e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

VINICIUS JOSE DE SIQUEIRA

History-based Prioritization in the Context of Manual Testing:
a Study in a Real Industrial Setting

Recife
2022

VINICIUS JOSE DE SIQUEIRA

History-based Prioritization in the Context of Manual Testing:

a Study in a Real Industrial Setting

Trabalho apresentado ao Programa de Pds-
Graduacdo em Ciéncia da Computacdo do Centro
de Informatica da Universidade Federal de Pernam-
buco como requisito parcial para obtencdo do grau
de Mestre em Ciéncia da Computacao.

Area de Concentracdo: Engenharia de Software e
Linguagens de Programacao

Orientador (a): Breno Alexandro Ferreira de
Miranda

Recife
2022

Catalogacéao na fonte
Bibliotecéria Monick Raquel Silvestre da S. Portes, CRB4-1217

S618h

Siqueira, Vinicius José de

History-based prioritization in the context of manual testing: a study in a real
industrial setting / Vinicius José de Siqueira. — 2022.

79 f.: il fig., tab.

Orientador: Breno Alexandro Ferreira de Miranda.
Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacao, Recife, 2022

Inclui referéncias.

1. Engenharia de software. 2. Teste de regressdo. |. Miranda, Breno
Alexandro Ferreira de (orientador). Il. Titulo.

005.1 CDD (23. ed.) UFPE - CCEN 2022-167

Vinicius José de Siqueira

“History-based Prioritization in the Context of Manual Testing: a Study
in a Real Industrial Setting”

Dissertacdo de Mestrado apresentada ao
Programa de P6s-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencdo do titulo de Mestre em Ciéncia da
Computacdo. Area de Concentragio:
Engenharia de Software e Linguagens de
Programacao.

Aprovado em: 19/09/2022.

BANCA EXAMINADORA

Prof. Dr. Juliano Manabu lyoda
Centro de Informatica / UFPE

Profa. Dra. Genaina Nunes Rodrigues
Departamento de Ciéncia da Computacao / UnB

Prof. Dr. Breno Alexandro Ferreira de Miranda
Centro de Informatica / UFPE
(Orientador)

To my family and close friends who have been cheering me on.

ACKNOWLEDGEMENTS

| want to open these acknowledgments by dedicating the superior forces that always guide
me, whether, in the quiet moments or the most turbulent ones, these forces always keep me
on the axis, focused and running after my goals.

| would like even more to leave a special thanks to my advisor, Breno Miranda, an incredible
person who appeared on my timeline during a coffee break in the pantry at work, talking
precisely about one of the goals | had in mind and that had not yet happened, that was
my desire to apply for the master’s degree. Once again, the superior force put this incredible
human being in my path; thank you, professor, for all the teachings and great patience that
you have to share all your knowledge; if it wasn't for you guiding me, | think this work would
not have left my mind and from the paper.

| also cannot fail to thank my wife, Wédja Katia, for having understood my moments of
absence during this master's period, she encouraged me to keep moving forward at various
times.

| could not fail to thank my dear mother, Hilda Benicio, and my queen who is my grand-
mother, Maria Benicio - In memoriam, who have always guided me along the paths of knowl-
edge, if it weren't for them, many of my achievements that | have in my life (all coming from
the studies) would not be possible. You can be sure that | will be forever grateful for everything
you have given me.

| would also like to thank my co-workers, who encouraged me and also supported me in
some moments when | needed to be more absent from work to be able to dedicate myself a
little more in some moments of the master’s, thank you Vitor Lima, Jully Quintans, Emanuel
Oliveira, Lucas Carneiro, and also to Mr. Eliot Maia whom | had the honor to count on to help
with the review of part of the work and for having passed on some feedbacks and insights.

Finally, | would like to thank all my family and close friends who have also been cheering
for me all this time and who were able to help directly or indirectly during this period; now,

we will be able to see each other a little more and celebrate, rs.

"Program testing can be used to show the presence of bugs, but never to show their

absence." (DIJKSTRA et al., 1970)

ABSTRACT

Many test case prioritization techniques have been proposed with the ultimate goal of speeding
up fault detection. History-based prioritization, in particular, has been shown to be an effective
strategy. However, most empirical studies on this topic have focused on the context of auto-
mated testing. Investigating the effectiveness of history-based prioritization in the context of
manual testing is important because, despite the popularity of automated approaches, man-
ual testing is still largely adopted in the industry. In this work, we propose two history-based
prioritization heuristics and evaluate them in the context of manual testing in a real industrial
setting. We compared our proposed approaches against alternative prioritization strategies,
including a state-of-the-art history-based approach, an optimal prioritization, the real ordering
followed by the testers, the ordering suggested by a test management tool, and a random or-
dering. For our evaluation, we collected historical test execution information from 35 products,
spanning over seven years of historical information, accounting for a total of 3,196 unique test
cases and 5,859,989 test results. The results of our experiments using historical test execution
data from real subjects and with real faults showed that the effectiveness of the proposed
approaches is not far from a theoretical optimal prioritization and that they are significantly
better than alternative orderings of the test suite, including the state-of-the-art history-based
approach, and the execution order followed by the testers during the real execution of the
test suites evaluated as part of our study. With respect to efficiency, our proposed approaches
yield similar results and they are both better (faster) than the state-of-the-art history-based

competitor.

Keywords: regression testing; test case prioritization; history-based prioritization; manual test-

ing.

RESUMO

Muitas técnicas de priorizacdo de casos de teste foram propostas com o objetivo final de acele-
rar a deteccao de falhas. A priorizacao baseada em histérico, em particular, tem se mostrado
uma estratégia eficaz. A maioria dos estudos empiricos realizados neste topico, no entanto, se
concentraram no contexto de testes automatizados. Investigar a eficacia da priorizacdo baseada
em histérico no contexto de testes manuais é importante porque, apesar da popularidade das
abordagens automatizadas, o teste manual ainda é amplamente adotado na industria. Neste
trabalho nds propomos duas heuristicas de priorizacdo baseadas em histérico e as avaliamos no
contexto de testes manuais em um ambiente industrial real. N6s comparamos nossas aborda-
gens propostas com estratégias alternativas de priorizac3do, incluindo a abordagem do estado
da arte baseada em histérico, uma priorizacdo 6tima, a ordenacdo real seguida pelos tes-
tadores, a ordenacdo sugerida pela ferramenta de gerenciamento de teste e uma ordenacao
aleatéria. Para nossa avaliacdo nds coletamos informacdes histéricas de execucao de testes
para 35 produtos, abrangendo mais de sete anos de informacdes histéricas, contabilizando um
total de 3.196 casos de teste (inicos e 5.859.989 resultados de teste passados. Os resultados de
nossos experimentos mostraram que a eficacia das abordagens propostas ndo estdo longe de
uma tedrica priorizacao 6tima, e que sao significativamente melhores do que as alternativas de
ordenacdes das suites de testes, incluindo a abordagem utilizada como comparacao do estado
da arte, a ordem sugerida pela ferramenta de gerenciamento de testes e a ordem de exe-
cucao seguida pelos testadores durante a execucao real das suites de testes avaliadas durante
o nosso estudo. Com relacdo a eficiéncia, nossas abordagens propostas produzem resultados
semelhantes e ambas sdo melhores (mais rapidas) do que a abordagem concorrente do estado

da arte baseada em historico.

Palavras-chaves: teste de regressdo; priorizacao de casos de teste; priorizacdo baseada no

histérico; testes manuais.

LIST OF FIGURES

Figure 1 — Regression Testing Techniques 25
Figure 2 — Test Case exampleo 29
Figure 3 — Google Issue Tracker example 30
Figure 4 — Bugzilla Life-cycle of a Defect Report 31

Figure 5 — History-based Prioritization in the Industrial Context where we Conducted

our Study 51
Figure 6 — Real Prioritization Ordering 56
Figure 7 — Default Prioritization Ordering 56
Figure 8 — Random Prioritization Ordering 57
Figure 9 — Optimal Prioritization Ordering 58
Figure 10 — History-Based Diversity Ordering 58
Figure 11 — History-Based Random Ordering 59
Figure 12 — Family-dependent Ordering 61
Figure 13 — Family-independent Ordering 62
Figure 14 — Heuristics Prioritization Process 63
Figure 15 — Box-plot of APFD Results for all Heuristics 66
Figure 16 — Box-plot of Prioritization Time Results for all Heuristics 70

Figure 17 — Box-plot of Prioritization Time Results for Proposed Heuristics and HBR . 71

Table 1
Table 2
Table 3
Table 4
Table 5

LIST OF TABLES

Number of Test Cases by Area 46
RQ1: Pairwise Comparisons 67
RQ1: VD.A Effect Size 69
RQ2: Pairwise Comparisons, 71

RQ2: VD.A Effect Size, 72

LIST OF ABBREVIATIONS AND ACRONYMS

APFD Average Percentage of Fault Detected
CR Change Request

(01 Operational System
PO Product Owner

QA Quality Assurance

RT Regression Testing
SME Subject Matter Expert
SUT Software Under Test
TCP Test Case Prioritization
TCS Test Case Selection
™ Test Manager

TSM Test Suite Minimization
TSR Test Suite Reduction

TTC The Testing Company

1.1
1.2

2.1
2.1.1
21.1.1
2112
2113
21.14
2.1.2
2121
2122
2123
2.1.3
2131
2132
2.2
2.2.1
2211
2212
2213
2.3
2.3.1
2311
2312
2313
2.4

3.1

CONTENTS

INTRODUCTION e e e e e e s 15
CONTEXT . . . 15
DISSERTATION ORGANIZATION 17
BACKGROUND e e e e e e e e 18
SOFTWARE TESTING 18
Test Levels 18
Component Testing 18
Integration Testing 19
System Testing 19
Acceptance Testing 20
Test Types 20
Functional Testing 20
Non-Functional Testing 20
Structural Testing 20
Testing Techniques 21
Black-Box 21
White-Box 21
REGRESSION TESTING 21
Regression Testing Techniques 22
Test Suite Minimization 23
Test Case Selection 23
Test Case Prioritization 23
MANUAL TESTING 26
TTC Concepts and Test Artefacts 26
Testing Artifacts 27
Test Case Details 28
Change Request Details 29
CONCLUDING REMARKS o o 32
RELATED WORK e e e e e 34
REGRESSION TESTING 34

3.2 HISTORY-BASED PRIORITIZATION 37

3.3 MANUAL TESTING PROCESS 42
3.4 CONCLUDING REMARKS o 44
4 OUR APPROACH e e e e e e 45
4.1 CONTEXTUALIZATION 45
4.2 PROBLEM 47
4.3 SOLUTION 48
4.4 HEURISTICS 48
4.5 CONCLUDING REMARKSo 50
5 EVALUATION e e e e e e e s 52
5.1 STUDY PLAN 52
5.2 GOAL DEFINITION 52
5.2.1 Global Goal 52
5.2.2 Measurement Goalo 52
5.2.3 Study Goal 53
5.2.4 Questions 53
5.2.5 Metrics 53
5.3 PLANNING 54
5.3.1 Hypotheses Definition 54
5.3.2 Treatment 55
5.3.3 Control Object 55
5.3.4 Experimental Object, 60
5.3.5 Independent Variables 0L 63
5.3.6 Dependent Variables L. 63
5.3.7 Trials Design 63
5.4 PREPARATION 63
5.5 ANALYSIS . . 64
5.6 THREATS TO VALIDITY 64
5.7 EXECUTION 65
5.8 RESULTS 65
5.8.1 RQ1: Effectiveness 66
5.8.2 RQ2: Efficiency 70

5.9 CONCLUDING REMARKS o 73

6

CONCLUSION AND FUTUREWORK

REFERENCES

15

1 INTRODUCTION

1.1 CONTEXT

Regression testing is an important testing technique that aims at verifying that modifi-
cations in the software under test (SUT) have not introduced new faults — or reintroduced
previously-known faults. In other words, in regression testing the aim is to identify possible
regressions (i.e., previously-working features do not work properly in the latest version). As the
software evolves, however, the size of the regression test suite tends to grow, making regression
testing an expensive technique. To make regression testing more cost-effective, many regres-
sion techniques have been proposed in the literature, including test case selection, test suite
reduction (or minimization), and test case prioritization (ENGSTROM; RUNESON; SKOGLUND,
2010; YOO; HARMAN, 2012; CATAL; MISHRA, 2013; KHAN et al., 2018).

Test case prioritization aims at ordering a test suite in such a way that a given reward
function is maximized. Generally, the reward function that one wants to maximize is the speed
at which faults are revealed (i.e., the sooner faults are revealed, the better). Because it is
not possible to know a priori which test cases would reveal which faults, many test case
prioritization techniques rely on proxies to choose which test cases should be run first. These
proxies could be code coverage (NARDO et al., 2015; MIRANDA; BERTOLINO, 2017) (which parts
of the code are exercised by this test?), similarity (MIRANDA et al., 2018; GRECA et al., 2022)
(how (dis)similar is this test with respect to the set of already-executed tests?), history (KIM;
PORTER, 2002; FAZLALIZADEH et al., 2009; HAGHIGHATKHAH et al., 2018; BERTOLINO et al.,
2020) (how did this test perform in previous executions?), among others.

History-based Prioritization, in particular, has been shown to be an effective strategy for
ordering regression test suites. Most studies on history-based prioritization, however, have
focused on the context of automated testing (KIM; PORTER, 2002; FAZLALIZADEH et al., 2009;
HUANG; PENG; HUANG, 2012; NOOR; HEMMATI, 2015; HAGHIGHATKHAH et al., 2018), with little
attention being paid to the context of manual testing. Investigating the effectiveness of history-
based prioritization in the context of manual testing is an important question because, despite
the popularity of automated approaches, manual testing is still largely adopted in industry

(HAAS et al., 2021).

16

To investigate this question, we developed two history-based prioritization heuristics and
evaluated them in the context of manual testing in a real industrial setting. The company's
name cannot be disclosed due to a non-disclosure agreement, and hereafter we refer to it as
TTC (short for “the testing company”).

TTC works mainly with black-box tests that are run manually and one important step in
TTC's processes is the creation of test suites. For creating the test suites, the test manager
considers all the relevant product-related information (e.g., category, features, available appli-
cations) and defines which test sets will be used to verify the product. Given that TTC is a
large company, several products are tested in parallel and the number of tests to be performed
can run into the thousands. The test suites created are passed on to the testing team with no
specific execution order and it is left for the tester to decide in which order the test cases should
be executed. In this work we investigate the use of history-based prioritization approaches in
the context of TTC.

For our evaluation, we collected historical test execution information from 35 products,
spanning over seven years of historical information, accounting for a total of 3,196 unique
test cases and 5,859,989 test results. We then assessed the performance of our approach with
respect to alternative orderings of the test suite: an optimal prioritization; a state-of-the-art
history-based prioritization (HAGHIGHATKHAH et al., 2018); the real ordering followed by the

testers; the ordering suggested by the TTC test management tool; and a random ordering.

The main contributions of this work are:
» the proposal of two history-based prioritization heuristics inspired by the context of

manual testing.

» an empirical evaluation of history-based prioritization in the context of manual testing
in a real industrial setting. For our evaluation, we collected historical test execution
information from 79 test suites created to validate 35 products of two different families
lines, spanning over seven years of historical information, accounting for a total of 3,196
unique test cases and 5,859,989 test results.

= the results of our experiments using historical test execution data from real subjects and
with real faults: the results showed that the effectiveness of the proposed approaches,
measured by their APFD (Family-dependent = 0.81 and Family-independent = 0.77),
is not far from a theoretical optimal prioritization (0.99) and that they are significantly

better than alternative orderings of the test suite, including the state-of-the-art history-

17

based approach (0.72), and the execution order followed by the testers during the real

execution of the test suites (0.52), evaluated as part of our study.

1.2 DISSERTATION ORGANIZATION

This section describes how the subsequent chapters of this work are structured. The content
of Chapters 4 and 5 were partially published at the 48th Euromicro Conference Series on

Software Engineering and Advanced Applications (SEAA'22) (SIQUEIRA; MIRANDA, 2022a):

= Chapter 2: Introduces basic concepts and definitions related to this dissertation. We
present software testing levels, types, and regression testing techniques. We also provide
a brief discussion on manual testing and cover some concepts that are related to the
industrial context where our study was carried out.

