Reestruturacao e aperfeicoamento de uma ferramenta para
deteccao de conflitos semanticos de codigo

Jodo Pedro Henrique Santos Duarte!

!Centro de Informética — Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7.851 — 50.732-970 — Recife — PE — Brazil

Jjphsd@cin.ufpe.br

Abstract. In software development, in order to maximize collaboration and pa-
rallelize development, it is common to use branches which are later integrated
through merges. One of the main problems in this integration are merge con-
flicts, which negatively affect the project due to the cost involved in its resolution.
Although there are tools capable of detecting textual conflicts, semantic conflicts
- where changes in software behavior occur - still lack efficient detection tools.
The present work proposes to enhance a semantic conflict detection tool based
on automated tests, as well as restructure and improve overall code quality of it.

Resumo. No desenvolvimento de software, a fim de maximizar a colaboragdo e
o desenvolvimento em paralelo, é comum a utilizacdo de branches que sdo pos-
teriormente integradas através de merges. Um dos principais problemas nesta
integracdo sdo os conflitos de merge, que afetam o projeto negativamente pelo
custo envolvido em sua resolugdo. Embora existam ferramentas capazes de de-
tectar conflitos textuais, conflitos semdnticos - onde ocorrem mudangas no com-
portamento do software - ainda carecem de ferramentas eficientes de detecgado.
O presente trabalho propde o aperfeicoamento de uma ferramenta de detec¢do
de conflitos semdnticos baseada em testes automatizados, como também uma
reestruturacdo com o objetivo de incrementar a qualidade do cédigo.

1. Introducao

O desenvolvimento de software € um processo essencialmente colaborativo. Em diversos
projetos, as tarefas sao distribuidas entre os desenvolvedores, que trabalham utilizando
o conceito de branches. Branches permitem que a implementacdo de diferentes funci-
onalidades do software sejam realizadas de maneira independente sendo posteriormente
integradas através de processos de merge.

Embora esta alternativa facilite o gerenciamento do projeto, branches e merges
trazem com si o surgimento de conflitos de merge, que ocorrem durante o processo de
integracdo das modificagdes de duas branches distintas. Alguns destes conflitos ja sdo
detectados por ferramentas existentes atualmente, entretanto, especialmente na ocasido
dos conflitos semanticos em tempo de execugdo - onde mudancas realizadas em diferen-
tes partes do software acabam resultando em um comportamento diferente em tempo de
execucao - ainda carecem de ferramentas eficientes de deteccao [Cavalcanti et al. 2017]].

[Silva et al. 2020] propde a ferramenta SMAT, que realiza a detec¢do de conflitos
semanticos por meio da observagdo automatica de mudancas de comportamento entre as
diferentes versdes do software presentes no processo de merge. Essa deteccao € possivel

gracas a utilizacdo de ferramentas que realizam a geracdo de testes unitdrios de forma
automadtica, permitindo que especificacdes parciais de cada versdo sejam construidas e
posteriormente comparadas a partir de uma heuristica proposta pelos autores.

Apesar de resultados positivos ja terem sido observados em SMAT, a
implementagdo da ferramenta enfrenta problemas como a baixa modularidade e dificul-
dade de extensibilidade e manuten¢do do cddigo fonte, tal como a baixa configurabi-
lidade, ndo permitindo customizar aspectos importantes da ferramenta, e a dificuldade
de reproducdo dos experimentos conduzidos pelo cardter ndo-deterministico presente na
ferramenta. O presente trabalho consiste em uma reestruturacdo e um aperfeicoamento
desta ferramenta, a nivel de arquitetura e implementacdo, visando solucionar as lacunas
supracitadas.

Na sec¢do 2, discutimos um pouco mais a respeito dos conceitos tedricos por
trds dos conflitos de integracdo de cddigo e solugdes existentes na literatura para a sua
deteccao. Na secdo 3, apresentamos a ferramenta formulada por [Silva et al. 2020] para
deteccao de conflitos semanticos, discutindo suas funcionalidades, implementagdo e apre-
sentando alguns pontos de melhoria. Na secdo 4, discutimos como os pontos de me-
lhoria citados previamente foram implementados a fim de aperfeicoar a ferramenta de
[Silva et al. 2020]. Por fim, na sec@o 5, apresentamos e discutimos os resultados obtidos,
bem como apresentamos possiveis trabalhos futuros.

2. Conflitos de Integracao de Codigo

Conforme mencionado previamente, durante o processo de desenvolvimento de software
€ comum que desenvolvedores realizem suas tarefas em paralelo utilizando branches que
sdo posteriormente integradas utilizando merges.

Um cendrio de merge é geralmente composto por dois commits parents que serao
integrados, usualmente denominados Left e Right e um commit resultado da integracao
entre Left e Right, denominado Merge. Além destes commits, adicionaremos também a
informacao do primeiro commit ancestral que é comum ao tronco de Left e Right, aqui
denominado Base [SILVA 2022]|.

Left
class Aluno {
String cpf;
String nome;
} M&r‘je
Base
class Aluno {
class Aluno { String cpf;
String nome; String nome;
} R?ght String email;
}
class Aluno {
String nome;
String email;
}

Figura 1. Visualizagdao simplificada de um cenario de integragao de diferen-
tes versoes de codigo. O commit merge é gerado pela integracdo das
modificagoes introduzidas em left e right

Embora branches e merges permitam aumentar consideravelmente a produtivi-
dade de um time, o processo de integracdo pode resultar em conflitos, que acabam afe-
tando a produtividade do time - haja vista a deficiéncia de ferramentas que resolvam estes
conflitos automaticamente, como, em casos mais extremos, afetando a corretude do sis-
tema - na ocasiao em que os conflitos sequer sao detectados [Cavalcanti et al. 2017]].

2.1. Conflitos de merge

A fim de explorar esta primeira categoria de conflitos, suponhamos o seguinte cendrio:
dois desenvolvedores, Jodao e Laura, trabalham na mesma equipe de desenvolvimento de
software para a UFPE. Este projeto possui inicialmente a classe Aluno apresentada na

Figura

class Aluno {
private UUID codigo;
private String cpf;
private String email;

Figura 2. Classe de Aluno presente no projeto.

Durante uma de suas tarefas, Jodo percebeu que é possivel cadastrar um estudante
com um email invdlido. Em uma nova branch denominada feat-validacao-email, Joao
decide adicionar um novo método para realizar a validacdo de um endereco de email
fornecido chamado validarEmail(email).

Simultaneamente, Laura percebe que um defeito pelo qual ela é responsével é
fruto da auséncia de validagdo do CPF. De forma similar ao raciocinio de Jodo, em uma
nova branch fix-validacao-cpf, ela decide também adicionar um método utilitidrio que
realiza a validacdo do CPF chamado validarCpficpf). A Figura [3] mostra as diferentes
versoes do cédigo de Jodo e Laura.

Joao (feat-validacao-email) Laura (fix-validacao-cpf)
class Aluno { class Aluno {
private UUID codigo; private UUID codigo;
private String cpf; private String cpf;
private String email; private String email;
void validarEmail (String email) { void validarCpf (String cpf) {

(...) (...)

} }

Figura 3. A esquerda, a modificacdo introduzida por Jodo em sua branch. A
direita, a modificacao introduzida por Laura em sua branch

Ao realizar a integracdo das modificagdes de Jodo e Laura, ocorre um conflito de
merge: ambos os desenvolvedores introduziram modificagdes diferentes no mesmo trecho
de um mesmo arquivo. Este tipo de conflito € detectado pela ferramenta de controle

de versdo, que altera o arquivo da classe Aluno para reportar a ocorréncia do conflito,
utilizando uma notagao especial, conforme mostra a Figura

class Aluno {
private UUID codigo;
private String cpf;
private String email;

<LLLLLLLLLLLLKL
void validarEmail (String email) {

void validarCpf (String cpf) {
(...)
}

SO 5>>>

}

Figura 4. Classe Aluno apos a integracao das modificacoes realizadas por Joao
e Laura. As linhas 6, 10 e 14 contém caracteres adicionados automatica-
mente pelo sistema de gerenciamento de versao para assinalar um conflito
de merge

Ainda que este tipo de conflito seja de facil deteccdo, a estratégia de merge padrao
do sistema de controle de versdao (merge nao-estruturado) ndo consegue resolvé-lo auto-
maticamente, exigindo uma interven¢do manual do desenvolvedor para que o conflito seja
solucionado. A literatura propde a utilizagdo de ferramentas que possuem conhecimento a
respeito da linguagem de programacao utilizada, para construir merges semi-estruturados
e estruturados de forma que conflitos semelhantes ao apresentado no exemplo possam ser
solucionados sem ser necessdria a interven¢do do desenvolvedor [Seibt et al. 2021]].

