e
ne-
ne~-

|

Z}ﬂ

=

US IMPAVIDA
[A |

VIR

Universidade Federal de Pernambuco

Centro de Informartica

Graduacao em Ciéncia da Computagao

A vida privada dos conflitos de merge:
replicacio e analise qualitativa

Matheus Luiz Borba Alves da Silva

Trabalho de Graduagdo

Recife
20 de Outubro de 2022

Universidade Federal de Pernambuco

Centro de Informartica

Matheus Luiz Borba Alves da Silva

A vida privada dos conflitos de merge: replicacao e analise
qualitativa

Trabalho apresentado ao Programa de Graduagcdo em
Ciéncia da Computagcdo do Centro de Informdrtica da
Universidade Federal de Pernambuco como requisito
parcial para obtengdo do grau de Bacharel em Ciéncia da

Computagado.

Orientador: Prof. Dr. Paulo Henrique Monteiro Borba

Recife
20 de Outubro de 2022

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geracdo automatica do SIB/UFPE

Borba Alves, Matheus Luiz.

A vida privada dos conflitos de merge: replicacdo e andlise qualitativa/
Matheus Luiz Borba Alves. - Recife, 2022.

33:il., tab.

Orientador(a): Paulo Henrique Monteiro Borba
Trabalho de Concluséo de Curso (Graduacéo) - Universidade Federal de
Pernambuco, Centro de Informatica, Ciéncias da Computacéo - Bacharelado,
2022.
Inclui referéncias, apéndices, anexos.

1. Conflitos de integrac&o. 2. Desenvolvimento colaborativo de software. 3.
Git. I. Monteiro Borba, Paulo Henrique. (Orientagao). I1. Titulo.

000 CDD (22.ed.)

Agradecimentos

Mais de uma vez questionei se um dia seria capaz de estar escrevendo essa secdo de
agradecimentos, que loucura é finalmente estar aqui, jd consigo sentir um peso gigante sendo
retirado das minhas costas. Agora mais leve, ndo posso deixar de refletir o qudo pesado tudo
isso foi. Fico feliz por finalmente estar concluindo minha graduagdo, e ao mesmo tempo triste,
ndo era pra ser tao pesado assim, né?

Quero deixar explicito que os agradecimentos ndo seguem uma ordem especifica. Dito
isso, quero comecar pela minha familia, eu simplesmente amo todos eles, amo como durante
todo esse tempo eles andaram numa linha ténue em demonstrar interesse pelo que eu fazia e
queriam sempre demonstrar apoio, ao mesmo tempo que eles ndo entendiam nada do que eu
falava kkkkkkkkkkkkk, quero agradecer muito a minhas duas irmds, Bibi e Ray, a meus pais,
Quelli e Jadiael, a familia Borba Alves. Em nenhum momento nesses anos de faculdade eu
me senti pressionado por eles a nada, ao mesmo tempo que eles deixavam claro o quanto eles
queriam que esse momento chegasse. Adendo especial ao meu vo Joca, em breve fard 100 anos,
a unica pessoa que eu escondo minhas tatuagens pra ir visitar, ndo quero te deixar triste vo.
E a minha vo Carmelita, analfabeta, que trabalhou muito, muito, muito, e agora tem mais um
neto com curso superior. Vocés sdo sem duvidas, inspiracdes pra mim.

Que sorte a minha de ter os amigos que tenho. Jullyo e Allyson, a gente se conheceu no
ensino médio e tamo junto até hoje, muito foda! E a todos amigos que estiveram na luta comigo
no busdo pra Carpina, amo vocés. Mdrio, o primeiro amigo que fiz na faculdade, ainda bem
que o PC do grad estava quebrado naquele dia, ndo consigo imaginar como eu estaria hoje
sem vocé, obrigado por me introduzir aos outros dois melhores amigos que fiz, Claudinho e
Guila, vocés literalmente me salvaram, sem vocés, eu garanto que ndo estaria aqui.

Queria agradecer ao fato de eu ter reprovado em cdlculo I logo no primeiro periodo, eu
ndo teria conhecido grandes amigos se eu ndo tivesse atrasado meu curso, E que amigos
que encontrei, sdo vdrios, mas em especial, vou citar Eden pois € isso que ele é, especial.
Queria agradecer por eu ndo ter passado na Apple Academy, assim, eu consegui entrar no
PET Informdtica e conheci vdrias pessoas incriveis, pgp amo todos vocés, valia a pena perder
o busdo pra ficar nas reunides. Aos que participaram do programa antes de mim, comigo e
depois de mim, amo vocés, o PET salvou minha graduagdo, direta e indiretamente. Obrigado
Eden, Edjan, Claudinho, Cardoso, Luan, Tato, Lari, Ullayne, Malu, Marcela, Lucas Santana,
Higor, Péu, Rods, Valdemiro, Basi, Rossi, todos e claro, Simone Santos que além de tutora do

PET foi orientadora do meu primeiro artigo publicado. Obrigado.

v

AGRADECIMENTOS v

Na graduagdo eu conheci pessoas incriveis que me ajudaram muito, cada virada de noite
foi mais legal gracas a vocés("Helou Pessoas"e afins) e tantos outros que acabei conhecendo
de forma indireta e hoje fico muito feliz de ser proximo, obrigado amigos.

Queria agradecer a quem me ajudou mais de perto nesse tcc. O apoio do meu orientador,
Paulo Borba, junto ao auxilio de Marcela Cunha foram triviais pra eu conseguir chegar aqui.
Aproveitar pra agradecer a alguns professores que foram muito importantes pra minha graduacao,
Kiev Gama, Leopoldo Teixeira e Paulo Borba, além de muito bons educadores, a empatia que
vocés tiveram comigo no decorrer dessa graduagdo foi incrivel, e muito importante principalmente
no periodo da pandemia da covid-19. Obrigado.

Ndo posso deixar de agradecer a minha terapeuta, Thais Bastos, que grande ajuda vocé foi
e ainda é pra mim. A todos que encontrei nesta caminhada, aos funciondrios do RU, da UFPE
como um todo, em especifico aos tios e tias da limpeza do Cln, que sempre limpavam o grad
que eu estava dormindo por iltimo. Obrigado.

Aos meus professores da ETEMERB, que me introduziram a drea de TI e me preparam para

estar aqui, tive sorte de ter seguido esse caminho, e que baita sorte a minha...

Conhecimento sem visdo so te faz mais um burro convicto.

—CESAR MC

Resumo

Para a grande maioria dos projetos de software o sucesso esté atrelado ao desenvolvimento
colaborativo. Dito isso, conflitos de integracdo podem surgir quando um desenvolvedor decide
integrar suas modificagdes com outros desenvolvedores em um repositério remoto. Conflitos
podem acarretar na diminuicao da produtividade, diminui¢do de qualidade de cédigo e inser¢ao
de bugs em ambientes de produgdo.

Gracas a estudos realizados previamente, a frequéncia de comandos de integracdo e conflitos
ja foram analisados. Porém, na maioria das andlises, o foco tende a ser apenas em cddigos
disponibilizados em repositérios publicos. Cendrios de integracao de cédigo podem ser perdidos
no histdrico remoto dos repositdrios devido a existéncia de comandos como o git rebase, que
reescreve o histérico de commits do Git. Portanto, esses estudos podem estar analisando apenas
uma parte dos conflitos reais e casos de integracdo de codigo.

Através da andlise de repositorios locais, podemos acessar cendrios de integracdo de codigo
que nao seria possivel caso o foco fosse apenas nos repositérios piblicos do GitHub. O objetivo
deste estudo € trazer mais visibilidade para a importancia da andlise local de repositdrios para
fins de investigar diversos cendrios de integracdo de cddigo e suas relagcdes com a ocorréncia de
conflitos.

