

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIENCIA DA COMPUTAÇÃO

Jeffson Carneiro Silva Simões

Classificação de Sentimento Utilizando Aprendizagem Profunda

RECIFE

2022

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIENCIA DA COMPUTAÇÃO

Jeffson Carneiro Silva Simões

Classificação de Sentimento Utilizando Aprendizagem Profunda

RECIFE

2022

Monografia apresentada ao Centro de

Informática (CIN) da Universidade Federal de

Pernambuco (UFPE), como requisito parcial

para conclusão do Curso de Ciência da

Computação, orientada pelo professor Tsang Ing

Ren.

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Simoes, Jeffson Carneiro Silva.
 Classificação de sentimento utilizando aprendizagem profunda / Jeffson
Carneiro Silva Simoes. - Recife, 2022.
 59 p. : il., tab.

 Orientador(a): Tsang Ing Ren
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Ciências da Computação - Bacharelado,
2022.

 1. Processamento de Linguagem Natural . 2. Analise de sentimentos. 3.
Aprendizagem Profunda. I. Ren, Tsang Ing . (Orientação). II. Título.

 000 CDD (22.ed.)

AGRADECIMENTOS

Agradeço à Deus por tudo.

 A toda minha família pelo apoio, principalmente a minha mãe Marise que sempre

esteve ao meu lado, sempre sendo a voz de sabedoria nos momentos mais difíceis.

Ao Professor Tsang Ing Ren que me acompanhou durante o desenvolvimento deste

projeto sempre se preocupando em mostrar os melhores passos a serem tomados. Obrigado pela

orientação, pelo conhecimento transmitido além da paciência durante o desenvolvimento deste

trabalho.

Aos amigos José Alecrim e Geyzianny Sousa pela ajuda e apoio.

A todos os colegas que fiz durante a graduação.

Ao Centro de Informática e todos os seus funcionários que contribuem para que este

seja um lugar de excelência.

Por fim, a todos que de forma direta ou indiretamente me apoiaram e fizeram parte dessa

incrível jornada.

“The computer is incredibly fast, accurate and

stupid. Man is unbelievably slow, inaccurate and

brilliant. The marriage of the two is a challenge

and opportunity beyond imagination.”

(Stuart G. Walesh)

13

RESUMO

Hoje em dia, as plataformas de mídia social estão em alta, com milhares de usuários

gerando grandes quantidades de dados a todo instante, grande parte desses dados se dá de forma

textual expressando suas opiniões sobre diversos temas. Para que empresas possam usar esses

dados de forma a gerar valor, foi desenvolvido neste projeto um classificador de sentimentos

usando processamento de linguagem natural e aprendizagem profunda. Na criação do modelo

foi utilizado um tipo de rede neural recorrente chamado LSTM e uma base de dados do Twitter,

disponível na plataforma Kaggle, composta com as mensagens e seus respectivos sentimentos.

Utilizando as taxas de perda e acurácia como métricas de avaliação de desempenho, foram

realizados alguns experimentos que apresentaram resultados diferentes, tais como erros de

overfitting. Por fim atingimos uma taxa de acurácia de 93% no melhor experimento, alcançando

assim o objetivo de criar um classificador de sentimentos.

Palavras-chave: Aprendizagem Profunda, Processamento de Linguagem Natural, Analise de

sentimentos.

14

ABSTRACT

Today, social media platforms are booming, with thousands of users generating large

amounts of data all the time, much of this data is in textual form expressing their opinions on

various topics. In order for companies to be able to use this data in a way that generates value,

a sentiment classifier using natural language processing and deep learning was developed in

this project. The model was created using a type of recurrent neural network called LSTM and

a Twitter database, available on the Kaggle platform, composed of messages and their

respective sentiments. Using loss and accuracy rates as performance evaluation metrics, we

performed some experiments that presented different results, such as overfitting errors. Finally

we reached an accuracy rate of 93% in the best experiment, thus achieving the goal of creating

a sentiment classifier.

Keywords: Deep Learning, natural Language Processing, Sentiment Analysis.

15

Sumário

1 INTRODUÇÃO ... 21

1.1 Motivação .. 21

1.2 Objetivos ... 22

1.3 Estrutura da Monografia ... 22

2 Fundamentos e Trabalhos Relacionados ... 23

2.1 Redes Neurais Artificiais .. 23

2.1.1 Redes Neurais Recorrentes .. 23

2.2 Processamento de Linguagem Natural – PLN ... 24

2.3 Classificação dos sentimentos usando PLN com análise de texto .. 26

2.4 Processamento de Linguagem Natural - Análise Sentimental usando LSTM 26

2.5 Classificação Sequencial com Redes Neurais Recorrentes (LSTM) em Pyhton com Keras 27

3 Classificador de Sentimentos ... 28

3.1 Tecnologias .. 28

3.1.1 Linguagem de Programação Python .. 28

3.1.2 Ambiente de Desenvolvimento – Colab e Kaggle .. 28

3.1.3 Biblioteca TensorFlow .. 29

3.1.4. Biblioteca NLTK .. 29

3.2 Pré-processamento ... 30

3.2.1 Remoção de Valores Nulos .. 30

3.2.2 Label Encoding.. 30

3.2.3 Normalização do Tamanho das Palavras .. 31

3.2.4 Remoção Caracteres Indesejados .. 31

3.2.5 Remoção Stopwords ... 31

3.2.6 Stemming ... 31

3.2.7 Lematização .. 31

3.2.8 Vetorização ... 32

3.2.9 Tokenização .. 32

3.2.10 Padding... 32

3.3 Arquitetura .. 33

3.3.1 Design da Arquitetura .. 33

3.3.2 Camada de Embedding ... 35

3.3.3 Camada Batch Normalization ... 35

3.3.4 Camada Dropout .. 36

16

3.3.5 Camada LSTM (Long Short Term Memory) .. 37

3.3.6 Camada Bidirecional ... 39

3.3.7 Camada Densa - ReLu ... 39

3.3.8 Camada Saída – Softmax .. 40

4 Dados, Análises e Experimentos .. 42

4.1 Fonte de Dados ... 42

4.2 Analise Exploratória dos Dados ... 42

4.2.1 Informações Descritivas ... 42

4.2.2 Análise Estatísticas ... 43

4.3 Dados de Treinamento .. 46

4.4 Experimento 1 - Modelo Inicial ... 47

4.5 Experimento 2 – Modelo Final .. 49

4.5.1 Modificações .. 49

4.5.2 Experimento com Modificações ... 49

4.6 Baselines .. 51

5 Conclusões e Trabalhos Futuros ... 53

5.1 Trabalhos Futuros.. 53

Bibliografia .. 54

17

Lista de Figuras

Figura 1.. ... 24

Figura 2.. ... 25

Figura 3.. ... 33

Figura 4.. ... 34

Figura 5.. ... 38

Figura 6.. ... 44

Figura 7.. ... 44

Figura 8.. ... 45

Figura 9.. ... 45

Figura 10.. ... 46

Figura 11.. ... 46

Figura 12.. ... 48

Figura 13.. ... 50

18

LISTA DE TABELAS

Tabela 1 – Resultados do Experimento Inicial. .. 48

Tabela 2 – Resultados do Experimento Final. .. 50

19

TABELA DE SIGLAS

Sigla Significado Página

RNN Recurrent Neural Networks (Redes Neurais Recorrentes) 24

PLN Processamento de Linguagem Natural 24

NLP Natural Languagen Processing 24

LSTM Lont Short Term Memory 26

GPU Graphic Processing Units 29

API Application Programming Interface 29

NLTK Natural Language ToolKit 28

TF Term Frequency 51

IDF Inverse Document Frequency 51

20

21

1 INTRODUÇÃO

A era da Internet mudou a forma como as pessoas expressam as suas opiniões, agora

essa ação é feita principalmente através de postagens em blogs, fóruns online, sites de revisão

de produtos, meios sociais de comunicação, etc. Atualmente, milhões de pessoas utilizam as

chamadas mídias sociais, plataformas como Facebook, Twitter, etc. para expressar as suas

emoções, opiniões e compartilhá-las no dia a dia [1].

Com isso pode-se perceber a massiva quantidade de dados gerados todos os dias através

dessas plataformas seja na forma de textos, vídeos, imagens, entre outros. Esses dados por sua

vez carregam informações sobre comportamentos e sentimentos humanos que se bem utilizados

podem gerar valor das mais diversas formas.

Um dos principais tópicos estudados dentro desse “ambiente” criado por essas

plataformas é a análise de sentimentos que ao ser utilizada pode gerar informações sobre como

os usuários dessas redes estão se sentindo sobre determinado assunto, empresa, evento etc.

A importância de conhecer o sentimento que as pessoas possuem sobre determinado

assunto está ligada a possibilidade de trazer valor e impactar vários setores, seja no setor de

negócios, política, ações públicas e entre outros. Tendo em mãos esse tipo de conhecimento as

empresas por exemplo podem tomar decisões baseadas em tais informações ajustando assim

seu relacionamento com o cliente da melhor maneira possível.

Nos últimos tempos essa tarefa vem sendo feita através de estratégias dentro do campo

de inteligência artificial com aprendizado de máquina e/ou aprendizagem profunda. Com os

recentes avanços na aprendizagem profunda, a capacidade dos algoritmos de análise de texto

melhorou consideravelmente. A utilização criativa de técnicas avançadas de inteligência

artificial pode ser uma ferramenta eficaz para fazer investigações no campo da análise de

sentimentos mais aprofundadas [2].

1.1 Motivação

Devido as grandes quantidades de dados gerados atualmente que expressam opiniões e

sentimentos, existe um desejo das empresas de poderem entender melhor o comportamento de

seus clientes. Assim a grande motivação desse trabalho é o de criar uma solução para tal desafio.