2.2. Conflitos semanticos

Apesar dos conflitos de merge ja terem considerdvel impacto no processo de desenvol-
vimento, exigindo que um desenvolvedor interrompa suas atividades para resolvé-los,
conflitos de integracdo podem aparecer de diferentes formas, potencialmente causando
ainda mais problemas do que os conflitos ja discutidos.

Em algumas ocasides, mesmo que conflitos de merge nao sejam reportados, o
resultado da integracdo ainda pode resultar em uma versdao invdlida do software, seja
por um problema de compilacdo ou por ter a sua corretude afetada, como ilustrado mais
a seguir. Neste trabalho, utilizaremos a nomenclatura adotada por [SILVA 2022] para
ambos os cendrios supracitados, os quais discutimos com mais profundidade nas proximas
sessoes.

2.2.1. Conflitos semanticos em tempo de compilacao

A fim de discutir essa categoria de conflitos de integracdo, suponhamos o seguinte exem-
plo, ainda dentro do contexto de uma equipe de desenvolvimento de software académico

na UFPE. Desta vez, Jodo estd trabalhando na refatoracdo de uma classe no projeto res-
ponsavel por realizar chamadas a uma API externa, cuja implementacdo inicial € mostrada
pela Figura[5]

class GovApiService ({
public Student getStudentFromGov (Cpf aCpf) {
(...)

Figura 5. Cddigo Java da versao inicial da classe modificada por Joao

Durante a refatoragdo, Jodo optou por alterar o nome do método getStudentFrom-
Gov para fetchStudentFromGov. Em paralelo e em outra branch, Laura esta desenvol-
vendo uma nova funcionalidade que realizard uma chamada a API externa utilizando a
classe modificada por Jodo. Por uma falha de comunicacio e planejamento, Laura ainda
ndo possui a versdo atualizada de Jodo e, portanto, realiza a chamada utilizando o nome
getStudentDataFromGov.

Joao

class GovApiService ({

public Student fetchStudentFromGov (Cpf aCpf) {
(...)

Laura
class AlunoController {
public Student createStudent (Cpf aCpf) {
Student aStudent = govService.getStudentFromGov (aCpf);
(...)

Figura 6. Na parte superior, a modificagcao introduzida por Joao em um arquivo (a
renomeacao de um método). Ja na parte inferior, a modificacao introduzida
por Laura em outro arquivo (que envolve uma chamada ao método que foi
renomeado por Joao).

Ao realizarem a integracdo deste codigo, a ferramenta de versionamento de c6digo
nao reporta nenhum conflito de merge, de fato, as mudancas ocorreram em arquivos dife-
rentes. Entretanto, a nova versao resultado da integracdo de ambas as versdes nao passa
nas checagens de integracdo continua do projeto, sendo reportado um erro de compilacgao
do tipo simbolo ndo-existente, resultado da invocacao do método getStudentFromGov por
right, método este, que foi renomeado na classe GovApiService em left.

Mesmo que, a primeira vista, a situagdo demonstrada acima possa parecer ter
ocorréncia rara em ambientes reais de desenvolvimento de software, este tipos de confli-
tos ocorrem com considerdvel frequéncia. Além disso, diferentemente dos conflitos de

merge, que possuem ferramentas maduras para detec¢do e ferramentas promissoras para
a sua solucdo, conflitos em tempo de compilagdo geralmente exigem que os proprios de-
senvolvedores realizem correcdes manualmente de modo que o software seja compilavel
novamente [Da Silva et al. 2022]], custando tempo e qualidade para o projeto.

2.2.2. Conflitos semanticos em tempo de execucao

Até aqui, discutimos categorias de conflitos que, apesar de afetarem a produtividade,
ainda s@o detectados durante a etapa de desenvolvimento, inclusive ja dispondo de ferra-
mentas que conseguem detecta-los com certa facilidade. Nesta secdo, discutiremos uma
categoria de conflitos que surgem durante integracdes que geram versdes compilaveis do
software, mas que em tempo de execugao fornecem resultados diferentes dos esperados.

A fim de compreender como estes conflitos podem ocorrer na pratica, tomemos
como exemplo a seguinte situacdo: suponha que dois desenvolvedores estdo trabalhando
no método de validacdo de uma determinada classe de forma independente. O cddigo
resultado da integragdo de ambas as contribui¢des estd representado na Figura[7]

class Aluno {
public static void validarAluno (String email) {
StringUtils.assertMinLength (email, 15);

(...)
StringUtils.assertMaxLength (email, 10);

Figura 7. Codigo Java resultado da integracao entre as versées. A linha 3 é
oriunda de uma contribuicao de left, enquanto a linha 5 é oriunda de right.

Observemos a auséncia de conflitos de merge, de fato, as modificacdes ocorrem
em trechos distintos do cdédigo, e que a versdao obtida apds a integracdo é compildvel,
apontando a auséncia de conflitos semanticos em tempo de compilacdo. Todavia, se exe-
cutarmos o programa resultante, observamos um comportamento diferente do esperado.

Analisando as versdes a serem integradas de forma isolada, podemos extrair
especificagdes implicitas do comportamento esperado por cada desenvolvedor ao reali-
zar as suas modificagdes. No exemplo da Figura |/, enquanto left especifica que o email
deve ter no minimo 15 caracteres, right especifica que o valor ndo pode ultrapassar 10 ca-
racteres. Embora estas especificacdes estejam implementadas corretamente em ambas as
versoes, a coexisténcia de ambas € logicamente inconsistente resultando em um programa
que lanca exceg¢des para entradas que seriam aceitas apenas por left ou right.

Esta situacdo aponta a presenca de um conflito durante a integracdo que se mani-
festa apenas em tempo de execucao. Como a deteccao desta categoria de conflitos carece
de ferramentas automaticas, as ultimas barreiras para a deteccdo destes conflitos em uma
equipe € a adocao de boas praticas como a utilizacdo de suites de testes automatizadas e
politicas de revisdes de codigo. Mesmo assim, inclusive projetos que possuem boa cober-
tura de testes e politicas estritas de revisdo correm o risco de negligenciar tais conflitos,

permitindo que estes cheguem ao software em producao [SILVA 2022].

2.2.3. Detectando conflitos semanticos em tempo de execucao

Detectar conflitos semanticos em tempo de execugao possui elevada dificuldade. De fato,
detectar tais conflitos envolveria construir uma ferramenta que fosse capaz de compre-
ender o comportamento esperado do software, e o efetivamente implementado em cada
um dos parents envolvidos na integracdo, podendo entdo avaliar a existéncia de inter-
feréncias e potenciais conflitos entre cada uma das versdes. Entretanto, neste contexto,
esta avaliacdo € um problema que nao € sequer computavel [Cavalcanti et al. 2017]].

Mesmo assim, solucdes heuristicas sdo propostas na literatura, geralmente utili-
zando ferramentas de analise estatica, a fim de detectar tais conflitos. Neste trabalho, fo-
caremos na ferramenta SMAT, proposta por [Silva et al. 2020], que utiliza uma estratégia
diferente das apresentadas até entao.

3. Ferramenta SMAT

Conforme apresentado na secdo anterior, detectar conflitos semanticos em tempo de
execucdo € um processo dificil e ainda s@o poucas as propostas de ferramentas capazes
de atacar esse problema de forma eficaz. Neste contexto, [Silva et al. 2020] propde a fer-
ramenta SMAT que utiliza uma estratégia diferente das utilizadas por outras ferramentas
que possuem a mesma finalidade.

Para o método modificado onde se quer investigar a ocorréncia de conflitos
semanticos, aqui denominado método alvo, SMAT utiliza ferramentas que realizam
a geracdo automadtica de suites de testes ja propostas na literatura, como Evosuite
[Eraser 2018]] e Randoop [Pacheco et al. 2007]], para construir especificacdes parciais do
método alvo em ambos os parents. Como exemplo, suponha o teste da Figura (8] que es-
pecifica parcialmente a modificag¢do introduzida por right no exemplo da se¢do anterior.