Examinamos um total de 35 arquivos de git reflog de 16 projetos diferentes pertencentes a
duas organizagdes, no total foram coletados logs de 17 desenvolvedores. Foram conduzidas 8
entrevistas semi-estruturadas, 4 colaboradores de cada organizacdo, com objetivo de entender
mais a fundo a relacdo entre o uso dos comandos de integracdo, o fluxo de trabalho e diretrizes
de cada projeto estabelecidos pelas empresas e a ocorréncia de conflitos.

Foi detectado que o uso de comandos que ofuscam a integrag¢do de c6digo sdao mais utilizados
por desenvolvedores, préximo ou acima dos 3 anos de experiéncia. Além de conseguir apontar
quais caracteristicas dos projetos podem influenciar na ocorréncia de conflitos, como por exemplo:
o uso de testes automatizados. Vimos também que a demora para revisdo de codigo esta
relacionada a ocorréncia de conflitos, mais chances do cédigo ter sido alterado, assim € de
extrema importancia que o processo de integracdo de cddigo seja feito de forma ripida e
efetiva. O planejamento prévio das tarefas que serdo realizadas, a preocupacio com a estrutura
e tamanho dos PRs e o uso de testes automatizados ajudam a diminuir a ocorréncia de conflitos

pois agilizam o processo de revisao de cédigo e integracao de mudangas.
Palavras-chave: Conflitos de integracdo, Desenvolvimento colaborativo de software, Git

vii

Abstract

For the vast majority of software projects, success is linked to collaborative development.
That said, merge conflicts can arise when a developer decides to merge their modifications
with other developers into a remote repository. Conflicts can lead to decreased productivity,
decreased code quality and bugs in production environments.

Thanks to previous studies, the frequency of integration commands and conflicts have already
been analyzed. However, in most analyses, the focus tends to be only on code available in public
repositories. Code integration scenarios can be lost in the remote history of repositories due to
the existence of commands like git rebase, which rewrites the history of Git commits. Therefore,
these studies may be analyzing only a part of the actual conflicts and code integration cases.

By analyzing local repositories, we can access code integration scenarios that would not be
possible if the focus was only on public GitHub repositories. The objective of this study is to
bring more visibility to the importance of local analysis of repositories in order to investigate
different scenarios of code integration and their relationship with the occurrence of conflicts.

We examined a total of 35 git reflog files from 16 different projects owned by two organizations,
in total we collected logs from 17 developers. Eight semi-structured interviews were conducted,
with 4 employees from each organization that was collected in the sample, to try to understand
more deeply the relationship between the use of integration commands, the workflow and
guidelines of each project established by the companies and the occurrence of conflicts.

It was detected that the use of commands that obfuscate the code integration are more used
by developers, close to or above 3 years of experience. In addition to being able to point
out which project characteristics can influence the occurrence of conflicts, such as: the use of
automated tests. We also saw that the delay for code review is related to the occurrence of
conflicts, the more chances of the code having been changed, so it is extremely important that
the code integration process is done quickly and effectively. Prior planning of the tasks that will
be performed, concern with the structure and size of PRs and the use of automated tests help to
reduce the occurrence of conflicts as they speed up the process of code review and integration

of changes.

Keywords: merge conflits, collaborative software development, Git

viii

Sumario

1 Introducao
2 Motivacao

3 Metodologia
3.1 Preparacdo do estudo

3.2 Andlise dos logs

4 Resultados

4.1 RQI: Qual frequéncia de comandos que ofuscam integracdo de c6digo?
4.2 RQ2: Quais sdo os motivos da ado¢@o ou nao de tais comandos?

4.3 RQ3: Quais os impactos dessas decisdes na ocorréncia de conflitos?

5 Conclusao
6 Trabalhos Futuros

A Lista de Perguntas das entrevistas

X

12
13
14
16

19

20

21

2.1
2.2
2.3
2.4
2.5

3.1
32
33
34
3.5
3.6

4.1

Lista de Figuras

Cenério de merge [22]
Cenadrio de rebase [23]
Cenario de cherry-pick [15]
Cendrio de squash [15]
Cendrio de stash-apply [24]

Reflog

Merge

Rebase

Rebase Interativo
Cherry-Pick
Squash

Stacked PRs [24]

L L B W W

10
10
11

17

3.1

4.1
4.2
4.3
4.4
4.5
4.6

Lista de Tabelas

Estivativa Comando Git

Comparagao de logs

Distribuicdo de logs por organizagao
Distribuicao de entervistados por projeto
Comparag¢do de comandos Git
Comparagdo de comandos de integragdo

Pontos coletados que influenciam ocorrencia de conflitos

xi

10

12
12
13
13
13
17

CAPITULO 1

Introducao

O desenvolvimento colaborativo € sem duvidas um dos principais pilares para o sucesso de
projetos de software. Isso s6 € possivel gragas a sistemas de controle de versao, permitindo com
que os desenvolvedores trabalhem de forma simultdnea em um mesmo projeto. Dentre vérias
opgoes, Git ¢ um dos mais usados [1]. Nele existe o repositério remoto que € normalmente o
principal, e cada desenvolvedor possui uma cépia local, seu repositério privado. A medida que
mudancas sao feitas em paralelo por mais de um desenvolvedor em seus respectivos repositorios,
mais as chances de ocorrer algum problemas ao tentar integrar o cédigo local ao remoto, esses
sdo chamados conflitos de merge [2, 3, 4, 5].

Solucionar conflitos de integracdo de cddigo ndo € necessariamente uma tarefa facil, por
mais que existam solucdes triviais, alguns delas podem gerar dor e custo ao colaborador. O
desenvolvedor pode também resolver os conflitos de forma equivocada, acarretando em outra
série de problemas, como, por exemplo, a introducdo de bugs no ambiente de producdo. Conflitos
de integracdo podem impactar além da produtividade, na qualidade geral do cédigo [6]. Por
conta disso, e também pela quantidade de vezes que conflitos desse tipo podem acontecer
[2, 3, 4, 5], existem varios estudos que abrangem desde o aspecto da deteccdo proativa de
conflitos [7, 8, 9] até propor ferramentas cujo objeto € a resolucio eficaz deles [10, 11, 12].

Com o objetivo de mitigar o impacto negativo dos conflitos, esse topico ja foi e ainda é
estudado na academia. Porém, a maioria dos estudos focam apenas na anélise de conflitos que
acontecem em repositorios remotos [13, 14]. O problema é que essa anélise ndo conta com
todos os cenarios feitos por comandos que reescrevem o histérico do Git, ou seja, todos os
comandos que ofuscam integracdo de cddigo feitos localmente, sdo ignorados. Assim faltam
mais estudos que analisam o impacto dessas agdes locais na ocorréncia de conflitos [15, 16].

Por conta disso, o foco deste trabalho € estudar os casos ocultos de integracdo de cédigo
de equipes de desenvolvimento de software. O processo de andlise segue o que foi feito
anteriormente [15, 16], utilizando os histéricos locais do Git com objetivo de identificar quando
e como tais comandos sdao usados e o porqué. Comparando assim se algo mudou em relagcdo
aos resultados dos estudos anteriores, além de tentar entender qual impacto das diretrizes e
caracteristicas de cada projeto, junto ao fluxo de trabalho dos desenvolvedores, e como isso
pode interferir na ocorréncia de conflitos.

O trabalho estd organizado da seguinte maneira. Na Se¢do 2, nds discutimos os motivos
que estimulam a realizac@o deste estudo. A metodologia aplicada serd apresentada na Secao 3,

seguida dos resultados, conclusdo e trabalhos futuros nas Secdes 4, 5 e 6 respectivamente.

