified and sub-optimal approach. Therefore, we propose that model selection should
be a multi-criteria procedure task and use a combination of properties to rank the models.
We have tried to maximize the performance metric and the number of epochs, and minimize
the number of neurons, simultaneously. We used Multi-Criteria Decision-Making (MCDM)
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algorithms (Triantaphyllou, 2000; Aruldoss et al., 2013; Sa labun et al., 2020) to rank the
models. Specifically, a straightforward and known algorithm is the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) (Tzeng and Huang, 2011). In this
algorithm, we will select the model that minimizes the geometric distance from the Positive
Ideal Solution (PIS) and simultaneously maximize the geometric distance from the Negative
Ideal Solution (NIS). We can understand the PIS and NIS as the best possible model
(maximum metrics, one neuron, maximum stopped epoch) and the worst possible model
(minimum metrics, 100 neurons, minimum stopped epoch), respectively. After ranking the
models, we apply a Pareto Dominance criteria filter to remove dominated solutions and
select the best-ranked model among the non-dominated Pareto solutions. We relied on the
PyMCDM library (Shekhovtsov, 2022) to use the TOPSIS algorithm.

Since the MCDM methods create a single scalar rank based on several variables, it
will intrinsically incorporate a trade-off or compromise analysis during its execution. Con-
sequentially, we will not be selecting the best performance for a single optimized variable,
alleviating the issue of over-searching. The MCDM methods can use different weight scheme
combinations and the vectors’ normalization.

To improve the paper’s readability, we are naming TOPSIS policies after the first letter
of what we include in its multi-criteria.

• High Generalization Performance
Both Holdout and Test performances should be maximized simultaneously.

– THT: TOPSIS maximizing Holdout and Test metrics.

• High Robustness
The Train and Validation sets also need to be maximizes.

– TTVH: TOPSIS maximizing Train, Validation, and Holdout metrics

– TTVHT: TOPSIS maximizing Train, Validation, Holdout, and Test metrics

• Low Complexity
We additionally provide the number of neurons to be minimized in the TOPSIS.

– TTVHN: TOPSIS maximizing Train, Validation, Holdout, and minimizing the
Number of Neurons.

– TTVHTN: TOPSIS maximizing Train, Validation, Holdout, Test, and mini-
mizing the Number of Neurons.

• No Premature Early Stopping
We additionally provide the Number of Epochs to be maximized (E) in the TOPSIS.
For comparison purposes, we also tried to minimize the Number of Epochs (B – Begin
of the training).

– TTVHNE: TOPSIS maximizing Train, Validation, Holdout, Number of Epochs,
and minimizing the Number of Neurons.

– TTVHNB: TOPSIS maximizing Train, Validation, Holdout, and minimizing
the Number of Neurons and Number of Epochs (Begin of the train) to compar-
isons purposes.
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– TTVHTNE: TOPSIS maximizing Train, Validation, Holdout, Test, Number of
Epochs, and minimizing the Number of Neurons.

– TTVHTNB: TOPSIS maximizing Train, Validation, Holdout, Test, and mini-
mizing the Number of Neurons and Number of Epochs (Begin of the train) for
comparisons purposes.

The policies are using the number of neurons as a tiebreaker (models with fewer neurons
are preferred) in case models have the same metric being ordered.

As the splits are sampled so that the statistical characterization should be the same, we
claim that the best model is not the model that only maximizes the Test set performance
metric. However, it also needs a slight disagreement regarding the performance along the
Train, Validation, and Holdout sets. If we select the model solely based on the Test per-
formance, the model might be over-fitting in the Test set because its performance might
be much higher than on the other sets. Therefore, we are considering good models that
balance the performance on all the individual sets. We suggest using the TTVH policy
if we want to maximize the accuracy and TTVHN policy to still have good accuracy but
focusing on smaller models since both of the policies does not look into the Test set and
the No Premature Early Stopping criteria seems to need further adjustments regarding the
weight that this condition should be given.

3. Experiments

3.1 Computing Environment

A Machine with 16GB RAM, 11GB NVIDIA GTX 1080 Ti, and an I7-8700K CPU @ 3.7GHz
containing 12 threads were used to perform the simulations. All the code was written using
PyTorch (Paszke et al., 2019).

3.2 Number of Neurons

We have created MLPs containing from 1 to 100 neurons in their hidden layer. It gives us
100 different architectures.

3.3 Activation Functions

We have used seven activation functions (Identity, GELU, LeakyReLU, ReLU, SeLU, Sig-
moid, Tanh). Combined with the number of neuron variations, we get 100∗7 = 700 different
architectures.