= Chapter 3: Discusses previous work in the literature related to regression testing and
its techniques with a particular focus on history-based prioritization and manual testing.

= Chapter 4: Proposes the adoption of simple, yet effective and efficient, history-based
prioritization heuristics by leveraging the large database of historical test results available
at the company where we carried out our study.

» Chapter 5: Presents the experimental study that evaluates the effectiveness and effi-
ciency of the proposed heuristics. In this chapter, we provide the goal definitions, followed
by the planning, preparation, and analysis of our study. We present the threats to the
validity of our study and discuss the experimental results.

= Chapter 6: Concludes our work and discusses our approaches’ limitations, contributions,

and future work.

18

2 BACKGROUND

This chapter aims to introduce basic concepts and definitions related to this work. First,
we present Software Testing and its levels, types, and techniques, then the Regression Testing
concepts and its techniques, and at the end of the chapter, the Manual Testing definitions and
a few concepts used by the testing company. These concepts will be helpful to have a better

understanding of the rest of this dissertation.

2.1 SOFTWARE TESTING

The advent of new technologies and the rise of existing ones require more reliable and
better quality software year by year, making the software increasingly complex and challenging
to test. Still, if it is not adequately tested, errors may pass from the development environment
to the production environment. Once in production, correcting these errors can become very
expensive for the company. Therefore, software testing can be considered an activity to ensure
that the software’s functionalities and quality are acceptable. It is also the main activity that
reveals faults.

The quality of software can be guaranteed through the software testing process, but usu-
ally, software testing and validation phases are often expensive and time-consuming processes

(SRIKANTH; COHEN; QU, 2009; MYERS; SANDLER; BADGETT, 2011; DO, 2016).

2.1.1 Test Levels

In general, software testing is divided into four main categories, which are: Component

Testing, Integration Testing, System Testing, and Acceptance Testing.

2.1.1.1 Component Testing

Component Testing, also known as Unit Testing, is the lowest stage of the testing scale
being applied to the smallest code components created, to ensure that they meet the speci-
fications, they aim to try to find defects in modules, objects, classes, code snippets, specific
applications, or other units that are individually tested. They are usually derived from the com-

ponent specifications or the software design itself. To create these tests, it is necessary to have

19

access to the code being tested and to have some support in the development environment,
such as a unit test framework or a debugging tool. In practice, defects found in this phase are
corrected as soon as they are discovered.

Considering the characteristics and functionality, component tests verify the functioning of
a part of the system or software in isolation, and in most cases, these tests are carried out by

the developers themselves (RIOS; MOREIRA, 2006).

2.1.1.2 Integration Testing

The main purpose of Integration Testing is to test interfaces between components, inter-
actions with different parts of the system, and interfaces between systems. At each stage of
integration, the testers focus on testing the communication between these modules and not
the individual functions of each component to verify that together they work correctly, that is,
to ensure that the interfaces work and that the data are being processed correctly according
to specifications.

Integration tests can run incrementally as each module or component is added. This type

of testing should preferably be performed by the development team or by a testing team.

2.1.1.3 System Testing

System Testing are the tests performed when the system is complete and already integrated
to check the system’s compliance with the requirements that have been specified (IEEE, 2008).
They aim at the execution of the system as a whole, usually in a controlled operating envi-
ronment, to validate the correctness of the implementation of its functions. In system tests,
the system operation is simulated, passing through all functions as close as possible to what
can or will occur in the production environment.

In this stage, load, performance, usability, compatibility, security, and recovery tests are
carried out, among others.

The testing team performs these tests, but they do not replace acceptance tests performed

by users.

20

2.1.1.4 Acceptance Testing

Acceptance Testing are the tests of the final phase of system execution, usually carried
out by sponsors/users intending to verify that the solution meets the business objectives and
requirements before using it in the production environment. The primary purpose of acceptance
testing is to establish the reliability of the system, part of the system, or specific non-functional
characteristics. This type of testing can happen at various times in the software lifecycle, such
as the acceptance test of new functionality. This type of test can also be referred to as
Validation Testing (IEEE, 2008).

Although the users perform these tests, they are conducted with the support of the test

team and the project team.

2.1.2 Test Types

2.1.2.1 Functional Testing

Functional Testing is performed to assess the system's conformance to specified functional
requirements. Generally, these tests are indicated to detect interface-related and behavior-
related errors. They can be applied in all test phases: unit, integration, system, and acceptance.
There are several types of functional tests. To mention just a few: Smoke Test, Sanity Test,

Regression Test, and Usability Test.

2.1.2.2 Non-Functional Testing

Non-functional Testing are tests related to the use of the application, taking into account
performance, usability, reliability, security, availability, maintainability, and other features in-
volved. These are generally not tests requested by the sponsors, but they are still necessary to

guarantee the minimum characteristics of quality software.

2.1.2.3 Structural Testing

Structural Testing, or white-box testing, are tests developed taking into account the sys-

tem'’s internal structure (at the coding level), allowing a more accurate verification of the

21

software’s operation. They are designed by analyzing the source code and writing test cases
covering the software component's functionality. This technique is seen as a complementary
technique to the functional technique. This type of testing is recommended for the unit testing
and integration testing phases, being the responsibility of the system developers, as they know

well the code produced.

2.1.3 Testing Techniques

2.1.3.1 Black-Box

The Black-Box tests have this name for the simple fact that we do not have detailed
information about what happens at the coding level, that is, without being able to see what
is “inside the box”, they aim to verify the functionality and the adherence to requirements,
taking into account the external perspective of the user, without relying on any knowledge of

the code or internal logic of the tested component.

2.1.3.2 White-Box

The White-Box tests, in turn, allow us to access what is “inside the box” and they aim
to evaluate the code statements, the internal logic of the coded component, the settings,
and other elements. However, to carry out these tests, we need to understand the internal

perspective of the system, as mentioned above, and have enough programming knowledge.

2.2 REGRESSION TESTING

Regression Testing (RT) is an important testing technique that aims at verifying that
modifications in the Software Under Test (SUT) have not introduced new faults — or rein-
troduced previously known faults at parts of the code that were working correctly before the
modifications. As the software evolves, however, the size of the regression test suite tends to
grow, making regression testing an expensive technique.

As this technique is applied to each new change made to the software, a set of data and
information is generally maintained as a baseline. Each new integration is compared with this

baseline to verify that changes introduced later will not damage code already considered good

22

and that has already been accepted.

To make regression testing more cost-effective, many regression techniques have been
proposed in the literature, including Test Case Selection (TCS), Test Suite Reduction (TSR) (or
Test Suite Minimization (TSM)), and Test Case Prioritization (TCP) (ENGSTROM; RUNESON;
SKOGLUND, 2010; YOO; HARMAN, 2012; CATAL; MISHRA, 2013; KHAN et al., 2018).

Test case prioritization aims at ordering a test suite in such a way that a given reward
function is maximized. Generally, the reward function that one wants to maximize is the
speed at which faults are revealed (i.e., the sooner faults are revealed, the better). Because
it is not possible to know a priori which test cases would reveal which faults, many TCP
techniques rely on proxies to choose which test cases should run first. These proxies could be
code coverage (NARDO et al., 2015; MIRANDA; BERTOLINO, 2017) (which parts of the code are
exercised by this test?), similarity (MIRANDA et al., 2018; GRECA et al., 2022) (how (dis)similar
is this test with respect to the set of already-executed tests?), history (KIM; PORTER, 2002;
FAZLALIZADEH et al., 2009; HAGHIGHATKHAH et al., 2018; BERTOLINO et al., 2020) (hOW did
this test perform in previous executions?), among others.

History-based Prioritization, in particular, has been shown to be an effective strategy for
ordering regression test suites (KIM; PORTER, 2002). Most studies on history-based prioritiza-
tion, however, have focused on the context of automated testing (KIM; PORTER, 2002; FAZLAL-
IZADEH et al., 2009; HUANG; PENG; HUANG, 2012; NOOR; HEMMATI, 2015; HAGHIGHATKHAH
et al,, 2018), with little attention being paid to the context of manual testing. Investigating
the effectiveness of history-based prioritization in the context of manual testing is an impor-
tant question because, despite the popularity of automated approaches, manual testing is still

largely adopted in industry (HAAS et al., 2021).

2.2.1 Regression Testing Techniques

The crying out for efficient regression testing strategies is thus becoming more and more
critical. So, by keeping in mind the primary purpose of regression testing and trying to minimize
the expenses mentioned above, it is possible to use at least three different Regression Testing
Techniques to optimize the execution of our test suites: Test Suite Minimization, Test Case

Selection and Test Case Prioritization (YOO; HARMAN, 2012; MUKHERJEE; PATNAIK, 2018).

23

2.2.1.1 Test Suite Minimization

Test Suite Minimization, or Test Suite Reduction, is one of the three known techniques
used to use available resources better when performing test suites. In the case of TSM, we
can say that its main objective is to minimize or reduce the suites by removing test cases that
are identified as obsolete cases or cases that are considered redundant for the execution of this
suite, following some criteria that will not compromise its effectiveness in the future, such as
fault-detection capability, to create a minimally representative of the original suite (JEFFREY;

GUPTA, 2007; KHAN et al., 2018; CRUCIANI et al., 2019; BAJAJ; SANGWAN, 2019).

2.2.1.2 Test Case Selection

In Test Case Selection, unlike TSM, where the objective is to reduce the suite by removing
cases, the main focus is to select the test cases that are important to cover a specific region
of the SUT, creating a subset of test cases following some specific criteria, for example, to
test only the areas of the code where there has been some modification. But in the TCS
technique, it is crucial to consider the trade-off between rerunning all test cases and the risk
of losing the opportunity to get faults that might be introduced by the side effects of changes
made to the software. It is also necessary to take into account that the suite created after
the application of the TCS technique must detect as much as possible the faults found by the
original suite (ELBAUM et al., 2003; ENGSTROM; RUNESON; SKOGLUND, 2010; BERTOLINO et al.,
2019).

2.2.1.3 Test Case Prioritization

Test Case Prioritization, on the other hand, aims to order the test cases based on some
properties or heuristics so that the test cases that are at the top of the rank are executed
as a priority, with the intention that its output produces a previously planned result, which
in the majority of times is finding faults as early as possible. This reordering of test cases
through prioritization can make the suite demonstrate a better efficiency of its results. It is
worth noting that while the TSM and TCS techniques reduce the original test suite, the TCP
technique only reorders the suite to achieve a better result, but without removing any of the

test cases (YOO; HARMAN, 2012; HAO; ZHANG; MEI, 2016; BAJAJ; SANGWAN, 2019).

24

To define these heuristics, a few different TCP techniques can be used, some of these
techniques were classified as Cost-aware, Coverage-based, Distribution-based, History-based,

Human-based, Model-based, Probabilistic, and Requirement-based (YOO; HARMAN, 2012).

The History-based Technique

In the history-based prioritization approach, what is used as input to define the test case
prioritization is the historical data of past executions. As an example, it can use the number
of past executions test results that's revealed a fault by a test case and use this information

as a weight during the analysis (KIM; PORTER, 2002).

Evaluation Metric

Independently of the approach proposed for a test case prioritization, it is essential to use
some measurement metric to determine their effectiveness. This is important to estimate the
efficacy of the TCP approach proposed as well to benchmark the effectiveness of this approach
against other approaches.

According to (HAO; ZHANG; MEI, 2016; KHATIBSYARBINI et al., 2018; MUKHERJEE; PATNAIK,
2018), most TCP techniques use the Average Percentage of Fault Detected (APFD) to eval-
uate its effectiveness. This measurement metric was presented initially by (ROTHERMEL et al.,
1999) TCP research. It formally can be represented by the Equation 2.1, where m represents
the number of faults found in a test suite, n represents the total number of test cases, and
T'F; represents the first test case in the prioritized test suite that detects the fault j.

APFDzl—M—i-i (2.1)

nm 2n

The APFD value will vary between 0 to 1, where the higher this value is, the better will be
the fault detection of the prioritized test suite. So a higher APFD can appoint that the faults
are found faster using fewer cases. As mentioned above, this measurement is widely used to

evaluate the effectiveness of TCP.

While the TSM and TCS techniques focus on reducing the number of test cases, the first

removing obsolete or redundant cases and the second selecting cases that are considered most

25

important, it might be possible that crucial test cases are left out of the test suite, while in
the technique of TCP all test cases are kept, but re-ordering the sequence in which these cases
need to be executed, that is, all cases will be considered in the prioritization.

In Figure 1, it is possible to see how each technique behaves, where P is our program
that was updated generating a new release P’, and T is our test suite that is used to test the
program P. Taking into account that instead of using the test suite T" exactly as it is, we are
going to use one of the three techniques seen above, which are exemplified on the right side of
Figure 1. The TCS technique selects a subset of tests from the 7" : all suite and decreases the
cases from it that cover fundamental parts of the T" : not_mod program. The TSM technique
reduces the size of the suite by removing from T : all all cases that are considered redundant
T : redundant, and the TCP technique reorders all T' : all cases with the intent to obtain

better effectiveness of the test suite, such as increasing the failure detection rate (DO, 2016).

Figure 1 — Regression Testing Techniques

<

s
14

New Release New Program

(P)

Program (P)

i : Selection
3 Test Suite

(T:all - T:not_mod)

Prioritization

. Test Suite (Test Suite)
Test Suite (T) (T:all) e (Reordered T:all)

i . Reduction
3 § Test Suite

~

Regression Testing Techiniques

""" (T:all - T:redundant)

Source: Adapted by the author from (DO, 2016)

Yoo and Harman (YOO; HARMAN, 2012), broadly cover these three main test optimization
techniques, as well as systematic reviews in the literature that bring a good overview of studies
that have been conducted in this area of Regression Testing: Test Suite Minimization (KHAN
et al., 2018), Test Case Selection (ENGSTROM; RUNESON; SKOGLUND, 2010) and Test Case
Prioritization (KHATIBSYARBINI et al., 2018).

26

2.3 MANUAL TESTING

Manual Testing, as the name suggests, is the process of manually testing software to find
defects (faults, bugs) in that software. This type of testing requires the tester to play the end-
user role, using most of the software’s functionality to ensure that the software is achieving
the correct behavior. To perform these tests, the tester follows a Test Plan that leads him
through a set of Test Cases, which in turn have a set of steps and expected results.

The advantage of using manual tests is the possibility of finding more defects since the
human eyes observe and judge better than automated tools.

According to the IEEE Standard for Software and System Test Documentation (IEEE,
2017), a systematic approach focuses on predetermined test cases and usually involves the

following steps:

» Choosing a high-level test plan where a general methodology is chosen and resources
such as people, computers, and software licenses are identified and acquired.
» The writing of detailed test cases, identifying clear and concise steps to be taken by the

tester with the expected results.

= Assigning test cases to testers (test case allocation), who will manually follow the steps

and record the results.

» And lastly, creating a test report detailing what the testers found. From the results,
managers will use the report to determine whether the software can be released or not;
otherwise, this same report is used by engineers to identify and correct problems that

have been reported.

2.3.1 TTC Concepts and Test Artefacts

The purpose of this section is to present some terms/concepts that The Testing Company
(TTC) uses in addition to those previously introduced and that can be referenced in the course
of this dissertation. Some of these terms have the same meaning as commonly used in the

software testing literature, but others may have a slightly different meaning.

27

2.3.1.1 Testing Artifacts

» Test Plan: The Test Plan is a document that describes the technical and management
approach to be followed for testing a system or component. Among the items identified,
we can mention: the scope, approach, resources, schedule of intended test activities,
test items, features to be tested, testing tasks, responsibilities, required resources for

the testing activity, and risks requiring contingency planning (IEEE, 2017).