CAPITULO 2

Motivacao

Gracas a sistemas de controle de versdo descentralizados, é possivel a existéncia de um
repositdrio privado para cada desenvolvedor de maneira que seus commits nao afetem terceiros
diretamente. Assim € possivel ter controle de qual parte do cédigo ird ser compartilhada, em
que momento e para qual repositério remoto ela vai. Além destas funcionalidades, commits
podem ser editados, deletados, e até reordenados. Existem ferramentas de controle de versao
que viabilizam um histérico completo de todas as acdes feitas de maneira automdtica, como o
Git. Devido a essas funcionalidades é importante entender os beneficios e os perigos do uso
dessa ferramenta [17].

Cada mudanca feita localmente por um desenvolvedor precisa ser integrada ao repositorio
remoto, normalmente o principal. Dito isso, nem todas as integracdes sdo bem sucedidas, o que
significa o surgimento de conflitos. A ocorréncia frequente de conflitos em projetos de software
pode afetar negativamente a produtividade dos desenvolvedores [3, 4, 18]. Isso acontece pois
resolver um conflito exige que o colaborador descubra como aborda-lo e resolver-lo [3]. Vimos
também que resolucdo de conflitos feitas da maneira errada podem comprometer a qualidade
do projeto, além da introduc¢do de bugs [6, 19].

A quantidade de conflitos pode variar de acordo com as praticas e diretrizes de cada projeto
[14, 20]. Alguns estudos mostram zero conflitos resultantes de um comando de integragdo [14],
outros podem chegar até 50%[7]. Em média estudos afirmam que a taxa de conflitos varia entre
10% e 20% [3, 7]. Porém a grande maioria parte desses estudos analisam apenas repositorios
publicos hospedados no Github [3, 7, 10, 14].

Apesar de trazer uma quantidade significativa de evidéncias, esses estudos se baseiam apenas
em repositorios remotos e focam em conflitos de integracdo de codigo proveniente apenas do
uso do git merge [15, 16], o que € uma ameaca a validade [16]. Porém existem varias maneiras
de integrar c6digo usando git [21], algumas delas que ndo deixam registros no histérico remoto,
sdo elas: (1) rebase, (2) cherry-pick, (3) squash, (4) stash-apply.

Antes de entrarmos em detalhes em cada comando, vale esclarecer como o merge funciona:
Ao utiliza-lo, o git gera um novo commit que possui todas as mudangas feitas na branch que
estd sendo integrada. Ao registrar 0 novo commit, o histérico ndo permanece linear, deixando
explicita a integracdo de c6digo, um exemplo de merge é mostrado na Figura 2.1.

Ao usar o comando (1) de rebase, as modificacdes de uma branch sdo combinadas com
as alteracdes de outra branch, servindo assim como a nova base para as alteracdes. O rebase

gera novos commits para cada commit na branch original que estd sendo integrada, diferente

CAPITULO 2 MOTIVACAO 3

Main tip Ni“g:nfirfe
J J
O 7\ 7\
\\y \

/'\

Common base

IP

Feature tip

Figura 2.1 Cenério de merge [22]

do merge, que gera um commit adicional com o cddigo integrado. Na Figura 2.2, podemos
ver a modificagdo do histérico do repositério, tornando-o mais simples de examinar gracas a

linearidade.

N

Feature Feature

v N

™

Master

Figura 2.2 Cendrio de rebase [23]

Para aplicar modificagdes especificas (commits) de uma branch para outra, use o comando
(2) cherry-pick. O resultado final € um histérico linear, que ofusca o fato de que os commits
reaplicados sdo duplicatas, pois foram produzidos separadamente numa branch diferente da que
estd sendo integrada. Como visto na Figura 2.3.

Ja o (3) squash, pode combinar muitos commits em um enquanto apaga todas as evidéncias
das contribui¢Ges anteriores. Quando um commit de merge € um dos commits que foi combinado

pelo squash, € a situacdo especial em que o squash pode ofuscar a integracdo do cdédigo. Como

CAPITULO 2 MOTIVACAO 4

-1 HEAD

Figura 2.3 Cendrio de cherry-pick [15]

resultado, o registro de confirmacdo de mesclagem ou a trilha de integracdo de c6digo que foi
preservada no historico inicial € perdida, veja na Figura 2.4.

Por fim, o stash permite o armazenamento temporario numa pilha, que podem ser posteriormente
aplicados a uma branch com o comando de (4) stash-apply, realizando assim a integracao de
cddigo. Um uso comum do comando € quando se € necessdrio atualizar a branch local, assim é
usado o stash para salvar as modificacdes, e apds a branch ser atualizada, o stash-apply é usado.

Assim focar apenas para repositorios publicos e remotos € ignorar parte dos cendrios de
integracdo de cddigo que acontecem no dia a dia de um projeto. Por conta disso estudos que
analisam repositérios locais sdo de extrema importancia e podem ajudar ainda mais a entender
quais praticas sio adotadas pelos desenvolvedores das equipes e quais delas influenciam ou nao

na ocorréncia de conflitos [15, 16].

CAPITULO 2 MOTIVACAO

Figura 2.4 Cenério de squash [15]

Git Repository

git stash > Stash

Working directory

€

git stash pop

Figura 2.5 Cenario de stash-apply [24]

CAPITULO 3

Metodologia

O objetivo principal desta pesquisa é continuar trazendo visibilidade sobre a andlise de
repositorios privados e qual relacao do uso de comandos que ofuscam integrac¢do de c6digo com
a ocorréncia de conflitos. Assim como foi feito anteriormente [15, 16], tentar entender a relagcao
entre a ocorréncia e os comandos que o geram e identificar se estudos anteriores de integracao
de cddigo estdo focando apenas em uma parte dos casos de conflitos que ocorrem em projetos
reais. Devido a quantidade de comandos que ofuscam a integracdo de cddigo, foi necessario
utilizar uma ferramenta feita por Marcela Cunha [15] que analisa cendrios de integragdo local.
A ideia vai além de comparar os estudos que focam apenas nos conflitos de repositérios puiblicos
[10, 11, 12], mas também comparar aos resultados de estudos feitos focando nos repositdrios

privados [15, 16], e principalmente eles. Responderemos as seguintes perguntas:
* RQ1: Com que frequéncia sdo utilizados comandos que escondem integragcdo de c6digo?
* RQ2: Quais sdo os motivos da adog@o ou nao de tais comandos?
* RQ3: Quais os impactos dessas decisdes na ocorréncia de conflitos?

As perguntas RQ1 e RQ2 também foram exploradas por Marcela Cunha na sua andlise em
[16]. Com intuito de responder a RQ1, foi feito uma andlise quantitativa reunindo os logs locais
de desenvolvedores e aplicando a ferramenta de andlise [16] para quantificar a frequéncia do uso
de varios comandos do Git, e seus cendrios de integracdo bem e mal sucedidos. Foi feito um
estudo qualitativo cujo objetivo € obter as respostas para RQ2 e junto a andlise incial responder a
RQ3. Nesse estudo qualitativo foram realizadas uma série de estrevistas semi-estruturadas com
o total de 8 desenvolvedores que participaram também na andlise de logs. O foco era entender
mais a fundo os casos que geraram mais conflitos e que usaram mais comandos que ofuscam

integracdo de codigo.

3.1 Preparacio do estudo

Amostra. Com o intuito de responder as perguntas da pesquisa usamos uma amostra de
35 arquivos de log(reflogs ou logs de referéncia) de 16 projetos diferentes pertencentes a duas
organizacdes, no total foram coletados logs de 17 desenvolvedores distintos. O autor contactou

diretamente lideres técnicos de duas empresas diferentes que ele trabalhou previamente, uma em

3.1 PREPARACAO DO ESTUDO 7

2020 e outra até metade de 2022, a fim de coletar os logs diretamente com os desenvolvedores.
Por fim, ambas empresas de software concordaram em participar, auxiliando a comunicagdo e
fazendo uma ponte direta entre o autor e os colaboradores.