3.4 Splitting Strategy

We have assessed our proposal with the Similarity-Based Stratified Splitting (SBSS) (Farias
et al., 2020) and without it – an ordinal stratified 10-fold – with one fold being a fixed test
split, another one a fixed holdout split, and the remaining eight splits being used as training
and validation splits. We have used 10 splits because it is one of the most common k-fold
setup used in machine learning.
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3.5 Datasets

We assessed the proposed selection policies and optimality conditions in several situations,
such as many features and labels, a low number of samples, and dataset imbalances. We
have used 14 datasets from UCI (Dua and Graff, 2017) listed in Table 1. We calculated
the Imbalance of each dataset by adapting the suggestion in (Romano, 2016) according to
Eq. 16, resulting in 0 when the dataset is balanced and 1 otherwise.

Imbalance = 1 −
∑k

i=1
ci
n log( cin )

log(k)
(16)

where n is the number of samples; k is the number of labels, and ci is the number of samples
in label i.

Dataset # Features # Labels # Samples Imbalance

balance-scale 4 3 625 0.17
blood-transfusion-service-center 4 2 748 0.21
car 6 4 1728 0.40
diabetes 8 2 768 0.07
tic-tac-toe 9 2 958 0.07
ilpd 10 2 583 0.14
vowel 12 11 990 0.00
australian 14 2 690 0.01
climate-model-simulation-crashes 18 2 540 0.58
vehicle 18 4 846 0.00
credit-g 20 2 1000 0.12
wdbc 30 2 569 0.05
ionosphere 34 2 351 0.06
satimage 36 6 6430 0.04
libras move 90 15 360 0.00
lsvt 310 2 126 0.08

Table 1: Datasets used as benchmarks

We selected datasets with different properties such as number of features, labels, samples
and imbalance levels. This creates different challenges for each dataset that are useful to
simulate several situations which our proposal may be exposed when working with real
world data.

4. Results and Discussion

In this section we present the results and discussions of our experiments.
Each point in Figure 2 is the average of 8 models with the same architecture (combination

of the number of neurons and activation function) in a specific run for each dataset. As
expected, we can observe a high correlation in the distribution of Train, Holdout, and Test
accuracies.

In Figure 3 we have created the Pareto Front using the Holdout and Test sets perfor-
mances considering all the models for each dataset. Pareto Front is a concept that tries to
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Figure 2: Average Train, Holdout, and Test accuracies grouped by run, dataset, and archi-
tecture.
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capture trade-offs between variables being used in a multi-objective optimization process.
Since we are using two variables in this plot (Holdout and Test accuracies), we create a
set of models such that there are no other models that can improve some variable without
reducing others. Neither the Holdout nor the Test set participates during the model train-
ing. Therefore, from the model standpoint, those two specific sets can be considered as two
proxies of real data that the model will probably see during the real operation.

0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1
dataset

ilpd
credit-g
blood-transfusion-service-center
diabetes
Australian
lsvt
vowel
satimage
balance-scale
libras_move
car
ionosphere
wdbc
climate-model-simulation-crashes

Holdout Acc

Te
st

 A
cc

Figure 3: Pareto front for each dataset.

As we can see, if the model that performs best in the Holdout set is used, it is not
guaranteed that the model will have the best performance in the Test set. Based on this
finding, we can state that selecting a model that only maximizes the Holdout set will not
give us the best model to be used as a production model.

4.1 SBSS vs. Stratified 10-fold

A comparison between a 10-fold SBSS and an ordinary Stratified 10-fold is presented in
Table 2. It is easy to realize that the 10-fold SBSS consistently outperforms the ordinary
Stratified 10-fold splitting. Therefore, the subsequent analysis will be done only using SBSS.

The following results tables contain the average and standard deviations in parenthesis
for each Policy for the selected models w.r.t. the Number of Neurons (# Neurons - lower
is better), Number of trained Epochs due to Early Stopping (# Epochs - higher is better),
Accuracies for Train, Validation, Holdout, and Test sets (higher is better), and the Dis-
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Splitting Strategy
Accuracy ↑

Train Validation Holdout Test

10-fold SBSS
83.62

(12.72)
83.68

(11.24)
84.28

(11.29)
80.97

(12.45)

Stratified 10-fold
73.94

(16.62)
76.63

(14.72)
76.48

(14.42)
74.87

(15.73)

Table 2: Accuracy average and standard deviation (in parenthesis) for all the 5, 600 gener-
ated models, 18 runs and 14 datasets, totaling 1, 411, 200 models for each Splitting Strategy.

agreement (smaller is better) as the average of the absolute individual difference between
Train-Validation, Holdout-Test and All (averaged absolute difference for each combination
of paired sets). Wilcoxon statistical significance test tables contain three symbols to rep-
resent: (▲) row distribution significantly larger than column; (≡) row distribution not
significantly different from the column; (▽) row distribution significantly smaller than the
column. If the variable is Accuracy, policies that produce larger values are better. On
the other hand, if the variable is Disagreement, smaller values are better. The Summary
contains the sum of ▲(1), ≡ (0), ▽(−1) for each policy in rows.

