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RESUMO 

 
Hoje em dia, as plataformas de mídia social estão em alta, com milhares de usuários 

gerando grandes quantidades de dados a todo instante, grande parte desses dados se dá de forma 

textual expressando suas opiniões sobre diversos temas. Para que empresas possam usar esses 

dados de forma a gerar valor, foi desenvolvido neste projeto um classificador de sentimentos 

usando processamento de linguagem natural e aprendizagem profunda. Na criação do modelo 

foi utilizado um tipo de rede neural recorrente chamado LSTM e uma base de dados do Twitter, 

disponível na plataforma Kaggle, composta com as mensagens e seus respectivos sentimentos. 

Utilizando as taxas de perda e acurácia como métricas de avaliação de desempenho, foram 

realizados alguns experimentos que apresentaram resultados diferentes, tais como erros de 

overfitting. Por fim atingimos uma taxa de acurácia de 93% no melhor experimento, alcançando 

assim o objetivo de criar um classificador de sentimentos.  

 

Palavras-chave: Aprendizagem Profunda, Processamento de Linguagem Natural, Analise de 

sentimentos.  
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ABSTRACT  

 

Today, social media platforms are booming, with thousands of users generating large 

amounts of data all the time, much of this data is in textual form expressing their opinions on 

various topics. In order for companies to be able to use this data in a way that generates value, 

a sentiment classifier using natural language processing and deep learning was developed in 

this project. The model was created using a type of recurrent neural network called LSTM and 

a Twitter database, available on the Kaggle platform, composed of messages and their 

respective sentiments. Using loss and accuracy rates as performance evaluation metrics, we 

performed some experiments that presented different results, such as overfitting errors. Finally 

we reached an accuracy rate of 93% in the best experiment, thus achieving the goal of creating 

a sentiment classifier.  

 

Keywords: Deep Learning, natural Language Processing, Sentiment Analysis. 
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1 INTRODUÇÃO 

 

A era da Internet mudou a forma como as pessoas expressam as suas opiniões, agora 

essa ação é feita principalmente através de postagens em blogs, fóruns online, sites de revisão 

de produtos, meios sociais de comunicação, etc. Atualmente, milhões de pessoas utilizam as 

chamadas mídias sociais, plataformas como Facebook, Twitter, etc. para expressar as suas 

emoções, opiniões e compartilhá-las no dia a dia [1]. 

Com isso pode-se perceber a massiva quantidade de dados gerados todos os dias através 

dessas plataformas seja na forma de textos, vídeos, imagens, entre outros. Esses dados por sua 

vez carregam informações sobre comportamentos e sentimentos humanos que se bem utilizados 

podem gerar valor das mais diversas formas. 

Um dos principais tópicos estudados dentro desse “ambiente” criado por essas 

plataformas é a análise de sentimentos que ao ser utilizada pode gerar informações sobre como 

os usuários dessas redes estão se sentindo sobre determinado assunto, empresa, evento etc. 

A importância de conhecer o sentimento que as pessoas possuem sobre determinado 

assunto está ligada a possibilidade de trazer valor e impactar vários setores, seja no setor de 

negócios, política, ações públicas e entre outros. Tendo em mãos esse tipo de conhecimento as 

empresas por exemplo podem tomar decisões baseadas em tais informações ajustando assim 

seu relacionamento com o cliente da melhor maneira possível. 

Nos últimos tempos essa tarefa vem sendo feita através de estratégias dentro do campo 

de inteligência artificial com aprendizado de máquina e/ou aprendizagem profunda. Com os 

recentes avanços na aprendizagem profunda, a capacidade dos algoritmos de análise de texto 

melhorou consideravelmente. A utilização criativa de técnicas avançadas de inteligência 

artificial pode ser uma ferramenta eficaz para fazer investigações no campo da análise de 

sentimentos mais aprofundadas [2]. 

 

1.1 Motivação 

  

Devido as grandes quantidades de dados gerados atualmente que expressam opiniões e 

sentimentos, existe um desejo das empresas de poderem entender melhor o comportamento de 

seus clientes. Assim a grande motivação desse trabalho é o de criar uma solução para tal desafio. 
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1.2 Objetivos 

 

O principal objetivo deste trabalho é o de entender melhor o desafio que é extrair 

conhecimento de textos fazendo a análise de sentimentos. Assim foi decidido desenvolver um 

modelo de aprendizagem profunda capaz de realizar a classificação de sentimentos sobre textos 

relacionados a diferentes entidades buscando a geração de valor, possibilitando que as mesmas 

possam tomar decisões baseadas em dados. 

 

1.3 Estrutura da Monografia 

 

No capítulo 2 será feito uma revisão dos conceitos das áreas usadas no projeto além de 

abordarmos alguns projetos que serviram de inspiração para o desenvolvimento da arquitetura 

de aprendizagem profunda. 

No capítulo 3 será apresentado o desenvolvimento do modelo de aprendizagem 

profunda focando nos pontos principais que são as técnicas de pré-processamento de textos para 

a preparação dos dados de treinamento e a estrutura da rede neural. 

O capítulo 4 abordara o conjunto de dados usados além das análises e experimentos 

feitos e os resultados alcançados. 

Por fim no capitulo 5 será feita as considerações finais do projeto além de expressar 

possíveis desdobramentos do trabalho no futuro. 
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2 FUNDAMENTOS E TRABALHOS RELACIONADOS 

 

Nesta seção iremos fazer uma breve revisão de alguns conceitos tais como rede neurais 

recorrentes e processamento de linguagem natural além de descrever alguns trabalhos que 

foram usados como inspiração no desenvolvimento do classificador de sentimentos.   

 

2.1 Redes Neurais Artificiais 

 

O conceito de Deep Learning, ou aprendizagem profunda, atualmente está bem popular 

parecendo como se fosse uma nova tecnologia e isto está longe da verdade. A verdade é que o 

deep learning que conhecemos começou por volta do ano 1940 sendo conhecido por vários 

nomes e apenas aparenta ser novo porque era relativamente impopular em seu início [45]. 

Alguns dos primeiros algoritmos de aprendizagem foram criados com o intuito de simular o 

funcionamento biológico de neurônios do cérebro, resultando em um dos nomes de deep 

learning ser as chamadas redes neurais artificiais [45]. 

O lado neural da aprendizagem profunda é motivado por duas ideias principais. Uma 

delas é que o cérebro fornece uma prova pelo exemplo de que o comportamento inteligente é 

possível, e um caminho para construir a inteligência é a engenharia reversa dos princípios 

computacionais por trás do cérebro e a duplicação de sua funcionalidade [45]. Outra perspectiva 

é que seria profundamente interessante compreender o cérebro e os princípios subjacentes à 

inteligência humana [45]. 

Sobre os atuais tipos de modelos de aprendizagem de máquina, o termo “deep learning” 

vai além do cenário neurocientífico, apelando a um conceito de aprendizagem em múltiplos 

níveis de composição onde pode ser aplicado a estruturas de aprendizagem que não são 

necessariamente inspiradas pela parte neural [45]. 

A seguir teremos um subtópico sobre um tipo de rede neural bastante popular e que 

devido a sua estrutura foi escolhido para ser um dos principais componentes no 

desenvolvimento desse projeto, são elas as redes neurais recorrentes. 