Script para andlise de logs. Como citado anteriormente, foi usado o mesmo script utilizado
em outros estudos de andlise de repositdrios privados [15, 16] que identificam e calculam a
frequéncia dos comandos que serdo analisados nesta pesquisa, com o objetivo de ter uma
andlise automadtica de toda a base de dados dos 35 arquivos de logs. O script cria tabelas
com as instancias dos comandos e métricas associadas. Um desenvolvedor pode ter contribuido
em vdarios projetos, portanto, o script compila todos os logs pertencentes a cada colaborador
em especifico, assim como visto em outros estudos [16]. Porém, gracas a natureza da amostra,
podemos além de analisar os logs com foco apenas nos colaboradores, podemos também agrega-los
por projetos, agrupando pelos desenvolvedores que trabalharam juntos, tornando assim, mais
facil a visualiza¢ao de comportamentos diferentes entre projetos dentro de uma mesma empresa,
que podem ou ndo ter colaboradores em comum entre si.

Entrevistas. A fim de complementar a andlise de logs, foi feita uma série de entrevistas
semi-estruturadas com 8 colaboradores dos 17 que participaram da primeira etapa do estudo,
4 de uma empresa e 4 da outra. Por questdes de disponibilidade tanto do autor, quanto dos
colaboradores, as entrevistas aconteceram no decorrer de uma semana completa. Uma das
empresas entrevistadas € uma empresa de inovacdo, que ndao possui um produto proprio e
trabalha com ideacdo e desenvolvimento de produtos para clientes, assim a maioria de seus
projetos tem prazos curtos, 14 dos 16 repositdrios coletados pertencem a ela. A outra empresa é
uma startup que possui um produto principal, e todos os times precisam trabalhar em conjunto
para prover novas funcionalidades além da manutencdo de cédigo, assim o foco a longo prazo
¢ essencial tanto para os projetos quanto para os colaboradores.

Apesar de ainda ser uma base de dados pequena, ainda € vélida dado que o nosso objetivo é
entender melhor os resultados da andlise dos logs. De forma similar a estudos anteriores [15, 16]
as entrevistas se iniciam com perguntas cujo intuito € determinar se o desenvolvedor conhece
e usa cada um dos comandos analisados na pesquisa, € 0 motivo ou nao de sua aderéncia. Em
seguida sao feitas perguntas sobre de que maneira eles integram o c6digo com o repositorio
remoto, como e com que frequéncia eles lidam com conflitos. E de interesse também entender
se existe alguma definicdo de quais diretrizes devem ser seguidas em relagdo ao uso do git no
projeto.

Diferente dos estudos anteriores [15, 16], sdo feitas perguntas sobre diretrizes do uso do
Git/Github, uso de Pull Requests, processo de deploy, uso de testes unitdrios e de integragdo,
a fim de entender como isso pode interferir na ocorréncia de conflitos. Todas as entrevistas
foram gravadas e feitas de forma individual e duraram em média 15 minutos. A seguir, uma
amostra de algumas das perguntas feitas nas entrevistas. Todo o conjunto de perguntas pode ser

encontrado no apéndice A:

3.2 ANALISE DOS LOGS 8

* Tem experiéncia ou conhece o comando de rebase?

Existe alguma regra sobre quais comandos de integracdo devem ser usados no projeto?

Com que frequéncia acontecem conflitos ao integrar c6digo?

Ap6s um PR de uma feature ser aberto, quanto tempo leva para ser revisado, aprovado e

finalmente mergido?

Qual seu fluxo de trabalho?

3.2 Analise dos logs

Para responder as perguntas estabelecidas se fez necessdrio automatizar a identificagdo do
uso desses comandos dos arquivos locais de log, para isso vamos usar o mesmo script construido
por Marcela [15], cujo etapas sdo: Identificacdo de Comandos, Identificacdo de Integracdo,
Agregagdo de resultados. Onde apenas na ultima etapa vamos acrescentar o agrupamento por
projetos para facilitar a visualiag@o e ajudar na condugdo das entrevistas.

Identificacdo de Comandos. A abordagem é observar o histérico local do projeto conforme
registrado no arquivo reflog do repositorio local. Este arquivo contém detalhes de todas as
atividades git do desenvolvedor executadas localmente em seu repositorio. O Git salva e atualiza
automaticamente esse arquivo conforme o usudrio emite comandos para o Git. Ele € acessivel
através do diretdrio local do projeto, que fica no caminho ".git/logs/HEAD", que é uma lista de
todos os comandos que foram referidos no repositorio. A configuracdo padrio para expiragdo
do reflog € de 90 dias, mas pode ser configurada. Porém para esse estudo, ndo foi questionado
aos colaboradores se eles haviam configurado essa janela de tempo, porém a grande maioria
deles ndo sabia da existéncia do arquivo de log, ou seja, € pouco provdvel que algum arquivo
nao possua a configuragao padrao.

Cada comando feito pelo desenvolvedor num repositdrio local € gerado automaticamente
uma chave tnica, SHA-1 atrelada a ele [21], mantendo assim o histérico local de modificagoes.
HEAD ¢é um ponteiro orquestrado pelo Git que informa o ultimo comando executado, qual
branch atual e € atualizado continuamente de forma automética a medida que mais comandos
sdo executados [16]. O arquivo em si, reflog, consiste em uma sequéncia de linhas, cada uma
representa uma operagdo realizada, como mostrado na Figura 3.1 cada linha possui: (1) chave
tnica do comando anterior ao HEAD, (2) a chave tnica do comando atual, HEAD, (3) Nome
do autor do comando, (4) Email do autor do comando, (5) Comando utilizado, (6) Mensagem
atrelada ao comando.

Observe que na Figura 3.1, primeiro o desenvolvedor clona o repositério localmente, fez
um commit, muda da branch master para test e faz um novo commit. Contudo nem todos os

comandos de integracdo sdo representados de forma tdo clara, e para construcio do script foi

3.2 ANALISE DOS LOGS 9

1@ @ 4 ®) (6)
0000 78c3 <nome_desenvolvedor> <email_desenvolvedor> 176 -0300 clone: Clone from git@github.com
78c3 ff2a <nome_desenvolvedor> <email_desenvolvedor> 176 -0300 commit: First commit
ff2Za 13pt <nome_desenvolvedor> <email_desenvolvedor> 176 -0300 checkout: moving from main to test
13pt 69m5 <nome_desenvolvedor> <email_desenvolvedor> 176 -0300 commit: Add test for method

Figura 3.1 Reflog

preciso ser feito uma andlise manual de vérios arquivos de log, a fim de entender como cada
cendrio de integracdo € representado e como ele pode ser detectado de forma automética pela
ferramenta [16].

Com ela é possivel identificar: (a) merge, (b) rebase, (c) cherry-pick, (d) squash. O comando
de stash-apply ndo deixa rastros no reflog, pois apesar do git registrar quando um stash ¢ feito,
o momento do apply ndo deixa rastros no arquivo de reflog, por conta disso esse comando ndo
vai ser analisado no estudo. O merge é mostrado na figura 3.2, e nas figuras 3.3, 3.4 vemos

ambos casos de uso do rebase.
13p0 55gv <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 merge featureA: Merge made by the ‘recursive’ strategy

Figura 3.2 Merge

13p0 55gv <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase: refactor file structure

Figura 3.3 Rebase

O comando de cherry-pick é representado na figura 3.5, ja o squash, nao € possivel identificar
em um comando apenas, mas € possivel perceber seu uso através de um rebase interativo, onde
o desenvolvedor pode escolher a acdo de squash numa lista de commits, como mostrado na
figura 3.6.

ldentificacdo de Integracdo. Com os comandos do Git ja identificados podemos seguir
para os cendrios de integracdo de codigo. Similar ao que j4 foi feito, nem todos os cendrios
de integracdo sdo interessantes para o estudo, alguns comandos podem ser usados porém nado
necessariamente ocorrem integragdo de cédigo [15, 16], esses ndo iremos utilizar no estudo.
Por exemplo, ao tentar integrar um commit com outro commit da mesma branch que faz parte
do mesmo historico linear, o que o Git faz € apenas mover o HEAD, o histérico se mantém o
mesmo e nao ha de fato integracdo de cédigo, chamado de fast-forward [21].