@Test
public void test () {
Exception e = assertThrows (StringException.class, () —> {
String email = "l2caracteres"; // string com tamanho 12

Aluno.validarAluno (email) ;

}) i
assertTrue (e.getMessage ()
.equals ("String nao pode ter mais que 10 caracteres");

Figura 8. Caso de teste de exemplo para a modificacao introduzida por right no
exemplo da Figura(7|

SMAT entao realiza comparacoes destas especificacdes em cada versdo do soft-
ware através da execucdo dos casos de teste gerados em cada uma das versdes contidas
no cendrio de merge. O resultado da execug@o dos casos de testes sdo avaliados com o
objetivo de detectar conflitos que atendam aos seguintes critérios heuristicos:

* A execucao do teste falha em pelo menos um dos parents e passa em Base e Merge.
Analogamente, um conflito também € detectado se a execugdo do teste passa em
pelo menos um dos parents mas falha em Base e Merge.

* A execugao do teste falha em ambos os parents e em Base, mas passa em Merge.
Analogamente, um conflito também € detectado se a execugao do teste passa em
ambos os parents e em Base mas falha em Merge.

Como o caso de teste da Figura[§|passa na versdo do c6digo de right e falha em base, afinal
nenhuma validagdo a respeito do tamanho da String € realizada. Embora o teste também
falhe em merge, a excegdo levantada pela validacdo € pelo fato da String de teste possuir
comprimento inferior ao permitido, comportamento introduzido por left. Este cendrio de
interferéncia satisfaz o primeiro critério para deteccao de um conflito semantico, sendo
entdo reportado por SMAT ao usudrio.

Por outro lado, suponha o cendrio da Figura [9] que é o cddigo resultado da
integracdo de duas branches diferentes, e as linhas ocultas ndo modificam o valor da
varidvel x. A Figura[I0]representa um teste gerado como uma especificagio parcial para
a modificagdo introduzida por right.

public static int some_random_method() {
int x = 0;
(...)
x += 1;
(...)
x += 1;
(.

..)
if (x >= 2) {
throw new RuntimeException();

}

return x;
Figura 9. Neste cenario, a linha 4 foi introduzida por /eft e a linha 6 por right.

@Test (expected = None.class)

public void test () {
int result = RandomClass.some_random_method();
assertEquals (10, result);

Figura 10. Caso de teste de exemplo para a Figura |§]

E valido observar que, tanto em base quanto em ambos 0s parents, o teste da Fi-
gura[10] passa (afinal, a varidvel x nunca possui o valor 2). Entretanto, quando integradas,
as modificagdes introduzidas por left e right acabam fazendo com que a variavel x assuma
o valor 2, lancando uma excec¢do em tempo de execugdo e quebrando o teste em merge,
satisfazendo assim o segundo critério heuristico de SMAT.

A fim de evitar que testes que tenham comportamento flaky, isto €, que ndo apre-
sentam resultados consistentes ao longo de varias execugdes, possam interferir no re-

sultado fornecido pela ferramenta, SMAT realiza 3 execu¢des de cada caso de teste,
descartando-o na andlise na presen¢a de qualquer disparidade entre os resultados.

Outra preocupacdo existente é com testes que venham a falhar por exercitarem
elementos que nao estao presentes em alguma versao do cédigo que estd sendo analisado
- suponha, por exemplo, a introdu¢@o ou remog¢ao de um método em algum dos parents.
Neste contexto, a avaliagc@o seria inconclusiva e, portanto, tais testes sao descartados du-
rante a analise.

3.1. Arquitetura e Implementacao de SMAT

A implementagdo original de SMATE] € realizada em Python com aproximadamente 3800
linhas de cddigo, e € fruto de um fork da ferramenta Nimrod, originalmente utilizada para
experimentos com teste de mutacao.

A ferramenta pode ser estruturada conceitualmente como sendo composta por 4
modulos que coincidem com as 4 etapas sequenciais da execugdo de SMAT: geracdo das
suites de testes (Test Generation), execucao destas suites (7est Execution), andlise dos
resultados (Dynamic Analysis) e geracdo de relatérios (Output Generation), estruturados
arquiteturalmente na aplicagdo como mostra a Figura [1]

SMAT

‘ Test Generation

‘ Output Generation

‘ Test Execution Dynamic Analysis

Figura 11. Diagrama da macro-arquitetura de SMAT.

SMAT recebe como entrada um ou mais cendrios de merge dispostos em um ar-
quivo CSV que obedece a seguinte estrutura:

* Nome do projeto a ser analisado;

* Um booleano indicando se o cendrio deve ser analisado ou nao;

* Seguem 4 colunas com as hashes dos commits que serdo analisados (base, lefft,
right e merge);

* Fully-Qualified Class Name (FQCN) da classe alvo. Mais de uma classe pode ser
informada utilizado o caractere — como separador;

* Assinatura do método alvo. Somente um método pode ser fornecido. Os argumen-
tos do método devem ser informados utilizando o caractere — como separador;

Thttps://github.com/spgroup/SMAT/tree/ae33ccdc49

https://github.com/spgroup/SMAT/tree/ae33ccdc49

* Seguem 4 colunas com o caminho para os JARs de cada SHA (base, left, right e
merge). Estas versdes sdo necessarias para que sejam informadas ao gerador de
testes.

3.2. Limitacoes e pontos de melhoria de SMAT

Apesar de SMAT ter apresentado resultados positivos na deteccdo dos conflitos, tendo
sido capaz de detectar corretamente mais de 30% dos casos presentes na amostra estudada
em trabalho anterior [Silva et al. 2020], a ferramenta possui algumas limitacdes e pontos
de melhoria relacionados a sua implementacao e arquitetura.

Pela natureza exploratoria das ferramentas de geracdo de testes utilizadas, €
possivel que o método alvo da andlise ndo seja exercitado por nenhum caso de teste
que atenda aos critérios heuristicos implementados. Assim, como SMAT ndo leva em
consideracdo os métodos executados em um caso de teste durante a analise, é possivel
que um conflito seja reportado sem que o método alvo tenha sido executado, consistindo
assim em um falso positivo.

Junto a isto, SMAT possui a limitacdo de conseguir analisar apenas um dnico alvo
por execucao. Por exemplo, se no cendrio da se¢do anterior estivéssemos interessados em
executar a andlise para outro método, teriamos que realizar uma nova chamada a SMAT
e, por consequéncia, realizar uma nova chamada as ferramentas geradoras de testes e
novas chamadas a execu¢do dos testes, o que aumentaria consideravelmente o tempo de
execucao da ferramenta.

Do ponto de vista arquitetural, embora as 4 etapas da execu¢ao possuam um iso-
lamento conceitual, a atual hierarquia dos médulos, representada no diagrama da Figura
11} apresenta um acoplamento entre a geracdo, execucdo e posterior andlise dos testes
gerados. Desta forma, um desenvolvedor que esteja encarregado de adicionar um novo
gerador de testes, ou mesmo corrigir um bug relacionado a um deles, deveria estar atento
e conhecer detalhes relacionados a outros aspectos da aplicacdo, aumentando a comple-
xidade envolvida neste processo representando uma drea onde a modularidade do cédigo
pode ser melhorada [Ousterhout 2018]].

Ainda no contexto arquitetural, a aplicacdo possui um modelo anémico, geral-
mente representando conceitos do dominio da aplicacdo utilizando-se de estruturas de
dados como listas. A auséncia de um modelo estruturado e que explicite conceitos re-
levantes para o funcionamento da aplicagdao aumenta drasticamente a complexidade do
software, fazendo com que, a longo prazo, sua compreensao, manuten¢do € extensao
torne-se impraticavel [Evans 2004].

Outro aspecto importante a ser discutido na implementacao de SMAT ¢ a dificul-
dade de customizacdao do comportamento da ferramenta em tempo de execucdo. Supo-
nhamos, como exemplo, que estamos interessados em alterar o tempo disponivel para a
geracao de testes utilizando a ferramenta Evosuite. A Figura [12| mostra o método res-
ponsavel pela chamada de Evosuiteﬂ

Zhttps://github.com/spgroup/SMAT/blob/ae33ccdc49/nimrod/tools/evosuite. py#L.16

https://github.com/spgroup/SMAT/blob/ae33ccdc49/nimrod/tools/evosuite.py#L16

20

21

22

23

24

25

class Evosuite (SuiteGenerator) :
(...)
def exec _tool(self):
params = [

'-Jar', EVOSUITE,
'-projectCP', self.classpath,
'-class', self.sut_class,
'-Dtimeout', '10000"',
'-Dassertion_strategy=all',
'-Dp_reflection_on_private=0"',
'-Dreflection_start_percent=0",
'-Dp_functional_mocking=0",
'-Dfunctional_mocking_percent=0",
'-Dminimize=false’',
#'-Dassertions=rfalse’,
'-Dsearch_budget=300",
'-Djunit_check=false',
'-Dinline=false’',
'-DOUTPUT_DIR='" + self.suite_dir

params += self.parameters

return self._exec (xtuple (params))

(...)

