VIRTUS IMPAVIDA
v vy

Universidade Federal de Pernambuco
Departamento de Ciencia da Computagao

Curso de Ciéncia da Computacao

Avaliacao do Impacto de Balanceadores de Carga sobre o gRPC

Proposta de Trabalho de Conclusao de Curso de Graduagao

por

Joao Filipe da Matta Ribeiro Moura

Orientador: Nelson Souto Rosa

Novembro / 2022



Joao Filipe da Matta Ribeiro Moura

Avaliagao do Impacto de Balanceadores de Carga sobre o gRPC

Monografia apresentada ao Curso de Ciéncia
da Computagao, como requisito parcial para
a obtencao do Titulo de Bacharel em Ciéncia
da Computacao, Centro de Informatica da
Universidade Federal de Pernambuco.

Orientador: Nelson Souto Rosa

Recife
2022



Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragéo automatica do SIB/UFPE

Moura, Jodo Filipe da Matta Ribeiro.

Avaliacdo do impacto de balanceadores de carga sobre o gRPC / Jodo Filipe
da Matta Ribeiro Moura. - Recife, 2022.

35p :il.

Orientador(a): Nelson Souto Rosa

Trabalho de Conclusio de Curso (Graduag@o) - Universidade Federal de
Pernambuco, Centro de Informatica, Ciéncias da Computagao - Bacharelado,
2022.

1. gRPC. 2. Balanceamento de carga. 3. Kubernetes. 4. Sistemas
distribuidos. 5. Microsservigos. I. Rosa, Nelson Souto. (Orientacdo). II. Titulo.

000 CDD (22.ed.)




Joao Filipe da Matta Ribeiro Moura

Avaliagao do Impacto de Balanceadores de Carga sobre o gRPC

Monografia apresentada ao Curso de Ciéncia
da Computacao, como requisito parcial para
a obtencao do Titulo de Bacharel em Ciéncia
da Computacao, Centro de Informéatica da
Universidade Federal de Pernambuco.

Aprovado em: 10 de Outubro de 2022

Banca Examinadora:

Prof. Dr. Nelson Souto Rosa (Orientador)
Centro de Informéatica da Universidade Federal de Pernambuco

Prof. Dr. Vinicius Cardoso Garcia
Centro de Informatica da Universidade Federal de Pernambuco

Recife
2022



Agradecimentos

FEu gostaria de agradecer a todos vocés que me ajudaram durante esta

jornada, especialmente para:

Jesus Cristo, meu Senhor e o unico digno de todo mérito que a mim foi
concedido; a meus pais que sempre incentivaram meu estudo, e através da
criacao construiram em mim um cardter forte, resiliente e disciplinado;
aos meus avos, e melhores companheiros de quarto, Olivia e Adelino, que
me acolheram como um filho; a minha esposa, minha maior companheira e
maior apoiadora; ao meu 1rmao mais novo, Pedro, ser uma referéncia para
vocé sempre foi uma das minhas maiores motivacoes; a toda minha
familia, que me acolheu em Recife, e mesmo quando nao havia condi¢ioes

de me sustentar nao me deizaram faltar nada.

Ao professor Nelson, por toda sua paciéncia durantes esses 2 anos de
orientacao e a tantos outros por aumentarem minha paixdo pela

computacao.

Aos amigos e companheiros de curso, em especial Ramon, Tato, Rosst,
Douglas, Nunes, Cunha, Lula por todas as noites em claro fazendo

inumeros projetos juntos.

Aos irmaos dos intervalos biblicos, que foram uma fortaleza para minha
vida, em especial, minha esposa Natalia, Valter, Gabi, Douglas, Vitinho,
Cesinha, Pedro, Renata, Joelma, Katia, vocés fortaleceram minha fé, junto
vimos os milagres do Senhor dentro na universidade e vivemos a unidade
da Igreja de maneira singular.

A Schub, e todos os seus integrantes, em especial, Luis, Gaston e Eduardo,
por terem possibilitado a realizacao deste trabalho, arcando com os custos
de infraestrutura, e com todo o apoio. Muito mais que companheiros de

trabalho, vocés sao familia.



Deus joga dados onde ningém pode ver.

Stephen Hawking



RESUMO

Orquestradores de contéineres tém sido amplamente utilizados para melhorar a confia-
bilidade, desempenho, escalabilidade e gerenciar os sistemas distribuidos, bem como os
recursos utilizados por eles, e.g., memoria, processamento. A exemplo do Kubernetes que
se tornou o padrao entre os orquestradores de contéineres utilizados pela industria.

Para realizar a comunicacao entre aplicagoes executadas em diferentes contéineres, confi-
gurando uma arquitetura de microsservigos, costuma-se utilizar Google Remote Procedure
Call (gRPC) que é um middleware que facilita o uso de Remote Procedure Call (RPC).
Ele é normalmente utilizado em aplicacoes que tém um requisito de laténcia muito rigo-
roso. Dessa forma, neste trabalho buscou-se realizar uma andlise comparativa do impacto
de laténcia de um balanceador de carga do tipo Proxy e Client Side na comunicagao entre
servicos através do gRPC. O objetivo foi gerar dados para auxiliar times responsaveis
pelo deploy e arquitetura de microsservigos no design ou otimizacao dos seus sistemas
levando em consideragao a laténcia, visto que em casos extremos de otimizagao de per-
formance mesmo pequenas adi¢oes de laténcia podem fazer toda a diferenca. Para isso,
os experimentos foram executados em um cluster Kubernetes em diferentes cenarios de
carga. Os experimentos apresentaram uma adigao de laténcia média de 1 milissegundo do
balanceador do tipo Proxy em relacao ao Client Side, somado a uma utilizacao maior de
recursos computacionais. Porém o Proxy traz mais funcionalidades, fazendo-se uma opc¢ao

preferivel caso os pontos negativos nao sejam impeditivos para o contexto do sistema.