» Test Suite: The Test Suite is a collection of test cases that have been defined to test
a software program, which serves to validate the behavior of this software program. A
test suite usually contains detailed instructions or objectives for each collection of test
cases and information about the system configuration to be used during testing. A test
case group can also include prerequisite states or steps and descriptions of the tests to
follow. Test case collections are sometimes incorrectly called as Test Plan, especially in

industrial environments.

» Test Case: The Test Case is a triple formed by: test inputs, execution conditions,
and expected results. The test case is developed for a particular objective, such as to
exercise a particular program path, to check some behavior, or to verify compliance with
a specific requirement (IEEE, 2017). A test case also identifies constraints on the test
procedures resulting from using that specific test case. The test cases are separated from

test designs to allow for use in more than one design and reuse in other situations (IEEE,

1983).

= Test Report: Following the IEEE Standard for Software Test Documentation (IEEE,

1983), the Test Report should be covered by four document types:

1. A test item transmittal report, which identifies the test items being transmitted for
testing if separate development and test teams are involved or if a formal beginning

of test execution is desired.
2. A test log, which the test team uses to record what occurred during test execution.

3. Atest incident report, which describes any event during the test execution requiring

further investigation.

4. A test summary report, that summarizes the testing activities associated with one

or more test-design specifications.

28

= Change Request (Defect Report): A Change Request (CR) (the term common used
on the TTC), or a Defect Report as known in the literature, is a document with details
about what steps should be followed to identify defects, what actions make the defects
appear, and what are the expected results instead of the application showing error

(defect) while taking particular step-by-step actions.

Change requests are usually created by the test team and sometimes for the end-users
(suppose the company does not have a robust software test team. In this case, it will
be easier for the users to detect more defects and report them to the support team of
the software development since the majority of the users curiously try out every feature
in the application). These change requests are created to help developers find out the

defects easily and fix them up.

Change requests should be short, organized, straight to the point, and cover all the
information that the development team needs to know to detect the actual defects in
the report by doing what and how the report describes. It is usual for developer teams
to get defect reports from the testers that are either too short or too long to understand

what went wrong.

2.3.1.2 Test Case Details

A Test Case is composed of essential information such as the identifier, the summary
(a brief description that defines the main objective of the test), and a sequence of inputs,
conditions, and expected results. As a good standard for writing these test cases, ideally,
each condition has its expected result. In addition to this triple of information, test cases
can also include other information such as: Components, Labels, Feature ID, Primary domain,
Secondary domain, Regression Level, Automation Status, etc. In Figure 2, we have illustrated
a structure of a test case very close to a test case used by TTC.

Figure 2 shows a test case whose objective is to make a voice call using the 4G network
while data is being downloaded using the 5G network. In the first step, we have the precondition
that the WiFi is off, and the tester is asked to download a large file, preferably with more than
10GB, and the expected result is to ensure that this download is being done over the 5G
network. Meanwhile, it is requested in the next step to make a voice call using the 4G mobile

communication network, in which case the tester needs to verify that the voice call is made

29

Figure 2 — Test Case example

ID -12345
5G NR - VoLTE call while downloading via 5G data

Edit Q Comment Assign More ~ Closed Update Labels Workflow ~
g P

~ Details

ype: Test Case

Mone

Sanity

sanity 5g_nr 5g_only
5G Network

Connectivity

1

Automated

o5

v Test Procedure

Initial Setup Test Step Description

1 - 5G network supported and registered Start downloading one or mare big files (size >10Gh)
- WiFi is turned OFF

= While the download is active, make a VolTE call

Expected Results

Download shall start using 5G data

- The call is placad
- Download continues

Source: Adapted by the author

without problems and that the download will continue.

2.3.1.3 Change Request Details

The CR has a structure very similar to the design of the test case as in the TTC they use

the same software used to store the test cases but in a different instance. In the CR, we have

the identifier, the summary, and other predefined fields that may or may not be used during

the creation of this CR; among these fields, we can highlight some such as affected product,

software version, labels, description (free-form field), attachments, watchers, comments and

more. Figure 3 shows an example of a defect stored in Google's Buganizer!, however as

TTC does not use buganizer as its primary defect reporting tool, it uses proprietary software,

this buganizer example anyway illustrates well the approach used by TTC without losing

information.

1 https://issuetracker.google.com /issues

30

Figure 3 — Google Issue Tracker example

= ﬁ |ssueTracker Q, status:open componentid:190923 = ﬂ @ 2;3
[0 Android Public Tracker 215232946 ~ 10f 2079

I— Create ~ " @

€ C v Pixel 6 does not consistently report standalone 5G-NR cell info - NCl and TAC invalid + Ja
& Assigned to me Comments (%) Dependencies (0/1) Duplicates (0) Blocking {(0) Resources (%)
+ Starred by me R N @ "

Bug + [A0SP] assigned O] eporter gl..@gmailcom

13 CCdtome Type Bug
:= Reported by me DESCRIPTION gl...@gmail.com created issue #1 Jan 19,2022 01:21PM
= Priority
v Tobe verified Running Andreid 12 on a Google Pixel 6, CellIdentityNr() does not report complete information consistently when

connected to standalone 56-NR as expected; specifically NCI and TAC values. Sometimes it works as expected, sometimes Severity s3

it reports invalid values. It has not worked properly on any Android versions released for the Pixel 6. Examples below are

~ Bookmark groups from an actual T-Mobile USA connection with the January 2022 Android update (SQ1D.220105.007) Status Assigned

Steps to reproduce the problem: Assignee ra_.(@google.com
~ Saved searches

B tityNr.getNci() and/or C entityNr.getTac(

Implement CellIdentityNr.getNci() and/or CellldentityNr.getTac() Verifier

+ Hotlists What happened:
cc gl...@gmail.com

Invalid NCI value is reported (CellInfo.UNAVATLABLE_LONG) and invalid TAC is reported (CellInfo.UNAVAILABLE)

Create hotlist Below is a real world example of a cell reporting these invalid values returned while on a T-Mobile USA standalone 56-NR AOSP ID

band n41 connection; as you can see, the other methods are returning valid information:

ReportedBy Developer
Create bookmark group CellInfoNr:{ mRegistered=YES mTimeStamp=114989614215266ns mCellConnectionStatus=1 CellldentityNr:{
16777215 mNrArfcn = 532698 mBands = [] mMcc = 318 mMnc = 26@ mNci = Found In

567 mAlphalong = mAlphaShort = mAdditionalPlmns = {} } CellsignalStrengthlir:{

mPci = 20 mTa
92233720363

Browse components

csiRsrp = 2147483647 csiRsrq = 2147483647 csiCqiTableIndex = 2147483647 csiCqiReport = [@] ssRsrp = Targeted To
-86 ssRsrg = -11 ssSinr = 2147483647 level = 1 parametersUseforlevel = @ } }

What you think the correct behavior should be: Verified In
CellIdentityNr.getNci() and CellIdentityNr.getTac() should report valid cell information In Prod

Bug report available here: https://drive.google com/drive/folders/1D0Ws3-IAIMBJ6UhQariiXXzd9 ?usp=sharing
COMMENTS + Oldest first

gl...@gmail.com =gl..@gmail.com= #2 Jan 19, 2022 01:28PM §

Previously reported issue closed due to lack of response:
https://fissuetracker.google.com/u/0/issues/211841597

Similar but not identical issue: hitps://issuetracker.google.com/u/0/issues/190423022

Source: https://issuetracker.google.com

Other fields that are also very important are the follow-up fields of this CR, which are:

= Reporter: the person who found and reported the CR.

= Created date: field that marks the creation date of the CR.

= Assignee: the person who is working on analyzing or fixing the failure.

= Updated/Modified date: stores the modification dates referring to the CR, such as
when a developer reviews and comments on something about the CR or when the CR
is closed with some resolution.

= Status/Resolution: This field defines the current status of the CR, below, we describe

more details about the different types of resolutions.

= Affects Version/s: field where the version in which the defect was found is informed.

Change Request Life Cycle

The CR life cycle, also known as workflow, is generally defined according to the way the

company works, in this case, out of curiosity, we bring in Figure 4, a graphical representation

31

of the standard workflow used by the Bugzilla System. Depending on the status, the defect

can be classified as an Open Defect or as a Closed Defect.

Figure 4 — Bugzilla Life-cycle of a Defect Report

New bug from a
user with canconfirm
or & product without
UNCONFIRMED state UNCONFIRMED

Bug is reopened,
was never confirmed

Bug confirmed or
receives enough vokes,

Cwinership
is changed Development is

finished with bug

Developer kes
prEsEssion

Peesible resol utions:
FIXED
DUPLICATE
WONTFIX
WORKSFORME
INVALID
REMIMD
LATER

ASSIGNED

Development is
finished with bug

Developer = kes
prEsEssin|

RESOLVED

Bug is closed

QA not satisfied QA verifies

with solution solution worked
[REOPEN Bug = reopened VERIFIED
Bug is reopened

Bug is losed

[cLoseD

Source: https://www.bugzilla.org

Open Defects are those that do not yet have a resolution associated with them, and these

resolutions can be:

» Unconfirmed: This bug has recently been added to the database. Nobody has confirmed
that this bug is valid. Users who have the “canconfirm” permission set may confirm this
bug, changing its state to New. Or, it may be directly resolved and marked Resolved.

= New: This bug is valid and has recently been filed. Bugs in this state become Assigned

when somebody is working on them, or become resolved and marked Resolved.

32

Assigned: This bug is not yet resolved, but is assigned to the proper person who is
working on the bug. From here, bugs can be given to another person and become New,

or resolved and become Resolved.

Closed Defects, in turn, need to have a resolution associated with them, and these can be:

Resolved: When they are closed as resolved, a resolution has already been assigned
to this CR. However, it is still awaiting verification by a Quality Assurance (QA) team,
which can, in fact, be verified and marked as Verified or Reopened to go through this
CR’s analysis process again. Once closed, this CR can be classified into one of the

following statuses:

— Fixed: A solution to the problem has been verified, integrated with the code,

tested, and approved.
— Duplicated: the open CR has already been reported. As a rule, they use the date

of creation as a basis to define the CR that will be duplicated, usually, the oldest

ones have higher priority.

— Wontfix: the reported problem is actually a defect, but the company has defined
that it will not fix it, often because it is a minor problem or a tough one to

reproduce.

— Worksforme: It may happen because what was described in the CR is not a
problem, that is, it is in accordance with some product documentation, or because
it was reproduced at the time the CR was opened, but at the time of analysis of
this CR the problem was not reproducible anymore (i.e. it "works for me").

— Invalid: The problem described is not a valid defect.

Verified: When verified by the QA team and duly approved, in this case, marked as
Verified, it means that the appropriate solution was taken by the development team,

which is the final status of the CR.

2.4 CONCLUDING REMARKS

This chapter has briefly presented the concepts of Software Testing and its levels, types,

and techniques, the Regression Testing techniques, focusing on the history-based prioritization

technique. Finally, it described Manual Testing and its concepts, which in part are used by the

TTC.

33

At TTC, the leading testing technique used is the black-box technique, mainly at the
Component and System Testing levels. Regarding the types of tests, the Structural Test is the
only type that is not performed in the TTC.

The Test Case Prioritization heuristics presented in this work follow the principles of history-

based test case prioritization techniques.

34

3 RELATED WORK

This work is related to software regression testing and more specifically to test case prioriti-
zation techniques. Given that regression testing is a broad research topic, here we briefly cover
the main regression testing techniques and give more emphasis to history-based prioritization.

We also discuss a few related work in the context of manual testing.

3.1 REGRESSION TESTING

Regression testing is performed when changes are carried out in the software, and its
objective is to provide confidence that the newly introduced changes do not break previously
correct behavior of the existing, unchanged part of the software (YOO; HARMAN, 2012; ELBAUM;
ROTHERMEL; PENIX, 2014; DO, 2016; KHATIBSYARBINI et al., 2018). As the software evolves,
the test suite tends to grow, often making running the entire test suite very expensive (YOO;
HARMAN, 2012; KHATIBSYARBINI et al., 2018). Given this limitation, it is often the case that
practitioners need to rely on different regression testing optimization techniques to reduce the
effort required for performing regression testing. The three main regression techniques are test
suite minimization (or test suite reduction), test case selection, and test case prioritization.

Test suite reduction approaches try to find the smallest representative set of test cases,
maintaining the original suite's failure detection capability but satisfying the tested software's
requirements coverage. To define an ideal test suite reduction, it is recommended to compute
the smallest reduced suite possible, but in order to preserve its failure detection capability
similar to the original test suite, the ideal test suite reduction can only be achieved if the
reduced suite contains a minimum number of test cases. "Current test suite reduction strategies
are grounded on various types of heuristics to produce approximate solutions within practical
computational time" (KHAN et al., 2018). Khan et al. (KHAN et al., 2018) bring as an objective,
in their systematic review, the classification of test suite reduction approaches, evaluating the
quality of these test suite reduction experiments based on defined quality criteria. With this,
they were able to group the approaches into four main categories: greedy-based, clustering-
based, search-based, and hybrid approaches, differing from each other by the algorithms used.
Their systematic review results indicated that most test suite reduction-related researches are

in the greedy-based category (69%), using one or more greedy algorithms to achieve faster

35

coverage and assuming that such coverage will also find more failures. The search-based
approaches (20%) are gaining more attention due to the good results presented. In turn,
hybrid approaches (8%) focus on combining the strengths of other TSR approaches to provide
improved cost-effective solutions employing multiple algorithms. The authors observed that
most test suite reduction approaches (80%) focus on solving the single-objective optimization
problem. Khan et al. (KHAN et al., 2018) concluded that analyzing the quality of experiments
related to test suite reduction approaches, the experiments reported do not adhere to the
guidelines of well-designed software engineering experiments, which may present validity threats
related to their results. Therefore, the works present in the literature analyzed so far by them
did not have enough information about the guidelines for performing quality experiments in
the field of test suite reduction. With that, their work can fill this research gap by providing a
set of appropriate recommendations that researchers in the future can apply to conduct quality
test suite reduction-related experiments.

Efficient regression testing is essential, even crucial, for organizations with their higher cost
of software development. Among other tasks, this includes determining which test cases need
to be re-executed to verify the side-effects of the modified software’'s behavior, which is the
activity known as test case selection (or regression test selection). Regression test selection in-
volves a trade-off between the cost of re-running the test cases and the risk of missing failures
introduced by the side effects of software changes. This need for efficient regression testing
strategies is thus becoming more and more critical. Engstrom, Runeson, and Skoglund (EN-
GSTROM; RUNESON; SKOGLUND, 2010) proposed in their work a goal to find a regression test
selection technique that is empirically evaluated. During the study, they found that 28 dif-
ferent regression techniques for the regression test selection exist in the empirically evaluated
literature. They also observed five major groups for these techniques that can be classified as
DejaVu-Based, Firewall-Based, Dependency-Based, Specification-Based, and Others. DejaVu-
Based is a group of techniques that Rothermel and Harrold proposed for procedural languages
in 1993 (ROTHERMEL; HARROLD, 1993); Firewall-Based is a group of techniques where de-
pendencies to modified software parts are isolated inside a firewall; Dependency-Based uses
the dependency principle between more significant parts, such as classes or functions, leads
to that all test cases using the changed part are re-executed even though the actual modified
code may not be executed; Specification-Based is the technique that uses specifications or
metadata of the software instead of the source code or executable code; and, Others are the

techniques which share some similarities with either group, although not being directly derived

36

from one of them. The authors could notice a considerable variance regarding the uniqueness
of the techniques identified in the papers analyzed. Some techniques may be considered novel
at the time of their first presentation, while others may be regarded as only variants of already-
existing techniques. As many variant techniques exist, there also exist many classifications of
regression test techniques: inclusiveness, precision, efficiency, and generality (ROTHERMEL;
HARROLD, 1996); Minimization, Safe, Dataflow-Coverage-based, Ad hoc/Random, or Retest-
All (GRAVES et al., 2001); techniques that operate at a higher granularity, e.g., method or
class (called high-level) and techniques that use at a finer granularity, e.g., statements (called
low-level) (ORSO; SHI; HARROLD, 2004). Despite the groups of techniques and variants, En-
gstrom, Runeson, and Skoglund (ENGSTROM; RUNESON; SKOGLUND, 2010) highlight that the
most commonly found property attributed to regression test selection techniques is whether
these techniques are safe or unsafe. With a safe technique, the defects found with the entire
test suite are also found with the test cases chosen by the regression test selection technique.
This property can be used to classify all regression test selection techniques into safe or unsafe
techniques. Two main categories of metrics were identified: cost reduction and failure detec-
tion effectiveness. One component of the cost for regression test selection is the analysis time
required to select which test cases to rerun. However, in addition to saving costs, regression
test selection techniques must detect as many failures as possible found by the original test
suite. Engstrom, Runeson, and Skoglund (ENGSTROM; RUNESON; SKOGLUND, 2010) concluded
that the regression test selection techniques might be classified according to: applicability on
type of software and type of language; details regarding the method such as which input is
required, which approaches are taken, and which level of granularity are changes considered;
and properties such as classification in safe/unsafe or minimizing/not minimizing. And that
the empirical evidence for differences between the techniques is not very strong and some-
times contradictory. However, they did not arrive at a basis for selecting a superior technique.
Instead, they noted that the techniques must be adapted to specific situations.