Figura 12. Coddigo do método responsavel pela chamada de Evosuite para a
geracao de suites de testes para uma determinada classe.

Neste cenario, observemos que nao é possivel realizar essa alteracao a) sem mo-
dificar diretamente o codigo fonte, b) sem conhecer os argumentos disponiveis para a
execucao de Evosuite, neste caso seria necessdrio modificar o atributo -Dsearch-budget
[Eraser 2018]]. Enquanto a introducdo da configurabilidade em tempo de execugdo pode
ser vista aqui como somente um simples aperfeicoamento, esta modificagdo abre a pos-
sibilidade da introducdo de uma interface comum e extensivel para a geracao de suite
de testes que permita que o usudrio realize a customizagdo de aspectos da execucdo de
SMAT, como escolher quais geradores serdo executados, como também customizar ca-
racteristicas dos préprios geradores, como o tempo de busca exploratéria disponivel e
a utilizacdo de geracdo deterministica, sem que seja necessario conhecer os detalhes da
implementagao [Ousterhout 2018]].

Outro ponto que € valido ressaltar é que, pelo cariter nao-deterministico da
implementagdo utilizada na geracdo de suite de testes, execugdes sucessivas de SMAT
no mesmo cendrio podem levar a resultados diferentes. Esta caracteristica torna dificil a
reproducdo dos experimentos conduzidos, algo importante para a valida¢ido dos resulta-
dos apresentados por [Silva et al. 2020] e que poderia ser resolvida tornando a etapa de
geragdo de testes deterministica, mesmo que os algoritmos de geracdo tenham um deter-
minado grau de aleatoriedade.

Por tltimo, é importante observar que SMAT nao possui anotacdes de tipos nos

elementos utilizados em seu c6digo. Apesar de Python ser uma linguagem que consegue
determinar o tipo de suas varidveis somente em tempo de execugao, € possivel utilizar fer-
ramentas que introduzem anotacao de tipos [Lehtosalo et al. 2021]] que podem ser poste-
riormente analisadas de maneira estdtica, melhorando significativamente a produtividade
[Hanenberg 2009]] e a manutencao do software [Kleinschmager et al. 2012].

4. Atacando as lacunas de SMAT

Conforme discutido anteriormente, o objetivo deste trabalho é de propor
aperfeicoamentos e solugdes para as limitagdes encontradas em SMAT. Nas secoes
seguintes, discutimos as estratégias utilizadas durante este processo.

4.1. Alterando a interface de entrada

A primeira proposta ofertada neste trabalho foi a de construir uma nova interface para
o fornecimento da lista dos cendrios a serem analisados por SMAT com o objetivo de
facilitar a utilizagdo da ferramenta pelos seus clientes. Para isto, decidimos alterar a
formatacdo da entrada para utilizar arquivos JSONs, em substitui¢do aos antigos CSVs,
para permitir a representacao de estruturas mais complexas e substituir nota¢des exclusi-
vas da ferramenta, e.g.: a separacao de parametros dos métodos por caracteres — ao invés
do habitual separador (,).

Outro objetivo a ser atingido com a modificagdo era o de permitir que a ferra-
menta pudesse detectar conflitos em uma quantidade arbitraria de alvos em uma mesma
execucao, ao invés do unico alvo, que era a estratégia implementada até entdo. Realizar a
andlise com todos estes alvos em uma tnica execuc¢do simplifica o uso da ferramenta pelo
cliente mas também diminui o tempo de execucdo da ferramenta em cendrios realistas
onde, geralmente, diversos alvos s@o modificados em um mesmo cendrio de integracao.

Para atender a este objetivo, a declaracdo dos alvos a serem avaliados foi re-
estruturada e € informada utilizando um diciondrio, que tem como chaves os FQCNs
das classes alvos e como valores uma lista com os métodos a serem observados naquela
execu¢ao. A Figura|l3[mostra um exemplo com a nova entrada de SMAT.

20

21

22

23

24

"projectName": "spring-boot",

"runAnalysis": false,

"scenarioCommits": {
"base": "7578f2f824aac027529878810b76eel76b3%73a",
"left": "0d00039ae7d01538de3£813b17d125dc5£dd5706",
"right": "1c21£f54pbf91283d70e04c49ea09%a4c05a885d7ac",
"merge": "3eebbelcB8aed529e6903e78476492592ce0b0049"

bo
"targets": {
"br.ufpe.cin.entidades.Aluno": |
"validarEmail (String anEmail)",
"validarCpf (String aCpf)",
1
}I

"scenarioJdars": {
"base": "caminho-do-jar-base. jar",
"left": "caminho-do-jar-left.jar",
"right": "caminho-do-jar-right.jar",
"merge": "caminho-do-jar-merge.jar"

}
by

Figura 13. Representacao de exemplo da nova interface de SMAT. Neste cenario,
estamos avaliando a presenca de conflitos semanticos nos métodos vali-
darEmail e validarCpf da classe br.ufpe.cin.entidades.Aluno

4.2. Detectando os alvos envolvidos em um conflito e descartando falsos positivos

A introducdo da possibilidade de utilizagdo de diversos alvos durante a mesma execugao
apresentada na secdo anterior traz consigo uma nova necessidade dentro da aplicacao.
Suponhamos que estamos interessados em avaliar a existéncia de conflitos semanticos
nos métodos x() e y() de uma determinada classe A. Na ocasido da existéncia de um
conflito, como identificar em qual método este conflito ocorreu?

De fato, € importante observar que, a principio, o conflito pode ter ocorrido em x()
ou y(), ou até mesmo em ambos os métodos, no caso de uma interacao. Assim, é impor-
tante que a ferramenta indique ao desenvolvedor onde exatamente este conflito ocorreu e
quais os alvos envolvidos em cada um destes conflitos. Para isto, a ferramenta precisa ser
capaz de detectar os alvos que foram efetivamente executados nos testes onde os conflitos
foram detectados. Esta deteccao pode ser realizada utilizando duas estratégias diferentes:

1. Através de uma andlise estitica do cédigo fonte do caso de teste gerado e do
codigo fonte do projeto sob anélise, a fim de verificar os métodos alvos que podem
ser diretamente ou indiretamente invocados pelos casos de teste envolvidos.

2. Através de uma andlise do relatério de cobertura do cdédigo fonte durante a
execucao do teste conflitante no commit de merge, a fim de verificar se a0 me-
nos uma linha do método alvo foi invocada durante a execucao do teste.

A fim de aproveitar a infraestrutura de coleta e geracdo de reportes de cobertura
de codigo ja implementada em SMAT para outras finalidades, adotamos a estratégia de
andlise do relatdrio de cobertura citada anteriormente, mesmo que esta introduza um custo
devido a instrumentacao do cédigo e da coleta de cobertura em si. Uma consequéncia in-
teressante desse aperfeicoamento € que a mesma estratégia pode ser trivialmente utilizada
para avaliar a ocorréncia de falsos positivos como descritos por [SILVA 2022]|: a situacao
em que nem x() e nem y() sd@o executados pelo teste. Desta forma, nossa ferramenta pode
dar uma resposta mais significativa para os seus usuarios.

4.3. Arquitetura

Conforme discutido previamente, o principal problema arquitetural presente em SMAT
€ o acoplamento existente entre os moédulos de geracao das suites, execucdo dos testes e
andlise dindmica. Desta forma, realizamos a reestruturacao dos médulos conforme mostra
a Figura(l14] a fim de permitir a evolug¢ao independente destes contextos da aplicacao.

SMAT

v

Test Generation Test Execution ‘ Test Dynamic Analysis Output Generation

Figura 14. Diagrama da nova macro-arquitetura proposta para SMAT.

Cada mddulo expde uma interface publica que permite um ponto tnico de acesso
para as funcionalidades disponiveis e que sdo entdo consumidas pela classe principal de
controle do sistema responsavel por realizar as chamadas na ordem de execu¢ao de SMAT.
Aspectos utilitarios da aplicagcao, como decodificagdo da entrada, logging, configuracao e
a instanciacao de objetos foram abstraidos para um mddulo separado.

Com o objetivo de aumentar a customizacao da ferramenta, € possivel alterar al-
guns parametros referentes a execucao a partir de um arquivo de configuracao JSON, cuja
estrutura estd descrita no Apéndice

A fim de mitigar os problemas relacionados ao fraco modelo presente na
aplicacao, adotamos técnicas de modelagem utilizando o paradigma de orientacdo a ob-
jetos com a finalidade de melhor representar as interacdes entre as diferentes entidades e
servi¢os envolvidos durante a execucao da ferramenta. Nas secdes a seguir, discutimos
os detalhes e decisdes envolvidas no aperfeicoamento e implementacdo deste modelo em
cada um dos médulos de execugdo da aplicagdo.

