
Universidade Federal de Pernambuco

Departamento de Ciência da Computação

Curso de Ciência da Computação

Avaliação do Impacto de Balanceadores de Carga sobre o gRPC

Proposta de Trabalho de Conclusão de Curso de Graduação

por

João Filipe da Matta Ribeiro Moura

Orientador: Nelson Souto Rosa

Novembro / 2022



João Filipe da Matta Ribeiro Moura

Avaliação do Impacto de Balanceadores de Carga sobre o gRPC

Monografia apresentada ao Curso de Ciência
da Computação, como requisito parcial para
a obtenção do T́ıtulo de Bacharel em Ciência
da Computação, Centro de Informática da
Universidade Federal de Pernambuco.

Orientador: Nelson Souto Rosa

Recife

2022



Ficha de identificação da obra elaborada pelo autor,
    através do programa de geração automática do SIB/UFPE

                   
     

Moura, João Filipe da Matta Ribeiro.
     Avaliação do impacto de balanceadores de carga sobre o gRPC / João Filipe
da Matta Ribeiro Moura. - Recife, 2022.
     35p : il.

     Orientador(a): Nelson Souto Rosa
     Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Ciências da Computação - Bacharelado,
2022.
 

      1. gRPC. 2. Balanceamento de carga. 3. Kubernetes. 4. Sistemas
distribuídos. 5. Microsserviços. I. Rosa, Nelson Souto. (Orientação). II. Título. 

    000  CDD (22.ed.)



João Filipe da Matta Ribeiro Moura

Avaliação do Impacto de Balanceadores de Carga sobre o gRPC

Monografia apresentada ao Curso de Ciência
da Computação, como requisito parcial para
a obtenção do T́ıtulo de Bacharel em Ciência
da Computação, Centro de Informática da
Universidade Federal de Pernambuco.

Aprovado em: 10 de Outubro de 2022

Banca Examinadora:

Prof. Dr. Nelson Souto Rosa (Orientador)
Centro de Informática da Universidade Federal de Pernambuco

Prof. Dr. Vinicius Cardoso Garcia
Centro de Informática da Universidade Federal de Pernambuco

Recife

2022



Agradecimentos

Eu gostaria de agradecer a todos vocês que me ajudaram durante esta

jornada, especialmente para:

Jesus Cristo, meu Senhor e o único digno de todo mérito que a mim foi

concedido; a meus pais que sempre incentivaram meu estudo, e através da

criação constrúıram em mim um caráter forte, resiliente e disciplinado;

aos meus avós, e melhores companheiros de quarto, Olivia e Adelino, que

me acolheram como um filho; a minha esposa, minha maior companheira e

maior apoiadora; ao meu irmão mais novo, Pedro, ser uma referência para

você sempre foi uma das minhas maiores motivações; a toda minha

famı́lia, que me acolheu em Recife, e mesmo quando não havia condições

de me sustentar não me deixaram faltar nada.

Ao professor Nelson, por toda sua paciência durantes esses 2 anos de

orientação e a tantos outros por aumentarem minha paixão pela

computação.

Aos amigos e companheiros de curso, em especial Ramon, Tato, Rossi,

Douglas, Nunes, Cunha, Lula por todas as noites em claro fazendo

inúmeros projetos juntos.

Aos irmãos dos intervalos b́ıblicos, que foram uma fortaleza para minha

vida, em especial, minha esposa Natália, Valter, Gabi, Douglas, Vitinho,

Cesinha, Pedro, Renata, Joelma, Katia, vocês fortaleceram minha fé, junto

vimos os milagres do Senhor dentro na universidade e vivemos a unidade

da Igreja de maneira singular.

A Schub, e todos os seus integrantes, em especial, Luis, Gastón e Eduardo,

por terem possibilitado a realização deste trabalho, arcando com os custos

de infraestrutura, e com todo o apoio. Muito mais que companheiros de

trabalho, vocês são famı́lia.



Deus joga dados onde ningém pode ver.

Stephen Hawking



RESUMO

Orquestradores de contêineres têm sido amplamente utilizados para melhorar a confia-

bilidade, desempenho, escalabilidade e gerenciar os sistemas distribúıdos, bem como os

recursos utilizados por eles, e.g., memória, processamento. A exemplo do Kubernetes que

se tornou o padrão entre os orquestradores de contêineres utilizados pela indústria.

Para realizar a comunicação entre aplicações executadas em diferentes contêineres, confi-

gurando uma arquitetura de microsserviços, costuma-se utilizar Google Remote Procedure

Call (gRPC) que é um middleware que facilita o uso de Remote Procedure Call (RPC).