Keywords: gRPC, Balanceador de Carga, Proxy, Client Side, Kubernetes, Sistemas Dis-

tribuidos, Microsservicos.



ABSTRACT

Container orchestrators have been widely used to enhance the reliability, performance,
scalability, and management of distributed systems, as well as the resources utilized by
them, e.g., memory and processor like Kubernetes, that became the pattern between
container orchestrators used in the industry.

To communicate between applications executed in different containers in a microservice
architecture, usually, Google Remote Procedure Call gRPC is used, which is a middleware
that makes the usage of Remote Procedure Call RPC more straightforward. It is mainly
used in applications that have an extremely rigorous latency requirement. So, this paper
has aimed to build an analysis on the difference of latency impact between load balancers
of type Proxy and Client Side on gRPC communication between services. The goal was
to generate reliable data to help teams responsible for deploying and architect microservi-
ces, or systems optimization, considering the latency, considering the fact that in extreme
scenarios even small amounts of latency can make a big impact on the system. The ex-
periments have been executed in a Kubernetes cluster in different load scenarios. The
experiments revealed an average latency addition of 1 millisecond of the Proxy load balan-
cer and increased the usage of computational resources compared to the Client Side load
balancer. On the other hand, the Proxy brings more functionalities, which is preferable

if the downsides are not blockers in the system context.

Keywords: gRPC, Load Balancer, Proxy, Client Side, Kubernetes, Distributed Systems,

Microsservices



Figura 1
Figura 2
Figura 3
Figura 4
Figura 5
Figura 6
Figura 7
Figura 8
Figura 9
Figura 10
Figura 11
Figura 12
Figura 13
Figura 14
Figura 15

Lista de Figuras

Balanceamento Client Side .......... .o 14
Balanceador Proxy ..........ooiii 15
Configuracao do Ambiente ... 20
Média de Laténcia Experimentos Client Side - Cliente ..................... 22
Média de Laténcia Experimentos Proxy - Cliente ........................... 22
Distribuicao de Carga - Client Side ...........ccoo i, 23
Distribuigao de Carga - ProTy ..........o.oiiiiiiii i, 23
Tempo de Processamento do Servidor Client Side - Servidor .............. 24
Tempo de Processamento do Servidor Prozy - Servidor .................... 24
Laténcia Servidor gRPC Client Side - Servidor ............................. 25
Laténcia Servidor gRPC Proxy - Servidor ... .. 25
Uso de CPU Client Side - Servidor ...... ..o 26
Uso de CPU Prozy - Servidor ... ..ot 26
Média Latencia - Proxy.......c..oouuu i 27
Uso de CPU = Proxy .....oooii e e 27



1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5

4.1
4.2

Conteudo

INTRODUGAO ... 11
MOtIVAGAOD . . . ettt 11
Problema. ... ... 11
Solugoes AtUais ... ..ot 12
ODbjJetivo ... 12
Estrutura do Documento................ .. ... 12
CONCEITOS BASICOS .....oiiiiiiiii e 14
Balanceamento de Carga Client Side .................................... 14
Balanceador PTroTy ............cccouiiiiiiii i 15
GRPC .. 16
CoONtEINET ... .. 16
AVALIACAO COMPARATIVA ... 17
ODbJetivos . ... 17
Métricas, Parametros e Fatores............................. ...l 17
ExXperimentos ....... ... 19
Resultados e Andlise ... 21
Analise da Laténcia........... ... 21
Analise das métricas do servidor ............. ... 22
Analise das métricas do Proxy.................ccooiiiiiiiiiiiniiiniinai.n. 26
Consideragoes Finais ....... ... 28
CONCLUSAO E TRABALHOS FUTUROS .............c.cooovviiin, 29
Limitagoes .. .....oioii 30

Trabalhos Futuros. ... e 30



LISTA DE SIGLAS

gRPC Google Remote Procedure Call
RPC Remote Procedure Call
HTTP Hiper Text Transfer Protocol
DNS Domain Name Service
GCP Google Cloud Platform

AWS Amazon Web Services

10



11

1 INTRODUCAO

1.1 Motivagao

Com o aumento da demanda e complexidade de solugoes na area da computacao e
tecnologia da informacao, cada vez mais sistemas distribuidos estao sendo implementados
como uma necessidade e alternativa aos antigos servidores centralizados [8]. A distribuigao
de recursos computacionais entre varios servidores numa mesma rede, traz uma reducao
de riscos por nao ter um unico ponto de falha, escalabilidade automatica de recursos
computacionais e redugao de custos em muitos casos [17]. E apesar de terem esses e muitos
outros beneficios, um ponto negativo inerente a sua natureza é o aumento da laténcia do
sistema quando comparado a uma aplicagao monolitica, devido a todo o processamento
extra adicionado pelos sistemas de middleware e a laténcia da rede [16]. Adicionalmente,
essa caracteristica pode ser ainda mais potencializada ao adicionar-se balanceadores de
carga ao sistema.

