
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Rogério César Peixoto Fragoso

Clustering-based dynamic ensemble selection for one-class decomposition

Recife

2022



Rogério César Peixoto Fragoso

Clustering-based dynamic ensemble selection for one-class decomposition

Tese apresentada ao Programa de Pós-graduação
em Ciência da Computação do Centro de Infor-
mática da Universidade Federal de Pernambuco,
como requisito parcial para obtenção do grau de
Doutor em Ciência da Computação.

Área de Concentração: Inteligência computa-
cional

Orientador: Prof. Dr. George D. C. Cavalcanti

Coorientador: Prof. Dr. Luiz E. S. Oliveira
Coorientador: Prof. Dr. Roberto H. W. Pinheiro

Recife

2022



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
                                        Catalogação na fonte 

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217               
  

  
 
F811c Fragoso, Rogério César Peixoto 

      Clustering-based dynamic ensemble selection for one-class decomposition / 
Rogério César Peixoto Fragoso. – 2022. 

  81 f.:il., fig, tab. 
 
  Orientador: George Darmiton da Cunha Cavalcanti. 
  Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da 

Computação, Recife, 2022 
 

                       Inclui referências e apêndices. 
 

  1. Inteligência computacional. 2. Sistemas de múltiplos classificadores. I. 
Cavalcanti, George Darmiton da Cunha (orientador).  II. Título. 
 
      006.31                      CDD (23. ed.)                          UFPE - CCEN 2022-183                              
       

 

 



Rogério César Peixoto Fragoso

 “Clustering-based Dynamic Ensemble Selection for One-Class
Decomposition”

Tese de Doutorado apresentada ao Programa
de  Pós-Graduação  em  Ciência  da
Computação  da  Universidade  Federal  de
Pernambuco,  como  requisito  parcial  para  a
obtenção do título de Doutor em Ciência da
Computação.  Área  de  Concentração:
Inteligência Computacional.

Aprovado em: 24/08/2022.

___________________________________________________________
Orientador: Prof. Dr. George Darmiton da Cunha Cavalcanti

BANCA EXAMINADORA

___________________________________________________
Prof. Dr. Adriano Lorena Inacio de Oliveira

Centro de Informática / UFPE

____________________________________________________
Prof. Dr. Yandre Maldonado e Gomes da Costa

Departamento de Informática / UEM

____________________________________________________
Prof. Dr. Renato Vimieiro

Departamento de Ciência da Computação / UFMG

____________________________________________________
Prof. Dr. George Gomes Cabral

Departamento de Computação / UFRPE

_____________________________________________________
Prof. Dr. Péricles Barbosa Cunha de Miranda

Departamento de Computação / UFRPE



ABSTRACT

A natural solution to tackle multi-class problems is employing multi-class classifiers. How-

ever, in specific situations, such as imbalanced data or a high number of classes, it is more

effective to decompose the multi-class problem into several and easier to solve problems. One-

class decomposition is an alternative, where one-class classifiers (OCCs) are trained for each

class separately. However, fitting the data optimally is a challenge for classifiers, especially

when it presents a complex intra-class distribution. The literature shows that multiple clas-

sifier systems are inherently robust in such cases. Thus, the adoption of multiple OCCs for

each class can lead to an improvement for the one-class decomposition. With that in mind, in

this work, we introduce two methods for multi-class classification using ensembles of OCCs.

One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES, for short)

and Density-Based Dynamic Ensemble Selection (DBDES) provide competent classifiers for

each region of the feature space by decomposing the original multi-class problem into multiple

one-class problems, segmenting the data from each class, and training a OCC for each cluster.

The rationale is to reduce the complexity of the classification task by defining a region of

the feature space where the classifier is supposed to be an expert. The classification of a test

instance is performed by dynamically selecting an ensemble of competent OCCs and the final

decision is given by the reconstruction of the original multi-class problem. Experiments carried

out with 25 databases, 4 OCC models, and 3 aggregation methods showed that the proposed

techniques outperform the literature. When compared with literature techniques, MODES and

DBDES obtained better results, especially for databases with complex decision regions.

Keywords: one-class decomposition; multiple classifier system; dynamic ensemble selection.



RESUMO

Uma solução natural para lidar com problemas multi-classe é empregar classificadores

multi-classe. No entanto, em situações específicas, como dados desbalanceados ou grande

número de classes, decompor o problema multiclasse em vários problemas mais fáceis de

resolver pode ser mais eficaz. A decomposição em uma classe é uma alternativa, onde classi-

ficadores de uma classe (OCCs) são treinados para cada classe separadamente. No entanto,

ajustar os dados de forma otimizada é um desafio para os classificadores, principalmente quando

os dados apresentam uma distribuição intra-classe complexa. A literatura mostra que sistemas

de múltiplos classificadores são inerentemente robustos em tais casos. Assim, a adoção de

múltiplos OCCs para cada classe pode levar a uma melhoria de desempenho na decomposição

de uma classe. Com isso em mente, neste trabalho apresentamos dois métodos para classi-

ficação de problemas multi-classe através ensembles de OCCs. One-class Classifier Dynamic

Ensemble Selection for Multi-class problems (MODES) e Density-Based Dynamic Ensemble

Selection (DBDES) fornecem classificadores competentes para cada região do espaço de car-

acterísticas, decompondo o problema multiclasse original em vários problemas de uma classe,

segmentam os dados de cada classe e um OCC é treinado para cada cluster. MODES utiliza o

algoritmo K-means e um conjunto de índices de validação de cluster enquanto DBDES utiliza

o algoritmo OPTICS para a segmentação dos dados. A lógica é reduzir a complexidade da

tarefa de classificação definindo uma região do espaço de características onde o classificador

deve ser um especialista. A classificação de uma instância de teste é realizada selecionando

dinamicamente um conjunto de OCCs competentes e a decisão final é dada pela reconstrução

do problema multiclasse original. Experimentos realizados com 25 bancos de dados, 4 modelos

OCC e 3 métodos de agregação mostraram que as técnicas propostas superam a literatura.

Quando comparado com técnicas da literatura, MODES e DBDES obtiveram melhores resul-

tados, principalmente para bancos de dados com regiões de decisão complexas.

Palavras-chaves: decomposição de uma classe; sistemas de múltiplos classificadores; seleção

dinâmica de ensemble.



LIST OF FIGURES

Figure 1 – Decision region of a single Gaussian One-Class Classifier (OCC). Scenario

(a) shows a broad decision region, leading to a high false positive rate.

Scenario (b) shows a reduced decision region leading to a high false negative

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2 – Decision regions using (a) one, (b) two, (c) four and (d) five Gaussian

one-class classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3 – Reachability plot for a database with hierarchical clusters of different sizes

and densities. Each “valley” in the plot represents a cluster where the steep

areas represent the start and end of clusters. . . . . . . . . . . . . . . . . 29

Figure 4 – One-class Dynamic Ensemble Selection for Multi-class problems (MODES)

training phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 5 – MODES test phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 6 – Toy example of the training phase of MODES for a class label 𝑙. The

cluster validity indices output a set 𝐷 = {2, 4, 5} containing the numbers

of clusters to segment the target data. A one-class classifier 𝜆𝑗 is trained

for each cluster 𝑐𝑗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 7 – Toy example of the test phase of MODES for a class label 𝑙. MODES

computes the euclidean distance between the test instance 𝑥 (represented

by ) and the centroid of each cluster. The OCC trained with data from the

closest cluster is is dynamically selected to the ensemble 𝐸𝑙. . . . . . . . . 43

Figure 8 – Toy example of Density-Based Dynamic Ensemble Selection (DBDES) for

a class label 𝑙. The figure on the left (a), presents the training phase and

the figure on the right presents the test phase. . . . . . . . . . . . . . . . 47

Figure 9 – Result for Nemenyi post hoc test for (a) accuracy and (b) Kappa Statistic. 55

Figure 10 – Frequency of use of OCCs with MODES for Decision Templates (DTs) and

Maximum Support (MAX) (a) and Error Correcting Output Codes (ECOC)

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 11 – Result for Nemenyi post-hoc test for (a) accuracy and (b) Kappa Statistic

performances of DBDES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Figure 12 – Frequency of use of OCCs with DBDES for DTs and MAX (a) and ECOC

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 13 – Result for Nemenyi post-hoc test for (a) accuracy and (b) Kappa Statis-

tic performances of MODES, DBDES, Dynamic Ensemble Selection with

THReshold-based neighborhood pruning (DESTHR), and the static combi-

nation of OCCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 14 – Accuracy and Kappa statistic for the best configurations of DBDES, MODES,

and DESTHR according to the homogeneity of the neighborhood. Databases

where more than 25% of the instances present more than one class in the

neighborhood are shown in the left side of the figure. The right side shows

databases where less than 25% of the instances present more than one class

in the neighborhood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 15 – Accuracy and Kappa statistic for the best configurations of DBDES, MODES,

and DESTHR according to the Imbalance Ratio. Databases with IR < 10 are

shown in the left side of the figure. The right side shows databases with IR

≥ 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 16 – Accuracy and Kappa statistic for the best configurations of DBDES, MODES,

and DESTHR according to the number of classes of the databases. Databases

with less than 7 classes are shown in the left side of the figure. The right

side shows databases at least 7 classes. . . . . . . . . . . . . . . . . . . . 68



LIST OF TABLES

Table 1 – Comparison involving DBDES, MODES, and other techniques that use one-

class decomposition, OCC ensemble, for each one-class problem, clustering-

based approach, and/or dynamic selection (DS) . . . . . . . . . . . . . . . 35

Table 2 – Default values for MODES and DBDES hyper-parameters. . . . . . . . . . 48

Table 3 – Databases description. Imbalance Ratio is computed as the division of the

cardinality of the largest class by the cardinality of the smallest class. . . . . 51

Table 4 – OCCs hyper-parameters. Matlab 𝑑𝑑_𝑡𝑜𝑜𝑙𝑠 library implementation was used

in the experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 5 – Accuracy performance (in %) of MODES using DTs, ECOC, and MAX for

four one-class classifiers. The best result for each database is in bold. The

last row represents the number of wins, ties, and losses achieved by each

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 6 – Kappa performance of MODES using DTs, ECOC, and MAX for four one-

class classifiers. The best result for each database is in bold. The last row

represents the number of wins, ties, and losses achieved by each technique. . 55

Table 7 – Accuracy performance (in %) of DBDES using DTs, ECOC, and MAX ag-

gregation methods for four one-class classifiers. The best result for each

database is in bold. The last row represents the number of wins, ties, and

losses achieved by each technique. . . . . . . . . . . . . . . . . . . . . . . 57

Table 8 – Kappa statistic performance of DBDES using DTs, ECOC, and MAX ag-

gregation methods for four one-class classifiers. The best result for each

database is in bold. The last row represents the number of wins, ties, and

losses achieved by each technique. . . . . . . . . . . . . . . . . . . . . . . 59

Table 9 – Accuracy performance (in %) of MODES, DBDES, DESTHR, and Static

aggregation of OCCs. The best result for each database is in bold. The last

rows represent the mean performance across all databases, the number of

wins, ties, and losses achieved by each technique, and the average rankings. 62



Table 10 – Kappa performance of MODES, DBDES, DESTHR, and Static aggregation

of OCCs. The best result for each database is in bold. The last rows represent

the mean performance across all databases, the number of wins, ties, and

losses achieved by each technique, and the average rankings. . . . . . . . . 63

Table 11 – Mean accuracy and Kappa statistic for top-performing configurations of DB-

DES, MODES, and DESTHR according to the homogeneity of the neighbor-

hoods in the databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 12 – Mean accuracy and Kappa statistic for top-performing configurations of DB-

DES, MODES, and DESTHR according to the Imbalance Ratio. . . . . . . . 67

Table 13 – Mean accuracy and Kappa statistic for top-performing configurations of

DBDES, MODES, and DESTHR according to the number of classes of the

databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 14 – Wilcoxon signed rank test results comparing the top-performing configura-

tions of DBDES, MODES, and DESTHR. Convention adopted: “>>” means

strong evidence that the technique in the column presents greater effective-

ness than the technique in the row; “>” means evidence that the technique

in the column presents greater effectiveness than the technique in the row;

“∼” means no evidence that the technique in the column presents greater

effectiveness than the technique in the row. . . . . . . . . . . . . . . . . . 69

Table 15 – Mean execution time across all databases for the top-performing configura-

tions of MODES, DBDES, and DESTHR. The time is presented in seconds

and is divided by training, test, and total. . . . . . . . . . . . . . . . . . . 69

Table 16 – Training time of MODES, DBDES, and DESTHR top performing configu-

rations and the characteristics of the databases. Imbalance Ratio (IR) is

computed as the division of the cardinality of the largest class by the cardi-

nality of the smallest class. Best result for each database in bold. The last

rows represent the mean performance across all databases, the number of

wins, ties and losses achieved by each technique, and the average rankings. . 78



Table 17 – Prediction time of MODES, DBDES, and DESTHR top performing config-

urations and the characteristics of the databases. IR is computed as the

division of the cardinality of the largest class by the cardinality of the small-

est class.. Best result for each database in bold. The last rows represent the

mean performance across all databases, the number of wins, ties and losses

achieved by each technique, and the average rankings. . . . . . . . . . . . . 79

Table 18 – Accuracy performance (in %) of MODES, DBDES, and Random Forest.

Best result for each database in bold. The last rows represent the mean per-

formance across all databases, the number of wins, ties and losses achieved

by each technique, the average rankings and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for Wilcoxon

Signed Ranking Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 19 – Kappa performance of MODES, DBDES, and Random Forest. Best result

for each database in bold. The last rows represent the mean performance

across all databases, the number of wins, ties and losses achieved by each

technique, the average rankings and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for Wilcoxon Signed

Ranking Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



LIST OF ABBREVIATIONS AND ACRONYMS

CVI Cluster Validity Index

DBDES Density-Based Dynamic Ensemble Selection

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DCS Dynamic Classifier Selection

DES Dynamic Ensemble Selection

DESTHR Dynamic Ensemble Selection with THReshold-based neighborhood pruning

DTs Decision Templates

DTs Decision Templates

ECOC Error Correcting Output Codes

GaussianDD Gaussian Data Descriptor

IR Imbalance Ratio

MAX Maximum Support

MCS Multiple Classifiers Systems

MEAN Mean Support

MODES One-class Dynamic Ensemble Selection for Multi-class problems

MSTDD Minimum Spanning Tree Data Descriptor

OCC One-Class Classifier

OPTICS Ordering Points To Identify the Clustering Structure

ParzenDD Parzen Data Descriptor

SVDD Support Vector Data Descriptor



LIST OF SYMBOLS

𝑐 A cluster

𝐷𝑆𝐸𝐿 Validation set

𝐸 Ensemble

𝑔 A partition, composed of clusters

𝐿 The set of class labels in a problem

𝑝 Pool of classifiers

𝑥 Test instance

Γ A training database

𝜆 A one-class classifier

𝜉 OPTICS hyper-parameter for hierarchical cluster extraction

𝜖 The radius of a data instance neighborhood

Ψ The region of competence of a test instance



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 CLUSTERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Hierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Density-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.4 Grid-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.5 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.5.1 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.5.2 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.5.3 OPTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.6 Cluster validity indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 ONE-CLASS CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 OCC models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 MULTIPLE CLASSIFIERS SYSTEMS . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Aggregation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 PROPOSAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Test phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 DBDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Test phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



3.3 HYPER-PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 EXPERIMENTAL PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

APPENDIX A – EXECUTION TIME . . . . . . . . . . . . . . . . . 78

APPENDIX B – COMPARISON WITH BENCHMARK MULTI-CLASS

CLASSIFIER . . . . . . . . . . . . . . . . . . . . . 80



15

1 INTRODUCTION

Multi-class classification may be tackled in several ways. The most common approach is

to use multi-class classifiers, where the objective is to separate the classes of the problem.

However, some difficulties embedded in the nature of the data, for example, class imbalance,

complex data distribution, class overlap, a high number of classes, and small data samples,

may impair the performance if not carefully treated.

Deep learning (POUYANFAR et al., 2018), which is currently one of the most remarkable

machine learning techniques, shows good performance in a variety of multi-class problems and,

in general, does not require any special procedure to deal with the aforementioned issues. How-

ever, the amount of data required for training a satisfactory model depends on the complexity

of the problem, i.e., the more complex is the problem, the more data is needed. Databases

presenting complex data distribution, class overlap, and a high number of classes, for exam-

ple, require more data (CAO; ZHANG; TANG, 2018). Furthermore, class imbalance is still an

important issue regarding deep learning methods, mainly for non-image databases (JOHNSON;

KHOSHGOFTAAR, 2019). Data sampling, i.e., oversampling and downsampling, may be used

to diminish this issue. Oversampling techniques, such as Synthetic Minority Over-sampling

TEchnique (SMOTE) (CHAWLA et al., 2002), augment the size of the minority class, creating

synthetic data instances to balance the majority class. Downsampling techniques, perform data

reduction on the majority class. In oversampling, the original distribution of the minority class

is maintained and no data is discarded. However, since the majority class is ignored, synthetic

data instances may include noisy data (KIM; JO; SHIN, 2016) and/or may be generated over

the majority class increasing class overlap (HE; GARCIA, 2009). On the other hand, downsam-

pling diminishes the computational effort for training, since less data is used, however, the

classification performance may be hindered due to information loss caused by the exclusion

of useful data. Thus, reducing the data may not be a good option if data is already scarce.

Therefore, databases with such impairments may be a difficult to solve problem, even for a

powerful technique such as deep learning.

An alternative that is recently gaining attention is the one-class decomposition, where each

class is treated as a separate problem (KRAWCZYK; WOŹNIAK; HERRERA, 2015; KRAWCZYK et

al., 2018). The training data from each class of the original multi-class problem is fed to

an One-Class Classifier (OCC), and each OCC estimates the likelihood that a test instance



16

belongs to the target class. The final classification decision, i.e., which class the test instance

is assigned to, is given by the aggregation of the decisions made by the OCCs. The rationale

is that, following the divide and conquer principle, each one-class problem is simpler to solve

than the original multi-class problem.

It is important to remark that one-class classifiers are not superior to standard classifiers for

most of the multi-class problems. OCCs do not access counter-examples in the training phase,

instead, it uses the target data to define a decision border that describes the data and maintains

the generalization power. In this case, inter-class information is lost. However, the nature of

OCCs makes of one-class decomposition an interesting approach for specific cases, where the

data contain the aforementioned issues (KRAWCZYK; WOŹNIAK; HERRERA, 2015). For example,

because OCCs treat each class individually, class imbalance is not an issue. Furthermore, for the

same reason, a database with class overlapping may be better described by one-class classifiers

than with standard classifiers. Even fuzzy classification does not allow extremely overlapped

decision regions (CUPERTINO; ZHAO; CARNEIRO, 2015). One-class decomposition permits the

generation of overlapped decision borders in the training phase and the aggregation in the

test phase is responsible for deciding which class a test instance belongs to based on the

proximity or importance to each class, for example. One-class decomposition is also beneficial

for problems in which the number of classes may vary, such as incremental learning or open-set

problems (KRAWCZYK; WOŹNIAK; CYGANEK, 2014).

The most intuitive approach for one-class decomposition is to use an OCC for each class of

the original problem and aggregate their outputs. However, a single one-class classifier, as well

as a single standard classifier, hardly ever fits the data distribution optimally (TAX; DUIN, 2001).

Recently, Multiple Classifiers Systems (MCS) have been adopted in the context of one-class

problems aiming to address this issue. MCS may perform better and be more robust than a

single classifier by combining the outputs of distinct classifiers (KUNCHEVA, 2014; ZHOU, 2012).

For this reason, MCS are an increasingly adopted approach (CRUZ; SABOURIN; CAVALCANTI,

2018). The most common way of working with MCS is to generate a pool of classifiers using

the training data (generation step) and to combine the responses of these classifiers to give the

final classification (aggregation step). The classifiers should be complementary, i.e., competent

in different regions of the feature space, and individually accurate. Optionally, a selection step

may be adopted to select the most competent classifiers instead of combining all of them.

The selection may be static (a subset of the classifiers in the pool is selected to classify all

test instances) or dynamic (a subset of classifiers is selected on the fly to classify each test



17

instance).

Relevant studies using Multiple Classifiers Systems with one-class classifiers have shown

promising results (KRAWCZYK; WOŹNIAK; CYGANEK, 2014; KRAWCZYK et al., 2018; KRAWCZYK;

WOŹNIAK, 2016; LIU et al., 2016). To the best of our knowledge, a single technique adopted

dynamic ensemble selection for one-class decomposition (KRAWCZYK et al., 2018). However,

this technique does not treat the intra-class complex data distribution, i.e., the presence of

remote instances and multi-modal data, as a particular issue.

We propose in this work two methods for multi-class classification using one-class de-

composition: One-class Dynamic Ensemble Selection for Multi-class problems (MODES) and

Density-Based Dynamic Ensemble Selection (DBDES). Both techniques decompose the multi-

class problem into one-class problems, segment the training data of each class into clusters,

and train an OCC for each cluster. During the generalization phase, an ensemble (a subset of

the whole pool of OCCs) is selected per test instance. This ensemble should be composed of

the most competent OCCs to classify the test instance. Afterward, these OCCs in the ensemble

are combined to predict the class of the test instance.

Since each OCC is trained with different subsets, we expect a high diversity among the

OCCs in the generated pool, which is a desirable characteristic of MCS. The proposed strategy

aims at facilitating the classification task because each OCC deals only with part of the whole

classification problem, which is the rationale behind the divide and conquer principle. Moreover,

this data segmentation strategy is also interesting in dealing with complex data distribution (as

shown in the problem statement, in Section 1.1) because, in such situations, locally specialized

OCCs may fit better the data (KRAWCZYK; WOŹNIAK; CYGANEK, 2014).

MODES uses K-means algorithm for the clustering step. As the number of clusters 𝑘

is required and the determination of the ideal value for this hyper-parameter in a database

is still an open problem (KOLESNIKOV; TRICHINA; KAURANNE, 2015), we use cluster validity

indices (ARBELAITZ et al., 2013) as an alternative to defining the number of clusters for each

class.