 

2.1.1 Redes Neurais Recorrentes  
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As redes neurais recorrentes são um poderoso conjunto de algoritmos de redes neurais 

artificiais especialmente úteis para o processamento de dados sequenciais, como som, dados de 

séries temporais ou linguagem natural [3]. Essas redes são um tipo de rede neural artificial 

construída para reconhecer padrões em sequências de dados. 

A resposta de uma RNN definida em um tempo x-1 irá afetar a decisão no momento 

posterior x. As redes recorrentes têm duas fontes de entrada, o valor atual e o valor passado 

recentemente, que juntos irão determinar as novas decisões sobre os novos dados [42]. 

As redes recorrentes possuem um loop de feedback conectado às suas decisões passadas, 

consumindo suas próprias saídas momento após momento como entrada [42]. Sabendo que 

existe informações na própria sequência dos dados, foi feito uma adição de memória às redes, 

afim de que as redes recorrentes a utilizem para entender as informações da sequência e executar 

as suas tarefas [42].  

 

Figura 1. Representação de RNNs [42]. 

 

Utilizando um estado oculto para preservar essas informações, as RNN conseguem usar 

tais informações afim de afetar o processamento dos novos dados, fazendo com que cada 

processamento seja baseado a partir das informações antigas. Assim podemos dizer que as 

RNNs conseguem compartilhar informações ao longo do tempo [42]. 

 

2.2 Processamento de Linguagem Natural – PLN 

 

O Processamento de Linguagem Natural (PLN) ou “Natural Language Processing 

(NLP)” é uma vertente da Inteligência Artificial que estuda a capacidade e as limitações de uma 

máquina em entender a linguagem dos seres humanos. Ou seja, é uma interface entre a 

linguagem homem-máquina. Dessa forma, o objetivo do PLN é fornecer aos computadores a 

capacidade de entender e compor textos [6].  
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A Inteligência Artificial e a aprendizagem máquina mudaram significativamente a 

forma como interagimos com o mundo. Embora muitas pessoas possam perceber isso, o PLN 

tornou-se uma parte cotidiana da vida de muitas pessoas. Um exemplo seria as 'assistentes 

inteligentes' como Siri e Alexa que utilizam o PLN para compreender e interpretar comandos 

falados [7]. 

O PLN inclui linguística computacional, estudo por computador, modelagem estatística, 

e aprendizagem profunda. Compreende o significado da linguagem humana através da análise 

de uma vasta gama de aspectos, tais como semântica, sintaxe e morfologia. Com a ajuda do 

PLN, as máquinas são capazes de realizar análises semânticas e emocionais e realizar tarefas 

de reconhecimento da fala e de resumo de texto. Pode também ser utilizado em serviços de 

tradução, para fornecer melhores traduções que transmitam não só a tradução literal, mas 

também manter o significado, subtexto e emoção tanto quanto possível [7]. 

Um dos principais tópicos quando falamos de PLN é o de análise de sentimentos. 

A Análise de sentimento é uma técnica usada no PLN para interpretar e classificar os 

sentimentos agregados a textos como e-mails, pesquisas, mídias sociais e assim por diante [8]. 

Esse processo automatizado geralmente classifica os sentimentos como positivos, negativos ou 

neutros. 

 

 

Figura 2. Exemplificação dos tipos de sentimentos. Imagem adaptada de [9]. 

 

Assim, podemos definir a análise de sentimento como um processo que automatiza a 

mineração de atitudes, opiniões, pontos de vista e emoções a partir de texto, discurso, tweets e 

fontes de base de dados através do Processamento de Linguagem Natural [1]. A análise de 

sentimentos envolve a classificação de opiniões em texto em categorias como "positivas" ou 

"negativas" ou "neutras". É também referida como análise de subjetividade, extração de opinião 

e extração de avaliação. [1] 
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2.3 Classificação dos sentimentos usando PLN com análise de texto  

 

Este artigo [10] propôs a criação de um classificador de sentimentos a partir de uma 

fonte de dados disponível na plataforma Kaggle que consiste em críticas sobre filmes e seus 

sentimentos relacionados – Positivo ou Negativo. Durante o desenvolvimento é explicado cada 

passo do pipeline para a construção do modelo desde o carregamento dos dados até as métricas 

usadas para avaliar o desempenho do mesmo. Os pontos principais estão na escolha dos 

modelos de predição no caso o artigo está usando aprendizagem de máquina – modelo Naive 

Bayes - e na parte do pré-processamento dos dados textuais onde se é usado algumas técnicas 

para vetorizar os textos, ou seja, mapear as sentenças para vetores numéricos que as 

representam. Sabendo que o tipo de classificação abordado foi o da classificação binária e as 

métricas usadas para avaliação dos modelos consistiu basicamente do uso da acurácia, os 

resultados finais que o artigo apresentou foi uma taxa de acurácia em torno de 98%-95%. Tendo 

uma taxa tão alta talvez fosse interessante investigar a corretude de fato, afim de verificar se 

houve algum problema, usando outras métricas. 

 Durante o artigo é demonstrado a importância de fazer uma boa representação para os 

textos visto que dependendo de como feito pode interferir na performance do modelo escolhido.  

 

2.4 Processamento de Linguagem Natural - Análise Sentimental usando 

LSTM 

 

Assim como o artigo anterior o artigo [11] passou por um pipeline parecido. Seus dados 

também foram provenientes da plataforma Kaggle sendo eles o dataset: Conjunto de dados de 

revisões de produtos Amazon Alexa. Diferente do anterior foi feita uma abordagem utilizando 

aprendizagem profunda, mais precisamente usando um tipo de rede neural recorrente chamado 

LSTM (Long Short Term Memory). Ao decorrer de sua explicação sobre as RNNs foi explicado 

o grande problema que existe em seu uso que é o desaparecimento de gradiente durante a fase 

de treinamento do modelo. Assim foi escolhido a LSTM, um tipo de RNN, devido a sua 

arquitetura ser mais robusta sobre esse problema. O tipo de classificação abordado nesse 

problema foi o de classificação binaria, sua criação foi feita utilizando um conjunto de dados 

de treino e sua avaliação feita em cima de dados de teste usando métricas como a acurácia para 

avaliar o modelo, chegando em uma taxa de 90% nos dados de teste. Talvez para comprovar tal 

taxa e verificar se existe algum problema com o resultado final seria interessante usar um 
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conjunto de dados para validação durante o treinamento e criar gráficos dos valores de acurácia 

dos conjuntos de treino e validação durante as épocas treinadas para comprovar os resultados. 

 

2.5 Classificação Sequencial com Redes Neurais Recorrentes (LSTM) em 

Pyhton com Keras 

 

Neste artigo [12] foi demonstrado vários usos da rede LSTM com o intuito de fazer a 

classificação de sentimentos dos dados de revisões de filme IMDB. Os dados foram coletados 

por pesquisadores de Stanford e utilizados num documento de 2011 em uma divisão 50/50 dos 

dados foi utilizada para treinamento e testes. Durante sua criação os pesquisadores alcançaram 

uma precisão de 88,89%. Os resultados das várias redes apresentadas neste artigo ficaram com 

taxas em torno de 85% a 88% bem próximo da taxa conseguida pelos pesquisadores.  