Ele é normalmente utilizado em aplicações que têm um requisito de latência muito rigo-

roso. Dessa forma, neste trabalho buscou-se realizar uma análise comparativa do impacto

de latência de um balanceador de carga do tipo Proxy e Client Side na comunicação entre

serviços através do gRPC. O objetivo foi gerar dados para auxiliar times responsáveis

pelo deploy e arquitetura de microsserviços no design ou otimização dos seus sistemas

levando em consideração a latência, visto que em casos extremos de otimização de per-

formance mesmo pequenas adições de latência podem fazer toda a diferença. Para isso,

os experimentos foram executados em um cluster Kubernetes em diferentes cenários de

carga. Os experimentos apresentaram uma adição de latência média de 1 milissegundo do

balanceador do tipo Proxy em relação ao Client Side, somado a uma utilização maior de

recursos computacionais. Porém o Proxy traz mais funcionalidades, fazendo-se uma opção

prefeŕıvel caso os pontos negativos não sejam impeditivos para o contexto do sistema.

Keywords: gRPC, Balanceador de Carga, Proxy, Client Side, Kubernetes, Sistemas Dis-

tribúıdos, Microsserviços.



ABSTRACT

Container orchestrators have been widely used to enhance the reliability, performance,

scalability, and management of distributed systems, as well as the resources utilized by

them, e.g., memory and processor like Kubernetes, that became the pattern between

container orchestrators used in the industry.

To communicate between applications executed in di↵erent containers in a microservice

architecture, usually, Google Remote Procedure Call gRPC is used, which is a middleware

that makes the usage of Remote Procedure Call RPC more straightforward. It is mainly

used in applications that have an extremely rigorous latency requirement. So, this paper

has aimed to build an analysis on the di↵erence of latency impact between load balancers

of type Proxy and Client Side on gRPC communication between services. The goal was

to generate reliable data to help teams responsible for deploying and architect microservi-

ces, or systems optimization, considering the latency, considering the fact that in extreme

scenarios even small amounts of latency can make a big impact on the system. The ex-

periments have been executed in a Kubernetes cluster in di↵erent load scenarios. The

experiments revealed an average latency addition of 1 millisecond of the Proxy load balan-

cer and increased the usage of computational resources compared to the Client Side load

balancer. On the other hand, the Proxy brings more functionalities, which is preferable

if the downsides are not blockers in the system context.

Keywords: gRPC, Load Balancer, Proxy, Client Side, Kubernetes, Distributed Systems,

Microsservices



Lista de Figuras

Figura 1 Balanceamento Client Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figura 2 Balanceador Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figura 3 Configuração do Ambiente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figura 4 Média de Latência Experimentos Client Side - Cliente . . . . . . . . . . . . . . . . . . . . . 22

Figura 5 Média de Latência Experimentos Proxy - Cliente . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figura 6 Distribuição de Carga - Client Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figura 7 Distribuição de Carga - Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figura 8 Tempo de Processamento do Servidor Client Side - Servidor . . . . . . . . . . . . . . 24

Figura 9 Tempo de Processamento do Servidor Proxy - Servidor . . . . . . . . . . . . . . . . . . . . 24

Figura 10 Latência Servidor gRPC Client Side - Servidor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figura 11 Latência Servidor gRPC Proxy - Servidor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figura 12 Uso de CPU Client Side - Servidor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figura 13 Uso de CPU Proxy - Servidor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figura 14 Média Latência - Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figura 15 Uso de CPU - Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



Conteúdo

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Motivação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Problema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Soluções Atuais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Estrutura do Documento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 CONCEITOS BÁSICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Balanceamento de Carga Client Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Balanceador Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 gRPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Contêiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 AVALIAÇÃO COMPARATIVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Métricas, Parâmetros e Fatores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Experimentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Resultados e Análise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Análise da Latência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Análise das métricas do servidor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.3 Análise das métricas do Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Considerações Finais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 CONCLUSÃO E TRABALHOS FUTUROS . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Limitações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Trabalhos Futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



10

LISTA DE SIGLAS

gRPC Google Remote Procedure Call

RPC Remote Procedure Call

HTTP Hiper Text Transfer Protocol

DNS Domain Name Service

GCP Google Cloud Platform

AWS Amazon Web Services



11

1 INTRODUÇÃO

1.1 Motivação

Com o aumento da demanda e complexidade de soluções na área da computação e

tecnologia da informação, cada vez mais sistemas distribúıdos estão sendo implementados

como uma necessidade e alternativa aos antigos servidores centralizados [8]. A distribuição

de recursos computacionais entre vários servidores numa mesma rede, traz uma redução

de riscos por não ter um único ponto de falha, escalabilidade automática de recursos

computacionais e redução de custos em muitos casos [17]. E apesar de terem esses e muitos

outros benef́ıcios, um ponto negativo inerente à sua natureza é o aumento da latência do

sistema quando comparado a uma aplicação monoĺıtica, devido a todo o processamento

extra adicionado pelos sistemas de middleware e a latência da rede [16]. Adicionalmente,

essa caracteŕıstica pode ser ainda mais potencializada ao adicionar-se balanceadores de

carga ao sistema.