4.2 High Generalization Performance Results

The results for each aggregation and ranking Policy are presented in Table 3 and are useful
for understanding the High Generalization Performance condition. Also, the Wilcoxon
Statistical Tests regarding the Test performance can be seen in Table 4.

We can analyze the architectural generalization by examining the three grouping strate-
gies with the Test policy. The average number of neurons for Test policy with groupings
Individual, Local and Global are 42.8, 68.5, 85; while the accuracies are 90.61, 89.05, 87.69,
with Individual (win) – Local, Local (win) – Global. If we use Holdout instead of Test pol-
icy, we have the number of neurons 76.41, 86.41, 87.36 and Test accuracy 85.54, 85.01, 85.48.
The Holdout Wilcoxon tests for the three groups are all equivalent. The Global grouping
(for each dataset, we have chosen a single architecture) led to similar performances if we
used the Local grouping (for each run, we choose the best model given the best-averaged ar-
chitecture) or the Individual grouping (each run will have to treat each model individually,
without any architecture grouping). However, Individual grouping could provide equivalent
Test performances but with smaller networks.

It seems that analyzing the best architecture for a given data combination (the Individual
grouping) is preferable. It contributes to our hypothesis that freezing the NN architecture is
not the best approach. The models will experience different initializations and be exposed
to slightly different training data. Therefore, they will experience different error landscapes,
subjected to their learning dynamics.

We did not need to train several models to select good ones. The Individual–Holdout
does not aggregate performances by the architecture, i.e., it does not use the concept of
“best architecture” for a given dataset, differently from the Local–Holdout and Global–
Holdout. Still, the Individual–Holdout is performing equivalently to the Local–Holdout and
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Policy # Neurons ↓ # Epochs ↑ Accuracy ↑ Disagreement ↓
Train Validation Holdout Test Train-Validation Holdout-Test All

Individual

Train
73.47

(29.13)
86.02
(24.6)

92.45
(7.72)

87.47
(7.8)

91.28
(7.71)

85.06
(9.5)

5.03
(4.21)

6.4
(6.84)

4.66
(4.05)

Validation
47.02

(34.84)
62.99

(35.21)
87.85
(8.8)

91.86
(6.85)

88.97
(7.98)

84.25
(9.78)

4.26
(3.96)

5.21
(6.76)

4.38
(3.83)

Holdout
76.41
(27.5)

84.79
(25.13)

92.08
(7.92)

89.94
(7.79)

91.76
(7.66)

85.54
(9.29)

2.77
(2.66)

6.37
(6.53)

3.94
(3.51)

Test
42.8

(33.91)
63.72

(34.72)
87.42
(8.8)

87.07
(7.64)

87.68
(7.98)

90.61
(7.05)

2.67
(3.25)

4.29
(3.51)

3.13
(2.41)

THT
75.5

(24.61)
78.21

(27.19)
91.22
(8.36)

89.05
(7.89)

90.9
(8.07)

89.65
(7.34)

2.83
(2.67)

3.52
(3.26)

2.67
(2.0)

Local

Train
85.19

(18.79)
80.42

(26.98)
91.75
(8.21)

88.0
(7.93)

90.95
(8.0)

85.21
(9.43)

3.86
(3.6)

5.98
(7.27)

4.12
(4.09)

Validation
80.45

(20.88)
62.89

(33.46)
89.07
(8.9)

90.8
(7.08)

89.65
(8.21)

85.14
(9.38)

2.68
(2.69)

4.94
(6.1)

3.52
(3.19)

Holdout
86.41
(17.5)

78.35
(27.47)

91.52
(8.01)

89.37
(7.6)

91.2
(7.71)

85.01
(9.6)

2.76
(2.76)

6.36
(7.27)

3.94
(3.97)

Test
68.52

(30.98)
61.08
(34.2)

88.61
(9.19)

88.13
(7.81)

88.77
(8.51)

89.05
(7.49)

2.28
(2.62)

3.46
(3.28)

2.48
(2.11)

THT
82.75

(19.23)
68.67

(30.14)
90.56
(8.51)

88.58
(7.57)

90.28
(8.03)

88.76
(7.59)

3.26
(3.32)

3.58
(3.79)

2.86
(2.4)

Global

Train
91.86

(11.95)
75.19

(27.65)
91.43
(8.26)

87.85
(7.9)

90.69
(8.01)