DBDES, differently, uses Ordering Points To Identify the Clustering Structure (OPTICS)

for the clustering step. The primary motivation for this choice is to avoid the problem of defining

the number of clusters in the data since this algorithm does not require such parameteriza-

tion. Furthermore, OPTICS can identify arbitrarily shaped clusters and clusters with different

densities (ANKERST et al., 1999), unlike K-means, which leads to more accurate segmentation

in the case of non-convex clusters.



18

1.1 PROBLEM STATEMENT

OCCs try to define a closed boundary around the instances belonging to only one class

in the training. In the test, the class used for training, called the target class, has to be

distinguished from all other possible instances. The class of non-target instances is known as

the outlier class.

A single OCC may not be capable of capturing well the characteristics of the target class.

For example, if the training data is multi-modal or contains remote instances, empty regions

may appear within the decision boundary due to an over-estimation in training. That is, seeking

to encompass the remote instances or the multiple modes present in the training data, the

decision boundary may include regions that are not covered by any training instance. In the

test, both target and outlier instances may appear in the empty regions (KRAWCZYK et al.,

2018).

Even successful OCCs, such as Support Vector Data Descriptor (SVDD) suffer from this

issue. SVDD defines a spherically shaped decision boundary around the target data (TAX; DUIN,

2004). However, a single hyper-sphere may not be able to best describe the data if there are

some distinctive distributions in it (LE et al., 2010). Kernel functions help to optimize the

decision region in such a way that most of the target instances are inside it while minimizing

its size to diminish the probability of including outliers. The training data is mapped from the

input space into a higher dimensional feature space which is easier to distinguish from other

distributions. However, SVDD assumes that all training instances (in the target class) come

from a single distribution, which is not true in many cases. Hence, in the case of distinctive

data distributions in the target class, outliers may be inside the decision region, as well, if only

one spherically shaped decision boundary, i.e., a single SVDD, is used (XIAO et al., 2009).

Consider a target class formed by more than one distribution, i.e., the data is multi-modal.

If only one OCC is trained for the target class, two scenarios may occur: (a) the OCC will

define a broad (overestimated) decision region to contemplate all target instances, or (b) the

OCC will define a tight decision region to diminish the proportion of instances from the outlier

class inside it. A broad decision region may lead to a high false positive rate while a reduced

decision region may lead to a high false negative rate.

Figure 1 shows a hypothetical database where the data distribution presents a complex

form and the classes present multi-modal data. The points in red represent the target class

and the points in green represent the outlier class. Scenarios (a) and (b), mentioned above,



19

are depicted using a single Gaussian one-class classifier, for the sake of simplicity, however, the

concepts may be extended for more complex OCCs.

Figure 1 – Decision region of a single Gaussian OCC. Scenario (a) shows a broad decision region, leading to
a high false positive rate. Scenario (b) shows a reduced decision region leading to a high false
negative rate.

(a) (b)

Source: The author.

In scenario (a), the decision region is wide enough to embrace all instances from the target

class. Only instances from the target class are used in the training process, i.e., outliers are

not seen in this step. Thus, a wide decision border may lead to a high false positive rate, since,

in the test, a number of outliers may be located inside it, such as shown in Figure 1(a). and

be, therefore, erroneously labeled as target class.

In order to avoid that situation, one may configure a reduced decision border, allowing a

percentage of the target training instances outside the decision region, as shown in scenario

(b). In the example, besides not being able to achieve such objective, many instances from

an specific distribution in the target class are not embraced by the decision region. Thus,

instances from this distribution may be erroneously labeled as outliers.

To avoid the problems explained in scenarios (a) and (b), a possible solution is to identify

the different data distributions, i.e., modes, present in the target class and train an OCC for

each mode. With this approach, the decision region for each OCC tends to be simpler than

using the original data, leading to more precise classification.

Figure 2 shows the decision regions for the same problem exposed in Figure 1 using (a) one,

(b) two, (c) four and (d) five Gaussian Data Descriptors. The scenario depicted in Figure 2(a)

is the same of Figure 1(a). In Figure 2(b), two OCCs are used. In this case, it can be noted

that fewer outlier instances are in the decision regions of both OCCs than in Figure 2(a).

However, some target instances are not within the decision region of none of the OCCs. The



20

scenario shown in Figure 2(c) uses four OCCs. In this case, the target class is almost perfectly

separated from the outlier class. Figure 2(d) presents the scenario using five OCCs, where

some target class instances are not embraced by none of the OCCs.

Figure 2 – Decision regions using (a) one, (b) two, (c) four and (d) five Gaussian one-class classifiers.

(a) (b)

(c) (b)

Source: The author.

It is important to remark that using a high number of OCCs, i.e., more OCCs than the

number of modes present in the data, may lead to inaccurate results. The reason is that

training an OCC with data excessively segmented leads to a reduced decision region and a

high false negative rate. So an important aspect is to define the number of modes present in

the data to avoid such impairments.

1.2 OBJECTIVES

This research aims to improve the classification performance in one-class decomposition

tackling the issue of complex intra-class data distribution using multiple OCC for each class.

More specifically, we aim to answer the following research questions: (1) Does the adoption

of One-Class Classifiers ensembles leverage the classification performance in one-class decom-

position? (2) Does the use of data segmentation for the pool generation and OCC ensemble

selection lead to good results?



21

We propose two methods for multi-class classification using one-class decomposition,

named MODES and DBDES. Both methods decompose the multi-class problem into one-

class problems, separate the training data by class, segment the training data of each class

and train an OCC for each cluster. The data segmentation aims to improve the quality of

the classifiers for databases that present complex data distribution and presence of noise.

With this approach, we aim to improve the classification performance in databases with such

peculiarities.

MODES uses K-means algorithm with different numbers of clusters for data segmentation.

A set of cluster validity indices (ARBELAITZ et al., 2013) is used to define the number of clusters

present in the training data (this subject is better presented in Section 2.1.6). The execution

of many cluster validity indices results in different numbers of clusters. The main motivation

for this approach is that the number of cluster, commonly, is not known a priori and the

determination of the ideal number of clusters for a database is a difficult task and it still is an

open problem (KOLESNIKOV; TRICHINA; KAURANNE, 2015).

On the other hand, DBDES uses OPTICS for data segmentation, instead of K-means. This

approach aims to improve the quality of the OCCs by capturing clusters with arbitrary shapes

and different densities and to avoid the problem of the definition of the number of clusters

(DBDES does not require parameterization for the number of clusters). Although OPTICS is

a computationally intensive algorithm, it is expected to be faster than executing K-means a

series of times and computing the cluster validity indices.

1.3 CONTRIBUTIONS

The main contributions of this work are: (1) two OCC decomposition methods capable

of dealing with complex intra-class data distribution; (2) an evaluation of the performance of

state-of-the-art one-class decomposition techniques.

1.4 ORGANIZATION

The rest of this text is organized as follows. Chapter 2 presents the background of cluster-

ing, one-class classification, MCS, Dynamic Ensemble Selection (DES), and other techniques

for a better understanding of the following chapters. Chapter 3 details the proposed tech-

niques, named One-class Dynamic Ensemble Selection for Multi-class problem (MODES) and



22

Density-Based Dynamic Ensemble Selection (DBDES). Chapter 4 shows the experimental con-

figurations and results obtained by the proposed techniques and a comparison with literature

in three experiments. The final remarks and future works proposal are presented in Chapter 5.



23

2 BACKGROUND

This Chapter presents concepts about clustering, one-class classification, and Multiple

Classifiers Systems (MCS) that are necessary for a better understanding of the rest of this

document. Additionally, we present important works related to MCS in the context of one-class

classification and one-class decomposition.

2.1 CLUSTERING

The main objective of clustering is to create meaningful groups of data objects from an

unlabeled database so that elements from a cluster are similar while elements from different

clusters are dissimilar. Clustering algorithms can be broadly divided into partitioning, hierar-

chical, density-based, and grid-based (HALKIDI; BATISTAKIS; VAZIRGIANNIS, 2001).

Partitioning algorithms divide the data into a set of 𝑘 disjoint (or flat) clusters, where each

data instance belongs to one cluster. Hierarchical algorithms create a hierarchical structure of

the data, which enables the extraction of a series of nested clusters. Density-based algorithms

search for contiguous areas in the feature space where the density of instances surpasses a

given threshold. Grid-based algorithms divide the feature space into a finite number of cells to

compute the statistics of each region and, the clustering procedure is executed using the cells

instead of the data instances directly.

Sections 2.1.1 to 2.1.4 describe these families of clustering algorithms. In addition, three

clustering algorithms that are relevant for better understanding the proposed methods (K-

means, DBSCAN, and OPTICS) are explained in Section 2.1.5. Section 2.1.6 presents measures

used to evaluate the quality of the partitions, known as Cluster Validity Indices.

2.1.1 Partitioning

Classical partitioning algorithms, such as K-means and K-medoid (JAIN, 2010), segment

the data into a predefined number of complementary clusters. These methods, also known

as center-based partitioning algorithms, can be interpreted as a parametric approach that

assumes that the unknown density of the data is composed of a mixture of 𝑘 densities, one

for each of the 𝑘 clusters in the data(CAMPELLO et al., 2020). The most adopted approach to



24

implementing center-based partitioning algorithms is using iterative relocation algorithms. An

initial set of 𝑘 instances is selected - randomly or based on some heuristic - as cluster centroids

and, then, the data instances are iteratively relocated among clusters optimizing an objective

function (the sum of the squared distances from the instances to the centroids of the clusters,

for example) until convergence.

Center-based partitioning algorithms generally are easy to implement, however they may

encounter difficulties in identifying clusters of arbitrary shapes. Since these algorithms use the

distance from the object to the centroids to determine the membership of that object to the

clusters, only ellipsoid-shaped clusters are discovered (ESTER et al., 1996).

Additionally, center-based partitioning algorithms require the configuration of the hyper-

parameter 𝑘. This is not a simple task and usually involves wrapper procedures, where the

clustering algorithm is executed a number of times with different values for 𝑘, then, the best

value is selected by evaluating the quality of each partition using a predefined criterion(JAIN,

2010). The evaluation criterion can be given by cluster validity indices (ARBELAITZ et al., 2013).

2.1.2 Hierarchical

Unlike partitioning algorithms, hierarchical clustering algorithms do not segment the data

into a determined number of clusters at once. A structure of nested clusters is created through

a series of partitions that can be performed either in an agglomerative (bottom-up) or divisive

(top-down) way. The agglomerative approach starts with each data instance in a single cluster.

In the next iterations, the nearest clusters are merged. The process terminates with all data

instances in a single cluster. The divisive approach, on the other hand, starts with a single

cluster containing all data instances and, iteratively, splits the clusters until there are only

clusters with one data instance each (EVERITT et al., 2011).

The hierarchy of clusters can be represented as a merging tree, called dendrogram, which

presents each stage of the division/agglomeration process. Each node of the dendrogram

represents a cluster, where the root represents the largest cluster, which contains all the data

instances and the leaves represent the clusters that contain only one data instance each. The

height of the blocks in a dendrogram represents the distance between clusters.

Most hierarchical algorithms construct a representation of the data that expresses the

hierarchical clustering structure but do not explicitly build the clusters. Thus, the users of such

algorithms must define the number of clusters at some point if they interested in extracting



25

the clusters - rather than the complete hierarchy of the clustering structure. A commonly used

approach is to select one of the partitions in the nested sequences of clusters by cutting the

dendrogram at a selected height. Large changes in fusion levels are taken to indicate the best

cut (EVERITT et al., 2011).

A drawback of hierarchical algorithms is the fact that cluster divisions or fusions are irre-

versible, hence, mistaken decisions can not be corrected (EVERITT et al., 2011). However, this

inflexibility is important for diminishing the computational costs, since it prevents the need for

a combinatorial number of different solutions.

Examples of relevant hierarchical algorithms are Single Link, Complete Link, BIRCH (Bal-

ance Iterative Reducing and Clustering using Hierarchies), and CURE (Cluster Using REpre-

sentatives) (XU; WUNSCH, 2005).

2.1.3 Density-based

Density-based algorithms search for clusters identifying dense contiguous regions on the

feature space separated by low-density regions. Data instances in dense regions belong to the

clusters while data instances in low-density regions are considered noise or outliers (CAMPELLO

et al., 2020). The density of a region must surpass a given threshold for that region to be

considered a cluster.

Density-based algorithms do not require the number of clusters as an input hyper-parameter.

In addition, it is a non-parametric approach, that is, it does not expect the data to follow

Gaussian or other parametric distributions and, thus, can identify clusters of arbitrary shapes

in databases and deal well with noisy patterns in the data (CAMPELLO et al., 2020).

Some of the most relevant representatives of density-based algorithms are DBSCAN and

OPTICS, which will be presented in details in Sections 2.1.5.2 and 2.1.5.3, respectively.

2.1.4 Grid-based

Grid-based clustering segment the data into a finite number of cells to form a grid structure.

Then, the clustering operations are made on the cells instead of the raw data. The regions

with a higher density than their surroundings are considered clusters. This approach reduces

the computational costs of the clustering procedure since the number of cells is smaller than

the number of data instances (AGGARWAL; REDDY, 2014). STatistical INformation Grid-based



26

(STING), Wavelet-based Clustering (WaveCluster), and CLIQUE (Clustering In QUEst) are

popular examples of grid-based clustering algorithms.

2.1.5 Algorithms

In this section, we present the clustering algorithms relevant for understanding the proposed

methods. K-means is used by MODES (FRAGOSO et al., 2021) for the clustering step and

OPTICS is used in DBDES for the same purpose. In addition, we also describe the DBSCAN

algorithm to facilitate the understanding of OPTICS, since the latter is an extension of the

former.

2.1.5.1 K-means

K-means is one of the simplest, yet powerful, clustering algorithms. Its center-based ap-

proach uses the mean of all instances in a cluster as its centroid. It starts selecting 𝑘 random

instances in the database as the initial clusters centroids. Then, the other instances are as-

signed to the cluster with the nearest centroid. The new centroids of the clusters are computed

as the mean of all instances in a cluster. With the new centroids, the instances are relocated

among the clusters recomputing the distances to the centroids. The algorithm terminates

when a convergence criterion is met, for example, no changes are made in the clusters or the

mean squared distance from the instances in the clusters to their centroids stop decreasing

significantly after some iterations(JAIN; MURTY; FLYNN, 1999).

The algorithm for K-means is described as follows(JAIN; MURTY; FLYNN, 1999; JAIN, 2010):

1. Select an initial partition with 𝑘 clusters centers coinciding with 𝑘 random instances in

the database.

2. Create a new partition by assigning the instances to the cluster with the nearest centroid.

3. Re-compute the centroids as the means of all instances in each cluster.

4. If a convergence criterion is not met, go to step 2.



27

2.1.5.2 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (ESTER et al., 1996)

is a clustering algorithm that partitions the database based on the density of the feature space.

DBSCAN was one of the earliest density-based clustering algorithms to be proposed and is

still one of the most studied algorithms (LUCHI; RODRIGUES; VAREJÃO, 2019).

DBSCAN requires two hyper-parameters to define the density threshold: 𝜀 represents the

radius of a region and 𝑚𝑖𝑛𝑃𝑡𝑠 represents the minimum number of data instances that must

be in a region (with radius 𝜀) for that region to be considered a cluster.

The algorithm starts with an instance 𝑥 and evaluates its neighborhood. For an instance 𝑥

in the database Γ, the 𝜀-neighborhood 𝑁𝜀(𝑥) is denoted as {𝑥′ ∈ Γ | 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑥′) ≤ 𝜀}.

If |𝑁𝜀(𝑥)| ≥ 𝑚𝑖𝑛𝑃𝑡𝑠, then 𝑥 is considered a core instance and a new cluster is created

containing all the instances in 𝑁𝜀(𝑥). This process is repeated for all 𝑥 ∈ Γ and terminates

when all instances are visited. The clusters are merged when a core instance is in the 𝜀-

neighborhood of another core instance. If an instance 𝑥′ is not a core instance, but it is in the

𝜀-neighborhood of any core instance, i.e., 𝑥′ ∈ 𝑁𝜀(𝑥) and |𝑁𝜀(𝑥)| ≥ 𝑚𝑖𝑛𝑃𝑡𝑠, 𝑥′ is considered

a border instance. Data instances that were not added to any cluster, i.e, that are not core

instances or border instances, are considered noise.

DBSCAN is a very powerful algorithm, however, it presents some drawbacks. To name

a few, the choice of values for its hyper-parameters is a difficult task and it may encounter

difficulties in identifying clusters with different densities (ANKERST et al., 1999; KARAMI; JO-

HANSSON, 2014; KHAN et al., 2014). With a single density threshold hyper-parameterization for

all the database, clusters with distinct densities are hardly discovered. To address this issue,

two main approaches may be adopted: use more adaptive distance measures or a hierarchical

clustering extraction (CAMPELLO et al., 2020).

2.1.5.3 OPTICS

Ordering Points To Identify the Clustering Structure (OPTICS) (ANKERST et al., 1999) is

an extension of DBSCAN that aims to address the problem of clusters with varying densities

and the configuration for its hyper-parameters. Unlike DBSCAN, Ordering Points To Identify

the Clustering Structure (OPTICS) does not explicitly segment the data but, instead, creates

an augmented ordering of the database representing its density-based clustering structure,



28

from which either flat or hierarchical clusters can be extracted.

A value for 𝑚𝑖𝑛𝑃𝑡𝑠, which is used in the same way as in DBSCAN is required. The second

hyper-parameter, 𝜀, however, is optional and is used only for reducing runtime complexity.

OPTICS uses 𝜀 as an upper limit for the neighborhood radius. Therefore, OPTICS checks for

a spectrum of all different radii of size 𝜀′ ≤ 𝜀. The size of the neighborhood increases while

there are not at least 𝑚𝑖𝑛𝑃𝑡𝑠 data instances within it. This allows OPTICS to find clusters

with different densities. Low-density clusters have large values for 𝜀′ while high-density clusters

have low values for 𝜀′. In practice, this is equivalent to extending DBSCAN to simultaneously

cluster a database for a multitude of values for 𝜀 (AGGARWAL; REDDY, 2014). By default, 𝜀 is

set to infinite in OPTICS.

Two important concepts are introduced in OPTICS, besides those from DBSCAN: core

distance and reachability distance. The core distance of an instance 𝑥 is computed as the

distance from 𝑥 to its 𝑚𝑖𝑛𝑃𝑡𝑠-th neighbor, i.e., it is the minimum value of radius 𝜀′ required

for 𝑥 to be regarded as a core instance. For an instance 𝑥 with |𝑁𝜀(𝑥)| < 𝑚𝑖𝑛𝑃𝑡𝑠, that is,

a non-core instance, the core distance is set to UNDEFINED. The reachability distance of an

instance 𝑥′ with respect to an instance 𝑥 is defined as the maximum between the core distance

of 𝑥 and the distance between 𝑥′ and 𝑥, if 𝑥 is a core instance. Otherwise, the reachability

distance is set to UNDEFINED.

With the order in which the instances were processed and their respective reachability dis-

tances, it is possible to draw a reachability plot, which is an interesting graphical representation

of the cluster ordering of a database. In the graph, the data instances are disposed along the

horizontal axis in the order that they were processed by OPTICS. The vertical axis represents

the reachability distances of each data instance to its predecessor. Regions containing contigu-

ous data instances with low reachability distances (or valleys) represent clusters. The lower

the reachability distances, the denser is the cluster. Of course, these valleys must have at least

𝑚𝑖𝑛𝑃𝑡𝑠 instances to be considered clusters.

OPTICS is able to extract flat clusters, in a DBSCAN fashion, or hierarchical clusters. For

the flat partition, it is necessary to provide a value for 𝜀′ < 𝜀 for the algorithm to select one

of the partition solutions. This can be interpreted as a horizontal cut in the reachability plot

at 𝑦 = 𝜀′. Data instances with a higher reachability distances than the cut-off represent noise

and separate the clusters(HAHSLER; PIEKENBROCK; DORAN, 2019).

For the hierarchical cluster extraction, the algorithm scans the cluster ordering looking for

significant changes between the reachability distances of one instance and its successor in the



29

ordering. A threshold 𝜉 is defined so that a difference greater than 𝜉% is interpreted as the

start of a cluster, if the reachability distance is descending, or the end of a cluster, otherwise.

Figure 3 shows a bi-dimensional database with hierarchical clusters and its reachability

plot. It is easy to identify the hierarchical clustering structure in the plot. For example, the

clusters marked in green and red are sub-clusters of the cluster marked in blue. In the plot,

two nested valleys, representing the sub-clusters, are inside the larger valley that represents

the cluster marked in blue.

Figure 3 – Reachability plot for a database with hierarchical clusters of different sizes and densities. Each
“valley” in the plot represents a cluster where the steep areas represent the start and end of
clusters.

Source: Adapted from (ANKERST et al., 1999)

One of the most relevant strengths of OPTICS is the fact that it is not limited by a

single hyper-parameter setting. The cluster ordering stores information corresponding to a

broad range of values (ANKERST et al., 1999). Another advantage is a low dependency on the

values for the hyper-parameters. According to the authors of OPTICS, “the values have just

to be large enough to yield a good result”. Values between 10 and 20 for 𝑚𝑖𝑛𝑃𝑡𝑠 produced

good results (ANKERST et al., 1999). Moreover, using the default value for 𝜀 (infinite), all

clustering levels will be considered. Obviously, this increases the computational costs, since

the neighborhoods for each object include all data instances. On the other hand, smaller values

for 𝜀 may result in more data instances having UNDEFINED reachability distance, which leads

to lower density clusters (those whose core instances are core instances only for neighborhoods

larger than 𝜀) not being detected by OPTICS.



30

2.1.6 Cluster validity indices

Many clustering algorithms are heavily affected by the characteristics of the data and

by their hyper-parameters (KIM; RAMAKRISHNA, 2005). Thus, the definition of values for the

hyper-parameters that leads to a data partition that fits the data optimally is a critical task

for such algorithms. A Cluster Validity Index (CVI) may be used as a guideline for this task.

CVI are methods that provide an evaluation of the clustering quality by defining a relation

between intra-cluster cohesion and inter-cluster separation (KIM; RAMAKRISHNA, 2005).

For example, if we aim to find the optimal number of clusters (the 𝑘 parameter in K-means,

for instance), we need to segment the data using a set of different numbers of clusters and

evaluate each partition using a CVI.