22

1.2 Objetivos

O principal objetivo deste trabalho é o de entender melhor o desafio que é extrair

conhecimento de textos fazendo a análise de sentimentos. Assim foi decidido desenvolver um

modelo de aprendizagem profunda capaz de realizar a classificação de sentimentos sobre textos

relacionados a diferentes entidades buscando a geração de valor, possibilitando que as mesmas

possam tomar decisões baseadas em dados.

1.3 Estrutura da Monografia

No capítulo 2 será feito uma revisão dos conceitos das áreas usadas no projeto além de

abordarmos alguns projetos que serviram de inspiração para o desenvolvimento da arquitetura

de aprendizagem profunda.

No capítulo 3 será apresentado o desenvolvimento do modelo de aprendizagem

profunda focando nos pontos principais que são as técnicas de pré-processamento de textos para

a preparação dos dados de treinamento e a estrutura da rede neural.

O capítulo 4 abordara o conjunto de dados usados além das análises e experimentos

feitos e os resultados alcançados.

Por fim no capitulo 5 será feita as considerações finais do projeto além de expressar

possíveis desdobramentos do trabalho no futuro.

23

2 FUNDAMENTOS E TRABALHOS RELACIONADOS

Nesta seção iremos fazer uma breve revisão de alguns conceitos tais como rede neurais

recorrentes e processamento de linguagem natural além de descrever alguns trabalhos que

foram usados como inspiração no desenvolvimento do classificador de sentimentos.

2.1 Redes Neurais Artificiais

O conceito de Deep Learning, ou aprendizagem profunda, atualmente está bem popular

parecendo como se fosse uma nova tecnologia e isto está longe da verdade. A verdade é que o

deep learning que conhecemos começou por volta do ano 1940 sendo conhecido por vários

nomes e apenas aparenta ser novo porque era relativamente impopular em seu início [45].

Alguns dos primeiros algoritmos de aprendizagem foram criados com o intuito de simular o

funcionamento biológico de neurônios do cérebro, resultando em um dos nomes de deep

learning ser as chamadas redes neurais artificiais [45].

O lado neural da aprendizagem profunda é motivado por duas ideias principais. Uma

delas é que o cérebro fornece uma prova pelo exemplo de que o comportamento inteligente é

possível, e um caminho para construir a inteligência é a engenharia reversa dos princípios

computacionais por trás do cérebro e a duplicação de sua funcionalidade [45]. Outra perspectiva

é que seria profundamente interessante compreender o cérebro e os princípios subjacentes à

inteligência humana [45].

Sobre os atuais tipos de modelos de aprendizagem de máquina, o termo “deep learning”

vai além do cenário neurocientífico, apelando a um conceito de aprendizagem em múltiplos

níveis de composição onde pode ser aplicado a estruturas de aprendizagem que não são

necessariamente inspiradas pela parte neural [45].

A seguir teremos um subtópico sobre um tipo de rede neural bastante popular e que

devido a sua estrutura foi escolhido para ser um dos principais componentes no

desenvolvimento desse projeto, são elas as redes neurais recorrentes.

2.1.1 Redes Neurais Recorrentes

24

As redes neurais recorrentes são um poderoso conjunto de algoritmos de redes neurais

artificiais especialmente úteis para o processamento de dados sequenciais, como som, dados de

séries temporais ou linguagem natural [3]. Essas redes são um tipo de rede neural artificial

construída para reconhecer padrões em sequências de dados.

A resposta de uma RNN definida em um tempo x-1 irá afetar a decisão no momento

posterior x. As redes recorrentes têm duas fontes de entrada, o valor atual e o valor passado

recentemente, que juntos irão determinar as novas decisões sobre os novos dados [42].

As redes recorrentes possuem um loop de feedback conectado às suas decisões passadas,

consumindo suas próprias saídas momento após momento como entrada [42]. Sabendo que

existe informações na própria sequência dos dados, foi feito uma adição de memória às redes,

afim de que as redes recorrentes a utilizem para entender as informações da sequência e executar

as suas tarefas [42].

Figura 1. Representação de RNNs [42].

Utilizando um estado oculto para preservar essas informações, as RNN conseguem usar

tais informações afim de afetar o processamento dos novos dados, fazendo com que cada

processamento seja baseado a partir das informações antigas. Assim podemos dizer que as

RNNs conseguem compartilhar informações ao longo do tempo [42].

2.2 Processamento de Linguagem Natural – PLN

O Processamento de Linguagem Natural (PLN) ou “Natural Language Processing

(NLP)” é uma vertente da Inteligência Artificial que estuda a capacidade e as limitações de uma

máquina em entender a linguagem dos seres humanos. Ou seja, é uma interface entre a

linguagem homem-máquina. Dessa forma, o objetivo do PLN é fornecer aos computadores a

capacidade de entender e compor textos [6].

25

A Inteligência Artificial e a aprendizagem máquina mudaram significativamente a

forma como interagimos com o mundo. Embora muitas pessoas possam perceber isso, o PLN

tornou-se uma parte cotidiana da vida de muitas pessoas. Um exemplo seria as 'assistentes

inteligentes' como Siri e Alexa que utilizam o PLN para compreender e interpretar comandos

falados [7].

O PLN inclui linguística computacional, estudo por computador, modelagem estatística,

e aprendizagem profunda. Compreende o significado da linguagem humana através da análise

de uma vasta gama de aspectos, tais como semântica, sintaxe e morfologia. Com a ajuda do

PLN, as máquinas são capazes de realizar análises semânticas e emocionais e realizar tarefas

de reconhecimento da fala e de resumo de texto. Pode também ser utilizado em serviços de

tradução, para fornecer melhores traduções que transmitam não só a tradução literal, mas

também manter o significado, subtexto e emoção tanto quanto possível [7].

Um dos principais tópicos quando falamos de PLN é o de análise de sentimentos.

A Análise de sentimento é uma técnica usada no PLN para interpretar e classificar os

sentimentos agregados a textos como e-mails, pesquisas, mídias sociais e assim por diante [8].

Esse processo automatizado geralmente classifica os sentimentos como positivos, negativos ou

neutros.

Figura 2. Exemplificação dos tipos de sentimentos. Imagem adaptada de [9].

Assim, podemos definir a análise de sentimento como um processo que automatiza a

mineração de atitudes, opiniões, pontos de vista e emoções a partir de texto, discurso, tweets e

fontes de base de dados através do Processamento de Linguagem Natural [1]. A análise de

sentimentos envolve a classificação de opiniões em texto em categorias como "positivas" ou

"negativas" ou "neutras". É também referida como análise de subjetividade, extração de opinião

e extração de avaliação. [1]

26

2.3 Classificação dos sentimentos usando PLN com análise de texto

Este artigo [10] propôs a criação de um classificador de sentimentos a partir de uma

fonte de dados disponível na plataforma Kaggle que consiste em críticas sobre filmes e seus

sentimentos relacionados – Positivo ou Negativo. Durante o desenvolvimento é explicado cada

passo do pipeline para a construção do modelo desde o carregamento dos dados até as métricas

usadas para avaliar o desempenho do mesmo. Os pontos principais estão na escolha dos

modelos de predição no caso o artigo está usando aprendizagem de máquina – modelo Naive

Bayes - e na parte do pré-processamento dos dados textuais onde se é usado algumas técnicas

para vetorizar os textos, ou seja, mapear as sentenças para vetores numéricos que as

representam. Sabendo que o tipo de classificação abordado foi o da classificação binária e as

métricas usadas para avaliação dos modelos consistiu basicamente do uso da acurácia, os

resultados finais que o artigo apresentou foi uma taxa de acurácia em torno de 98%-95%. Tendo

uma taxa tão alta talvez fosse interessante investigar a corretude de fato, afim de verificar se

houve algum problema, usando outras métricas.

 Durante o artigo é demonstrado a importância de fazer uma boa representação para os

textos visto que dependendo de como feito pode interferir na performance do modelo escolhido.

2.4 Processamento de Linguagem Natural - Análise Sentimental usando

LSTM

Assim como o artigo anterior o artigo [11] passou por um pipeline parecido. Seus dados

também foram provenientes da plataforma Kaggle sendo eles o dataset: Conjunto de dados de

revisões de produtos Amazon Alexa. Diferente do anterior foi feita uma abordagem utilizando

aprendizagem profunda, mais precisamente usando um tipo de rede neural recorrente chamado

LSTM (Long Short Term Memory). Ao decorrer de sua explicação sobre as RNNs foi explicado

o grande problema que existe em seu uso que é o desaparecimento de gradiente durante a fase

de treinamento do modelo. Assim foi escolhido a LSTM, um tipo de RNN, devido a sua

arquitetura ser mais robusta sobre esse problema. O tipo de classificação abordado nesse

problema foi o de classificação binaria, sua criação foi feita utilizando um conjunto de dados

de treino e sua avaliação feita em cima de dados de teste usando métricas como a acurácia para

avaliar o modelo, chegando em uma taxa de 90% nos dados de teste. Talvez para comprovar tal

taxa e verificar se existe algum problema com o resultado final seria interessante usar um

27

conjunto de dados para validação durante o treinamento e criar gráficos dos valores de acurácia

dos conjuntos de treino e validação durante as épocas treinadas para comprovar os resultados.

2.5 Classificação Sequencial com Redes Neurais Recorrentes (LSTM) em

Pyhton com Keras

Neste artigo [12] foi demonstrado vários usos da rede LSTM com o intuito de fazer a

classificação de sentimentos dos dados de revisões de filme IMDB. Os dados foram coletados

por pesquisadores de Stanford e utilizados num documento de 2011 em uma divisão 50/50 dos

dados foi utilizada para treinamento e testes. Durante sua criação os pesquisadores alcançaram

uma precisão de 88,89%. Os resultados das várias redes apresentadas neste artigo ficaram com

taxas em torno de 85% a 88% bem próximo da taxa conseguida pelos pesquisadores.