85.34
(9.22)

3.73
(3.9)

5.55
(6.55)

3.85
(3.87)

Validation
92.29

(13.52)
61.85

(29.62)
89.17
(8.28)

90.13
(7.42)

89.51
(7.95)

84.91
(9.8)

1.96
(1.89)

5.19
(6.77)

3.33
(3.48)

Holdout
87.36

(23.97)
75.85

(26.96)
90.99
(8.93)

88.78
(7.87)

90.83
(8.02)

85.48
(9.18)

3.08
(2.75)

5.49
(6.39)

3.67
(3.47)

Test
85.0

(21.18)
62.13
(32.4)

89.37
(8.82)

88.26
(8.03)

89.24
(8.46)

87.69
(8.17)

2.24
(3.15)

3.4
(4.4)

2.42
(2.74)

THT
89.36

(12.43)
69.11

(30.22)
90.04

(10.02)
88.45
(7.74)

90.21
(8.2)

87.44
(8.42)

3.59
(3.66)

3.9
(4.9)

3.18
(2.9)

Table 3: Results for High Generalization Performance policies.

Individual Local Global Summary
Holdout Test THT Holdout Test THT Holdout Test THT Test Accuracy ↑

Individual
Holdout ≡ ▽ ▽ ≡ ▽ ▽ ≡ ▽ ▽ -6

Test ▲ ≡ ▲ ▲ ▲ ▲ ▲ ▲ ▲ 8
THT ▲ ▽ ≡ ▲ ▲ ▲ ▲ ▲ ▲ 6

Local
Holdout ≡ ▽ ▽ ≡ ▽ ▽ ≡ ▽ ▽ -6

Test ▲ ▽ ▽ ▲ ≡ ▲ ▲ ▲ ▲ 4
THT ▲ ▽ ▽ ▲ ▽ ≡ ▲ ▲ ▲ 2

Global
Holdout ≡ ▽ ▽ ≡ ▽ ▽ ≡ ▽ ▽ -6

Test ▲ ▽ ▽ ▲ ▽ ▽ ▲ ≡ ▲ 0
THT ▲ ▽ ▽ ▲ ▽ ▽ ▲ ▽ ≡ -2

Table 4: Wilcoxon Statistical Significance Test comparisons for High Generalization policies
for different aggregations w.r.t. Test Accuracy.
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Global–Holdout, according to Table 4. We could select good models even when we have not
used 10-fold cross-validation to aggregate architectures and decide the “best architecture”.
Therefore, instead of repeating eight times the same architecture, we could always use
different architectures using the same amount of memory and computational processing
and increase the diversity of models by a factor of 7 (instead of 5, 600/8 = 700, we would
have 5, 600 unique architectures). As we did not need to find the “best architecture”,
we could use the time to run 10-fold cross-validation in other ways, such as varying non-
architectural hyper-parameters, e.g., the learning rate or the maximum number of epochs.
Using different validation sets for the same architectures in a large pool of ANN might
contribute to still finding good models. The training data change in the same run, and
a specific combination of folds composing the training data might create better learning
dynamics, producing exciting models.

When the Individual–Test policy is used, the Test accuracy is much higher than the
Holdout accuracy. At the same time, the Train and Validation accuracies are minor if
compared to the Test accuracy. Likewise, if the Individual–Holdout policy is used, the Test
accuracy is smaller than the Holdout accuracy. Should we expect the model’s performance
in the real world to be closer to the Holdout or Test set? When we select the model that
indiscriminately maximizes the Holdout or the Test metric (Holdout and Test policies), we
are probably overestimating one metric and underestimating the other while potentially
over-fitting the model. It can also be seen as a possible sign over-searching (Ying, 2019).
Over-searching is a common problem when the hypothesis space of ML algorithms grows,
increasing the over-fitting probability (Thornton et al., 2013). Over-searching is also a
counterintuitive problem because we are trying to find the best hyper-parameters of the
model, and the more points we know about the error landscape (more models trained and
tested), the more we increase the chance of facing over-searching issues. In other words,
the more information we have about our function to be optimized, the more we increase
the chance of selecting a bad set of hyper-parameters. We argue that over-searching can be
alleviated using a multi-criteria approach to select the models. We also advocate that the
Disagreement between the Holdout-Test sets deserves attention when selecting or estimating
the model’s performance in the real world.

From Table 4, we can realize that Individual–THT produces smaller NN and is bet-
ter than both Local–THT and Global–THT. It also decreases the Disagreement between
Holdout-Test and All if we compare them within the Individual group. It is worth men-
tioning that we have not tried to minimize the Disagreement measurements during the
THT policy explicitly. However, this behavior had emerged while trying to maximize both
Holdout and Test metrics.