4.4. Geracao das Suites de Testes

A primeira etapa da execucdo de SMAT consiste da geracao de suites de testes para cada
um dos parents (de um cendrio de merge) utilizando ferramentas automaticas de geracao
de testes unitdrios como Evosuite e Randoop. Na implementa¢do original de SMAT, um
dos principais problemas era o acoplamento entre as etapas de geracdo, execugao e andlise
dindmica. Tal acoplamento atingia inclusive a classe de controle, de modo que esta tinha,
obrigatoriamente, conhecimento de quais geradores de testes estavam sendo executados

conforme mostra o diagrama da Figura sendo assim dificil adaptar SMAT para usar
um conjunto diferente de ferramentas de geracao.

Smat
? +execute() ?M
SetupEvosuite SetupEvosuiteDiff SetupRandoop SetupRandoopMod
-evosuiteWrapper -evosuiteDiffWrapper -randoopWrapper -randoopModWrapper
«abstract»
SetupTool

+run_tool_for_semantic_conflict_detection

Figura 15. Diagrama de classes simplificado de SMAT. Na implementacao origi-
nal, a classe abstrata SetupTool mistura aspectos de geracao, execucao e
analise dinamica. Suas subclasses utilizam wrappers para realizar a cha-
mada a cada gerador de testes.

Nossa primeira proposta foi a de agrupar todos os conceitos da geracdo de
suite de testes em um tUnico médulo profundo, que expusesse uma interface simples
mas que atendesse as funcionalidades e comportamentos esperados por seus clientes
[Ousterhout 2018]], chegando entdo a arquitetura apresentada na Figura[I6]

TestSuiteGeneration

+generate_test_suites(MergeScenario scenario, String input_jar, boolean use_determinism) : TestSuite[]
— -
2,
TestSuite

«abstracts
TestSuiteGenerator
-String generator_name

+generate_and_compile_test_suite(MergeScenario scenarie, String input_jar, boclean use_determinism) : TestSuite -String path
_execute_tool_for_tests_generation(String input_jor, String test_suite_path, MergeScenario scenario, boolean use_determinism) : void -String[] class_path
_get_test_suite_class_pathsiString test_suite_path) : void -String[] test_classes_names

_eet_test_suite_class_names(String test_suite_path) : void

Figura 16. Diagrama de classes do médulo de Geracgao das Suites de Testes.

Neste novo design, a classe TestSuiteGeneration, que publica a interface deste
modulo, expde um unico método que encapsula as sucessivas chamadas a cada um dos

geradores de testes implementados. Isso isenta os clientes de conhecerem quais gerado-
res estdo sendo executados, simplificando o codigo da classe de controle e permitindo
a possibilidade de customizar os geradores de testes utilizados em tempo de execugao,
comportamento este implementado a partir de um arquivo de configuracao.

Nesta arquitetura, as subclasses de TestSuiteGenerator oferecem através de sua
interface o método generate_and_compile_test_suites, responsavel por realizar a chamada
a ferramenta de geragdo de testes e a posterior compilacdo do cddigo fonte gerado.

Como cada ferramenta de teste possui caracteristicas especificas, tais como a
invocacgdo da ferramenta, a determinacao de quais arquivos gerados devem ser compilados
e onde estao localizados, bem como determinar o classpath necessario para a compilagao
da suite gerada, o método generate_and_compile_test_suites foi implementado utilizando o
padrao template method [Gamma et al. 1995]], de modo que o comportamento especifico
de cada gerador fosse implementado pelas suas subclasses.

Outro ponto de melhoria importante levantado na secdo anterior é adicionar a
possibilidade de termos determinismo na geracao dos testes. Pelo grau de aleatoriedade
presente nas ferramentas utilizadas para a geracao de testes, atualmente, execugdes suces-
sivas de SMAT podem resultar em resultados diferentes pelas diferencas geradas em cada
suite.

Entretanto, as ferramentas utilizadas disponibilizam funcionalidades que permi-
tem tornar a execugao deterministica, através do fornecimento de uma seed e da alteracao
em alguns parametros durante a invocagao da ferramenta, a saber a remog¢ao das restricoes
de tempo e determinagdo de novos critérios de parada.

Optamos por abstrair o conceito da geracdo deterministica através de um
parametro na interface do médulo de geracdo das suites, que pode ser configurado pelo
usudrio final a partir do arquivo de configuracdo, permitindo dinamicamente habilitar
o comportamento deterministico sem que seja necessdrio alterar o codigo fonte. Além
disto, também € possivel customizar a seed fornecida as ferramentas através do arquivo de
configuracdo, sendo utilizado um valor padrio caso este nao seja informado pelo usudrio.

Por dltimo, a introdugdo da classe TestSuite permitiu estruturar os dados das
suites geradas em um objeto, diferentemente da estruturagdo em n-tuplas utilizada pre-
viamente. Embora seja mais verboso, o objeto permite armazenar e acessar com facili-
dade informacdes da suite que serdo utilizados em etapas posteriores da execugdo, como
a localizacdo dos arquivos gerados, o gerador utilizado, bem como o nome das classes
geradas e o classpath dos arquivos compilados.

4.5. Execucao das Suites de Testes

Uma vez que a geracdo das suites € concluida, € necessario realizar a execu¢do destas
suites em cada uma das versdes do software presentes no cendrio de integracdo. Para
isto, SMAT utiliza-se de um executor de testes, no caso JUnit 4. De forma similar a
secdo anterior, encapsulamos o comportamento da execuc¢ao da suite em um moddulo,
arquitetado conforme mostra a Figura

Neste design, além de realizar as chamadas as ferramentas que realizam a
execugdo dos testes, a classe TestSuiteExecutor também € responsavel por realizar
a decodificagdo da saida de JUnit, convertendo-a para as representacOes internas da

TestSuitesExecution

+execute_test_suites(TestSuite[] suite, ScenarioJars jars) : TestCaseExecutioninMergeScenario[]

+execute_test_suite_with_coverage(TestSuite suite, String target_jar, String[] test_cases) : String

/ v
f TestCaseExecutionlnMergeScenario

+TestSuite test_suite
TestSuiteExecutor ;
+5tring name

- - - o +TestCaseResult base
+execute_test_suite(TestSuite suite, String jar) : Map<TestCaseResult>

- n r r +TestCaseResult left
+execute_test_suite_with_coverage(TestSuite suite, String target_jar, String[] test_cases) : String

+TestCaseResult right

+TestCaseResult merge

«enumeration» /

) TestCaseResult /__/--""
sl »
PASS
FAIL
FLAKY

NOT_EXECUTABLE

Figura 17. Diagrama de classes do médulo de Execucao das Suites de Testes.

aplicacdo, atuando como um Adapter [[Gamma et al. 1995]. Este design permite facil-
mente substituir o executor de suites de teste sem ter de se preocupar em eventuais danos
a outros aspectos do modelo, contribuindo diretamente com a extensibilidade da ferra-
menta.

Além disso, € importante discutir os diferentes resultados que um caso de teste
pode ter em uma determinada execucdo, para além dos casos triviais: falhar e pas-
sar. Como discutido na Secdo |3 é possivel que alguns dos testes gerados previamente
possuam comportamento flaky, isto €, ndo possuem resultados consistentes em sucessi-
vas execucdes. A fim de tentar detectar este tipo de comportamento, SMAT realiza 3
execucoes sucessivas de cada caso de teste marcando-o como flaky caso algum resultado
seja diferente.

Outro ponto de atengdo € na situagdo em que o caso de teste falha pela auséncia
de um determinado simbolo que foi introduzido ou removido por alguma modificacdo em
algum dos commits. De fato, suponha o trecho de cédigo apresentado na Figura [I§] em
merge, onde a linha 3 indica uma chamada a um método adicionado por left.

class Aluno {
public void validarAluno (String email, String cpf) {
this.validarEmail (email) ;
this.validarCpf (cpf);

Figura 18. Classe de exemplo. O método validarEmail foi adicionado por left

Ao executarmos um caso de teste que exercita o método validarEmail em right
ou base seremos surpreendidos com um erro do tipo NoSuchMethodError, decorrido da
auséncia da implementacio deste método na classe Aluno nestas versdes. Desta forma,
embora o teste falhe, esta ocorréncia € resultado do fato de o teste sequer ser executavel
nestas versdes do software. Ao detectar estes tipos de erros (métodos, atributos e classes
faltantes), SMAT classifica tais testes como NOT_EXECUTABLE.