Mensurar esse impacto de laténcia é algo extremamente dificil de se realizar, prin-
cipalmente nas fases iniciais de definicao da arquitetura do sistema por conta da grande
quantidade de parametros que podem interferir no funcionamento do sistema. Ademais,
ainda ha a escassez de dados s6lidos de desempenho das tecnologias mais usadas em am-
bientes de producao. Por isso, faz-se necessario haver mais trabalhos e documentagoes no

auxilio desses tipos de mensuracoes.

1.2 Problema

Em um contexto de sistemas distribuidos, dentre iniimeros requisitos, dois se des-
tacam: escalabilidade horizontal[11] e tolerancia a falha[l10]. A escalabilidade horizontal
consiste na habilidade de aumentar a capacidade de resposta do sistema através da adicao
de réplicas, enquanto que a tolerancia a falha é a habilidade do sistema de continuar fun-
cionando ainda que parte de suas réplicas estejam danificadas. Para alcancar esses dois
requisitos, varias técnicas sao utilizadas, dentre elas uma das principais sao os balancea-
dores de carga, que sao aplicagoes especializadas em distribuir requisi¢oes entre multiplas
réplicas de um servidor. Porém essas funcionalidades possuem como consequéncia um

aumento de laténcia.



12

Apesar desse aspecto a principio negativo, os balanceadores de carga ainda as-
sim sao necessarios na implementacao de sistemas distribuidos, e para isso existem dois
métodos principais para fazer o balanceamento de carga do gRPC'": o balanceamento Cli-
ent Side e o do tipo Proxy. O primeiro é implementado no préprio cliente. O segundo
trata-se de uma aplicacao especializada que intermedeia os clientes e as réplicas servido-
ras envolvidas, cuja natureza implica em um aumento ainda maior de laténcia devido ao

passo de rede extra necessario.

1.3 Solucgoes Atuais

O trabalho de Soares (2021) [14] teve como objetivo realizar uma andlise de de-
sempenho comparativa entre diferentes middleweres. Foi realizado uma avaliacao de de-
sempenho comparativa entre RPC-QUIC e gRPC, concluindo que o RPC-QUIC reduz o
tempo de laténcia no estabelecimento de conexoes, porém se mostra menos eficiente no
transporte de dados grandes.

Trabalhos existentes sobre o desempenho de balanceadores de carga encontram-se
majoritariamente em classificar e comparar algoritmos de balanceamento, como Mishra
(2020) [12] que explorou a importancia de algoritmos de balanceamento de carga, bem
como realizou uma avaliacao de desempenho e eficiéncia de diversos algoritmos de balance-
amento de carga utilizados em ambientes de nuvem. Mas nao foram encontrados trabalhos

trazendo dados experimentais relacionados a casos de uso comuns na industria.

1.4 Objetivo

Este trabalho visa realizar uma avaliagao de desempenho comparativa entre dois
tipos de balanceadores em relacao a adicao de laténcia que o Proxy implica em relagao ao
Client Side, Espera-se que os resultados da avaliacao possam auxiliar no projeto e deploy

de aplicagoes que usam balanceadores de carga.

1.5 Estrutura do Documento

Este trabalho esta estruturado em 4 capitulos, incluindo este capitulo inicial. O
capitulo 1 contempla a introducao do trabalho. O capitulo 2 introduz os conceitos ne-

cessarios para o entendimento do trabalho. O capitulo 3 apresenta os experimentos e os



resultados. Finalmente, o Capitulo 4 apresenta as conclusoes e os trabalhos futuros.

13



14

2 CONCEITOS BASICOS

Neste capitulo serao descritos todos os conceitos necessarios para entender este

trabalho.

2.1 Balanceamento de Carga Client Side

Nesta estratégia de balanceamento cada réplica do cliente ird se responsabilizar por
balancear a carga entre as réplicas do servidor. Para isso, o cliente abre um conjunto de
conexoes com cada réplica do servidor e a cada operacao, o algoritmo de balanceamento
ird escolher uma conexao para utilizar.

Existe ainda um observador, que em um intervalo determinado ou na ocasiao de
um erro de conexao, atualiza o conjunto de conexoes para garantir que ele esteja sempre
atualizado. Essa atualizacao ocorre quando uma réplica do servidor é encerrada, por
exemplo com uma falha no servidor, ou mais réplicas sao criadas. Sem esse observador,
poderiam haver sucessivos erros de conexao ou haver um desbalanceamento de carga, ja
que as novas réplicas do servidor nunca receberiam requisicoes. A arquitetura quando um

balanceador Client Side é utilizado pode ser observada na Figura 1.

Client

connection
pool

application

Figura 1: Balanceamento Client Side

Quando comparado a balanceadores de carga do tipo Prozy, o Client Side nao tem
a necessidade de fazer um passo extra de rede, visto que nao passa por uma aplicagao in-
termediaria para se comunicar com o servidor. Essa caracteristica traz uma vantagem em
termos de laténcia. Entretanto, o seu principal ponto negativo é o custo de implementacao

e manutencao, onde cada cliente precisara implementar o seu método de balanceamento.



15

Esta caracteristica aumenta o nimero de pontos de falha, podendo causar sobrecargas
nos servidores em caso de interrupc¢oes no servigo. Além disso, os clientes precisam ser

confidveis, visto que a responsabilidade de balancear a carga sera de cada um deles.