Since the performance of the Individual–THT policy for Holdout and Test sets has the
smallest Disagreement-Holdout-Test and also Disagreement–All, if compared to Individual–
Holdout and Individual–Test policies, we could say that the real-world performance esti-
mations would be more reliable than picking the model by individually maximizing the
performance of each set using Individual–Holdout or Individual–Test (that is probably over-
estimated in the optimized set and underestimated in the other).

It is also important to highlight that even though THT is deciding based on the Holdout
and Test set metrics, the Individual–THT also increased both Train and Validation accu-
racy if compared against deciding only by maximizing the Test function. It contributes to
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our hypothesis that the models that have similar sets performance would be more robust,
mentioned in section 2.3.2.

Although seen as a bad practice due to the potential over-fitting, the Train policy is
probably not catastrophic in our case due to the early stopping usage. Interestingly, the
Train and Holdout approach contains very similar metrics. It might be because the Train
set contains more data (70%) than the Holdout set (10%); therefore, it estimates better,
and we are mitigating over-fitting by regularization and early stopping during training.

Since the results using Individual Aggregation are reasonable, we will not analyze the
Local and Global aggregations in the subsequent results.

4.3 High Robustness

The results to understand the High Robustness Optimality Condition are presented in
Table 5. Also, the Wilcoxon Statistical Tests regarding the Test performance can be seen
in Table 6, and the Disagreement All is presented in Table 7.

Policy # Neurons ↓ # Epochs ↑ Accuracy ↑ Disagreement ↓
Train Validation Holdout Test Train-Validation Holdout-Test All

Holdout
76.41
(27.5)

84.79
(25.13)

92.08
(7.92)

89.94
(7.79)

91.76
(7.66)

85.54
(9.29)

2.77
(2.66)

6.37
(6.53)

3.94
(3.51)

TTVH
75.98

(27.06)
82.64

(26.28)
91.49
(8.4)

91.1
(7.09)

91.5
(7.91)

85.42
(9.39)

2.26
(2.36)

6.26
(6.91)

3.84
(3.59)

Test
42.8

(33.91)
63.72

(34.72)
87.42
(8.8)

87.07
(7.64)

87.68
(7.98)

90.61
(7.05)

2.67
(3.25)

4.29
(3.51)

3.13
(2.41)

THT
75.5

(24.61)
78.21

(27.19)
91.22
(8.36)

89.05
(7.89)

90.9
(8.07)

89.65
(7.34)

2.83
(2.67)

3.52
(3.26)

2.67
(2.0)

TTVHT
76.5

(24.32)
77.75

(27.45)
91.05
(8.5)

90.47
(7.21)

91.05
(8.0)

88.88
(7.78)

2.52
(2.45)

3.42
(3.53)

2.48
(2.11)

Table 5: Results for High Robustness policies.

Policy Holdout TTVH Test THT TTVHT Summary Test Accuracy ↑
Holdout ≡ ≡ ▽ ▽ ▽ -3
TTVH ≡ ≡ ▽ ▽ ▽ -3
Test ▲ ▲ ≡ ▲ ▲ 4
THT ▲ ▲ ▽ ≡ ▲ 2

TTVHT ▲ ▲ ▽ ▽ ≡ 0

Table 6: Wilcoxon Statistical Significance Test comparisons for High Robustness policies
w.r.t. Test Accuracy.

We argue that the difference of the performance metrics for each set is inversely pro-
portional to its robustness. Let us compare the policies that do not look into the Test set
(TTVH and Holdout). We can see that TTVH could select models with statistically equiva-
lent results regarding the Test performance, as depicted in Table 6. At the same time, from
Table 7 it was able to significantly decrease the Disagreement if compared to the Holdout
policy. Therefore, instead of looking only into the Holdout performance metric, we should
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Policy Holdout TTVH Test THT TTVHT Summary All Disagreement ↓
Holdout ≡ ▲ ▲ ▲ ▲ 4
TTVH ▽ ≡ ≡ ▲ ▲ 1
Test ▽ ≡ ≡ ▲ ▲ 1
THT ▽ ▽ ▽ ≡ ▲ -2

TTVHT ▽ ▽ ▽ ▽ ≡ -4

Table 7: Wilcoxon Statistical Significance Test comparisons for High Robustness policies
w.r.t. All Disagreement.

use the TTVH approach since it produces statistically equivalent performance metrics and
still decreases the Disagreement between the sets’ performances. This probably indicates a
more robust selection.