Outra mudanga foi a introducdo de um novo método que executa a coleta de co-
bertura de c6digo enquanto realiza a execugdo dos testes. Na implementagdo original de
SMAT, esta coleta ocorre em todas as chamadas ao médulo de execugido, introduzindo
uma penalidade considerdvel em performance, especialmente pela estratégia de execu-
tar os testes mais de uma vez. Esta decisdo permite que o fluxo secundario de coleta
de cobertura seja separado do fluxo primario da execugdo, resultando em um ganho de
performance sem prejuizo semantico ao cliente da aplicag@o [Ousterhout 2018]].

SMAT realiza a coleta de cobertura de cddigo utilizando Jacoco
[Hoffmann et al. 2009]. Para isto, € necessdrio realizar uma instrumentacao da
versao a ser analisada, para que seja possivel detectar quais comandos do c6digo foram
executados. Na implementag¢do original, o processo de instrumentacdo € realizado
previamente pelo cliente da classe, que somente entdo invoca a execucdo dos testes
fornecendo a versao instrumentada.

Esta decisdo contribui para que detalhes da implementacao da coleta de cobertura
estejam expostos ao cliente (a necessidade de realizar um pré-processamento na versao a
ser analisada), sinalizando uma quebra do encapsulamento do algoritmo implementado,
aumentando a carga cognitiva e complicando a interface do médulo. Em casos extremos,
por exemplo, o usudrio desta API pode ser surpreendido pelo comportamento do médulo
caso forneca uma versao ndo instrumentada do cédigo, algo que acarretard com que o
reporte ndo seja gerado corretamente.

[Ousterhout 2018] afirma que é preferivel que um mddulo tenha uma interface
simples mesmo que isso aumente a complexidade de sua implementacdo. Baseado neste
principio, decidimos encapsular a 16gica de instrumentacao da versao a ser analisada no
método execute_test_suite_with_coverage. Desta forma, um cliente precisa somente infor-
mar a versdao na qual deseja realizar a coleta de cobertura, e a implementagdo serd res-
ponsdvel por realizar a instrumentacdo — inclusive pulando esta etapa caso uma versao
instrumentada ja esteja presente — e realizar a posterior execucao e tratamento dos testes.

4.6. Analise Dinamica

ApOs a execugdo, € necessario que SMAT realize a andlise das execucdes dos testes, a
fim de verificar se algum deles satisfaz algum dos critérios heuristicos de interferéncia
apresentados na Secdo Vale ressaltar que, durante a fase de andlise, os testes que
possuem comportamento flaky ou que ndo sdo executaveis em alguma versao do software
sao descartados.

Além disso, € importante ressaltar que € possivel que exista mudanca de comporta-
mento entre diferentes versdes do software sem que necessariamente ocorra a presenca de
um conflito. Assim, para fins de estudo, SMAT também computa mudangas de comporta-
mento entre as versoes do software verificando pares de versdes que possuem resultados
diferentes para um mesmo caso de teste.

Na implementag¢do original, tanto a verificagdo de conflitos quanto de mudancas de
comportamento sao realizadas por uma tnica classeﬂ Nesta versdo, os casos de testes sao
separados em diferentes conjuntos: os que passaram, os que falharam e os que possuem
comportamento flaky ou que nao foram executados. As verificagdes sao realizadas entao
utilizando operacdes entre estes diferentes conjuntos, o que torna dificil a compreensao
de como cada critério € definido apenas pela leitura do cédigo.

Além disso, a auséncia do uso de objetos e pela estratégia de dividir os casos de
testes em diferentes conjuntos polui a interface dos métodos, que acabam tendo elevado
ndmero de parametros resultando em um code smell [Fowler 2018|]. A auséncia de um
modelo orientado a objetos também resulta em um uso abusivo de tipos primitivos, que
acabam por ndo expressar de forma clara o comportamento e as relacdes entre os diferen-
tes componentes do software.

Neste sentido, nosso primeiro passo € construir um modelo que consiga refletir a
relacdo existente entre a execucdo de um caso de teste em um determinado cendrio e se
ele satisfaz ou ndo um determinado critério heuristico da ferramenta. Para modelar esta
relacdo bem como os possiveis multiplos critérios existentes para a deteccao de conflitos,
encapsulamos tal comportamento na interface SemanticConflictCriteria. Na situacao de
uma execucao de um caso de teste satisfazer algum destes critérios, estes sao encapsulados
em uma instancia da classe SemanticConflict. Essa visdo parcial do modelo de andlise
dindmica esta representado no diagrama da Figura

SemanticConflict

+SemanticConflictCriteria satisfying_criteria

+TestCaseExecutioninMergeScenario detected_in

-
/ \
4

TestCaseExecutioninMergeScenario \

+TestSuite test_suite ¥

. «interface»
+5tring name

SemanticConflictCriteria
+TestCaseResult base
+TestCaseResult left
+is_satisfied_by(TestCaseExecutioninMergeScenario test_case_execution)
+TestCaseResult right

+TestCaseResult merge /
l / \

Y

/ \

=enumeration= [\
TestCaseResult ‘ |

PASS FirstSemanticConflictCriteria SecondSemanticConflictCriteria
FAIL |

FLAKY
NOT_EXECUTABLE

Figura 19. Diagrama de classes da estruturagdao da analise de conflitos
semanticos.

3https://github.com/spgroup/SMAT/blob/ae33ccdc49/nimrod/setup_tools/behaviour_check.py

https://github.com/spgroup/SMAT/blob/ae33ccdc49/nimrod/setup_tools/behaviour_check.py

Com este modelo, a implementacdo dos critérios de conflitos tem sua
implementagdo drasticamente simplificada, se assemelhando bastante a sua descri¢do em
linguagem natural, conforme mostra a Figura 20| que ilustra a implementacéo para o se-
gundo critério apresentado na segio 3]

class SecondSemanticConflictCriteria (SemanticConflictCriteria):
def is_satisfied_by(self, test_case_execution):

fails_in_base_and_both_parents_but_passes_in_merge = \
test_case_execution.base == TestCaseResult.FAIL \
and test case_execution.left == TestCaseResult.FAIL \
and test_case_execution.right == TestCaseResult.FAIL \
and test_case_execution.merge == TestCaseResult.PASS
passes_in_base_and_both_parents_but_fails_in_merge = \
test _case_execution.base == TestCaseResult.PASS \
and test_case_execution.left == TestCaseResult.PASS \
and test_case_execution.right == TestCaseResult.PASS \
and test_case_execution.merge == TestCaseResult.FAIL

return fails_in_base_and_both_parents_but_passes_in_merge or \
passes_in_base_and_both_parents_but_fails_in_merge

Figura 20. Implementacao da deteccao do segundo critério de conflitos

Uma estratégia similar pode ser utilizada para identificar as mudancas de compor-
tamento entre diferentes versdes do software. De fato, o modelo resultante é semelhante,
conforme mostra a Figura[21]

BehaviorChange
BehaviorChangeChecker

+Tuple[str, str] between

+has_behavior_change_between(TestCaseExecutioninMergeScenaric one, TestCaseExecutioninMergeScenario two) +TestCaseExecutioninMergeScenario detected_in
]
,'/

TestCaseExecutioninMergeScenario

T Testsuite test_suite &
+String name
+TestCaseResult base
+TestCaseResult left
+TestCaseResult right

+TestCaseResult merge

)

=enumeration=
TestCaseResult

PASS
FAIL

FLAKY
NOT_EXECUTABLE

Figura 21. Diagrama de classes da estruturacao da analise de mudancas de com-
portamento.

A fim de simplificar o consumo por parte de seus clientes, as implementagdes
do médulo de Andlise Dinamica foram agrupadas em uma Fachada [Gamma et al. 1993],
que agrupa as funcionalidades principais fornecidas pelo modulo. Desta forma, uma visao
geral do médulo é apresentada na Figura [22]

DynamicAnalysis

+check_for_semantic_conflicts(TestCaseExecution[] test_case_executions) : SemanticConflict[]
+check_for_behavior_changes(TestCaseExecution[] test_case_executions) : BehaviorChange[]
—— ~—

- -
~,
I/ Y

«interfaces ¥
BehaviorChangeChecker
SemanticConflictCriteria

. T i . +has_behavior_change_between(TestCaseExecution one, TestCaseExecution two)
+is_satisfied_by(TestCaseExecution test_case_execution)

Figura 22. Diagrama de classes em alto nivel do médulo de analise dinamica.