Mensurar esse impacto de latência é algo extremamente dif́ıcil de se realizar, prin-

cipalmente nas fases iniciais de definição da arquitetura do sistema por conta da grande

quantidade de parâmetros que podem interferir no funcionamento do sistema. Ademais,

ainda há a escassez de dados sólidos de desempenho das tecnologias mais usadas em am-

bientes de produção. Por isso, faz-se necessário haver mais trabalhos e documentações no

aux́ılio desses tipos de mensurações.

1.2 Problema

Em um contexto de sistemas distribúıdos, dentre inúmeros requisitos, dois se des-

tacam: escalabilidade horizontal[11] e tolerância à falha[10]. A escalabilidade horizontal

consiste na habilidade de aumentar a capacidade de resposta do sistema através da adição

de réplicas, enquanto que a tolerância à falha é a habilidade do sistema de continuar fun-

cionando ainda que parte de suas réplicas estejam danificadas. Para alcançar esses dois

requisitos, várias técnicas são utilizadas, dentre elas uma das principais são os balancea-

dores de carga, que são aplicações especializadas em distribuir requisições entre múltiplas

réplicas de um servidor. Porém essas funcionalidades possuem como consequência um

aumento de latência.



12

Apesar desse aspecto a prinćıpio negativo, os balanceadores de carga ainda as-

sim são necessários na implementação de sistemas distribúıdos, e para isso existem dois

métodos principais para fazer o balanceamento de carga do gRPC : o balanceamento Cli-

ent Side e o do tipo Proxy. O primeiro é implementado no próprio cliente. O segundo

trata-se de uma aplicação especializada que intermedeia os clientes e as réplicas servido-

ras envolvidas, cuja natureza implica em um aumento ainda maior de latência devido ao

passo de rede extra necessário.

1.3 Soluções Atuais

O trabalho de Soares (2021) [14] teve como objetivo realizar uma análise de de-

sempenho comparativa entre diferentes middleweres. Foi realizado uma avaliação de de-

sempenho comparativa entre RPC-QUIC e gRPC, concluindo que o RPC-QUIC reduz o

tempo de latência no estabelecimento de conexões, porém se mostra menos eficiente no

transporte de dados grandes.

Trabalhos existentes sobre o desempenho de balanceadores de carga encontram-se

majoritariamente em classificar e comparar algoritmos de balanceamento, como Mishra

(2020) [12] que explorou a importância de algoritmos de balanceamento de carga, bem

como realizou uma avaliação de desempenho e eficiência de diversos algoritmos de balance-

amento de carga utilizados em ambientes de nuvem. Mas não foram encontrados trabalhos

trazendo dados experimentais relacionados a casos de uso comuns na indústria.

1.4 Objetivo

Este trabalho visa realizar uma avaliação de desempenho comparativa entre dois

tipos de balanceadores em relação a adição de latência que o Proxy implica em relação ao

Client Side, Espera-se que os resultados da avaliação possam auxiliar no projeto e deploy

de aplicações que usam balanceadores de carga.

1.5 Estrutura do Documento

Este trabalho está estruturado em 4 caṕıtulos, incluindo este caṕıtulo inicial. O

caṕıtulo 1 contempla a introdução do trabalho. O caṕıtulo 2 introduz os conceitos ne-

cessários para o entendimento do trabalho. O caṕıtulo 3 apresenta os experimentos e os



13

resultados. Finalmente, o Caṕıtulo 4 apresenta as conclusões e os trabalhos futuros.



14

2 CONCEITOS BÁSICOS

Neste caṕıtulo serão descritos todos os conceitos necessários para entender este

trabalho.

2.1 Balanceamento de Carga Client Side

Nesta estratégia de balanceamento cada réplica do cliente irá se responsabilizar por

balancear a carga entre as réplicas do servidor. Para isso, o cliente abre um conjunto de

conexões com cada réplica do servidor e a cada operação, o algoritmo de balanceamento

irá escolher uma conexão para utilizar.

Existe ainda um observador, que em um intervalo determinado ou na ocasião de

um erro de conexão, atualiza o conjunto de conexões para garantir que ele esteja sempre

atualizado. Essa atualização ocorre quando uma réplica do servidor é encerrada, por

exemplo com uma falha no servidor, ou mais réplicas são criadas. Sem esse observador,

poderiam haver sucessivos erros de conexão ou haver um desbalanceamento de carga, já

que as novas réplicas do servidor nunca receberiam requisições. A arquitetura quando um

balanceador Client Side é utilizado pode ser observada na Figura 1.