A ac¢do de integrar c6digo pode ndo ser bem sucedida. Caso uma integracdo ocorra sem
gerar conflitos € ndo seja uma agdo de fast-forward, nés contabilizamos como um cendrio
de sucesso. Quando conflitos de integracdo ocorrem, o usudrio tem trés opcdes: Resolver os

conflitos gerados e seguir com a integracdo; Pular o commit que causou o conflito, ignorando-o;

3.2 ANALISE DOS LOGS 10

13p0 55gv <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase -i (start): checkout 867c2
55gv 3914 <nome do desenvolvedor> <email _desenvolvedor> 182 -0300 rebase -i (reword): updating HEAD
3914 928d <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase -i (pick): group test

928d 928d <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase -i (finish): returning to HEAD

Figura 3.4 Rebase Interativo

13p0 55gv <nome do desenvolvedor> <email _desenvolvedor> 182 -0300 cherry-pick: add Method

Figura 3.5 Cherry-Pick

Abortar a operagado, deixando para trds tudo o que ja foi feito. Dito isso, independente do que
o desenvolvedor optar por fazer, todas as trés opcoes sdo contabilizadas como falhas. Assim
analisando o arquivo completo, conseguimos além da frequéncia de uso de cada comando de
integracdo, também a quantidade de falhas e sucessos ao realizar a operagao, processo igual ao
feito anteriormente [16].

Essa contagem ndo € precisa para nenhum dos lados. Existem casos que nao é possivel
identificar a diferenca entre uma integracdo bem sucedida e uma integracdo de fast-forward,
devido as caracteristicas iguais para ambos cendrios, ou seja, a contagem de sucessos pode estar
superestimada. A l6gica se aplica também para falhas, quando uma integracao gera conflito, os
cendrios de Pular e Abortar ndo deixam registros no arquivo de logs, assim a contagem de
falhas pode estar subestimada. Isso ja foi citado no estudo anterior [16] e estd representado na
tabela 3.1.

Comando Git | Sucesso | Falha
Merge = T
Cherry-Pick i) T
Squash 1 T

Rebase

- Normal = T
- Interativo = =
- Pull - rebase = T

Tabela 3.1 Os cendrios de integracdo identificados dos comandos Git. As setas indicam se o nimero esta
subestimado () ou superestimado (|), o que significa que os niimeros devem ser maiores ou menores
respectivamente [15]

Agregacao de resultados. Diferente do que foi feito nos estudos anteriores [16], € necessario
que exista uma agregacdo de dados também voltada a projetos. Essa visualizacdo pode ajudar
a identificar comportamentos diferentes dentro dentro da mesma organizagao, e servir como
apoio para a etapa da andlise qualitativa ao questionar sobre as diretrizes adotadas em cada

projeto.

3.2 ANALISE DOS LOGS

13p0 55gv <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase
55gv 3914 <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase
3914 928d <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase
928d 13a8 <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase
13a8 13a8 <nome do desenvolvedor> <email_desenvolvedor> 182 -0300 rebase

Figura 3.6 Squash

11

-i (start): checkout 867¢2

-i (reword): updating HEAD
-i (pick): group test

-i (squash): refact

-i (finish): returning to HEAD

CAPITULO 4

Resultados

Foram analisados 35 arquivos de logs, em comparacdo aos 95 do estudo anterior [16],
pertencentes a 17 desenvolvedores diferentes, de um total de 16 repositorios, como aponta a
tabela 4.1. Foram coletados 8540 comandos de Git, valor 4 vezes menor que no estudo anterior

[16], dados sobre organizacdes e quais projetos cada log pertencem nao foram registrados.

Coleta de logs Estudo Anterior | Estudo Atual
Total 95 35
Arquivos que possuem integracdo de codigo 77 26
Projetos - 16
Organizacoes - 2
Desenvolvedores 61 17

Tabela 4.1 Comparacio da coleta coleta de logs entre o estudo atual e o estudo anterior [16]

Coleta de logs Total | Org A |Org B
Total 35 29 6
Arquivos que possuem integracao de codigo| 26 22 4
Projetos 16 14 2
Desenvolvedores 17 12 5

Tabela 4.2 Distribui¢do de logs por organizacgio

Além da andlise de logs, foram feitas entrevistas semi-estruturadas com 8 desenvolvedores
que participaram da primeira etapa do estudo, a fim de construir um estudo qualitativo. Como
mostrado na Tabela 4.3, foram 4 entrevistados de cada organizacdo, onde para organizacio A,
foram entrevistados 4 colaboradores de 4 projetos distintos, e para organizacdo B, tivemos 3 de
um projeto e 1 de outro.

Vale destacar algumas caracteristicas sobre as organizacoes. A organiza¢do A € considerada
uma fabrica de software, uma empresa de inovagdo focada em ideacdo e desenvolvimento,
ela ndo possui um produto principal préprio, clientes a contratam para realizar o processo
de ideacdo e implementagdo de solucdes de inovagdo. Isso significa que temos normalmente
projetos com prazo curto de desenvolvimento, e muitas vezes desenvolvedores que foram contratados
apenas durante o tempo de implementacao do projeto.

Ja na organizacdo B, temos uma startup que tem um produto especifico, todos os times
trabalham focado nele, assim temos um foco a longo prazo ndo apenas em relagdo ao projeto,

mas também em relagdo aos colaboradores, uma empresa nova com expectativa de crescimento

12

4.1 RQI: QUAL FREQUENCIA DE COMANDOS QUE OFUSCAM INTEGRACAO DE CODIGO? 13

¢ atrativa para desenvolvedores fazerem carreira. O projeto 1 € o front-end, projeto 2 é o
back-end.

Projetos | Organizacdo | Quantidade de entevistados
Projeto 1 B 3
Projeto 2 B 1
Projeto 3 A 1
Projeto 4 A 1
Projeto 5 A 1
Projeto 6 A 1

Tabela 4.3 Distribuicdo de desenvolvedores entrevistados no estudo qualitativo por projeto

4.1 RQ1: Qual frequéncia de comandos que ofuscam integracao de

codigo?
Comandos Git Estudo Anterior | Estudo Atual
Total 34504 8540
Comandos de Integracdo | 4131(12%) 241(2.8%)
Comandos visiveis 548(1.6%) 160(1.87%)
Comandos invisiveis 3583(10.4%) 81(0.94%)

Tabela 4.4 Comparacdo da quantidade de comandos Git entre o estudo atual e o estudo anterior [16]

Comandos Git Estudo Anterior | Estudo Atual
Total 4131 241
Comandos visiveis 548(13.3%) 160(66,4%)
Comandos invisiveis | 3583(86.7%) 81(33,6%)

Tabela 4.5 Comparacdo da quantidade de comandos de integra¢do entre o estudo atual e o estudo
anterior [16]

A ferramenta de andlise identifica as ocorréncias de todos os comandos de integracdo de
codigo. Para responder essa pergunta, precisamos calcular a quantidade de rebase, squash e
cherry-pick. Essa frequéncia € a soma dos casos de sucesso e falha para cada um dos comandos
de integragdo estudados. Contudo, como citado na Secdo 3 (Metodologia), cenarios de conflitos
que foram abortados, pulados ou cenérios de fast-forward nao sao detectados, assim temos uma
estimativa da frequéncia em comparacao ao valor real.