Os pontos principais apresentados foram o da utilização de word embedding e camadas

de Dropout. A seguir uma breve definição dos conceitos:

• Word Embedding: Esta é uma técnica em que as palavras são codificadas

como vetores de valor real num espaço de alta dimensão, onde a

semelhança entre palavras em termos de significado se traduz em

proximidade no espaço vetorial.

• Dropout: As redes neurais recorrentes como a LSTM têm geralmente o

problema de Overfitting, quando o modelo não consegue aprender e

generalizar sobre dados desconhecidos. As camadas de Dropout ajudam a

diminuir a ocorrência de tais problemas.

28

3 CLASSIFICADOR DE SENTIMENTOS

Este trabalho tem como o principal objetivo desenvolver uma inteligência artificial

utilizando aprendizagem profunda com o intuito de fazer análise de sentimentos. Assim depois

da construção do modelo será possível classificar textos em seus diferentes sentimentos

possibilitando a tomada de decisões com base nessas informações.

Durante o planejamento desse trabalho foram escolhidas diferentes tecnologias voltadas

para os diferentes aspectos do projeto, a seguir será explicado as tecnologias usadas, os estágios

de pré-processamento feito sobre os textos usados no treinamento da rede neural e a arquitetura

do modelo de aprendizagem profunda construída.

3.1 Tecnologias

Essa seção tem o objetivo de listar e explicar as principais tecnologias que foram

escolhidas para o desenvolvimento do projeto tais como a linguagem de programação, o

ambiente de desenvolvimento e certas bibliotecas chaves.

3.1.1 Linguagem de Programação Python

Em uma pesquisa com desenvolvedores em 2018 conduzido por StackOverflow revelou

que Python era a linguagem de programação mais popular entre os cientistas de dados [13]. A

suas popularidades se deu por causa de suas vantagens coincidirem com como projetos de IA

são desenvolvidos. Assim primeiro temos de compreender que os projetos de inteligência

artificial são diferentes dos projetos de software tradicionais em termos das tecnologias usadas

e das competências necessárias. Portanto, escolher uma linguagem de programação que seja

estável, flexível, e que tenha um conjunto diversificado de ferramentas é tão importante. Python

reúne todas estas [13].

3.1.2 Ambiente de Desenvolvimento – Colab e Kaggle

O Colaboratory ou “Colab” é um produto do Google Research, área de pesquisas

científicas do Google. O Colab permite que qualquer pessoa escreva e execute código Python

29

arbitrário pelo navegador e é especialmente adequado para o aprendizado de máquina, análise

de dados e educação. Mais tecnicamente, o Colab é um serviço de notebooks hospedados do

Jupyter que não requer nenhuma configuração para usar e oferece acesso sem custo financeiro

a recursos de computação como GPUs [39].

A escolha de um ambiente de Desenvolvimento em cloud como o Colab se deu pelo fato

das limitações das maquinas disponíveis, exemplo a possibilidade de usar GPU durante o

treinamento dos modelos de Deep Learning.

Uma observação a ser feita é que também foi utilizada a Plataforma de Desenvolvimento

do Kaggle, como ambiente auxiliar, quando era atingido o limite diário de uso da GPU no

Colab.

3.1.3 Biblioteca TensorFlow

Criado pela equipe do Google Brain e inicialmente lançado ao público em 2015,

TensorFlow é uma biblioteca de código aberto para computação numérica e aprendizagem de

máquinas em grande escala. TensorFlow reúne uma série de modelos e algoritmos de

aprendizagem de máquinas e de aprendizagem profunda (também conhecidos como redes

neurais) e torna-os úteis por meio de metáforas programáticas comuns. Utiliza Python ou

JavaScript para fornecer uma API conveniente para construir aplicações, enquanto executa

essas aplicações em C++ de alto desempenho [14].

O maior benefício que TensorFlow proporciona para o desenvolvimento da

aprendizagem de máquinas são a abstração. Em vez de lidar com os detalhes da implementação

de algoritmos, ou de descobrir formas adequadas de ligar a saída de uma função à entrada de

outra, o programador pode concentrar-se na lógica geral da aplicação [14].

3.1.4. Biblioteca NLTK

NLTK é uma das principais bibliotecas para a construção de projetos Python para

trabalhar com dados da linguagem humana. Nos fornece de interfaces simples de utilização a

mais de 50 corpora e ativos lexicais como o WordNet, juntamente com uma configuração de

bibliotecas de pré-processamento de texto para etiquetagem, análise, classificação, stemming,

tokenização e elementos de raciocínio semântico para bibliotecas de Processamento de

Linguagem Natural (PLN) e uma discussão ativa de conversação. NLTK é acessível para

30

Windows, Mac OS e Linux. A melhor parte é que a NLTK é um empreendimento livre, de

código aberto e local [15].

3.2 Pré-processamento

O pré-processamento de dados é um passo essencial na construção de um modelo de

aprendizagem profunda e dependendo de quão bem os dados tenham sido processados, os

resultados podem apresentar uma performance diferente [16].

Quando normalizamos o texto, tentamos reduzir a sua aleatoriedade, aproximando-o de

um "padrão" pré-definido. Isto ajuda-nos a reduzir a quantidade de informação diferente com

que o computador tem de lidar, e por conseguinte melhora a eficiência. O objetivo das técnicas

de normalização como o stemming e a lematização é reduzir as formas inflexíveis e, por vezes,

as formas derivadas de uma palavra a uma forma base comum [17].

Assim a seguir iremos introduzir algumas das técnicas usadas para o processamento dos

textos utilizadas na construção do classificador.

3.2.1 Remoção de Valores Nulos

Os valores nulos são um grande problema quanto ao uso de aprendizagem de máquinas

e na aprendizagem profunda. Ao utilizar o TensorFlow ou outros pacotes de aprendizagem

profunda, é necessário fazer um tratamento dos valores nulos antes de passar os seus dados para

o treinamento do modelo [40].

3.2.2 Label Encoding

A codificação de etiquetas ou Label Encoding refere-se à conversão das etiquetas em

uma forma numérica, de modo a convertê-las na forma legível por máquina. Os algoritmos de

aprendizagem da máquina podem então decidir de uma forma melhor como essas etiquetas

devem ser operadas. É uma etapa importante de pré-processamento para o conjunto de dados

estruturados na aprendizagem supervisionada [18].

31

3.2.3 Normalização do Tamanho das Palavras

Um dos passos que se podemos fazer sobre as palavras é transformar todos os caracteres

das palavras para minúsculo garantindo assim que palavras iguais com letras minúsculas ou

maiúsculas representem a mesma palavra durante a representação das mensagens [41].

3.2.4 Remoção Caracteres Indesejados

Alguns caracteres indesejados podem ser: pontuações, caracteres especiais, caracteres

repetidos de uma palavra e até mesmo números encontrados dentro de textos. Assim fazer a

remoção de tais caracteres pode ajudar na hora de criar a representação dos textos [41].

3.2.5 Remoção Stopwords

Uma das principais formas de pré-processamento é a filtragem de dados inúteis. No

processamento em linguagem natural, palavras inúteis (dados), são referidas como stopwords

[19].

3.2.6 Stemming

O Stemming é o processo de reduzir as palavras à sua forma de “caule” ou “raiz”. O

objetivo do stemming é reduzir as palavras relacionadas para o mesmo caule/raiz, mesmo que

o “caule” não seja uma palavra de dicionário. Por exemplo, as palavras “connection”,

“connecting”, “connected” são reduzidas a uma palavra comum "connect" [17].

Stemming refere-se a um processo heurístico grosseiro que corta as pontas das palavras

na esperança de alcançar este objetivo corretamente a maior parte do tempo. Porem as vezes

pode resultar em palavras que não são palavras reais [17].

3.2.7 Lematização

32

A lematização reduz as palavras à sua palavra de base, reduzindo adequadamente as

palavras flexionadas e assegurando que a palavra de raiz pertence à língua. É normalmente mais

sofisticado do que o stemming, uma vez que o stemmer trabalha em uma palavra individual

sem conhecimento do contexto. Na lematização, uma palavra de raiz é chamada lemma. Um

lema é a forma canónica, forma de dicionário, ou forma de citação de um conjunto de palavras

[17].

3.2.8 Vetorização

Vetorização é o jargão para uma abordagem clássica de conversão de dados de entrada

do seu formato bruto (ou seja, texto) em vetores de números reais, que é o formato que os

modelos de aprendizagem profunda suportam. Esta abordagem existe desde que os

computadores foram construídos pela primeira vez, tem funcionado maravilhosamente em

vários domínios, e é agora utilizada em PLN [20].

3.2.9 Tokenização

Em Processamento de Linguagem Natural, a tokenização significa quebrar o texto bruto

em unidades únicas (também conhecidas como tokens). Um token pode ser sentenças, frases

ou palavras. Cada token tem uma token-id único. O objetivo da tokenização é que podemos

utilizar esses tokens (ou os token_ids) para representar o texto original [21].

3.2.10 Padding

Depois de feita a vetorização/tokenização dos textos teremos vários vetores de tamanhos

diferentes. Porem a maioria (se não todas) das redes neurais requer a sequência de entrada de

dados com o mesmo comprimento, e é por isso que precisamos de acolchoamento (padding):

para truncar ou adicionar sequência de padding (normalmente completar com 0s) no mesmo

comprimento [21].