4.7. Geracao de relatorios

Com as andlises finalizadas, a ultima etapa da execucdo de SMAT consiste em construir
relatdrios com os dados coletados para que estes possam ser consumidos e analisados pelo
usudrio ou por outras ferramentas.

A ferramenta permite a confeccao de 3 tipos de relatérios: um com informagdes
a respeito dos conflitos semanticos detectados, outro possuindo informagdes a respeito
das mudancas de comportamento observadas entre as diferentes versdes do cendrio € um
tltimo reporte contendo informagdes a respeito das suites de testes geradas. A Figura[23]
mostra a estrutura de cada um dos relatérios gerados.

SemanticConflictsOutput

BehaviorChangesOutput

*str project_name TestSuitesOutput
=Dict[str, str] scenaric_commits +str project_name
. . +str project_name
+str criteria +Dict[str, str] scenario_commits
+5tr generator_name
=str test_casze_name +str test_case_name
+str path
+Drict[str, str] test_case_results +Dict[str, str] test_case_results . -
+bool detected_semantic_conflicts
=str test_suite_path +str test_suite_path . .
+bool detected_behavior_changes_between_pairs
=Dict[str, List[str]] scenaric_targets +Tuple[str, str] between

+Dhict[str, List[str]] exercised_targets

Figura 23. Estrutura de cada um dos relatorios gerados. Cada relatorio é com-
posto de uma lista de instancias destas classes.

Seguindo a mesma estratégia utilizada nas outras se¢des, decidimos por isolar
a geracdo de relatérios em um moédulo na aplicagdo. Este modulo possui uma classe
abstrata OutputGenerator responsavel por realizar a geracao de um relatério. Embora
na versao original de SMAT os relatérios fossem gerados em formato CSV, optamos por
utilizar JSON em nossa implementacdo, pela possibilidade de representar mais facilmente
estruturas como dicionarios e listas.

Como cada relatério possui uma estratégia diferente para sua geracao, consultando
dados diferentes e aplicando processamentos especificos, cada subclasse deve sobrescre-
ver o método abstrato _generate_report_data introduzindo o comportamento necessario
para a confeccdo do relatério, resultando assim em mais uma aplicacao do padrao tem-
plate method [Gamma et al. 1995]. A Figura [24] apresenta a arquitetura do médulo de
geracdo de reportes.

~abstract~
OutputGenerator<T=>

-_generate_report_data(QutputGeneratorContext context) : T
+write_repert{QutputGeneratorContext context) : void

v i —
.
{ | 3
SemanticConflictsOutputGenerator BehaviorChangesOutputGenerator TestSuitesOutputGenerator=TestSuitesOutput-
‘.(H
SemanticConflictsOutput W H
. BehaviorChangesOutput .
+str project_name TestSuitesOutput
+Dict[str, str] scenario_commits #str project_name .
+3tr preject_name
+str criteria +Dict[str, str] scenario_commits
+5tr generator_name
+str test_caze_name #str test_case_name
=str path
+Dict[str, str] test_case_results +Dict[str, str] test_case_results
+bool detected_semantic_conflicts
+str test_suite_path +str test_suite_path .
+bool detected_behavior_changes_between_pairs
+Dict[str, List[str]] scenario_targets +Tuple[str, str] batwean

+Dict[str, List[str]] exarcised targats

Figura 24. Diagrama de classes do médulo de geracao de relatérios

Um aspecto importante a ser considerado neste mddulo é a necessidade de con-
sultar valores computados em diferentes etapas da execucao. Por exemplo, os reportes
de conflitos semanticos necessitam de informagdes obtidas durante a etapa de andlise
dindmica, enquanto o reporte de suites de teste consulta informagdes da geracdo de suites
e de analise dinamica.

A fim de preservar uma interface comum para os diferentes geradores de relatorio,
o que simplifica a consumacdo da classe pelos seus clientes, decidimos por ter como
parametro da geracao de relatorio as diferentes entidades das etapas anteriores. Entre-
tanto, para evitar o code smell Long Parameter List [Fowler 2018]], quando um método
possui diversos parametros, decidimos por encapsular estes parametros em um unico ob-
jeto, utilizando a técnica de Introduce Parameter Object [Fowler 2018]].

OutputGeneratorContext

+MergeScenarioUnderAnalysis scenario

+TestSuite[] test_suites
+TestCaseExecutioninMergeScenario[] test_case_executions
+SemanticConflict[] semantic_conflicts

+BehaviorChange[] behavior_changes

Figura 25. Diagrama do objeto OutputGeneratorContext, que guarda as diversas
informacgoes a serem consultadas durante a geracao de um relatorio.

4.8. Documentacao e geréncia do projeto

A fim de melhorar a manutenibilidade do projeto, iniciamos a produ¢do de documentagdes
relevantes. A fim de documentar as diferentes decisdes arquiteturais tomadas ao longo do
projeto, adicionamos um documento de arquitetura ao projeto, que possui diagramas que
discutem em alto nivel as decisdes, implicagcdes e trade-offs levados em consideracao
durante a fase de projeto.

Do ponto de vista de gerenciamento do projeto, a principal preocupacao foi a de
permitir o aumento da utilizacdo de ferramentas de verificacdo estdtica do cédigo a fim
de encontrar possiveis defeitos ainda em tempo de compilacdo. Neste sentido, foram
adicionadas anotacgdes de tipos estaticos em todas as novas implementag¢des, bem como
adicionadas verificacOes destes tipos a esteira de integragdo continua do projeto.

5. Discussao e Trabalhos Futuros

SMAT ¢ uma ferramenta que tenta encontrar conflitos semanticos em um cendrio de
integracdo de codigo a partir da detec¢do automadtica de mudancas de comportamento
utilizando geracdo de testes automdticos. Durante este trabalho, tivemos a oportunidade
de revisitar, reestruturar e aperfeicoar diversos aspectos desta ferramenta. Nesta secao,
discutimos os resultados dessas modificagdes e como elas podem contribuir na evolugdo
e manutengio do produto, bem como apresentamos possibilidades de trabalhos futuros.

Em primeiro lugar, é importante destacar que a nova implementacao de SMAT
permitiu que a ferramenta atingisse um maior nivel de configurabilidade, de forma que
diversos aspectos possam ser configurados diretamente em tempo de execuc¢do, como
definir quais serdo as ferramentas utilizadas durante a etapa de geracao de testes, bem
como customizar parametros relevantes para a execucao como o tempo disponivel para a
busca e definir quais reportes serdo elaborados na etapa de geracao de saida.

Outro aperfeicoamento introduzido na ferramenta foi a possibilidade de execucdes
deterministicas da ferramenta, permitindo que execucdes sucessivas com a mesma entrada
tenham sempre o mesmo resultado. Este aperfeicoamento facilita a reprodutibilidade dos
experimentos realizados com a ferramenta, um aspecto que foi observado como um dos
principais pontos de melhoria da ferramenta.

Do ponto de vista arquitetural, a ferramenta possui agora um modelo que facilita
o entendimento, evolucdo e manutencdo do software. Através de um maior entendimento
de aspectos importantes do dominio da ferramenta, foi possivel introduzir abstracdes que
permitissem estruturar as diversas entidades da aplicacdo e como estas se relacionam
durante a execucao da ferramenta.

Além disso, a nova arquitetura dos médulos facilita a extensibilidade do software
sem que seja necessario modificar componentes ja existentes. Em todos os contextos
da aplicacdo, adicionar novas ferramentas ou funcionalidades se limita a implementar
uma tnica subclasse. E o caso na adicdo de novos geradores de testes, novos critérios
heuristicos para deteccao de conflitos e novos geradores de relatorios.

Vale ressaltar também que a remog¢ao do acoplamento entre as etapas de geracao,
execucdo e andlise dindmica permite agora que um desenvolvedor responsavel por uma
tarefa que envolva apenas uma dessas etapas ndo tenha de se preocupar ou conhecer de-

talhes da implementacdo das etapas adjacentes, diminuindo a carga cognitiva exigida e
reduzindo a probabilidade do surgimento de defeitos.

A introducgdo de novas interfaces de entrada e saida para os clientes da ferramenta
utilizando JSON também contribuiu para facilitar o uso da ferramenta. Ao termos a possi-
bilidade de representar estruturas complexas exigidas pela ferramenta de maneira trivial,
sem ser necessdrio a substituicdo de caracteres ou utilizacdo de separadores customiza-
dos, eliminamos um trabalho consideravel do cliente em construir uma entrada que adote
as notacoes utilizadas bem como seja capaz de converter a saida para sua representacao
interna.