Unlike the selection and reduction techniques, the test case prioritization technique values
executing all cases that are present in the test suite but following a predefined order of exe-
cution of these test cases. Test case prioritization aims to order a set of test cases to achieve
early optimization based on preferred properties. Giving the approach the ability to execute the
most significant test cases first according to some measure to produce the desired result, such
as revealing faults earlier by providing feedback to testers. This prioritization also helps find

the optimal permutation of a series of test cases that can be executed accordingly, improving

37

testability in the software testing activity (KHATIBSYARBINI et al., 2018). One of the approaches
of the work by Khatibsyarbini et al. (KHATIBSYARBINI et al., 2018) synthesizes an overview of
the main approaches in prioritizing test cases, which were observed in 11 of the works eval-
uated by them, which are: Search-based, Coverage-based, Fault-based, Requirement-based,
History-based, Risk-based, Bayesian-Network-based, Cost-Effective-based, and Topic-Model-
based. The authors noted that test case prioritization continues to be recognized as an im-
portant element in regression testing among researchers because it has the ability to increase
testing effectiveness in terms of failure detection rate, cost, and time. And each of the ap-
proaches has potential values, advantages, and limitations. Regarding the measurement metric,
the APFD metric remains the primary metric used in TCP approaches. It is essential for any
proposed approach to test case prioritization to perform metric measurements to assess their
effectiveness. The evaluation metric is essential for measuring the effectiveness of any proposed
TCP approach in prioritizing test cases and for comparing its effectiveness with other existing
approaches. With their systematic literature review, Khatibsyarbini et al. (KHATIBSYARBINI et
al., 2018) concluded that even though there are different types of approaches, the main ob-
jective of TCP in regression testing remains the same: to increase failure detection and that

it has been recognized as an essential element in regression testing among researchers.

3.2 HISTORY-BASED PRIORITIZATION

The literature on test case prioritization is huge, and for a comprehensive overview, we
refer the reader to several existing secondary studies on the topic (CATAL; MISHRA, 2013; HAO;
ZHANG; MEI, 2016; KHATIBSYARBINI et al., 2018; BAJAJ; SANGWAN, 2019). The approaches
closest to ours are those proposed by Kim and Porter (KIM; PORTER, 2002) and Haghighatkhah
et al. (HAGHIGHATKHAH et al., 2018).

Kim and Porter (KIM; PORTER, 2002) proposed a history-based prioritization technique
consisting of four steps: (1) first, they apply a test case selection technique to a suite 7'
generating a suite 77, (2) then they define a selection probability for each test of 77, (3)
choose the first case of 7" using the probability value defined in step 2 and execute it!, and
(4) finally repeat step 3 until the end of the time available for carrying out the test execution.

Their approach is based on statistical quality control (exponential weighted moving average)

1 The test case to be chosen will depend on which approach is being used. In their work they have listed

three different test history options that will provide different orderings.

38

and statistical prediction (exponential smoothing), defining the probability of selection of test
cases with time-ordered observations extracted from previous runs and using a smoothing
constant to weight individual historical observations, where a different test history will result in
a different prioritization. In the evaluation conducted by the authors, the proposed history-based
prioritization outperformed two random approaches used as control objects. Our approach
differs from that proposed by Kim and Porter (KIM; PORTER, 2002) mainly because they
consider only the last result produced by a test case, whereas in our approach, we consider
the entire execution history of a test case since its creation for carrying out the prioritization.

Engstrom, Runeson, and Ljung (ENGSTROM; RUNESON; LJUNG, 2011) report a case study
on the implementation of history-based regression testing to improve transparency and test
efficiency at the function test level in a large software development organization. In their
work, they highlight that there is a gap between research and practice of regression testing;
even with the existence of several systematic approaches for both prioritization and selection
of regression test cases proposed and evaluated in the literature, these approaches are not
largely used in industrial setups, and this makes the application of regression testing highly
dependent on people with experience of the product being tested. Another point that can
be evident is that test managers add extra test cases to the scope to be on the safe side.
Engstrom, Runeson, and Ljung (ENGSTROM; RUNESON; LJUNG, 2011) notice that a common
approach for regression testing in the industry is to reuse a selection of test cases designed
by testers, as this procedure is based on an individual's experience and judgment, it is not
transparent enough to enable a consistent assessment of the extent and quality of regression
testing, and, there is no direct evaluation of its efficiency. During their study, they observed
that the share of industrial evaluations of regression test techniques is low. This is not unique
to the regression testing field but rather general. Usually, the studies are conducted on the
same set of artifacts which is good from a benchmarking perspective but limits the external
validity since the programs are relatively small. Even with industrial artifacts, offline studies
tend to reduce the complexity of the real task of test case selection in the industry. So their
report is a case study evaluating history-based regression testing in an industrial setting to im-
prove the transparency of regression testing selection and prioritization since less than a third
of the studies comprise industry-scale contexts. Their context was focused only on black-box
approaches since the testers do not have full access to the code. Their proposed improvements
are based on the ideas from Kim and Porter (KIM; PORTER, 2002) and are implemented as

suggested by Fazlilzadeh et al. (FAZLALIZADEH et al., 2009). Their objective was to improve

39

regression testing at the function test level by adapting and implementing history-based re-
gression testing into the current context. In this case, improvements referred to increased test
scope selection procedure transparency and increased or maintained test effectiveness. The
exploratory step further supported the hypothesis that history-based regression test selection
could improve the current situation as a starting point for this case study. Engstrom, Runeson,
and Ljung (ENGSTROM; RUNESON; LJUNG, 2011) conclude that their quantitative evaluation
showed that history-based prioritization of an already selected test suite improves the ability to
detect faults early, which is good if a test session is prematurely interrupted. More important
is the efficiency of a selection based on total prioritization. At the same time, a worst-case
interpretation of available data shows a slight decrease in efficiency.

The work presented by Haghighatkhah et al. (HAGHIGHATKHAH et al., 2018) focuses on
two approaches to test case prioritization, which are the history-based prioritization heuristic
and the diversity-based prioritization heuristic. The diversity-based prioritization assumes that
similar test cases that exercise the same part of the system are likely to detect the same faults.
Therefore, a diverse set of test cases must be executed in order to detect a greater number of
failures. Diversity-based TCP requires minimal information since the only required information
is already encoded in the test suite. The authors reinforce that to increase the probability
of catching failures, a potential strategy is to assign a higher priority to test cases that are
more different from those already prioritized. In (HAGHIGHATKHAH et al., 2018) the authors
propose the combined use of the diversity-based prioritization technique together with history-
based test prioritization in a continuous integration environment. They investigated history-
based diversity using three different similarity metrics: Manhattan, Normalized Compression
Distance, and Normalized Compression Distance Multiset, and during these investigations, they
were evaluated using different history interval sizes. Diversity-based TCP can be implemented
using different methods and at different levels, for example, source code, test code, method
calls, topic templates extracted from test cases, or English texts from manual test cases. To
achieve diversity-based TCP, the dissimilarity between test cases must be calculated using a
specific method. Haghighatkhah et al. (HAGHIGHATKHAH et al., 2018) calculated the cumulative
priority for each test using their previous failures over the last NV builds. The highest weight
corresponds to the failure exposed in a previous build (current — 1), and the failure in every
preceding build is weighted lower than the failure in its successive build. They aggregated
tests into clusters based on their weight and sorted these clusters in descending order, then

they compared the effectiveness of history-based prioritization with random permutation and

40

with each other using different interval sizes. Using a history-based prioritization approach,
test cases without historical failure are grouped in a single cluster and remain in their original
order. There was also the possibility that the investigated projects could have already used TCP
techniques. To avoid the impact of this and to create a fair comparison with random ordering,
they simply randomized the intra-cluster tests, this technique is called history-based random
(HBR) in their study. In the technique presented in (HAGHIGHATKHAH et al., 2018), tests that do
not have enough information regarding previous failures cannot be effectively prioritized. These
tests are grouped into a simple cluster that is prioritized based on previous failure knowledge.
This includes both newly added tests and those which have not revealed any failure in previous
builds. Furthermore, within each cluster, there might be several tests with the same weight. To
break the tie, the intra-cluster tests can be randomized, or other TCP techniques can be used
in combination with history-based test prioritization. The results of the experiments conducted
by Haghighatkhah et al. (HAGHIGHATKHAH et al., 2018) suggest that historical knowledge of
failures appears to have strong predictive power in continuous integration environments and
can be used to prioritize test cases for execution effectively; history-based prioritization does
not necessarily require a large amount of historical data and its effectiveness improves to some
extent with a larger historical range; Diversity-based TCP can be used effectively during the
early stages of software development when historical data is not yet available or is scarce, and
also combined with history-based test prioritization to improve its effectiveness; And finally,
they found out that history-based diversity using normalized compression distance multiset is
superior in terms of effectiveness, but this result comes with relatively high overhead in terms
of method execution time. Given that it was possible to apply the approach by Haghighatkhah
et al. at the context where we conducted our study this is the state-of-art approach that we
considered as competitor in our evaluation (Chapter 5).

Fazlalizadeh et al. (FAZLALIZADEH et al., 2009) address the prioritization of test cases based
on past execution history, considering time and resource constraints. While the approach by
Kim and Porter (KIM; PORTER, 2002) considers only the last test run to calculate the test
selection priority, Fazlalizadeh et al. (FAZLALIZADEH et al., 2009) propose to consider the time
and resource constraints of the environment and incorporate three factors in their approach:
historical failure detection effectiveness, execution history of each test case, and the last priority
assigned to the test case. The detection effectiveness is computed as the ratio between the
number of times a test failed over the total number of times it has been executed so far.

Another factor that they also take into account is the time period in which the test case is not

41

executed because they seek to guarantee that each test in the test suite should be executed
at some point. And lastly, they define a code coverage percentage for each test case based
on various control-flow and data-flow criteria. Our approach is similar to the one proposed by
Fazlalizadeh et al. (FAZLALIZADEH et al., 2009) in the sense that both approaches consider the
entire execution history. The main difference, however, is that our approach does not weigh the
test results depending on how long ago the tests were performed as done in (FAZLALIZADEH
et al., 2009).

Najafi, Shang, and Rigby (NAJAFI; SHANG; RIGBY, 2019) adopted approaches based on his-
torical test failure frequency, test failure association, and the costs associated with the testing
process. For the test selection phase, the authors adopted approaches based on prior test failure
frequency, association, and the costs of the testing process. Frequency: for the authors, intu-
itively, tests that previously failed frequently are more likely to fail again later, so the frequency
of past test failures can be used as an indicator for suggesting test selection opportunities.
Association: the authors noticed in previous studies that there are many co-failures in test ex-
ecutions; hence, associations can be effectively leveraged to improve test effectiveness. Cost:
Test execution comes with a cost, especially for the complex testing infrastructure used by the
company related to their study; with such high testing costs, they notice that tests can be
skipped if skipping them is more cost-effective than executing them. For the test prioritization
phase, the authors reported that their approach relies only on the test execution history, such
as the number of true-positive failures and test execution duration, to calculate the priority
values. As the information related to coverage is not available in the company where the study
was carried out, the authors do not use test coverage information; similar to test selection ap-
proaches, they learn about all the test execution results until one day before every test. Related
to the metrics used to validate their work, Najafi, Shang, and Rigby (NAJAFI; SHANG; RIGBY,
2019) use three metrics to evaluate the approaches for test selection (total test execution
time reduction, number of slip-through test failures, and total cost reduction) and two other
to assess the test prioritization (reaching the first test failure, and reaching all test failures as
early as possible). Regarding this, they concluded that test prioritization by simply considering
the past effectiveness of the tests could significantly help reduce the time to reach the first
failure and provide a close-to-optimal order for running the tests. Their experiment reveals
that industry experts are reluctant to remove tests from the test flow unless they find it nec-
essary. There is always a relatively conservative approach for test executions by the preference

for increasing the level of quality assurance of the software with the price of spending more

42

time and resources. To minimize this, they followed the approach instead of only providing
historical evidence; they aimed to explain why those tests could be removed. For example,
they can demonstrate that a specific 'Test A" can be removed since the exercised 'feature’
is obsolete, instead of only showing that 'Test A’ has never detected a bug in the system.
With their work, Najafi, Shang, and Rigby (NAJAFI; SHANG; RIGBY, 2019) observed that the
results show the standalone test prioritization approach significantly outperforms all of their 1.
selection approaches, 2. the combination of their prioritization and selection approaches, and
also 3. the random order. With that, they conclude that test prioritization is the most effective
and the least invasive approach for saving costs in testing processes.

The works presented by (ENGSTROM; RUNESON; LJUNG, 2011) and (NAJAFI; SHANG; RIGBY,
2019) are two works very closely related to ours; the context of their work is in a real industrial
environment, like ours. In both cases, however, the work’s primary focus was on the selection
of test cases rather than the prioritization of the test suite. This differs from our work as
we focus on the test case prioritization phase. As their work is related to a real industrial
environment, like ours, they also chose not to expose much information about the company

in question, which makes it somewhat challenging to reproduce both experiments.

3.3 MANUAL TESTING PROCESS

Although the literature is vast in works that address the subject of regression testing and
its techniques, few works can be found that report the application of these techniques in the
context of manual testing.

Hass et al. (HAAS et al,, 2021), in their work on how manual testing processes can be
optimized, explain a little about the application of manual testing in some real-life contexts.
They list some difficulties and challenges that demonstrate why the use of manual tests is
still a common practice and commonly used by the industry. According to their observations,
manual testing is often used because it is closer to reality, it has a more specific context,
and it is up-to-date, not to mention that it is even more sustainable when complexity is high,
and requirements are blurred (based on the answers obtained by the questionnaire applied
by the authors). In addition, some industries, such as those in the medical field, determine
the use of manual tests. In addition to these challenges that prevent test automation, some
other obstacles are mentioned, such as lack of time, lack of budget, limited know-how, limited

technology, high change frequency, etc. Another aspect observed by the authors was the way

43

test cases are selected and assigned (allocated) to testers during execution; they observed that
this method differs a lot from one company to another. Regarding the companies’ approach
for test case selection and prioritization, the selections were based on: code changes, tester
experience, feature criticality, requirements, time constraints, or test failure history. Regarding
prioritization, this number was very low, approximately 8% of the participants mentioned the
use of prioritization techniques when they are selecting the tests, and the techniques used
by them were based on: experience, licensing or hazard relevance. When assigning test cases
to testers, the following were considered: tester experience and areas of responsibility. Hass
et al. (HAAS et al., 2021) concluded that manual testing is still widely used in the industry,
despite the high cost of human effort involved in this process. And that according to the
research they've done on these companies that focus on manual testing, they don't have any
intention of fully automating their tests in the near future. As reported by Hass et al. (HAAS
et al., 2021), the application of manual testing is still a common practice precisely because
it is the closest scenario to reality; it is in this context that we can achieve a behavior very
close to the behavior of the end-user of the product. The authors provide some suggestions for
optimizing manual testing processes and show that the application of prioritization techniques
in the manual context is still shallow. In our work, we propose and evaluate history-based
prioritization heuristics precisely for the context of manual testing.