Figura 1: Balanceamento Client Side

Quando comparado a balanceadores de carga do tipo Proxy, o Client Side não tem

a necessidade de fazer um passo extra de rede, visto que não passa por uma aplicação in-

termediária para se comunicar com o servidor. Essa caracteŕıstica traz uma vantagem em

termos de latência. Entretanto, o seu principal ponto negativo é o custo de implementação

e manutenção, onde cada cliente precisará implementar o seu método de balanceamento.



15

Esta caracteŕıstica aumenta o número de pontos de falha, podendo causar sobrecargas

nos servidores em caso de interrupções no serviço. Além disso, os clientes precisam ser

confiáveis, visto que a responsabilidade de balancear a carga será de cada um deles.

2.2 Balanceador Proxy

Existem vários tipos de balanceadores de carga do tipo Proxy. Suas categorias são

divididas pela camada de rede em que é implementado. Neste trabalho, o balanceador de

carga utilizado para os experimentos é o da camada de aplicação, visto que o gRPC[6]

é baseado em Hiper Text Transfer Protocol (HTTP) 2.0, um protocolo da camada de

aplicação. Todas as referências ao Proxy aqui estarão se referindo ao Proxy da camada

de aplicação.

Balanceadores do tipo Proxy funcionam como um ponto central que tem um con-

junto de conexões para cada réplica do servidor. Desta forma, como o balanceador Client

Side, eles também possuem um observador que procura por mudanças no conjunto de

servidores. A grande diferença é que no caso do Proxy toda essa complexidade fica con-

centrada em si mesmo, que dessa forma abstrai a responsabilidade de balanceamento do

cliente. Tudo que um cliente precisa fazer nesse caso é abrir uma conexão (ou um conjunto

de conexões) com o Proxy, e ele lida com o restante. Essa arquitetura está representada

na Figura 2.

Figura 2: Balanceador Proxy

As principais vantagens desse método são a maior simplicidade de implementação

e manutenção, além de facilitar a observabilidade, cuja caracteŕıstica ajuda na inves-



16

tigação durante interrupções no serviço. Já as principais desvantagens são adição de

latência devido ao processamento extra. Este processamento adicional ocorre por conta

da necessidade de desempacotar e reempacotar a requisição, e também por se tornar um

único ponto de falha, podendo comprometer a disponibilidade do servidor se não for bem

mantido.

2.3 gRPC

gRPC[6] é um middleware que utiliza o HTTP2.0 e com o codificador Protocol

Bu↵er. Pelo fato de utilizar o HTTP2.0 implica em conexões TCP persistentes, que

idealmente devem durar o tempo de vida da aplicação. Esta caracteŕıstica reduz signifi-

cativamente o tempo gasto com aberturas de conexão, como acontece no HTTP1.1.

O Protocol Bu↵er também contribui para a eficiência do gRPC visto que seu

processo de serialização é extremamente eficiente e a mensagem final é muito pequena.

2.4 Contêiner

Contêiner é uma máquina virtual minimalista, que faz uso de uma tecnologia de

virtualização mais leve e imagens com o mı́nimo de recursos instalados para executar uma

aplicação.

Apesar de ter vantagens em relação às máquinas virtuais, uma imagem de contêiner

não pode ser instalado direto em máquinas f́ısicas, visto que é uma tecnologia de virtua-

lização, logo necessita de máquinas hospedeiras para ser executado. Esta limitação torna

necessária uma forma automatizada de orquestrar contêineres em máquinas hospedeiras.

O Kubernetes[9] é justamente um orquestrador de contêineres e se tornou a principal

ferramenta na indústria.



17

3 AVALIAÇÃO COMPARATIVA

3.1 Objetivos

Este trabalho tem como objetivo fazer uma análise comparativa sobre o impacto de

latência entre as estratégias de balanceamento de carga Proxy e Client Side. Dessa forma,

busca-se fornecer informação para auxiliar no processo de tomada de decisão de times res-

ponsáveis pelo deploy e arquitetura de microsserviços possibilitando-os estimar de modo

mais preciso a latência geral do seu sistema.

Esse objetivo será alcançado a partir dos seguintes passos[7]:

1. Design dos experimentos.

2. Definição das métricas a serem observadas.

3. Definição de fatores e parâmetros.

4. Definição de cenários que simulem um ambiente de produção.

5. Deploy de um cluster de Kubernetes em alta disponibilidade.

6. Desenvolvimento e instrumentação de uma aplicação servidora simples.

7. Configuração de um sistema de monitoramento.

8. Execução dos experimentos.

9. Análise comparativa das métricas coletadas.

3.2 Métricas, Parâmetros e Fatores

A métrica a ser observada em cada componente dos experimentos (Cliente, Proxy, Ser-

vidor) é a latência, que é o tempo decorrido entre o ińıcio e o fim de cada requisição.