2.2 Balanceador Proxy

Existem vérios tipos de balanceadores de carga do tipo Proxy. Suas categorias sao
divididas pela camada de rede em que é implementado. Neste trabalho, o balanceador de
carga utilizado para os experimentos é o da camada de aplicagao, visto que o gRPC[6]
¢ baseado em Hiper Text Transfer Protocol (HTTP) 2.0, um protocolo da camada de
aplicacao. Todas as referéncias ao Proxry aqui estarao se referindo ao Proxy da camada
de aplicagao.

Balanceadores do tipo Proxy funcionam como um ponto central que tem um con-
junto de conexoes para cada réplica do servidor. Desta forma, como o balanceador Client
Side, eles também possuem um observador que procura por mudancas no conjunto de
servidores. A grande diferenga é que no caso do Prozy toda essa complexidade fica con-
centrada em si mesmo, que dessa forma abstrai a responsabilidade de balanceamento do
cliente. Tudo que um cliente precisa fazer nesse caso é abrir uma conexao (ou um conjunto
de conexoes) com o Prozy, e ele lida com o restante. Essa arquitetura esté representada

na Figura 2.

Figura 2: Balanceador Proxy

As principais vantagens desse método sao a maior simplicidade de implementacao

e manutencao, além de facilitar a observabilidade, cuja caracteristica ajuda na inves-



16

tigacao durante interrupcgoes no servigo. Ja as principais desvantagens sao adicao de
laténcia devido ao processamento extra. Este processamento adicional ocorre por conta
da necessidade de desempacotar e reempacotar a requisicao, e também por se tornar um
unico ponto de falha, podendo comprometer a disponibilidade do servidor se nao for bem

mantido.

23 gRPC

gRPC[6] é um middleware que utiliza o HTTP2.0 e com o codificador Protocol
Buffer. Pelo fato de utilizar o HT'TP2.0 implica em conexoes TCP persistentes, que
idealmente devem durar o tempo de vida da aplicacao. Esta caracteristica reduz signifi-
cativamente o tempo gasto com aberturas de conexao, como acontece no HT'TP1.1.

O Protocol Buffer também contribui para a eficiencia do gRPC visto que seu

processo de serializacao é extremamente eficiente e a mensagem final é muito pequena.

2.4 Contéiner

Contéiner é uma maquina virtual minimalista, que faz uso de uma tecnologia de
virtualizagao mais leve e imagens com o minimo de recursos instalados para executar uma
aplicacao.

Apesar de ter vantagens em relagao as maquinas virtuais, uma imagem de contéiner
nao pode ser instalado direto em maquinas fisicas, visto que é uma tecnologia de virtua-
lizacao, logo necessita de maquinas hospedeiras para ser executado. Esta limitacao torna
necessaria uma forma automatizada de orquestrar contéineres em maquinas hospedeiras.
O Kubernetes[9] é justamente um orquestrador de contéineres e se tornou a principal

ferramenta na industria.



17

3 AVALIACAO COMPARATIVA

3.1 Objetivos

Este trabalho tem como objetivo fazer uma andlise comparativa sobre o impacto de
laténcia entre as estratégias de balanceamento de carga Proxy e Client Side. Dessa forma,
busca-se fornecer informacao para auxiliar no processo de tomada de decisao de times res-
ponsaveis pelo deploy e arquitetura de microsservigos possibilitando-os estimar de modo
mais preciso a laténcia geral do seu sistema.

Esse objetivo sera alcangado a partir dos seguintes passos|7]:

1. Design dos experimentos.

2. Definicao das métricas a serem observadas.

3. Definicao de fatores e parametros.

4. Definicao de cendrios que simulem um ambiente de produgao.

5. Deploy de um cluster de Kubernetes em alta disponibilidade.

6. Desenvolvimento e instrumentacao de uma aplicacao servidora simples.
7. Configuragao de um sistema de monitoramento.

8. Execucao dos experimentos.

9. Analise comparativa das métricas coletadas.

3.2 Meétricas, Parametros e Fatores

A métrica a ser observada em cada componente dos experimentos (Cliente, Proxy, Ser-
vidor) é a laténcia, que é o tempo decorrido entre o inicio e o fim de cada requisicao.
Além disso, no Cliente e no Proxy serao observados o uso de CPU, e no Servidor a taxa
de requisicoes por réplica. Por sua vez, o uso de CPU é medido como o tempo que cada
aplicacao ocupa o processador por minuto, e a taxa de requisicoes por réplica do servidor

¢ a quantidade de requisi¢oes por segundo recebida por cada réplica.



18

As métricas serdao coletadas usando o sistema de monitoramento Prometheus[13] e
serao visualizadas com o Grafana[5], com excegao da laténcia do Cliente. Esta métrica
serd monitorada com o gerador de carga utilizado. A coleta da laténcia necessita de
instrumentacao do coédigo da aplicacao. No caso do Cliente e do Prozy a instrumentacao ja
estd inclusa no cédigo da ferramenta, no Servidor, por sua vez, sera necessario implementa-
la. A métrica de CPU sera coletada pelo Prometheus, por um exportador chamado
cAdvisor|[2], que monitora e consolida métricas de recursos utilizados por contéineres.
Para coletar a taxa de requisigoes por réplica foi necessario fazer a instrumentacao do
servidor usando a biblioteca do Prometheus.