Assim depois de realizar o padding teremos sequencias de mesmo comprimento prontas

para serem passadas para a rede neural. A seguir uma imagem que exemplifica o processo de

padding.

33

Figura 3. Padding do tipo pré onde se acrescenta os zeros no começo do vetor. Imagem adaptada de [21].

3.3 Arquitetura

O Classificador foi idealizado com base nos artigos do capitulo 2 como referência. Ele

apresenta 8 camadas. A arquitetura é composta de camadas de embedding, batch normalization,

bidirecional, lstm, Dropout, densa e uma camada final com função de ativação softmax

responsável pela classificação.

A seguir o design completo da rede neural construída e a explicação do que cada camada

utilizada faz e sua importância.

3.3.1 Design da Arquitetura

A arquitetura da rede foi inspirada nos exemplos usados no artigo comentado na seção

2.5, principalmente no exemplo onde a camada Bidirecional-LSTM é usada [12]. Apesar da

inspiração a rede sofreu algumas alterações a fim de ser utilizada com os dados usados neste

trabalho.

Quando se trabalha com textos, uma técnica bastante popular é o chamado word

embedding onde criamos uma forma de representar palavras em um espaço vetorial de ‘n’

dimensões, n é um parâmetro definido previamente, onde a semelhança entre as palavras em

termos de significado se traduz no espaço vetorial [12]. Assim utilizamos como camada de

entrada a camada de embedding que fica responsável por definir tais representações. Ao longo

da rede foram adicionadas camadas com o intuito de ajudar no aprendizado da rede tentando

evitar erros de overfitting, foram elas as camadas de Batch Normalization e Dropout [44]. A

https://towardsdatascience.com/hands-on-nlp-deep-learning-model-preparation-in-tensorflow-2-x-2e8c9f3c7633

34

camada LSTM foi escolhida por ser uma variação das RNN’s que trabalham bem com dados

sequenciais e por sua estrutura ser um pouco diferente das RNN’s comuns, sendo seu

funcionamento descrito na seção 3.3.4. As vezes a ordem da sequência pode influenciar nos

resultados onde a sequência em ordem pode não traz bons resultados, as vezes a ordem inversa

da mesma pode ser melhor e pode ter situações que ambas sozinhas não tenham o resultado

esperado. Assim foi decidido usar a camada bidirecional para avaliarmos as sequencias em

ordem e na ordem reversa. Ao final foi utilizado duas camadas totalmente conectadas com

funções de ativação ReLu e softmax (camada de saída). A partir dos dados que usamos temos

um problema de classificação multiclasse e por isso foi escolhido usar a função softmax na

última camada.

A seguir a imagem do design final da arquitetura construída, demonstrando as camadas

utilizadas na construção do modelo, desde as camadas de entrada até a última camada

responsável pela classificação.

Figura 4. Camadas da rede neural – embedding, batch Normalization, bidirecional-lstm, Dropout, dense_1 e

dense_2. Imagem demonstra fluxo percorrido pelos dados até a classificação do mesmo nas categorias definidas,

a classificação se dá através da função softmax aplicada na camada dense_1 [35].

35

3.3.2 Camada de Embedding

A biblioteca Tensorflow oferece uma camada Embedding que pode ser usada para redes

neurais em dados de texto. Esta camada requer que os dados de entrada sejam codificados para

valores numéricos inteiros, de modo a que cada palavra seja representada por um inteiro único.

Esta etapa de preparação de dados foi executada utilizando o Tokenizer API também fornecido

com Tensorflow [22].

A camada de embedding é inicializada com pesos aleatórios e aprenderá uma

representação para todas as palavras no conjunto de dados de treino. Ela é uma camada flexível

que pode ser utilizada de várias maneiras, como por exemplo:

• Pode ser utilizado sozinho para aprender uma embedding de palavras que

pode ser guardada e utilizada posteriormente em outro modelo [22].

• Pode ser usado como parte de um modelo de aprendizagem profunda onde

o embedding será aprendido juntamente com o próprio modelo [22].

• Pode ser utilizado para carregar um conjunto de embedding pré-treinados

em outro modelo, um tipo de aprendizagem de transferência [22].

A camada de embedding é definida como a primeira camada oculta de uma rede. Deve

especificar 3 argumentos:

• input_dim: Este é o tamanho do vocabulário nos dados do texto. Por

exemplo, se os dados estiverem codificados com valores entre 0-10, então

o tamanho do vocabulário seria de 11 palavras.

• output_dim: Este é o tamanho do espaço vetorial no qual as palavras serão

incorporadas. Define o tamanho dos vetores de saída a partir desta camada

para cada palavra. Por exemplo, poderia ser 32 ou 100 ou até maior.

• input_length: Este é o comprimento das sequências de entrada, como

definiria para qualquer camada de entrada de um modelo Keras. Por

exemplo, se todos os seus documentos de entrada forem compostos por

1000 palavras, isto seria 1000.

3.3.3 Camada Batch Normalization

36

O treino de redes neurais profundas, por exemplo, redes com dezenas de camadas

ocultas, é um desafio. Um aspecto deste desafio é que o modelo é atualizado camada por camada

para trás desde a saída até à entrada, utilizando uma estimativa de erro que assume que os pesos

das camadas antes da camada atual são fixos. Como todas as camadas são alteradas durante

uma atualização, o procedimento de atualização está sempre a perseguir um alvo em

movimento. Por exemplo, os pesos de uma camada são atualizados dada uma expectativa de

que os valores de saída da camada anterior com uma dada distribuição. Esta distribuição é

provavelmente alterada depois de os pesos da camada anterior serem atualizados [23].

O treino de Redes Neurais Profundas é complicado pelo fato de a distribuição dos inputs

de cada camada mudar durante o treino, uma vez que os parâmetros das camadas anteriores

mudam. Isto atrasa o treino, exigindo taxas de aprendizagem mais baixas e uma inicialização

cuidadosa dos parâmetros, e torna notoriamente difícil treinar modelos com não-linearidades

saturantes [24].

A normalização de lotes é proposta como uma técnica para ajudar a coordenar a

atualização de múltiplas camadas no modelo. Faz esta normalização da saída da camada,

especificamente padronizando as ativações de cada variável de entrada por mini batch, tais

como as ativações de um nó da camada anterior. Recordar que a padronização se refere ao

redimensionamento dos dados para ter uma média de zero e um desvio padrão de um, por

exemplo, um gaussiano padrão. A padronização das ativações da camada anterior significa que

as suposições que a camada seguinte faz sobre a dispersão e distribuição dos inputs durante a

atualização de peso não se alterarão, pelo menos não dramaticamente. Isto tem o efeito de

estabilizar e acelerar o processo de treino de redes neurais profundas. A normalização das

entradas para a camada tem um efeito no treinamento do modelo, reduzindo drasticamente o

número de épocas necessárias. Pode também ter um efeito regularizador, reduzindo o erro de

generalização, tal como a utilização da regularização de ativação [23].

3.3.4 Camada Dropout

Dropout é uma técnica de regularização para modelos de redes neurais proposta por

Srivastava et al. no seu documento de 2014 "Dropout: A Simple Way to Prevent Neural

Networks from Overfitting" [25].

Dropout é uma técnica em que neurónios selecionados aleatoriamente são ignorados

durante o treino. Eles são "abandonados" aleatoriamente. Isto significa que a sua contribuição

37

para a ativação dos neurónios é temporariamente removida no passe para a frente, e quaisquer

atualizações de peso não são aplicadas ao neurónio no passe para trás. Quando uma rede neural

aprende, os pesos dos neurónios fixam-se no seu contexto dentro da rede. Os pesos dos

neurónios são afinados para características específicas, proporcionando alguma especialização.

Os neurónios vizinhos confiam nesta especialização, que, se levada demasiado longe, pode

resultar num modelo frágil e demasiado especializado para os dados de treino. Esta dependência

do contexto para um neurónio durante o treino é referida como coadaptarão complexa. Pode-se

imaginar que se os neurónios forem abandonados aleatoriamente da rede durante o treino,

outros neurónios terão de intervir e lidar com a representação necessária para fazer previsões

para os neurónios em falta. Acredita-se que isto resulte em múltiplas representações internas

independentes a serem aprendidas pela rede [25][26].

O efeito é que a rede se torna menos sensível aos pesos específicos dos neurónios. Isto,

por sua vez, resulta numa rede capaz de uma melhor generalização e menos susceptível de

sobreajustar (Overfitting) os dados de treino [26].

3.3.5 Camada LSTM (Long Short Term Memory)

A LSTM é uma variação das RNNs e é usada em diversos cenários de processamento

de linguagem natural, a mesma consegue lembrar valores em intervalos aleatórios [27].

A rede LSTM consegue recordar por causa de sua estrutura de células, a mesma possui

o que podemos chamar de “células LSTM” onde tais células apresentam uma recorrência

interna além da recorrência externas da RNN [45]. Cada célula tem as mesmas entradas e saídas

de uma rede recorrente comum, mas também possui mais parâmetros e um sistema de portões

que controla o fluxo de informação. [45].

38

Figura 5. Célula LSTM e suas operações [47].

As informações são retidas pelas células e as manipulações, saber o que deve ser

guardado ou esquecido são feitos pelos portões. Existem três portões:

Forget Gate: Este portão decide que informação deve ser esquecida ou guardada. A

informação do estado oculto anterior e a informação da entrada atual é passada através da

função sigmoid. A função mapeia os valores para o intervalo de 0 a 1, assim, quanto mais

próximo de zero mais próximo de ser esquecido e quanto mais próximo de 1 mais próximo de

ser mantido [46].