Além disso, no Cliente e no Proxy serão observados o uso de CPU, e no Servidor a taxa

de requisições por réplica. Por sua vez, o uso de CPU é medido como o tempo que cada

aplicação ocupa o processador por minuto, e a taxa de requisições por réplica do servidor

é a quantidade de requisições por segundo recebida por cada réplica.



18

As métricas serão coletadas usando o sistema de monitoramento Prometheus [13] e

serão visualizadas com o Grafana[5], com exceção da latência do Cliente. Esta métrica

será monitorada com o gerador de carga utilizado. A coleta da latência necessita de

instrumentação do código da aplicação. No caso do Cliente e do Proxy a instrumentação já

está inclusa no código da ferramenta, no Servidor, por sua vez, será necessário implementá-

la. A métrica de CPU será coletada pelo Prometheus, por um exportador chamado

cAdvisor [2], que monitora e consolida métricas de recursos utilizados por contêineres.

Para coletar a taxa de requisições por réplica foi necessário fazer a instrumentação do

servidor usando a biblioteca do Prometheus.

Uma vez definidas as métricas é necessário definir tudo que pode afetá-las, ou seja

definir os parâmetros da avaliação:

1. Taxa de requisições, sendo a quantidade de requisições por segundo executadas pelo

cliente;

2. Número de requisições concorrentes, ou seja a quantidade de operações sendo reali-

zadas em paralelo;

3. Número de conexões abertas pelo cliente.

4. Assinatura da carga, sendo a variação da taxa de requisições em um determinado

peŕıodo de tempo;

5. Estratégia de balanceamento;

6. Largura de banda da rede.

Alguns destes parâmetros serão variados durante os experimentos (fatores):

1. Assinatura da carga (crescente, decrescente e constante);

2. Estratégia de balanceamento (Proxy L7 e Client Side);

3. Taxa de requisições, medida em requisições por segundo (r/s). (500/s, 1000/s,

1500/s).

Os parâmetros escolhidos são os que tem relação mais direta com a efetividade

do balanceamento de carga em si, visto que o objetivo do trabalho é comparar duas



19

estratégias de balanceamento. Os outros parâmetros poderiam ser também variados, mas

expandiriam o escopo da análise e não adicionariam informação relevante ao objeto de

análise do trabalho.

Com relação aos ńıveis considerados para os fatores no caso da assinatura de carga,

os ńıveis escolhidos são suficientes para trazer representatividade sobre os casos mais

dif́ıceis para um balanceador de carga, e.g., manter o balanceamento mesmo em cenários

de mudança na taxa de requisição. Considerar outros ńıveis não adicionaria cenários

representativos para justificar o aumento de complexidade dos experimentos. As taxas

de requisições foram definidas após um experimento inicial que definiu o ńıvel em que o

proxy começaria a degradar seu desempenho sem escalabilidade horizontal. A partir disso

foram definidos 3 ńıveis de carga: leve, moderado e pesado.

3.3 Experimentos

Um cluster Kubernetes[9] foi configurado com 3 máquinas com 2 CPUs e 8GB de memória

RAM, cada uma em uma Zona de Disponibilidade diferente afim de representar um cenário

de rede habitual em ambientes de produção representado na Figura 3.



20

Figura 3: Configuração do Ambiente

Uma aplicação servidora que responde aos clientes com uma mensagem estática

foi implementada. O servidor foi executado com 3 réplicas de modo que cada réplica seja

executada em uma máquina diferente. O Deploy foi configurado para ter CPU e memória

garantidos, para minimizar problemas de competição de CPU com as outras aplicações.

A carga foi gerada por uma ferramenta de teste de carga chamada GHZ [3]. Ela nos

permite parametrizar o teste de carga de diversas formas, incluindo todos os parâmetros

definidos para esse experimento, e gera como sáıda um arquivo com medições de latência

de todas as requisições realizadas no experimento. Esses dados foram importados para

um banco de dados através da ferramenta Apache Superset [1] para serem analisados e

gerar visualizações.

Para o Proxy foi escolhido o Traefik [15] por possuir suporte avançado para HTTP2.0.

Além disso, é escrito em Go[4] bem como a aplicação servidora e a ferramenta de balan-

ceamento de carga, facilitando assim a análise dos resultados e configurações. O Proxy

foi executado com apenas uma réplica para diminuir a quantidade de tráfego necessário

para saturar sua capacidade.



21

Cada experimento teve duração de 6 minutos e havia apenas um cliente executando

por vez.