Another work related to the execution of manual tests is the one proposed by (LIMA,
2009). The work proposes a technique for prioritizing test cases based on data reuse, focused
on the permutation that generates all possible sequences of a set of test cases to reduce
the time spent configuring these executions and to improve test team productivity. The main
contribution of this work is the evaluation of four test case prioritization techniques that use
the concept of data reuse to generate test sequences. The author focuses on a permutation
technique that guarantees the computation of the best sequences (there may be more than
one) of test suites with a small number of tests to be used as an exploratory algorithm.
With this study, (LIMA, 2009) provides empirical evidence that the permutation technique
can generate better sequences than those generated manually. The work shows that reliable
results can be provided and that these permutations present good results when compared
with manual prioritization heuristics. However, these permutations are unfeasible for large
test suites. Even the other three techniques based on classical artificial intelligence techniques
(greed algorithm, simulated annealing, and genetic algorithm) do not guarantee a better result.

The context where the study of (LIMA, 2009) was conducted is very similar to ours. We could

44

not use this work as a competitor because the proposed technique is aimed at small suites

with an approximate number of 15 test cases per test suite.

3.4 CONCLUDING REMARKS

In this chapter, we presented some of the works in the literature that address the main
topics related to this dissertation, among them studies related to the main regression testing

techniques, the history-based prioritization approach, and the manual execution of test cases.

45

4 OUR APPROACH

In this chapter, we discuss our approach. We introduce two history-based prioritization
heuristics, and we discuss the rationale behind their proposal. Before introducing the proposed
heuristics, we provide additional details related to the industrial context where this study was

carried out.

4.1 CONTEXTUALIZATION

The company where our study was conducted provides testing services to a smartphone
manufacturer. The products developed by TTC are designed to be marketed worldwide and
each different region has its own demands, meaning that the software needs to be customized
and tested accordingly for every target region.

The tests performed by TTC aim at guaranteeing the quality of the software that ships with
the product as well as the quality of any new versions released for the purpose of upgrading
the software of existing products. The majority of the test cases are executed manually.

The products tested at TTC can be classified into different categories depending mainly on
their hardware specifications. For example, some products could be referred to as entry-level,
whereas others could be referred to as high-tier — generally more powerful products in terms
of hardware. In this work, we refer to these categories as families to facilitate understanding.
Products from the same family share many features, which means that the same test suite
(or part of it) can be used to assess the quality of many products from the same family.
These products are tested at each life cycle of a new Operational System (OS) version, which
in the case of this company's products uses Android!, a linux-based OS that operates on
smartphones, laptops, and tablets. It is developed by the Open Handset Alliance?, an alliance
between several companies, including Google.

The frequency with which each product is tested depends on many aspects, including the
product’s family. In general, high-tier products go through more testing cycles than those from
the entry-level family.

The test suites are organized based on the target region and on the application to be tested.

https://source.android.com/
http://www.openhandsetalliance.com/
3 https://about.google/

2

46

When a new test cycle is triggered (for example, whenever a new operating system version
is released), the Test Manager (TM) needs to define which test cases should be performed.
For carrying out this task, the TM takes into account many aspects, including the product
schedule, the number of test cycles running in parallel, and the number of testers available for
running the selected test cases, among others.

In addition to these families sharing similar characteristics between their products, they
also share the test cases used to test all these products, whether for products in the same
family or even in different families.

These test cases are organized according to a specific region of the platform’s code being
tested or according to the base application. Within the regression team, an area that is being
used as a reference for the development of this project, the test cases are divided into eleven
different categories, which are: Core, AOSP, GMS, Messages, Dialer, Google Pay, Android
Auto, Experiences, Dual SIM, Carrier, and Data Migration, and each area has its set of tests
that serve as a basis for the creation of test suites according to the product that will be tested.

The approximate numbers of these tests are listed in Table 1.

Table 1 — Number of Test Cases by Area

Area TC+#
Core 710

AQOSP 140
GMS 130

Google Pay 25
Android Auto 30

Message 45
Dialer 90
Experiences 350
Carrier 150

Dual SIM 200
Data Migration 170

With each new product that is tested, the Product Owner (PO), together with the Subject
Matter Expert (SME) (or we can refer to them as Test Managers), defines the test plan that
will be executed for that product and the number of test cases that will compose each test
suite. At this moment, a selection of test cases is made that will contemplate the coverage of
this product. Once all the plans have been created and the test strategy is organized, the test

suites are passed on to the testers to execute all test cases in a time window that is defined

47

according to the product schedule, the number of products that are running in parallel, and
the number of testers available to run all available test suites for the products.

The frequency with which each of these products is tested, taking into account the exe-
cution of all the categories mentioned above, will depend on the family in which this product
belongs. As a rule, the products that are from the entry-level and intermediate families pass
only for two lifecycles of test executions: once on the version in which the product was released,
and a second time when that product receives an OS upgrade. High-tier family products usu-
ally go through three life cycles of test executions: one when it is released, plus two others OS
upgrades for this product.

At TTC the TM can take advantage of an existing tool, developed in-house, that will help
with the test case selection task. Based on the information on recent changes performed in
the software, the tool can automatically select a set of suitable test cases that will cover the
intended parts of the software. The tool can also automatically export the selected test suite

to the test management tool where the test results will be reported by the testers.

4.2 PROBLEM

While there is automated support for the test case selection task, no support exists for the
test case prioritization phase, i.e., after the test cases are exported from the test management
tool (or when the TM create the test suite manually) they are displayed ordered by the test
case |Ds. Without a clear ordering for the test cases, it is left for the tester to decide in which
order the test cases should be executed — and as we will see in the results of our empirical
evaluation in Section 5.8, the tester choice is far from optimal.

Based on what has been presented so far, we can see that we talked about defining: how
the test cases need to be executed, how to group the test cases, or how to order them by
following some specific pattern.

In this case, TTC tries to guarantee that exactly all the test cases defined in the different
test strategies are executed.

In order to optimize execution, technical leaders always advise testers to group the test
cases within the test suites according to domain similarities of the test suites being tested so

that this grouping somehow optimizes the execution.

48

4.3 SOLUTION

To overcome this problem we suggest that TTC could take advantage of its large database
of historical test results and adopt a fully-automated history-based test case prioritization
approach. To support our intuition, in the next section, and on subsequent ones, we propose
two different history-based TCP heuristics and we empirically evaluate their performance in
the context of TTC.

As no test case prioritization technique has been used so far, the main objective of this
work is to propose the use of these prioritization techniques that aims to optimize how these
cases are ordered to be tested, as well as the possibility of an improvement in the failure
detection rate earlier in the product testing phase.

As there are different test areas and different types of test suites (according to its area),
for this study in question, the trial will be based on one of the test areas that have a more
significant number of manual test cases, as well as the focus will be on the biggest test suite
within this area, which is the Core Regression Test Suite, as we can see on Table 1.

For this, two different heuristics will be presented and compared with some controls heuris-
tics (optimal, real, default, and random), as well as two other heuristics related to History-based
prioritization presented in the literature as the state-of-the-art, these heuristics will be shown

in Section 5.3.3.

4.4 HEURISTICS

To overcome the limitations of TTC described in Section 4.2 we propose the adoption of
simple, yet effective and efficient, history-based prioritization heuristics by leveraging the large
database of historical test results available at the company.

Simply put, our history-based prioritization heuristic orders the test cases in descending
order of their past failure-frequency and the cases of ties are solved by considering the test-age
— failure-frequency is computed by dividing the number of times a test failed in the past with
respect to its total number of executions, whereas test-age counts the number of days since
the test case was created or updated. Priority is given to failure-frequency because it has been
shown that a test that failed in the past tends to fail again (KIM; PORTER, 2002). On the other
hand, priority is given to newly-added or modified test cases because such tests are usually

added (or updated) to cover new features or updated parts of the SUT and, intuitively, those

49

could be error-prone areas.

Algorithm 1 provides a pseudo-code with a more detailed description of our history-based
prioritization strategy. First, we collect the list 7'S of test cases available in the test suite
created by the test manager (line 2). Then, we collect the execution history for each test case
in the list 'S (line 4). The function get Failure Frequency() at line 5 processes the execution
history to compute the failure-frequency for each test case, while function getTest Age() at
line 6 gets the date at which each test case was created (or updated). The prioritization itself
happens at function orderTestCases() (line 7) and the test cases are added to the test suite
PTS in descending order of their past failure-frequency with the cases of ties being solved by
considering the test-age in ascending order. Finally, the algorithm outputs the prioritized test
suite PT'S (line 8). The function getHistory() (lines 9 to 14) collects the execution history
for all test cases in the list T'S. It receives, as input, the test suite and the heuristic used (the

available heuristics are detailed next).

input : Test suite info ts, and heuristic
output: Prioritized test suite PT'S

PTS < emptyList();

TS « getTestCasel Ds(ts);

N

3 function prioritize TestSuite()

4 history < getHistory(TS, heuristic);

5 failure_frequency < getFailureFrequency(T'S, history);
6 test_age < getTest Age(TS),

7 PTS < orderTestCases(T'S, failure_frequency, test_age);
8 return PTS;

9 function getHistory(TS, heuristic)

10 if heuristic == "family-dependent’ then

11 ‘ history < get ExecutionResults(TS, filter = true)

12 else if heuristic == "family-independent’ then

13 ‘ history < get ExecutionResults(TS, filter = false)
14 return history;

Algoritmo 1: History-based prioritization

For carrying out our experiments (detailed in Chapter 5) we explored two variations of
our history-based prioritization strategy that control which entries of the execution history are

considered for the prioritization:

» Because each product at TTC belongs to a family of products that share many char-

acteristics, including specifications and core software components, one heuristic filters

50

the execution history of a test case to consider only the results that were reported for
products that belong to the same family of the target product. We refer to this heuristic

as family-dependent.

= Alternatively, we consider the entire execution history of a test case, regardless of the
product or software version for which the test case was executed. We refer to this

heuristic as family-independent.

Note that Algorithm 1 is the same for both heuristics and the only place where it dif-
ferentiates between family-dependent and family-independent is in the function getHistory()
(lines 9 to 14): for family-dependent the history of executions is filtered (line 11), whereas for
family-independent the entire history of executions is considered (line 13).

While Algorithm 1 presents a micro perspective of the proposed approach, Figure 5 presents
the macro perspective: it depicts the complete flow of our approach in the context of TTC.
During the selection phase the test manager selects which test cases should be added to the
test suite. During the prioritization phase our approach collects all the required information for
the prioritization (execution history, failure frequency, and test age). The execution history is
stored in a serverless multicloud data storage module, the BigQuery*, which stores data that
is designed precisely for querying extensive data information. Finally, the test cases are ordered
according to the chosen heuristic (family-dependent or family-independent) and a prioritized

test suite is produced.

45 CONCLUDING REMARKS

In this chapter, we presented the context and motivation for proposing our approach. We
introduced two history-based prioritization heuristics and we discussed the rationale behind
their proposal. The proposed heuristics were discussed both at a pseudo-code level but also

with a high-level overview of the industrial context where we conducted our study.

* https://cloud.google.com/bigquery

51

Joyine sy Aq pareas) :@24nog

a1Ns 159
paziond

-

.

onsunay
juspuadapul-Ajiwey
Addy

N

ON

J

;uapuadap-A|t

wey

.

J1suUNay
juspuadap-Ajiwey
Addy

N

SOA

SoseD1sa]J9plo s

Ki01sIH eieq
Kianpbig

aseyd uoIezijioLd

abyisa]1eb &
" sq|saseD1sa]19b

Aouanbai4ain|ie41ab &y

Ki03siH1eb N

Jabeuep

— 159
SIS O
1s9] 91e31)

s

aseyd uoId9|as

N

yoeolidde uno Jo MBIAIBAO Uy

ApnNig Jno pa1onpuo’) 9m 249YM IXd3U07) |BLIISNPU| BY3 Ul UOI1EZI}LIOL] Paseq-A1oiSIH — G 94nSi4

52

5 EVALUATION
This chapter presents the experimental study that evaluates the effectiveness and efficiency
of the proposed heuristics. We start by providing the goal definitions, followed by the study

planning, preparation and analysis. We then discuss the threats to the validity of our study.

Finally, we address the execution and discuss the results of our experiment.

5.1 STUDY PLAN

To make sure that our results are reliable we follow the guidelines of Juristo and Moreno (JU-
RISTO; MORENO, 2013), and Wohlin et al. (WOHLIN et al., 2012) for conducting experimentation
in software engineering. We also provide all the information needed to allow possible replica-
tions of our study, including the study plan and goals, hypotheses, treatments, control objects,
experimental objects, variables, as well as the planning, preparation, execution, analysis of the

results, and threats to validity.

5.2 GOAL DEFINITION

Following the guidelines by Basili (BASILI, 1994) we defined the following goals, questions

and metrics for our study.

5.2.1 Global Goal

Distinguish our proposed history-based prioritization approaches from competitor approaches.

5.2.2 Measurement Goal

Considering our proposed history-based prioritization approaches, we plan to characterize

their difference with respect to competitor approaches, concerning:

» Impact on effectiveness: measuring how effective our proposed approaches are with

respect to our competitors;

53

= Impact on efficiency: measuring how efficient our proposed approaches are with respect

to our competitors;

5.2.3 Study Goal

Analyze the performance of the designed history-based prioritization approaches.

For the purpose of comparison.
= With respect to alternative prioritization strategies.
» From the viewpoint of software testers and test managers.

» In the context of manual testing in a real industrial setting.

5.2.4 Questions

For assessing our goals we defined the following questions:

RQ1 [Effectiveness]: How effective are the proposed history-based approaches when com-

pared with alternative prioritization strategies?

RQ2 [Efficiency]: How efficient are the proposed history-based approaches when compared

with a state-of-the-art approach?

5.2.5 Metrics

The assessment of RQ1 and RQ2 are performed by metrics M; and M,, respectively.

M; [APFD]: Measures the Average Percentage of Faults Detected (APFD) (ROTHERMEL
et al., 1999), the de facto metric used for evaluating TCP approaches. This is confirmed
by recent secondary studies that surveyed the topic of TCP (CATAL; MISHRA, 2013; HAO;
ZHANG; MEI, 2016; KHATIBSYARBINI et al., 2018). The APFD can be computed according
to Equation 2.1, where m is the number of faults found in a test suite, n represents the
total number of test cases, and T'F} represents the first test case in the prioritized test
suite that detects the fault 5. The APFD value can vary from 0 to 1, and the higher the

value, the faster faults are detected by a test suite.

54

M, [Time]: Measures the total time required for prioritizing test suites using the investigated
history-based prioritization approaches. Total time considers both preparation time (e.g.,
collecting the historical data) and prioritization time (the time required for ordering the

test suite).

5.3 PLANNING

Based on the goal, questions and metrics defined for our study, here we provide additional
information regarding the planning of our experiments, including our hypotheses, treatments,

dependent and independent variables.

5.3.1 Hypotheses Definition

To address RQ1, our null hypothesis states that no statistical difference can be observed
in the speed at which faults are revealed when our proposed approaches are compared with
alternative strategies. The alternative hypothesis, the one to be accepted in case the null

hypothesis is rejected, states that differences can be observed:

Null Hypothesis (H0;): The median APFD values achieved by our prioritization approaches

and the alternative prioritization strategies will not differ.
H01 : APFDours = APFDcompetitors

Alternative Hypothesis (H1;): The median APFD values achieved by our proposed ap-

proaches are different from those achieved by the alternative strategies.
Hll : APFDours 7£ APFDcompetitors

To address RQ2, our null hypothesis states that no statistical difference can be observed
in the total prioritization time required by our prioritization approaches and the alternative

prioritization strategies. The alternative hypothesis states that differences can be observed:

Null Hypothesis (H05): The total prioritization time required by our prioritization ap-

proaches and the alternative prioritization strategies will not differ.