Input Gate: Para atualizar o estado da célula, temos o portão de entrada. Onde primeiro,

passamos o estado anterior oculto e a entrada atual para uma função sigmoid, isso decidira quais

valores serão atualizados, transformando os valores entre 0 e 1 – 0 menos importante e 1 mais

importante. Também se passa o estado oculto e a entrada atual para a função tanh que por sua

vez irá mapear os valores entre -1 e 1, para ajudar a regular a rede. Depois multiplica-se a saída

da função tanh com a saída da sigmoid. A saída sigmoid decidirá qual a informação importante

a manter da saída tanh [46].

Output Gate: O portão de saída decide qual deve ser o próximo estado oculto. Devemos

lembrar de que o estado oculto contém informações sobre as entradas anteriores além de

também ser utilizado para previsões. Assim, inicialmente, passamos o estado oculto anterior e

a entrada atual para uma função sigmoid. Depois, passamos o estado da célula recentemente

modificada para a função tanh. Multiplicamos a saída tanh com a saída sigmoid para decidir

que informação o estado oculto deve conter. A saída é o estado oculto.

39

Assim podemos concluir que, o forget gate decide o que é relevante para a manter das

etapas anteriores. o input gate decide que informação é relevante a acrescentar a partir da etapa

atual. E por fim, o output gate determina qual deve ser o próximo estado oculto.

3.3.6 Camada Bidirecional

Maximiza a sensibilidade da ordem dos RNNs: consiste essencialmente em duas RNNs

(LSTMs) que processam a sequência de entrada numa direção diferente para finalmente fundir

as representações. Ao fazer isto, são capazes de capturar padrões mais complexos do que uma

única camada de RNN capturaria. Por outras palavras, uma das camadas interpreta as

sequências na ordem original e a segunda a sequência inversa, razão pela qual os RNNs

bidirecionais são amplamente utilizados, porque oferecem maior desempenho do que os RNNs

regulares [28].

3.3.7 Camada Densa - ReLu

Depois de passar pela camada Bidirecional LSTM e camadas de Dropout, antes da

camada de saída temos uma camada que utiliza a função de ativação ReLu em seu

processamento. A função ReLu é a unidade linear retificada. É definida pela fórmula: f (x) =

max (0, x) [29].

Atualmente a função de ativação mais utilizada nas camadas escondidas é a ReLu,

basicamente ela se tornou a função de ativação padrão para muitos tipos de redes neurais porque

um modelo que o utiliza é mais fácil de treinar e geralmente alcança um melhor desempenho

[48].

Dado os valores passados para a função, ela retornará zero para quaisquer valores

negativos e o próprio valor para valores positivos [48]. É uma função computacionalmente leve.

Uma das principais vantagens de se usar a ReLu é por causa de sua representação esparsa onde

dado que os dados de entrada sejam valores negativos os mesmos serão convertidos para zero,

consequentemente os neurônios que receberem tais valores não serão ativados fazendo com que

apenas alguns sejam ativados isso pode acelerar a aprendizagem e simplificar o modelo

[48][29].

40

3.3.8 Camada Saída – Softmax

A camada de saída é a camada responsável pela predição da rede neural. Nela

escolheremos a função de ativação dependendo do tipo de problema que estamos solucionando

[43]. No caso deste trabalho foi utilizado a função softmax.

A função softmax é útil quando enfrentamos problemas de classificação. Ela transforma

as saídas para cada classe para valores entre 0 e 1 dividindo esses valores pela soma das saídas,

nos dando assim a probabilidade de a entrada estar em uma determinada saída [29].

A definição matemática da função softmax é dada por: Onde todos os valores zi são os

elementos do vetor de entrada e podem assumir qualquer valor real. O termo no fundo da

fórmula a seguir é o termo de normalização que assegura que todos os valores de saída da

função se somarão a 1, constituindo assim uma distribuição de probabilidade válida [31].

A fórmula da função softmax pode ser definida da seguinte maneira [31]:

𝑂 (
𝑍
→)

𝑖
 =

𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

Sendo:

𝑍
→ = O vetor de entrada para a função softmax, constituído por (z0, ... zK) [31].

𝑧𝑖 = Todos os valores zi são os elementos do vetor de entrada para a função softmax, e

podem tomar qualquer valor real, positivo, zero ou negativo. Por exemplo, uma rede neural

poderia ter um vetor de saída como (-0,62, 8,12, 2,53), o que não é uma distribuição de

probabilidade válida, daí a razão pela qual a softmax seria necessária [31].

𝑒𝑧𝑖 = A função exponencial padrão é aplicada a cada elemento do vetor de entrada. Isto

dá um valor positivo acima de 0, que será muito pequeno se o input for negativo, e muito grande

se o input for grande. No entanto, ainda não está fixado no intervalo (0, 1), que é o que é exigido

de uma probabilidade [31].

∑ 𝑒𝑧𝑖𝑘
𝑗=1 = O termo na parte inferior da fórmula é o termo de normalização. Assegura

que todos os valores de saída da função se somarão a 1 e cada um estará no intervalo (0, 1),

constituindo assim uma distribuição de probabilidade válida [31].

K = O número de classes no classificador multiclasse [31].

41

Assim digamos, por exemplo, que temos as saídas como [1.2, 0.9, 0.75], quando

aplicamos a função softmax, obteríamos [0.42, 0.31, 0.27]. Agora podemos usá-los como

probabilidades de que o valor seja de cada classe [29].

A função softmax é idealmente usada na camada de saída de um classificador, onde

estamos tentando gerar as probabilidades para definir a classe de cada entrada [29].

42

4 DADOS, ANÁLISES E EXPERIMENTOS

Nesta seção será apresentado os dados utilizados na construção do classificador, as

análises feitas sobre os mesmos e os resultados dos testes realizados com o modelo além das

comparações com alguns projetos que usaram a mesma base de dados.

4.1 Fonte de Dados

Durante a busca dos dados a serem utilizados no desenvolvimento do projeto decidiu-

se utilizar um dataset disponível na Plataforma Kaggle. O conjunto de dados utilizado para

construção do modelo de Deep Learning foi o dataset: Twitter Sentiment Analysis [32].

Este é um conjunto de dados de análise de sentimentos a nível de entidade do twitter,

focado na linguagem inglesa. Dada uma mensagem e uma entidade, a tarefa consiste em julgar

o sentimento da mensagem sobre a entidade. Há quatro classes neste conjunto de dados:

Positivo, Negativo, Neutro e Irrelevante [32].

Assim esse dataset foi utilizada na construção do classificador de sentimentos.

4.2 Analise Exploratória dos Dados

Durante o ciclo de vida de projetos de aprendizagem profundo não há atalhos. Não

podemos simplesmente saltar para a fase de construção do modelo após a escolha dos dados.

Precisamos planejar a nossa abordagem de uma forma estruturada e a fase de análise

exploratória de dados desempenha um enorme papel nesse sentido [33].

Existem várias técnicas para realizar a exploração e os próximos subtópicos explicaram

os passos que foram utilizados nesse projeto.

4.2.1 Informações Descritivas

Neste passo foi feita uma verificação simples dos dados, onde foi observado as seguintes

informações:

• Dados existentes no dataset (colunas):

43

o Tweet ID: id do tweet (tipo numérico inteiro).

o Entity: entidade (exemplo: empresa Apple) ao qual o texto está relacionado (tipo

objeto string).

o Sentiment: Os dados vieram etiquetados com os seguintes sentimentos: Positivo,

Neutro, Negativo e Irrelevante, o ultimo sentimento são mensagens que não tem

muita relevância para com a entidade ao qual este foi associado (tipo objeto

string).

o Tweet Content: corpo textual - mensagem/tweet - (tipo objeto string).

• Quantidade de observações nos datasets (treino e teste):

o Treino: dataset de treino possui cerca de 74682 observações com as 4 colunas já

descritas acima.

o Teste: dataset de treino possui cerca de 1000 observações com as 4 colunas já

descritas acima.

• Entidades: Foi verificado a existência de 32 entidades distintas entre elas estão:

Microsoft, Nvidia, Amazon, Facebook entre outras. As mensagens que existem no

dataset estão relacionadas a essas entidades, ou seja, essas mensagens trazem consigo

os sentimentos relacionados as entidades aqui citadas.

• Verificação de dados nulos

o Dados de treino: foi observado a existência de 686 recordes com campos nulos.

o Dados de teste: não foi encontrado nenhum recorde com campo nulo.

4.2.2 Análise Estatísticas

As visualizações de estatísticas de texto são técnicas simples, mas muito perspicazes. A

seguir os passos tomados neste estágio [34].

• Número de caracteres presentes em cada mensagem: o gráfico a seguir mostra que a

quantidade de caracteres das mensagens varia do tamanho mínimo zero a um valor

próximo de 400, sendo sua grande porcentagem em mensagens possuindo menos de 200

caracteres.

44

Figura 6. Quantidade de observações em relação ao número de caracteres por mensagens. Imagem adaptada de

[35].

• Número de palavras que aparecem em cada mensagem: o gráfico a seguir mostra a

quantidade de palavras dentro das mensagens e a quantidade de observações de tal

número. Assim foi verificado que as mensagens possuem em sua maioria uma

quantidade menor do que 40 palavras por mensagens.

Figura 7. Quantidade de observações em relação ao número de palavras por mensagens. Imagem adaptada de

[35].

• Foi verificado o comprimento médio das palavras por mensagem. Podemos verificar

que o comprimento médio das palavras em cada mensagem é menor que 10 mas isso

pode ter ocorrido devido a existencia das muitas stopwords. Stopwords é a definição

45

dada as palavras mais comumentes usadas na lingua, essas palavras são pequenas em

sua maioria, podendo ser esse o motivo da média de comprimento ser baixa [34].