Uma vez definidas as métricas é necessario definir tudo que pode afetéd-las, ou seja

definir os parametros da avaliacao:

1. Taxa de requisicoes, sendo a quantidade de requisi¢oes por segundo executadas pelo

cliente;

2. Numero de requisi¢oes concorrentes, ou seja a quantidade de operagoes sendo reali-

zadas em paralelo;
3. Numero de conexoes abertas pelo cliente.

4. Assinatura da carga, sendo a variacao da taxa de requisicoes em um determinado

periodo de tempo;
5. Estratégia de balanceamento;

6. Largura de banda da rede.
Alguns destes parametros serao variados durante os experimentos (fatores):

1. Assinatura da carga (crescente, decrescente e constante);
2. Estratégia de balanceamento (Proxy L7 e Client Side);

3. Taxa de requisigoes, medida em requisigdes por segundo (r/s). (500/s, 1000/s,
1500//s).

Os parametros escolhidos sao os que tem relacao mais direta com a efetividade

do balanceamento de carga em si, visto que o objetivo do trabalho é comparar duas



19

estratégias de balanceamento. Os outros parametros poderiam ser também variados, mas
expandiriam o escopo da analise e nao adicionariam informagao relevante ao objeto de
andlise do trabalho.

Com relagao aos niveis considerados para os fatores no caso da assinatura de carga,
os niveis escolhidos sao suficientes para trazer representatividade sobre os casos mais
dificeis para um balanceador de carga, e.g., manter o balanceamento mesmo em cenarios
de mudanga na taxa de requisicao. Considerar outros niveis nao adicionaria cenérios
representativos para justificar o aumento de complexidade dos experimentos. As taxas
de requisi¢oes foram definidas apds um experimento inicial que definiu o nivel em que o
proxy comecaria a degradar seu desempenho sem escalabilidade horizontal. A partir disso

foram definidos 3 niveis de carga: leve, moderado e pesado.

3.3 Experimentos

Um cluster Kubernetes|9] foi configurado com 3 maquinas com 2 CPUs e 8GB de meméria
RAM, cada uma em uma Zona de Disponibilidade diferente afim de representar um cenario

de rede habitual em ambientes de producao representado na Figura 3.



20

VPC (Regido A)

Zona de Disponibilidade 1

Sub rede privada 1

Maquina Virtual 1

Y

Zona de Disponibilidade 2

Sub rede privada 2
Kubernetes

Master

Maquina Virtual 2

Zona de Disponibilidade 3

Sub rede privada 3

Maquina Virtual 3

Prometheus

Figura 3: Configuracao do Ambiente

Uma aplicacao servidora que responde aos clientes com uma mensagem estatica
foi implementada. O servidor foi executado com 3 réplicas de modo que cada réplica seja
executada em uma maquina diferente. O Deploy foi configurado para ter CPU e memoria
garantidos, para minimizar problemas de competicao de CPU com as outras aplicagoes.

A carga foi gerada por uma ferramenta de teste de carga chamada GHZ[3]. Ela nos
permite parametrizar o teste de carga de diversas formas, incluindo todos os parametros
definidos para esse experimento, e gera como saida um arquivo com medicoes de laténcia
de todas as requisigoes realizadas no experimento. Esses dados foram importados para
um banco de dados através da ferramenta Apache Superset[1] para serem analisados e
gerar visualizagoes.

Para o Prozxy foi escolhido o Traefik[15] por possuir suporte avangado para HTTP2.0.
Além disso, é escrito em Go[4] bem como a aplicagao servidora e a ferramenta de balan-
ceamento de carga, facilitando assim a andlise dos resultados e configuracoes. O Proxy
foi executado com apenas uma réplica para diminuir a quantidade de trafego necessario

para saturar sua capacidade.



21

Cada experimento teve duracao de 6 minutos e havia apenas um cliente executando
por vez.

No total foram realizados 10 experimentos, 5 utilizando o método Client Side e
5 utilizando o Proxy com correspondéncia de 1 pra 1 afim de comparar diretamente o
comportamento da laténcia nos 2 cenérios.

O balanceamento utilizando o Client Side foi escolhido como valor de referéncia
por ser a forma de balanceamento de carga mais direta possivel, visto que nao é necessario

nenhum intermediério.

3.4 Resultados e Analise

Nessa analise os resultados sempre serao apresentados primeiro os resultados dos experi-

mentos Client Side e depois Proxy, e em cada gréfico a ordem de execucao sera:
1. Carga Constante - 500r /s.
2. Carga Constante - 1000r/s.
3. Carga Constante - 1500r/s.
4. Carga Decrescente.

5. Carga Crescente.

3.4.1 Analise da Laténcia

A Figura 4 e Figura 5 mostram a laténcia média quando os dois métodos de balan-
ceamento sao utilizados. Observa-se nestas figuras que ambos possuem comportamentos
parecidos com a variacao de taxa de requisicao, aumentando levemente com o aumento
dessa taxa. A diferenca entre os dois métodos é a ordem de grandeza da escala de tempo;
o Proxy em milissegundos, e Client Side em microssegundos. Esse era exatamente o com-
portamento esperado, visto que o Proxy adiciona um passo a mais de rede e processamento
ao sistema. Porém, para confirmar a estes resultados, métricas adicionais foram também

observadas.