Os pontos principais apresentados foram o da utilização de word embedding e camadas 

de Dropout. A seguir uma breve definição dos conceitos: 

• Word Embedding: Esta é uma técnica em que as palavras são codificadas 

como vetores de valor real num espaço de alta dimensão, onde a 

semelhança entre palavras em termos de significado se traduz em 

proximidade no espaço vetorial. 

• Dropout: As redes neurais recorrentes como a LSTM têm geralmente o 

problema de Overfitting, quando o modelo não consegue aprender e 

generalizar sobre dados desconhecidos. As camadas de Dropout ajudam a 

diminuir a ocorrência de tais problemas. 
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3 CLASSIFICADOR DE SENTIMENTOS 

 

Este trabalho tem como o principal objetivo desenvolver uma inteligência artificial 

utilizando aprendizagem profunda com o intuito de fazer análise de sentimentos. Assim depois 

da construção do modelo será possível classificar textos em seus diferentes sentimentos 

possibilitando a tomada de decisões com base nessas informações. 

Durante o planejamento desse trabalho foram escolhidas diferentes tecnologias voltadas 

para os diferentes aspectos do projeto, a seguir será explicado as tecnologias usadas, os estágios 

de pré-processamento feito sobre os textos usados no treinamento da rede neural e a arquitetura 

do modelo de aprendizagem profunda construída. 

 

3.1 Tecnologias 

 

Essa seção tem o objetivo de listar e explicar as principais tecnologias que foram 

escolhidas para o desenvolvimento do projeto tais como a linguagem de programação, o 

ambiente de desenvolvimento e certas bibliotecas chaves.  

 

3.1.1 Linguagem de Programação Python 

 

Em uma pesquisa com desenvolvedores em 2018 conduzido por StackOverflow revelou 

que Python era a linguagem de programação mais popular entre os cientistas de dados [13]. A 

suas popularidades se deu por causa de suas vantagens coincidirem com como projetos de IA 

são desenvolvidos. Assim primeiro temos de compreender que os projetos de inteligência 

artificial são diferentes dos projetos de software tradicionais em termos das tecnologias usadas 

e das competências necessárias. Portanto, escolher uma linguagem de programação que seja 

estável, flexível, e que tenha um conjunto diversificado de ferramentas é tão importante. Python 

reúne todas estas [13]. 

 

3.1.2 Ambiente de Desenvolvimento – Colab e Kaggle 

 

O Colaboratory ou “Colab” é um produto do Google Research, área de pesquisas 

científicas do Google. O Colab permite que qualquer pessoa escreva e execute código Python 
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arbitrário pelo navegador e é especialmente adequado para o aprendizado de máquina, análise 

de dados e educação. Mais tecnicamente, o Colab é um serviço de notebooks hospedados do 

Jupyter que não requer nenhuma configuração para usar e oferece acesso sem custo financeiro 

a recursos de computação como GPUs [39]. 

A escolha de um ambiente de Desenvolvimento em cloud como o Colab se deu pelo fato 

das limitações das maquinas disponíveis, exemplo a possibilidade de usar GPU durante o 

treinamento dos modelos de Deep Learning. 

Uma observação a ser feita é que também foi utilizada a Plataforma de Desenvolvimento 

do Kaggle, como ambiente auxiliar, quando era atingido o limite diário de uso da GPU no 

Colab. 

 

3.1.3 Biblioteca TensorFlow 

 

Criado pela equipe do Google Brain e inicialmente lançado ao público em 2015, 

TensorFlow é uma biblioteca de código aberto para computação numérica e aprendizagem de 

máquinas em grande escala. TensorFlow reúne uma série de modelos e algoritmos de 

aprendizagem de máquinas e de aprendizagem profunda (também conhecidos como redes 

neurais) e torna-os úteis por meio de metáforas programáticas comuns. Utiliza Python ou 

JavaScript para fornecer uma API conveniente para construir aplicações, enquanto executa 

essas aplicações em C++ de alto desempenho [14]. 

O maior benefício que TensorFlow proporciona para o desenvolvimento da 

aprendizagem de máquinas são a abstração. Em vez de lidar com os detalhes da implementação 

de algoritmos, ou de descobrir formas adequadas de ligar a saída de uma função à entrada de 

outra, o programador pode concentrar-se na lógica geral da aplicação [14]. 

 

3.1.4. Biblioteca NLTK 

 

NLTK é uma das principais bibliotecas para a construção de projetos Python para 

trabalhar com dados da linguagem humana. Nos fornece de interfaces simples de utilização a 

mais de 50 corpora e ativos lexicais como o WordNet, juntamente com uma configuração de 

bibliotecas de pré-processamento de texto para etiquetagem, análise, classificação, stemming, 

tokenização e elementos de raciocínio semântico para bibliotecas de Processamento de 

Linguagem Natural (PLN) e uma discussão ativa de conversação. NLTK é acessível para 
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Windows, Mac OS e Linux. A melhor parte é que a NLTK é um empreendimento livre, de 

código aberto e local [15]. 

 

3.2 Pré-processamento 

 

O pré-processamento de dados é um passo essencial na construção de um modelo de 

aprendizagem profunda e dependendo de quão bem os dados tenham sido processados, os 

resultados podem apresentar uma performance diferente [16]. 

Quando normalizamos o texto, tentamos reduzir a sua aleatoriedade, aproximando-o de 

um "padrão" pré-definido. Isto ajuda-nos a reduzir a quantidade de informação diferente com 

que o computador tem de lidar, e por conseguinte melhora a eficiência. O objetivo das técnicas 

de normalização como o stemming e a lematização é reduzir as formas inflexíveis e, por vezes, 

as formas derivadas de uma palavra a uma forma base comum [17].  

Assim a seguir iremos introduzir algumas das técnicas usadas para o processamento dos 

textos utilizadas na construção do classificador. 

 

3.2.1 Remoção de Valores Nulos 

 

Os valores nulos são um grande problema quanto ao uso de aprendizagem de máquinas 

e na aprendizagem profunda. Ao utilizar o TensorFlow ou outros pacotes de aprendizagem 

profunda, é necessário fazer um tratamento dos valores nulos antes de passar os seus dados para 

o treinamento do modelo [40]. 

 

3.2.2 Label Encoding 

 

A codificação de etiquetas ou Label Encoding refere-se à conversão das etiquetas em 

uma forma numérica, de modo a convertê-las na forma legível por máquina. Os algoritmos de 

aprendizagem da máquina podem então decidir de uma forma melhor como essas etiquetas 

devem ser operadas. É uma etapa importante de pré-processamento para o conjunto de dados 

estruturados na aprendizagem supervisionada [18]. 
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3.2.3 Normalização do Tamanho das Palavras 

 

Um dos passos que se podemos fazer sobre as palavras é transformar todos os caracteres 

das palavras para minúsculo garantindo assim que palavras iguais com letras minúsculas ou 

maiúsculas representem a mesma palavra durante a representação das mensagens [41]. 

 

3.2.4 Remoção Caracteres Indesejados 

 

Alguns caracteres indesejados podem ser: pontuações, caracteres especiais, caracteres 

repetidos de uma palavra e até mesmo números encontrados dentro de textos. Assim fazer a 

remoção de tais caracteres pode ajudar na hora de criar a representação dos textos [41]. 