Figura 8. Quantidade de Observações em relação ao comprimento médio das palavras por mensagem. Imagem

adaptada de [35].

• Verificação de Stopwords: abaixo segue um gráfico que mostra as stopwords mais

frequentes no conjunto de treinamento.

Figura 9. Stopwords mais frequentes no conjunto de dados de treino. Imagem adaptada de [35].

• Verificar as palavras frequentes: abaixo segue um gráfico que mostra as palavras/tokens

mais frequentes em nosso conjunto de dados. Dá para perceber que nas mensagens

existem muitos caracteres especiais, números e pontuações que podem vir a prejudicar

na hora que formos fazer a representação dessas mensagens para a criação do modelo.

46

Figura 10. Palavras (tokens) mais frequentes no conjunto de dados Imagem adaptada de [35].

• Foi verificado também a distribuição da quantidade de mensagens por sentimento no

dataset. Podemos perceber que os dados estão um pouco desbalanceados principalmente

em relação a classe irrelevante, isso dever ser levado em consideração na hora da

modelagem do classificador e no momento que for feita a avaliação das métricas do

mesmo.

Figura 11. Quantidade de Observações por sentimento. Imagem adaptada de [35].

4.3 Dados de Treinamento

47

Depois de ter concluído a fase exploratória dos dados foi feito a preparação dos mesmos

para o treinamento e teste, desde a divisão dos dados até o final do pré-processamento dos textos

afim de gerar uma boa representação dos textos para passa-los na entrada da rede construída.

Os passos feitos para a preparação dos dados foram:

1. Conjunto de dados de treinamento dividido com uma taxa de 70% treinamento

e 30% validação.

2. Todos os passos de pré-processamento a seguir foram aplicados nos conjuntos

de dados de treino e validação.

3. Remoção dos valores Nulos do conjunto de dados descrito na seção pré-

processamento 3.2.

4. Encodificação das classes descrito na seção pré-processamento 3.2.

5. Normalização do tamanho das palavras descrito na seção pré-processamento 3.2.

6. Remoção de caracteres indesejados descrito na seção pré-processamento 3.2.

7. Remoção das Stopwords descrito na seção pré-processamento 3.2.

8. Utilizado a técnica de lematização descrito na seção pré-processamento 3.2.

9. Utilizada a técnica de tokenização descrito na seção pré-processamento 3.2.

10. Vetorização das Mensagens descrita na seção pré-processamento 3.2.

11. Utilizado as técnicas de padding descrito na seção pré-processamento 3.2.

Depois de passar por todos esses passos, definimos a camada de input da rede como

uma camada de embedding descrito na seção 3.3.2 com o intuito de fazer com que nossa rede

aprendesse uma boa representação (word embedding) do conjunto de palavras passados ao

mesmo tempo que a rede seria treinada.

4.4 Experimento 1 - Modelo Inicial

Depois que os textos dos conjuntos de treino e validação passaram pela etapa de

preparação de dados descrita na seção 4.3, foi realizado os experimentos com o modelo inicial.

Realizamos o treinamento do modelo passando os dados de treino e validação para o

método “. fit” da rede, esse treinamento rodou durante 50 épocas para a construção do modelo

e foi utilizado as métricas de acurácia e a função de perda “sparse categorical crossentropy”

para a avaliação do mesmo, seu treinamento levou em média 1 hora de treinamento no Colab,

48

ou Kaggle, usando a GPU para o processamento. A seguir uma tabela e gráfico com os

resultados obtidos neste experimento.

Figura 12. Taxas de perda e acurácia do modelo inicial ao longo das 50 épocas de treinamento. Imagem adaptada

de [35].

 Taxa de Erro Taxa de Acurácia

Treino 0.052 97%

Validação 0.978 87%

Teste 0.538 94%

Tabela 1. Resultados das Métricas, taxa de erro (sparse categorical crossentropy) e acurácia dos testes do

modelo inicial.

Depois de analisar os resultados obtidos tanto na tabela 1 quanto na figura 12, foi

observado alguns comportamentos estranhos, um deles seria que a taxa de acurácia no conjunto

de testes 94% está próxima da taxa obtida no conjunto de treino 97%, porém a taxa de erro

0.538 do conjunto de teste está mais próxima da obtida no conjunto de validação 0.978 e ao

observar a figura 13, verificamos que a curva da taxa de erro calculado pela função de perda

“sparse categorical crossentropy” no conjunto de validação tem um comportamento não

esperado, aonde em determinado ponto a taxa de erro começa a aumentar sendo um indicativo

da possível ocorrência de erros como overfitting [38]. Assim foi decido fazer algumas

modificações na rede afim de evitar tais erros.

49

4.5 Experimento 2 – Modelo Final

Antes de fazer o experimento foram feitas as modificações que achamos mais adequadas

para evitar os erros apresentados no experimento inicial descrito na seção 4.4. Assim esta seção

será dividida em uma parte para explicar as modificações e a outra para explicar o novo

experimento e seus resultados.

4.5.1 Modificações

Devido ao problema encontrado no experimento inicial da seção 4.4 foi planejado

acrescentar algumas estrategias para evitar o overfitting da rede. As estrategias adotadas para

evitar o overfitting foram:

• Diminuir a complexidade da rede: foi diminuído o número de neurônios usados ao

longo da rede.

• Dropout: foi adicionado uma camada extra Dropout antes da camada LSTM.

• Regularização [37]: foi adicionado funções de regularização na camada Bidirecional

LSTM e na camada densa posterior. Essas funções adicionam uma penalidade a função

de perda, penalizando pesos grandes. A função que teve um melhor desempenho foi a

função L1L2 que combina a robustez e flexibilidade das funções L1 e L2. Os valores

utilizados para cada uma foram feitos com uma busca de tentativa e erro tendo os valores

usados expressado o melhor resultado.

o L1 A regularização, também chamada de regressão lasso, adiciona o "valor

absoluto de magnitude" do coeficiente como um termo de penalização à função

de perda [36].

o L2 A regularização, também chamada regressão da ridge, adiciona o "valor da

magnitude ao quadrado" do coeficiente como termo de penalização à função de

perda [36].

O regularizador que foi utilizado chama-se L1L2 disponível pelo Keras, o mesmo faz

uma aplicação das penalidades de ambas funções nas camadas da rede que são utilizadas.

4.5.2 Experimento com Modificações

50

Depois que os textos dos conjuntos de treino e validação passaram pela etapa de

preparação de dados descrita na seção 4.3 e feito as modificações na rede inicial descritos na

seção 4.5.1 foi realizado os experimentos com o novo modelo.

Realizamos o treinamento do modelo passando os dados de treino e validação para o

método “. fit” da rede, esse treinamento rodou durante 50 épocas para a construção do modelo

e foi utilizado as métricas de acurácia e a função de perda “sparse categorical crossentropy”

para a avaliação do mesmo, seu treinamento levou em média 1 hora de treinamento no Colab,

ou Kaggle, usando a GPU para o processamento. A seguir uma tabela e gráfico com os

resultados obtidos neste experimento.

Figura 13. Resultados – taxas de perda e acurácia - do modelo final durante 50 épocas de treinamento. Imagem

adaptada de [35].

 Taxa de Erro Taxa de Acurácia

Treino 0.177 95%

Validação 0.513 85%

Teste 0.325 93%
Tabela 2. Resultados das Métricas, taxa de erro-loss e acurácia dos testes do modelo final modificado.

Depois de analisarmos os novos resultados, observamos que apesar das taxas não

apresentarem grandes mudanças em relação aos resultados obtidos na seção 4.4, chegando a

piorar um pouco, olhando principalmente para a curva da taxa de erro, do conjunto de validação,

calculada pela função “sparse categorical crossentropy” podemos perceber que a mesma

51

demonstra um bom resultado ao estar acompanhando a curva do conjunto de treinamento sem

ser necessariamente igual [38] completamente diferente do que observamos na figura 12, o que

nos leva a conclusão de que as modificações, explicadas em 4.5.1, impactaram de forma

positiva na rede.

Assim podemos dizer que conseguimos construir um classificador de sentimentos, com

uma taxa de 93% de acurácia no conjunto de testes e que tem um comportamento bom de acordo

com os gráficos das métricas.

4.6 Baselines

Nesta seção iremos revisar alguns projetos que foram feitos usando a mesma base de

dados que utilizamos para o desenvolvimento do classificador mostrando as diferentes

abordagens usadas.

• Exemplo 1:

Neste exemplo temos um projeto com o título de Sentiment Analysis in Twitter 93% Test

Acc [49]. Como o próprio título sugere, este projeto obteve resultados semelhantes ao

classificador desenvolvido na seção 4.5.

No desenvolvimento desse projeto foi feita o processamento dos textos, com a

eliminação de pontuações, lematização, vetorização usado TF-IDF além de outros passos. Já na

parte dos modelos foram utilizados alguns com ênfase em dois: Logistic Regression que obteve

91% de acurácia e Neural Network com 93% de acurácia [49].

• Exemplo 2:

Neste exemplo foram abordados mais a utilização de modelos de machine learning. A

seguir os modelos usados e seus resultados [50].

o Multinomial Naive Bayes: acurácia de 64%.

o Logistic Regression: acurácia de 69%.

o Decision Tree: acurácia de 76%.

o Random Forest: acurácia de 87%.

Dado os resultados desse exemplo é bastante interessante quando observamos o

resultado obtido pela Logistic Regression e comparamos com o Logistic Regression do

52

exemplo 1, enquanto o do exemplo 1 obteve cerca de 91% de acurácia o deste exemplo obteve

cerca de 69% valores bem diferentes o que pode indicar a diferença no processamento dos

textos e o impacto de que tal passo causa no resultado final.