However, since clustering is an unsupervised learning task, there is no single best validity

index for all types of clustering tasks (KIM; LEE; KANG, 2018). Each CVI presents advantages

and disadvantages for each specific problem, i.e., different partitions may be considered optimal

for an arbitrary database according to different CVIs, and the choice of the CVI depends on

the data and the aim of clustering.

Some popular CVIs are Silhouette (KAUFMAN; ROUSSEEUW, 2009), Dunn (DUNN, 1974),

and Calinski and Harabasz (CALIŃSKI; HARABASZ, 1974). The R package NbClust (CHARRAD

et al., 2014) implements all of them (and a total of 30 CVIs).

2.2 ONE-CLASS CLASSIFICATION

One-class classification is a kind of problem where it is difficult or expensive to obtain

counter-examples, such as transaction fraud recognition, machine fault detection, anomaly

detection, etc. Thus, only instances belonging to one class are available. Objects from this

class are called target objects and all other objects are called outliers. An One-Class Classifier

(OCC) tries to describe the set of objects from the target class and to identify which (new)

objects resemble this training set (TAX; DUIN, 2004).

One-class classifiers are specially categorized into density methods, boundary methods,

and reconstruction methods (KHAN; MADDEN, 2009). Density methods compute the proba-

bility density function (PDF) of the target class data. In the test, the PDF value for the

test instance is compared with a threshold. This technique requires a large amount of data

to overcome the curse of dimensionality (DUDA; HART; STORK, 2012). Gaussian and Parzen



31

OCCs are examples of density methods (DUDA; HART; STORK, 2012). Boundary methods build

a model by optimizing a closed boundary around the target data and the acceptance of a test

instance is given by the distance to the fitted model. Boundary methods require less training

data than density methods. Among the boundary methods, Support Vector Data Descriptor

(SVDD) (TAX; DUIN, 2004), One-class Support Vector Machine (OCSVM) (SCHÖLKOPF et al.,

2001), and Nearest Neighbor (TAX; DUIN, 2000) can be remarked. Reconstruction methods

assume a model of data generation process and estimate the parameters of this model in the

training. Self-organizing Maps and Learning Vector Quantization are classified as reconstruc-

tion methods (KOHONEN et al., 2001).

One-class classifiers have been successfully applied to a variety of applications such as real-

time activity error detection (DAS et al., 2016), text classification (MANEVITZ; YOUSEF, 2001),

and authorship verification (KOPPEL; SCHLER, 2004). Recently, one-class decomposition has

gained attention from researchers. This technique separates the training data by class and trains

one-class classifiers for each class. Then, the classification results are combined. Krawczyk et

al. (KRAWCZYK; WOŹNIAK; HERRERA, 2015) showed the usefulness of one-class decomposition

in some specific cases, such as complex data distribution, imbalanced data, presence of noise,

and a high number of classes. For these cases, the research shows that using an OCC for each

class of the original problem and aggregating them is more effective than using classical binary

decomposition strategies. Another important application of one-class decomposition is when

the number of classes is not known apriori, since one-class classifiers are trained for each class

separately (KRAWCZYK; WOŹNIAK; CYGANEK, 2014).

2.2.1 OCC models

This section briefly describes the OCC models used in this work: Gaussian Data Descriptor

(GaussianDD), Parzen Data Descriptor (ParzenDD), SVDD, and Minimum Spanning Tree

Data Descriptor (MSTDD).

GaussianDD is a density method that surrounds the training data by fitting a simple

Gaussian distribution in the feature space. A limitation of this model is that it relies on the

assumption that the data is normally distributed. It is a simple and fast OCC model, but it can

present better results than more complex OCCs, especially if the data do not contain multiple

clusters (LIU et al., 2016).

ParzenDD is a non-parametric density estimator that computes a kernel for each training



32

instance and, then, estimates the probability density function of the data by defining a linear

combination of these kernels. Test instances are classified by checking whether they may be

drawn from the estimated distribution (DUDA; HART; STORK, 2012).

MSTDD is a non-parametric model that builds a minimum spanning tree on the training

data aiming to capture the underlying structure of the data. The edges of the tree are con-

sidered an additional set of virtual target instances that can help to model the target class

distribution. MSTDD performs well in high-dimensional and small sample-size problems in

comparison to other existing one-class classifiers (JUSZCZAK et al., 2009).

SVDD (TAX; DUIN, 2004) defines its decision boundary, in the training, creating a spherical

surface that contains all (or most of) the target training instances within the smallest radius.

A test instance is classified by computing its distance to the center of the hyper-sphere.

Instances outside the hyper-sphere are considered outliers. The main drawback of SVDD is

that it requires the estimation of many parameters.

2.3 MULTIPLE CLASSIFIERS SYSTEMS

The main rationale behind the use of Multiple Classifiers Systems (MCS) is that, following

the no free lunch theorem (WOLPERT, 1996), there is not a single classifier that is competent

to deal with test instances from all regions of the input space. Thus, MCS combine a set of

classifiers expecting to outperform any individual classifier.

MCS are commonly divided into 3 steps: generation, selection, and fusion/aggregation. In

the generation step, a pool of classifiers is generated, seeking accuracy and diversity among the

classifiers. The purpose of the generation is to form sets of classifiers that complement each

other, that is, to generate a pool that contains competent classifiers for different regions of the

feature space. The most effective generation techniques train the base classifiers with different

feature sets or different training sets or, yet, use different classifier models (heterogeneous

pools) (CRUZ; SABOURIN; CAVALCANTI, 2018).

The goal of the selection step is to select from the pool of classifiers the most competent

classifiers for the problem. Since this is an optional step, it is omitted in some techniques. It is

possible to build MCS skipping this step and performing a static combination of all classifiers in

the pool. However, the advantages of applying the selection step are widely known (KUNCHEVA,

2014; CRUZ; SABOURIN; CAVALCANTI, 2018).

The selection task can be static or dynamic (WOŹNIAK; GRAÑA; CORCHADO, 2014). In



33

static selection, a subset of classifiers is formed in the training phase. Then, in the test phase,

the selected ensemble is used to classify all the test instances. Dynamic selection is performed

during the classification of test instances. For each test instance 𝑥, a region of competence is

computed, usually based on the k-Nearest Neighbors of 𝑥. The best performing classifiers in

the region of competence are selected to classify 𝑥. Dynamic selection can be divided into two

approaches (CRUZ; SABOURIN; CAVALCANTI, 2018). In Dynamic Classifier Selection (DCS), for

each test instance 𝑥, the most competent classifier is chosen. In Dynamic Ensemble Selection

(DES), a set composed of the most competent classifiers in the pool is selected.

The fusion, or aggregation, step is responsible for combining the output of each individual

classifier to provide the final output of the MCS.

2.3.1 Aggregation techniques

In this work, we employ four aggregation techniques: Mean Support (MEAN), Maximum

Support (MAX), Decision Templates (DTs), and Error Correcting Output Codes (ECOC).

MEAN - Mean Support, or simple average (KITTLER et al., 1998; ZHOU, 2012), averages

the output of the individual learners to compose the aggregated output. It computes the mean

scores of each class across the classifiers and assigns the test instance to the class with the

maximum mean score.

MAX - The maximum support aggregation (KITTLER et al., 1998; WOŹNIAK; GRAÑA;

CORCHADO, 2014) assigns the class with the maximum score among the classifiers to the test

instance. In the one-class classification task, this means labeling the test instance as belonging

to the class used to train the OCC with maximum support among all.

DTs - Decision Templates (KUNCHEVA; BEZDEK; DUIN, 2001; ZHOU, 2012; KRAWCZYK;

WOŹNIAK; HERRERA, 2015) represent typical values for the outputs of classifiers from a pool.

In the training phase, the decision templates are encoded as a matrix where the number of

columns is equal to the number of classifiers in the pool and the number of rows is equal to the

number of classes of the classification problem. Each cell 𝐷𝑇𝑙𝜆 of that matrix is computed as

the average support of a classifier 𝜆 for data instances from the class label 𝑙. In the test phase,

the decision profile of a test instance, that is, the array containing the classification outputs

of the classifiers in the pool for that instance, is compared with the decision templates. The

test instance is then assigned to the class whose decision template is the most similar to the

test instance’s decision profile. The similarity can be measured with a distance metric, such



34

as euclidean distance, for example.

ECOC - Error Correcting Output Codes (ZHOU, 2012; KRAWCZYK; WOŹNIAK; HERRERA,

2015) is a framework originally designed to reconstruct the multi-class classification problems

from the decisions of binary classifiers. The idea is to avoid solving the multi-class problem

directly and to break it into dichotomies instead (KUNCHEVA, 2014). It is primarily divided into

two steps: coding and decoding (ZHOU, 2012). In the coding step, each class of the original

multi-class problem is encoded as a codeword (a unique sequence of zeroes and ones) and

placed as rows of a matrix (coding matrix). Then, a classifier is trained for each column of

the coding matrix, aiming to separate the classes designed with one from those designed with

zero in the column. The decoding step starts with a test instance being classified by all trained

classifiers. The output of each classifier is concatenated resulting in a binary string. Then, the

test instance is assigned to the class whose codeword is closest to the output string of the test

instance.

2.4 RELATED WORKS

Multiple Classifiers Systems have recently been adopted in the context of one-class prob-

lems. In (KRAWCZYK; WOŹNIAK; CYGANEK, 2014), the authors used a clustering-based approach

to generate ensembles of One-class Support Vector Machines. The data from the one-class

problem is segmented and, for each cluster, an OCC is trained. This MCS does not include a

selection step, i.e., all the classifiers in the pool are used to classify all test instances. A clas-

sifier trained with instances from a specific region of the feature space may not be competent

to classify test instances from other regions. Hence, the combination of all classifiers in the

pool may hinder the performance. Dynamic selection techniques aim to mitigate this problem.

A Dynamic Classifier Selection (DCS) method for OCC was proposed in (KRAWCZYK;

WOŹNIAK, 2016). DCS techniques select a single classifier in execution time to classify each

test instance. In that work, a single OCC is selected from a pool of heterogeneous OCC models.

The work showed that dynamic selection techniques work well in the context of OCC because

during the training phase it was possible to generate a diverse pool of classifiers. However, in

DCS, the performance depends on the quality of the algorithm that selects the classifier from

the pool (KO; SABOURIN; JR, 2008). Since only one classifier is responsible for the classification

of a test instance, the performance may be impaired if this selected classifier is not competent

for the classification of the current test instance. Complex data distribution or the presence of



35

noise may worsen this problem since the chances of selecting a non-competent classifier are

higher.

This problem may be alleviated using DES, which selects a subset of classifiers from the

pool to compose the ensemble responsible for the classification decision for a test instance.

To the best of our knowledge, the first DES for one-class decomposition was proposed by

Krawczyk et al. (KRAWCZYK et al., 2018).

In that work, an OCC is trained for each class of the original problem. To classify a test

instance, the method selects an ensemble composed of the OCCs trained with the data from

the classes in the neighborhood of that test instance. Then, the original multi-class problem

is recomposed by aggregating the decisions of the selected one-class classifiers. Details of

intra-class data distribution are not taken into account when using only one OCC for each

class, which may impair the classification performance. However, to the best of our knowledge,

literature dynamic selection techniques for one-class decomposition use only one OCC for each

class of the original problem.

Table 1 – Comparison involving Density-Based Dynamic Ensemble Selection (DBDES), One-class Dynamic
Ensemble Selection for Multi-class problems (MODES), and other techniques that use one-class
decomposition, OCC ensemble, for each one-class problem, clustering-based approach, and/or dy-
namic selection (DS)

Ref Title Decomp. Ensemble Cluster DS

(KRAWCZYK; WOŹNIAK; CYGANEK, 2014) Clustering-based ensembles for one-class clas-
sification

Yes Yes Yes No

(KRAWCZYK; WOŹNIAK; HERRERA, 2015) On the usefulness of one-class classifier ensem-
bles for decomposition of multi-class problems

Yes No No No

(KRAWCZYK; WOŹNIAK, 2016) Dynamic classifier selection for one-class clas-
sification

No No No DCS

(KRAWCZYK et al., 2018) Dynamic ensemble selection for multi-class
classification with one-class classifiers

Yes No No DES

(LIU et al., 2016) Modular ensembles for one-class classification
based on density analysis

No Yes Yes No

(GÖRNITZ et al., 2017) Support Vector Data Descriptions and k-Means
Clustering: One Class?

No Yes Yes No

(WOJCIECHOWSKI; WOŹNIAK, 2020) Employing Decision Templates to Imbalanced
Data Classification

No Yes Yes No

(TSAI; LIN, 2021) Feature selection and ensemble learning tech-
niques in one-class classifiers

No Yes1 No No

(FRAGOSO et al., 2021) One-class Dynamic Ensemble Selection for
Multi-class problems (MODES)

Yes Yes Yes DES

Density-Based Dynamic Ensemble Selection of
OCC Ensembles for Multi-class problems (DB-
DES)

Yes Yes Yes DES

Source: The author.

1 Only the majority class is used for training



36

Other methods (LIU et al., 2016; GÖRNITZ et al., 2017) successfully use multiple one-class

classifiers, however, they were not used for one-class decomposition. Even so, they represent

relevant advances in this research field. A detailed analysis of ensembles of OCCs for binary

problems was carried out in (TSAI; LIN, 2021). This work also evaluates the use of feature

selection techniques with OCCs ensembles.

Additionally, in (WOJCIECHOWSKI; WOŹNIAK, 2020), clustering-based ensembles of multi-

class classifiers are used to tackle the class imbalance problem. The data from each class

is segmented, using the OPTICS algorithm, and a Decision Template (KUNCHEVA; BEZDEK;

DUIN, 2001) is trained for each cluster. The relation of this work with the proposed techniques

is not as explicit as the works previously mentioned in this section since it does not use OCCs.

However, it served as an inspiration to the proposed techniques.

Table 1 summarizes the characteristics of the related works compared with the proposed

approaches, MODES and DBDES. We evaluate three aspects: (1) Can the technique handle

multi-class problems, i.e., can it be used for one-class decomposition? (2) Does the technique

adopt OCC ensembles for the one-class problem? (3) Does the technique adopt dynamic

selection DS for the one-class problem? MODES and DBDES are the only techniques that

exhibit all these characteristics.



37

3 PROPOSAL

In this chapter, we present the proposed techniques, namely One-class Dynamic Ensemble

Selection for Multi-class problems (MODES) and Density-Based Dynamic Ensemble Selection

(DBDES). Both techniques aim to tackle multi-class classification by decomposing the original

problem into one-class problems, generating pools of classifiers for each one-class problem, and

using dynamically selected One-Class Classifier (OCC) ensembles to classify each test instance.

They deal with complex intra-class data distribution by segmenting the training data of each

original class and training an OCC for each cluster.

MODES segments the data using a center-based clustering algorithm, such as K-means.

This kind of algorithm requires a value for the hyper-parameter 𝑘, which represents the number

of clusters. The definition of the ideal value for 𝑘 is not a simple task. To tackle this issue,

MODES computes a set of 13 cluster validity indices (ARBELAITZ et al., 2013; CHARRAD et

al., 2014) for the data from each class. Each index evaluates partitions using from 2 to 10

clusters and outputs the number of clusters that it considers ideal for the data. This range

was chosen in experiments, where we identified that, in general, using more than 10 clusters

worsens the classification accuracy of MODES. The goal is to minimize the dependency on

the determination of the ideal number of clusters and, thus, to approximate the number of

partitions to the number of modes present in the data. Moreover, training the pool of OCCs

with different input data (different partitions) should increase diversity, which is an important

aspect for ensemble methods.

DBDES, on the other hand, uses Ordering Points To Identify the Clustering Structure

(OPTICS) algorithm for the clustering step. It is a density-based clustering algorithm that does

not require the number of clusters apriori. Furthermore, OPTICS is able to identify clusters

with arbitrary shapes, can extract both flat and hierarchical clusters from the data, and presents

low dependency on the hyper-parameters (ANKERST et al., 1999). Thus, employing OPTICS for

the clustering step of a clustering-based pool generation may represent an improvement both

in the quality of the OCCs in the pool and runtime complexity. Additionally, the hierarchical

clustering extraction by OPTICS allows non-exclusive partitions, that is, a data instance may

be a member of more than one cluster. This increases the diversity of the input data for the

generation of the pool of OCCs.

Sections 3.1 and 3.2 detail each of the proposed techniques.



38

3.1 MODES

MODES is primarily composed of training and test phases. In the training phase, the data

is separated by class and segmented into different partitions, then an OCC is trained for each

cluster and added to a pool. This phase results in a pool for each different partition of each

class. The test phase selects an ensemble of OCCs to classify a test instance for each one-class

problem (if 𝑥 belongs or not to the class). Sections 3.1.1 and 3.1.2 detail the training and test

phases, respectively. Additionally, we provide a toy instance for MODES in Section 3.1.3.

3.1.1 Training phase

The training phase consists of separating the training data by class and generating a pool

of one-class classifiers for each class. The data is segmented into different partitions and an

OCC is trained for each cluster of each partition. Algorithm 1 and Figure 4 describe the training

phase, which follows these steps:

1. Separate the training instances by class (lines 2 to 4): let 𝐿 be the set of class labels,

the instances in the training set Γ are separated by class resulting in |𝐿| training sets:

{Γ1, Γ2, ..., Γ|𝐿|}.

2. Compute the cluster validity indices for Γ𝑙 (lines 6 and 7): for each class 𝑙 ∈ 𝐿, a set

of cluster validity indices is computed. Each index assesses the data segmentation with

2 to 10 clusters and the best number of clusters indicated by the index is added to the

set 𝐷.

3. Segment Γ𝑙 (lines 8 and 9): the data from each class is segmented into different parti-

tions, i.e., different sets of clusters 𝑔𝑖 = {𝑐1, ..., 𝑐𝑗, ..., 𝑐𝑑𝑖
} using a partitioning algorithm,

such as K-means. Each partition 𝑔𝑖 is obtained using different values 𝑑𝑖 ∈ 𝐷 as the

number of clusters 𝑘. This results in |𝐷| different partitions {𝑔1, ..., 𝑔𝑖, ..., 𝑔|𝐷|}, each

containing 𝑑𝑖 clusters.

4. Train an OCC for each cluster (lines 10 to 13): for each cluster 𝑐𝑗 in 𝑔𝑖, a one-class

classifier 𝜆𝑗 is trained and added to the pool 𝑝𝑖. MODES discards clusters containing

only one instance, since it may represent an outlier.

5. Repeat items 2 to 4 for each class label 𝑙 ∈ 𝐿, adding the pairs < 𝑔𝑖, 𝑝𝑖 > to 𝑀𝑙.



39

The output of MODES training phase is the array 𝑀 , which contains |𝐿| entries 𝑀𝑙, one for

each class label. Each 𝑀𝑙 is an array containing |𝐷| pairs < 𝑔𝑖, 𝑝𝑖 >, where 𝑔𝑖 is Γ𝑙 segmented

into clusters {𝑐1, ..., 𝑐𝑗, ..., 𝑐𝑑𝑖
} and 𝑝𝑖 is a pool composed of 𝑑𝑖 OCCs {𝜆1, ..., 𝜆𝑗, ..., 𝜆𝑑𝑖

}. 𝑀𝑙

binds each OCC 𝜆𝑗 to the cluster 𝑐𝑗 used to train it.

Algorithm 1: MODES training phase
input : Γ: a training set
output : 𝑀 : an array with pools of OCCs for each class

1 𝑀 = ∅
2 𝐿 = labels(Γ) // extract the set of labels
3 for 𝑙 ∈ 𝐿 do
4 Γ𝑙 = instances(Γ, 𝑙) // get instances from class 𝑙

5 𝐷 = 𝑀𝑙 = ∅
6 for 𝑖𝑛𝑑𝑒𝑥 ∈ {Silhouette, Hartigan, C-index, ...} do
7 𝐷 = 𝐷 ∪ computeIndex(Γ𝑙, 𝑖𝑛𝑑𝑒𝑥)
8 for 𝑖 = 1 : |𝐷| do
9 𝑔𝑖 = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(Γ𝑙, 𝑑𝑖) // segment Γ𝑙 into 𝑔𝑖 = {𝑐1, ..., 𝑐𝑗 , ..., 𝑐𝑑𝑖

}
10 𝑝𝑖 = ∅
11 for 𝑗 = 1 : 𝑑𝑖 do
12 𝜆𝑗 = trainOCC(𝑐𝑗)
13 𝑝𝑖 = 𝑝𝑖 ∪ 𝜆𝑗

14 𝑀𝑙 = 𝑀𝑙 ∪ < 𝑔𝑖, 𝑝𝑖 >

15 return 𝑀

Figure 4 – MODES training phase.

For each class Γl ∈ Γ



Γl

Compute
cluster validity

indices

Segment Γl

 in d1 clusters

Train an OCC
λj for each

cluster cj in g1

  p1 = {λ1, ...,λj, ..., λd1}

Segment Γl

 in di clusters

Train an OCC
λj for each

cluster cj in gi

  pi = {λ1, ...,λj, ..., λdi}

.


.


.


di

d1

  D = {d1, ..., di, ... }

Ml

<g1, p1>


...

<gi, pi>


...


.


.


.


   g1 = {c1, ..., cj, ..., cd1}

.


.


.


  gi = {c1, ..., cj, ..., cdi}

.


.


.


.


.


.


.


.


.


.


.


.


.


.


.


  M = {M1, ..., Ml, ...}


Γ

Source: The author.



40

3.1.2 Test phase

In the test phase, for each test instance 𝑥, only the classifiers trained with data belonging to

classes present in the neighborhood of 𝑥 are used. The neighborhood, or region of competence

Ψ (with respect to 𝑥), is defined as the classes of the 𝑘 nearest neighbors of 𝑥, where 𝑘 is

configured with 3 x |𝐿|. For this task, a validation set 𝐷𝑆𝐸𝐿 is used. Additionally, a threshold is

applied so that classes with less than 10% of the instances in the neighborhood are discarded.

This approach is based on that proposed in (KRAWCZYK et al., 2018) and aims to remove non-

competent classifiers from the ensemble. For each class label 𝑙 present in the neighborhood

of 𝑥, an ensemble 𝐸𝑙 is dynamically selected to classify 𝑥. The classification of 𝑥 for the 𝑙-th

one-class problem (i.e, if 𝑥 belongs or not to class 𝑙) is given by the aggregation of the OCCs

in 𝐸𝑙. The final classification of 𝑥, i.e., the final decision that assigns a label to 𝑥, is given

by the aggregation of the decisions made by the ensembles 𝐸1, ..., 𝐸𝑙, ..., 𝐸|Ψ|, generated for

each class label 𝑙 present in the region of competence Ψ with respect to 𝑥.

