
Reestruturação e aperfeiçoamento de uma ferramenta para
detecção de conflitos semânticos de código

João Pedro Henrique Santos Duarte1

1Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7.851 — 50.732-970 — Recife — PE – Brazil

jphsd@cin.ufpe.br

Abstract. In software development, in order to maximize collaboration and pa-
rallelize development, it is common to use branches which are later integrated
through merges. One of the main problems in this integration are merge con-
flicts, which negatively affect the project due to the cost involved in its resolution.
Although there are tools capable of detecting textual conflicts, semantic conflicts
- where changes in software behavior occur - still lack efficient detection tools.
The present work proposes to enhance a semantic conflict detection tool based
on automated tests, as well as restructure and improve overall code quality of it.

Resumo. No desenvolvimento de software, a fim de maximizar a colaboração e
o desenvolvimento em paralelo, é comum a utilização de branches que são pos-
teriormente integradas através de merges. Um dos principais problemas nesta
integração são os conflitos de merge, que afetam o projeto negativamente pelo
custo envolvido em sua resolução. Embora existam ferramentas capazes de de-
tectar conflitos textuais, conflitos semânticos - onde ocorrem mudanças no com-
portamento do software - ainda carecem de ferramentas eficientes de detecção.
O presente trabalho propõe o aperfeiçoamento de uma ferramenta de detecção
de conflitos semânticos baseada em testes automatizados, como também uma
reestruturação com o objetivo de incrementar a qualidade do código.

1. Introdução
O desenvolvimento de software é um processo essencialmente colaborativo. Em diversos
projetos, as tarefas são distribuı́das entre os desenvolvedores, que trabalham utilizando
o conceito de branches. Branches permitem que a implementação de diferentes funci-
onalidades do software sejam realizadas de maneira independente sendo posteriormente
integradas através de processos de merge.

Embora esta alternativa facilite o gerenciamento do projeto, branches e merges
trazem com si o surgimento de conflitos de merge, que ocorrem durante o processo de
integração das modificações de duas branches distintas. Alguns destes conflitos já são
detectados por ferramentas existentes atualmente, entretanto, especialmente na ocasião
dos conflitos semânticos em tempo de execução - onde mudanças realizadas em diferen-
tes partes do software acabam resultando em um comportamento diferente em tempo de
execução - ainda carecem de ferramentas eficientes de detecção [Cavalcanti et al. 2017].

[Silva et al. 2020] propõe a ferramenta SMAT, que realiza a detecção de conflitos
semânticos por meio da observação automática de mudanças de comportamento entre as
diferentes versões do software presentes no processo de merge. Essa detecção é possı́vel



graças a utilização de ferramentas que realizam a geração de testes unitários de forma
automática, permitindo que especificações parciais de cada versão sejam construı́das e
posteriormente comparadas a partir de uma heurı́stica proposta pelos autores.

Apesar de resultados positivos já terem sido observados em SMAT, a
implementação da ferramenta enfrenta problemas como a baixa modularidade e dificul-
dade de extensibilidade e manutenção do código fonte, tal como a baixa configurabi-
lidade, não permitindo customizar aspectos importantes da ferramenta, e a dificuldade
de reprodução dos experimentos conduzidos pelo caráter não-determinı́stico presente na
ferramenta. O presente trabalho consiste em uma reestruturação e um aperfeiçoamento
desta ferramenta, a nı́vel de arquitetura e implementação, visando solucionar as lacunas
supracitadas.

Na seção 2, discutimos um pouco mais a respeito dos conceitos teóricos por
trás dos conflitos de integração de código e soluções existentes na literatura para a sua
detecção. Na seção 3, apresentamos a ferramenta formulada por [Silva et al. 2020] para
detecção de conflitos semânticos, discutindo suas funcionalidades, implementação e apre-
sentando alguns pontos de melhoria. Na seção 4, discutimos como os pontos de me-
lhoria citados previamente foram implementados a fim de aperfeiçoar a ferramenta de
[Silva et al. 2020]. Por fim, na seção 5, apresentamos e discutimos os resultados obtidos,
bem como apresentamos possı́veis trabalhos futuros.

2. Conflitos de Integração de Código

Conforme mencionado previamente, durante o processo de desenvolvimento de software
é comum que desenvolvedores realizem suas tarefas em paralelo utilizando branches que
são posteriormente integradas utilizando merges.

Um cenário de merge é geralmente composto por dois commits parents que serão
integrados, usualmente denominados Left e Right e um commit resultado da integração
entre Left e Right, denominado Merge. Além destes commits, adicionaremos também a
informação do primeiro commit ancestral que é comum ao tronco de Left e Right, aqui
denominado Base [SILVA 2022].

Figura 1. Visualização simplificada de um cenário de integração de diferen-
tes versões de código. O commit merge é gerado pela integração das
modificações introduzidas em left e right



Embora branches e merges permitam aumentar consideravelmente a produtivi-
dade de um time, o processo de integração pode resultar em conflitos, que acabam afe-
tando a produtividade do time - haja vista a deficiência de ferramentas que resolvam estes
conflitos automaticamente, como, em casos mais extremos, afetando a corretude do sis-
tema - na ocasião em que os conflitos sequer são detectados [Cavalcanti et al. 2017].

2.1. Conflitos de merge

A fim de explorar esta primeira categoria de conflitos, suponhamos o seguinte cenário:
dois desenvolvedores, João e Laura, trabalham na mesma equipe de desenvolvimento de
software para a UFPE. Este projeto possui inicialmente a classe Aluno apresentada na
Figura 2.

1 class Aluno {
2 private UUID codigo;
3 private String cpf;
4 private String email;
5 }

Figura 2. Classe de Aluno presente no projeto.

Durante uma de suas tarefas, João percebeu que é possı́vel cadastrar um estudante
com um email inválido. Em uma nova branch denominada feat-validacao-email, João
decide adicionar um novo método para realizar a validação de um endereço de email
fornecido chamado validarEmail(email).

Simultaneamente, Laura percebe que um defeito pelo qual ela é responsável é
fruto da ausência de validação do CPF. De forma similar ao raciocı́nio de João, em uma
nova branch fix-validacao-cpf, ela decide também adicionar um método utilitário que
realiza a validação do CPF chamado validarCpf(cpf). A Figura 3 mostra as diferentes
versões do código de João e Laura.

João (feat-validacao-email)

class Aluno {
private UUID codigo;
private String cpf;
private String email;

void validarEmail(String email) {
(...)

}
}

Laura (fix-validacao-cpf)

class Aluno {
private UUID codigo;
private String cpf;
private String email;

void validarCpf(String cpf) {
(...)

}
}

Figura 3. À esquerda, a modificação introduzida por João em sua branch. À
direita, a modificação introduzida por Laura em sua branch

Ao realizar a integração das modificações de João e Laura, ocorre um conflito de
merge: ambos os desenvolvedores introduziram modificações diferentes no mesmo trecho
de um mesmo arquivo. Este tipo de conflito é detectado pela ferramenta de controle



de versão, que altera o arquivo da classe Aluno para reportar a ocorrência do conflito,
utilizando uma notação especial, conforme mostra a Figura 4.