We have generally been taught that the best model is the one that maximizes the
Test performance metric. This is evident if we consider how state-of-the-art methods are
traditionally benchmarked: very often only analyzing if the Test performance metric is
better than previous methods applied to the same dataset. We argue that the performance
metrics of the other sets must also be involved for a complete evaluation. If we recall
the Equation 6, Ytest = M(Xtest) + ϵtest, it might be the case that we select the model
that maximizes M(Xtest) + ϵtest on the Test data, providing a probably over-estimation
for the model performance during production, instead of what we really want: the model
that maximizes only the M(Xtest) term, since when using the model in production, we will
probably have a ϵproduction different from our ϵtest.

Comparing the policies that include the Test metric in the decision, the Test policy
should be the upper bound policy regarding the Test metric if we use the . However, as we
mentioned, it is probably over-estimated due to inherent noise in the Test set. Therefore
we need to be cautious about taking this as the desired model. To corroborate this idea,
we can see from the THT policy that the Train and Validation metrics improved compared
to the Test policy. However, we have not explicitly optimized for that. On the other hand,
the TTVHT model (which also optimizes the Train and Validation metrics) would probably
be our target model since it tries to maximize the performance over the Train, Validation,
Holdout, and Test sets. As a consequence of the better performance equilibrium in the
TTVHT and THT compared to the Test policy, we can also see that the Disagreement was
significantly decreased in Table 7.

If we compare the TTVHT to the TTVH approach, we can see that the Number of
Neurons, Train, Validation, and Holdout set performances are similar. Let us consider only
the subset of models which deliver similar performance to the TTVH values (similar to
freezing the previously mentioned metrics). We have a group of models that varies the Test
metric. The TTVHT would be an approximation to this group’s best model, but TTVH
could not select it. It probably means that we can include other attributes that describe
the learning dynamics of the model in the TOPSIS decision process, such as the difference
between the initial and final performances and weight regularization values, to create better
model selectors. It opens many possibilities to improve the multi-criteria model selection
procedure.
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4.4 Low Complexity

To analyze the Low Complexity Optimality Condition, we are trying to minimize the number
of neurons in a model. The results for each policy containing and without the Number of
Neurons as decision criteria are presented in Table 8. The Wilcoxon statistical test results
of the same set of policies regarding the Test and Disagreement are respectively presented
in Table 9 and Table 10

Policy # Neurons ↓ # Epochs ↑ Accuracy ↑ Disagreement ↓
Train Validation Holdout Test Train-Validation Holdout-Test All

TTVH
75.98

(27.06)
82.64

(26.28)
91.49
(8.4)

91.1
(7.09)

91.5
(7.91)

85.42
(9.39)

2.26
(2.36)

6.26
(6.91)

3.84
(3.59)

TTVHN
10.27
(9.27)

78.08
(28.3)

87.59
(7.94)

88.36
(7.13)

87.83
(7.66)

82.9
(9.96)

2.14
(1.93)

5.54
(7.19)

3.54
(3.74)

THT
75.5

(24.61)
78.21

(27.19)
91.22
(8.36)

89.05
(7.89)

90.9
(8.07)

89.65
(7.34)

2.83
(2.67)

3.52
(3.26)

2.67
(2.0)

THTN
8.75

(7.24)
78.35
(27.0)

86.78
(7.93)

85.97
(8.22)

86.7
(7.8)

86.9
(7.94)

2.37
(2.65)

2.75
(2.11)

2.2
(1.6)

TTVHT
76.5

(24.32)
77.75

(27.45)
91.05
(8.5)

90.47
(7.21)

91.05
(8.0)

88.88
(7.78)

2.52
(2.45)

3.42
(3.53)

2.48
(2.11)

TTVHTN
11.37
(9.44)

77.48
(27.79)

87.54
(7.92)

88.14
(7.13)

87.76
(7.61)

86.44
(8.35)

2.09
(1.93)

3.15
(3.58)

2.3
(1.93)

Table 8: Results for Low Complexity policies.

Policy TTVH TTVHN THT THTN TTVHT TTVHTN Summary Test Accuracy ↑
TTVH ≡ ▲ ▽ ▽ ▽ ▽ -3

TTVHN ▽ ≡ ▽ ▽ ▽ ▽ -5
THT ▲ ▲ ≡ ▲ ▲ ▲ 5

THTN ▲ ▲ ▽ ≡ ▽ ▲ 1
TTVHT ▲ ▲ ▽ ▲ ≡ ▲ 3

TTVHTN ▲ ▲ ▽ ▽ ▽ ≡ -1

Table 9: Wilcoxon Statistical Significance Test comparisons for Low Complexity policies
w.r.t. Test Accuracy.