Algorithm 2 and Figure 5 describe the test phase, which follows these steps to classify each

test instance 𝑥:

Figure 5 – MODES test phase.

    M = {M1, ..., Ml, ...}

DSEL


kNN(x, DSEL)
x

Ψ

Get the classes
in nn





nn


Aggregate
One-class

Prediction for
class l

Aggregate
 One-class
predictions

Final
Prediction


For each class l ∈ Ψ

El
Select the clusters

cj ∈ g of which x is a
member of


λj

Add the OCCs λj ∈
p trained for each
selected cluster cj


 Ml = <g, p>


Compute the region
of competence Ψ

Source: The author.

1. Compute the region of competence Ψ (lines 1 and 2): the region of competence is

defined as the labels of the 𝑘 nearest neighbors of 𝑥 in the validation set 𝐷𝑆𝐸𝐿, where

𝑘 is defined as 3 × |𝐿|. A threshold is applied so that classes with less than 10% of the

instances in the neighborhood are discarded (KRAWCZYK et al., 2018).



41

2. Select each class 𝑙 present in the region of competence Ψ (line 4). If Ψ contains only

one class, 𝑥 is assigned to this class.

3. Select the ensemble 𝐸𝑙 (lines 5 to 9): for each pair < 𝑔𝑖, 𝑝𝑖 >∈ 𝑀𝑙, select in 𝑔𝑖 the

nearest cluster to 𝑥, then the OCC in 𝑝𝑖 trained with data from that cluster is selected

to the ensemble.

4. Aggregate 𝐸𝑙 (line 10): aggregate the predictions for the one-class problem using the

Mean of probabilities (aggregation technique that presented the best performance in

preliminary experiments using simple aggregation techniques, such as Mean of prob-

abilities, Maximum Support (MAX) and Minimum support). This step results in the

one-class decision, which is stored in the 𝑙-th position of 𝑅. At the end of this process,

the array 𝑅 contains the one-class decisions for each class label 𝑙 in Ψ.

5. Aggregate the decisions in 𝑅 (line 11): Use an aggregation strategy (Decision Templates

(DTs), Error Correcting Output Codes (ECOC), or MAX) to recompose the original

multi-class problem from the one-class decisions.

Algorithm 2: MODES test phase
input : 𝑥: a test instance

𝑀 : an array with pools of OCCs for each class
𝐷𝑆𝐸𝐿: a validation set

output : 𝜔: the predicted class for 𝑥
1 𝑛𝑛 = kNN(𝑥, 𝐷𝑆𝐸𝐿)
2 Ψ = labels(𝑛𝑛) // extract the set of labels of the instances in 𝑛𝑛

3 𝑅 = ∅
4 for 𝑙 ∈ Ψ do
5 𝐸𝑙 = ∅
6 for < 𝑔𝑖, 𝑝𝑖 >∈ 𝑀𝑙 do
7 // 𝑔𝑖 = {𝑐1, ..., 𝑐𝑗 , ..., 𝑐|𝑔𝑖|} and 𝑝𝑖 = {𝜆1, ..., 𝜆𝑗 , ..., 𝜆|𝑔𝑖|}
8 𝑗 = argmin {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑔𝑖)} // index to the nearest cluster
9 𝐸𝑙 = 𝐸𝑙 ∪ 𝜆𝑗

10 𝑅 = 𝑅 ∪ mean(𝐸𝑙, 𝑥) // mean aggregation

11 𝜔 = aggregate(𝑅, 𝑥) // DTs, ECOC or MAX
12 return 𝜔



42

3.1.3 Toy example

We present a toy example to demonstrate how MODES works in a visual manner, which

helps to understand it. Figures 6 and 7 describe the training and test phases, respectively, for

a specific class label 𝑙 ∈ 𝐿 of a hypothetical database. The target class is represented by the

red dots while the green dots represent the outliers, i.e., the data from other classes.

Figure 6 – Toy example of the training phase of MODES for a class label 𝑙. The cluster validity indices output
a set 𝐷 = {2, 4, 5} containing the numbers of clusters to segment the target data. A one-class
classifier 𝜆𝑗 is trained for each cluster 𝑐𝑗 .

g2 = {c1, c2, c3, c4} g3 = {c1, c2, c3, c4, c5}

D2 = 4

p2 = {λ1, λ2, λ3, λ4}

D3 = 5

p3 = {λ1, λ2, λ3, λ4, λ5}
g1 = {c1, c2}

D1 = 2

p1 = {λ1, λ2}

c1 c2
c1 c2

c1
c2

c3

c4

c3

c4

c5

Source: The author.

The first step of the training phase is the computation of the cluster validity indices for

the target data, in order to define a set of numbers of clusters to segment the data. Suppose

that, in this toy example, the computation of the cluster validity indices outputs the set

𝐷 = {2, 4, 5}. Thus, for each 𝑑𝑖 ∈ 𝐷, MODES segments the target class data into 𝑑𝑖 clusters

𝑔𝑖 = {𝑐1, ..., 𝑐𝐷𝑖
}. Then, an OCC 𝜆𝑗 is trained for each cluster 𝑐𝑗 ∈ 𝑔𝑖, making up the pool

𝑝𝑖. For instance, for 𝐷1 = 2, the target data is segmented into 𝑔1 = {𝑐1, 𝑐2} and the pool

of OCCs 𝑝1 = {𝜆1, 𝜆2} is trained. The pairs < 𝑔𝑖, 𝑝𝑖 > are added to the array 𝑀𝑙. In this

toy example, 𝑀𝑙 = {< 𝑔1, 𝑝1 >, < 𝑔2, 𝑝2 >, < 𝑔3, 𝑝3 >}. Each of these pairs binds a pool of

OCCs to the clustered data which it was trained with. The output of the training phase is the

array 𝑀 , composed of the arrays 𝑀𝑙 for 𝑙 ∈ 𝐿.

The test phase starts with a test instance 𝑥. The region of competence Ψ is defined,

based on the neighborhood of 𝑥. For each class label 𝑙 ∈ Ψ, MODES retrieves from the array

𝑀 (composed in the training phase) the array 𝑀𝑙. MODES then computes, for each 𝑔𝑖, the

distance from 𝑥 to the centers of the clusters. Then, the OCC in 𝑝𝑖 trained with the data

from the closest cluster is selected to compose the ensemble 𝐸𝑙. In this toy example, since the

closest clusters to 𝑥 are 𝑐2 for 𝐷1, 𝑐2 for 𝐷2 and 𝑐3 for 𝐷3, 𝐸𝑙 = {𝜆12, 𝜆22, 𝜆33}, where 𝜆𝑖𝑗 is

the 𝑗th OCC from the pool 𝑝𝑖. The one-class classification for the class 𝑙 is given by the mean



43

Figure 7 – Toy example of the test phase of MODES for a class label 𝑙. MODES computes the euclidean
distance between the test instance 𝑥 (represented by ) and the centroid of each cluster. The OCC
trained with data from the closest cluster is is dynamically selected to the ensemble 𝐸𝑙.

g2 = {c1, c2, c3, c4} g3 = {c1, c2, c3, c4, c5}

D2 = 4

p2 = {λ1, λ2, λ3, λ4}

D3 = 5

p3 = {λ1, λ2, λ3, λ4, λ5}
g1 = {c1, c2}

D1 = 2

p1 = {λ1, λ2}

c1 c2
c1 c2

c1
c2

c3

c4

c3

c4

c5

Source: The author.

of probabilities for 𝐸𝑙. Suppose that 𝐸𝑙 outputs {0.75, 0.85, 0.8}, then 𝑅𝑙 = 0.8, where 𝑅𝑙 is

the mean probability computed by 𝐸𝑙. The final classification is given by the aggregation of

each decision 𝑅𝑙 for each ensemble 𝐸𝑙, with 𝑙 ∈ Ψ. Using MAX aggregation, for instance, the

test instance would be assigned to the class 𝑙 which 𝑅𝑙 has the highest support in 𝑅.

3.2 DBDES

DBDES is a variation of MODES (FRAGOSO et al., 2021), which aims at reducing the

runtime complexity by using the OPTICS algorithm for clustering instead of K-means. OPTICS

is a density-based clustering algorithm that does not require the number of clusters apriori,

can extract both flat and hierarchical clusters from the data, and presents low dependency

on the hyper-parameters (ANKERST et al., 1999). Additionally, using OPTICS should improve

the quality of the clustering in data with complex distribution (which is the main application

for MODES and DBDES), since this algorithm can identify noisy data, clusters with different

densities, and clusters with arbitrary shapes.

DBDES can be divided into two main phases: (i) training, where the original multi-class

problem, consisting of the set 𝐿 of classes, is decomposed into |𝐿| one-class problems, the

training data for each class is segmented using OPTICS, and the pools of OCCs are generated

training an OCC for each cluster; and (ii) test, where, for each test instance, an ensemble

of OCCs is dynamically selected based on the membership of that instance to the clusters

identified in the training phase, the classification decisions are aggregated for each class to

make the decision on the one-class problem (if 𝑥 belongs or not to the class), and, finally, the

original multi-class problem is recomposed aggregating the one-class decisions.



44

Sections 3.2.1 and 3.2.2 describe in more detail the training and test phases of DBDES,

respectively.

3.2.1 Training phase

The training phase of DBDES separates the training data by class and segments the data

from each class using OPTICS. Then, an OCC is trained for each cluster and added to a pool.

Algorithm 3: DBDES training phase
input : Γ: the training set
output : 𝑀 : an array containing maps of pools of OCCs

1 𝑀 = ∅
2 𝐿 = labels(Γ) // extract the set of labels
3 for 𝑙 ∈ 𝐿 do
4 Γ𝑙 = instances(Γ, 𝑙) // extract the instances of class 𝑙

5 𝑔 = optics(Γ𝑙) // segment Γ𝑙 into 𝑔 = {𝑐1, 𝑐2, ..., 𝑐𝑗 , ...}
6 𝑝 = ∅
7 for 𝑐𝑗 ∈ 𝑔 do
8 𝜆𝑗 = trainOCC(𝑐𝑗)
9 𝑝 = 𝑝 ∪ 𝜆𝑗

10 𝑀𝑙 = < 𝑔, 𝑝 >

11 return M

Algorithm 3 describes the details of the training phase, which follows these steps:

1. Separate the training instances by class (lines 2 to 4): the training instances are separated

by class, resulting in |𝐿| training sets: {Γ1, ..., Γ𝑙, ..., Γ|𝐿|}, where 𝐿 is the set of classes

in Γ.

2. Cluster the data in Γ𝑙 (line 5): for each class 𝑙 ∈ 𝐿, Γ𝑙 is segmented using OPTICS

resulting in the partition 𝑔 = {𝑐1, 𝑐2, ..., 𝑐𝑗, ...}.

3. Generate the pool of OCCs (lines 6 to 9): for each cluster 𝑐𝑗 ∈ 𝑔, an OCC 𝜆𝑗 is trained

and added to the pool 𝑝, and the pair < 𝑔, 𝑝 > is stored in 𝑀𝑙.

4. Repeat items 2 and 3 for each class 𝑙 ∈ 𝐿.

The output of the training phase is the array 𝑀 , which contains |𝐿| pairs 𝑀𝑙 =< 𝑔, 𝑝 >,

one for each class label 𝑙 of the original multi-class problem. Each pair < 𝑔, 𝑝 > is composed

of a partition, which is Γ𝑙 segmented into clusters {𝑐1, ..., 𝑐𝑗, ...}, and 𝑝 is a pool composed of

the OCCs {𝜆1, ..., 𝜆𝑗, ....}. 𝑀𝑙 binds each OCC 𝜆𝑗 to the cluster 𝑐𝑗 used to train it.



45

The main difference to MODES in this phase is that, here, each map of pools 𝑀𝑙 stores

only one pair < 𝑔, 𝑝 > while, in MODES, each 𝑀𝑙 stores several pairs < 𝑔𝑖, 𝑝𝑖 >, one for

each number of clusters 𝐷𝑖 identified by the cluster validity indices. Additionally, as OPTICS

allows non-exclusive partitions, a training instance may be a member of more than one cluster

in each partition 𝑔.

3.2.2 Test phase

In the test phase, DBDES discards OCCs that were not trained with data from classes

in the neighborhood of the test instance 𝑥, as in (KRAWCZYK et al., 2018) and (FRAGOSO et

al., 2021). An ensemble of OCCs 𝐸𝑙 is dynamically selected to classify 𝑥, for each class label

𝑙 in the region of competence Ψ with respect to 𝑥. The classification of the 𝑙-th one-class

problem, i.e., if 𝑥 belongs or not to class 𝑙, is given by the aggregation of the classifiers in

the ensemble 𝐸𝑙. The final classification (the final decision that assigns a label to 𝑥) is given

by the aggregation of the decisions made by the ensembles {𝐸1, ..., 𝐸𝑙, ..., 𝐸|Ψ|} selected for

each class 𝑙 in the region of competence Ψ. The region of competence is computed using a

validation set 𝐷𝑆𝐸𝐿.

Algorithm 4: DBDES test phase
input : 𝑥: a test instance

𝑀 : an array containing maps of pools of OCCs
𝐷𝑆𝐸𝐿: a validation set

output : 𝜔: the predicted label for 𝑥
1 𝑛𝑛 = kNN(𝑥, 𝐷𝑆𝐸𝐿)
2 Ψ = labels(𝑛𝑛) // extract the set of labels of the instances in 𝑛𝑛

3 𝑅 = ∅
4 for 𝑀𝑙 ∈ 𝑀 do
5 // 𝑀𝑙 stores the pair < 𝑔, 𝑝 >

6 if 𝑙 ∈ Ψ then
7 𝐸𝑙 = ∅
8 for 𝑐𝑗 ∈ 𝑔 do
9 if 𝑥 belongs to 𝑐𝑗 then

10 𝐸𝑙 = 𝐸𝑙 ∪ 𝜆𝑗

11 𝑅 = 𝑅 ∪ max(𝐸𝑙, 𝑥) // MAX aggregation

12 𝜔 = aggregate(𝑅, 𝑥) // DTs, MAX or ECOC
13 return 𝜔

Algorithm 4 describes the test phase of DBDES, which follows these steps to classify each



46

test instance 𝑥:

1. Compute the region of competence Ψ (lines 1 and 2): the region of competence is

defined in the same way as in MODES, i.e., as the classes of the 𝑘 nearest neighbors of

𝑥 in a validation set 𝐷𝑆𝐸𝐿, with 𝑘 = 3*|𝐿|. Also, the same threshold is applied to ignore

classes representing less than 10% of the instances in the neighborhood (KRAWCZYK et

al., 2018).

2. Select the maps of pools of OCCs 𝑀𝑙 (lines 4 to 6): for each class 𝑙 in the region of

competence Ψ, load 𝑀𝑙, which contains the pair < 𝑔, 𝑝 >.

3. Select the ensemble 𝐸𝑙 (lines 8 to 10): assess the membership of 𝑥 to each cluster in

𝑔. Then, select in 𝑝 the OCCs trained with data from clusters to which 𝑥 belongs and

add them to the ensemble 𝐸𝑙. As OPTICS allows non-exclusive partitions, 𝑥 may be a

member of more than one cluster 𝑐𝑗 ∈ 𝑔. In preliminary experiments we carried out, this

strategy yielded better results than selecting only one cluster per partition 𝑔.

4. Aggregate 𝐸𝑙 (line 11): aggregate the predictions for the one-class problem (if 𝑥 be-

longs or not to the class 𝑙) using MAX. This aggregation technique was chosen due to

its simplicity and because it outperformed the mean of probabilities in the preliminary

experiments we carried out.

5. Aggregate the decisions in 𝑅 (line 12): to recompose the original multi-class problem

from the one-class problems, use an aggregation technique (DTs, ECOC, or MAX).

3.2.3 Toy example

This section presents a visual description of DBDES intending to facilitate the understand-

ing of the proposed technique. Figure 8 presents an example of the training (a) and test (b)

phases of DBDES.

In the training phase, DBDES separates the training data by class and the data from each

class 𝑙 is segmented using the OPTICS algorithm. In the example depicted in Figure 8, OPTICS

identifies nine clusters in the data, forming the partition 𝑔 = {𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6, 𝑔7, 𝑔8, 𝑔9}.

Then, an OCC is trained for each cluster and added to the pool 𝑝 = {𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, 𝜆8, 𝜆9}.

Note that OPTICS identifies hierarchical (nested) clusters in the data. This is the fact that

provides the distinct data inputs for training the pool of OCCs.



47

Figure 8 – Toy example of DBDES for a class label 𝑙. The figure on the left (a), presents the training phase
and the figure on the right presents the test phase.

c2

c3

c1

c4

c5

c6

c7

c8

c9

g = {c1, c2, c3, c4, c5, c6, c7, c8, c9}
p = {λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9}

c2

c3

c1

c4

c5

c6

c7

c8

c9

g = {c1, c2, c3, c4, c5, c6, c7, c8, c9}
p = {λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9}

(a) Training (b) Test

Source: The author.

In the test phase, DBDES evaluates the membership of a test instance 𝑥 to each cluster

in the partition 𝑔. Then, it selects the OCCs trained with data from the clusters of which 𝑥

is a member. As OPTICS identifies hierarchical non-exclusive clusters, an instance may be a

member of more than one cluster. Supposing that the test instance 𝑥 is represented by the

blue dot in the rightmost figure in Figure 8, DBDES selects the OCCs 𝜆1, 𝜆3, and 𝜆4 to the

ensemble because they were trained with data from clusters 𝑐1, 𝑐3, and 𝑐4 (the clusters which

𝑥 is a member of).

This process is repeated for each class label 𝑙 and, in the end, the outputs of the ensembles

created for each class label 𝑙 are aggregated to give the final result of the classification.

3.3 HYPER-PARAMETERS

MODES and DBDES have three hyper-parameters each. In previous experiments, we en-

countered efficient values that have lead to enhanced classification performance. Table 2 details

these values.

It is important to note that MODES presents an increased computational complexity which

may lead to increased memory and processing requirements. However, since the focus of

applications for MODES does not include large databases nor data streams, we focused our

efforts on enhancing the classification accuracy rather than computational requirements. With



48

Table 2 – Default values for MODES and DBDES hyper-parameters.

Hyper-parameter MODES DBDES

Number of clusters 2 to 10 N/A
minPts N/A 20
Ψ (region of competence) 3 x |𝐿|, where L is the set of classes 3 x |𝐿|, where L is the set of classes
Threshold for Ψ 10% 10%

Source: The author.

DBDES, we aim at reducing the complexity of MODES while maintaining or improving the

classification accuracy. In Section 4.2.3 we include a brief discussion about the runtime of the

techniques.



49

4 EXPERIMENTS

In this chapter, we evaluate the performance of the proposed techniques. Three experiments

are carried out. The first one evaluates the performance of One-class Dynamic Ensemble

Selection for Multi-class problems (MODES) with different configurations, that is, One-Class

Classifier (OCC)s models and aggregation techniques. The goal of this experiment is to identify

the best configuration of MODES. The same is made with Density-Based Dynamic Ensemble

Selection (DBDES) in the second experiment.

Finally, the third experiment compares the best configurations of MODES and DBDES

against two different approaches to one-class decomposition: (1) Dynamic Ensemble Selection

with THReshold-based neighborhood pruning (DESTHR) (KRAWCZYK et al., 2018), a dynamic

ensemble selection method with neighborhood pruning based on threshold; (2) the aggre-

gation, without selection, of a pool of one-class classifiers composed of one OCC for each

class (KRAWCZYK; WOŹNIAK; HERRERA, 2015). In (2), the training phase consists in dividing

the data by class and training an OCC for each class. In the test phase, a test instance is sub-

mitted to all trained OCCs and an aggregation technique is used to give the final classification

based on the outputs of each OCC. The technique proposed in (2) is further referred to in

this work as static combination of OCCs.

In addition, we included in Appendix B the results of a comparison carried out among

the proposed techniques and a benchmark multi-class classifier (Random Forest Classifier).

Although the proposed techniques do not intend - by no means - to be more efficient than

regular multi-class classifiers in all specter of problems, a comparison with this kind of classifier

is relevant to evaluate which in cases MODES and DBDES are worth using.

The experimental protocol is described in Section 4.1 and the results are discussed in

Section 4.2.

4.1 EXPERIMENTAL PROTOCOL

This section describes the configurations used in the experiments carried out in this paper.

Twenty-five databases from Keel datasets repository1 were used. Most of these databases

were used in (KRAWCZYK et al., 2018), which also aims to evaluate the decomposition of the

multi-class problem into one-class problems. The databases present a comprehensive set of
1 Available in: http://www.keel.es/dataset



50

characteristics (number of instances, dimensionality, number of classes, imbalance ratio). Some

of the selected databases are modified versions of other databases. For example, Glass1 and

Glass6 are binary versions of the database Glass, where the positive instances belong to classes

1 and 6, respectively, and the negative instances belong to the other classes. Furthermore,

the databases Movement Libras, Optidigits, and Texture were modified. Some classes were

joined so that the modified databases have 7, 4, and 5 classes respectively. The nearest

classes were joined together to simulate classes with multi-modal distributions. In addition,

these modifications aimed at increasing the class imbalance. The selected databases present

a variable number of features (from 6 to 90), classes (from 2 to 26), and instances (from 148

to 12,960). Furthermore, there are balanced and imbalanced databases. Table 3 describes the

characteristics of each database.

As the proposed methods rely on the distance among the training instances (for clustering),

in a pre-processing step, the data was scaled using z-score (JAIN; NANDAKUMAR; ROSS, 2005).

Non-numerical attributes were transformed using the simple label encoder, where each value

is bound to an integer value (for example, 𝑎 is transformed to 1, 𝑏 is transformed to 2, and so

on).