1 class Aluno {
2 private UUID codigo;
3 private String cpf;
4 private String email;
5

6 <<<<<<<<<<<<<<
7 void validarEmail(String email) {
8 (...)
9 }

10 ==============
11 void validarCpf(String cpf) {
12 (...)
13 }
14 >>>>>>>>>>>>>>
15 }

Figura 4. Classe Aluno após a integração das modificações realizadas por João
e Laura. As linhas 6, 10 e 14 contém caracteres adicionados automatica-
mente pelo sistema de gerenciamento de versão para assinalar um conflito
de merge

Ainda que este tipo de conflito seja de fácil detecção, a estratégia de merge padrão
do sistema de controle de versão (merge não-estruturado) não consegue resolvê-lo auto-
maticamente, exigindo uma intervenção manual do desenvolvedor para que o conflito seja
solucionado. A literatura propõe a utilização de ferramentas que possuem conhecimento a
respeito da linguagem de programação utilizada, para construir merges semi-estruturados
e estruturados de forma que conflitos semelhantes ao apresentado no exemplo possam ser
solucionados sem ser necessária a intervenção do desenvolvedor [Seibt et al. 2021].

2.2. Conflitos semânticos
Apesar dos conflitos de merge já terem considerável impacto no processo de desenvol-
vimento, exigindo que um desenvolvedor interrompa suas atividades para resolvê-los,
conflitos de integração podem aparecer de diferentes formas, potencialmente causando
ainda mais problemas do que os conflitos já discutidos.

Em algumas ocasiões, mesmo que conflitos de merge não sejam reportados, o
resultado da integração ainda pode resultar em uma versão inválida do software, seja
por um problema de compilação ou por ter a sua corretude afetada, como ilustrado mais
a seguir. Neste trabalho, utilizaremos a nomenclatura adotada por [SILVA 2022] para
ambos os cenários supracitados, os quais discutimos com mais profundidade nas próximas
sessões.

2.2.1. Conflitos semânticos em tempo de compilação

A fim de discutir essa categoria de conflitos de integração, suponhamos o seguinte exem-
plo, ainda dentro do contexto de uma equipe de desenvolvimento de software acadêmico



na UFPE. Desta vez, João está trabalhando na refatoração de uma classe no projeto res-
ponsável por realizar chamadas a uma API externa, cuja implementação inicial é mostrada
pela Figura 5.

1 class GovApiService {
2 public Student getStudentFromGov(Cpf aCpf) {
3 (...)
4 }
5 }

Figura 5. Código Java da versão inicial da classe modificada por João

Durante a refatoração, João optou por alterar o nome do método getStudentFrom-
Gov para fetchStudentFromGov. Em paralelo e em outra branch, Laura está desenvol-
vendo uma nova funcionalidade que realizará uma chamada à API externa utilizando a
classe modificada por João. Por uma falha de comunicação e planejamento, Laura ainda
não possui a versão atualizada de João e, portanto, realiza a chamada utilizando o nome
getStudentDataFromGov.

João
1 class GovApiService {
2 public Student fetchStudentFromGov(Cpf aCpf) {
3 (...)
4 }
5 }

Laura
1 class AlunoController {
2 public Student createStudent(Cpf aCpf) {
3 Student aStudent = govService.getStudentFromGov(aCpf);
4 (...)
5 }
6 }

Figura 6. Na parte superior, a modificação introduzida por João em um arquivo (a
renomeação de um método). Já na parte inferior, a modificação introduzida
por Laura em outro arquivo (que envolve uma chamada ao método que foi
renomeado por João).

Ao realizarem a integração deste código, a ferramenta de versionamento de código
não reporta nenhum conflito de merge, de fato, as mudanças ocorreram em arquivos dife-
rentes. Entretanto, a nova versão resultado da integração de ambas as versões não passa
nas checagens de integração contı́nua do projeto, sendo reportado um erro de compilação
do tipo sı́mbolo não-existente, resultado da invocação do método getStudentFromGov por
right, método este, que foi renomeado na classe GovApiService em left.

Mesmo que, à primeira vista, a situação demonstrada acima possa parecer ter
ocorrência rara em ambientes reais de desenvolvimento de software, este tipos de confli-
tos ocorrem com considerável frequência. Além disso, diferentemente dos conflitos de



merge, que possuem ferramentas maduras para detecção e ferramentas promissoras para
a sua solução, conflitos em tempo de compilação geralmente exigem que os próprios de-
senvolvedores realizem correções manualmente de modo que o software seja compilável
novamente [Da Silva et al. 2022], custando tempo e qualidade para o projeto.

2.2.2. Conflitos semânticos em tempo de execução

Até aqui, discutimos categorias de conflitos que, apesar de afetarem a produtividade,
ainda são detectados durante a etapa de desenvolvimento, inclusive já dispondo de ferra-
mentas que conseguem detectá-los com certa facilidade. Nesta seção, discutiremos uma
categoria de conflitos que surgem durante integrações que geram versões compiláveis do
software, mas que em tempo de execução fornecem resultados diferentes dos esperados.

A fim de compreender como estes conflitos podem ocorrer na prática, tomemos
como exemplo a seguinte situação: suponha que dois desenvolvedores estão trabalhando
no método de validação de uma determinada classe de forma independente. O código
resultado da integração de ambas as contribuições está representado na Figura 7.

1 class Aluno {
2 public static void validarAluno(String email) {
3 StringUtils.assertMinLength(email, 15);
4 (...)
5 StringUtils.assertMaxLength(email, 10);
6 }
7 }
8

Figura 7. Código Java resultado da integração entre as versões. A linha 3 é
oriunda de uma contribuição de left, enquanto a linha 5 é oriunda de right.

Observemos a ausência de conflitos de merge, de fato, as modificações ocorrem
em trechos distintos do código, e que a versão obtida após a integração é compilável,
apontando a ausência de conflitos semânticos em tempo de compilação. Todavia, se exe-
cutarmos o programa resultante, observamos um comportamento diferente do esperado.

Analisando as versões a serem integradas de forma isolada, podemos extrair
especificações implı́citas do comportamento esperado por cada desenvolvedor ao reali-
zar as suas modificações. No exemplo da Figura 7, enquanto left especifica que o email
deve ter no mı́nimo 15 caracteres, right especifica que o valor não pode ultrapassar 10 ca-
racteres. Embora estas especificações estejam implementadas corretamente em ambas as
versões, a coexistência de ambas é logicamente inconsistente resultando em um programa
que lança exceções para entradas que seriam aceitas apenas por left ou right.

Esta situação aponta a presença de um conflito durante a integração que se mani-
festa apenas em tempo de execução. Como a detecção desta categoria de conflitos carece
de ferramentas automáticas, as últimas barreiras para a detecção destes conflitos em uma
equipe é a adoção de boas práticas como a utilização de suı́tes de testes automatizadas e
polı́ticas de revisões de código. Mesmo assim, inclusive projetos que possuem boa cober-
tura de testes e polı́ticas estritas de revisão correm o risco de negligenciar tais conflitos,



permitindo que estes cheguem ao software em produção [SILVA 2022].

2.2.3. Detectando conflitos semânticos em tempo de execução

Detectar conflitos semânticos em tempo de execução possui elevada dificuldade. De fato,
detectar tais conflitos envolveria construir uma ferramenta que fosse capaz de compre-
ender o comportamento esperado do software, e o efetivamente implementado em cada
um dos parents envolvidos na integração, podendo então avaliar a existência de inter-
ferências e potenciais conflitos entre cada uma das versões. Entretanto, neste contexto,
esta avaliação é um problema que não é sequer computável [Cavalcanti et al. 2017].

Mesmo assim, soluções heurı́sticas são propostas na literatura, geralmente utili-
zando ferramentas de análise estática, a fim de detectar tais conflitos. Neste trabalho, fo-
caremos na ferramenta SMAT, proposta por [Silva et al. 2020], que utiliza uma estratégia
diferente das apresentadas até então.