Dos 8540 comandos de Git, apenas 241 foram cendrios de integracdo de codigo, um valor
de aproximadamente 2.8% do total, como mostra tabela 4.4. Levando em conta apenas os
cendrios de integracdo, cendrios que ofuscam integracdo de codigo totalizam 33.6%, como

apresentado na tabela 4.5, valor bem diferente dos 86.7% apresentados no estudo anterior [16],

4.2 RQ2: QUAIS SAO OS MOTIVOS DA ADOCAO OU NAO DE TAIS COMANDOS? 14

essa diferenca tdo alta pode estar relacionada ao fato que 14 dos 16 repositérios, ou 82.9% dos
logs coletados fazem parte da mesma organizacdo como mostrado na tabela 4.2, e gragas ao
estudo qualitativo descobrimos que o padrao é o uso do comando de merge, que nao ofusca
integracdo de cddigo.

Dando foco apenas nos cendrios que ofuscam a integragdo, temos o rebase como o comando
mais utilizado com 79%, valor um pouco maior que os 65.7% detectados anteriormente [16],
seguido do cherry-pick com 21%, que antes foi de 30.5% e por fim o squash, que anteriormente
ocorreu em 3.85% dos casos e no estudo atual nao foi encontrado nenhuma ocorréncia [16].

Vimos também que a taxa de falhas no uso do comando merge foi de 35.4%, valor préximo
aos 37.2% encontrados anteriormente [16], ja em relagdo aos comandos que ofuscam integracao
de cdédigo, tivemos no estudo anterior [16] um valor de 11.3%, j4 nesse foi encontrado 21.8%
de falhas.

Resultado 1: De acordo com a amostra analisada, comandos que ofuscam integracao de
cddigo sao menos usados, com 33.6% valor substancialmente menor comparado aos 86.7%
encontrados anteriormente [16]. Essa diferenga pode ser explicada pela caracteristica da amostra
analisada, que tem 82.9% dos logs pertencentes a uma unica organizacdo que define como
padrdao o uso de merge como comando de integracdo, que é um comando que nio ofusca a
integracdo. Tivemos também uma taxa similar de falhas no uso do comando git merge, porém
um valor bem maior quando focado nos comandos que ofuscam integracdo de codigo, 21.8%
contra 11.3% [16], uma diferenga grande, porém € preciso ser levado em conta que a frequéncia
desses comandos em ambos estudos € bem diferentes. Ainda sim, mesmo em propor¢ao menor,
ainda temos vdrios cendrios que ofuscam integracdo de cddigo que estdo sendo ignorados por

estudos que focam apenas em repositérios publicos e remotos.

4.2 RQ2: Quais sao os motivos da ado¢ao ou nao de tais comandos?

O andlise de logs serviu como base para guiar o estudo qualitativo e, para entender os
motivos do uso de cada um dos comandos, foi necessdrio entrevistar 8 desenvolvedores que
participaram da primeira etapa da pesquisa, sendo metade pertencente a cada organizacao estudada.
Como mostrado na tabela 4.2, a distribui¢do de logs por organizagdo ndo estd equilibrada.

Apesar de que todos os entrevistados tinham conhecimentos de todos os comandos que
estdo sendo estudados nessa pesquisa, o grande uso de merge é devido ao fato de que, na
org A, detentora de 82.9% dos logs da amostra, foi reportado através das entrevistas, que os
colaboradores sao aconselhados a usar como método padrao de integracdo de cédigo o comando
git merge. Um dos entrevistados atua como gerente de projetos e, apesar de atuar pouco como
desenvolvedor, € o colaborador com mais experiéncia dentre todos entrevistados. Segundo ele,
a média de tempo de experiéncia dos desenvolvedores na empresa € de 1-2 anos, onde ele esta

préximo dos 4 anos.

4.2 RQ2: QUAIS SAO OS MOTIVOS DA ADOCAO OU NAO DE TAIS COMANDOS? 15

Segundo ele, o uso do merge foi escolhido pois era o mais simples, que todos conheciam ao
chegar na empresa e, como muitas vezes eles lidam com desenvolvedores em incio de carreira, €
0 menos suscetivel a erros no processo de integracao, independente de acarretar ou nao conflitos,
a familiaridade prévia da equipe com o comando fez com que o git merge se tornasse padrao.
Ele foi o unico da empresa que fez uso do git rebase, e explicou: “Eu uso rebase quando preciso
integrar codigo mas ainda ndo subi um PR, ndo gosto de subir um PR com commits de merge,
$O faco isso quando sei que jd estdo revisando o PR. Dai ndo quero dar push force.”

Na organizagdo B, o projeto 1 tentou o uso do git rebase como padrdo, mas desistiram
como relata um dos entrevistados: “A gente tentou, mas como os PRs tem muitos commits
demorava muito pra conseguir fazer, sempre gerava muitos conflitos, sempre algo dava errado
tinha que voltar, desistimos”. Relato que € possivel validar nos logs, onde, para esse projeto, foi
encontrado uma taxa de 70% de rebase falhos, sendo metade deles, abortados. Ou seja, existiu
uma tentativa do uso de um comando que ofusca integracdo de c6digo, mas nesse caso a grande
quantidade de commits atrapalhou de forma direta na sua utilizacao.

J4 no projeto 2, ainda na organizagdo B, tivemos a maior propor¢dao de comandos que
ofuscam integragcao de cédigo, chegando a 67.8%, valor mais préximo a propor¢ao encontrada
no estudo feito por Marcela Cunha[16] que foi de 86.7%. Desses comandos, tivemos 57.5% de
rebase € 42.5% de cherry-pick, sendo o unico projeto que usou o comando em toda a amostra.
Esse uso vem da necessidade do controle de quais mudancas vao ser entregue no ambiente de
producdo, e essa selecao especifica de mudancas € feita através do cherry-pick. Eles prezam por
uma linha do tempo linear, para facilitar esse controle, e explicou o uso: “Comegamos a usar
pois o front-end sempre acabava atrasando as features e nem sempre por questoes de agilidade
a gente conseguia fazer mudancas retrocompativeis. Por conta disso, dado que temos uma linha
do tempo linear e limpa usando rebase e squash, a gente usa cherry-pick para escolher quais
mudangas vamos mover para produ¢do” .

Resultado 2: Temos duas organiza¢des com caracteristicas bem distintas. Por um lado,
temos o0 uso massivo do comando de git merge que além da familiaridade com o comando,
ha uma maior facilidade para lidar com conflitos caso acontecam, se comparado com outros
comando de integracdo, como o rebase interativo que exige uma possivel resolugcdo de conflitos
a cada itera¢do do comando. E do outro temos o uso em massa devido uma definicao explicita,
quase como regra, definida pelos gerentes de projetos. Ou seja, o uso pela familiaridade e
maior facilidade de resolucdo de conflitos. Contudo, tivemos um caso evidente onde ter um
histérico limpo e linear € necessario e de extrema importancia para o desenvolvimento continuo
e manutencdo de um produto real. Possuir o controle de quais mudangas vao para o ambiente

de producao, através do cherry-pick se mostrou essencial para o projeto 2.

4.3 RQ3: QUAIS OS IMPACTOS DESSAS DECISOES NA OCORRENCIA DE CONFLITOS? 16

4.3 RQ3: Quais os impactos dessas decisoes na ocorréncia de conflitos?

Para entender os impactos, foi necessario conhecer mais sobre as organizac¢des, padroes de
projetos adotados, e como funciona o fluxo de trabalho de cada um dos entrevistados.