No total foram realizados 10 experimentos, 5 utilizando o método Client Side e

5 utilizando o Proxy com correspondência de 1 pra 1 afim de comparar diretamente o

comportamento da latência nos 2 cenários.

O balanceamento utilizando o Client Side foi escolhido como valor de referência

por ser a forma de balanceamento de carga mais direta posśıvel, visto que não é necessário

nenhum intermediário.

3.4 Resultados e Análise

Nessa análise os resultados sempre serão apresentados primeiro os resultados dos experi-

mentos Client Side e depois Proxy, e em cada gráfico a ordem de execução será:

1. Carga Constante - 500r/s.

2. Carga Constante - 1000r/s.

3. Carga Constante - 1500r/s.

4. Carga Decrescente.

5. Carga Crescente.

3.4.1 Análise da Latência

A Figura 4 e Figura 5 mostram a latência média quando os dois métodos de balan-

ceamento são utilizados. Observa-se nestas figuras que ambos possuem comportamentos

parecidos com a variação de taxa de requisição, aumentando levemente com o aumento

dessa taxa. A diferença entre os dois métodos é a ordem de grandeza da escala de tempo;

o Proxy em milissegundos, e Client Side em microssegundos. Esse era exatamente o com-

portamento esperado, visto que o Proxy adiciona um passo a mais de rede e processamento

ao sistema. Porém, para confirmar a estes resultados, métricas adicionais foram também

observadas.



22

Figura 4: Média de Latência Experimentos Client Side - Cliente

Figura 5: Média de Latência Experimentos Proxy - Cliente

3.4.2 Análise das métricas do servidor

A Figura 6 e a Figura 7 mostram as taxas de requisição que chegam em cada uma

das três réplicas do servidor. Nestes gráficos é posśıvel observar um balanceamento quase

perfeito entre as três réplicas. Em cada figura há três curvas, cada uma representa a

quantidade de requisições que cada servidor recebeu por segundo, e elas apresentaram um

comportamento muito semelhante ao longo do tempo, significando que cada réplica está

recebendo a mesma quantidade de requisições.



23

Figura 6: Distribuição de Carga - Client Side

Figura 7: Distribuição de Carga - Proxy

A Figura 8 e a Figura 9 confirmam a efetividade do balanceamento ao observar

ainda o tempo de processamento percebido no servidor. Este é o tempo gasto pelo Servidor

para processar as requisições, sem contar o tempo decorrido no servidor Web. Nota-se que

não há mudança significativa com a variação de assinatura de carga, taxa de requisições e

nem método de balanceamento. Na verdade esse tempo é praticamente despreźıvel para

esse contexto, o que faz sentido, visto que a aplicação se trata de um método que retorna

um valor estático.



24

Figura 8: Tempo de Processamento do Servidor Client Side - Servidor

Figura 9: Tempo de Processamento do Servidor Proxy - Servidor

Observa-se o mesmo na Figura 10 e Figura 11 que representam o tempo total de

resposta do processador desde a chegada da requisição no servidor Web até o retorno da

resposta para a rede.



25

Figura 10: Latência Servidor gRPC Client Side - Servidor

Figura 11: Latência Servidor gRPC Proxy - Servidor

Vale ainda observar o uso de CPU do servidor para verificar se há limitação de

recursos e se as réplicas estão no mesmo ńıvel de saturação.

Na Figura 12 e na Figura 13 o uso de CPU de cada réplica é acumulado, mos-

trando um somatório que nos picos se aproxima de 0,4 CPUs, com cada um chegando no

máximo a 0,17 CPUs. Considerando que cada réplica tem 1 CPU completa para si, há

recurso de sobra, além de estarem em valores extremamente próximos confirmando um

balanceamento de carga muito bom.



26

Figura 12: Uso de CPU Client Side - Servidor

Figura 13: Uso de CPU Proxy - Servidor

3.4.3 Análise das métricas do Proxy

A Figura 14 apresenta a latência medida pelo próprio Proxy. Nela que o compor-

tamento observado pelo Cliente se mantém com leves aumentos de acordo com o aumento

da taxa de requisições. Esse comportamento é mais acentuado nas duas últimas linhas

do gráfico, que representam respectivamente os experimentos de carga crescente e decres-

cente.



27

Figura 14: Média Latência - Proxy

Nesse caso, essa degradação pode ser explicada pela saturação de CPU do Proxy.

Como pode ser observado na Figura 15, os aumentos de latência representados na Figura

14 se assemelham com o aumento no uso de CPU.

Nota-se ainda, ao observar mais criteriosamente o experimento de carga crescente

(representado pela última curva da Figura 14, e a última área da Figura 15), que a

degradação se acentua quando o proxy ultrapassa 80% de sua capacidade total de CPU,

até pouco antes desse ponto a latência segue sem alterações consideráveis.