3. Ferramenta SMAT

Conforme apresentado na seção anterior, detectar conflitos semânticos em tempo de
execução é um processo difı́cil e ainda são poucas as propostas de ferramentas capazes
de atacar esse problema de forma eficaz. Neste contexto, [Silva et al. 2020] propõe a fer-
ramenta SMAT que utiliza uma estratégia diferente das utilizadas por outras ferramentas
que possuem a mesma finalidade.

Para o método modificado onde se quer investigar a ocorrência de conflitos
semânticos, aqui denominado método alvo, SMAT utiliza ferramentas que realizam
a geração automática de suı́tes de testes já propostas na literatura, como Evosuite
[Fraser 2018] e Randoop [Pacheco et al. 2007], para construir especificações parciais do
método alvo em ambos os parents. Como exemplo, suponha o teste da Figura 8, que es-
pecifica parcialmente a modificação introduzida por right no exemplo da seção anterior.

1 @Test
2 public void test() {
3 Exception e = assertThrows(StringException.class, () -> {
4 String email = "12caracteres"; // string com tamanho 12
5 Aluno.validarAluno(email);
6 });
7 assertTrue(e.getMessage()
8 .equals("String não pode ter mais que 10 caracteres");
9 }

Figura 8. Caso de teste de exemplo para a modificação introduzida por right no
exemplo da Figura 7

SMAT então realiza comparações destas especificações em cada versão do soft-
ware através da execução dos casos de teste gerados em cada uma das versões contidas
no cenário de merge. O resultado da execução dos casos de testes são avaliados com o
objetivo de detectar conflitos que atendam aos seguintes critérios heurı́sticos:



• A execução do teste falha em pelo menos um dos parents e passa em Base e Merge.
Analogamente, um conflito também é detectado se a execução do teste passa em
pelo menos um dos parents mas falha em Base e Merge.

• A execução do teste falha em ambos os parents e em Base, mas passa em Merge.
Analogamente, um conflito também é detectado se a execução do teste passa em
ambos os parents e em Base mas falha em Merge.

Como o caso de teste da Figura 8 passa na versão do código de right e falha em base, afinal
nenhuma validação a respeito do tamanho da String é realizada. Embora o teste também
falhe em merge, a exceção levantada pela validação é pelo fato da String de teste possuir
comprimento inferior ao permitido, comportamento introduzido por left. Este cenário de
interferência satisfaz o primeiro critério para detecção de um conflito semântico, sendo
então reportado por SMAT ao usuário.

Por outro lado, suponha o cenário da Figura 9 que é o código resultado da
integração de duas branches diferentes, e as linhas ocultas não modificam o valor da
variável x. A Figura 10 representa um teste gerado como uma especificação parcial para
a modificação introduzida por right.

1 public static int some_random_method() {
2 int x = 0;
3 (...)
4 x += 1;
5 (...)
6 x += 1;
7 (...)
8 if (x >= 2) {
9 throw new RuntimeException();

10 }
11 return x;
12 }

Figura 9. Neste cenário, a linha 4 foi introduzida por left e a linha 6 por right.

1 @Test(expected = None.class)
2 public void test() {
3 int result = RandomClass.some_random_method();
4 assertEquals(10, result);
5 }

Figura 10. Caso de teste de exemplo para a Figura 9

É válido observar que, tanto em base quanto em ambos os parents, o teste da Fi-
gura 10 passa (afinal, a variável x nunca possui o valor 2). Entretanto, quando integradas,
as modificações introduzidas por left e right acabam fazendo com que a variável x assuma
o valor 2, lançando uma exceção em tempo de execução e quebrando o teste em merge,
satisfazendo assim o segundo critério heurı́stico de SMAT.

A fim de evitar que testes que tenham comportamento flaky, isto é, que não apre-
sentam resultados consistentes ao longo de várias execuções, possam interferir no re-



sultado fornecido pela ferramenta, SMAT realiza 3 execuções de cada caso de teste,
descartando-o na análise na presença de qualquer disparidade entre os resultados.

Outra preocupação existente é com testes que venham a falhar por exercitarem
elementos que não estão presentes em alguma versão do código que está sendo analisado
- suponha, por exemplo, a introdução ou remoção de um método em algum dos parents.
Neste contexto, a avaliação seria inconclusiva e, portanto, tais testes são descartados du-
rante a análise.

3.1. Arquitetura e Implementação de SMAT
A implementação original de SMAT1 é realizada em Python com aproximadamente 3800
linhas de código, e é fruto de um fork da ferramenta Nimrod, originalmente utilizada para
experimentos com teste de mutação.

A ferramenta pode ser estruturada conceitualmente como sendo composta por 4
módulos que coincidem com as 4 etapas sequenciais da execução de SMAT: geração das
suı́tes de testes (Test Generation), execução destas suı́tes (Test Execution), análise dos
resultados (Dynamic Analysis) e geração de relatórios (Output Generation), estruturados
arquiteturalmente na aplicação como mostra a Figura 11.

Figura 11. Diagrama da macro-arquitetura de SMAT.

SMAT recebe como entrada um ou mais cenários de merge dispostos em um ar-
quivo CSV que obedece a seguinte estrutura:

• Nome do projeto a ser analisado;
• Um booleano indicando se o cenário deve ser analisado ou não;
• Seguem 4 colunas com as hashes dos commits que serão analisados (base, left,

right e merge);
• Fully-Qualified Class Name (FQCN) da classe alvo. Mais de uma classe pode ser

informada utilizado o caractere — como separador;
• Assinatura do método alvo. Somente um método pode ser fornecido. Os argumen-

tos do método devem ser informados utilizando o caractere — como separador;
1https://github.com/spgroup/SMAT/tree/ae33ccdc49

https://github.com/spgroup/SMAT/tree/ae33ccdc49


• Seguem 4 colunas com o caminho para os JARs de cada SHA (base, left, right e
merge). Estas versões são necessárias para que sejam informadas ao gerador de
testes.

3.2. Limitações e pontos de melhoria de SMAT

Apesar de SMAT ter apresentado resultados positivos na detecção dos conflitos, tendo
sido capaz de detectar corretamente mais de 30% dos casos presentes na amostra estudada
em trabalho anterior [Silva et al. 2020], a ferramenta possui algumas limitações e pontos
de melhoria relacionados à sua implementação e arquitetura.

Pela natureza exploratória das ferramentas de geração de testes utilizadas, é
possı́vel que o método alvo da análise não seja exercitado por nenhum caso de teste
que atenda aos critérios heurı́sticos implementados. Assim, como SMAT não leva em
consideração os métodos executados em um caso de teste durante a análise, é possı́vel
que um conflito seja reportado sem que o método alvo tenha sido executado, consistindo
assim em um falso positivo.

Junto a isto, SMAT possui a limitação de conseguir analisar apenas um único alvo
por execução. Por exemplo, se no cenário da seção anterior estivéssemos interessados em
executar a análise para outro método, terı́amos que realizar uma nova chamada a SMAT
e, por consequência, realizar uma nova chamada as ferramentas geradoras de testes e
novas chamadas a execução dos testes, o que aumentaria consideravelmente o tempo de
execução da ferramenta.

Do ponto de vista arquitetural, embora as 4 etapas da execução possuam um iso-
lamento conceitual, a atual hierarquia dos módulos, representada no diagrama da Figura
11, apresenta um acoplamento entre a geração, execução e posterior análise dos testes
gerados. Desta forma, um desenvolvedor que esteja encarregado de adicionar um novo
gerador de testes, ou mesmo corrigir um bug relacionado a um deles, deveria estar atento
e conhecer detalhes relacionados a outros aspectos da aplicação, aumentando a comple-
xidade envolvida neste processo representando uma área onde a modularidade do código
pode ser melhorada [Ousterhout 2018].