Se levarmos em conta estudos anteriores que apontam que entre 10% a 20% de todos os
comandos de integracdo falham [3, 4, 5, 6, 7], a organizacao A se manteve dentro da média. O
que ficou explicito com as entrevistas é que, ao iniciar o projeto, a taxa de conflitos aumenta
drasticamente, chegando a quase 50%, valor que também ja foi encontrado em outros estudos
[7]. Essa frequéncia tende a diminuir e voltar a média no decorrer do projeto, onde a estrutura
jé estd bem definida e nao € necessario a mudanca frequente de configuracdes globais.

Ja na organizagdo B tivemos casos bem diferentes, no projeto de back-end (2) foi relatado
que ja existiam poucos conflitos. O time era pequeno, apenas 2 pessoas, ambos possuiam mais
de 3 anos de experiéncia, tanto de Git quando de mercado de trabalho, e dentro desse projeto
sempre trabalhavam juntos, numa espécie de pair programming. Mesmo quando trabalhando
em tarefas diferentes, um sempre sabia do contexto do outro. O projeto foi o unico do estudo que
possuia testes unitarios e de integragdo automatizados e segundo o desenvolvedor isso reduzia
muito o tempo de revisdo, conseguindo realizar o deploy das mudancas em producdo de maneira
mais répida.

Existia um esforgo ativo por parte do time para manter PRs pequenos, com poucos commits
e, para isso, eles costumavam usar a estratégia de Stacked PRs, como mostra na figura 4.1.
A ideia € de abrir um PR de uma feature para ser revisado e suas mudangas integradas numa
branch que pertence a outra feature que ainda estd em desenvolvimento. O ato de dividir uma
feature grande em vdrias pequenas e subir em etapas acarreta em PRs pequenos, mais faceis
de revisar. Quanto menos tempo um PR fica em aberto, menos chances de gerar conflitos,
além de ajudar bastante no tempo de revisdo de PRs, melhorou bastante a agilidade do time
e a capacidade de entregar novas tarefas. Porém, acontecia de, por engano, a ordem que os
PRs deveriam ser integrados ser confundida, e como o projeto faz uso do squash and merge
isso fazia com que o histérico de commits fosse reescrito, quebrando e gerando conflitos em
todas as branch que foram construidas a partir da branch atual, que deveriam ter sido integradas
primeiro. Essa foi a tnica causa de conflitos relatadas pelo entrevistado que disse que a média
de conflitos no projeto chegava no maximo em 5%.

Ainda na organiza¢do B, mas agora focando no projeto de front-end (1), temos uma média
de experiéncia entre 1-3 anos, parecido com a org A, mas foi relatado nas entrevistas que a
quantidade de conflitos que acontecem € muito alta: "Eu ndo lembro a iltima vez que fiz
um merge que ndo gerou conflitos, inclusive quando a gente vai mergir um PR e ndo tem
que resolver conflito a gente acha que tem algo errado, e vai investigar.", um dos trés 3
desenvolvedores que trabalham no projeto atua hoje como gerente de projetos, e s6 escreve
codigo para resolver algum bug mais importante. Ja os outros dois que lidam com todas as

cargas de features, ambos ndo tiveram nenhum comando de integracao que nao gerou conflitos

4.3 RQ3: QUAIS OS IMPACTOS DESSAS DECISOES NA OCORRENCIA DE CONFLITOS? 17

=
N

z.\.
-

Figura 4.1 Stacked PRs [24]

na andlise dos logs, comportamento confirmado por eles nas entrevistas, segundo eles a taxa de
conflitos era de 98%.

Algumas caracteristicas do front-end (1) valem ser destacadas, PRs de features demoram
cerca de 2 semanas para serem revisados e diferente do back-end (2) ndo existem testes unitarios
e de integracao automatizados, € trabalho do revisor acessar o ambiente de teste e tentar quebrar
na mao o front-end com a mudanga, além de revisar o cédigo em si. Features muito grandes,
que geram PRs longos, complexos, com muitos commits, € que demoram para serem revisados
definitivamente influenciam na ocorréncia de conflitos.

Na entrevista foi constatado que a solucdo pra isso estd sendo investir mais tempo no
planejamento, para ter tarefas menores e mais bem definidas e foi dado inicio o uso de Stacked
PRs, um padrio que ja é usado no time de back-end e que comecou a ser usado no time de
front-end e que segundo eles tem ajudado a manter os PRs menores, e até entdo ndo sofreram

com o problema ocorrido no back-end de confundir a ordem dos PRs na hora do merge.

PRs i
Projeto em Faltg de Uso de PC!SSUIF Grau de
abertos planejamen mais de 2 L
estado . Stacked senioridade
inicial por muito to das PRs pessoas no baixo
tempo tasks projeto
Influencia X X X X X X
Nao
Influencia X

Tabela 4.6 Consolidacdo de pontos coletados que influenciam ou nfo na ocorrencia de conflitos.

4.3 RQ3: QUAIS OS IMPACTOS DESSAS DECISOES NA OCORRENCIA DE CONFLITOS? 18

Resultado 3: Analisamos perspectivas e maneiras diferentes de como lidar com integracao
de cddigo, até mesmo dentro de uma mesma organizacdo. Na org B, ambos times acabam se
adaptando e testando novas formas de integrar c6digo, e a experiéncia de um € compartilhada
entre eles. Tivemos o uso do cherry-pick apenas pelo projeto de back-end, enquanto o front-end
ainda usava git merge, porém o uso de Stacked PRs que se iniciou no back-end, estd sendo
integrada no fluxo do front-end.

Como consolidado na tabela 4.6, vemos que a ocorréncia de conflitos pode ser influenciada
devido ao fato do projeto estar ainda no inicio de seu ciclo de desenvolvimento, requerendo
muitas configuragdes e mudancas na estrutura global. A falta de planejamento nas tarefas,
acarreta normalmente em PRs grandes, que demoram na revisdo, aumentando a ocorréncia de
conflitos. O uso de Stacked PRs se provou eficiente para diminui¢ao do tamanho dos PRs, mas
exige cuidado no uso podendo acarretar em conflitos caso seja usado de maneira indevida. A
quantidade de pessoas trabalhando juntas estd diretamente relacionada as chances de conflitos
acontecerem, junto com o baixo grau de senioridade. Times mais experientes investem mais

tempo em documentacgdo e planejamento de tarefas.

CAPITULO 5

Conclusao

Nessa pesquisa foram realizados estudos quantitativos e qualitativos sobre a frequéncia do
uso de comandos de integracdo em repositorios locais e de que maneira isso se relaciona com a
ocorréncia de conflitos. Diferente da maioria de estudos feitos anteriormente na area, esse tem
como foco olhar apenas para os logs locais dos desenvolvedores.

Foram coletados 35 arquivos de log, de 17 desenvolvedores distintos, que foram analisados
através de uma ferramenta desenvolvida em outros estudos na drea que tem como foco também
os logs locais, mas foi encontrado um resultado diferente, devido a caracteristicas distintas da
amostra, apontando um uso muito menor de comandos que ofuscam integraciao de cédigo do
que encontrado anteriormente [16].

Além da andlise de logs, foram realizadas 8 entrevistas semi-estruturadas, a fim de entender
mais a fundo a relacdo entre o uso dos comandos de integracao, fluxo de trabalho e a ocorréncia
de conflitos. Encontramos uma propor¢do de uso de comandos de integracao proxima a estudos
anteriores [16] quando focado apenas nos desenvolvedores com mais de 3 anos de experiéncia
de mercado e uso do Git. A relagcdo entre comandos de integracdo e o surgimento de conflitos
nao demonstrou relevancia direta, porém algumas caracteristicas de fluxos de trabalho e diretrizes
de projeto sim tiveram grande impacto.