Four one-class classifiers were adopted in this work (TAX, 2005): Gaussian Data Descriptor

(GaussianDD), Parzen Data Descriptor (ParzenDD), Support Vector Data Descriptor (SVDD),

and Minimum Spanning Tree Data Descriptor (MSTDD). SVDD, ParzenDD and MSTDD are

used in (KRAWCZYK et al., 2018), which is the one of the most important one-class decompo-

sition techniques. MODES uses centroid-based clustering to generate the chunks of data used

for training. Thus, we expect that GaussianDD performs well with MODES. For this reason,

we also evaluate GaussianDD one-class classifier. We used the implementations of the OCCs

available in the Matlab library dd_tools (TAX, 2018) and the hyper-parameters used in the ex-

periments are detailed in Table 4. It is important to remark that we are aware that a thorough

tuning of the hyper-parameters for the OCCs should enhance the classification performance.

However, the objective of the experiments is to compare different one-class decomposition

techniques rather than to evaluate the performances of particular OCC models.

The experiments were performed using 5-fold cross-validation and the final performance is

given by the average of the 5 folds. The performance was evaluated using accuracy (KUNCHEVA,

2014) and Kappa statistic (COHEN, 1960; KRAWCZYK et al., 2018), both metrics used in (KRAWCZYK

et al., 2018). Kappa statistics, or Cohen’s Kappa Coefficient, was adopted as a complementary

metric to accuracy because it provides a different evaluation for the results, mainly for minority



51

Table 3 – Databases description. Imbalance Ratio is computed as the division of the cardinality of the largest
class by the cardinality of the smallest class.

Name Instances Features Numeric Nominal Classes Imbalance Ratio

Automobile 159 25 15 10 6 16.00
Car 1,728 6 0 6 4 18.62
Cleveland 297 13 13 0 5 12.31
Dermatology 358 34 34 0 6 5.55
Ecoli 336 7 7 0 8 71.5
Flare 1,066 11 9 2 6 7.70
Glass 214 9 9 0 6 8.44
Glass1 214 9 9 0 2 1.82
Glass6 214 9 9 0 2 6.38
Led7digit 500 7 7 0 10 1.54
Letter 2,000 16 16 0 26 1.11
Lymphography 148 18 3 15 4 40.50
Movement Libras 360 90 90 0 7 1.50
Nursery 12,960 8 0 8 5 2,160
Optdigits 5,620 64 64 0 4 1.53
Page-blocks 5,472 10 10 0 5 175.5
Penbased 10,992 16 16 0 10 1.08
Satimage 6,435 36 36 0 6 2.45
Segment 2,310 19 19 0 7 1.00
Shuttle 5,780 9 9 0 7 4,558
Texture 5,500 40 40 0 5 5.00
Vehicle 846 18 18 0 4 1.10
Vehicle2 846 18 18 0 2 2.88
Vowel 990 13 13 0 11 1.00
Yeast 1,484 8 8 0 10 92.6

Source: The author.

classes. This metric is less sensitive to randomness caused by a different number of instances

in each class because it scores the successes independently for each class and aggregates them

in the end (GALAR et al., 2011). Kappa statistic ranges from −1 (total disagreement) through

0 (random classification) to 1 (perfect agreement).

Equations 4.1 and 4.2 describe the computation of such metrics.

Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (4.1)

where TP, TN, FP, and FN mean true positive, true negative, false positive, and false negative,



52

Table 4 – OCCs hyper-parameters. Matlab 𝑑𝑑_𝑡𝑜𝑜𝑙𝑠 library implementation was used in the experiments.

GaussianDD Regularization parameter = 0.001
Fraction rejected = 0.05

ParzenDD
Kernel type = normal
Width parameter optimization = Max. likelihood
Fraction rejected = 0.05

SVDD Kernel type = RBF
𝐶 = 5.0
𝛾 = 0.0045
Fraction rejected = 0.05

MSTDD Maximum Support (MAX). path = none
Fraction rejected = 0.05

Source: The author.

respectively.

Kappa = 𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒

, (4.2)

where 𝑝𝑜 is the empirical probability of agreement on the label assigned to any sample (the

observed agreement ratio between the predicted class and the actual class), and 𝑝𝑒 is the

hypothetical probability of chance agreement.

MODES uses center-based clustering, which requires a value for the number of clus-

ters (𝑘). The determination of the values for 𝑘 was performed using the 13 fastest indexes

present in the R package NbClust (CHARRAD et al., 2014): Calinski and Harabasz (CALIŃSKI;

HARABASZ, 1974), PtBiserial (MILLIGAN, 1981), Hartigan (HARTIGAN, 1975), Ball (BALL; HALL,

1965), Mcclain (MCCLAIN; RAO, 1975), KL (KRZANOWSKI; LAI, 1988), Silhouette (KAUFMAN;

ROUSSEEUW, 2009), Gap (TIBSHIRANI; WALTHER; HASTIE, 2001), Dunn (DUNN, 1974), SDin-

dex (HALKIDI; VAZIRGIANNIS; BATISTAKIS, 2000), SDbw (HALKIDI; BATISTAKIS; VAZIRGIANNIS,

2001), C-index (HUBERT; LEVIN, 1976), Davies and Bouldin (DAVIES; BOULDIN, 1979). The

evaluation of the numbers of clusters was performed from 2 to 10 clusters. Since the average

number of clusters returned by the cluster validity indexes was 5.5 (with standard deviation

of 3), we did not evaluate other ranges. The clustering algorithm adopted in the experiments

was k-Means due to its simplicity and good results (JAIN, 2010). We used the default hyper-

parameters values given by Scikit Learn2 implementation, except for the number of clusters,
2 <https://scikit-learn.org/>

https://scikit-learn.org/


53

which was chosen by clustering validity indices, as explained in Section 3.1.

The clustering phase of DBDES was executed using Ordering Points To Identify the Clus-

tering Structure (OPTICS) implementation given by Scikit Learn. OPTICS requires a value

for the hyper-parameter 𝑚𝑖𝑛𝑃𝑡𝑠. In the experiments, we use 𝑚𝑖𝑛𝑃𝑡𝑠 = 20, since this value

is in the range recommended by the authors of OPTICS (ANKERST et al., 1999). For 𝜉 and 𝜀,

we use the default values of the Scikit-learn library in the experiments (0.05 and infinite).

Both MODES and DBDES aggregate the prediction in two levels. The first is performed in

the one-class problem. The output of the one-class classification, i.e., whether the test instance

resembles the target class or not, is given by the aggregation of the selected classifiers. For

this level of aggregation, MODES employs the mean of probabilities (ZHOU, 2012) while

DBDES used MAX. The second level is in the re-composition of the multi-class problem,

where the predictions of the one-class problems are aggregated to give the final prediction,

i.e., which class the test instance belongs to. In the second level, we adopt Decision Templates

(DTs) (KUNCHEVA; BEZDEK; DUIN, 2001), Error Correcting Output Codes (ECOC)) (PUJOL;

RADEVA; VITRIA, 2006) or MAX (KUNCHEVA, 2014) for all the techniques. These techniques

were adopted in literature (KRAWCZYK; WOŹNIAK; HERRERA, 2015; KRAWCZYK et al., 2018).

4.2 EXPERIMENTAL RESULTS

In this section, we present and discuss the results obtained in the experiments. Sec-

tions 4.2.1 and 4.2.2 present the experiments carried out to evaluate the different config-

urations of MODES and DBDES, respectively. In Section 4.2.3, we compare the performances

of the best configurations of MODES and DBDES with two techniques for one-class decom-

position: DESTHR and static combination of OCCs.

4.2.1 Experiment 1

This experiment aims to identify the most effective configuration for MODES. Thus, we

evaluate the proposed technique using 4 OCC models and 3 aggregation techniques, making

up 12 different configurations for MODES.

Tables 5 and 6 present the accuracy and Kappa statistics scores, respectively, for all con-

figurations of MODES. The best result for each database is in bold and the last rows present

the mean performance for all databases, the number of wins, ties, and losses, and the average



54

rankings. The average rankings are computed using all the 12 configurations.

MODES achieved its best performance using MSTDD and Decision Templates, for both

accuracy and Kappa Statistic. This configuration presented the best average accuracy and

Kappa statistics scores and the higher number of wins, i.e., the number of databases in

which it achieved the best performance among all configurations, for both metrics. The best

results were achieved with DTs and the best performing one-class classifiers were MSTDD and

GaussianDD.

Table 5 – Accuracy performance (in %) of MODES using DTs, ECOC, and MAX for four one-class classifiers.
The best result for each database is in bold. The last row represents the number of wins, ties, and
losses achieved by each technique.

Decision Templates Error Correcting Output Codes MAX
Dataset GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD
Automobile 66.44 57.12 72.46 78.69 66.56 62.10 60.79 63.11 65.04 72.95 69.19 71.09
Car 89.12 90.80 90.68 84.84 90.05 77.49 85.48 82.00 83.85 89.70 81.71 84.32
Cleveland 58.24 47.43 57.24 53.88 46.46 37.41 48.77 54.18 57.18 55.86 60.28 53.85
Dermatology 93.02 84.89 92.72 92.74 93.28 91.05 92.75 93.03 91.56 92.20 92.41 91.89
Ecoli 75.90 76.80 78.28 77.69 78.61 77.69 77.71 72.93 75.00 76.50 75.30 75.91
Flare 68.76 69.51 66.60 69.61 62.94 68.39 63.41 64.63 64.07 63.60 70.08 69.89
Glass 62.18 64.95 59.41 71.54 57.50 63.11 61.24 56.57 57.48 65.42 64.98 68.69
Glass1 71.01 75.70 69.15 81.33 62.64 71.54 65.91 70.09 75.27 78.98 75.24 81.34
Glass6 94.85 94.85 96.26 95.32 93.44 93.44 93.91 95.78 96.26 95.78 95.79 95.32
Led7digit 70.80 71.60 71.20 72.20 68.00 67.60 69.20 55.00 70.00 71.00 72.00 60.80
Letter 92.48 83.81 68.17 90.52 65.50 44.90 51.55 70.41 95.34 94.22 84.65 93.88
Lymphography 74.37 66.25 76.97 74.32 68.94 71.68 77.72 71.68 66.90 68.97 79.03 70.92
Movement Libras 77.22 52.78 77.78 86.67 79.17 67.22 71.94 70.56 78.06 83.33 76.94 85.56
Nursery 92.23 80.05 83.56 74.58 83.70 54.55 62.82 63.73 92.56 79.61 89.00 72.69
Optdigits 98.02 95.23 97.38 98.02 96.69 90.11 96.30 96.80 97.85 98.11 97.33 98.01
Page-blocks 95.18 94.76 94.32 95.01 93.93 91.25 93.21 92.68 95.14 94.76 94.92 94.96
Penbased 99.36 97.19 97.40 99.27 96.53 81.96 94.13 97.42 99.42 99.19 98.45 99.02
Satimage 87.57 86.03 86.62 90.35 82.50 82.50 81.29 83.26 88.02 88.56 87.80 88.39
Segment 93.77 91.34 90.82 95.37 91.95 94.42 90.43 94.07 94.42 94.72 91.99 95.24
Shuttle 99.23 99.36 99.17 99.42 99.33 99.21 99.17 99.33 99.24 99.31 99.24 99.42
Texture 99.80 93.35 94.76 98.53 98.60 95.84 94.53 96.49 99.78 98.67 96.80 98.95
Vehicle 78.72 62.06 70.44 70.45 77.07 63.24 63.24 63.71 78.60 68.80 69.26 68.44
Vehicle2 99.17 94.21 94.45 97.64 94.33 86.88 92.91 93.50 97.05 96.93 94.44 97.64
Vowel 97.68 80.30 90.10 98.48 89.39 47.17 66.77 89.60 97.58 97.07 88.99 97.88
Yeast 53.98 56.06 52.16 54.78 44.81 54.92 44.20 44.40 49.93 56.40 47.30 51.01
Mean 83.56 78.66 81.12 84.05 79.28 73.43 75.98 77.40 82.62 83.23 82.12 82.60
Win/tie/loss 4/0/21 1/0/24 0/1/24 8/0/17 2/0/23 0/0/25 0/0/25 0/0/25 3/1/21 2/0/23 3/0/22 1/0/24
Avg ranks 4.74 7.73 6.43 3.94 7.44 9.12 9.07 8.51 5.24 4.82 5.94 5.02

Source: The author.

Friedman test was employed to determine if the different configurations present significantly

different performance. The test output 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1.11−16 for both accuracy and Kappa

Statistics, meaning that the difference in performance among the configurations is significant.

Then, the Nemenyi post hoc test was used to identify which of the configurations differ from

each other. Figure 9 shows the results of Nemenyi post hoc test.

Again, MSTDD with DTs was identified as the best performing configuration, for both

accuracy and Kappa Statistics. It is also interesting to note that the seven best performing

configurations (all base OCCs (except for ParzenDD) with DTs and MAX) present quite



55

Table 6 – Kappa performance of MODES using DTs, ECOC, and MAX for four one-class classifiers. The best
result for each database is in bold. The last row represents the number of wins, ties, and losses
achieved by each technique.

Decision Templates Error Correcting Output Codes MAX
Dataset GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD
Automobile 0.5788 0.5477 0.6346 0.7199 0.5453 0.5012 0.4729 0.5283 0.5290 0.6493 0.5899 0.6176
Car 0.7822 0.8029 0.8028 0.6808 0.7753 0.4328 0.6855 0.6355 0.5905 0.7746 0.5350 0.6526
Cleveland 0.2735 0.2537 0.3054 0.2996 0.2358 0.1781 0.2208 0.1688 0.1955 0.3387 0.2918 0.2984
Dermatology 0.9125 0.8110 0.9082 0.9086 0.9164 0.8887 0.9098 0.9125 0.8934 0.9017 0.9040 0.8977
Ecoli 0.6667 0.6815 0.6979 0.6903 0.6943 0.6980 0.6782 0.6027 0.6419 0.6697 0.6488 0.6615
Flare 0.6039 0.6144 0.5777 0.6146 0.5350 0.5972 0.5362 0.5531 0.5419 0.5377 0.6178 0.6156
Glass 0.4855 0.5314 0.4632 0.6128 0.4095 0.4878 0.4626 0.3970 0.3763 0.5250 0.4996 0.5654
Glass1 0.3649 0.4840 0.3626 0.5810 0.1601 0.4553 0.2114 0.2395 0.3799 0.5284 0.4473 0.5626
Glass6 0.7705 0.7755 0.8226 0.7855 0.7281 0.7281 0.7437 0.8092 0.8134 0.8092 0.7955 0.7855
Led7digit 0.6752 0.6842 0.6797 0.6909 0.6447 0.6403 0.6578 0.4996 0.6666 0.6774 0.6884 0.5642
Letter 0.9218 0.8316 0.6689 0.9014 0.6412 0.4267 0.4962 0.6922 0.9516 0.9399 0.8404 0.9363
Lymphography 0.5038 0.3845 0.5509 0.4977 0.3910 0.4681 0.5620 0.4483 0.3784 0.4059 0.5885 0.4245
Movement Libras 0.7331 0.4518 0.7388 0.8434 0.7542 0.6153 0.6690 0.6559 0.7402 0.8043 0.7280 0.8302
Nursery 0.8875 0.7087 0.7616 0.6315 0.7593 0.3380 0.4487 0.4686 0.8902 0.7018 0.8373 0.6031
Optdigits 0.9733 0.9357 0.9646 0.9733 0.9552 0.8671 0.9500 0.9567 0.9709 0.9745 0.9639 0.9731
Page-blocks 0.7700 0.7550 0.6952 0.7564 0.6860 0.6137 0.6337 0.5711 0.7665 0.7585 0.7131 0.7615
Penbased 0.9929 0.9688 0.9711 0.9919 0.9615 0.7994 0.9348 0.9714 0.9935 0.9910 0.9828 0.9891
Satimage 0.8464 0.8253 0.8357 0.8812 0.7824 0.7856 0.7670 0.7946 0.8511 0.8589 0.8491 0.8570
Segment 0.9273 0.8990 0.8929 0.9460 0.9061 0.9348 0.8884 0.9308 0.9348 0.9384 0.9066 0.9444
Shuttle 0.9785 0.9823 0.9771 0.9837 0.9813 0.9780 0.9769 0.9813 0.9789 0.9807 0.9788 0.9837
Texture 0.9971 0.9048 0.9253 0.9789 0.9798 0.9401 0.9213 0.9496 0.9969 0.9809 0.9538 0.9848
Vehicle 0.7162 0.4935 0.6066 0.6060 0.6943 0.5103 0.5090 0.5151 0.7145 0.5836 0.5901 0.5789
Vehicle2 0.9781 0.8365 0.8593 0.9372 0.8521 0.7071 0.8034 0.8194 0.9197 0.9206 0.8467 0.9370
Vowel 0.9744 0.7833 0.8911 0.9833 0.8833 0.4189 0.6344 0.8856 0.9733 0.9678 0.8789 0.9767
Yeast 0.4064 0.4360 0.3818 0.4221 0.2471 0.4082 0.2379 0.2396 0.3435 0.4337 0.3065 0.3668
Mean 0.7488 0.6953 0.7190 0.7552 0.6848 0.6168 0.6405 0.6491 0.7213 0.7461 0.7193 0.7347
Win/tie/loss 4/0/21 2/0/23 1/0/24 8/1/16 1/0/24 1/0/24 0/0/25 0/0/25 3/0/22 2/0/23 2/0/23 0/1/24
Avg ranks 4.78 7.53 6.48 4.08 7.39 8.65 9.04 8.64 5.58 4.58 6.32 4.93

Source: The author.

similar performance (mean accuracy between 81.12 and 84.05). The performance of the other

5 configurations (all base OCCs with ECOC and ParzenDD with DTs) is at a level below

(mean accuracy between 73.43 and 79.28). This can be interpreted as evidence that MODES

is robust to the choice of the base one-class classifier, since, except for ParzenDD with DTs,

the base OCCs performed similarly when using the same aggregation technique.

Figure 9 – Result for Nemenyi post hoc test for (a) accuracy and (b) Kappa Statistic.

3 4 5 6 7 8 9 10

MSTDD/DTs

GaussDD/DTs

ParzenDD/MAX

MSTDD/MAX

GaussDD/MAX

SVDD/MAX SVDD/DTs

GaussDD/ECOC

ParzenDD/DTs

MSTDD/ECOC

SVDD/ECOC

ParzenDD/ECOC

CD

(a) Accuracy

3 4 5 6 7 8 9 10

MSTDD/DTs

ParzenDD/MAX

GaussDD/DTs

MSTDD/MAX

GaussDD/MAX

SVDD/MAX SVDD/DTs

GaussDD/ECOC

ParzenDD/DTs

MSTDD/ECOC

ParzenDD/ECOC

SVDD/ECOC

CD

(b) Kappa Statistic

Source: The author.



56

A quantitative analysis of the generation and selection phases of MODES was carried out.

In the training phase, MODES segments the data of each class label 𝑙 using a center-based

clustering algorithm, such as K-means, with a set 𝐷 of numbers of clusters {𝑑1, 𝑑2, ...} given

by the cluster validity indices. For each 𝑑𝑖 ∈ 𝐷, MODES trains a pool of OCCs, one OCC

for each cluster. The average number of OCCs generated by class ranges from 13.60 to 33.74

(average 25.55) using DTs or MAX and from 16.17 to 35.10 (average 28.48) using ECOC.

In the selection phase, MODES selects one OCC for each number 𝑑𝑖 ∈ 𝐷 to compose the

ensemble. Thus, the cardinality of 𝐷 represents the number of OCCs selected. The distribution

for the frequency of selection of the OCCs is presented in Figure 10: never selected, selected

for up to 1%, 2%, 3%, 4%, 5% of the test instances and selected for more than 5% of the

test instances. The frequencies are equal for DTs and MAX since these aggregation strategies

use the original classes. ECOC creates meta-binary problems which use meta-classes, thus, the

frequencies for ECOC are shown separately (right side of Figure 10).

For the majority of the databases, the highest frequency of selection is between 0% and

1%, that is, most of the OCCs are selected to classify up to 1% of the test instances. It is

worth noting that the majority of the OCCs are selected at least once. Using ECOC, less than

10% of the OCCs are never used while for DTs and MAX, less than 20% of the OCCs are never

used. Both figures indicate that the strategy for pool generation (i.e., segment the training

data and train an OCC for each cluster) is effective, since few OCCs are never selected and

most of the OCCs are used for classifying few instances, which means that they are used for

specific regions of the feature space.

Figure 10 – Frequency of use of OCCs with MODES for DTs and MAX (a) and ECOC (b).

0%

0%
<

f<
1%

1%
f<

2%

2%
f<

3%

3%
f<

4%

4%
f<

5%

f
5%

(a) DTs and MAX

0

20

40

60

80

100

M
ea

n 
fre

qu
en

cy
 o

f u
se

 (%
)

0%

0%
<

f<
1%

1%
f<

2%

2%
f<

3%

3%
f<

4%

4%
f<

5%

f
5%

(b) ECOC

0

20

40

60

80

100

M
ea

n 
fre

qu
en

cy
 o

f u
se

 (%
)

Source: The author.



57

4.2.2 Experiment 2

The goal of this experiment, like the previous one, was to evaluate the different configu-

rations of DBDES, i.e., combinations of OCC models and aggregation techniques, to identify

the most effective one. The evaluation of the configurations took into account the accuracy

and Kappa statistic performance. The result of each configuration is compared to all the other

configurations. Tables 7 and 8 present the results in terms of accuracy and Kappa statistic,

respectively. The best result for each database is in bold and the last rows present the mean

performance for all databases, the number of wins, ties, and losses and the average rankings

computed using all the 12 configurations.

Table 7 – Accuracy performance (in %) of DBDES using DTs, ECOC, and MAX aggregation methods for
four one-class classifiers. The best result for each database is in bold. The last row represents the
number of wins, ties, and losses achieved by each technique.