Ainda no contexto arquitetural, a aplicação possui um modelo anêmico, geral-
mente representando conceitos do domı́nio da aplicação utilizando-se de estruturas de
dados como listas. A ausência de um modelo estruturado e que explicite conceitos re-
levantes para o funcionamento da aplicação aumenta drasticamente a complexidade do
software, fazendo com que, a longo prazo, sua compreensão, manutenção e extensão
torne-se impraticável [Evans 2004].

Outro aspecto importante a ser discutido na implementação de SMAT é a dificul-
dade de customização do comportamento da ferramenta em tempo de execução. Supo-
nhamos, como exemplo, que estamos interessados em alterar o tempo disponı́vel para a
geração de testes utilizando a ferramenta Evosuite. A Figura 12 mostra o método res-
ponsável pela chamada de Evosuite2.

2https://github.com/spgroup/SMAT/blob/ae33ccdc49/nimrod/tools/evosuite.py#L16

https://github.com/spgroup/SMAT/blob/ae33ccdc49/nimrod/tools/evosuite.py#L16


1 class Evosuite(SuiteGenerator):
2 (...)
3 def _exec_tool(self):
4 params = [
5 '-jar', EVOSUITE,
6 '-projectCP', self.classpath,
7 '-class', self.sut_class,
8 '-Dtimeout', '10000',
9 '-Dassertion_strategy=all',

10 '-Dp_reflection_on_private=0',
11 '-Dreflection_start_percent=0',
12 '-Dp_functional_mocking=0',
13 '-Dfunctional_mocking_percent=0',
14 '-Dminimize=false',
15 #'-Dassertions=false',
16 '-Dsearch_budget=300',
17 '-Djunit_check=false',
18 '-Dinline=false',
19 '-DOUTPUT_DIR=' + self.suite_dir
20 ]
21

22 params += self.parameters
23

24 return self._exec(*tuple(params))
25 (...)

Figura 12. Código do método responsável pela chamada de Evosuite para a
geração de suı́tes de testes para uma determinada classe.

Neste cenário, observemos que não é possı́vel realizar essa alteração a) sem mo-
dificar diretamente o código fonte, b) sem conhecer os argumentos disponı́veis para a
execução de Evosuite, neste caso seria necessário modificar o atributo -Dsearch-budget
[Fraser 2018]. Enquanto a introdução da configurabilidade em tempo de execução pode
ser vista aqui como somente um simples aperfeiçoamento, esta modificação abre a pos-
sibilidade da introdução de uma interface comum e extensı́vel para a geração de suı́te
de testes que permita que o usuário realize a customização de aspectos da execução de
SMAT, como escolher quais geradores serão executados, como também customizar ca-
racterı́sticas dos próprios geradores, como o tempo de busca exploratória disponı́vel e
a utilização de geração determinı́stica, sem que seja necessário conhecer os detalhes da
implementação [Ousterhout 2018].

Outro ponto que é válido ressaltar é que, pelo caráter não-determinı́stico da
implementação utilizada na geração de suı́te de testes, execuções sucessivas de SMAT
no mesmo cenário podem levar a resultados diferentes. Esta caracterı́stica torna difı́cil a
reprodução dos experimentos conduzidos, algo importante para a validação dos resulta-
dos apresentados por [Silva et al. 2020] e que poderia ser resolvida tornando a etapa de
geração de testes determinı́stica, mesmo que os algoritmos de geração tenham um deter-
minado grau de aleatoriedade.

Por último, é importante observar que SMAT não possui anotações de tipos nos



elementos utilizados em seu código. Apesar de Python ser uma linguagem que consegue
determinar o tipo de suas variáveis somente em tempo de execução, é possı́vel utilizar fer-
ramentas que introduzem anotação de tipos [Lehtosalo et al. 2021] que podem ser poste-
riormente analisadas de maneira estática, melhorando significativamente a produtividade
[Hanenberg 2009] e a manutenção do software [Kleinschmager et al. 2012].

4. Atacando as lacunas de SMAT

Conforme discutido anteriormente, o objetivo deste trabalho é de propor
aperfeiçoamentos e soluções para as limitações encontradas em SMAT. Nas seções
seguintes, discutimos as estratégias utilizadas durante este processo.

4.1. Alterando a interface de entrada

A primeira proposta ofertada neste trabalho foi a de construir uma nova interface para
o fornecimento da lista dos cenários a serem analisados por SMAT com o objetivo de
facilitar a utilização da ferramenta pelos seus clientes. Para isto, decidimos alterar a
formatação da entrada para utilizar arquivos JSONs, em substituição aos antigos CSVs,
para permitir a representação de estruturas mais complexas e substituir notações exclusi-
vas da ferramenta, e.g.: a separação de parâmetros dos métodos por caracteres — ao invés
do habitual separador (,).

Outro objetivo a ser atingido com a modificação era o de permitir que a ferra-
menta pudesse detectar conflitos em uma quantidade arbitrária de alvos em uma mesma
execução, ao invés do único alvo, que era a estratégia implementada até então. Realizar a
análise com todos estes alvos em uma única execução simplifica o uso da ferramenta pelo
cliente mas também diminui o tempo de execução da ferramenta em cenários realistas
onde, geralmente, diversos alvos são modificados em um mesmo cenário de integração.

Para atender a este objetivo, a declaração dos alvos a serem avaliados foi re-
estruturada e é informada utilizando um dicionário, que tem como chaves os FQCNs
das classes alvos e como valores uma lista com os métodos a serem observados naquela
execução. A Figura 13 mostra um exemplo com a nova entrada de SMAT.



1 [
2 {
3 "projectName": "spring-boot",
4 "runAnalysis": false,
5 "scenarioCommits": {
6 "base": "7578f2f824aac027529878810b76ee176b39e73a",
7 "left": "0d00039ae7d01538de3f813b17d125dc5fdd5706",
8 "right": "1c21f54bf91283d70e04c49ea09a4c05a885d7ac",
9 "merge": "3eebbe1c8aed529e6903e78476492592ce0b0049"

10 },
11 "targets": {
12 "br.ufpe.cin.entidades.Aluno": [
13 "validarEmail(String anEmail)",
14 "validarCpf(String aCpf)",
15 ]
16 },
17 "scenarioJars": {
18 "base": "caminho-do-jar-base.jar",
19 "left": "caminho-do-jar-left.jar",
20 "right": "caminho-do-jar-right.jar",
21 "merge": "caminho-do-jar-merge.jar"
22 }
23 },
24 ]

Figura 13. Representação de exemplo da nova interface de SMAT. Neste cenário,
estamos avaliando a presença de conflitos semânticos nos métodos vali-
darEmail e validarCpf da classe br.ufpe.cin.entidades.Aluno

4.2. Detectando os alvos envolvidos em um conflito e descartando falsos positivos

A introdução da possibilidade de utilização de diversos alvos durante a mesma execução
apresentada na seção anterior traz consigo uma nova necessidade dentro da aplicação.
Suponhamos que estamos interessados em avaliar a existência de conflitos semânticos
nos métodos x() e y() de uma determinada classe A. Na ocasião da existência de um
conflito, como identificar em qual método este conflito ocorreu?

De fato, é importante observar que, a princı́pio, o conflito pode ter ocorrido em x()
ou y(), ou até mesmo em ambos os métodos, no caso de uma interação. Assim, é impor-
tante que a ferramenta indique ao desenvolvedor onde exatamente este conflito ocorreu e
quais os alvos envolvidos em cada um destes conflitos. Para isto, a ferramenta precisa ser
capaz de detectar os alvos que foram efetivamente executados nos testes onde os conflitos
foram detectados. Esta detecção pode ser realizada utilizando duas estratégias diferentes:

1. Através de uma análise estática do código fonte do caso de teste gerado e do
código fonte do projeto sob análise, a fim de verificar os métodos alvos que podem
ser diretamente ou indiretamente invocados pelos casos de teste envolvidos.