 

3.2.5 Remoção Stopwords 

 

Uma das principais formas de pré-processamento é a filtragem de dados inúteis. No 

processamento em linguagem natural, palavras inúteis (dados), são referidas como stopwords 

[19]. 

 

3.2.6 Stemming 

 

O Stemming é o processo de reduzir as palavras à sua forma de “caule” ou “raiz”. O 

objetivo do stemming é reduzir as palavras relacionadas para o mesmo caule/raiz, mesmo que 

o “caule” não seja uma palavra de dicionário. Por exemplo, as palavras “connection”, 

“connecting”, “connected” são reduzidas a uma palavra comum "connect" [17]. 

Stemming refere-se a um processo heurístico grosseiro que corta as pontas das palavras 

na esperança de alcançar este objetivo corretamente a maior parte do tempo. Porem as vezes 

pode resultar em palavras que não são palavras reais [17]. 

 

3.2.7 Lematização 
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A lematização reduz as palavras à sua palavra de base, reduzindo adequadamente as 

palavras flexionadas e assegurando que a palavra de raiz pertence à língua. É normalmente mais 

sofisticado do que o stemming, uma vez que o stemmer trabalha em uma palavra individual 

sem conhecimento do contexto. Na lematização, uma palavra de raiz é chamada lemma. Um 

lema é a forma canónica, forma de dicionário, ou forma de citação de um conjunto de palavras 

[17]. 

 

3.2.8 Vetorização 

 

Vetorização é o jargão para uma abordagem clássica de conversão de dados de entrada 

do seu formato bruto (ou seja, texto) em vetores de números reais, que é o formato que os 

modelos de aprendizagem profunda suportam. Esta abordagem existe desde que os 

computadores foram construídos pela primeira vez, tem funcionado maravilhosamente em 

vários domínios, e é agora utilizada em PLN [20]. 

 

3.2.9 Tokenização 

 

Em Processamento de Linguagem Natural, a tokenização significa quebrar o texto bruto 

em unidades únicas (também conhecidas como tokens). Um token pode ser sentenças, frases 

ou palavras. Cada token tem uma token-id único. O objetivo da tokenização é que podemos 

utilizar esses tokens (ou os token_ids) para representar o texto original [21]. 

 

3.2.10 Padding 

 

Depois de feita a vetorização/tokenização dos textos teremos vários vetores de tamanhos 

diferentes. Porem a maioria (se não todas) das redes neurais requer a sequência de entrada de 

dados com o mesmo comprimento, e é por isso que precisamos de acolchoamento (padding): 

para truncar ou adicionar sequência de padding (normalmente completar com 0s) no mesmo 

comprimento [21]. 

Assim depois de realizar o padding teremos sequencias de mesmo comprimento prontas 

para serem passadas para a rede neural. A seguir uma imagem que exemplifica o processo de 

padding. 
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Figura 3. Padding do tipo pré onde se acrescenta os zeros no começo do vetor. Imagem adaptada de [21]. 

 

 

 

3.3 Arquitetura 

 

O Classificador foi idealizado com base nos artigos do capitulo 2 como referência. Ele 

apresenta 8 camadas. A arquitetura é composta de camadas de embedding, batch normalization, 

bidirecional, lstm, Dropout, densa e uma camada final com função de ativação softmax 

responsável pela classificação. 

A seguir o design completo da rede neural construída e a explicação do que cada camada 

utilizada faz e sua importância. 

 

3.3.1 Design da Arquitetura 

  

A arquitetura da rede foi inspirada nos exemplos usados no artigo comentado na seção 

2.5, principalmente no exemplo onde a camada Bidirecional-LSTM é usada [12]. Apesar da 

inspiração a rede sofreu algumas alterações a fim de ser utilizada com os dados usados neste 

trabalho. 

Quando se trabalha com textos, uma técnica bastante popular é o chamado word 

embedding onde criamos uma forma de representar palavras em um espaço vetorial de ‘n’ 

dimensões, n é um parâmetro definido previamente, onde a semelhança entre as palavras em 

termos de significado se traduz no espaço vetorial [12]. Assim utilizamos como camada de 

entrada a camada de embedding que fica responsável por definir tais representações. Ao longo 

da rede foram adicionadas camadas com o intuito de ajudar no aprendizado da rede tentando 

evitar erros de overfitting, foram elas as camadas de Batch Normalization e Dropout [44]. A 

https://towardsdatascience.com/hands-on-nlp-deep-learning-model-preparation-in-tensorflow-2-x-2e8c9f3c7633
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camada LSTM foi escolhida por ser uma variação das RNN’s que trabalham bem com dados 

sequenciais e por sua estrutura ser um pouco diferente das RNN’s comuns, sendo seu 

funcionamento descrito na seção 3.3.4. As vezes a ordem da sequência pode influenciar nos 

resultados onde a sequência em ordem pode não traz bons resultados, as vezes a ordem inversa 

da mesma pode ser melhor e pode ter situações que ambas sozinhas não tenham o resultado 

esperado. Assim foi decidido usar a camada bidirecional para avaliarmos as sequencias em 

ordem e na ordem reversa. Ao final foi utilizado duas camadas totalmente conectadas com 

funções de ativação ReLu e softmax (camada de saída). A partir dos dados que usamos temos 

um problema de classificação multiclasse e por isso foi escolhido usar a função softmax na 

última camada.  

A seguir a imagem do design final da arquitetura construída, demonstrando as camadas 

utilizadas na construção do modelo, desde as camadas de entrada até a última camada 

responsável pela classificação. 

 

 

Figura 4. Camadas da rede neural – embedding, batch Normalization, bidirecional-lstm, Dropout, dense_1 e 

dense_2. Imagem demonstra fluxo percorrido pelos dados até a classificação do mesmo nas categorias definidas, 

a classificação se dá através da função softmax aplicada na camada dense_1 [35]. 
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3.3.2 Camada de Embedding 

 

A biblioteca Tensorflow oferece uma camada Embedding que pode ser usada para redes 

neurais em dados de texto. Esta camada requer que os dados de entrada sejam codificados para 

valores numéricos inteiros, de modo a que cada palavra seja representada por um inteiro único. 

Esta etapa de preparação de dados foi executada utilizando o Tokenizer API também fornecido 

com Tensorflow [22]. 

A camada de embedding é inicializada com pesos aleatórios e aprenderá uma 

representação para todas as palavras no conjunto de dados de treino. Ela é uma camada flexível 

que pode ser utilizada de várias maneiras, como por exemplo: 

• Pode ser utilizado sozinho para aprender uma embedding de palavras que 

pode ser guardada e utilizada posteriormente em outro modelo [22]. 

• Pode ser usado como parte de um modelo de aprendizagem profunda onde 

o embedding será aprendido juntamente com o próprio modelo [22].  

• Pode ser utilizado para carregar um conjunto de embedding pré-treinados 

em outro modelo, um tipo de aprendizagem de transferência [22]. 

A camada de embedding é definida como a primeira camada oculta de uma rede. Deve 

especificar 3 argumentos: 

• input_dim: Este é o tamanho do vocabulário nos dados do texto. Por 

exemplo, se os dados estiverem codificados com valores entre 0-10, então 

o tamanho do vocabulário seria de 11 palavras. 