Decision Templates Error Correcting Output Codes Maximum Support
Database GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD
Automobile 67.80 64.13 55.24 74.88 68.74 67.33 51.82 60.55 58.54 73.53 62.75 79.27
Car 82.58 81.89 77.14 82.29 78.88 77.72 77.55 81.94 77.89 89.99 78.07 84.38
Cleveland 56.55 42.07 54.49 52.18 53.56 37.06 54.52 55.20 58.90 47.76 58.48 50.15
Dermatology 96.36 81.85 89.39 89.66 96.13 91.63 93.59 95.26 96.05 93.86 95.81 93.31
Ecoli 75.90 71.41 75.60 75.58 74.71 81.26 71.73 76.51 74.12 78.88 73.80 76.49
Flare 69.79 66.04 68.38 67.63 62.95 65.95 63.23 64.26 65.85 65.20 68.29 68.39
Glass 54.21 55.64 46.73 65.45 51.40 59.81 50.96 50.94 59.36 57.01 58.43 58.89
Glass1 71.98 70.07 65.95 75.26 69.16 63.59 68.72 70.56 73.39 72.46 71.53 80.40
Glass6 95.33 94.85 95.33 94.85 94.39 93.44 93.91 94.85 96.26 95.32 96.26 94.85
Led7digit 69.60 72.40 70.20 72.60 69.80 65.40 72.60 51.60 68.80 73.00 73.00 63.20
Letter 75.19 63.10 60.15 84.03 63.69 64.96 65.56 93.96 89.88 93.99 75.79 94.17
Lymphography 76.34 69.59 73.68 69.61 73.68 69.61 78.41 70.97 71.01 72.30 77.72 69.61
Movement Libras 75.00 50.28 58.06 85.28 65.28 56.11 72.22 70.83 74.72 86.11 78.06 83.33
Nursery 75.56 73.23 72.84 76.60 83.33 75.34 73.59 78.81 86.57 79.76 79.97 74.05
Optdigits 97.21 95.21 96.85 97.60 96.01 86.51 95.82 96.80 96.92 98.15 97.08 97.37
Page-blocks 95.03 94.28 94.61 94.94 94.70 94.74 94.12 95.43 94.24 93.95 95.07 94.34
Penbased 98.19 95.81 95.96 99.03 97.15 95.75 96.95 99.10 98.73 99.25 97.46 99.04
Satimage 84.32 78.29 81.24 89.04 86.46 87.79 87.26 89.43 87.58 89.34 88.30 88.61
Segment 92.51 90.00 87.01 95.06 88.70 93.59 88.66 93.29 91.65 92.68 89.00 93.42
Shuttle 99.14 99.33 99.28 99.38 99.19 99.28 99.17 99.31 99.26 99.24 99.24 99.42
Texture 99.22 92.64 92.84 97.58 97.25 94.62 94.02 96.47 99.71 98.38 95.33 97.84
Vehicle 81.21 61.70 66.08 70.22 72.10 64.54 61.35 63.36 82.04 71.99 66.67 70.10
Vehicle2 98.11 93.02 92.20 95.04 94.56 86.88 91.37 93.50 98.47 96.57 93.50 95.39
Vowel 91.11 58.69 54.44 94.95 53.84 50.20 46.87 95.96 91.01 97.58 65.76 98.38
Yeast 54.25 56.27 50.94 57.68 48.65 55.93 45.75 50.13 56.47 58.42 49.06 52.83
Mean 81.30 74.87 74.99 82.26 77.37 75.16 75.59 79.56 81.90 82.99 79.38 82.29
Win/tie/loss 2/0/23 0/0/25 0/0/25 2/0/23 0/0/25 1/0/24 1/0/24 2/0/23 5/1/19 5/1/19 0/2/23 5/0/20
Avg. ranks 5.31 8.55 8.81 4.49 7.50 8.08 8.70 6.10 5.24 4.33 6.02 4.86

Source: The author.

The best mean accuracy performance was achieved by ParzenDD/MAX (82.96). This

configuration also presented the best average ranking (4.33). However, GaussianDD/MAX

achieved the highest number of wins, six versus five wins achieved by ParzenDD/MAX and

MSTDD/MAX. Nonetheless, the mean accuracy performance of GaussianDD/MAX and its

average ranking were only the fourth best, behind ParzenDD/MAX, MSTDD/MAX, and



58

MSTDD/DTs. Hence, we consider that the best accuracy performance was achieved by

ParzenDD/MAX.

DTs achieved good results with GaussianDD/DTs and MSTDD/DTs. However, when

adopting ParzenDD/DTs and SVDD/DTs, DBDES presented the worst mean accuracy perfor-

mances among all configurations. These configurations did not achieve any win and their aver-

age rankings were among the three worst (with SVDD/ECOC. With ECOC, DBDES produced

mean accuracy below 80.00 for all OCCs and obtained four wins: two with MSTDD/ECOC

and one with ParzenDD/ECOC and SVDD/ECOC. MAX obtained the best results, with all

OCCs accuracy performances above 80.00 (except for SVDD/MAX, which obtained 79.38)

and achieving 16 wins (out of 25). SVDD/MAX, however, did not achieve any win.

Looking at the performances of the OCCs model, we notice that MSTDD presented good

results for all aggregation techniques. With DTs and ECOC, MSTDD was the OCC that

produced the best results. With MAX, MSTDD achieved the second best results, behind

ParzenDD. SVDD obtained the worst average rankings for all aggregation techniques. Addi-

tionally, it presented the worst mean accuracy for MAX and the second worst mean accuracy

for DTs and ECOC. Although ParzenDD/MAX presented the best performance among all

configurations, this OCC model achieved bad results with DTs and ECOC. For these aggrega-

tion techniques, ParzenDD obtained the worst mean accuracy and the second worst average

rankings. GaussianDD presented regular results for all aggregation techniques and achieved

eight wins, where GaussianDD/DTs obtained two wins and GaussianDD/MAX obtained six

wins.

It is worth noting that the seven best performing configurations (all base OCCs with

MAX, GaussianDD/DTs, MSTDD/DTs, and MSTDD/ECOC) present quite similar perfor-

mance (mean accuracy between 79.38 and 82.99). The performances of the other five con-

figurations are at a level below (mean accuracy between 74.87 and 77.37). This behavior is

similar to that observed in MODES and can be interpreted as evidence that DBDES is also

robust to the choice of the base one-class classifier, since, except for ParzenDD and SVDD

with DTs, the base OCCs performed similarly when using the same aggregation technique.

The behavior of the methods with respect to Kappa statistic performance was similar

to that observed with accuracy performance. ParzenDD/MAX also presented the best re-

sults: the highest mean performance (0.7411), the highest number of wins (five, tied with

GaussianDD/MAX and MSTDD/MAX), and the best average rank (4.06). ParzenDD/DTs,

SVDD/DTs, ParzenDD/ECOC and SVDD/ECOC presented the worst performances. These



59

Table 8 – Kappa statistic performance of DBDES using DTs, ECOC, and MAX aggregation methods for four
one-class classifiers. The best result for each database is in bold. The last row represents the number
of wins, ties, and losses achieved by each technique.

Decision Templates Error Correcting Output Codes Maximum Support
Database GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD GaussianDD ParzenDD SVDD MSTDD
Automobile 0.5775 0.5391 0.4086 0.6749 0.5806 0.5784 0.3765 0.5001 0.4220 0.6610 0.5044 0.7303
Car 0.6191 0.6330 0.5127 0.6425 0.5802 0.4350 0.5538 0.6353 0.4727 0.7811 0.4617 0.6765
Cleveland 0.3127 0.1998 0.2894 0.2996 0.1840 0.1677 0.2156 0.1744 0.3313 0.2467 0.3307 0.2729
Dermatology 0.9543 0.7745 0.8674 0.8704 0.9516 0.8960 0.9200 0.9406 0.9503 0.9227 0.9472 0.9159
Ecoli 0.6724 0.6080 0.6647 0.6684 0.6524 0.737 0.5976 0.6763 0.6472 0.7079 0.6430 0.6778
Flare 0.616 0.5697 0.5987 0.5904 0.5372 0.5685 0.5307 0.5495 0.5713 0.5626 0.5929 0.5995
Glass 0.3806 0.4307 0.3090 0.546 0.3205 0.4513 0.3071 0.3089 0.4099 0.4157 0.4419 0.4384
Glass1 0.4189 0.3790 0.3071 0.4724 0.2253 0.1904 0.2438 0.2374 0.3586 0.3860 0.3068 0.5556
Glass6 0.7896 0.7755 0.7952 0.7728 0.7549 0.7281 0.7387 0.7647 0.8134 0.7911 0.8197 0.7728
Led7digit 0.6618 0.6931 0.6687 0.6953 0.6638 0.6146 0.6952 0.4614 0.6528 0.6997 0.6997 0.5909
Letter 0.7420 0.6162 0.5856 0.8339 0.6224 0.6356 0.6418 0.9372 0.8947 0.9375 0.7482 0.9394
Lymphography 0.5375 0.3961 0.4754 0.4377 0.4681 0.4152 0.5806 0.4499 0.4349 0.4715 0.5699 0.4404
Movement Libras 0.7057 0.4219 0.5127 0.8276 0.5922 0.4863 0.6731 0.6595 0.6992 0.8273 0.7412 0.8046
Nursery 0.6486 0.6142 0.6111 0.6603 0.7547 0.6400 0.6130 0.6912 0.803 0.7041 0.7058 0.6219
Optdigits 0.9622 0.9354 0.9574 0.9675 0.9460 0.8197 0.9435 0.9566 0.9584 0.975 0.9605 0.9644
Page-blocks 0.7563 0.7327 0.7091 0.7469 0.6846 0.7321 0.6282 0.7280 0.7406 0.7303 0.7364 0.7376
Penbased 0.9799 0.9534 0.9551 0.9892 0.9684 0.9528 0.9661 0.9900 0.9858 0.9917 0.9718 0.9893
Satimage 0.8083 0.7363 0.7703 0.8656 0.8325 0.8503 0.8407 0.87 0.8478 0.8693 0.8542 0.8606
Segment 0.9126 0.8833 0.8485 0.9424 0.8682 0.9253 0.8677 0.9217 0.9025 0.9146 0.8717 0.9232
Shuttle 0.9761 0.9813 0.9798 0.9828 0.9773 0.9798 0.9769 0.9808 0.9793 0.9788 0.9788 0.9837
Texture 0.9888 0.8956 0.8981 0.9655 0.9606 0.9223 0.9137 0.9495 0.9958 0.9768 0.9323 0.9691
Vehicle 0.7496 0.4887 0.5486 0.6029 0.6278 0.5276 0.4836 0.5104 0.7607 0.6264 0.5553 0.6011
Vehicle2 0.9510 0.8000 0.8014 0.8763 0.8528 0.7071 0.7514 0.8192 0.9591 0.9128 0.8345 0.8847
Vowel 0.9022 0.5456 0.4989 0.9444 0.4922 0.4522 0.4156 0.9556 0.9011 0.9733 0.6233 0.9822
Yeast 0.4059 0.4385 0.3748 0.4584 0.3271 0.4226 0.2866 0.3473 0.4386 0.4634 0.3585 0.3944
Mean 0.7212 0.6417 0.6379 0.7334 0.6570 0.6334 0.6305 0.6806 0.7172 0.7411 0.6876 0.7331
Win/tie/loss 3/0/22 0/0/25 0/0/25 3/0/22 0/0/25 1/0/24 1/0/24 1/0/24 5/0/20 4/1/20 1/1/23 5/0/20
Avg. ranks 5.22 8.18 8.64 4.19 7.86 8.01 8.94 6.52 5.44 4.06 6.32 4.60

Source: The author.

configurations obtained an average rank higher than eight, their mean Kappa statistic perfor-

mances were the four worst and only ParzenDD/ECOC and SVDD/ECOC achieved one win

each. Again, MAX aggregation yielded the best results obtaining 16 wins. DTs achieved six

wins and ECOC, only three wins.

Friedman test was employed to determine if the distinct configurations present significantly

different performances. The test output was 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 3.18−59, for accuracy and 𝑝 −

𝑣𝑎𝑙𝑢𝑒 = 1.73−63, for Kappa Statistics, meaning that the difference of performance among

the configurations is significant for both metrics. Then, Nemenyi post-hoc test was used to

identify which of the configurations differ from each other. Figure 11 shows the results for

Nemenyi post-hoc test for accuracy (a) and Kappa statistic (b).

From the plots, we can see that ParzenDD/MAX presents the best performances, but,

some other configurations worth to be mentioned, since their performances do not present

significant differences from the best configuration, according to the critical difference (CD) on

Nemenyi test: MSTDD/DTs, MSTDD/MAX, GaussianDD/DTs, and GaussianDD/MAX.

A quantitative analysis of the generation and selection phases of DBDES was carried out,



60

Figure 11 – Result for Nemenyi post-hoc test for (a) accuracy and (b) Kappa Statistic performances of DB-
DES.

(a) Accuracy (b) Kappa Statistic

ParzenDD/MAX

MSTDD/DTs

MSTDD/MAX

GaussDD/MAX

GaussDD/DTs

SVDD/MAX MSTDD/ECOC

GaussDD/ECOC

ParzenDD/ECOC

SVDD/ECOC

ParzenDD/DTs

SVDD/DTs ParzenDD/MAX

MSTDD/DTs

MSTDD/MAX

GaussDD/DTs

GaussDD/MAX

SVDD/MAX MSTDD/ECOC

GaussDD/ECOC

ParzenDD/ECOC

ParzenDD/DTs

SVDD/DTs

SVDD/ECOC

4 5 6 7 8 9

CD

4 5 6 7 8 9

CD

Source: The author.

similar to that in Section 4.2.1, for MODES. DBDES segments the training data using the

OPTICS algorithm, which extracts hierarchical non-exclusive clusters. An OCC is trained for

each cluster. In the selection phase, DBDES selects, to compose the ensemble, an OCC for

each cluster of which the test instance is a members. Figure 12 exhibits the distribution for

the frequency of selection of OCCs with DBDES: never selected, up to 20%, 40%, 60%, 80%,

and 100% of the test instances. Again, the frequencies are equal for Decision Templates (DTs)

and MAX, since both techniques use the original classes. ECOC creates meta-binary problems

which use meta-classes. For this reason, the frequencies for ECOC are shown separately on

the right side of the picture.

The vast majority of the OCCs are selected at least once. Only approximately 15% of the

OCC are never selected. More than 20% of the OCCs are selected for at most 20% of the

test instances. It is worth noting a high number of OCCs are selected for 100% of the test

instances. This can be explained by the fact that OPTICS extracts hierarchical non-exclusive

partitions and, in many cases, a large cluster embracing all (or almost all) data instances is

identified. Hence, the majority of the test examples belonging to this class are members of

such a cluster, which leads to a high frequency of selection.

4.2.3 Experiment 3

In this experiment, we compare MODES and DBDES with DESTHR (KRAWCZYK et al.,

2018). The comparison involves the most effective configuration for each technique, namely,

MSTDD/ DTs for MODES, ParzenDD/MAX for DBDES, and SVDD/DTs for DESTHR. We



61

Figure 12 – Frequency of use of OCCs with DBDES for DTs and MAX (a) and ECOC (b).

f 
=

 0
%

0
%

 <
 f

 <
2

0
%

2
0

%
f<

4
0

%

4
0

%
f<

6
0

%

6
0

%
f<

8
0

%

8
0

%
f<

1
0

0
%

f=
1

0
0

%
(a) DTs and MAX

0

5

10

15

20

25

30

35

40

M
e
a
n
 f

re
q
u
e
n
cy

 o
f 

u
se

 (
%

)

f 
=

 0
%

0
%

 <
 f

 <
 2

0
%

2
0

%
f<

4
0

%

4
0

%
f<

6
0

%

6
0

%
f<

8
0

%

8
0

%
f<

1
0

0
%

f=
1

0
0

%

(b) ECOC

0

5

10

15

20

25

30

35

40

M
e
a
n
 f

re
q
u
e
n
cy

 o
f 

u
se

 (
%

)
Source: The author.

also evaluate DESTHR with GaussianDD, using DTs, ECOC, and MAX, since this OCC model

was not evaluated in (KRAWCZYK et al., 2018).

Additionally, we compare these techniques with the static combination of one OCC for each

class (KRAWCZYK; WOŹNIAK; HERRERA, 2015). For this technique, we carried out a preliminary

evaluation involving four OCC models (GaussianDD, ParzenDD, SVDD, and MSTDD) and

three aggregation techniques (DTs, ECOC, and MAX). The preliminary evaluation aimed at

selecting for Experiment 3 the best performing configuration for each aggregation technique.

Considering both Accuracy and Kappa statistic, the evaluation identified that MSTDD/DTs,

MSTDD/ECOC, and ParzenDD/DTs were the top-performing configurations for the static

combination of OCCs.

Tables 9 and 10 show the results obtained in Experiment 3. The analysis of the mean

accuracy and Kappa statistic performances indicates that MODES and DBDES outperform

all configurations of DESTHR and the static combination of OCCs. MODES was the best per-

forming technique obtaining the highest mean accuracy (84.05) and Kappa statistic (0.7522)

and DBDES was the second one, scoring 82.99 for mean accuracy and 0.7411 for Kappa

statistic. DESTHR presented good results with GaussianDD/MAX and GaussianDD/DTs (third

and fourth top-performing). Furthermore, MODES and DBDES obtained the best and sec-

ond best average rankings, respectively. Regarding the win/tie/loss (number of databases in

which a technique performs better than, equals to, or worse than another technique), MODES

presented the best results with 8 wins for accuracy and 7 wins for Kappa statistic. DBDES ob-

tained 5 wins for both accuracy and Kappa statistic. DESTHR with GaussianDD/MAX obtained



62

Table 9 – Accuracy performance (in %) of MODES, DBDES, DESTHR, and Static aggregation of OCCs. The
best result for each database is in bold. The last rows represent the mean performance across all
databases, the number of wins, ties, and losses achieved by each technique, and the average rankings.

MODES DBDES 𝐷𝐸𝑆𝑇 𝐻𝑅 Static
Dataset MSTDD/DTs ParzenDD/MAX SVDD/DTs GaussianDD/DTs GaussianDD/ECOC GaussianDD/MAX MSTDD/DTs ParzenDD/MAX MSTDD/ECOC
Automobile 78.69 73.53 57.82 67.80 68.15 58.54 79.39 75.48 15.21
Car 84.84 89.99 78.42 82.58 78.94 76.56 82.06 89.58 81.54
Cleveland 53.88 47.76 54.83 56.22 53.56 58.90 47.76 42.69 53.17
Dermatology 92.74 93.86 93.55 96.36 96.12 95.20 92.47 92.18 67.33
Ecoli 77.69 78.88 76.49 75.31 69.96 74.42 64.93 41.38 58.92
Flare 69.61 65.20 64.35 69.98 61.44 65.01 64.54 61.54 29.08
Glass 71.54 57.01 50.93 53.73 51.40 59.36 64.51 54.20 49.07
Glass1 81.33 72.46 66.38 71.98 69.16 73.39 74.33 72.46 64.49
Glass6 95.32 95.32 96.26 94.85 94.39 96.26 93.00 93.47 93.94
Led7digit 72.20 73.00 74.00 70.80 68.00 68.80 70.40 72.60 20.60
Letter 90.52 93.99 63.73 76.92 48.15 89.64 92.75 78.96 31.68
Lymphography 74.32 72.30 77.77 76.34 73.68 70.34 43.56 44.92 4.69
Movement Libras 86.67 86.11 78.06 75.28 65.28 74.44 86.11 85.00 48.89
Nursery 74.58 79.76 76.05 74.85 73.75 86.38 51.59 46.16 57.39
Optdigits 98.02 98.15 96.81 97.21 96.01 96.94 97.31 97.92 84.45
Page-blocks 95.01 93.95 93.99 94.99 93.21 94.19 77.50 33.76 90.18
Penbased 99.27 99.25 96.12 98.07 91.38 98.60 99.15 99.14 87.91
Satimage 90.35 89.34 85.72 85.33 83.10 87.58 89.42 88.83 44.33
Segment 95.37 92.68 86.80 92.42 88.70 91.60 93.03 89.22 73.55
Shuttle 99.42 99.24 99.28 99.14 99.19 99.28 93.62 88.28 97.64
Texture 98.53 98.38 93.31 99.24 97.25 99.71 95.47 97.78 81.67
Vehicle 70.45 71.99 64.54 81.21 72.10 82.04 69.98 71.99 43.97
Vehicle2 97.64 96.57 92.79 98.11 94.56 98.47 94.92 96.57 84.64
Vowel 98.48 97.58 67.58 90.71 50.51 90.71 99.60 98.28 27.78
Yeast 54.78 58.42 50.74 54.38 45.08 56.47 47.44 51.62 34.50
Mean 84.05 82.99 77.45 81.35 75.32 81.71 78.59 74.56 57.06
Win/tie/loss 8/0/17 5/0/20 2/1/22 2/0/23 0/0/25 5/1/19 2/0/23 0/0/25 0/0/25
Avg. ranks 2.82 3.34 5.68 4.22 6.31 4.19 5.03 5.26 8.15

Source: The author.

5 wins and 1 tie for both accuracy and Kappa statistic, while DESTHR with GaussianDD/DTs

obtained 2 wins for both metrics.

We also employed the Friedman test to determine if the performances of the techniques

present a statistically significant difference. The test output was 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1.61−72, for

accuracy, and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1.27−76, for Kappa statistics, meaning that the difference of

performance among the configurations is significant for both metrics. Then, Nemenyi post-

hoc test was used to identify which of the configurations differ from each other. Figure 13

shows the results for Nemenyi post-hoc test for accuracy (a) and Kappa statistic (b).

MODES presents the best performance for accuracy and only DBDES achieves accuracy

performance that does not present a statistically significant difference to MODES. DESTHR

with GaussianDD/MAX and GaussianDD/DTs, however, obtained accuracy performance com-

parable to DBDES, i.e., without statistically significant difference. In terms of Kappa statistic,

MODES and DBDES achieved the best performances and DESTHR with GaussianDD/DTs

achieved performance comparable to both techniques. The performances of the other tech-

niques were worse and the statistical tests showed a significant difference from the top-

performing techniques for both accuracy and Kappa statistic. Thus, the next analysis will

include only the four top-performing techniques: MODES, DBDES, and DESTHR with Gaus-



63

Table 10 – Kappa performance of MODES, DBDES, DESTHR, and Static aggregation of OCCs. The best result
for each database is in bold. The last rows represent the mean performance across all databases,
the number of wins, ties, and losses achieved by each technique, and the average rankings.