2. Através de uma análise do relatório de cobertura do código fonte durante a
execução do teste conflitante no commit de merge, a fim de verificar se ao me-
nos uma linha do método alvo foi invocada durante a execução do teste.



A fim de aproveitar a infraestrutura de coleta e geração de reportes de cobertura
de código já implementada em SMAT para outras finalidades, adotamos a estratégia de
análise do relatório de cobertura citada anteriormente, mesmo que esta introduza um custo
devido a instrumentação do código e da coleta de cobertura em si. Uma consequência in-
teressante desse aperfeiçoamento é que a mesma estratégia pode ser trivialmente utilizada
para avaliar a ocorrência de falsos positivos como descritos por [SILVA 2022]: a situação
em que nem x() e nem y() são executados pelo teste. Desta forma, nossa ferramenta pode
dar uma resposta mais significativa para os seus usuários.

4.3. Arquitetura
Conforme discutido previamente, o principal problema arquitetural presente em SMAT
é o acoplamento existente entre os módulos de geração das suı́tes, execução dos testes e
análise dinâmica. Desta forma, realizamos a reestruturação dos módulos conforme mostra
a Figura 14, a fim de permitir a evolução independente destes contextos da aplicação.

Figura 14. Diagrama da nova macro-arquitetura proposta para SMAT.

Cada módulo expõe uma interface pública que permite um ponto único de acesso
para as funcionalidades disponı́veis e que são então consumidas pela classe principal de
controle do sistema responsável por realizar as chamadas na ordem de execução de SMAT.
Aspectos utilitários da aplicação, como decodificação da entrada, logging, configuração e
a instanciação de objetos foram abstraı́dos para um módulo separado.

Com o objetivo de aumentar a customização da ferramenta, é possı́vel alterar al-
guns parâmetros referentes à execução a partir de um arquivo de configuração JSON, cuja
estrutura está descrita no Apêndice A.

A fim de mitigar os problemas relacionados ao fraco modelo presente na
aplicação, adotamos técnicas de modelagem utilizando o paradigma de orientação a ob-
jetos com a finalidade de melhor representar as interações entre as diferentes entidades e
serviços envolvidos durante a execução da ferramenta. Nas seções a seguir, discutimos
os detalhes e decisões envolvidas no aperfeiçoamento e implementação deste modelo em
cada um dos módulos de execução da aplicação.

4.4. Geração das Suı́tes de Testes
A primeira etapa da execução de SMAT consiste da geração de suı́tes de testes para cada
um dos parents (de um cenário de merge) utilizando ferramentas automáticas de geração
de testes unitários como Evosuite e Randoop. Na implementação original de SMAT, um
dos principais problemas era o acoplamento entre as etapas de geração, execução e análise
dinâmica. Tal acoplamento atingia inclusive a classe de controle, de modo que esta tinha,
obrigatoriamente, conhecimento de quais geradores de testes estavam sendo executados



conforme mostra o diagrama da Figura 15, sendo assim difı́cil adaptar SMAT para usar
um conjunto diferente de ferramentas de geração.

Figura 15. Diagrama de classes simplificado de SMAT. Na implementação origi-
nal, a classe abstrata SetupTool mistura aspectos de geração, execução e
análise dinâmica. Suas subclasses utilizam wrappers para realizar a cha-
mada a cada gerador de testes.

Nossa primeira proposta foi a de agrupar todos os conceitos da geração de
suı́te de testes em um único módulo profundo, que expusesse uma interface simples
mas que atendesse às funcionalidades e comportamentos esperados por seus clientes
[Ousterhout 2018], chegando então a arquitetura apresentada na Figura 16

Figura 16. Diagrama de classes do módulo de Geração das Suı́tes de Testes.

Neste novo design, a classe TestSuiteGeneration, que publica a interface deste
módulo, expõe um único método que encapsula as sucessivas chamadas a cada um dos



geradores de testes implementados. Isso isenta os clientes de conhecerem quais gerado-
res estão sendo executados, simplificando o código da classe de controle e permitindo
a possibilidade de customizar os geradores de testes utilizados em tempo de execução,
comportamento este implementado a partir de um arquivo de configuração.

Nesta arquitetura, as subclasses de TestSuiteGenerator oferecem através de sua
interface o método generate and compile test suites, responsável por realizar a chamada
a ferramenta de geração de testes e a posterior compilação do código fonte gerado.

Como cada ferramenta de teste possui caracterı́sticas especı́ficas, tais como a
invocação da ferramenta, a determinação de quais arquivos gerados devem ser compilados
e onde estão localizados, bem como determinar o classpath necessário para a compilação
da suı́te gerada, o método generate and compile test suites foi implementado utilizando o
padrão template method [Gamma et al. 1995], de modo que o comportamento especı́fico
de cada gerador fosse implementado pelas suas subclasses.

Outro ponto de melhoria importante levantado na seção anterior é adicionar a
possibilidade de termos determinismo na geração dos testes. Pelo grau de aleatoriedade
presente nas ferramentas utilizadas para a geração de testes, atualmente, execuções suces-
sivas de SMAT podem resultar em resultados diferentes pelas diferenças geradas em cada
suı́te.

Entretanto, as ferramentas utilizadas disponibilizam funcionalidades que permi-
tem tornar a execução determinı́stica, através do fornecimento de uma seed e da alteração
em alguns parâmetros durante a invocação da ferramenta, a saber a remoção das restrições
de tempo e determinação de novos critérios de parada.

Optamos por abstrair o conceito da geração determinı́stica através de um
parâmetro na interface do módulo de geração das suı́tes, que pode ser configurado pelo
usuário final a partir do arquivo de configuração, permitindo dinamicamente habilitar
o comportamento determinı́stico sem que seja necessário alterar o código fonte. Além
disto, também é possı́vel customizar a seed fornecida às ferramentas através do arquivo de
configuração, sendo utilizado um valor padrão caso este não seja informado pelo usuário.

Por último, a introdução da classe TestSuite permitiu estruturar os dados das
suı́tes geradas em um objeto, diferentemente da estruturação em n-tuplas utilizada pre-
viamente. Embora seja mais verboso, o objeto permite armazenar e acessar com facili-
dade informações da suı́te que serão utilizados em etapas posteriores da execução, como
a localização dos arquivos gerados, o gerador utilizado, bem como o nome das classes
geradas e o classpath dos arquivos compilados.

4.5. Execução das Suı́tes de Testes
Uma vez que a geração das suı́tes é concluı́da, é necessário realizar a execução destas
suı́tes em cada uma das versões do software presentes no cenário de integração. Para
isto, SMAT utiliza-se de um executor de testes, no caso JUnit 4. De forma similar à
seção anterior, encapsulamos o comportamento da execução da suı́te em um módulo,
arquitetado conforme mostra a Figura 17.

Neste design, além de realizar as chamadas às ferramentas que realizam a
execução dos testes, a classe TestSuiteExecutor também é responsável por realizar
a decodificação da saı́da de JUnit, convertendo-a para as representações internas da



Figura 17. Diagrama de classes do módulo de Execução das Suı́tes de Testes.

aplicação, atuando como um Adapter [Gamma et al. 1995]. Este design permite facil-
mente substituir o executor de suı́tes de teste sem ter de se preocupar em eventuais danos
a outros aspectos do modelo, contribuindo diretamente com a extensibilidade da ferra-
menta.