Policy TTVH TTVHN THT THTN TTVHT TTVHTN Summary All Disagreement ↓
TTVH ≡ ▲ ▲ ▲ ▲ ▲ 5

TTVHN ▽ ≡ ▲ ▲ ▲ ▲ 3
THT ▽ ▽ ≡ ▲ ▲ ▲ 1

THTN ▽ ▽ ▽ ≡ ▽ ≡ -4
TTVHT ▽ ▽ ▽ ▲ ≡ ▲ -1

TTVHTN ▽ ▽ ▽ ≡ ▽ ≡ -4

Table 10: Wilcoxon Statistical Significance Test comparisons for Low Complexity policies
w.r.t. All Disagreement.

The models decreased the average accuracy when adding the number of neurons in the
multi-criteria equation. However, it largely dropped the number of neurons necessary to
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encode the knowledge of each dataset. It is essential to create simpler models since they
tend to generalize better because they make fewer assumptions about the data it is trying
to learn.

It is worth mentioning that TOPSIS allows us to set different weights for each objective,
even though we have used the same weight for all objectives. Tuning this specific TOPSIS
parameter will lead to different results based on the importance we are willing to give for
each objective.

4.5 No Premature Early Stopping

We have included the number of epochs in the TOPSIS decision-making process to analyze
the importance of the Early Stopping epoch. The ranking policies end with E (stopping
close to the End of training) or B (stopping close to the Begin of the training).

As we can see from Table 11, the ranking policies that maximize the number of trained
epochs (ends with E) consistently outperform their counterparts that minimize the number
of trained epochs (ends with B) for all the Aggregation and Ranking policies. It shows that
how long the model was trained is also important to consider during the model selection.
Even though when directly comparing TTVHN vs. TTVHNE (that includes the maximiza-
tion of trained epochs), we can see from Table 12 that the performance on the Test set is
equivalent as well as the Disagreement is not significantly different. Since no statistically
better results were found by maximizing the Number of trained Epochs, but it still affects
the model selection when comparing B vs. E policies, it might be the case that we need to
tweak better the weight for this specific criteria to mostly avoid premature early stopping
(B) instead of looking for late or no early stopping at all (E), which can also contain models
that have not converged yet at the final epochs. This probably would be better used as a
filter to avoid premature early stopping (B), but not be simultaneously maximized.

Policy # Neurons ↓ # Epochs ↑ Accuracy ↑ Disagreement ↓
Train Validation Holdout Test Train-Validation Holdout-Test All

TTVHN
10.27
(9.27)

78.08
(28.3)

87.59
(7.94)

88.36
(7.13)

87.83
(7.66)

82.9
(9.96)

2.14
(1.93)

5.54
(7.19)

3.54
(3.74)

TTVHNB
13.8

(12.23)
17.94

(20.68)
83.41
(7.61)

85.37
(7.33)

84.01
(7.38)

80.48
(10.26)

2.68
(2.17)

4.63
(5.87)

3.34
(3.24)

TTVHNE
10.77
(9.38)

89.83
(24.46)

87.53
(7.96)

87.79
(7.08)

87.66
(7.66)

82.96
(9.91)

2.2
(2.06)

5.33
(6.87)

3.41
(3.64)

THTN
8.75

(7.24)
78.35
(27.0)

86.78
(7.93)

85.97
(8.22)

86.7
(7.8)

86.9
(7.94)

2.37
(2.65)

2.75
(2.11)

2.2
(1.6)

THTNB
11.17
(8.83)

16.53
(20.6)

81.83
(8.28)

83.49
(8.61)

82.49
(8.14)

82.63
(9.74)

2.39
(2.7)

3.08
(3.03)

2.44
(2.04)

THTNE
8.49
(6.9)

89.79
(24.18)

86.69
(8.26)

85.53
(8.19)

86.61
(7.89)

86.14
(8.12)

2.53
(2.84)

2.62
(2.69)

2.19
(1.88)

TTVHTN
11.37
(9.44)

77.48
(27.79)

87.54
(7.92)

88.14
(7.13)

87.76
(7.61)

86.44
(8.35)

2.09
(1.93)

3.15
(3.58)

2.3
(1.93)

TTVHTNE
11.89

(10.47)
89.55

(24.41)
87.53
(7.93)

87.85
(7.19)

87.7
(7.66)

85.9
(8.3)

2.04
(2.11)

3.39
(4.05)

2.39
(2.23)

TTVHTNB
14.91

(12.97)
19.09

(21.61)
83.78
(7.08)

85.7
(6.92)

84.38
(6.89)

83.37
(8.09)

2.59
(2.4)

3.3
(3.41)

2.62
(2.04)

Table 11: Results for No Premature Early Stopping policies.
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Policy TTVHN TTVHNB TTVHNE THTN THTNB THTNE TTVHTN TTVHTNE TTVHTNB Summary Test Accuracy ↑
TTVHN ≡ ▲ ≡ ▽ ≡ ▽ ▽ ▽ ≡ -3