MODES DBDES 𝐷𝐸𝑆𝑇 𝐻𝑅 Static
Dataset MSTDD/DTs ParzenDD/MAX SVDD/DTs GaussianDD/DTs GaussianDD/ECOC GaussianDD/MAX MSTDD/DTs ParzenDD/MAX MSTDD/ECOC
Automobile 0.6460 0.6610 0.4412 0.5775 0.5727 0.4220 0.7344 0.6910 0.0307
Car 0.6808 0.7811 0.5287 0.6157 0.5728 0.4104 0.6362 0.7704 0.6275
Cleveland 0.2996 0.2467 0.2946 0.3091 0.1840 0.3313 0.2581 0.2080 0.0624
Dermatology 0.9086 0.9227 0.9190 0.9543 0.9514 0.9395 0.9050 0.9013 0.5647
Ecoli 0.6903 0.7079 0.6770 0.6630 0.5573 0.6521 0.5507 0.3230 0.3474
Flare 0.6146 0.5626 0.5503 0.6183 0.5190 0.5610 0.5563 0.5236 0.1587
Glass 0.6128 0.4157 0.3657 0.3740 0.3202 0.4096 0.5429 0.3860 0.2820
Glass1 0.5810 0.3860 0.3371 0.4189 0.2253 0.3586 0.4567 0.3883 0.0234
Glass6 0.7855 0.7911 0.8197 0.7699 0.7549 0.8134 0.7514 0.7746 0.7398
Led7digit 0.6909 0.6997 0.7110 0.6752 0.6450 0.6528 0.6709 0.6953 0.1255
Letter 0.9014 0.9375 0.4845 0.7599 0.4608 0.8923 0.9245 0.7812 0.2893
Lymphography 0.4977 0.4715 0.5711 0.5375 0.4681 0.4152 0.2508 0.2882 0.0120
Movement Libras 0.8434 0.8273 0.7426 0.7090 0.5922 0.6959 0.8373 0.8241 0.4042
Nursery 0.6315 0.7041 0.5891 0.6391 0.6129 0.8000 0.4247 0.3985 0.3759
Optdigits 0.9733 0.9750 0.9569 0.9622 0.9460 0.9586 0.9637 0.9719 0.7875
Page-blocks 0.7564 0.7303 0.6217 0.7557 0.6070 0.7375 0.3521 0.1078 0.5153
Penbased 0.9919 0.9917 0.8765 0.9786 0.9042 0.9844 0.9906 0.9905 0.8656
Satimage 0.8812 0.8693 0.7915 0.8202 0.7893 0.8478 0.8703 0.8631 0.2968
Segment 0.9460 0.9146 0.8460 0.9116 0.8682 0.9020 0.9187 0.8742 0.6914
Shuttle 0.9460 0.9788 0.9798 0.9761 0.9773 0.9798 0.8403 0.7112 0.9343
Texture 0.9789 0.9768 0.9046 0.9890 0.9606 0.9958 0.9361 0.9683 0.7510
Vehicle 0.6060 0.6264 0.5284 0.7496 0.6278 0.7607 0.5997 0.6263 0.2480
Vehicle2 0.9372 0.9128 0.8225 0.9510 0.8528 0.9591 0.8736 0.9128 0.5470
Vowel 0.9833 0.9733 0.6433 0.8978 0.4556 0.8978 0.9956 0.9811 0.2056
Yeast 0.4221 0.4634 0.3707 0.4075 0.2501 0.4386 0.3600 0.3937 0.0707
Mean 0.7522 0.7411 0.6550 0.7208 0.6270 0.7127 0.6880 0.6542 0.3983
Win/tie/loss 7/0/18 5/0/20 3/1/21 2/0/23 0/0/25 5/1/19 2/0/23 0/0/25 0/0/25
Avg. ranks 3.09 3.16 5.79 4.02 6.34 4.28 4.81 5.12 8.40

Source: The author.

Figure 13 – Result for Nemenyi post-hoc test for (a) accuracy and (b) Kappa Statistic performances of
MODES, DBDES, DESTHR, and the static combination of OCCs.

(a) Accuracy (b) Kappa Statistic

3 4 5 6 7 8 9

MODES MSTDD/DTs

DBDES ParzenDD/MAX

DESTHR GaussDD/DTs

DESTHR GaussDD/MAX

Static MSTDD/DTs

Static ParzenDD/MAX

DESTHR SVDD/DTs

DESTHR GaussDD/ECOC

Static MSTDD/ECOC

CD

2 3 4 5 6 7 8 9

MODES MSTDD/DTs

DBDES ParzenDD/MAX

DESTHR GaussDD/MAX

DESTHR GaussDD/DTs

Static MSTDD/DTs

Static ParzenDD/MAX

DESTHR SVDD/DTs

DESTHR GaussDD/ECOC

Static MSTDD/ECOC

CD

Source: The author.

sianDD/MAX and GaussianDD/DTs.

In order to evaluate the applicability of the proposed techniques, an analysis of the region of

competence, i.e., the neighborhood of the test instances, was performed. We identified that, for

some databases, a considerable proportion of the instances are in regions where the neighbors

belong to only one class. We say that such instances are in a homogeneous neighborhood.

When an instance is in a homogeneous neighborhood, the classification is directly given by



64

the class of the instances in the neighborhood, without using the Dynamic Ensemble Selection

(DES) of OCCs.

Figure 14 – Accuracy and Kappa statistic for the best configurations of DBDES, MODES, and DESTHR ac-
cording to the homogeneity of the neighborhood. Databases where more than 25% of the instances
present more than one class in the neighborhood are shown in the left side of the figure. The right
side shows databases where less than 25% of the instances present more than one class in the
neighborhood.

DBDES ParzenDD/MAX MODES MSTDD/DTs DESTHR GaussDD/DTs DESTHR GaussDD/MAX

(a) Accuracy in databases with neighborhood homogeneity < 25%

0

20

40

60

80

100

A
cc

u
ra

cy

(b) Accuracy in databases with neighborhood homogeneity > 25%

0

20

40

60

80

100

A
cc

u
ra

cy

(c) Kappa in databases with neighborhood homogeneity < 25%

0

20

40

60

80

100

K
a
p

p
a
 s

ta
ti

st
ic

(d) Kappa in databases with neighborhood homogeneity > 25%

0

20

40

60

80

100

K
a
p

p
a
 s

ta
ti

st
ic

Source: The author.

Figure 14 shows the accuracy and Kappa statistic of the top-performing configurations

of DBDES, MODES, and DESTHR, which were identified in the previous analysis. The figure

shows on the left side databases where up to 25% of the instances are in homogeneous regions

and on the right side databases where more than 25% of the instances are in homogeneous

regions. Additionally, Table 11 shows the mean accuracy and Kappa statistic of each technique

according to the homogeneity of the neighborhood in the databases.



65

Table 11 – Mean accuracy and Kappa statistic for top-performing configurations of DBDES, MODES, and
DESTHR according to the homogeneity of the neighborhoods in the databases.

Accuracy Kappa

Hom. ≥ 25% Hom. <25% Hom. ≥ 25% Hom. <25%

DBDES ParzenDD/MAX 89.01 73.83 80.85 64.00
MODES MSTDD/DTs 89.70 75.56 81.85 65.29

DESTHR GaussianDD/MAX 88.61 71.36 79.07 59.56
DESTHR GaussianDD/DTs 89.12 69.70 80.89 58.87

Source: The author.

It is noticeable that, for databases with homogeneous neighborhoods, the performances

of the techniques are more stable for both accuracy and Kappa statistic. The reason is that,

in such databases, more instances are classified in the same way by the techniques (assigning

the test instance to the single class in the neighborhood). The performance in databases with

homogeneous neighborhoods is higher than in databases with heterogeneous neighborhoods,

which is expected since it is known that instances in complex neighborhoods are hard to

classify.

MODES presents the best performance for databases with both homogeneous and het-

erogeneous neighborhoods. Furthermore, DBDES also outperforms DESTHR for both homoge-

neous and heterogeneous neighborhoods. However, in databases with heterogeneous neighbor-

hoods, the difference between the proposed techniques and DESTHR is bigger. The behavior

of the performances of the techniques in terms of accuracy and Kappa statistic were simi-

lar. However, the difference between the Kappa statistic performances of the techniques in

databases with heterogeneous neighborhoods to those with homogeneous neighborhoods was

bigger than the accuracy, specially for DESTHR.

We also carried out a performance analysis regarding the Imbalance Ratio (IR). The im-

balance ratio was computed as the cardinality of the largest class divided by the cardinality

of the smallest class. The databases were separated into two groups: (a) low IR databases

(𝐼𝑅 < 10), composed of 16 databases; and (b) high IR databases (𝐼𝑅 ≥ 10), composed

of 9 databases. Figure 15 and Table 12 show the accuracy and Kappa statistic performances

obtained by DBDES, MODES, and DESTHR in the two groups of databases.

The boxplots show that the performances of all the techniques are higher and more stable in

databases with low IR than in databases with high IR. MODES presented the highest accuracy

and Kappa statistic for databases with low IR. For databases with high IR, DBDES obtained



66

Figure 15 – Accuracy and Kappa statistic for the best configurations of DBDES, MODES, and DESTHR ac-
cording to the Imbalance Ratio. Databases with IR < 10 are shown in the left side of the figure.
The right side shows databases with IR ≥ 10.

DBDES ParzenDD/MAX MODES MSTDD/DTs DESTHR GaussDD/DTs DESTHR GaussDD/MAX

(a) Accuracy in databases with Imbalance Ratio < 10
0

20

40

60

80

100

Ac
cu

ra
cy

(b) Accuracy in databases with Imbalance Ratio  10
0

20

40

60

80

100

Ac
cu

ra
cy

(c) Kappa in databases with Imbalance Ratio < 10
0

20

40

60

80

100

Ka
pp

a

(d) Kappa in databases with Imbalance Ratio  10
0

20

40

60

80

100

Ka
pp

a

Source: The author.

the highest scores for both accuracy and Kappa statistic. Furthermore, for both groups of

databases and both metrics, the proposed techniques outperform DESTHR.

Finally, we also evaluated the performances of the techniques with respect to the number of

classes of the databases. We split the databases into two groups, the first containing databases

with less than 7 classes and the second with databases with at least 7 classes. Figure 16 and

Table 13 show the results of the evaluation.

For both accuracy and Kappa statistic, MODES and DBDES presented less advantage

against DESTHR in databases with less than 7 classes than in databases with at least 7 classes.

In fact, DBDES obtained worse mean performance than both configurations of DESTHR in



67

Table 12 – Mean accuracy and Kappa statistic for top-performing configurations of DBDES, MODES, and
DESTHR according to the Imbalance Ratio.

Accuracy Kappa

IR <10 IR ≥ 10 IR <10 IR ≥ 10

DBDES ParzenDD/MAX 86.25 77.09 79.89 63.83
MODES MSTDD/DTs 88.00 77.02 82.72 61.89

DESTHR GaussianDD/MAX 85.48 75.01 78.93 57.63
DESTHR GaussianDD/DTs 84.51 75.73 78.37 60.90

Source: The author.

Table 13 – Mean accuracy and Kappa statistic for top-performing configurations of DBDES, MODES, and
DESTHR according to the number of classes of the databases.

Accuracy Kappa

<7 classes ≥ 7 classes <7 classes ≥ 7 classes

DBDES ParzenDD/MAX 80.97 86.49 68.96 83.27
MODES MSTDD/DTs 82.93 86.04 71.19 82.39

DESTHR GaussianDD/MAX 81.18 82.66 67.00 78.84
DESTHR GaussianDD/DTs 81.30 81.45 69.01 77.54

Source: The author.

databases with less than 7 classes while MODES presented a slight advantage. For databases

with more than 7 classes, both MODES and DBDES presented better mean performance than

the two configurations of DESTHR. In addition, DBDES achieved the best results, overcoming

MODES for both accuracy and Kappa statistic.

The three evaluations presented above (regarding neighborhood homogeneity, class imbal-

ance, and number of classes) aimed at deepening the understanding of the performance of the

proposed techniques in databases with difficulties that may hinder classification performance.

The proposed techniques presented better results than literature techniques in the cases of

such difficulties, indicating that the approach proposed in this work is a good alternative to

tackle problems with the aforementioned issues.

In order to better evaluate the differences between the performances of each technique,

we carried out a Wilcoxon signed-rank test (BENAVOLI; CORANI; MANGILI, 2016). The test was

performed in a pairwise manner, verifying the null hypothesis that each of the proposed tech-

niques (one at a time) presents similar performance to the other technique and the alternative

hypothesis that each of the proposed techniques presents better performance than the other



68

Figure 16 – Accuracy and Kappa statistic for the best configurations of DBDES, MODES, and DESTHR ac-
cording to the number of classes of the databases. Databases with less than 7 classes are shown
in the left side of the figure. The right side shows databases at least 7 classes.

DBDES ParzenDD/MAX MODES MSTDD/DTs DESTHR GaussDD/DTs DESTHR GaussDD/MAX

(a) Accuracy in databases with less than 7 classes
0

20

40

60

80

100

Ac
cu

ra
cy

(b) Accuracy in databases with at least 7 classes
0

20

40

60

80

100

Ac
cu

ra
cy

(c) Kappa in databases with less than 7 classes
0

20

40

60

80

100

Ka
pp

a

(d) Kappa in databases with at least 7 classes
0

20

40

60

80

100

Ka
pp

a

Source: The author.

techniques.

Table 14 summarizes the results of the Wilcoxon signed-rank test. Two levels of significance

were adopted: 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.1, meaning evidence that the technique in the column performs

better than the technique in the row, and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.05, meaning strong evidence that

technique in the column performs better than the technique in the row. In the table, DBDES

ParzenDD/MAX and MODES MSTDD/DTs are represented by DBDES and MODES in the

columns, for space reasons.

The Wilcoxon test indicated strong evidence that the proposed techniques present better

performance than the two top-performing DESTHR configurations. The only exception was



69

Table 14 – Wilcoxon signed rank test results comparing the top-performing configurations of DBDES, MODES,
and DESTHR. Convention adopted: “>>” means strong evidence that the technique in the column
presents greater effectiveness than the technique in the row; “>” means evidence that the technique
in the column presents greater effectiveness than the technique in the row; “∼” means no evidence
that the technique in the column presents greater effectiveness than the technique in the row.

Accuracy Kappa statistic

DBDES MODES DBDES MODES

DBDES ParzenDD/MAX ∼ ∼
MODES MSTDD/DTs ∼ ∼

DESTHR GaussianDD/MAX ≫ ≫ ≫ ≫
DESTHR GaussianDD/DTs > ≫ ≫ ≫

Source: The author.

observed in the comparison between DBDES ParzenDD/MAX and DESTHR GaussianDD/DTs

in terms of accuracy, where the test indicated evidence that the proposed technique performs

better than the other technique. In addition, the test also indicated that there was no evidence

of a significant difference between the performances of DBDES ParzenDD/MAX and MODES

MSTDD/DTs, for both accuracy and Kappa statistic, although MODES presented higher

mean scores for both metrics.

Finally, we also evaluated the execution times of the techniques to verify if our supposition

that DBDES is faster than MODES is confirmed. In addition, this analysis is relevant to give an

outlook of the trade-off between classification accuracy and execution time of the techniques

evaluated.

Table 15 – Mean execution time across all databases for the top-performing configurations of MODES, DB-
DES, and DESTHR. The time is presented in seconds and is divided by training, test, and total.

Training Test Total

DBDES ParzenDD/MAX 3.62 0.48 4.10
MODES MSTDD/DTs 97.22 14.78 112.00

DESTHR GaussianDD/MAX 0.56 0.33 0.89
DESTHR GaussianDD/DTs 0.55 6.81 7.36

Source: The author.

Table 15 shows the mean execution time, in seconds, that each technique took to clas-

sify the databases. The experiments were executed using an Intel i5 8th generation with 12

GB RAM. We did not apply any parallelism technique for none of the algorithms. Tables

with the results for each database are present in Appendix A. It is noticeable that DESTHR



70

GaussianDD/MAX presented the lowest execution times. It showed the fastest test phase,

and its execution time in the training phase was quite similar to the fastest one (DESTHR

GaussianDD/DTs). DBDES presented the third fastest training phase, second fastest test

phase, and second fastest total time. It is important to remark that DBDES presented higher

accuracy than both configurations of DESTHR but with lower execution time than DESTHR

GaussianDD/DTs.

MODES, however, was the slowest technique for both phases. This was expected since

the execution of the clustering procedure in MODES is computationally intense. Nevertheless,

MODES presented the best classification accuracy in the experiments. Hence, it is worth using

this technique if execution time is not an issue.



71

5 FINAL REMARKS

This research proposed two methods for multi-class classification, named One-class Dy-

namic Ensemble Selection for Multi-class problems (MODES) and Density-Based Dynamic

Ensemble Selection (DBDES). Both techniques aim to improve the robustness and classifica-

tion performance in problems with complex intra-class data distribution. They decompose the

original multi-class problem into multiple one-class problems and employ a clustering-based

approach to generate pools of One-Class Classifiers. Dynamic Ensemble Selection (DES) is

applied to classify each test instance. MODES uses a center-based clustering algorithm, like

K-means, and relies on a set of cluster validity indices to define the numbers of clusters in

the data. DBDES employs the Ordering Points To Identify the Clustering Structure (OPTICS)

algorithm for clustering and extracts hierarchical non-exclusive partitions.

Experiments were carried out in a comprehensive experimental setting. The first experiment

identified the best configuration for MODES. The best performance was achieved using the

One-Class Classifier (OCC) model Minimum Spanning Tree Data Descriptor (MSTDD) and

the aggregation technique Decision Templates (DTs). The second experiment identified the

best configuration for DBDES, namely, the OCC model Parzen Data Descriptor (ParzenDD)

and Maximum Support (MAX).

In the third experiment, the top-performing configurations of MODES and DBDES were

compared with literature techniques, using a variety of configurations. The results showed

that MODES’ average performance is superior to all the configurations of the other methods.

DBDES presented the second-best average performance. Furthermore, statistical tests indi-

cated evidence that the performances of the proposed techniques are superior to the literature

(strong evidence in three out of four cases).

In addition, we identified that the proposed techniques perform better for databases con-

taining both complex and simple neighborhoods (high or low presence of instances of other

classes in the neighborhood, respectively) and for both balanced and imbalanced databases.

However, in databases with such difficulties (complex neighborhood and class imbalance),

the advantage of the performances of the proposed techniques is more remarkable. Hence, the

experiments indicated that the adoption of a clustering-based approach for the dynamic ensem-

ble of OCCs selection improves the classification performance in the one-class decomposition

scheme.



72

The proposed techniques are composed of two levels: the first is responsible for one-class

classification, i.e., whether the test instance belongs or not to the target class; and the second

is responsible for the re-composition of the multi-class problem, i.e., aggregating the outputs

of the one-class problems to give the final multi-class decision. Hence, the proposed techniques

can, optionally, be easily adapted to be used in one-class problems.

For future works, we aim to evaluate the choice of the algorithm (MODES or DBDES)

according to characteristics of the database. For instance, Figure 15 and Table 12 indicate that

DBDES achieves better results than MODES in databases with high imbalance ratio. As it

requires less execution time, DBDES may be more adequate than MODES to large databases

or an environment where time constraints are imposed. Thus, the best technique for a database

may be determined using these and other heuristics like number of instances, dimensionality,

homogeneity of the neighborhoods, and so forth.

Also, we aim to delve deeper into the use of clustering-based dynamic ensemble of OCCs

selection for one-class problems. Since this approach presented good results in a multi-class

setting, it is worth investigating whether its adoption in one-class problems.



73

REFERENCES

AGGARWAL, C. C.; REDDY, C. K. Data clustering. Algorithms and applications.
Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra, Citeseer, 2014.

ANKERST, M.; BREUNIG, M. M.; KRIEGEL, H.-P.; SANDER, J. Optics: Ordering points to
identify the clustering structure. ACM Sigmod record, ACM New York, NY, USA, v. 28, n. 2,
p. 49–60, 1999.

ARBELAITZ, O.; GURRUTXAGA, I.; MUGUERZA, J.; PÉREZ, J. M.; PERONA, I. An
extensive comparative study of cluster validity indices. Pattern Recognition, Elsevier, v. 46,
n. 1, p. 243–256, 2013.

BALL, G. H.; HALL, D. J. ISODATA, a novel method of data analysis and pattern
classification. [S.l.], 1965.

BENAVOLI, A.; CORANI, G.; MANGILI, F. Should we really use post-hoc tests based on
mean-ranks. Journal of Machine Learning Research, v. 17, n. 5, p. 1–10, 2016.

CALIŃSKI, T.; HARABASZ, J. A dendrite method for cluster analysis. Communications in
Statistics-theory and Methods, Taylor & Francis, v. 3, n. 1, p. 1–27, 1974.

CAMPELLO, R. J.; KRÖGER, P.; SANDER, J.; ZIMEK, A. Density-based clustering. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Wiley Online Library, v. 10,
n. 2, p. e1343, 2020.

CAO, P.; ZHANG, S.; TANG, J. Preprocessing-free gear fault diagnosis using small datasets
with deep convolutional neural network-based transfer learning. Ieee Access, IEEE, v. 6, p.
26241–26253, 2018.

CHARRAD, M.; GHAZZALI, N.; BOITEAU, V.; NIKNAFS, A.; CHARRAD, M. M. Package
‘nbclust’. Journal of Statistical Software, v. 61, p. 1–36, 2014.

CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, v. 16, p. 321–357,
2002.

COHEN, J. A coefficient of agreement for nominal scales. Educational and psychological
measurement, Sage Publications Sage CA: Thousand Oaks, CA, v. 20, n. 1, p. 37–46, 1960.

CRUZ, R. M.; SABOURIN, R.; CAVALCANTI, G. D. Dynamic classifier selection: Recent
advances and perspectives. Information Fusion, v. 41, p. 195–216, 2018.

CUPERTINO, T. H.; ZHAO, L.; CARNEIRO, M. G. Network-based supervised data
classification by using an heuristic of ease of access. Neurocomputing, Elsevier, v. 149, p.
86–92, 2015.

DAS, B.; COOK, D. J.; KRISHNAN, N. C.; SCHMITTER-EDGECOMBE, M. One-class
classification-based real-time activity error detection in smart homes. IEEE journal of selected
topics in signal processing, IEEE, v. 10, n. 5, p. 914–923, 2016.

DAVIES, D. L.; BOULDIN, D. W. A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, IEEE, n. 2, p. 224–227, 1979.



74

DUDA, R. O.; HART, P. E.; STORK, D. G. Pattern classification. [S.l.]: John Wiley & Sons,
2012.