HOQ : TIMEours =~ TIMEcompetitors

55

Alternative Hypothesis (H15): The total prioritization time required by our proposed ap-

proaches are different from those achieved by the alternative strategies.

H12 . TIMEour 7£ TIMEcompetitors

5.3.2 Treatment

The treatment used in this study is the prioritization of test suites based on the execution
history of test cases. We can say that this is a one-factor experimental study since we use only
one treatment: the application of the prioritization heuristics. The absence of treatment is the

use of alternative prioritization strategies (also referred to as competitors in our study).

5.3.3 Control Object

To identify the impacts of using the history-based prioritization approaches, the control
object is the use of the data from previous executions where the test cases were executed using
the testers’ ad-hoc prioritization.

This includes the alternative orderings we use for comparison (competitors):

» Real prioritization (RealOrd): this is the real ordering followed by the testers when
executing the test cases available in the test suite. We collect this information from the
database of historical test results available at TTC. To illustrate, the test cases available
at the test suite in Figure 6 (a) are ordered following their real Execution Date displayed

in Figure 6 (b).

= Default prioritization (NewOlId): the test suite is ordered by the test management tool
used in the context where our study was carried out. To illustrate, in the default ordering
the test cases in Figure 7 (a) are ordered based on their creation date, with the newer

test cases’ being executed first, Figure 7 (b).

1 The new test cases are the ones with the higher TC-ID value.

56

()
gl 0l
02 02
03 03
o o
05 05
06 06
07 07
08 08
09 09
10 = 10
l 1
12 12
E 9
14 14
i 2
6 8
7 17
e E
19 19
2 2

Figure 6 — Real Prioritization Ordering

(o)
Test Case
TC-0001 01/06/22
TC-0013 01/06/22
TC-0012 01/06/22
TC-0011 02/06/22
TC-0007 02/06/22
TC-0009 03/06/22
TC-0002 03/06/22
TC-0008 03/06/22
TC-0017 03/06/22
TC-0020 03/06/22
TC-0010 03/06/22
TC-0019 04/06/22
TC-0015 04/06/22
TC-0014 05/06/22
TC-0016 05/06/22
TC-0003 05/06/22
TC-0004 06/06/22
TC-0018 06/06/22
TC-0006 06/06/22
TC-0005 06/06/22

Source: Created by the author

Figure 7 — Default Prioritization Ordering

(a) (b)
[osion | e Core |
o1 l
02 02
03 03
04 04
05 05
06 06
07 07
08 08
09 09
10 —p 10
n n
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20

Source: Created by the author

57

= Random prioritization (Random): the test suite (Figure 8 (a)) is ordered randomly. We

derive such an ordering by shuffling the tests available in the test suite (Figure 8 (b)).

Figure 8 — Random Prioritization Ordering

(a) (o)

[posiion | est Case |
0l 0l
02 2
03 03
o4 Z
0s os
05 0s
07 07
08 08
09 Z
10 - 10
1 1
14 14
v v
18 18
19 9
2 20

Source: Created by the author

= Optimal prioritization (Optimal): the test suite is ordered in such a way that the max-
imum possible APFD is achieved. We derive such a test suite by first putting all the
fault-revealing test cases (highlighted in red), followed by all the non-fault-revealing

tests. This ordering is illustrated in Figure 9.

» History-Based Diversity (HBD): is a state-of-the-art competitor. The priority of each test
is calculated taking into account the previous failures of the last n builds of the software,
where the highest weight is assigned to the failure that was found in the immediately
previous build with respect to the one being tested. In this heuristic the faults are
weighted by their distance n (Wn), Figure 10 (a). Then, the test cases are grouped into
clusters considering their Wn value, and test cases that do not have historical failures
are grouped into a single cluster, Figure 10 (b). Lastly, the intra-cluster tests are ordered
based on their distance (dissimilarity) to the set of already-prioritized tests (represented
here by the color spectrum), and the test cases that do not have historical failures remain

in their original order, Figure 10 (c).

58

Figure 9 — Optimal Prioritization Ordering

(a (b

Test Case Test Case
01 TC-0001 01
02 TC-0002 02
03 TC-0003 03
04 TC-0004 04
05 TC-0005 05
06 TC-0006 06 TC-0006
07 TC-0007 07 TC-0007
08 TC-0008 08 TC-0008
09 TC-0009 09 TC-0001
TC-0010 10 TC-0010

11 TC-0011 11 TC-0011
12 TC-0012 12 TC-0012
13 TC-0013 13 TC-0013
14 TC-0014 14 TC-0014
15 TC-0015 15 TC-0002
16 TC-0016 16 TC-0016
17 TC-0017 17 TC-0017
18 TC-0018 18 TC-0018
19 TC-0019 19 TC-0005
20 TC-0020 20 TC-0020

HAE e el
\
ey

Source: Created by the author

Figure 10 — History-Based Diversity Ordering

(@) (o) (c)
[Posiion | TestCase | _wn*] [Posiion | TestCase | _wn*]
o1 (1c-0001] 0

/0 meoams 05) o1 - G
02 gGHOEE O© 02 [ECmOs) 09 02 (NS 0
03 (NN o5 03 (NGHWE 09 3 [Wcwos) 09
04 | 7C-0004 03 04 - 1C-0020 0.9 04 [1C-0017 | 0.9
05 (Hcmos) 09 05 (GHOWE 09 05 (NGHNES 09
06 [7C-0006] 0,6 06 0.6 06 0,6
07 Gico0m o3 o7 (CHOIEN @ o¢ 07 (NCHOE o
08 [HCHO0ED O 08 (WCO00EN 06 s @NGHOIE o
00 N0 0 0 QDM oS v [HCwoE) 0
10 (1c-0010) 03 =l 10 [1C-0012 | 0.6 = 10 [1C-0012 | 0.6
) om— o T s
12 [1C-0012 | 0,6 12 [1C-0016 | 0.3 12 | TC-0011 03
13 GiCHol os 13 GCHoNe o3 13 (iCHOEE o3
14 | TC-0014 o 14 (TC-0010 03 14 ((1C-0010] 03
15 SomoEe o 15 iCHom o3 15 G o3
6 (ECHOEE o3 L G T D
17 Gicoom o A 0 17 (. 0
s NN o 15 (HC000B) O 15 (00BN O
19 G 0 9 em0e o 9 gicmooE o
0 @GR 05 _» ool o) _» (ool o)

*Failures Weighted by their distance (n)

Source: Created by the author

59

= History-Based Random (HBR): HBR is analogous to the previously described HBD. The
only difference is that the intra-cluster tests (Figure 11 (b)) are not ordered based on

distance metrics. Instead, the intra-clusters are simply shuffled (Figure 11 (c)).

Figure 11 — History-Based Random Ordering

(a) (o) (c)

[Position | Test Case | wn* | [Posifion | TesiCase | _wn*__|
01 0 (ol TC0015 09) (ol - TC-0015 09)
02 [1C-0002 | 0 02 0.9 02 - TC-0020 0.9
03 TC-0003 09 03 . TC-0003 0.9 03 0.9
04 . TC-0004 03 04 | TC-0020 0.9 04 [1C-0017 | 0.9
05 09 05 [1C-0017 09 05 | TC-0003 09
06 06 06 T7C0019 0.6 06 1C0019 0.6
07 - 7C-0007 0.3 07 [1C-0013 | 0.6 07 0.6
08 0 08 0.6 08 - TC0013 0.6
o N 06 o0 (NN o oo NS 0
10 0.3 -l 10 [1C-0012 0.6 - 10 [1C-0012 0.6
12 [1C-0012 | 0.6 12 | TC-0016 | 0.3 12 | TC-0004 0.3
13 §icooise o 13 CHOEe o3 13 CHOEe o3
14 TC0014 0 14 03 14 [1C-0016 03
15 TC-0015 09 15 | TC-0004 0.3 15 0.3
o omm—. o5 N o o
17 §icoo o0 17 (. 0 AN 0
18 - TC0018 0 18 0 18 0
19 L TC0019 0.6 19 [7C-0002 0 19 | TC-0002 | o
20 Gomome o0 _2 Y, _% Y,

*Failures Weighted by their distance (n)

Source: Created by the author

Notice that the so-called Optimal prioritization has no practical use, given that it is im-
possible to know which test cases would reveal which faults in advance. For the purpose of
comparison, however, it is very useful, given that it allows us to assess how far a given technique

is from the best possible result.

60

5.3.4 Experimental Object

The experimental objects are the two history-based approaches, family-dependent and

family-independent, proposed in this study:

= Family-dependent (Fam-dep): the test suite, Figure 12 (a), is ordered based on the
execution history that considers only the reported results for products that belong to
the same family as the target product. First, we order the test cases in descending order
considering their failure frequency with respect to the history of products that belong
to the same family, represented in Figure 12 (b) column FF-Fd. Then, cases of ties are
resolved considering the test case age, putting first the new and updated test cases,

Figure 12 (c).

= Family-independent (Fam-ind): the test suite, Figure 13 (a), is ordered based on the
execution history that considers the entire execution history of a test case, regardless of
the product or software version for which the test case was executed. This approach is
very similar to the previous one. We order the test cases in descending order, considering
their failure frequency. For this approach, however, we consider the entire history of
executions, regardless of the product's family (Figure 13 (b) column FF-Fi). Cases of
ties are resolved as in the previous approach considering the test case age, putting first

the new and updated test cases, Figure 13 (c).

61

Joyine sy Aq paiess) :@34nog

paiepdn , | uspuadasq Ajlweq — 44, | Juspuadspul Ajlwey — 44,

0000 L00'0 91/10/10 [[1000-0L) 0z 0000 L00'0 6L/¥0/10 [¥100-OL) (04 §9€°0 ¥95'0 0Z/0L/10 [020001l) (074
0000 0000 | Zl/0L/10 (800001] 61 0000 0000 /L/0L/10 [800001 | 6l ¥SL0 G9€'0 02//0/10 [610001) 6l
0000 000'0 +91/%0/10 (Z000-DL) 8l 0000 0000 «91/%0/10 [Z000-OL) 8l 1000 l000 02/¥0/10 (810001) 8l
0000 L00'0 | 6L/¥0/10 (¥100-01L) L1 0000 0000 9L/10/10 [1000-0L | L1 6870 2€S0 | 0¢/10/10 [ZloooL | L1
1000 l00'0 0¢/¥0/10 (810001) 9l 100’0 l00'0 02¢/¥0/10 (800Dl | 91 S0L'0 SLI'o 61/01/10 (910021) 9l
8/00 €10 | £LL/£0/10 [£000-D1L) Sl 800 €10 /L/£0/10 [£000-0L) Sl $92°0 8650 61/£0/10 [S100-0L) Sl
¥80'0 00l'0 8l/¥0/10 ([0L00DL) vl ¥80°0 001’0 8l/¥0/10 ((0L00DL) 4l 0000 l000 6L/¥0/10 [¥L00DL) vl
/800 00L'0 | 9L/0L/10 [%000-DL | el /800 00L'0 | 9L/0L/10 [¥000-0L | el €270 95€'0 6L/10/10 [£100-01 | el
€60°0 00l'0 81/£0/10 [[1100-D1) zl €600 001’0 81/£0/10 [((1100D1L) zl 2820 Gce'o 8l/0l/10 (z100DL) @ll
S0L'0 SLL'0 | 6L/0L/10 [9100-DL) LL S0L'0 SLI'0 6L/0L/10 [910001 | LL €600 00L'0 8l/£0/10 [110001) LL
zeLo €€€'0 /ZL/¥0/10 (900001) ol <= 0 €€€'0 /L/¥0/10 [900001 | ol = 1800 00L'0 8l/¥0/10 [[0100-OL) ol
¥S1°0 G9€'0 02//0/10 [610001) 60 ¥SL'0 G9¢'0 02//0/10 [6100-DL | 60 92¥'0 €660 81/10/10 [600001 | 60
§920 8650 61/£0/10 (510001) 80 §92'0 8650 61/£0/10 (S100-DL) 80 0000 000'0 Zl/0L/10 (800001) 80
2820 Gze'0 8L/0L/10 [zlooOL | L0 z82°0 §Ze'0 8l/0L/10 [2l00Ol | L0 8/00 €210 /L1/£0/10 [Z000-01) L0
€0 8650 /L/10/10 [S000-0L) 90 §Ze0 8650 /L/10/10 (S000-0L) 90 zeL0 €6€'0 /L/¥0/10 (900001] 90
§9€'0 ¥95'0 02/0L/10 [0z00-OL | 0 §9€°0 ¥96°0 02/0L/10 [0z00-OL | S0 Sze'0 8650 /L/10/10 [S000-OL | S0
€27'0 95€'0 61/10/10 [€100-0L] 0 €zr'o 95€'0 61/10/10 [€100-D1L] 0 /800 00L'0 9L/0L/10 [(¥000-OL) 0
9270 €60 8l/10/10 [600001 | €0 9270 €€€'0 8L/10/10 [600001 | €0 6870 8950 91/£0/10 [€000-01 | €0
6870 8950 91/£0/10 ((£000-01L) 20 6870 7€5'0 0¢/10/10 (Z1000L) 20 0000 0000 91/¥0/10 [2000-0L) 20
6870 Z€5'0 | 02/10/10 |[Z1oooL) L0 6870 8950 | 91/£0/10 [£000-0L | L0 0000 0000 | 9L/10/10 [1000-0L | L0

(2) (a) (o)

SuuspiQ 1uspusdsp-Ajiweq — g1 aun3i4

62

Joyine sy Aq paiess) :@34nog

paiepdn , | uspuadasq Ajlweq — 44, | Juspuadspul Ajlwey — 44,

0000 0000 91/10/10 [1000-OL) (014 0000 0000 /L/0L/10 (800001) (04 §9€0 ¥95'0 0¢/0L/10 (020001) 0z
0000 0000 | +91/¥0/10 (200001l) 6l 0000 0000 «91/¥0/10 (20000l | 6l ¥S1°0 G9¢'0 02//0/10 [610001 | 6l
0000 0000 £L/0L/10 ((8000-OL) 8l 0000 0000 9L/10/10 [1000-OL) 8l 1000 1000 0Z/¥0/10 [8100-0L) 8l
0000 1000 | 61/%0/10 [710001) L1 L00'0 1000 0Z/¥0/10 [810001 | L1 6870 2€S'0 | 0¢/10/10 [£100-0L) L1
1000 1000 02Z/¥0/10 [8100-OL) 91 0000 1000 6l/¥0/10 [¥100-OL) 91 5010 SLL'0 61/01/10 [910001) 91
/800 o0L'0 | 9L/0L/10 (#0000l Sl €600 00L'0 8l//0/10 [Ll00DL) Sl $92°0 8650 6L/£0/10 [Sl00OL) Sl
7800 00L'0 8L/¥0/10 ((0L00DL]) vl ¥80°0 00L'0 8l/¥0/L0 ((0L00DL) 4l 0000 l00'0 6L/¥0/10 (¥7L00-OL) vl
€600 00L'0 | 81/£0/10 | Lroo-O1L) el /800 00L'0 | 9L/0L/10 [¥000-0L) el €Zr'0 95€'0 61/10/10 [€1000L | el
soL'o GLI'0 61/01/10 [(9100D1) 4 goL'o SLI'0 61/0L/10 (910021) zl z8T'0 Gze'o 81/0L/10 [Z100DL) 4
800 €21'0 | £1/£0/10 [£000-DL) L 8/0'0 €21'0 | £L/£0/10 [£000-0L) LL €600 00L'0 | 8L/£0/10 [110001) L
2820 SZ€'0 8L/0l/10 [Zl00DL) Ol <@mm 78TO SZ€'0 8L/01/10 (2l00DL) Ol <@mm 800 00l'0 81/¥0/10 [0100DL) Ol
zelo €60 | Z1/#0/10 [2000-0L 60 9Z¥'0 €60 8l/10/10 [6000-OL | 60 9zv'0 €60 81/10/10 [600001 | 60
9¢r'0 €6€0 81/10/10 (600001] 80 zeLo €6€°0 /L/¥0/10 (900001 | 80 0000 0000 ZL/0L/10 (800021) 80
€27'0 $9€'0 6L/10/10 [€1000L | £0 €270 $9€'0 6L/10/10 [€100DL | L0 8/0'0 €21'0 | £1/£0/10 [00001) £0
¥SL'0 §9€'0 0T//0/10 [610001) 90 7510 §9€'0 02/L0/10 [610001) 90 ZeLo €€€'0 /L/¥0/10 [900001) 90
6870 2€s'0 0Z/10/10 [£100-DL) S0 6870 TS0 02/10/10 [£100-0L | S0 §Z€'0 8650 /L/10/10 [S000-OL | S0
G9€0 7950 0¢/0l/10 ([0200-OL) 0 G9€0 ¥96°0 0¢/0L/10 (02002l) 0 /800 00’0 9L/0l/10 (¥000-DL) 0
6870 8950 91/£0/10 [£0000L | €0 6870 8950 | 91/£0/10 [€000l | €0 6870 8950 | 91/£0/10 [€000-0L | €0
§z€0 8650 £1/10/10 ([S000OL) 20 §92'0 8650 4l//0/10 (Sl00OL) 20 0000 0000 9L/¥0/10 (20000l) 20
$92°0 8650 | 61/£0/10 |[S100-OL) L0 §zZ€0 8650 | ZL/10/10 [S000-0L | L0 0000 0000 | 9L/10/10 [1000-0L | L0

(2) (a) (o)

Buuspi 1uspuadspul-Ajiweq — ¢1 aunSi4

63

5.3.5 Independent Variables

The independent variables of our study are the implementation of the prioritization ap-

proaches as well as the tools used to collect and analyze data.