• Exemplo 3:

Aqui temos um exemplo que utiliza LSTM para criar o classificador de sentimentos,

semelhante ao classificador desenvolvido neste trabalho porem sem a utilização das camadas

bidirecionais e as funções de normalização nas camadas [51]. O resultado no conjunto de teste

chega a 90% de acurácia porem quando observamos o gráfico das métricas, mais precisamente

o gráfico da taxa de erro podemos verificar que o comportamento é semelhante aos resultados

obtidos na seção 4.4 [51].

Por fim, podemos perceber que apesar de as semelhanças das abordagens, aqui citadas,

com o classificador construído neste trabalho temos alguns pontos diferentes tais como

utilização da camada bidirecional e as funções de regularização.

53

5 CONCLUSÕES E TRABALHOS FUTUROS

Neste trabalho foi apresentado uma solução para a classificação de sentimentos através

de textos da plataforma digital Twitter utilizando estrategias de aprendizagem profunda. O

classificador foi desenvolvido com o intuito de categorizar os textos nas classes: Positivo,

Negativo, Neutro e Irrelevante. Por sua vez apresentou um acurácia em cerca de 93% sobre os

dados de teste demonstrando assim um resultado aceitável, visto que, está bem próximo dos

resultados obtidos nos exemplos dos baselines citados na seção 4.6.

Durante o desenvolvimento foi experenciado a importância de um bom pré

processamento dos textos onde o mesmo tem um grande impacto no desempenho do modelo

além de outro ponto que foi evidenciado é que dependendo dos dados a rede neural deverá

sofrer alguns ajustes para que venha a demonstrar o seu melhor resultado como foi o caso do

classificador que teve que utilizar funções de regularização para melhorar o desempenho e fugir

de erros como o overfitting.

Desta forma, agora temos um melhor entendimento das áreas abordadas nesse trabalho,

Processamento de Linguagem Natural e Aprendizagem Profunda, além da importância de seus

usos nos desafios que temos atualmente.

5.1 Trabalhos Futuros

Depois de adquirir e aprofundar o conhecimento nas áreas abordadas – Aprendizagem

Profunda e PLN – temos em mente a vontade de expandir o trabalho aqui apresentado

acrescentando novas técnicas ou usando-o como base para alcançar novos objetivos.

Como exemplo de desenvolvimentos futuros, temos o intuito de expandir o

desenvolvimento da abordagem aqui apresentada acrescentando novos tipos de pré

processamento como a utilização de embeddings pré-treinados, aumento na quantidade de

dados usados para treinamento e quem sabe tentar generalizar a rede para não só classificar

sentimentos de tweets, textos do Twitter, e sim, se possível tentar generalizar a rede para

classificação de sentimentos em texto no geral independente de sua fonte. Outro ponto que

sugerimos é o da possibilidade de usar o classificador aqui desenvolvido para compor uma

solução para o desafio de predizer ações na bolsa de valores usando sentimentos.

Assim esperamos que esse trabalho possa servir de base ou inspiração para projetos

futuros.

54

BIBLIOGRAFIA

[1] A. KHARDE, Vishal. Sentiment Analysis of Twitter Data: A Survey of

Techniques. International Journal of Computer Applications (0975 – 8887) Volume 139 –

No.11, April 2016, Department of Computer Engg, Pune Institute of Computer

Technology,Pune University of Pune (India), p. 1-5, 1 abr. 2016.

[2] GUPTA, Shashank. Sentiment Analysis: Concept, Analysis and Applications. [S. l.], 7

jan. 2018. Disponível em: https://towardsdatascience.com/sentiment-analysis-concept-

analysis-and-applications-6c94d6f58c17. Acesso em: 10 out. 2022.

[3] Data Science Academy. Deep Learning Book, 2022. Disponível em:

https://www.deeplearningbook.com.br/as-10-principais-arquiteturas-de-redes-neurais. Acesso

em: 10 outubro. 2022.

[4] ZHANG, Aston et al. 9. Recurrent Neural Networks. In: DIVE into Deep Learning. [S.

l.: s. n.], 2021. Disponível em: https://d2l.ai/chapter_recurrent-neural-networks/index.html.

Acesso em: 10 out. 2022.

[5] VIRAHONDA, Sergio. An easy tutorial about Sentiment Analysis with Deep Learning

and Keras: Learn how to easily build, train and validate a Recurrent Neural Network. Recurrent

Neural Networks made easy, [s. l.], 8 out. 2020. Disponível em:

https://towardsdatascience.com/an-easy-tutorial-about-sentiment-analysis-with-deep-learning-

and-keras-2bf52b9cba91. Acesso em: 10 out. 2022.

[6] INTRODUÇÃO ao Processamento de Linguagem Natural — Natural Language

Processing(NLP): O que é processamento de linguagem natural?. [S. l.], 2 maio 2021.

Disponível em: https://medium.com/data-hackers/introdu%C3%A7%C3%A3o-ao-

processamento-de-linguagem-natural-natural-language-processing-nlp-be907cd06c71. Acesso

em: 10 out. 2022.

[7] AN Overview of Deep Learning applied to Natural Language Processing: Deep learning

combined with natural language processing empowers AI to comprehend and create human

language. Read on to learn how and where this is used.. [S. l.], 1 abr. 2022. Disponível em:

https://kili-technology.com/blog/nlp-deep-learning. Acesso em: 10 out. 2022.

[8] DESVENDANDO o NLP — Parte 3: saiba o que é a Análise de Sentimento. [S. l.], 13

jan. 2021. Disponível em: https://medium.com/dialograma/desvendando-o-nlp-parte-3-saiba-

o-que-%C3%A9-a-an%C3%A1lise-de-sentimento-3e1ba8776222. Acesso em: 10 out. 2022.

[9] SENTIMENT Analysis: binds.co Introduz Funcionalidade de Análise de Sentimento.

[S. l.], 15 out. 2020. Disponível em: https://blog.binds.co/novo-recurso-sentiment-analysis/.

Acesso em: 10 out. 2022.

[10] KUMARI, Kajal. Sentiment classification using NLP With Text Analytics. Analytics

Vidhya, 1 nov. 2022. Disponível em:

https://www.analyticsvidhya.com/blog/2021/09/sentiment-classification-using-nlp-with-text-

analytics/. Acesso em: 10 out. 2022.

55

[11] KUMAR T, Santhosh. Natural Language Processing – Sentiment Analysis using

LSTM. Analytics Vidhya, 22 jun. 2022. Disponível em:

https://www.analyticsvidhya.com/blog/2021/06/natural-language-processing-sentiment-

analysis-using-lstm/. Acesso em: 10 out. 2022.

[12] BROWNLEE, Jason. Sequence Classification with LSTM Recurrent Neural Networks

in Python with Keras. Machine Learning Mastery, 26 jul. 2016. Disponível em:

https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-

python-keras/. Acesso em: 10 out. 2022.

[13] BODEPUDI, Rita. Most Popular Programming Languages & Why They’re Useful in

Machine Learning. Neptune.ai, 21 nov. 2022. Disponível em:

https://neptune.ai/blog/programming-languages-machine-learning. Acesso em: 10 out. 2022.

[14] YEGULALP, Serdar. What is TensorFlow? The machine learning library explained:

TensorFlow is a Python-friendly open source library for numerical computation that makes

machine learning and developing neural networks faster and easier.. [S. l.], 3 jun. 2022.

Disponível em: https://www.infoworld.com/article/3278008/what-is-tensorflow-the-machine-

learning-library-explained.html. Acesso em: 10 out. 2022.

[15] GUPTA, Akshay. Top 8 Python Libraries For Natural Language Processing (NLP) in

2021. Analytics Vidhya, 1 maio 2021. Disponível em:

https://www.analyticsvidhya.com/blog/2021/05/top-8-python-libraries-for-natural-language-

processing-nlp-in-2021/. Acesso em: 10 out. 2022.

[16] HARSHITH, Harshith. Text Preprocessing in Natural Language Processing. [S. l.], 21

nov. 2019. Disponível em: https://towardsdatascience.com/text-preprocessing-in-natural-

language-processing-using-python-

6113ff5decd8#:~:text=Data%20preprocessing%20is%20an%20essential,process%20of%20bu

ilding%20a%20model. Acesso em: 10 out. 2022.

[17] LOPEZ YSE, Diego. Text Normalization for Natural Language Processing (NLP):

Stemming and lemmatization with Python. [S. l.], 17 fev. 2021. Disponível em:

https://towardsdatascience.com/text-normalization-for-natural-language-processing-nlp-

70a314bfa646. Acesso em: 10 out. 2022.

[18] CHUGH, Aakarsha. ML | Label Encoding of datasets in Python. [S. l.], 23 ago. 2022.

Disponível em: https://www.geeksforgeeks.org/ml-label-encoding-of-datasets-in-python/.

Acesso em: 10 out. 2022.

[19] GEEKSFORGEEKS, GeeksforGeeks. Removing stop words with NLTK in Python. [S.

l.], 22 ago. 2022. Disponível em: https://www.geeksforgeeks.org/removing-stop-words-nltk-

python/. Acesso em: 10 out. 2022.

[20] JHA, Abhishek. Vectorization Techniques in NLP [Guide]. Neptune.ai, 21 jul. 2022.

Disponível em: https://neptune.ai/blog/vectorization-techniques-in-nlp-guide. Acesso em: 10

out. 2022.

[21] MO, Kefei. Hands-on NLP Deep Learning Model Preparation in TensorFlow 2.X: This

is a tutorial to walk through the NLP model preparation pipeline: tokenization, sequence

56

padding, word embeddings, and Embedding layer setups.. [S. l.], 17 ago. 2020. Disponível em:

https://towardsdatascience.com/hands-on-nlp-deep-learning-model-preparation-in-tensorflow-

2-x-2e8c9f3c7633. Acesso em: 10 out. 2022.