TTVHNB ▽ ≡ ▽ ▽ ▽ ▽ ▽ ▽ ▽ -8
TTVHNE ≡ ▲ ≡ ▽ ≡ ▽ ▽ ▽ ≡ -3

THTN ▲ ▲ ▲ ≡ ▲ ▲ ▲ ▲ ▲ 8
THTNB ≡ ▲ ≡ ▽ ≡ ▽ ▽ ▽ ▽ -4
THTNE ▲ ▲ ▲ ▽ ▲ ≡ ▽ ≡ ▲ 3

TTVHTN ▲ ▲ ▲ ▽ ▲ ▲ ≡ ▲ ▲ 6
TTVHTNE ▲ ▲ ▲ ▽ ▲ ≡ ▽ ≡ ▲ 3
TTVHTNB ≡ ▲ ≡ ▽ ▲ ▽ ▽ ▽ ≡ -2

Table 12: Wilcoxon Statistical Significance Test comparisons for No Premature Early Stop-
ping policies w.r.t. Test Accuracy.

Policy TTVHN TTVHNB TTVHNE THTN THTNB THTNE TTVHTN TTVHTNE TTVHTNB Summary All Disagreement ↓
TTVHN ≡ ≡ ≡ ▲ ▲ ▲ ▲ ▲ ▲ 6

TTVHNB ≡ ≡ ≡ ▲ ▲ ▲ ▲ ▲ ▲ 6
TTVHNE ≡ ≡ ≡ ▲ ▲ ▲ ▲ ▲ ▲ 6

THTN ▽ ▽ ▽ ≡ ≡ ≡ ≡ ≡ ▽ -4
THTNB ▽ ▽ ▽ ≡ ≡ ▲ ≡ ≡ ▽ -3
THTNE ▽ ▽ ▽ ≡ ▽ ≡ ≡ ≡ ▽ -5

TTVHTN ▽ ▽ ▽ ≡ ≡ ≡ ≡ ≡ ▽ -4
TTVHTNE ▽ ▽ ▽ ≡ ≡ ≡ ≡ ≡ ▽ -4
TTVHTNB ▽ ▽ ▽ ▲ ▲ ▲ ▲ ▲ ≡ 2

Table 13: Wilcoxon Statistical Significance Test comparisons for No Premature Early Stop-
ping policies w.r.t. All Disagreement.

5. Conclusions

In this work, we propose to use several criteria of a machine learning model, in this specific
case, Neural Networks, to perform model selection (multi-criteria model selection) instead
of using the most common approach of a single criterion. We have shown that fixing the
number of Neurons of an ANN, primarily done in ANN training methodology, for a specific
dataset does not produce the best possible models. Using a flexible architecture usually leads
to better results. Also, we empirically demonstrated that over-fitting and over-searching
could be mitigated by performing a multi-criteria model selection procedure instead of a
single criterion when deciding from a very large pool of candidates because it alleviates the
metrics maximization on a specific set that the model usually is also explaining the noise.
When a multi-criteria approach is used, we are probably diluting the risk of noise fitting
through all the sets since we expect the noise should not be modeled, and using more data
from different sets that agree with each other during the model selection, we increase our
confidence on the model assessment or performance estimation.

We have also defined optimality conditions that we desire to have in theoretical models
and empirically demonstrated that those conditions seem important during model selection.
The oracle or any model selected solely based on a single performance for a set is usually
over-optimistic and probably over-fitted on that specific set due to the over-searching issue
and deserves attention if one would consider them as the best targets during model selection.
We believe this work might lead to different research directions since it gives a different
perspective and justifies why model selection that only maximizes specific performance
metrics tends not to be the best approach.

24

157



Multi-criteria Machine Learning Model Selection

6. Future Works

We would like to evaluate our policies within AutoML algorithms, which usually only per-
form model selection based on a single objective. In this process, it might also be interesting
to build deep neural networks layer-by-layer using ParallelMLPs to train several candidates
and use TOPSIS to rank and choose the current layer, appending layer by layer. Using
other learning dynamic attributes and tweaking the weights for each criterion might pro-
duce better model selections. We intend to try different MCDM methods with different
variables and weights and vector normalization schemes to investigate if we can select bet-
ter models. In order to collect more evidence on our optimality conditions, we would like
to analyze adversarial attack influence for models using single-criterion and multi-criteria
model selections. With respect to the No Premature Early Stopping condition, a further
investigation is needed since it has influence on the decision process but apparently we were
not able to fully capture it. This probably can be converted into a filter to avoid premature
early stopped models, but without emphasizing longer training, since good models can still
have good performance but converging faster than other late converged models.
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