Além disso, é importante discutir os diferentes resultados que um caso de teste
pode ter em uma determinada execução, para além dos casos triviais: falhar e pas-
sar. Como discutido na Seção 3, é possı́vel que alguns dos testes gerados previamente
possuam comportamento flaky, isto é, não possuem resultados consistentes em sucessi-
vas execuções. A fim de tentar detectar este tipo de comportamento, SMAT realiza 3
execuções sucessivas de cada caso de teste marcando-o como flaky caso algum resultado
seja diferente.

Outro ponto de atenção é na situação em que o caso de teste falha pela ausência
de um determinado sı́mbolo que foi introduzido ou removido por alguma modificação em
algum dos commits. De fato, suponha o trecho de código apresentado na Figura 18 em
merge, onde a linha 3 indica uma chamada a um método adicionado por left.

class Aluno {
public void validarAluno(String email, String cpf) {

this.validarEmail(email);
this.validarCpf(cpf);

}
}

Figura 18. Classe de exemplo. O método validarEmail foi adicionado por left



Ao executarmos um caso de teste que exercita o método validarEmail em right
ou base seremos surpreendidos com um erro do tipo NoSuchMethodError, decorrido da
ausência da implementação deste método na classe Aluno nestas versões. Desta forma,
embora o teste falhe, esta ocorrência é resultado do fato de o teste sequer ser executável
nestas versões do software. Ao detectar estes tipos de erros (métodos, atributos e classes
faltantes), SMAT classifica tais testes como NOT EXECUTABLE.

Outra mudança foi a introdução de um novo método que executa a coleta de co-
bertura de código enquanto realiza a execução dos testes. Na implementação original de
SMAT, esta coleta ocorre em todas as chamadas ao módulo de execução, introduzindo
uma penalidade considerável em performance, especialmente pela estratégia de execu-
tar os testes mais de uma vez. Esta decisão permite que o fluxo secundário de coleta
de cobertura seja separado do fluxo primário da execução, resultando em um ganho de
performance sem prejuı́zo semântico ao cliente da aplicação [Ousterhout 2018].

SMAT realiza a coleta de cobertura de código utilizando Jacoco
[Hoffmann et al. 2009]. Para isto, é necessário realizar uma instrumentação da
versão a ser analisada, para que seja possı́vel detectar quais comandos do código foram
executados. Na implementação original, o processo de instrumentação é realizado
previamente pelo cliente da classe, que somente então invoca a execução dos testes
fornecendo a versão instrumentada.

Esta decisão contribui para que detalhes da implementação da coleta de cobertura
estejam expostos ao cliente (a necessidade de realizar um pré-processamento na versão a
ser analisada), sinalizando uma quebra do encapsulamento do algoritmo implementado,
aumentando a carga cognitiva e complicando a interface do módulo. Em casos extremos,
por exemplo, o usuário desta API pode ser surpreendido pelo comportamento do módulo
caso forneça uma versão não instrumentada do código, algo que acarretará com que o
reporte não seja gerado corretamente.

[Ousterhout 2018] afirma que é preferı́vel que um módulo tenha uma interface
simples mesmo que isso aumente a complexidade de sua implementação. Baseado neste
princı́pio, decidimos encapsular a lógica de instrumentação da versão a ser analisada no
método execute test suite with coverage. Desta forma, um cliente precisa somente infor-
mar a versão na qual deseja realizar a coleta de cobertura, e a implementação será res-
ponsável por realizar a instrumentação — inclusive pulando esta etapa caso uma versão
instrumentada já esteja presente — e realizar a posterior execução e tratamento dos testes.

4.6. Análise Dinâmica
Após a execução, é necessário que SMAT realize a análise das execuções dos testes, a
fim de verificar se algum deles satisfaz algum dos critérios heurı́sticos de interferência
apresentados na Seção 3. Vale ressaltar que, durante a fase de análise, os testes que
possuem comportamento flaky ou que não são executáveis em alguma versão do software
são descartados.

Além disso, é importante ressaltar que é possı́vel que exista mudança de comporta-
mento entre diferentes versões do software sem que necessariamente ocorra a presença de
um conflito. Assim, para fins de estudo, SMAT também computa mudanças de comporta-
mento entre as versões do software verificando pares de versões que possuem resultados
diferentes para um mesmo caso de teste.



Na implementação original, tanto a verificação de conflitos quanto de mudanças de
comportamento são realizadas por uma única classe3. Nesta versão, os casos de testes são
separados em diferentes conjuntos: os que passaram, os que falharam e os que possuem
comportamento flaky ou que não foram executados. As verificações são realizadas então
utilizando operações entre estes diferentes conjuntos, o que torna difı́cil a compreensão
de como cada critério é definido apenas pela leitura do código.

Além disso, a ausência do uso de objetos e pela estratégia de dividir os casos de
testes em diferentes conjuntos polui a interface dos métodos, que acabam tendo elevado
número de parâmetros resultando em um code smell [Fowler 2018]. A ausência de um
modelo orientado a objetos também resulta em um uso abusivo de tipos primitivos, que
acabam por não expressar de forma clara o comportamento e as relações entre os diferen-
tes componentes do software.

Neste sentido, nosso primeiro passo é construir um modelo que consiga refletir a
relação existente entre a execução de um caso de teste em um determinado cenário e se
ele satisfaz ou não um determinado critério heurı́stico da ferramenta. Para modelar esta
relação bem como os possı́veis múltiplos critérios existentes para a detecção de conflitos,
encapsulamos tal comportamento na interface SemanticConflictCriteria. Na situação de
uma execução de um caso de teste satisfazer algum destes critérios, estes são encapsulados
em uma instância da classe SemanticConflict. Essa visão parcial do modelo de análise
dinâmica está representado no diagrama da Figura 19.

Figura 19. Diagrama de classes da estruturação da análise de conflitos
semânticos.

3https://github.com/spgroup/SMAT/blob/ae33ccdc49/nimrod/setup tools/behaviour check.py

https://github.com/spgroup/SMAT/blob/ae33ccdc49/nimrod/setup_tools/behaviour_check.py


Com este modelo, a implementação dos critérios de conflitos tem sua
implementação drasticamente simplificada, se assemelhando bastante a sua descrição em
linguagem natural, conforme mostra a Figura 20 que ilustra a implementação para o se-
gundo critério apresentado na seção 3

class SecondSemanticConflictCriteria(SemanticConflictCriteria):
def is_satisfied_by(self, test_case_execution):

fails_in_base_and_both_parents_but_passes_in_merge = \
test_case_execution.base == TestCaseResult.FAIL \
and test_case_execution.left == TestCaseResult.FAIL \
and test_case_execution.right == TestCaseResult.FAIL \
and test_case_execution.merge == TestCaseResult.PASS

passes_in_base_and_both_parents_but_fails_in_merge = \
test_case_execution.base == TestCaseResult.PASS \
and test_case_execution.left == TestCaseResult.PASS \
and test_case_execution.right == TestCaseResult.PASS \
and test_case_execution.merge == TestCaseResult.FAIL

return fails_in_base_and_both_parents_but_passes_in_merge or \
passes_in_base_and_both_parents_but_fails_in_merge

Figura 20. Implementação da detecção do segundo critério de conflitos

Uma estratégia similar pode ser utilizada para identificar as mudanças de compor-
tamento entre diferentes versões do software. De fato, o modelo resultante é semelhante,
conforme mostra a Figura 21.

Figura 21. Diagrama de classes da estruturação da análise de mudanças de com-
portamento.