• output_dim: Este é o tamanho do espaço vetorial no qual as palavras serão 

incorporadas. Define o tamanho dos vetores de saída a partir desta camada 

para cada palavra. Por exemplo, poderia ser 32 ou 100 ou até maior. 

• input_length: Este é o comprimento das sequências de entrada, como 

definiria para qualquer camada de entrada de um modelo Keras. Por 

exemplo, se todos os seus documentos de entrada forem compostos por 

1000 palavras, isto seria 1000. 

 

3.3.3 Camada Batch Normalization 

 



36 
 

O treino de redes neurais profundas, por exemplo, redes com dezenas de camadas 

ocultas, é um desafio. Um aspecto deste desafio é que o modelo é atualizado camada por camada 

para trás desde a saída até à entrada, utilizando uma estimativa de erro que assume que os pesos 

das camadas antes da camada atual são fixos. Como todas as camadas são alteradas durante 

uma atualização, o procedimento de atualização está sempre a perseguir um alvo em 

movimento. Por exemplo, os pesos de uma camada são atualizados dada uma expectativa de 

que os valores de saída da camada anterior com uma dada distribuição. Esta distribuição é 

provavelmente alterada depois de os pesos da camada anterior serem atualizados [23].  

O treino de Redes Neurais Profundas é complicado pelo fato de a distribuição dos inputs 

de cada camada mudar durante o treino, uma vez que os parâmetros das camadas anteriores 

mudam. Isto atrasa o treino, exigindo taxas de aprendizagem mais baixas e uma inicialização 

cuidadosa dos parâmetros, e torna notoriamente difícil treinar modelos com não-linearidades 

saturantes [24].  

A normalização de lotes é proposta como uma técnica para ajudar a coordenar a 

atualização de múltiplas camadas no modelo. Faz esta normalização da saída da camada, 

especificamente padronizando as ativações de cada variável de entrada por mini batch, tais 

como as ativações de um nó da camada anterior. Recordar que a padronização se refere ao 

redimensionamento dos dados para ter uma média de zero e um desvio padrão de um, por 

exemplo, um gaussiano padrão. A padronização das ativações da camada anterior significa que 

as suposições que a camada seguinte faz sobre a dispersão e distribuição dos inputs durante a 

atualização de peso não se alterarão, pelo menos não dramaticamente. Isto tem o efeito de 

estabilizar e acelerar o processo de treino de redes neurais profundas. A normalização das 

entradas para a camada tem um efeito no treinamento do modelo, reduzindo drasticamente o 

número de épocas necessárias. Pode também ter um efeito regularizador, reduzindo o erro de 

generalização, tal como a utilização da regularização de ativação [23]. 

 

3.3.4 Camada Dropout 

 

Dropout é uma técnica de regularização para modelos de redes neurais proposta por 

Srivastava et al. no seu documento de 2014 "Dropout: A Simple Way to Prevent Neural 

Networks from Overfitting" [25]. 

Dropout é uma técnica em que neurónios selecionados aleatoriamente são ignorados 

durante o treino. Eles são "abandonados" aleatoriamente. Isto significa que a sua contribuição 
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para a ativação dos neurónios é temporariamente removida no passe para a frente, e quaisquer 

atualizações de peso não são aplicadas ao neurónio no passe para trás. Quando uma rede neural 

aprende, os pesos dos neurónios fixam-se no seu contexto dentro da rede. Os pesos dos 

neurónios são afinados para características específicas, proporcionando alguma especialização. 

Os neurónios vizinhos confiam nesta especialização, que, se levada demasiado longe, pode 

resultar num modelo frágil e demasiado especializado para os dados de treino. Esta dependência 

do contexto para um neurónio durante o treino é referida como coadaptarão complexa. Pode-se 

imaginar que se os neurónios forem abandonados aleatoriamente da rede durante o treino, 

outros neurónios terão de intervir e lidar com a representação necessária para fazer previsões 

para os neurónios em falta. Acredita-se que isto resulte em múltiplas representações internas 

independentes a serem aprendidas pela rede [25][26]. 

O efeito é que a rede se torna menos sensível aos pesos específicos dos neurónios. Isto, 

por sua vez, resulta numa rede capaz de uma melhor generalização e menos susceptível de 

sobreajustar (Overfitting) os dados de treino [26]. 

 

3.3.5 Camada LSTM (Long Short Term Memory) 

 

A LSTM é uma variação das RNNs e é usada em diversos cenários de processamento 

de linguagem natural, a mesma consegue lembrar valores em intervalos aleatórios [27]. 

A rede LSTM consegue recordar por causa de sua estrutura de células, a mesma possui 

o que podemos chamar de “células LSTM” onde tais células apresentam uma recorrência 

interna além da recorrência externas da RNN [45]. Cada célula tem as mesmas entradas e saídas 

de uma rede recorrente comum, mas também possui mais parâmetros e um sistema de portões 

que controla o fluxo de informação. [45]. 
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Figura 5. Célula LSTM e suas operações [47]. 

 

As informações são retidas pelas células e as manipulações, saber o que deve ser 

guardado ou esquecido são feitos pelos portões. Existem três portões: 

Forget Gate: Este portão decide que informação deve ser esquecida ou guardada. A 

informação do estado oculto anterior e a informação da entrada atual é passada através da 

função sigmoid. A função mapeia os valores para o intervalo de 0 a 1, assim, quanto mais 

próximo de zero mais próximo de ser esquecido e quanto mais próximo de 1 mais próximo de 

ser mantido [46]. 

Input Gate: Para atualizar o estado da célula, temos o portão de entrada. Onde primeiro, 

passamos o estado anterior oculto e a entrada atual para uma função sigmoid, isso decidira quais 

valores serão atualizados, transformando os valores entre 0 e 1 – 0 menos importante e 1 mais 

importante. Também se passa o estado oculto e a entrada atual para a função tanh que por sua 

vez irá mapear os valores entre -1 e 1, para ajudar a regular a rede. Depois multiplica-se a saída 

da função tanh com a saída da sigmoid. A saída sigmoid decidirá qual a informação importante 

a manter da saída tanh [46]. 

Output Gate: O portão de saída decide qual deve ser o próximo estado oculto. Devemos 

lembrar de que o estado oculto contém informações sobre as entradas anteriores além de 

também ser utilizado para previsões. Assim, inicialmente, passamos o estado oculto anterior e 

a entrada atual para uma função sigmoid. Depois, passamos o estado da célula recentemente 

modificada para a função tanh. Multiplicamos a saída tanh com a saída sigmoid para decidir 

que informação o estado oculto deve conter. A saída é o estado oculto. 
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Assim podemos concluir que, o forget gate decide o que é relevante para a manter das 

etapas anteriores. o input gate decide que informação é relevante a acrescentar a partir da etapa 

atual. E por fim, o output gate determina qual deve ser o próximo estado oculto. 

 

3.3.6 Camada Bidirecional 

 

Maximiza a sensibilidade da ordem dos RNNs: consiste essencialmente em duas RNNs 

(LSTMs) que processam a sequência de entrada numa direção diferente para finalmente fundir 

as representações. Ao fazer isto, são capazes de capturar padrões mais complexos do que uma 

única camada de RNN capturaria. Por outras palavras, uma das camadas interpreta as 

sequências na ordem original e a segunda a sequência inversa, razão pela qual os RNNs 

bidirecionais são amplamente utilizados, porque oferecem maior desempenho do que os RNNs 

regulares [28]. 