600us
500us
400us
300us
200us
100us _

oms -

22

(- client-side-constant-1000 =~ client-side-constant-1500 client-side-constant-500 client-side-step-down =~ client-side-step-up

o
-

3ms 500us
3ms

2ms 500us
2ms

1ms 500us
ims
500us

oms -

T T T T T T T 1
21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00

Figura 4: Média de Laténcia Experimentos Client Side - Cliente

=~ proxy-constant-1000 =~ proxy-constant-1500 proxy-constant-500 proxy-step-down =~ proxy-step-up
\_/\
T T T T T T T 1
22:05 22:10 22:15 22:20 22:25 22:30 22:35 22:40

Figura 5: Média de Laténcia Experimentos Proxy - Cliente

3.4.2 Anadlise das métricas do servidor

A Figura 6 e a Figura 7 mostram as taxas de requisi¢cao que chegam em cada uma

das trés réplicas do servidor. Nestes graficos é possivel observar um balanceamento quase

perfeito entre as trés réplicas. Em cada figura ha trés curvas, cada uma representa a

quantidade de requisicoes que cada servidor recebeu por segundo, e elas apresentaram um

comportamento muito semelhante ao longo do tempo, significando que cada réplica esta

recebendo a mesma quantidade de requisigoes.



23

Request Count

500

400

300

200

100

0
21:20 21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00

== server-556f686b9b-ztkvm server-556f686b9b-qwfqq == server-556f686b9b-rq7tg

Figura 6: Distribuicao de Carga - Client Side

Request Count

500
400
300
200

100

22:05 22:10 22:15 22:20 22:25 22:30 22:35 22:40
== server-556f686b9b-ztkvm server-556f686b9b-qwfqq == server-556f686b9b-rq7tg

Figura 7: Distribuicao de Carga - Prozxy

A Figura 8 e a Figura 9 confirmam a efetividade do balanceamento ao observar
ainda o tempo de processamento percebido no servidor. Este é o tempo gasto pelo Servidor
para processar as requisicoes, sem contar o tempo decorrido no servidor Web. Nota-se que
nao ha mudanca significativa com a variacao de assinatura de carga, taxa de requisigoes e
nem método de balanceamento. Na verdade esse tempo ¢é praticamente desprezivel para
esse contexto, o que faz sentido, visto que a aplicagao se trata de um método que retorna

um valor estatico.



24

Latency Average

3pus
2.50 ps

2 s

- L L S

11:25 11130 11:35  11:40 11:45  11:50  11:55  12:00 12:05 1210 1215

== avg

Figura 8: Tempo de Processamento do Servidor Client Side - Servidor

Latency Average

2 s

1.50 ps f
. \_/\J\
22:05 22:10 22:15 22:20 2225  22:30 22:35 22:40 22:45

== avg

Figura 9: Tempo de Processamento do Servidor Prozy - Servidor

Observa-se o mesmo na Figura 10 e Figura 11 que representam o tempo total de
resposta do processador desde a chegada da requisicao no servidor Web até o retorno da

resposta para a rede.



25

gRPC Server Latency

30 us
25 ps
20 ps
15 s
10 ps

5us

09:55 10:00 10:05 10:10 10:15 10:20 10:25 10:30
== avg

Figura 10: Laténcia Servidor gRPC Client Side - Servidor

gRPC Server Latency v

20 ps
17.5us
15 us
12.5pus
10 ps
7.50 ps
S5ps

10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10
== avg

Figura 11: Laténcia Servidor gRPC Proxy - Servidor

Vale ainda observar o uso de CPU do servidor para verificar se ha limitacao de
recursos e se as réplicas estao no mesmo nivel de saturagao.

Na Figura 12 e na Figura 13 o uso de CPU de cada réplica é acumulado, mos-
trando um somatoério que nos picos se aproxima de 0,4 CPUs, com cada um chegando no
méaximo a 0,17 CPUs. Considerando que cada réplica tem 1 CPU completa para si, ha
recurso de sobra, além de estarem em valores extremamente préximos confirmando um

balanceamento de carga muito bom.



26

CPU Usage

0.400

0.300

0.200

0.100

21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00
== server-556f686b9b-qwfqq == server-556f686b9b-rq7tg == server-556f686b9b-ztkvm

Figura 12: Uso de CPU Client Side - Servidor

CPU Usage

0.400
0.300
0.200

0.100

21:25 21:30 21:35 21:40 21:45 21:50 21:55 22:00
== server-556f686b9b-qwfqq == server-556f686b9b-rq7tg == server-556f686b9b-ztkvm

Figura 13: Uso de CPU Proxy - Servidor

3.4.3 Analise das métricas do Proxy

A Figura 14 apresenta a laténcia medida pelo préprio Proxy. Nela que o compor-
tamento observado pelo Cliente se mantém com leves aumentos de acordo com o aumento
da taxa de requisi¢oes. Esse comportamento é mais acentuado nas duas ultimas linhas
do gréfico, que representam respectivamente os experimentos de carga crescente e decres-

cente.



27

Latency Average
Tms
900 ps
800 ps
700 ps o e \_,\/-\
22:05 22:10 22:15 22:20 22:25 22:30 22:35 22:40 22:45

== avg

Figura 14: Média Laténcia - Proxy

Nesse caso, essa degradacao pode ser explicada pela saturagao de CPU do Proxy.
Como pode ser observado na Figura 15, os aumentos de laténcia representados na Figura
14 se assemelham com o aumento no uso de CPU.