A fim de simplificar o consumo por parte de seus clientes, as implementações
do módulo de Análise Dinâmica foram agrupadas em uma Fachada [Gamma et al. 1995],
que agrupa as funcionalidades principais fornecidas pelo módulo. Desta forma, uma visão
geral do módulo é apresentada na Figura 22.

Figura 22. Diagrama de classes em alto nı́vel do módulo de análise dinâmica.

4.7. Geração de relatórios

Com as análises finalizadas, a última etapa da execução de SMAT consiste em construir
relatórios com os dados coletados para que estes possam ser consumidos e analisados pelo
usuário ou por outras ferramentas.

A ferramenta permite a confecção de 3 tipos de relatórios: um com informações
a respeito dos conflitos semânticos detectados, outro possuindo informações a respeito
das mudanças de comportamento observadas entre as diferentes versões do cenário e um
último reporte contendo informações a respeito das suı́tes de testes geradas. A Figura 23
mostra a estrutura de cada um dos relatórios gerados.

Figura 23. Estrutura de cada um dos relatórios gerados. Cada relatório é com-
posto de uma lista de instâncias destas classes.

Seguindo a mesma estratégia utilizada nas outras seções, decidimos por isolar
a geração de relatórios em um módulo na aplicação. Este módulo possui uma classe
abstrata OutputGenerator responsável por realizar a geração de um relatório. Embora
na versão original de SMAT os relatórios fossem gerados em formato CSV, optamos por
utilizar JSON em nossa implementação, pela possibilidade de representar mais facilmente
estruturas como dicionários e listas.



Como cada relatório possui uma estratégia diferente para sua geração, consultando
dados diferentes e aplicando processamentos especı́ficos, cada subclasse deve sobrescre-
ver o método abstrato generate report data introduzindo o comportamento necessário
para a confecção do relatório, resultando assim em mais uma aplicação do padrão tem-
plate method [Gamma et al. 1995]. A Figura 24 apresenta a arquitetura do módulo de
geração de reportes.

Figura 24. Diagrama de classes do módulo de geração de relatórios

Um aspecto importante a ser considerado neste módulo é a necessidade de con-
sultar valores computados em diferentes etapas da execução. Por exemplo, os reportes
de conflitos semânticos necessitam de informações obtidas durante a etapa de análise
dinâmica, enquanto o reporte de suı́tes de teste consulta informações da geração de suı́tes
e de análise dinâmica.

A fim de preservar uma interface comum para os diferentes geradores de relatório,
o que simplifica a consumação da classe pelos seus clientes, decidimos por ter como
parâmetro da geração de relatório as diferentes entidades das etapas anteriores. Entre-
tanto, para evitar o code smell Long Parameter List [Fowler 2018], quando um método
possui diversos parâmetros, decidimos por encapsular estes parâmetros em um único ob-
jeto, utilizando a técnica de Introduce Parameter Object [Fowler 2018].

Figura 25. Diagrama do objeto OutputGeneratorContext, que guarda as diversas
informações a serem consultadas durante a geração de um relatório.



4.8. Documentação e gerência do projeto

A fim de melhorar a manutenibilidade do projeto, iniciamos a produção de documentações
relevantes. A fim de documentar as diferentes decisões arquiteturais tomadas ao longo do
projeto, adicionamos um documento de arquitetura ao projeto, que possui diagramas que
discutem em alto nı́vel as decisões, implicações e trade-offs levados em consideração
durante a fase de projeto.

Do ponto de vista de gerenciamento do projeto, a principal preocupação foi a de
permitir o aumento da utilização de ferramentas de verificação estática do código a fim
de encontrar possı́veis defeitos ainda em tempo de compilação. Neste sentido, foram
adicionadas anotações de tipos estáticos em todas as novas implementações, bem como
adicionadas verificações destes tipos a esteira de integração contı́nua do projeto.

5. Discussão e Trabalhos Futuros

SMAT é uma ferramenta que tenta encontrar conflitos semânticos em um cenário de
integração de código a partir da detecção automática de mudanças de comportamento
utilizando geração de testes automáticos. Durante este trabalho, tivemos a oportunidade
de revisitar, reestruturar e aperfeiçoar diversos aspectos desta ferramenta. Nesta seção,
discutimos os resultados dessas modificações e como elas podem contribuir na evolução
e manutenção do produto, bem como apresentamos possibilidades de trabalhos futuros.

Em primeiro lugar, é importante destacar que a nova implementação de SMAT
permitiu que a ferramenta atingisse um maior nı́vel de configurabilidade, de forma que
diversos aspectos possam ser configurados diretamente em tempo de execução, como
definir quais serão as ferramentas utilizadas durante a etapa de geração de testes, bem
como customizar parâmetros relevantes para a execução como o tempo disponı́vel para a
busca e definir quais reportes serão elaborados na etapa de geração de saı́da.

Outro aperfeiçoamento introduzido na ferramenta foi a possibilidade de execuções
determinı́sticas da ferramenta, permitindo que execuções sucessivas com a mesma entrada
tenham sempre o mesmo resultado. Este aperfeiçoamento facilita a reprodutibilidade dos
experimentos realizados com a ferramenta, um aspecto que foi observado como um dos
principais pontos de melhoria da ferramenta.

Do ponto de vista arquitetural, a ferramenta possui agora um modelo que facilita
o entendimento, evolução e manutenção do software. Através de um maior entendimento
de aspectos importantes do domı́nio da ferramenta, foi possı́vel introduzir abstrações que
permitissem estruturar as diversas entidades da aplicação e como estas se relacionam
durante a execução da ferramenta.

Além disso, a nova arquitetura dos módulos facilita a extensibilidade do software
sem que seja necessário modificar componentes já existentes. Em todos os contextos
da aplicação, adicionar novas ferramentas ou funcionalidades se limita a implementar
uma única subclasse. É o caso na adição de novos geradores de testes, novos critérios
heurı́sticos para detecção de conflitos e novos geradores de relatórios.

Vale ressaltar também que a remoção do acoplamento entre as etapas de geração,
execução e análise dinâmica permite agora que um desenvolvedor responsável por uma
tarefa que envolva apenas uma dessas etapas não tenha de se preocupar ou conhecer de-



talhes da implementação das etapas adjacentes, diminuindo a carga cognitiva exigida e
reduzindo a probabilidade do surgimento de defeitos.

A introdução de novas interfaces de entrada e saı́da para os clientes da ferramenta
utilizando JSON também contribuiu para facilitar o uso da ferramenta. Ao termos a possi-
bilidade de representar estruturas complexas exigidas pela ferramenta de maneira trivial,
sem ser necessário a substituição de caracteres ou utilização de separadores customiza-
dos, eliminamos um trabalho considerável do cliente em construir uma entrada que adote
as notações utilizadas bem como seja capaz de converter a saı́da para sua representação
interna.

A introdução de uma interface que permitisse que uma mesma execução de SMAT
fosse capaz de buscar conflitos semânticos em mais de um alvo, trouxe um ganho de
performance considerável, especialmente nos cenários onde vários alvos precisam ser in-
vestigados. Além disso, a estratégia introduzida para detectar quais destes alvos foram
executados durante um conflito, permitiu também resolver uma das fontes de falsos posi-
tivos discutidas pelos autores em trabalhos anteriores.

Como trabalhos teóricos futuros, temos como principal horizonte a expansão de
SMAT para que ela seja capaz de atender outros projetos para além da linguagem Java.
Vale ressaltar aqui que tal expansão depende da existência de ferramentas que sejam ca-
pazes de realizar a geração de testes automáticos para diferentes linguagens, e que estas
ferramentas ainda estão em desenvolvimento dentro da literatura.