Foram destacados de acordo com a entrevistas que junto ao baixo grau de experiéncia
do time, o maior causador de conflitos é devido a quanto tempo um PR fica em processo de
revisdo. De forma indireta, a falta de planejamento e defini¢do de tasks se mostrou como maior
causador dessa demora, PRs longos, complexos podem demorar até 2 semanas para serem
revisados, acarretando em grande quantidade de conflitos gerados. Na andlise de logs para
esse projeto em especifico nenhum comando de integracao foi bem sucedido, comportamento
que foi confirmado nas entevistas pelos desenvolvedores: "Eu ndo lembro a ultima vez que fiz
um merge que ndo gerou conflitos". De forma andloga, projetos que possuem PRs pequenos,
organizados, com testes automatizados que facilitam o trabalho do revisor foram encontrados
baixa ocorréncia de conflitos, chegando ao maximo em 5%.

Com isso, além de trazer mais a tona, estudos e andlises que focam em repositdrios locais,
podemos perceber como o uso de comandos de integra¢do, junto ao fluxo de trabalho e diretrizes

dos projetos influenciam a ocorréncia de conflitos.

19

CAPITULO 6

Trabalhos Futuros

Em ambientes de desenvolvimento colaborativo de software, desenvolvedores trabalham
em paralelo de forma independente, podendo ocasionar em conflitos na integracdo de codigo
com o repositorio principal. Conflitos como esses sdo frequentes e ja foram apontados em
estudos que podem impactar negativamente a produtividade, qualidade e corretude do cédigo.
Neste trabalho o foco foi o estudo de comandos de integracdo de c6digo que acontecem nos
repositorios locais dos colaboradores, e como a relagdo desses comandos junto a caracteristicas
dos projetos podem acarretar na ocorréncia de conflitos.

Devido a diferenca nas caracteristicas da amostra coletada em comparacdo com estudos
anteriores, os resultados sobre a frequéncia de comandos foram diferentes, propomos um novo
estudo agora com foco em desenvolvedores mais experientes, acima dos 3 anos de experiéncia,
tanto com o uso de Git, tanto no mercado de trabalho, pois foi nesse subconjunto pequeno da
nossa amostra que conseguimos achar resultados préximos aos encontrados antes.

Como dentro da nossa amostra tivemos apenas um projeto que possuia testes automatizados,
tanto de integra¢do quanto unitdrio, € de interesse estudar mais projetos com essas caracteristicas
para compreender o real impacto a existéncia de testes com a ocorréncia de conflitos, seja de

maneira direta ou indireta.

20

APENDICE A

Lista de Perguntas das entrevistas

Quanto tempo de experiéncia no mercado de trabalho?
Quanto tempo como desenvolvedor no projeto?

Quanto tempo de experiéncia usando git?

Usa alguma ferramenta para auxiliar o uso do Git/GitHub?

— Qual(is)?

— O que ela te ajuda?

Participou da definicdo do que seriam as diretrizes adotadas pelo projeto sobre Git/GitHub,
ou seja, estrutura de commits, uso de comandos de integracdo, estrutura de PRs? Tem

liberdade pra mudar?
Quantas pessoas trabalham no projeto hoje?
Tem experi€ncia com o comando de rebase? squash? cherry-pick?

Levando em conta a quantidade de vezes que vocé realiza integracao de cddigo, com que

frequéncia acontecem conflitos? 50%, 20%, todas as vezes?
Vocé costuma resolver conflitos? Se sim, sozinho ou pede ajuda a alguém do time?
Os PRs do projetos vocé considera de qual tamanho?

— pequeno: consigo trocar de contexto para revisar sem muitos problemas;
— médio: preciso tirar um tempo pra revisar com atenc¢ao;
— grande: nunca consigo revisar tudo de uma vez, sempre aparece outra demanda, ou

acabo me distraindo pelo tamanho.

Baseado na defini¢do de tamanho acima, quanto tempo leva para um PR de tamanho
médio, de uma nova feature, ser revisado, aprovado, e finalmente mergido? Ou seja, apds

abrir o PR, quanto tempo até mergi-lo?

Ja lidou com Stacked PRs? Um PR que vai ser mergido em outra branch de feature/fix,

que ndo é a main, criando essa interdependéncia.

Qual seu fluxo de trabalho? Como vocé gostaria que fosse? Porque?

21

Referéncias Bibliograficas

[1] Stack-Overflow, “Version control survey,” https://survey.stackoverflow.co/2022/

version-control-systems.

[2] D. Perry, H. Siy, and L. Votta, “Parallel changes in large scale software development: an

observational case study,”

[3] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization through optimized
task scheduling,” May 2013.

[4] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Early detection of collaboration conflicts
and risks,” IEEE Transactions on Software Engineering, vol. 39, pp. 1358-1375, Oct.
2013.

[5] W. Mahmood, M. Chagama, T. Berger, and R. Hebig, “Causes of merge conflicts: A case
study of elasticsearch,” Feb. 2020.

[6] S.McKee, N. Nelson, A. Sarma, and D. Dig, “Software practitioner perspectives on merge

conflicts and resolutions,” Sept. 2017.

[7]1 Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of collaboration
conflicts,” 2011.

[8] A. van der Hoek and A. Sarma, “Palantir: enhancing configuration management systems

with workspace awareness to detect and resolve emerging conflicts,” 2008.

[9] M. L. Guimaraes and A. R. Silva, “Improving early detection of software merge conflicts,”
June 2012.

[10] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving semistructured

merge,” Proceedings of the ACM on Programming Languages, vol. 1, pp. 1-27, Oct. 2017.

[11] Y. Nishimura and K. Maruyama, “Supporting merge conflict resolution by using

fine-grained code change history,” vol. 1, pp. 661-664, 2016.

[12] J. Clementino, P. Borba, and G. Cavalcanti, “Textual merge based on language-specific

syntactic separators,” 2021.

[13] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Késtner, “Semistructured merge,” 2011.

22

REFERENCIAS BIBLIOGRAFICAS 23
[14] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured merge conflict
characteristics in open-source java projects (journal-first abstract),” Sept. 2018.

[15] M. Cunha, “Entendendo o uso do git em equipes de desenvolvimento de software,”
pp- 1-29, Dec. 2018.

[16] M. Cunha, P. Accioly, and P. Borba, “The private life of merge conflicts,” Oct. 2022.

[17] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu, “The
promises and perils of mining git,” May 2009.

[18] E. Shihab, C. Bird, and T. Zimmermann, “The effect of branching strategies on software
quality,” pp. 301-310, 2012.

[19] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness and merge conflicts in
distributed software development,” pp. 26-35, 2014.

[20] S. Apel, O. LeBenich, and C. Lengauer, “Structured merge with auto-tuning: balancing
precision and performance,” pp. 120-129, 2012.

[21] S. CHACON and B. STRAUB, “Pro git,” vol. 2nd edition, 2014.

[22] Atlassian, “Git merge,” https://www.atlassian.com/git/tutorials/using-branches/git-merge.
[23] Atlassian, “Git rebase,” shorturl.at/dtx23.

[24] Atlassian, “Git stash apply,” https://static.javatpoint.com/tutorial/git/images/git-stash.png.

[25] B. Congdon, “Stacked prs,” shorturl.at/ENQVO.

	Introdução
	Motivação
	Metodologia
	Preparação do estudo
	Análise dos logs

	Resultados
	RQ1: Qual frequência de comandos que ofuscam integração de código?
	RQ2: Quais são os motivos da adoção ou não de tais comandos?
	RQ3: Quais os impactos dessas decisões na ocorrência de conflitos?

	Conclusão
	Trabalhos Futuros
	Lista de Perguntas das entrevistas