5.3.6 Dependent Variables

The APFD obtained after running the test suites and the total prioritization time.

5.3.7 Trials Design

To answer research questions RQ1 and RQ2 our proposed history-based prioritization tech-
niques as well as the alternative prioritization strategies were applied to the historical data we
collected and their results were stored to be analyzed with respect to: (1) the APFD value ob-
tained after each prioritization and (2) the total time required for completing the prioritization
task. After collecting these results, statistical tests were applied to validate our hypotheses.

Results are presented and discussed in Section 5.8.

5.4 PREPARATION

Figure 14 shows an overview of the preparation phase of our experimental study divided
into three main tasks: (1) data collection, (2) data processing and preparation, and (3) the

application of the prioritization heuristics.

Figure 14 — Heuristics Prioritization Process

3: Application of
prioritization
heuristics

2: Data processing

1: Data Colection and preparation

Source: Created by the author

As part of the data collection task (1), to carry out our study, we collected historical
execution data for 79 test suites created to validate 35 products from two families. The test
suites contain a total of 21,072 test cases, and we processed a total of 5,859,989 test execution

results. For the data processing and preparation (2), initially, we pre-processed the test case

64

execution data retrieved from the BigQuery. During this preparation, part of the data was
filtered, keeping only the essential data needed for applying the APFD function. For example,
for the issues collected, we verify whether it is a valid issue in the bug tracking tool. For the
task number three in Figure 14, we use all the prioritization strategies that are part of the
experimental and control objects for creating prioritized test suites that will be later used for

computing the metrics adopted in our study.

5.5 ANALYSIS

The analysis is carried out slightly differently for the two RQs. For RQ1, we assess the
effectiveness of the proposed history-based prioritization heuristics (experimental objects) when
compared with alternative prioritization strategies (control objects) in terms of APFD. For
RQ2, we compare the efficiency of the proposed prioritization heuristics against state-of-the-
art competitors’ heuristics in terms of the total time required for the prioritization.

As we have a one-factor study with data that does not follow a normal distribution,
confirmed with the Anderson-Darling normality test (ANDERSON; DARLING, 1952), we use a
Kruskal-Wallis rank sum test to analyze the results. The Kruskal-Wallis test is a non-parametric
statistical method for testing whether samples originate from the same distribution and is
used to compare two or more independent samples of equal or different sizes (KRUSKAL;
WALLIS, 1952). We complement the Kruskal-Wallis test result with the Vargha and Delaney’s
A (VD.A) metric of effect size (VARGHA; DELANEY, 2000) to assess the magnitude of the

observed differences.

5.6 THREATS TO VALIDITY

This section discusses how valid the results are and whether we can generalize them to a

larger population.

= Internal Validity. One threat we can observe is in selecting the suites that will be used
for the study, as different test suites of different products could have been selected.
Control for this threat can only be achieved by running additional experiments. Another
threat that is worth mentioning is that the number of faults that can be identified by

a given test suite can influence the maximum value that can be achieved by the APFD

65

metric. Additional internal validity threats of this work include the selection bias, the

history used, and the sample size.

» External Validity. We cannot claim the generalization of our results beyond the partic-
ular context where our study was conducted. As our experiments were carried out within
a specific industrial environment, our findings are limited by the products we used in
our study. To minimize this threat, we need to conduct additional experiments using

different products and, if possible, in different industrial settings.

» Construct Validity. As the results were collected directly from the test suites that
were generated, greater concerns about how to collect the data were not necessary.
Nevertheless, we should take into account that these suites have different sizes and were

used for different products.

= Conclusion Validity. One common conclusion validity threat is the violation of the
assumptions of the statistical methods used. For our study, we consider such a threat
to be low as we used a non-parametric test, the Kruskal-Wallis rank sum test, which
does not rely on assumptions about the distribution of the data. Although the observed
significant results in our study are in line with our expectations, additional studies using

different subjects should be conducted to minimize this threat.

5.7 EXECUTION

To answer RQ1 and RQ2, we applied the proposed approach and the alternative prioriti-
zation strategies to each experimental subject and measured APFD and prioritization time.
To account for the stochastic nature of the random prioritization, we considered the average

APFD value obtained after 30 repetitions.

5.8 RESULTS

In this section we report and discuss the results. With the aim of supporting the independent
verification of our results, we make available the artefacts we produced for conducting this

study?. Our supplementary material (SIQUEIRA; MIRANDA, 2022b) includes the implementation

2 https://github.com/HBPrio/msc2022

66

of the proposed heuristics, the scripts used for running the experiments, and the scripts used

for running the statistical analysis.

5.8.1 RQ1: Effectiveness

The APFD results achieved for each prioritization strategy are displayed as box plots
in Figure 15. The visual assessment of the data shows us that the Optimal Prioritization,
as expected, achieves the maximum median (0.99), followed by our two proposed heuristics
Family-dependent (0.81), and Family-independent (0.77). State-of-the-art competitors come
next, with competitors HBD (0.72) and HBR (0.72) tied. The ordering suggested by the
Default Prioritization (0.52) and the Real Prioritization order followed by the testers (0.44)

achieved a median APFD equal to (or worse than) that of a Random Prioritization (0.52).
Figure 15 — Box-plot of APFD Results for all Heuristics

1.00

0.75

0.50

APFD

0.25
[)
. $
L[]
0.00 ® °
Optimal Fam-dep Fam-ind HBD HBR NewOld RealOrd Random

Source: Created by the author

After the visual assessment, we proceeded with the statistical analysis of the data. As we

could not assume our data to be normally distributed®, we use the non-parametric Kruskal-

3 Confirmed with the Anderson-Darling normality test (ANDERSON; DARLING, 1952).

67

Wallis rank sum test to assess, at a significance level of 5%, the null hypothesis that the
differences in the APFD values for the different TCP approaches are not statistically significant.
The observed differences in APFD were statistically significant (p — value < 2.2e — 16).

A significant Kruskal-Wallis rank sum test only indicates that at least one of the TCP
heuristics has statistical dominance over the others, without identifying which pairs of ap-
proaches are different. Because of that, we performed pairwise comparisons to determine

which TCP approaches are different. The results are shown in the column Group in Table 2.

Table 2 — RQ1: Pairwise Comparisons

Approach Med SD Group

Optimal 0.99 0.01 (a)
Fam-dep 0.81 0.16 (b)
Fam-ind 0.77 0.13 (bc)

HBD 072 014 (cd)

HBR 072 015 (d)
NewOld 052 0.18 (e)
Random 0.52 0.06 (e)
RealOrd 044 0.16 (f)

Med is the APFD median, SD is the standard deviation, and Group displays the result for the pairwise
comparisons after the Kruskal-Wallis test.

Approaches with different letters are significantly different, whereas the difference between
the approaches with the same letter is not statistically significant. The approach that yields
the best performance is assigned to the group (a).

Analyzing the results in Table 2, we can see that Optimal (a), as expected, is different from
(better than) all the other strategies. An approach can have more than one letter assigned
to it. As an example, looking at the results in Table 2, we can tell that Fam-ind (bc) is not
different from Fam-dep (b) and it is also not different from HBD (cd), even though Fam-dep
(b) is different from (better than) HBD (cd). HBR (d) is outperformed by Optimal (a), Fam-
dep (b), and Fam-ind (bc), but it can be as good as HBD (cd). No statistical difference can
be observed between the ordering suggested by the Default Prioritization (NewOld) and the
Random Prioritization (e), and they are both different (better than) from the real execution
order followed by the testers RealOrd (f).

Looking from the perspective of the proposed approach, when we consider the median

APFED, the Family-dependent heuristic performed slightly better than the Family-independent

68

one. This is in agreement with our intuition, given that the family-dependent approach con-
siders only the history of test cases that were executed on similar products.

A statistical test will yield a value of p (which is a value of probability), and based on
this p—value, we can decide whether the observed differences are statistically significant or
not; however, the p—value does not reflect the magnitude of the observed effect. After an-
alyzing the Kruskal-Wallis test results, we also apply the Vargha and Delaney’s A (VD.A)
measure (VARGHA; DELANEY, 2000) of effect size to assess the magnitude of the observed
differences. The VD.A results can be observed in Table 3 and they are provided as pairwise
comparisons between all the evaluated approaches. Next we discuss the most relevant obser-

vations for the context of our study:

The (Optimal) prioritization has a Large effect size over all the other approaches (ex-

pected).

= One of the proposed heuristics (Fam-dep) is significantly better than the two state-of-
the-art approaches investigated (HBD and HBR), although it was by a small effect

size.

= When we compare our proposed approaches with each other (Fam-dep x Fam-ind), we
can observe a Negligible difference between them. This is in line with the result of
the pairwise comparisons, as both approaches shared the same group: Fam-dep (b) and

Fam-ind (bc).

= When we compare our proposed approaches (Fam-dep & Fam-ind) against the Random
prioritization, the test management tool (NewOld), and the real execution order followed

by the testers (RealOrd), we also observe a Large effect size.

69

Table 3 — RQ1: VD.A Effect Size

Comparison cD rg VDA.m Effect Size*
Optimal x Fam-dep 0.968 0.967 0.984 Large
Optimal x Fam-ind 0.970 0.971 0.985 Large

Optimal x HBD 0.962 0.962 0.981 Large
Optimal x HBR 0.966 0.966 0.983 Large
Optimal x Random 1.000 1.000 1.000 Large
Optimal x NewOIld 1.000 1.000 1.000 Large
Optimal x RealOrd 1.000 1.000 1.000 Large

Fam-dep x Fam-ind 0.110 0.110 0.555 Negligible
Fam-dep x HBD 0.188 0.188 0.594 Small

Fam-dep x HBR 0.236 0.237 0.618 Small
Fam-dep x Random 0.846 0.847 0.923 Large
Fam-dep x NewOIld 0.716 0.716 0.858 Large
Fam-dep x RealOrd 0.896 0.897 0.948 Large

Fam-ind x HBD 0.100 0.101 0.550 Negligible

Fam-ind x HBR 0.158 0.158 0.579 Small
Fam-ind x Random 0.850 0.851 0.925 Large
Fam-ind x NewOId 0.708 0.709 0.854 Large
Fam-ind x RealOrd 0.906 0.906 0.953 Large

HBD x HBR 0.064 0.064 0.532 Negligible

HBD x Random 0.802 0.802 0.901 Large

HBD x NewOld 0.660 0.659 0.830 Large

HBD x RealOrd 0.876 0.876 0.938 Large

HBR x Random 0.744 0.745 0.872 Large

HBR x NewOld 0.608 0.609 0.804 Large

HBR x RealOrd 0.834 0.835 0.917 Large

Random x NewOId 0.008 0.008 0.504 Negligible
Random x RealOrd 0.442 0.443 0.721 Large

NewOld x RealOrd 0.352 0.352 0.676

CD: ranges from -1 to 1, with 0 indicating stochastic equality, and 1 indicating that the first group dominates the second.

rg: ranges from -1 to 1, depending on sample size, with 0 indicating no effect, and a positive result indicating that values in the
first group are greater than in the second.

VD.A: ranges from 0 to 1, with 0.5 indicating stochastic equality, and 1 indicating that the first group dominates the second.

*VD.A: Vargha and Delaney A measure (Negligible, <=0.55 | Small, >= 0.56 | , >=0.64 | Large, >= 0.71).

70

Answer to RQ1

The proposed prioritization heuristics were shown to be highly effective, achieving APFD

values that are not so far from those achieved by an optimal ordering. One of the
proposed heuristics (Fam-dep) is statistically significantly better than the two state-of-
the-art approaches investigated (HBD and HBR), although it was by a small effect size.
The two proposed heuristics are significantly better than the two approaches currently
in use in the company's context (the test management tool suggestion and the tester’s

own choice), with a large effect size.

5.8.2 RQ2: Efficiency

To answer RQ2, we analyzed the total prioritization time required by the proposed ap-
proaches. Similarly to what was done for answering RQ1, we start with the visual inspection of
the box plots displayed in Figure 16. For this metric, however, the lower the value, the better.

Given the high prioritization times required by HBD (median is 132.90), in Figure 16
we cannot really appreciate the results produced by the other approaches, thus we produced

another set of boxplots without including the HBD approach (Figure 17).

Figure 16 — Box-plot of Prioritization Time Results for all Heuristics

HBD l—_) ° °

=
S HBR |
o
& Fam—d }

am-de
< p

Fam-ind I

0 1000 2000 3000

Prioritization Time (sec)

Source: Created by the author

In Figure 17 we can observe that HBR is very efficient, with a median prioritization time
of 0.0023 milliseconds. This happens because HBR produces its prioritized test suite simply
by shuffling the list of test cases.

When we consider the proposed heuristics, we can see that both approaches had very

71

similar performance, with the median time of family-independent (0.17) being only slightly

better than that of the family-dependent heuristic (0.20) (Figure 17).

Figure 17 — Box-plot of Prioritization Time Results for Proposed Heuristics and HBR

HBR |

0.0 0.2 0.4 0.6 0.8
Prioritization Time (sec)

Approach

Source: Created by the author

We then proceeded with the statistical analysis of the data. Given that our data was not
normally distributed, we performed again the Kruskal-Wallis rank sum test. For RQ2 we assess,
at a significance level of 5%, the null hypothesis that the differences in the total prioritization
time for the proposed heuristics are not statistically significant.

The observed differences in total prioritization time were statistically significant with
(p—value < 2.2e — 16). As stated before, a significant Kruskal-Wallis rank sum test only
indicates that at least one of the TCP heuristics has statistical dominance over the others,
without identifying which pairs of approaches are different. Because of that, we performed
pairwise comparisons to determine which TCP approaches are different. The results are shown

in the column Group in Table 4.

Table 4 — RQ2: Pairwise Comparisons

Approach Med SD Group

HBD 132.90 509.64 (a)
Fam-dep 0.20 0.16 (b)
Fam-ind 0.17 0.16 (b)

(c)

HBR 0.00 0.00 c

Med is the Prioritization time median, SD is the standard deviation, and Group displays the result for the
pairwise comparisons after the Kruskal-Wallis test.

For interpreting Table 4, recall that approaches with different letters are significantly dif-

ferent, whereas the difference between the approaches with the same letter is not statistically

72

significant. For this RQ, the approach that yields the worst performance is assigned to the
group (a).

Analyzing the results in Table 4, we can see that HBD (a) is different from (worst than)
Family-dependent (b), which in turn is tied with Family-independent (b), meaning that no
statistical difference can be observed between the proposed approaches with respect to prior-

itization time. HBR is isolated in group (c) with the best prioritization time.