Nota-se ainda, ao observar mais criteriosamente o experimento de carga crescente
(representado pela ultima curva da Figura 14, e a dltima area da Figura 15), que a
degradacao se acentua quando o proxy ultrapassa 80% de sua capacidade total de CPU,

até pouco antes desse ponto a laténcia segue sem alteragoes consideraveis.

CPU Usage

0.800
0.600
0.400

0.200

22:05 22:10 22:15 22:20 22:25 22:30 22:35 22:40
== traefik-7fb9f8ffb-t6trs

Figura 15: Uso de CPU - Proxy



28

3.5 Consideragoes Finais

Foi visto a partir dos resultados, que quando operando préximo de 70% de sua capacidade
de CPU o Prozy adiciona em média cerca de 1 milissegundo de laténcia ao sistema, quando
comparado ao balanceamento Client Side. Além disso hd um consumo extra considerdvel

de CPU e memdéria para manter o Proxy responsivo.



29

4 CONCLUSAO E TRABALHOS FUTUROS

De modo geral, o gRPC tem sido utilizado no desenvolvimento de aplicacoes que estao
sujeitas a cargas de trabalho normalmente muito elevadas, ou que possuem requisito de
laténcia muito estrito, tornando necessario otimizar ao maximo, até mesmo no método de
comunicagao entre servigos.

Balanceadores de carga Prozy possuem funcionalidades que abstraem uma série de
implementagoes de cédigo dos clientes e dos servidores. No caso de uma implementacao
Client Side, o gRPC suporta diversas linguagens através de bibliotecas, as quais imple-
mentam boa parte das necessidades de um balanceador desse tipo. Porém, cada lin-
guagem possui suas peculiaridades, e como o gRPC é um projeto de codigo aberto é
possivel encontrar comportamentos destoantes entre as implementagoes de cada lingua-
gem. Por exemplo, na linguagem Go ¢ feita uma atualizacao no registro de Domain Name
Service (DNS) de tempos em tempos para atualizar o conjunto de conexoes, ji na im-
plementacao de Java essa operacao s6 ¢ realizada quando hé falha em uma requisigao.
Apesar de serem pequenas estas diferencas, elas sao pouco documentadas, e podem causar
anomalias em um ambiente de producao, por exemplo se uma aplicagao servidora (S) tem
vérios clientes (A e B) que geram carga de modo distinto um dos outros, pode ser que em
determinado momento A dobre a quantidade de requisicoes geradas em S, fazendo com
que ele tenha que escalar horizontalmente, enquanto B continua com a mesma taxa de
requisigoes, se nao houver nenhuma requisicao falha, B nao ira atualizar seu conjunto de
conexoes causando assim um desbalanceamento no sistema.

Este trabalho mostrou a diferenca de laténcia entre as duas estratégias de balan-
ceamento. Porém nao é possivel afirmar de maneira absoluta qual é a estratégia que
produz o melhor resultado. De fato, cada uma das estratégias produz um melhor ou pior
resultado, dependendo do contexto de uso.

Se para um determinado sistema 1 milissegundo em média nao faz diferenca e
todos os outros pontos negativos listados nesse trabalho também sao irrelevantes para
o seu contexto, o Proxy serd uma opcao preferivel devido a sua maior quantidade de
abstragoes e facilidade de implementacao. Porém, caso essa laténcia adicional possa causar
problemas ou interferir na responsividade do sistema, o Client Side apresenta-se como uma,

opcao muito razoavel para se trabalhar considerando que possui um excelente suporte das



30

bibliotecas do gRPC.

4.1 Limitacoes

Devido as limitagoes no Prozy e na ferramenta de geragao de carga, nao foi possivel
extrair estatisticas mais avancadas como os percentis, que ajudariam a entender o com-
portamento dos balanceadores nos casos mais extremos.

Além disso, o custo com a infraestrutura impossibilitou uma geracao de carga mais

robusta para testar o comportamento do Proxy com escalabilidade horizontal automaética.

4.2 Trabalhos Futuros

Ainda ha pouca informacao de qualidade sobre esse tipo de ferramenta e muitas
empresas gastam bastante tempo realizando suas préprias analises de desempenho, o que
acaba atrasando o desenvolvimento da parte central que interessa ao seu negécio. Dessa
forma, a analise de desempenho de ferramentas para sistemas distribuidos em ambientes
de nuvem é um tema com grande potencial de pesquisa.

Os experimentos e andlises realizados nesse trabalho poderiam continuar com mui-

tas outras variacoes.

1. Adicionar aos fatores o tamanho do corpo da requisicao, visto que o Prozy necessita

realizar certo processamento que envolvem esses dados;

2. Comparar o desempenho do mesmo ambiente executando em provedores de nuvem
diferentes. Durante a realizacao das execugoes notou-se uma grande diferenca de
resultados entre a Digital Ocean e & Google Cloud Platform (GCP), sendo o segundo

muito mais performatica;

3. Realizar uma comparagao entre outros Proxies de cddigo aberto, como FEnwvoy e

NGINX:

4. Comparar o desempenho entre Prozxies gerenciados como o Amazon Web Services

(AWS) Application Load Balancer e os de cédigo aberto citados a cima;

5. Analisar a laténcia do sistema executado nesse trabalho em um cluster multi-regices

e multi-nuvem,;



6. Incluir na comparacao Service Meshes como Istio e Consul.

31



[10]

[11]

[12]

32

REFERENCIAS

Apache Superset. URL: https://superset.apache.org/.
cAdvisor. URL: https://github.com/google/cadvisor.
GHZ. URL: https://ghz.sh/.