 

3.3.7 Camada Densa - ReLu 

 

Depois de passar pela camada Bidirecional LSTM e camadas de Dropout, antes da 

camada de saída temos uma camada que utiliza a função de ativação ReLu em seu 

processamento. A função ReLu é a unidade linear retificada. É definida pela fórmula: f (x) = 

max (0, x) [29]. 

Atualmente a função de ativação mais utilizada nas camadas escondidas é a ReLu, 

basicamente ela se tornou a função de ativação padrão para muitos tipos de redes neurais porque 

um modelo que o utiliza é mais fácil de treinar e geralmente alcança um melhor desempenho 

[48]. 

Dado os valores passados para a função, ela retornará zero para quaisquer valores 

negativos e o próprio valor para valores positivos [48]. É uma função computacionalmente leve. 

Uma das principais vantagens de se usar a ReLu é por causa de sua representação esparsa onde 

dado que os dados de entrada sejam valores negativos os mesmos serão convertidos para zero, 

consequentemente os neurônios que receberem tais valores não serão ativados fazendo com que 

apenas alguns sejam ativados isso pode acelerar a aprendizagem e simplificar o modelo 

[48][29].  
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3.3.8 Camada Saída – Softmax 

  

A camada de saída é a camada responsável pela predição da rede neural. Nela 

escolheremos a função de ativação dependendo do tipo de problema que estamos solucionando 

[43]. No caso deste trabalho foi utilizado a função softmax. 

A função softmax é útil quando enfrentamos problemas de classificação. Ela transforma 

as saídas para cada classe para valores entre 0 e 1 dividindo esses valores pela soma das saídas, 

nos dando assim a probabilidade de a entrada estar em uma determinada saída [29]. 

A definição matemática da função softmax é dada por: Onde todos os valores zi são os 

elementos do vetor de entrada e podem assumir qualquer valor real. O termo no fundo da 

fórmula a seguir é o termo de normalização que assegura que todos os valores de saída da 

função se somarão a 1, constituindo assim uma distribuição de probabilidade válida [31].  

 

A fórmula da função softmax pode ser definida da seguinte maneira [31]: 

 

𝑂 (
𝑍
→)

𝑖
 =  

𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 

 

Sendo: 

𝑍
→  = O vetor de entrada para a função softmax, constituído por (z0, ... zK) [31]. 

𝑧𝑖  = Todos os valores zi são os elementos do vetor de entrada para a função softmax, e 

podem tomar qualquer valor real, positivo, zero ou negativo. Por exemplo, uma rede neural 

poderia ter um vetor de saída como (-0,62, 8,12, 2,53), o que não é uma distribuição de 

probabilidade válida, daí a razão pela qual a softmax seria necessária [31]. 

𝑒𝑧𝑖 = A função exponencial padrão é aplicada a cada elemento do vetor de entrada. Isto 

dá um valor positivo acima de 0, que será muito pequeno se o input for negativo, e muito grande 

se o input for grande. No entanto, ainda não está fixado no intervalo (0, 1), que é o que é exigido 

de uma probabilidade [31]. 

∑ 𝑒𝑧𝑖𝑘
𝑗=1  = O termo na parte inferior da fórmula é o termo de normalização. Assegura 

que todos os valores de saída da função se somarão a 1 e cada um estará no intervalo (0, 1), 

constituindo assim uma distribuição de probabilidade válida [31]. 

K = O número de classes no classificador multiclasse [31]. 
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Assim digamos, por exemplo, que temos as saídas como [1.2, 0.9, 0.75], quando 

aplicamos a função softmax, obteríamos [0.42, 0.31, 0.27]. Agora podemos usá-los como 

probabilidades de que o valor seja de cada classe [29]. 

A função softmax é idealmente usada na camada de saída de um classificador, onde 

estamos tentando gerar as probabilidades para definir a classe de cada entrada [29]. 
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4 DADOS, ANÁLISES E EXPERIMENTOS 

 

Nesta seção será apresentado os dados utilizados na construção do classificador, as 

análises feitas sobre os mesmos e os resultados dos testes realizados com o modelo além das 

comparações com alguns projetos que usaram a mesma base de dados. 

 

4.1 Fonte de Dados 

 

Durante a busca dos dados a serem utilizados no desenvolvimento do projeto decidiu-

se utilizar um dataset disponível na Plataforma Kaggle. O conjunto de dados utilizado para 

construção do modelo de Deep Learning foi o dataset: Twitter Sentiment Analysis [32]. 

Este é um conjunto de dados de análise de sentimentos a nível de entidade do twitter, 

focado na linguagem inglesa. Dada uma mensagem e uma entidade, a tarefa consiste em julgar 

o sentimento da mensagem sobre a entidade. Há quatro classes neste conjunto de dados: 

Positivo, Negativo, Neutro e Irrelevante [32]. 

Assim esse dataset foi utilizada na construção do classificador de sentimentos. 

 

4.2 Analise Exploratória dos Dados 

 

Durante o ciclo de vida de projetos de aprendizagem profundo não há atalhos. Não 

podemos simplesmente saltar para a fase de construção do modelo após a escolha dos dados. 

Precisamos planejar a nossa abordagem de uma forma estruturada e a fase de análise 

exploratória de dados desempenha um enorme papel nesse sentido [33]. 

Existem várias técnicas para realizar a exploração e os próximos subtópicos explicaram 

os passos que foram utilizados nesse projeto. 

 

4.2.1 Informações Descritivas 

 

Neste passo foi feita uma verificação simples dos dados, onde foi observado as seguintes 

informações: 

• Dados existentes no dataset (colunas): 
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o Tweet ID: id do tweet (tipo numérico inteiro). 

o Entity: entidade (exemplo: empresa Apple) ao qual o texto está relacionado (tipo 

objeto string). 

o Sentiment: Os dados vieram etiquetados com os seguintes sentimentos: Positivo, 

Neutro, Negativo e Irrelevante, o ultimo sentimento são mensagens que não tem 

muita relevância para com a entidade ao qual este foi associado (tipo objeto 

string). 

o Tweet Content: corpo textual - mensagem/tweet - (tipo objeto string). 

 

• Quantidade de observações nos datasets (treino e teste): 

o Treino: dataset de treino possui cerca de 74682 observações com as 4 colunas já 

descritas acima. 

o Teste: dataset de treino possui cerca de 1000 observações com as 4 colunas já 

descritas acima. 

 

• Entidades: Foi verificado a existência de 32 entidades distintas entre elas estão: 

Microsoft, Nvidia, Amazon, Facebook entre outras. As mensagens que existem no 

dataset estão relacionadas a essas entidades, ou seja, essas mensagens trazem consigo 

os sentimentos relacionados as entidades aqui citadas. 

 

• Verificação de dados nulos 

o Dados de treino: foi observado a existência de 686 recordes com campos nulos. 

o Dados de teste: não foi encontrado nenhum recorde com campo nulo. 

 

4.2.2 Análise Estatísticas 

 

As visualizações de estatísticas de texto são técnicas simples, mas muito perspicazes. A 

seguir os passos tomados neste estágio [34]. 