Figura 15: Uso de CPU - Proxy



28

3.5 Considerações Finais

Foi visto a partir dos resultados, que quando operando próximo de 70% de sua capacidade

de CPU o Proxy adiciona em média cerca de 1 milissegundo de latência ao sistema, quando

comparado ao balanceamento Client Side. Além disso há um consumo extra considerável

de CPU e memória para manter o Proxy responsivo.



29

4 CONCLUSÃO E TRABALHOS FUTUROS

De modo geral, o gRPC tem sido utilizado no desenvolvimento de aplicações que estão

sujeitas a cargas de trabalho normalmente muito elevadas, ou que possuem requisito de

latência muito estrito, tornando necessário otimizar ao máximo, até mesmo no método de

comunicação entre serviços.

Balanceadores de carga Proxy possuem funcionalidades que abstraem uma série de

implementações de código dos clientes e dos servidores. No caso de uma implementação

Client Side, o gRPC suporta diversas linguagens através de bibliotecas, as quais imple-

mentam boa parte das necessidades de um balanceador desse tipo. Porém, cada lin-

guagem possui suas peculiaridades, e como o gRPC é um projeto de código aberto é

posśıvel encontrar comportamentos destoantes entre as implementações de cada lingua-

gem. Por exemplo, na linguagem Go é feita uma atualização no registro de Domain Name

Service (DNS) de tempos em tempos para atualizar o conjunto de conexões, já na im-

plementação de Java essa operação só é realizada quando há falha em uma requisição.

Apesar de serem pequenas estas diferenças, elas são pouco documentadas, e podem causar

anomalias em um ambiente de produção, por exemplo se uma aplicação servidora (S) tem

vários clientes (A e B) que geram carga de modo distinto um dos outros, pode ser que em

determinado momento A dobre a quantidade de requisições geradas em S, fazendo com

que ele tenha que escalar horizontalmente, enquanto B continua com a mesma taxa de

requisições, se não houver nenhuma requisição falha, B não irá atualizar seu conjunto de

conexões causando assim um desbalanceamento no sistema.

Este trabalho mostrou a diferença de latência entre as duas estratégias de balan-

ceamento. Porém não é posśıvel afirmar de maneira absoluta qual é a estratégia que

produz o melhor resultado. De fato, cada uma das estratégias produz um melhor ou pior

resultado, dependendo do contexto de uso.

Se para um determinado sistema 1 milissegundo em média não faz diferença e

todos os outros pontos negativos listados nesse trabalho também são irrelevantes para

o seu contexto, o Proxy será uma opção prefeŕıvel devido à sua maior quantidade de

abstrações e facilidade de implementação. Porém, caso essa latência adicional possa causar

problemas ou interferir na responsividade do sistema, o Client Side apresenta-se como uma

opção muito razoável para se trabalhar considerando que possui um excelente suporte das



30

bibliotecas do gRPC.

4.1 Limitações

Devido as limitações no Proxy e na ferramenta de geração de carga, não foi posśıvel

extrair estat́ısticas mais avançadas como os percentis, que ajudariam a entender o com-

portamento dos balanceadores nos casos mais extremos.

Além disso, o custo com a infraestrutura impossibilitou uma geração de carga mais

robusta para testar o comportamento do Proxy com escalabilidade horizontal automática.

4.2 Trabalhos Futuros

Ainda há pouca informação de qualidade sobre esse tipo de ferramenta e muitas

empresas gastam bastante tempo realizando suas próprias análises de desempenho, o que

acaba atrasando o desenvolvimento da parte central que interessa ao seu negócio. Dessa

forma, a análise de desempenho de ferramentas para sistemas distribúıdos em ambientes

de nuvem é um tema com grande potencial de pesquisa.

Os experimentos e análises realizados nesse trabalho poderiam continuar com mui-

tas outras variações.

1. Adicionar aos fatores o tamanho do corpo da requisição, visto que o Proxy necessita

realizar certo processamento que envolvem esses dados;

2. Comparar o desempenho do mesmo ambiente executando em provedores de nuvem

diferentes. Durante a realização das execuções notou-se uma grande diferença de

resultados entre a Digital Ocean e à Google Cloud Platform (GCP), sendo o segundo

muito mais performática;

3. Realizar uma comparação entre outros Proxies de código aberto, como Envoy e

NGINX ;

4. Comparar o desempenho entre Proxies gerenciados como o Amazon Web Services

(AWS) Application Load Balancer e os de código aberto citados a cima;

5. Analisar a latência do sistema executado nesse trabalho em um cluster multi-regiões

e multi-nuvem;



31

6. Incluir na comparação Service Meshes como Istio e Consul.



32

REFERÊNCIAS

[1] Apache Superset. url: https://superset.apache.org/.