Outro campo de exploração é verificar os ganhos introduzidos com as nossas
contribuições como, por exemplo, analisando se houve melhora na performance da ferra-
menta, ou verificar como a nova estratégia de detecção de falsos positivos comporta-se na
prática em um cenário real.

A nı́vel de implementação, é importante observar que SMAT é apenas uma fer-
ramenta do arcabouço produzido pelo trabalho de [SILVA 2022]. Desta forma, como a
ferramenta é consumida por outros clientes, é importante que estes clientes sejam atua-
lizados para utilizar as novas interfaces providas por SMAT. No momento, as interfaces
antigas ainda são suportadas, mas foram depreciadas, podendo ser removidas em futuras
versões da ferramenta.

Outro aspecto relevante para o projeto é o de aumentar a cobertura de testes auto-
matizados da aplicação. É importante ressaltar que com o advento das execuções deter-
minı́sticas implementadas neste trabalho, é possı́vel construir valiosas suı́tes de testes de
integração que podem, com baixo custo de desenvolvimento, serem capazes de encontrar
com facilidade possı́veis regressões em tarefas de desenvolvimento futuras.

Além disso, o isolamento da execução dos geradores de suı́tes de testes permite
explorar possibilidades de execução da geração em paralelo. Embora uma análise menos
criteriosa aponte para a possibilidade de um ganho de performance, é necessário consi-
derar como este comportamento influenciaria a qualidade e o tempo disponı́vel para a
geração de cada uma das suı́tes, especialmente quando utilizando a busca exploratória
limitada por tempo.

Por último, contribuições na documentação da ferramenta, na remoção de trechos
de código não mais utilizados e na implementação de uma polı́tica de refatoração contı́nua



são também possı́veis áreas de interesse para trabalhos futuros.

Referências
Cavalcanti, G., Borba, P., and Accioly, P. (2017). Should we replace our merge tools? In

2017 IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C), pages 325–327.

Da Silva, L., Borba, P., and Pires, A. (2022). Build conflicts in the wild. Journal of
Software: Evolution and Process, 34(4):e2441.

Evans, E. J. (2004). Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley
Professional.

Fraser, G. (2018). A tutorial on using and extending the evosuite search-based test ge-
nerator. In International Symposium on Search Based Software Engineering, pages
106–130. Springer.

Gamma, E., Helm, R., Johnson, R., Johnson, R. E., Vlissides, J., et al. (1995). Design
patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH.

Hanenberg, S. (2009). What is the impact of static type systems on programming time.
In PLATEAU Workshop at OOPSLA’09.

Hoffmann, M., Janiczak, B., Mandrikov, E., and Friedenhagen, M. (2009). Jacoco code
coverage tool.

Kleinschmager, S., Robbes, R., Stefik, A., Hanenberg, S., and Tanter, E. (2012). Do static
type systems improve the maintainability of software systems? an empirical study. In
2012 20th IEEE International Conference on Program Comprehension (ICPC), pages
153–162. IEEE.

Lehtosalo, J., Rossum, G. v., Levkivskyi, I., Sullivan, M. J., Fisher, D., Price, G., Lee,
M., Seyfer, N., Barton, R., Ilinskiy, S., et al. (2021). Mypy: Optional static typing for
python. URL: http://mypy-lang. org/[cited 2021-11-30].

Ousterhout, J. K. (2018). A philosophy of software design, volume 98. Yaknyam Press
Palo Alto.

Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T. (2007). Feedback-directed random
test generation. In 29th International Conference on Software Engineering (ICSE’07),
pages 75–84. IEEE.

Seibt, G., Heck, F., Cavalcanti, G., Borba, P., and Apel, S. (2021). Leveraging structure
in software merge: An empirical study. IEEE Transactions on Software Engineering,
pages 1–1.

SILVA, L. D. (2022). Detecting, Understanding, and Resolving Build and Test Conflicts.
PhD thesis, Universidade Federal de Pernambuco.

Silva, L. D., Borba, P., Mahmood, W., Berger, T., and Moisakis, J. (2020). Detecting se-
mantic conflicts via automated behavior change detection. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 174–184.



A. Estrutura do arquivo de configuração de SMAT

SMAT permite que o usuário customize alguns aspectos de sua execução. Estas
modificações podem ser realizadas editando o arquivo nimrod/tests/env-config.json. Este
documento discute as opções disponı́veis para customização.

A.1. Geral

As propriedades a seguir se referem a aspectos gerais da execução de SMAT.

A.1.1. java home

Por padrão, SMAT utilizará a variável de ambiente JAVA HOME para popular o cami-
nho de instalação do Java. Entretanto, é possı́vel sobrescrever esse valor configurando a
variável java home no arquivo de configuração.

A.1.2. maven home

Por padrão, SMAT utilizará a variável de ambiente MAVEN HOME ou MVN HOME para
popular o caminho de instalação do Maven. Entretanto, é possı́vel sobrescrever esse valor
configurando a variável maven home no arquivo de configuração.

A.1.3. logger level

Esta propriedade permite alterar o nı́vel mı́nimo de mensagens que serão exibidas pela
CLI. O valor padrão é INFO, podendo ser alterada para: CRITICAL, ERROR, WARNING
ou DEBUG.

A.1.4. input path

Esta propriedade contém o caminho absoluto para o arquivo JSON que contém a descrição
dos cenários a serem analisados pela ferramenta.

A.2. Geração de Suı́tes de Teste

As propriedades a seguir estão relacionadas com aspectos da etapa de Geração de Suı́tes
de Teste.

A.2.1. test suite generators

Um array com o nome das ferramentas a serem utilizados durante a etapa de geração. Se
não for informado, todos os geradores implementados serão utilizados. Valores válidos
são: randoop, randoop-modified, evosuite e evosuite-differential.



A.2.2. test suite generation search budget

Permite customizar o tempo em segundos disponı́vel para cada gerador durante a etapa de
Geração de Suı́tes de Testes. O valor padrão é de 300 segundos. Observe que esta opção
será ignorada se a geração de testes for determinı́stica.

A.2.3. generate deterministic test suites

Se configurada para true, SMAT utilizará versões determinı́sticas de seus gerados, i.e., as
suı́tes geradas serão sempre as mesmas independente de quantas vezes a ferramenta seja
executada.

A.3. Output Generation

As propriedades a seguir estão relacionadas com aspectos da etapa de Geração de Repor-
tes.

A.3.1. output generators

Um array contendo os relatórios que devem ser escritos durante a etapa de geração de re-
latórios. Se não for informada, todos os relatórios implementados serão gerados. Valores
válidos são: behavior changes, semantic conflicts, test suites.


	Introdução
	Conflitos de Integração de Código
	Conflitos de merge
	Conflitos semânticos
	Conflitos semânticos em tempo de compilação
	Conflitos semânticos em tempo de execução
	Detectando conflitos semânticos em tempo de execução


	Ferramenta SMAT
	Arquitetura e Implementação de SMAT
	Limitações e pontos de melhoria de SMAT

	Atacando as lacunas de SMAT
	Alterando a interface de entrada
	Detectando os alvos envolvidos em um conflito e descartando falsos positivos
	Arquitetura
	Geração das Suítes de Testes
	Execução das Suítes de Testes
	Análise Dinâmica
	Geração de relatórios
	Documentação e gerência do projeto

	Discussão e Trabalhos Futuros
	Estrutura do arquivo de configuração de SMAT
	Geral
	java_home
	maven_home
	logger_level
	input_path

	Geração de Suítes de Teste
	test_suite_generators
	test_suite_generation_search_budget
	generate_deterministic_test_suites

	Output Generation
	output_generators