• Número de caracteres presentes em cada mensagem: o gráfico a seguir mostra que a 

quantidade de caracteres das mensagens varia do tamanho mínimo zero a um valor 

próximo de 400, sendo sua grande porcentagem em mensagens possuindo menos de 200 

caracteres. 
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Figura 6. Quantidade de observações em relação ao número de caracteres por mensagens. Imagem adaptada de 

[35]. 

 

• Número de palavras que aparecem em cada mensagem: o gráfico a seguir mostra a 

quantidade de palavras dentro das mensagens e a quantidade de observações de tal 

número. Assim foi verificado que as mensagens possuem em sua maioria uma 

quantidade menor do que 40 palavras por mensagens. 

 

 

Figura 7. Quantidade de observações em relação ao número de palavras por mensagens. Imagem adaptada de 

[35]. 

 

• Foi verificado o comprimento médio das palavras por mensagem. Podemos verificar 

que o comprimento médio das palavras em cada mensagem é menor que 10 mas isso 

pode ter ocorrido devido a existencia das muitas stopwords. Stopwords é a definição 
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dada as palavras mais comumentes usadas na lingua, essas palavras são pequenas em 

sua maioria, podendo ser esse o motivo da média de comprimento ser baixa [34].  

 

 

Figura 8. Quantidade de Observações em relação ao comprimento médio das palavras por mensagem. Imagem 

adaptada de [35]. 

 

• Verificação de Stopwords: abaixo segue um gráfico que mostra as stopwords mais 

frequentes no conjunto de treinamento. 

 

 

Figura 9. Stopwords mais frequentes no conjunto de dados de treino. Imagem adaptada de [35]. 

 

• Verificar as palavras frequentes: abaixo segue um gráfico que mostra as palavras/tokens 

mais frequentes em nosso conjunto de dados. Dá para perceber que nas mensagens 

existem muitos caracteres especiais, números e pontuações que podem vir a prejudicar 

na hora que formos fazer a representação dessas mensagens para a criação do modelo. 
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Figura 10. Palavras (tokens) mais frequentes no conjunto de dados Imagem adaptada de [35]. 

 

• Foi verificado também a distribuição da quantidade de mensagens por sentimento no 

dataset. Podemos perceber que os dados estão um pouco desbalanceados principalmente 

em relação a classe irrelevante, isso dever ser levado em consideração na hora da 

modelagem do classificador e no momento que for feita a avaliação das métricas do 

mesmo. 

 

 

Figura 11. Quantidade de Observações por sentimento. Imagem adaptada de [35]. 

 

 

 

4.3 Dados de Treinamento 
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Depois de ter concluído a fase exploratória dos dados foi feito a preparação dos mesmos 

para o treinamento e teste, desde a divisão dos dados até o final do pré-processamento dos textos 

afim de gerar uma boa representação dos textos para passa-los na entrada da rede construída. 

Os passos feitos para a preparação dos dados foram: 

 

1. Conjunto de dados de treinamento dividido com uma taxa de 70% treinamento 

e 30% validação. 

2. Todos os passos de pré-processamento a seguir foram aplicados nos conjuntos 

de dados de treino e validação.   

3. Remoção dos valores Nulos do conjunto de dados descrito na seção pré-

processamento 3.2. 

4. Encodificação das classes descrito na seção pré-processamento 3.2. 

5. Normalização do tamanho das palavras descrito na seção pré-processamento 3.2. 

6. Remoção de caracteres indesejados descrito na seção pré-processamento 3.2. 

7. Remoção das Stopwords descrito na seção pré-processamento 3.2. 

8. Utilizado a técnica de lematização descrito na seção pré-processamento 3.2. 

9. Utilizada a técnica de tokenização descrito na seção pré-processamento 3.2. 

10. Vetorização das Mensagens descrita na seção pré-processamento 3.2. 

11. Utilizado as técnicas de padding descrito na seção pré-processamento 3.2. 

 

Depois de passar por todos esses passos, definimos a camada de input da rede como 

uma camada de embedding descrito na seção 3.3.2 com o intuito de fazer com que nossa rede 

aprendesse uma boa representação (word embedding) do conjunto de palavras passados ao 

mesmo tempo que a rede seria treinada. 

 

4.4 Experimento 1 - Modelo Inicial 

 

Depois que os textos dos conjuntos de treino e validação passaram pela etapa de 

preparação de dados descrita na seção 4.3, foi realizado os experimentos com o modelo inicial. 

Realizamos o treinamento do modelo passando os dados de treino e validação para o 

método “. fit” da rede, esse treinamento rodou durante 50 épocas para a construção do modelo 

e foi utilizado as métricas de acurácia e a função de perda “sparse categorical crossentropy” 

para a avaliação do mesmo, seu treinamento levou em média 1 hora de treinamento no Colab, 
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ou Kaggle, usando a GPU para o processamento. A seguir uma tabela e gráfico com os 

resultados obtidos neste experimento. 

 

 

Figura 12. Taxas de perda e acurácia do modelo inicial ao longo das 50 épocas de treinamento. Imagem adaptada 

de [35]. 

 

 

 Taxa de Erro Taxa de Acurácia 

Treino 0.052 97% 

Validação 0.978 87% 

Teste 0.538 94% 

Tabela 1. Resultados das Métricas, taxa de erro (sparse categorical crossentropy) e acurácia dos testes do 

modelo inicial. 

 

Depois de analisar os resultados obtidos tanto na tabela 1 quanto na figura 12, foi 

observado alguns comportamentos estranhos, um deles seria que a taxa de acurácia no conjunto 

de testes 94% está próxima da taxa obtida no conjunto de treino 97%, porém a taxa de erro 

0.538 do conjunto de teste está mais próxima da obtida no conjunto de validação 0.978 e ao 

observar a figura 13, verificamos que a curva da taxa de erro calculado pela função de perda 

“sparse categorical crossentropy” no conjunto de validação tem um comportamento não 

esperado, aonde em determinado ponto a taxa de erro começa a aumentar sendo um indicativo 

da possível ocorrência de erros como overfitting [38]. Assim foi decido fazer algumas 

modificações na rede afim de evitar tais erros. 
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4.5 Experimento 2 – Modelo Final  

 

Antes de fazer o experimento foram feitas as modificações que achamos mais adequadas 

para evitar os erros apresentados no experimento inicial descrito na seção 4.4. Assim esta seção 

será dividida em uma parte para explicar as modificações e a outra para explicar o novo 

experimento e seus resultados. 

 

4.5.1 Modificações 

 

Devido ao problema encontrado no experimento inicial da seção 4.4 foi planejado 

acrescentar algumas estrategias para evitar o overfitting da rede. As estrategias adotadas para 

evitar o overfitting foram: 

• Diminuir a complexidade da rede: foi diminuído o número de neurônios usados ao 

longo da rede. 

• Dropout: foi adicionado uma camada extra Dropout antes da camada LSTM. 

• Regularização [37]: foi adicionado funções de regularização na camada Bidirecional 

LSTM e na camada densa posterior. Essas funções adicionam uma penalidade a função 

de perda, penalizando pesos grandes. A função que teve um melhor desempenho foi a 

função L1L2 que combina a robustez e flexibilidade das funções L1 e L2. Os valores 

utilizados para cada uma foram feitos com uma busca de tentativa e erro tendo os valores 

usados expressado o melhor resultado. 

o L1 A regularização, também chamada de regressão lasso, adiciona o "valor 

absoluto de magnitude" do coeficiente como um termo de penalização à função 

de perda [36]. 

o L2 A regularização, também chamada regressão da ridge, adiciona o "valor da 

magnitude ao quadrado" do coeficiente como termo de penalização à função de 

perda [36]. 