A introdug¢do de uma interface que permitisse que uma mesma execu¢ao de SMAT
fosse capaz de buscar conflitos semanticos em mais de um alvo, trouxe um ganho de
performance considerdvel, especialmente nos cendrios onde varios alvos precisam ser in-
vestigados. Além disso, a estratégia introduzida para detectar quais destes alvos foram
executados durante um conflito, permitiu também resolver uma das fontes de falsos posi-
tivos discutidas pelos autores em trabalhos anteriores.

Como trabalhos tedricos futuros, temos como principal horizonte a expansao de
SMAT para que ela seja capaz de atender outros projetos para além da linguagem Java.
Vale ressaltar aqui que tal expansdo depende da existéncia de ferramentas que sejam ca-
pazes de realizar a gerac@o de testes automdticos para diferentes linguagens, e que estas
ferramentas ainda estdo em desenvolvimento dentro da literatura.

Outro campo de exploracdo € verificar os ganhos introduzidos com as nossas
contribui¢des como, por exemplo, analisando se houve melhora na performance da ferra-
menta, ou verificar como a nova estratégia de detec¢do de falsos positivos comporta-se na
pratica em um cendrio real.

A nivel de implementagdo, € importante observar que SMAT € apenas uma fer-
ramenta do arcabouco produzido pelo trabalho de [SILVA 2022]]. Desta forma, como a
ferramenta é consumida por outros clientes, € importante que estes clientes sejam atua-
lizados para utilizar as novas interfaces providas por SMAT. No momento, as interfaces
antigas ainda sdo suportadas, mas foram depreciadas, podendo ser removidas em futuras
versoes da ferramenta.

Outro aspecto relevante para o projeto € o de aumentar a cobertura de testes auto-
matizados da aplicagdo. E importante ressaltar que com o advento das execucdes deter-
ministicas implementadas neste trabalho, é possivel construir valiosas suites de testes de
integracdo que podem, com baixo custo de desenvolvimento, serem capazes de encontrar
com facilidade possiveis regressdes em tarefas de desenvolvimento futuras.

Além disso, o isolamento da execucdo dos geradores de suites de testes permite
explorar possibilidades de execucdo da geracdo em paralelo. Embora uma andlise menos
criteriosa aponte para a possibilidade de um ganho de performance, é necessario consi-
derar como este comportamento influenciaria a qualidade e o tempo disponivel para a
geracdo de cada uma das suites, especialmente quando utilizando a busca exploratdria
limitada por tempo.

Por dltimo, contribui¢des na documentacdo da ferramenta, na remocao de trechos
de codigo ndo mais utilizados e na implementacao de uma politica de refatoragdo continua

sdo também possiveis dreas de interesse para trabalhos futuros.

Referéncias

Cavalcanti, G., Borba, P., and Accioly, P. (2017). Should we replace our merge tools? In
2017 IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C), pages 325-327.

Da Silva, L., Borba, P, and Pires, A. (2022). Build conflicts in the wild. Journal of
Software: Evolution and Process, 34(4).e2441.

Evans, E. J. (2004). Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley
Professional.

Fraser, G. (2018). A tutorial on using and extending the evosuite search-based test ge-
nerator. In International Symposium on Search Based Software Engineering, pages
106-130. Springer.

Gamma, E., Helm, R., Johnson, R., Johnson, R. E., Vlissides, J., et al. (1995). Design
patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH.

Hanenberg, S. (2009). What is the impact of static type systems on programming time.
In PLATEAU Workshop at OOPSLA’09.

Hoffmann, M., Janiczak, B., Mandrikov, E., and Friedenhagen, M. (2009). Jacoco code
coverage tool.

Kleinschmager, S., Robbes, R., Stefik, A., Hanenberg, S., and Tanter, E. (2012). Do static
type systems improve the maintainability of software systems? an empirical study. In
2012 20th IEEE International Conference on Program Comprehension (ICPC), pages
153-162. IEEE.

Lehtosalo, J., Rossum, G. v., Levkivskyi, 1., Sullivan, M. J., Fisher, D., Price, G., Lee,
M., Seyfer, N., Barton, R., Ilinskiy, S., et al. (2021). Mypy: Optional static typing for
python. URL: http://mypy-lang. org/[cited 2021-11-30].

Ousterhout, J. K. (2018). A philosophy of software design, volume 98. Yaknyam Press
Palo Alto.

Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T. (2007). Feedback-directed random
test generation. In 29th International Conference on Software Engineering (ICSE’07),
pages 75-84. IEEE.

Seibt, G., Heck, F., Cavalcanti, G., Borba, P., and Apel, S. (2021). Leveraging structure
in software merge: An empirical study. IEEE Transactions on Software Engineering,
pages 1-1.

SILVA, L. D. (2022). Detecting, Understanding, and Resolving Build and Test Conflicts.
PhD thesis, Universidade Federal de Pernambuco.

Silva, L. D., Borba, P., Mahmood, W., Berger, T., and Moisakis, J. (2020). Detecting se-
mantic conflicts via automated behavior change detection. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 174—184.

A. Estrutura do arquivo de configuracao de SMAT

SMAT permite que o usudrio customize alguns aspectos de sua execucdo. Estas
modificacdes podem ser realizadas editando o arquivo nimrod/tests/env-config.json. Este
documento discute as op¢des disponiveis para customizacao.

A.l. Geral

As propriedades a seguir se referem a aspectos gerais da execucao de SMAT.

A.1.1. java_home

Por padrao, SMAT utilizard a varidvel de ambiente JAVA_HOME para popular o cami-
nho de instalacdo do Java. Entretanto, € possivel sobrescrever esse valor configurando a
variavel java_home no arquivo de configuracao.

A.1.2. maven_home

Por padrao, SMAT utilizara a variavel de ambiente MAVEN_HOME ou MVN_HOME para
popular o caminho de instalagao do Maven. Entretanto, € possivel sobrescrever esse valor
configurando a varidvel maven_home no arquivo de configuragao.

A.1.3. logger _level

Esta propriedade permite alterar o nivel minimo de mensagens que serdo exibidas pela
CLI. O valor padrao é INFO, podendo ser alterada para: CRITICAL, ERROR, WARNING
ou DEBUG.

A.1.4. input_path

Esta propriedade contém o caminho absoluto para o arquivo JSON que contém a descri¢cao
dos cendrios a serem analisados pela ferramenta.

A.2. Geracao de Suites de Teste

As propriedades a seguir estao relacionadas com aspectos da etapa de Geragao de Suites
de Teste.

A.2.1. test_suite_generators

Um array com o nome das ferramentas a serem utilizados durante a etapa de geracdo. Se
nao for informado, todos os geradores implementados serdo utilizados. Valores vélidos
sao: randoop, randoop-modified, evosuite e evosuite-differential.

A.2.2. test suite_generation _search _budget

Permite customizar o tempo em segundos disponivel para cada gerador durante a etapa de
Geragdo de Suites de Testes. O valor padrao € de 300 segundos. Observe que esta opgao
serd ignorada se a geragao de testes for deterministica.

A.2.3. generate deterministic_test suites

Se configurada para true, SMAT utilizard versoes deterministicas de seus gerados, 1.e., as
suites geradas serdo sempre as mesmas independente de quantas vezes a ferramenta seja
executada.

A.3. Output Generation

As propriedades a seguir estdo relacionadas com aspectos da etapa de Geragdo de Repor-
tes.

A.3.1. output_generators

Um array contendo os relatdrios que devem ser escritos durante a etapa de geracado de re-
latorios. Se ndo for informada, todos os relatérios implementados serdao gerados. Valores
validos sdo: behavior_changes, semantic_conflicts, test_suites.

	Introdução
	Conflitos de Integração de Código
	Conflitos de merge
	Conflitos semânticos
	Conflitos semânticos em tempo de compilação
	Conflitos semânticos em tempo de execução
	Detectando conflitos semânticos em tempo de execução

	Ferramenta SMAT
	Arquitetura e Implementação de SMAT
	Limitações e pontos de melhoria de SMAT

	Atacando as lacunas de SMAT
	Alterando a interface de entrada
	Detectando os alvos envolvidos em um conflito e descartando falsos positivos
	Arquitetura
	Geração das Suítes de Testes
	Execução das Suítes de Testes
	Análise Dinâmica
	Geração de relatórios
	Documentação e gerência do projeto

	Discussão e Trabalhos Futuros
	Estrutura do arquivo de configuração de SMAT
	Geral
	java_home
	maven_home
	logger_level
	input_path

	Geração de Suítes de Teste
	test_suite_generators
	test_suite_generation_search_budget
	generate_deterministic_test_suites

	Output Generation
	output_generators

