
UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIAS DA COMPUTAÇÃO

Gabriel Amancio da Silva

COMO GARANTIR QUE UM CLUSTER KUBERNETES POSSUI

COBERTURA DE FALHAS CONTINUAMENTE NA CLOUD? O USO

DE CHAOS ENGINEERING NA ESTEIRA DE ENTREGA CONTÍNUA

RECIFE

2022

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Gabriel Amancio da Silva

COMO GARANTIR QUE UM CLUSTER KUBERNETES POSSUI

COBERTURA DE FALHAS CONTINUAMENTE NA CLOUD? O USO

DE CHAOS ENGINEERING NA ESTEIRA DE ENTREGA CONTÍNUA

RECIFE

2022

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Silva, Gabriel Amancio da.
 Como garantir que um cluster Kubernetes possui cobertura de falhas
continuamente na Cloud? : O uso de Chaos Engineering na esteira de entrega
contínua / Gabriel Amancio da Silva. - Recife, 2022.
 46 : il., tab.

 Orientador(a): Vinicius Cardoso Garcia
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Ciências da Computação - Bacharelado,
2022.

 1. DevOps. 2. Pipeline de delivery. 3. Chaos Engineering. I. Garcia,
Vinicius Cardoso . (Orientação). II. Título.

 000 CDD (22.ed.)

AGRADECIMENTOS

Agradeço a minha família, que foi minha base em toda a minha trajetória e principalmente a

minha mãe, eu vi seus sacrifícios de perto para me fazer chegar até aqui e jamais esquecerei

disso. Tudo que faço é para compensar tudo isso. Amo você mãe, amo vocês todos.

Também agradeço a minha companheira que não me permitiu desanimar e me deu forças

quando eu não tinha. Te amo Mayhhara.

E por fim, agradeço aos meus amigos que tornaram toda essa caminhada mais leve, amo

vocês!

5

RESUMO

Como criar um software resiliente é uma pergunta chave no mundo de desenvolvimento atual.

É cada vez mais comum casos de vazamento de dados, sistemas fora do ar por horas, erros e

falhas inesperadas. Uma das possíveis soluções a serem exploradas na prevenção desses

problemas é o Chaos Engineering, área que tem crescido nos últimos anos e que possui o

claro objetivo de melhorar a qualidade e resiliência dos serviços ao qual é integrado. Com

uma metodologia focada na criação de hipóteses e experimentos para validar as mesmas, ele

funciona como uma ótima ferramenta de design preventivo de software. No presente trabalho,

foram realizados experimentos fazendo uso do Litmus Chaos, plataforma que fornece

experimentos voltados para o Chaos Engineering, com o objetivo de colocar à prova o

ambiente no qual a aplicação teste estava sendo disponibilizada. Os resultados apresentados

mostram que a abordagem de uso do Chaos Engineering na esteira de entrega contínua deve

ser levada em conta.

Palavras-chave: DevOps, Chaos Engineering, Pipeline de delivery

6

ABSTRACT

How to build resilient software is a key question in today's development world. It is
increasingly common cases of data leakage, systems down for hours, bugs and unexpected
crashes. One of the possible solutions to be explored in the prevention of these problems is
Chaos Engineering, an area that has grown in recent years and which has the clear objective
of improving the quality and resilience of the services to which it is integrated. With a
methodology focused on creating hypotheses and experiments to validate them, it works as a
great preventive software design tool. In this work, experiments were made using Litmus
Chaos, a platform that provides experiments aimed at Chaos Engineering, in order to test the
environment in which the test application was available. The results presented show that the
approach of using Chaos Engineering in the Entrega Contínua approach should be taken into
consideration.