 

O regularizador que foi utilizado chama-se L1L2 disponível pelo Keras, o mesmo faz 

uma aplicação das penalidades de ambas funções nas camadas da rede que são utilizadas. 

 

4.5.2 Experimento com Modificações 
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Depois que os textos dos conjuntos de treino e validação passaram pela etapa de 

preparação de dados descrita na seção 4.3 e feito as modificações na rede inicial descritos na 

seção 4.5.1 foi realizado os experimentos com o novo modelo. 

Realizamos o treinamento do modelo passando os dados de treino e validação para o 

método “. fit” da rede, esse treinamento rodou durante 50 épocas para a construção do modelo 

e foi utilizado as métricas de acurácia e a função de perda “sparse categorical crossentropy” 

para a avaliação do mesmo, seu treinamento levou em média 1 hora de treinamento no Colab, 

ou Kaggle, usando a GPU para o processamento. A seguir uma tabela e gráfico com os 

resultados obtidos neste experimento. 

 

 

Figura 13. Resultados – taxas de perda e acurácia - do modelo final durante 50 épocas de treinamento. Imagem 

adaptada de [35]. 

 

 

 Taxa de Erro Taxa de Acurácia 

Treino 0.177 95% 

Validação 0.513 85% 

Teste 0.325 93% 
Tabela 2. Resultados das Métricas, taxa de erro-loss e acurácia dos testes do modelo final modificado. 

 

Depois de analisarmos os novos resultados, observamos que apesar das taxas não 

apresentarem grandes mudanças em relação aos resultados obtidos na seção 4.4, chegando a 

piorar um pouco, olhando principalmente para a curva da taxa de erro, do conjunto de validação, 

calculada pela função “sparse categorical crossentropy” podemos perceber que a mesma 
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demonstra um bom resultado ao estar acompanhando a curva do conjunto de treinamento sem 

ser necessariamente igual [38] completamente diferente do que observamos na figura 12, o que 

nos leva a conclusão de que as modificações, explicadas em 4.5.1, impactaram de forma 

positiva na rede.  

Assim podemos dizer que conseguimos construir um classificador de sentimentos, com 

uma taxa de 93% de acurácia no conjunto de testes e que tem um comportamento bom de acordo 

com os gráficos das métricas. 

 

4.6 Baselines  

 

Nesta seção iremos revisar alguns projetos que foram feitos usando a mesma base de 

dados que utilizamos para o desenvolvimento do classificador mostrando as diferentes 

abordagens usadas. 

 

• Exemplo 1: 

Neste exemplo temos um projeto com o título de Sentiment Analysis in Twitter 93% Test 

Acc [49]. Como o próprio título sugere, este projeto obteve resultados semelhantes ao 

classificador desenvolvido na seção 4.5. 

No desenvolvimento desse projeto foi feita o processamento dos textos, com a 

eliminação de pontuações, lematização, vetorização usado TF-IDF além de outros passos. Já na 

parte dos modelos foram utilizados alguns com ênfase em dois: Logistic Regression que obteve 

91% de acurácia e Neural Network com 93% de acurácia [49]. 

 

• Exemplo 2: 

Neste exemplo foram abordados mais a utilização de modelos de machine learning. A 

seguir os modelos usados e seus resultados [50]. 

o Multinomial Naive Bayes: acurácia de 64%.  

o Logistic Regression: acurácia de 69%. 

o Decision Tree: acurácia de 76%. 

o Random Forest: acurácia de 87%. 

 

Dado os resultados desse exemplo é bastante interessante quando observamos o 

resultado obtido pela Logistic Regression e comparamos com o Logistic Regression do 
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exemplo 1, enquanto o do exemplo 1 obteve cerca de 91% de acurácia o deste exemplo obteve 

cerca de 69% valores bem diferentes o que pode indicar a diferença no processamento dos 

textos e o impacto de que tal passo causa no resultado final. 

 

• Exemplo 3:  

Aqui temos um exemplo que utiliza LSTM para criar o classificador de sentimentos, 

semelhante ao classificador desenvolvido neste trabalho porem sem a utilização das camadas 

bidirecionais e as funções de normalização nas camadas [51]. O resultado no conjunto de teste 

chega a 90% de acurácia porem quando observamos o gráfico das métricas, mais precisamente 

o gráfico da taxa de erro podemos verificar que o comportamento é semelhante aos resultados 

obtidos na seção 4.4 [51]. 

 

Por fim, podemos perceber que apesar de as semelhanças das abordagens, aqui citadas, 

com o classificador construído neste trabalho temos alguns pontos diferentes tais como 

utilização da camada bidirecional e as funções de regularização. 
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5 CONCLUSÕES E TRABALHOS FUTUROS 

 

Neste trabalho foi apresentado uma solução para a classificação de sentimentos através 

de textos da plataforma digital Twitter utilizando estrategias de aprendizagem profunda. O 

classificador foi desenvolvido com o intuito de categorizar os textos nas classes: Positivo, 

Negativo, Neutro e Irrelevante. Por sua vez apresentou um acurácia em cerca de 93% sobre os 

dados de teste demonstrando assim um resultado aceitável, visto que, está bem próximo dos 

resultados obtidos nos exemplos dos baselines citados na seção 4.6.  

Durante o desenvolvimento foi experenciado a importância de um bom pré 

processamento dos textos onde o mesmo tem um grande impacto no desempenho do modelo 

além de outro ponto que foi evidenciado é que dependendo dos dados a rede neural deverá 

sofrer alguns ajustes para que venha a demonstrar o seu melhor resultado como foi o caso do 

classificador que teve que utilizar funções de regularização para melhorar o desempenho e fugir 

de erros como o overfitting.  

Desta forma, agora temos um melhor entendimento das áreas abordadas nesse trabalho, 

Processamento de Linguagem Natural e Aprendizagem Profunda, além da importância de seus 

usos nos desafios que temos atualmente.  

 

5.1 Trabalhos Futuros 

 

Depois de adquirir e aprofundar o conhecimento nas áreas abordadas – Aprendizagem 

Profunda e PLN – temos em mente a vontade de expandir o trabalho aqui apresentado 

acrescentando novas técnicas ou usando-o como base para alcançar novos objetivos. 

Como exemplo de desenvolvimentos futuros, temos o intuito de expandir o 

desenvolvimento da abordagem aqui apresentada acrescentando novos tipos de pré 

processamento como a utilização de embeddings pré-treinados, aumento na quantidade de 

dados usados para treinamento e quem sabe tentar generalizar a rede para não só classificar 

sentimentos de tweets, textos do Twitter, e sim, se possível tentar generalizar a rede para 

classificação de sentimentos em texto no geral independente de sua fonte. Outro ponto que 

sugerimos é o da possibilidade de usar o classificador aqui desenvolvido para compor uma 

solução para o desafio de predizer ações na bolsa de valores usando sentimentos. 

Assim esperamos que esse trabalho possa servir de base ou inspiração para projetos 

futuros. 
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