Table 5 — RQ2: VD.A Effect Size

Comparison cD rg VDA.m Effect Size

Fam-ind x Fam-dep 0.006 0.007 0.503 Negligible
Fam-ind x HBD -0.830 -0.830 0.915 Large
Fam-ind x HBR 1.000 1.000 1.000 Large
Fam-dep x HBD -0.823 -0.823 0.912 Large
Fam-dep x HBR 1.000 1.000 1.000 Large

HBD x HBR 1.000 1.000 1.000 Large

CD: ranges from -1 to 1, with 0 indicating stochastic equality, and 1 indicating that the first group dominates the second.

rg: ranges from -1 to 1, depending on sample size, with 0 indicating no effect, and a positive result indicating that values in the
first group are greater than in the second.

VD.A: ranges from 0 to 1, with 0.5 indicating stochastic equality, and 1 indicating that the first group dominates the second.

*VD.A: Vargha and Delaney A measure (Negligible, <=0.55 | Small, >= 0.56 | , >=0.64 | Large, >= 0.71).

We also applied the Vargha and Delaney’s A (VD.A) measure of effect size to comple-
ment the Kruskal-Wallis test result. The VD.A results can be observed in Table 5. The main
observation is that the effect size of the pairwise comparison for the proposed approaches is

negligible.

Answer to RQ2

The proposed prioritization heuristics are highly efficient, being able to complete the
prioritization task in less than 1 second (for an average test suite with ~ 1500 test
cases). HBR is very efficient given that its prioritized test suite is produced simply by
shuffling the list of test cases. Such a strategy, however, trades effectiveness for efficiency.
The version HBD was outperformed by our proposed strategies with a large effect size.
Despite the different number of test results processed by the proposed heuristics, no
statistically significant differences were observed. This happens because, thanks to the
infrastructure used for storing the test results, the query time is virtually the same

regardless of the number of results returned.

73

5.9 CONCLUDING REMARKS

In this chapter, we described the experimental study that evaluated the effectiveness and
efficiency of the proposed heuristics, and we discussed the results of our experiment. In terms of
effectiveness, the proposed prioritization heuristics were shown to be highly effective, achieving
APFD values that are not so far from those achieved by an optimal ordering. One of the
proposed heuristics (Fam-dep) is significantly better than the two state-of-the-art approaches
investigated. On top of that, the two proposed heuristics are significantly better than the two
currently used approaches in the company’s context. With respect to efficiency, the proposed
prioritization heuristics are highly efficient, being able to complete the prioritization task in

less than 1 second (for an average test suite with ~ 1500 test cases).

74

6 CONCLUSION AND FUTURE WORK

In this work, we introduced two history-based prioritization heuristics and evaluated them
in the context of manual testing in a real industrial setting. We compared our proposed ap-
proaches against alternative prioritization strategies, including a state-of-the-art history-based
approach, an optimal prioritization, the real ordering followed by the testers, the ordering sug-
gested by the test management tool, and a random ordering. For our evaluation, we collected
historical test execution information from 35 products, spanning over seven years of historical

information, accounting for a total of 3,196 unique test cases and 5,859,989 test results.

MAIN FINDINGS

The results of our experiments using historical test execution data from real subjects and
with real faults support the adoption of our approach. They showed that the effectiveness
of the proposed heuristics is not far from a theoretical optimal prioritization and that they
are significantly better than alternative orderings of the test suite, including state-of-the-art
approaches, the order suggested by the test management tool, and the execution order followed
by the testers during the real execution of the test suites evaluated as part of our study. With
respect to efficiency, our proposed approaches yield similar results, and they are both better

(faster) than one of the state-of-the-art history-based competitors.

IMPLICATIONS

The results of our experiments provide actionable information to the test managers of the
company where we conducted our studies: the order followed by the testers in real life achieved
the worst results, and even the order suggested by the test management tool is only as good
as a random prioritization. Adopting our proposed approach could be the first step towards

the goal of improving the company’s testing effectiveness.

75

FUTURE WORK

As part of our future work, we plan to conduct additional experiments to assess the effec-
tiveness and efficiency of our proposed approach when compared with existing history-based
prioritization strategies — in addition to the state-of-the-art approach investigated in this
work. It was out of the scope of this work to consider dependencies between test cases (e.g.,
test cases that should be run before/after another test case because of setup reuse), but we

plan to investigate such dependencies as part of our future work.

76

REFERENCES

ANDERSON, T. W.; DARLING, D. A. Asymptotic theory of certain" goodness of fit" criteria
based on stochastic processes. The annals of mathematical statistics, JSTOR, p. 193-212,
1952.

BAJAJ, A.; SANGWAN, O. P. A systematic literature review of test case prioritization using
genetic algorithms. IEEE Access, |EEE, v. 7, p. 126355-126375, 2019.

BASILI, V. R. Goal question metric paradigm. Encyclopedia of software engineering, John
Weily and Sons, p. 528-532, 1994.

BERTOLINO, A.; GUERRIERO, A.; MIRANDA, B.; PIETRANTUONO, R.; RUSSO,

S. Learning-to-rank vs ranking-to-learn: Strategies for regression testing in continuous
integration. In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. [S.l.: s.n.], 2020. p. 1-12.

BERTOLINO, A.; MIRANDA, B.; PIETRANTUONO, R.; RUSSO, S. Adaptive test case
allocation, selection and generation using coverage spectrum and operational profile. |[EEE
Transactions on Software Engineering, |EEE, v. 47, n. 5, p. 881-898, 20109.

CATAL, C.; MISHRA, D. Test case prioritization: a systematic mapping study. Software
Quality Journal, Springer, v. 21, n. 3, p. 445-478, 2013.

CRUCIANI, E.; MIRANDA, B.; VERDECCHIA, R.; BERTOLINO, A. Scalable approaches for
test suite reduction. In: IEEE. 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). [S..], 2019. p. 419-429.

DIJKSTRA, E. W. et al. Notes on structured programming. [S.l.]: Technological University,
Department of Mathematics, 1970.

DO, H. Recent advances in regression testing techniques. Advances in computers, Elsevier,
v. 103, p. 53-77, 2016.

ELBAUM, S.; KALLAKURI, P.; MALISHEVSKY, A.; ROTHERMEL, G.; KANDURI,

S. Understanding the effects of changes on the cost-effectiveness of regression testing
techniques. Software testing, verification and reliability, Wiley Online Library, v. 13, n. 2, p.
65-83, 2003.

ELBAUM, S.; ROTHERMEL, G.; PENIX, J. Techniques for improving regression testing
in continuous integration development environments. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. [S.l.: s.n.],
2014. p. 235-245.

ENGSTROM, E.; RUNESON, P.; LJUNG, A. Improving regression testing transparency and
efficiency with history-based prioritization—an industrial case study. In: IEEE. 2011 Fourth
IEEE International Conference on Software Testing, Verification and Validation. [S.l.], 2011.
p. 367-376.

ENGSTROM, E.; RUNESON, P.; SKOGLUND, M. A systematic review on regression test
selection techniques. Information and Software Technology, Elsevier, v. 52, n. 1, p. 14-30,
2010.

77

FAZLALIZADEH, Y.; KHALILIAN, A.; AZGOMI, M. A.; PARSA, S. Incorporating historical
test case performance data and resource constraints into test case prioritization. In:
SPRINGER. International conference on tests and proofs. [S.|.], 2009. p. 43-57.

GRAVES, T. L.; HARROLD, M. J; KIM, J.-M.; PORTER, A.; ROTHERMEL, G. An
empirical study of regression test selection techniques. ACM Transactions on Software
Engineering and Methodology (TOSEM), ACM New York, NY, USA, v. 10, n. 2, p. 184-208,
2001.

GRECA, R.; MIRANDA, B.; GLIGORIC, M.; BERTOLINO, A. Comparing and combining
file-based selection and similarity-based prioritization towards regression test orchestration. In:
3rd ACM/IEEE International Conference on Automation of Software Test. [S.l.: s.n.], 2022.

HAAS, R.; ELSNER, D.; JUERGENS, E.; PRETSCHNER, A.; APEL, S. How can manual
testing processes be optimized? developer survey, optimization guidelines, and case studies. In:
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. Athens, Greece: ACM, 2021. p.
1281-1291.

HAGHIGHATKHAH, A.; MANTYLA, M.; OIVO, M.; KUVAJA, P. Test prioritization in
continuous integration environments. Journal of Systems and Software, Elsevier, v. 146, p.
80-98, 2018.

HAO, D.; ZHANG, L.; MEI, H. Test-case prioritization: achievements and challenges.
Frontiers of Computer Science, Springer, v. 10, n. 5, p. 769777, 2016.

HUANG, Y.-C.; PENG, K.-L.; HUANG, C.-Y. A history-based cost-cognizant test case
prioritization technique in regression testing. Journal of Systems and Software, Elsevier, v. 85,
n. 3, p. 626-637, 2012.

IEEE. leee standard for software test documentation. /EEE Std 829-1983, p. 1-48, 1983.

IEEE. leee standard for software and system test documentation. /EEE Std 829-2008, p.
1-150, 2008.

IEEE. leee standard for system, software, and hardware verification and validation -
redline. IEEE Std 1012-2016 (Revision of IEEE Std 1012-2012/ Incorporates IEEE Std
1012-2016/Cor1-2017) - Redline, p. 1-465, 2017.

JEFFREY, D.; GUPTA, N. Improving fault detection capability by selectively retaining test
cases during test suite reduction. IEEE Transactions on software Engineering, |EEE, v. 33,
n. 2, p. 108-123, 2007.

JURISTO, N.; MORENO, A. M. Basics of software engineering experimentation. [S.l.]:
Springer Science & Business Media, 2013.

KHAN, S. U. R.; LEE, S. P.; JAVAID, N.; ABDUL, W. A systematic review on test suite
reduction: Approaches, experiment's quality evaluation, and guidelines. /EEE Access, |EEE,
v. 6, p. 11816-11841, 2018.

KHATIBSYARBINI, M.; ISA, M. A.; JAWAWI, D. N.; TUMENG, R. Test case prioritization
approaches in regression testing: A systematic literature review. Information and Software
Technology, Elsevier, v. 93, p. 74-93, 2018.

78

KIM, J.-M.; PORTER, A. A history-based test prioritization technique for regression testing
in resource constrained environments. In: Proceedings of the 24th international conference
on software engineering. [S.l.: s.n.], 2002. p. 119-129.

KRUSKAL, W. H.; WALLIS, W. A. Use of ranks in one-criterion variance analysis. Journal of
the American statistical Association, Taylor & Francis, v. 47, n. 260, p. 583-621, 1952.

LIMA, L. A. d. Test case prioritization based on data reuse for black-box environments.
Master's Thesis (Master's Thesis) — Universidade Federal de Pernambuco, 2009.

MIRANDA, B.; BERTOLINO, A. Scope-aided test prioritization, selection and minimization
for software reuse. Journal of Systems and Software, Elsevier, v. 131, p. 528-549, 2017.

MIRANDA, B.; CRUCIANI, E.; VERDECCHIA, R.; BERTOLINO, A. Fast approaches to
scalable similarity-based test case prioritization. In: IEEE. 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). [S.1.], 2018. p. 222-232.

MUKHERJEE, R.; PATNAIK, K. S. A survey on different approaches for software test case
prioritization. Journal of King Saud University-Computer and Information Sciences, Elsevier,
2018.

MYERS, G. J.; SANDLER, C.; BADGETT, T. The art of software testing. [S.l.]: John Wiley
& Sons, 2011.

NAJAFI, A.; SHANG, W.; RIGBY, P. C. Improving test effectiveness using test executions
history: An industrial experience report. In: IEEE. 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). [S.1],
2019. p. 213-222.

NARDO, D. D.; ALSHAHWAN, N.; BRIAND, L.; LABICHE, Y. Coverage-based regression
test case selection, minimization and prioritization: A case study on an industrial system.
Software Testing, Verification and Reliability, Wiley Online Library, v. 25, n. 4, p. 371-396,
2015.

NOOR, T. B.; HEMMATI, H. A similarity-based approach for test case prioritization using
historical failure data. In: IEEE. 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE). [S.1.], 2015. p. 58-68.

ORSO, A.; SHI, N.; HARROLD, M. J. Scaling regression testing to large software systems.
ACM SIGSOFT Software Engineering Notes, ACM New York, NY, USA, v. 29, n. 6, p.
241-251, 2004.

RIOS, E.; MOREIRA, T. Teste de software. [S.|.]: Alta Books Editora, 2006.

ROTHERMEL, G.; HARROLD, M. J. A safe, efficient algorithm for regression test selection.
In: IEEE. 1993 Conference on Software Maintenance. [S.l.], 1993. p. 358-367.

ROTHERMEL, G.; HARROLD, M. J. Analyzing regression test selection techniques. IEEE
Transactions on software engineering, |EEE, v. 22, n. 8, p. 529-551, 1996.

ROTHERMEL, G.; UNTCH, R. H.; CHU, C.; HARROLD, M. J. Test case prioritization:
An empirical study. In: IEEE. Proceedings IEEE International Conference on Software
Maintenance-1999 (ICSM'99). Software Maintenance for Business Change'(Cat. No.
99CB36360). [S.1.], 1999. p. 179-188.

79

SIQUEIRA, V.; MIRANDA, B. Investigating the adoption of history-based prioritization in
the context of manual testing in a real industrial setting. In: IEEE. 2022 48th Euromicro
Conference Series on Software Engineering and Advanced Applications (SEAA). [S.1.], 2022.

SIQUEIRA, V.; MIRANDA, B. Supplementary material: Investigating the Adoption of
History-based Prioritization in the Context of Manual Testing in a Real Industrial Setting.
2022. <https://github.com/HBPrio/mscdis2022>. Accessed: 2022-04-29.

SRIKANTH, H.; COHEN, M. B.; QU, X. Reducing field failures in system configurable
software: Cost-based prioritization. In: IEEE. 2009 20th International Symposium on Software
Reliability Engineering. [S.l.], 2009. p. 61-70.

VARGHA, A.; DELANEY, H. D. A critique and improvement of the cIl common language
effect size statistics of mcgraw and wong. Journal of Educational and Behavioral Statistics,
Sage Publications Sage CA: Los Angeles, CA, v. 25, n. 2, p. 101-132, 2000.

WOHLIN, C.; RUNESON, P.; HOST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLEN, A.
Experimentation in software engineering. [S.l.]: Springer Science & Business Media, 2012.

YOO, S.; HARMAN, M. Regression testing minimization, selection and prioritization: a
survey. Software testing, verification and reliability, Wiley Online Library, v. 22, n. 2, p.
67-120, 2012.

https://github.com/HBPrio/mscdis2022

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Context
	Dissertation Organization

	Background
	Software testing
	Test Levels
	Component Testing
	Integration Testing
	System Testing
	Acceptance Testing

	Test Types
	Functional Testing
	Non-Functional Testing
	Structural Testing

	Testing Techniques
	Black-Box
	White-Box

	Regression Testing
	Regression Testing Techniques
	Test Suite Minimization
	Test Case Selection
	Test Case Prioritization

	Manual Testing
	TTC Concepts and Test Artefacts
	Testing Artifacts
	Test Case Details
	Change Request Details

	Concluding Remarks

	Related Work
	Regression testing
	History-based Prioritization
	Manual Testing Process
	Concluding Remarks

	Our Approach
	Contextualization
	Problem
	Solution
	Heuristics
	Concluding Remarks

	Evaluation
	Study Plan
	Goal Definition
	Global Goal
	Measurement Goal
	Study Goal
	Questions
	Metrics

	Planning
	Hypotheses Definition
	Treatment
	Control Object
	Experimental Object
	Independent Variables
	Dependent Variables
	Trials Design

	Preparation
	Analysis
	Threats to validity
	Execution
	Results
	RQ1: Effectiveness
	RQ2: Efficiency

	Concluding Remarks

	Conclusion and Future Work
	References