DUNN, J. C. Well-separated clusters and optimal fuzzy partitions. Journal of cybernetics,
Taylor & Francis, v. 4, n. 1, p. 95–104, 1974.

ESTER, M.; KRIEGEL, H.-P.; SANDER, J.; XU, X. et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: kdd. [S.l.: s.n.], 1996. v. 96,
n. 34, p. 226–231.

EVERITT, B. S.; LANDAU, S.; LEESE, M.; STAHL, D. Cluster analysis 5th ed. [S.l.]: John
Wiley, 2011.

FRAGOSO, R. C.; CAVALCANTI, G. D.; PINHEIRO, R. H.; OLIVEIRA, L. S. Dynamic
selection and combination of one-class classifiers for multi-class classification. Knowledge-
Based Systems, Elsevier, v. 228, p. 107290, 2021.

GALAR, M.; FERNÁNDEZ, A.; BARRENECHEA, E.; BUSTINCE, H.; HERRERA, F. An
overview of ensemble methods for binary classifiers in multi-class problems: Experimental
study on one-vs-one and one-vs-all schemes. Pattern Recognition, Elsevier, v. 44, n. 8, p.
1761–1776, 2011.

GÖRNITZ, N.; LIMA, L. A.; MÜLLER, K.-R.; KLOFT, M.; NAKAJIMA, S. Support vector
data descriptions and 𝑘-means clustering: One class? IEEE transactions on neural networks
and learning systems, IEEE, v. 29, n. 9, p. 3994–4006, 2017.

HAHSLER, M.; PIEKENBROCK, M.; DORAN, D. dbscan: Fast density-based clustering with
r. Journal of Statistical Software, v. 91, p. 1–30, 2019.

HALKIDI, M.; BATISTAKIS, Y.; VAZIRGIANNIS, M. On clustering validation techniques.
Journal of intelligent information systems, Springer, v. 17, n. 2-3, p. 107–145, 2001.

HALKIDI, M.; VAZIRGIANNIS, M.; BATISTAKIS, Y. Quality scheme assessment in the
clustering process. In: SPRINGER. European Conference on Principles of Data Mining and
Knowledge Discovery. [S.l.], 2000. p. 265–276.

HARTIGAN, J. A. Clustering algorithms. [S.l.]: Wiley, 1975.

HE, H.; GARCIA, E. A. Learning from imbalanced data. IEEE Transactions on knowledge
and data engineering, Ieee, v. 21, n. 9, p. 1263–1284, 2009.

HUBERT, L. J.; LEVIN, J. R. A general statistical framework for assessing categorical
clustering in free recall. Psychological bulletin, American Psychological Association, v. 83,
n. 6, p. 1072, 1976.

JAIN, A.; NANDAKUMAR, K.; ROSS, A. Score normalization in multimodal biometric
systems. Pattern recognition, Elsevier, v. 38, n. 12, p. 2270–2285, 2005.

JAIN, A. K. Data clustering: 50 years beyond k-means. Pattern recognition letters, Elsevier,
v. 31, n. 8, p. 651–666, 2010.

JAIN, A. K.; MURTY, M. N.; FLYNN, P. J. Data clustering: a review. ACM computing
surveys (CSUR), Acm New York, NY, USA, v. 31, n. 3, p. 264–323, 1999.



75

JOHNSON, J. M.; KHOSHGOFTAAR, T. M. Survey on deep learning with class imbalance.
Journal of Big Data, Springer, v. 6, n. 1, p. 1–54, 2019.

JUSZCZAK, P.; TAX, D. M.; PE, E.; DUIN, R. P. et al. Minimum spanning tree based
one-class classifier. Neurocomputing, Elsevier, v. 72, n. 7-9, p. 1859–1869, 2009.

KARAMI, A.; JOHANSSON, R. Choosing dbscan parameters automatically using differential
evolution. International Journal of Computer Applications, Foundation of Computer Science,
v. 91, n. 7, p. 1–11, 2014.

KAUFMAN, L.; ROUSSEEUW, P. J. Finding groups in data: an introduction to cluster
analysis. [S.l.]: John Wiley & Sons, 2009.

KHAN, K.; REHMAN, S. U.; AZIZ, K.; FONG, S.; SARASVADY, S. Dbscan: Past, present
and future. In: IEEE. The fifth international conference on the applications of digital
information and web technologies (ICADIWT 2014). [S.l.], 2014. p. 232–238.

KHAN, S. S.; MADDEN, M. G. A survey of recent trends in one class classification. In:
SPRINGER. Irish conference on artificial intelligence and cognitive science. [S.l.], 2009. p.
188–197.

KIM, B.; LEE, H.; KANG, P. Integrating cluster validity indices based on data envelopment
analysis. Applied Soft Computing, Elsevier, v. 64, p. 94–108, 2018.

KIM, H.-J.; JO, N.-O.; SHIN, K.-S. Optimization of cluster-based evolutionary undersampling
for the artificial neural networks in corporate bankruptcy prediction. Expert systems with
applications, Elsevier, v. 59, p. 226–234, 2016.

KIM, M.; RAMAKRISHNA, R. New indices for cluster validity assessment. Pattern
Recognition Letters, Elsevier, v. 26, n. 15, p. 2353–2363, 2005.

KITTLER, J.; HATEF, M.; DUIN, R. P.; MATAS, J. On combining classifiers. IEEE
transactions on pattern analysis and machine intelligence, IEEE, v. 20, n. 3, p. 226–239,
1998.

KO, A. H.; SABOURIN, R.; JR, A. S. B. From dynamic classifier selection to dynamic
ensemble selection. Pattern Recognition, Elsevier, v. 41, n. 5, p. 1718–1731, 2008.

KOHONEN, T.; SCHROEDER, M.; HUANG, T.; MAPS, S.-O. Springer-verlag new york.
Inc., Secaucus, NJ, v. 43, n. 2, 2001.

KOLESNIKOV, A.; TRICHINA, E.; KAURANNE, T. Estimating the number of clusters in a
numerical data set via quantization error modeling. Pattern Recognition, Elsevier, v. 48, n. 3,
p. 941–952, 2015.

KOPPEL, M.; SCHLER, J. Authorship verification as a one-class classification problem. In:
ACM. Proceedings of the twenty-first international conference on Machine learning. [S.l.],
2004. p. 62.

KRAWCZYK, B.; GALAR, M.; WOŹNIAK, M.; BUSTINCE, H.; HERRERA, F. Dynamic
ensemble selection for multi-class classification with one-class classifiers. Pattern Recognition,
Elsevier, v. 83, p. 34–51, 2018.



76

KRAWCZYK, B.; WOŹNIAK, M. Dynamic classifier selection for one-class classification.
Knowledge-Based Systems, Elsevier, v. 107, p. 43–53, 2016.

KRAWCZYK, B.; WOŹNIAK, M.; CYGANEK, B. Clustering-based ensembles for one-class
classification. Information Sciences, Elsevier, v. 264, p. 182–195, 2014.

KRAWCZYK, B.; WOŹNIAK, M.; HERRERA, F. On the usefulness of one-class classifier
ensembles for decomposition of multi-class problems. Pattern Recognition, Elsevier, v. 48,
n. 12, p. 3969–3982, 2015.

KRZANOWSKI, W. J.; LAI, Y. A criterion for determining the number of groups in a data
set using sum-of-squares clustering. Biometrics, JSTOR, p. 23–34, 1988.

KUNCHEVA, L. Combining pattern classifiers. Hoboken. [S.l.]: New Jersey. John Wiley &
Sons, Inc, 2014.

KUNCHEVA, L. I.; BEZDEK, J. C.; DUIN, R. P. Decision templates for multiple classifier
fusion: an experimental comparison. Pattern recognition, Elsevier, v. 34, n. 2, p. 299–314,
2001.

LE, T.; TRAN, D.; MA, W.; SHARMA, D. A theoretical framework for multi-sphere support
vector data description. In: SPRINGER. International Conference on Neural Information
Processing. [S.l.], 2010. p. 132–142.

LIU, J.; MIAO, Q.; SUN, Y.; SONG, J.; QUAN, Y. Modular ensembles for one-class
classification based on density analysis. Neurocomputing, Elsevier, v. 171, p. 262–276, 2016.

LUCHI, D.; RODRIGUES, A. L.; VAREJÃO, F. M. Sampling approaches for applying dbscan
to large datasets. Pattern Recognition Letters, Elsevier, v. 117, p. 90–96, 2019.

MANEVITZ, L. M.; YOUSEF, M. One-class svms for document classification. Journal of
machine Learning research, v. 2, n. Dec, p. 139–154, 2001.

MCCLAIN, J. O.; RAO, V. R. Clustisz: A program to test for the quality of clustering of a
set of objects. Journal of Marketing Research, JSTOR, p. 456–460, 1975.

MILLIGAN, G. W. A monte carlo study of thirty internal criterion measures for cluster
analysis. Psychometrika, Springer, v. 46, n. 2, p. 187–199, 1981.

POUYANFAR, S.; SADIQ, S.; YAN, Y.; TIAN, H.; TAO, Y.; REYES, M. P.; SHYU,
M.-L.; CHEN, S.-C.; IYENGAR, S. A survey on deep learning: Algorithms, techniques, and
applications. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 51, n. 5, p.
1–36, 2018.

PUJOL, O.; RADEVA, P.; VITRIA, J. Discriminant ecoc: A heuristic method for application
dependent design of error correcting output codes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, IEEE, v. 28, n. 6, p. 1007–1012, 2006.

SCHÖLKOPF, B.; PLATT, J. C.; SHAWE-TAYLOR, J.; SMOLA, A. J.; WILLIAMSON,
R. C. Estimating the support of a high-dimensional distribution. Neural computation, MIT
Press, v. 13, n. 7, p. 1443–1471, 2001.

TAX, D. Ddtools, the data description toolbox for matlab. Delft University of Technology ed,
2005.



77

TAX, D. DDtools, the Data Description Toolbox for Matlab. 2018. Version 2.1.3.

TAX, D. M.; DUIN, R. P. Data description in subspaces. In: IEEE. Proceedings 15th
International Conference on Pattern Recognition. ICPR-2000. [S.l.], 2000. v. 2, p. 672–675.

TAX, D. M.; DUIN, R. P. Combining one-class classifiers. In: SPRINGER. International
Workshop on Multiple Classifier Systems. [S.l.], 2001. p. 299–308.

TAX, D. M.; DUIN, R. P. Support vector data description. Machine learning, Springer, v. 54,
n. 1, p. 45–66, 2004.

TIBSHIRANI, R.; WALTHER, G.; HASTIE, T. Estimating the number of clusters in a
data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), Wiley Online Library, v. 63, n. 2, p. 411–423, 2001.

TSAI, C.-F.; LIN, W.-C. Feature selection and ensemble learning techniques in one-class
classifiers: an empirical study of two-class imbalanced datasets. IEEE Access, IEEE, v. 9, p.
13717–13726, 2021.

WOJCIECHOWSKI, S.; WOŹNIAK, M. Employing decision templates to imbalanced data
classification. In: SPRINGER. International Conference on Hybrid Artificial Intelligence
Systems. [S.l.], 2020. p. 120–131.

WOLPERT, D. H. The lack of a priori distinctions between learning algorithms. Neural
computation, MIT Press, v. 8, n. 7, p. 1341–1390, 1996.

WOŹNIAK, M.; GRAÑA, M.; CORCHADO, E. A survey of multiple classifier systems as
hybrid systems. Information Fusion, Elsevier, v. 16, p. 3–17, 2014.

XIAO, Y.; LIU, B.; CAO, L.; WU, X.; ZHANG, C.; HAO, Z.; YANG, F.; CAO, J. Multi-sphere
support vector data description for outliers detection on multi-distribution data. In: IEEE.
2009 IEEE international conference on data mining workshops. [S.l.], 2009. p. 82–87.

XU, R.; WUNSCH, D. Survey of clustering algorithms. IEEE Transactions on neural networks,
Ieee, v. 16, n. 3, p. 645–678, 2005.

ZHOU, Z.-H. Ensemble methods: foundations and algorithms. [S.l.]: Chapman and Hall/CRC,
2012.



78

APPENDIX A – EXECUTION TIME

Table 16 – Training time of MODES, DBDES, and Dynamic Ensemble Selection with THReshold-based neigh-
borhood pruning (DESTHR) top performing configurations and the characteristics of the databases.
Imbalance Ratio (IR) is computed as the division of the cardinality of the largest class by the
cardinality of the smallest class. Best result for each database in bold. The last rows represent
the mean performance across all databases, the number of wins, ties and losses achieved by each
technique, and the average rankings.

Databases characteristics DBDES MODES DESTHR

Name Instances Features Numeric Nominal Classes IR ParzenDD/MAX MSTDD/DTs GaussDD/DTs GaussDD/MAX

Automobile 159 25 15 10 6 16.0 0.47 8.25 0.47 0.47
Car 1728 6 0 6 4 18.6 1.60 107.02 0.13 0.11

Cleveland 297 13 13 0 5 12.3 0.20 10.74 0.08 0.07
Dermatology 358 34 34 0 6 5.6 0.25 15.62 0.15 0.16

Ecoli 336 7 7 0 8 71.5 0.24 9.72 0.11 0.12
Flare 1066 11 9 2 6 7.7 1.06 26.62 0.15 0.13
Glass 214 9 9 0 6 8.4 0.14 8.56 0.06 0.06

Glass1 214 9 9 0 2 1.8 0.15 5.12 0.04 0.04
Glass6 214 9 9 0 2 6.4 0.15 6.25 0.03 0.04

Led7digit 500 7 7 0 10 1.5 0.30 14.19 0.12 0.11
Letter 2000 16 16 0 26 1.1 16.52 11.29 2.08 2.12

Lymphography 148 18 3 15 4 40.5 0.16 4.54 0.04 0.06
Movement Libras 360 90 90 0 7 1.5 0.38 24.42 0.40 0.38

Nursery 12960 8 0 8 5 2,160.0 18.54 2.96 0.69 0.72
Optdigits 5620 64 64 0 4 1.5 7.68 1,224.39 1.80 1.87

Page-blocks 5472 10 10 0 5 175.5 7.83 1.89 0.38 0.38
Penbased 10992 16 16 0 10 1.1 8.13 5.45 1.78 1.79
Satimage 6435 36 36 0 6 2.5 6.28 2.99 1.86 1.86
Segment 2310 19 19 0 7 1.0 2.13 4.87 0.31 0.33

Shuttle 5780 9 9 0 7 4,558.0 8.24 1,059.44 0.38 0.40
Texture 5500 40 40 0 5 5.0 7.67 33.61 2.17 2.20
Vehicle 846 18 18 0 4 1.1 0.54 28.89 0.12 0.13

Vehicle2 846 18 18 0 2 2.9 0.57 55.23 0.10 0.11
Vowel 990 13 13 0 11 1.0 0.61 25.48 0.19 0.18
Yeast 1484 8 8 0 10 92.6 0.78 63.92 0.17 0.17

Mean 3.62 69.62 0.55 0.56
Win/tie/loss 0/2/23 0/0/25 13/6/6 5/7/13

Avg. ranks 3.10 3.72 1.51 1.66

Source: The author.



79

Table 17 – Prediction time of MODES, DBDES, and DESTHR top performing configurations and the charac-
teristics of the databases. IR is computed as the division of the cardinality of the largest class by
the cardinality of the smallest class.. Best result for each database in bold. The last rows represent
the mean performance across all databases, the number of wins, ties and losses achieved by each
technique, and the average rankings.

Databases characteristics DBDES MODES DESTHR

Name Instances Features Numeric Nominal Classes IR ParzenDD/MAX MSTDD/DTs GaussDD/DTs GaussDD/MAX

Automobile 159 25 15 10 6 16.0 0.12 5.11 0.65 0.12
Car 1728 6 0 6 4 18.6 0.21 6.45 0.67 0.09

Cleveland 297 13 13 0 5 12.3 0.08 5.79 0.44 0.08
Dermatology 358 34 34 0 6 5.6 0.09 8.63 0.92 0.10

Ecoli 336 7 7 0 8 71.5 0.09 6.53 0.85 0.10
Flare 1066 11 9 2 6 7.7 0.41 9.86 1.01 0.13
Glass 214 9 9 0 6 8.4 0.09 3.84 0.46 0.09

Glass1 214 9 9 0 2 1.8 0.04 1.15 0.11 0.04
Glass6 214 9 9 0 2 6.4 0.03 1.21 0.12 0.03

Led7digit 500 7 7 0 10 1.5 0.16 11.26 1.19 0.13
Letter 2000 16 16 0 26 1.1 5.14 52.61 83.65 4.21

Lymphography 148 18 3 15 4 40.5 0.06 1.72 0.25 0.05
Movement Libras 360 90 90 0 7 1.5 0.22 16.77 2.58 0.22

Nursery 12960 8 0 8 5 2,160.0 1.50 3.23 5.42 0.44
Optdigits 5620 64 64 0 4 1.5 0.53 94.52 14.56 0.53

Page-blocks 5472 10 10 0 5 175.5 0.23 1.05 2.76 0.11
Penbased 10992 16 16 0 10 1.1 0.69 9.82 17.58 0.41
Satimage 6435 36 36 0 6 2.5 0.55 4.84 13.00 0.43
Segment 2310 19 19 0 7 1.0 0.44 10.25 2.70 0.12

Shuttle 5780 9 9 0 7 4,558.0 0.23 9.00 4.76 0.11
Texture 5500 40 40 0 5 5.0 0.37 46.26 11.65 0.22
Vehicle 846 18 18 0 4 1.1 0.13 5.28 0.61 0.10

Vehicle2 846 18 18 0 2 2.9 0.08 2.36 0.29 0.04
Vowel 990 13 13 0 11 1.0 0.33 36.51 2.07 0.20
Yeast 1484 8 8 0 10 92.6 0.21 15.53 1.90 0.18

Mean 0.48 14.78 6.81 0.33
Win/tie/loss 2/7/16 0/0/25 0/0/25 16/7/2

Avg. ranks 1.79 3.72 3.20 1.29

Source: The author.



80

APPENDIX B – COMPARISON WITH BENCHMARK MULTI-CLASS

CLASSIFIER

Table 18 – Accuracy performance (in %) of MODES, DBDES, and Random Forest. Best result for each
database in bold. The last rows represent the mean performance across all databases, the number
of wins, ties and losses achieved by each technique, the average rankings and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for
Wilcoxon Signed Ranking Test.

DBDES MODES Random
Dataset ParzenDD/MAX MSTDD/DTs Forest
Automobile 73.53 78.69 86.22
Car 89.99 84.84 97.80
Cleveland 47.76 53.88 57.17
Dermatology 93.86 92.74 97.24
Ecoli 78.88 77.69 84.53
Flare 65.20 69.61 73.36
Glass 57.01 71.54 77.59
Glass1 72.46 81.33 81.33
Glass6 95.32 95.32 96.28
Led7digit 73.00 72.20 70.20
Letter 93.99 90.52 96.37
Lymphography 72.30 74.32 83.06
Movement Libras 86.11 86.67 80.83
Nursery 79.76 74.58 98.34
Optdigits 98.15 98.02 97.78
Page-blocks 93.95 95.01 97.37
Penbased 99.25 99.27 99.13
Satimage 89.34 90.35 91.66
Segment 92.68 95.37 98.05
Shuttle 99.24 99.42 99.71
Texture 98.38 98.53 98.24
Vehicle 71.99 70.45 74.47
Vehicle2 96.57 97.64 98.58
Vowel 97.58 98.48 96.87
Yeast 58.42 54.78 63.00
Mean 0.8296 0.8405 0.8781
Win/tie/loss 2/0/23 4/1/20 18/1/6
Avg. ranks 2.33 2.15 1.52
Wilcoxon - 0.0000 0.0000

Source: The author.



81

Table 19 – Kappa performance of MODES, DBDES, and Random Forest. Best result for each database in
bold. The last rows represent the mean performance across all databases, the number of wins, ties
and losses achieved by each technique, the average rankings and the 𝑝−𝑣𝑎𝑙𝑢𝑒 for Wilcoxon Signed
Ranking Test.

DBDES MODES Random
Dataset ParzenDD/MAX MSTDD/DTs Forest
Automobile 0.6610 0.6460 0.8198
Car 0.7811 0.6808 0.9523
Cleveland 0.2467 0.2996 0.2711
Dermatology 0.9227 0.9086 0.9653
Ecoli 0.7079 0.6903 0.7845
Flare 0.5626 0.6146 0.6586
Glass 0.4157 0.6128 0.6901
Glass1 0.3860 0.5810 0.5784
Glass6 0.7911 0.7855 0.8262
Led7digit 0.6997 0.6909 0.6687
Letter 0.9375 0.9014 0.9623
Lymphography 0.4715 0.4977 0.6696
Movement Libras 0.8273 0.8434 0.7753
Nursery 0.7041 0.6315 0.9756
Optdigits 0.9750 0.9733 0.9699
Page-blocks 0.7303 0.7564 0.8566
Penbased 0.9917 0.9919 0.9903
Satimage 0.8693 0.8812 0.8966
Segment 0.9146 0.9460 0.9773
Shuttle 0.9788 0.9460 0.9918
Texture 0.9768 0.9789 0.9746
Vehicle 0.6264 0.6060 0.6596
Vehicle2 0.9128 0.9372 0.9624
Vowel 0.9733 0.9833 0.9656
Yeast 0.4634 0.4221 0.5173
Mean 0.7411 0.7522 0.8144
Win/tie/loss 2/0/23 6/0/19 17/0/8
Avg. ranks 2.21 2.22 1.58
Wilcoxon - 0.0000 0.0000

Source: The author.


	Title page
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of symbols
	Contents
	Introduction
	Problem Statement
	Objectives
	Contributions
	Organization

	Background
	Clustering
	Partitioning
	Hierarchical
	Density-based
	Grid-based
	Algorithms
	K-means
	DBSCAN
	OPTICS

	Cluster validity indices

	One-class classification
	OCC models

	Multiple Classifiers Systems
	Aggregation techniques

	Related works

	Proposal
	MODES
	Training phase
	Test phase
	Toy example

	DBDES
	Training phase
	Test phase
	Toy example

	Hyper-parameters

	Experiments
	Experimental protocol
	Experimental results
	Experiment 1
	Experiment 2
	Experiment 3


	Final remarks
	References
	Execution time
	Comparison with benchmark multi-class classifier