[2] cAdvisor. url: https://github.com/google/cadvisor.

[3] GHZ. url: https://ghz.sh/.

[4] Go. url: https://go.dev/.

[5] Grafana. url: https://grafana.com/.

[6] gRPC. url: https://grpc.io/.

[7] Raj Jain. The Art Of Computer Systems Performance Analysis: Techniques for Ex-

perimental Design, Measurement, Simulation and Modeling. Cambridge University

Press, 1991.

[8] Marx Kanovich. “On The Complexity of Verification of Time Sensitive Distributed

Systems”. Em: (2021). url: https://books.google.com.br/books?hl=pt-

BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+

systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#

v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false.

[9] Kubernetes. url: https://kubernetes.io/.

[10] Priti Kumari e Parmeet Kaur. “A survey of fault tolerance in cloud computing”. Em:

Journal of King Saud University - Computer and Information Sciences 33.10 (2021),

pp. 1159–1176. issn: 1319-1578. doi: https://doi.org/10.1016/j.jksuci.

2018.09.021. url: https://www.sciencedirect.com/science/article/pii/

S1319157818306438.

[11] Alex Magalhaes et al. “REPO: A Microservices Elastic Management System for Cost

Reduction in the Cloud”. Em: 2018 IEEE Symposium on Computers and Commu-

nications (ISCC). 2018, pp. 00328–00333. doi: 10.1109/ISCC.2018.8538453.

[12] Sambit Kumar Mishra, Bibhudatta Sahoo e Priti Paramita Parida. “Load balan-

cing in cloud computing: A big picture”. Em: Journal of King Saud University

- Computer and Information Sciences 32.2 (2020), pp. 149–158. issn: 1319-1578.

https://superset.apache.org/
https://github.com/google/cadvisor
https://ghz.sh/
https://go.dev/
https://grafana.com/
https://grpc.io/
https://books.google.com.br/books?hl=pt-BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false
https://kubernetes.io/
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.09.021
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.09.021
https://www.sciencedirect.com/science/article/pii/S1319157818306438
https://www.sciencedirect.com/science/article/pii/S1319157818306438
https://doi.org/10.1109/ISCC.2018.8538453


33

doi: https://doi.org/10.1016/j.jksuci.2018.01.003. url: https://www.

sciencedirect.com/science/article/pii/S1319157817303361.

[13] Prometheus. url: https://prometheus.io/.

[14] Douglas Soares. “RPC-QUIC: Middleware baseado em RPC utilizando protocolo

QUIC”. Em: (2021).

[15] Traefik. url: https://traefik.io/.

[16] Robert Underwood, Jason Anderson e Amy Apon. “Measuring Network Latency

Variation Impacts to High Performance Computing Application Performance”. Em:

Proceedings of the 2018 ACM/SPEC International Conference on Performance En-

gineering. ICPE ’18. Berlin, Germany: Association for Computing Machinery, 2018,

pp. 68–79. isbn: 9781450350952. doi: 10.1145/3184407.3184427. url: https:

//doi.org/10.1145/3184407.3184427.

[17] Zhiheng Zhong e Rajkumar Buyya. “A Cost-E�cient Container Orchestration Stra-

tegy in Kubernetes-Based Cloud Computing Infrastructures with Heterogeneous Re-

sources”. Em: ACM Trans. Internet Technol. 20.2 (abr. de 2020). issn: 1533-5399.

doi: 10.1145/3378447. url: https://doi.org/10.1145/3378447.

https://doi.org/https://doi.org/10.1016/j.jksuci.2018.01.003
https://www.sciencedirect.com/science/article/pii/S1319157817303361
https://www.sciencedirect.com/science/article/pii/S1319157817303361
https://prometheus.io/
https://traefik.io/
https://doi.org/10.1145/3184407.3184427
https://doi.org/10.1145/3184407.3184427
https://doi.org/10.1145/3184407.3184427
https://doi.org/10.1145/3378447
https://doi.org/10.1145/3378447


34

AVALIADORES

Prof. Vinicius Cardoso Garcia



35

ASSINATURAS

Recife, de de

João Filipe da Matta Ribeiro Moura

(Aluno)

Nelson Souto Rosa

(Orientador)


	Introdução
	Motivação
	Problema
	Soluções Atuais
	Objetivo
	Estrutura do Documento

	Conceitos Básicos
	Balanceamento de Carga Client Side
	Balanceador Proxy
	gRPC
	Contêiner

	Avaliação Comparativa
	Objetivos
	Métricas, Parâmetros e Fatores
	Experimentos
	Resultados e Análise
	Análise da Latência
	Análise das métricas do servidor
	Análise das métricas do Proxy

	Considerações Finais

	Conclusão e Trabalhos Futuros
	Limitações
	Trabalhos Futuros