[22] BROWNLEE, Jason. How to Use Word Embedding Layers for Deep Learning with

Keras: 2. Keras Embedding Layer. [S. l.], 4 out. 2017. Disponível em:

https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-

keras/#:~:text=The%20Embedding%20layer%20is%20defined,vocabulary%20would%20be

%2011%20words. Acesso em: 10 out. 2022.

[23] BROWNLEE, Jason. A Gentle Introduction to Batch Normalization for Deep Neural

Networks. [S. l.], 16 jan. 2019. Disponível em: https://machinelearningmastery.com/batch-

normalization-for-training-of-deep-neural-networks/. Acesso em: 10 out. 2022.

[24] IOFFE, Sergey; SZEGEDY, Christian. Batch Normalization: Accelerating Deep

Network Training b y Reducing Internal Covariate Shif. [S. l.], 6 jul. 2015. Disponível em:

https://arxiv.org/pdf/1502.03167.pdf. Acesso em: 10 out. 2022.

[25] HINTON, Geoffrey et al. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Journal of

Machine Learning Research 15 (2014) 1929-1958, p. 1-30, 6 jul. 2015. DOI

https://jmlr.org/papers/v15/srivastava14a.html. Disponível em:

https://arxiv.org/pdf/1502.03167.pdf. Acesso em: 10 out. 2022.

[26] DROPOUT: A Simple Way to Prevent Neural Networks from Overfitting. In:

BROWNLEE, Jason. Dropout Regularization in Deep Learning Models with Keras. [S. l.], 6

jul. 2015. Disponível em: https://machinelearningmastery.com/dropout-regularization-deep-

learning-models-keras/. Acesso em: 10 out. 2022.

[27] Data Science Academy. Deep Learning Book, 2022. Disponível em:

https://www.deeplearningbook.com.br/arquitetura-de-redes-neurais-long-short-term-memory/.

Acesso em: 10 outubro. 2022.

[28] VIRAHONDA, Sergio. An easy tutorial about Sentiment Analysis with Deep Learning

and Keras: Bidirectional layers. [S. l.], 8 out. 2020. Disponível em:

https://towardsdatascience.com/an-easy-tutorial-about-sentiment-analysis-with-deep-learning-

and-keras-2bf52b9cba91. Acesso em: 10 out. 2022

[29] Data Science Academy. Deep Learning Book, 2022. Disponível em:

https://www.deeplearningbook.com.br/funcao-de-ativacao/. Acesso em: 10 outubro. 2022.

[30] BROWNLEE, Jason. Softmax Activation Function with Python. [S. l.], 19 out. 2020.

Disponível em: https://machinelearningmastery.com/softmax-activation-function-with-

python/. Acesso em: 10 out. 2022.

[31] WOOD, Thomas. What is the Softmax Function?. [S. l.], 2022. Disponível em:

https://deepai.org/machine-learning-glossary-and-terms/softmax-layer. Acesso em: 10 out.

2022.

57

[32] Passionate-nlp. Twitter Sentiment Analysis. 2. Kaggle, 2021. Disponível em:

https://www.kaggle.com/datasets/jp797498e/twitter-entity-sentiment-analysis. Acesso em: 13

out. 2022.

[33] SHARMA, Abhishek. A Beginner’s Guide to Exploratory Data Analysis (EDA) on Text

Data (Amazon Case Study): The Importance of Exploratory Data Analysis (EDA). Analytics

Vidhya, 27 abr. 2020. Disponível em:

https://www.analyticsvidhya.com/blog/2020/04/beginners-guide-exploratory-data-analysis-

text-data/. Acesso em: 10 out. 2022.

[34] ES, Shahul. Exploratory Data Analysis for Natural Language Processing: A Complete

Guide to Python Tools. Neptune.ai, 21 set. 2022. Disponível em:

https://neptune.ai/blog/exploratory-data-analysis-natural-language-processing-tools. Acesso

em: 10 out. 2022.

[35] CARNEIRO S. SIMOES, Jeffson. Classificador de Sentimentos utilizando

Aprendizagem Profunda. 1. Github, 2022. Disponível em:

https://github.com/Jcss3/Classificador-de-Sentimentos-utilizando-Aprendizagem-Profunda.

Acesso em: 13 out. 2022.

[36] NAGPAL, Anuja. L1 and L2 Regularization Methods, Explained: L1 and L2

regularization are the best ways to manage overfitting and perform feature selection when

you’ve got a large set of features.. [S. l.], 5 jan. 2022. Disponível em: https://builtin.com/data-

science/l2-regularization. Acesso em: 11 out. 2022.

[37] TEWARI, Ujwal. Regularization — Understanding L1 and L2 regularization for Deep

Learning. [S. l.], 9 nov. 2021. Disponível em: https://medium.com/analytics-

vidhya/regularization-understanding-l1-and-l2-regularization-for-deep-learning-

a7b9e4a409bf. Acesso em: 11 out. 2022.

[38] BROWNLEE, Jason. How to use Learning Curves to Diagnose Machine Learning

Model Performance. [S. l.], 6 ago. 2019. Disponível em:

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-

performance/. Acesso em: 12 out. 2022.

[39] GOOGLE, Google. Colaboratory: Perguntas frequentes. [S. l.], 2022. Disponível em:

https://research.google.com/colaboratory/intl/pt-

BR/faq.html#:~:text=O%20Colaboratory%20ou%20%E2%80%9CColab%E2%80%9D%20%

C3%A9,an%C3%A1lise%20de%20dados%20e%20educa%C3%A7%C3%A3o. Acesso em:

13 out. 2022.

[40] MALADKAR, Kishan. 5 Ways To Handle Missing Values In Machine Learning

Datasets. [S. l.], 9 fev. 2018. Disponível em: https://analyticsindiamag.com/5-ways-handle-

missing-values-machine-learning-datasets/. Acesso em: 13 out. 2022.

58

[41] RASTOGI , Kashish. Text Cleaning Methods in NLP. [S. l.], 31 jan. 2022. Disponível

em: https://www.analyticsvidhya.com/blog/2022/01/text-cleaning-methods-in-nlp/. Acesso

em: 13 out. 2022.

[42] Data Science Academy. Deep Learning Book, 2022. Disponível em:

https://www.deeplearningbook.com.br/redes-neurais-recorrentes/. Acesso em: 13 outubro.

2022.

[43] BROWNLEE, Jason. How to Choose an Activation Function for Deep Learning. [S. l.],

18 jan. 2021. Disponível em: https://machinelearningmastery.com/choose-an-activation-

function-for-deep-

learning/#:~:text=Activation%20functions%20are%20a%20critical,predictions%20the%20mo

del%20can%20make. Acesso em: 13 out. 2022.

[44] SAXENA , Shipra. Introduction to Batch Normalization. [S. l.], 9 mar. 2021. Disponível

em: https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/.

Acesso em: 13 out. 2022.

[45] GOODFELLOW, Ian et al. Deep Learning: Ian Goodfellow, Yoshua Bengio, and Aaron

Courville. The MIT Press Cambridge, Massachusetts London, England: [s. n.], 2016.

[46] PHI, Michael. Illustrated Guide to LSTM’s and GRU’s: A step by step explanation. [S.

l.], 24 set. 2018. Disponível em: https://towardsdatascience.com/illustrated-guide-to-lstms-and-

gru-s-a-step-by-step-explanation-44e9eb85bf21. Acesso em: 30 out. 2022.

[47] KHAN, Etqad. LSTM : What’s the fuss about?: LSTM learns. LSTM remembers. Be

like LSTM.. [S. l.], 17 jan. 2020. Disponível em: https://medium.com/analytics-vidhya/lstm-

whats-the-fuss-about-1ae9d4c3e33e. Acesso em: 30 out. 2022.

[48] BROWNLEE, Jason. A Gentle Introduction to the Rectified Linear Unit (ReLU). [S. l.],

9 jan. 2019. Disponível em: https://machinelearningmastery.com/rectified-linear-activation-

function-for-deep-learning-neural-networks/. Acesso em: 30 out. 2022.

[49] KATE ARBUZOVA. Twitter Sentiment Analysis. 2. Sentiment Analysis in Twitter

93% Test Acc Kaggle, 2021. Disponível em:

https://www.kaggle.com/datasets/jp797498e/twitter-entity-sentiment-analysis. Acesso em: 31

out. 2022.

[50] Rohan Paris. Twitter Sentiment Analysis. 2. Text Feature Cleaning/Generation/Model

Building Kaggle, 2021. Disponível em: https://www.kaggle.com/code/parisrohan/text-feature-

cleaning-generation-model-building. Acesso em: 31 out. 2022.

59

[51] JVK_CHAITANYA . Twitter Sentiment Analysis. 2. Twitter Sentiment Analysis using

LSTM Kaggle, 2021. Disponível em: https://www.kaggle.com/datasets/jp797498e/twitter-

entity-sentiment-analysis. Acesso em: 31 out. 2022.

	0ff3ee5e753fed63d4af72a3739f01f2f32d701c5843747de11793f7cf3174e6.pdf
	e97085260a3fc6a8bd3d4e5fefb7780a86e4007e35c9b58ffe2cedbb6c57f43b.pdf

	0ff3ee5e753fed63d4af72a3739f01f2f32d701c5843747de11793f7cf3174e6.pdf
	0ff3ee5e753fed63d4af72a3739f01f2f32d701c5843747de11793f7cf3174e6.pdf
	e97085260a3fc6a8bd3d4e5fefb7780a86e4007e35c9b58ffe2cedbb6c57f43b.pdf