Go. URL: https://go.dev/.

Grafana. URL: https://grafana.com/.

gRPC. URL: https://grpc.io/.

Raj Jain. The Art Of Computer Systems Performance Analysis: Techniques for Ez-
perimental Design, Measurement, Simulation and Modeling. Cambridge University

Press, 1991.

Marx Kanovich. “On The Complexity of Verification of Time Sensitive Distributed
Systems”. Em: (2021). URL: https://books . google . com . br/books 7hl=pt -
BR&1r=4id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dgq=complexity+of+distributed+
systems&ots=yIjODIGZm6&sig=H8z8valggTytCeZXc1l6948y30n0&redir_esc=y#
v=onepage&q=complexity%5C%200f%5C%20distributed’5C%20systems&f=false.

Kubernetes. URL: https://kubernetes.io/.

Priti Kumari e Parmeet Kaur. “A survey of fault tolerance in cloud computing”. Em:
Journal of King Saud University - Computer and Information Sciences 33.10 (2021),
pp. 1159-1176. 1ssN: 1319-1578. DOI: https://doi.org/10.1016/j . jksuci .
2018.09.021. URL: https://www.sciencedirect.com/science/article/pii/

51319157818306438.

Alex Magalhaes et al. “REPO: A Microservices Elastic Management System for Cost
Reduction in the Cloud”. Em: 2018 IEEE Symposium on Computers and Commu-
nications (ISCC). 2018, pp. 00328-00333. DOI: 10.1109/ISCC.2018.8538453.

Sambit Kumar Mishra, Bibhudatta Sahoo e Priti Paramita Parida. “Load balan-
cing in cloud computing: A big picture”. Em: Journal of King Saud University
- Computer and Information Sciences 32.2 (2020), pp. 149-158. 1SSN: 1319-1578.


https://superset.apache.org/
https://github.com/google/cadvisor
https://ghz.sh/
https://go.dev/
https://grafana.com/
https://grpc.io/
https://books.google.com.br/books?hl=pt-BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=dvFPEAAAQBAJ&oi=fnd&pg=PA251&dq=complexity+of+distributed+systems&ots=yIjODIGZm6&sig=H8z8va0ggTytCeZXcl6948y30n0&redir_esc=y#v=onepage&q=complexity%5C%20of%5C%20distributed%5C%20systems&f=false
https://kubernetes.io/
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.09.021
https://doi.org/https://doi.org/10.1016/j.jksuci.2018.09.021
https://www.sciencedirect.com/science/article/pii/S1319157818306438
https://www.sciencedirect.com/science/article/pii/S1319157818306438
https://doi.org/10.1109/ISCC.2018.8538453

[17]

33

DOI: https://doi.org/10.1016/j.jksuci.2018.01.003. URL: https://www.
sciencedirect.com/science/article/pii/S1319157817303361.

Prometheus. URL: https://prometheus.io/.

Douglas Soares. “RPC-QUIC: Middleware baseado em RPC utilizando protocolo
QUIC”. Em: (2021).

Traefik. URL: https://traefik.io/.

Robert Underwood, Jason Anderson e Amy Apon. “Measuring Network Latency
Variation Impacts to High Performance Computing Application Performance”. Em:
Proceedings of the 2018 ACM/SPEC International Conference on Performance En-
gineering. ICPE ’18. Berlin, Germany: Association for Computing Machinery, 2018,
pp. 68-79. 1SBN: 9781450350952. DOI: 10.1145/3184407 . 3184427. URL: https:
//doi.org/10.1145/3184407.3184427.

Zhiheng Zhong e Rajkumar Buyya. “A Cost-Efficient Container Orchestration Stra-
tegy in Kubernetes-Based Cloud Computing Infrastructures with Heterogeneous Re-
sources”. Em: ACM Trans. Internet Technol. 20.2 (abr. de 2020). 1SSN: 1533-5399.
DOI: 10.1145/3378447. URL: https://doi.org/10.1145/3378447.


https://doi.org/https://doi.org/10.1016/j.jksuci.2018.01.003
https://www.sciencedirect.com/science/article/pii/S1319157817303361
https://www.sciencedirect.com/science/article/pii/S1319157817303361
https://prometheus.io/
https://traefik.io/
https://doi.org/10.1145/3184407.3184427
https://doi.org/10.1145/3184407.3184427
https://doi.org/10.1145/3184407.3184427
https://doi.org/10.1145/3378447
https://doi.org/10.1145/3378447

AVALIADORES

Prof. Vinicius Cardoso Garcia

34



ASSINATURAS

Recife, de

de

35

Joao Filipe da Matta Ribeiro Moura
(Aluno)

Nelson Souto Rosa

(Orientador)



	Introdução
	Motivação
	Problema
	Soluções Atuais
	Objetivo
	Estrutura do Documento

	Conceitos Básicos
	Balanceamento de Carga Client Side
	Balanceador Proxy
	gRPC
	Contêiner

	Avaliação Comparativa
	Objetivos
	Métricas, Parâmetros e Fatores
	Experimentos
	Resultados e Análise
	Análise da Latência
	Análise das métricas do servidor
	Análise das métricas do Proxy

	Considerações Finais

	Conclusão e Trabalhos Futuros
	Limitações
	Trabalhos Futuros