Keywords: DevOps, Chaos Engineering, Delivery Pipeline

7

Sumário
1. Introdução 13

1.1. Motivação 14

1.2. Objetivos 15

1.3. Estrutura 15

2. Fundamentação Teórica 16

2.1. Virtualização 16

2.1.1. Docker 17

2.1.2. Kubernetes 18

2.2. DevOps 18

2.2.1. Integração Contínua 20

2.2.2. Entrega Contínua 21

2.2.3. Implantação Contínua 21

2.3. SRE: Site Reliability Engineering 22

2.3.1. SRE vs DevOps 22

2.4. Chaos Engineering 22

2.5. Four Golden Signals 23

2.6. Sumário do caítulo 24

3 Implementação 25

3.1 Tecnologias Adotadas 25

3.1.1. FastAPI 25

3.1.2. AWS 28

3.1.3. Github Action 29

3.1.4. Litmus Chaos 31

3.1.5. Estrutura da pipeline 32

3.2. Sumário do capítulo 33

4 Experimentos e Análise 34

4.1 Experimentos 34

4.1.1 CHAOS-LATENCY 34

4.1.2 CHAOS-SATURATION 35

4.1.3 CHAOS-ERROR 36

4.1.4 CHAOS-TRAFFIC 38

4.2 Análise 39

8

5 Conclusões e Trabalhos Futuros 41

5.1 Contribuições 41

5.2 Problemáticas 41

5.3 Trabalhos Futuros 42

6 Bibliografia 43

9

Lista de Figuras

Figura 1. Comparação entre Máquina virtual e Container [43] ….. 17

Figura 2. Estrutura de funcionamento de Container com Docker [44] 17

Figura 3. Pipeline padrão de DevOps [22] .. 19

Figura 4. Estrutura final dos arquivos que compõem a api ……….. ……………………… 26

Figura 5. Arquitetura Kubernetes do projeto ……………………………………………… 27

Figura 6. Integração Kubernetes com recursos AWS do projeto …. ……………………… 28

Figura 7. Estrutura de funcionamento do CI/CD no Github Actions ……………………… 30

Figura 8. Estrutura da pipeline criada para o projeto ……………………………………… 32

Figura 9. Gráfico retirado da ferramenta Locust com dados do tempo de resposta ….……. 39

10

LISTA DE TABELAS

Tabela 1. Dados do experimento de Chaos Latency ………………………………….… 35

Tabela 2. Dados do experimento de Chaos Saturation .………………………………… 36

Tabela 3. Dados do experimento de Chaos Error .……………………………………… 38

11

TABELA DE SIGLAS

Sigla Significado Página

LIB Library 30

API Application Programming Interface 29,30

AWS Amazon Web Services 29

TI Tecnologia da Informação 21

CE Chaos Engineering 28

12

1. Introdução

Atualmente, o ambiente cloud tem dominado o mercado de TI, causando um grande

movimento de migração das aplicações para o mesmo. A cloud tem se tornado também a

plataforma principal para novos serviços da era digital, sendo esperado que até 2023 40% de

todos os workloads estejam sendo disponibilizados nela [1]. Entretanto, boa parte das

aplicações on-premise não estão prontas para explorar os benefícios que a cloud promete

oferecer como, por exemplo, escalabilidade e alta disponibilidade [25]. Por questões

arquiteturais e de alinhamento estratégico com o negócio, realizar essa migração - ou

evolução, adaptação - não é algo tão simples de ser feito. Uma das alternativas para essa

adaptação é o uso de microsserviços [31], que facilita os ganhos com a cloud pelo fato de a

escalabilidade estar diretamente ligada ao seu modelo arquitetural [25].

Entretanto, apenas fazer o uso de microsserviços não irá garantir com que a aplicação

esteja extraindo a melhor performance possível na cloud, uma das maneiras de buscar garantir

isso é fazendo o uso de virtualização [32], técnica que busca fazer a criação de uma imagem

virtual ou “versão abstrata” de alguma aplicação, seja ela um servidor, sistema operacional e

afins, para que este seja utilizado em diversas máquinas ao mesmo tempo, sendo o seu

principal objetivo gerenciar a demanda de recursos para que a computação tradicional seja

mais escalável [33]. Uma das principais maneiras de se atingir a virtualização é fazendo o uso

de contêineres, que é uma técnica de virtualização em que a imagem faz uso direto do sistema

operacional da máquina que está rodando a aplicação.

Com a aplicação funcionando em microsserviços e fazendo uso de contêineres surge

um novo desafio, lidar com inúmeros contêineres que estão fazendo uso da infraestrutura

cloud. Dada essa necessidade, por diversas vezes se fazem uso de orquestradores de

contêineres, buscando gerenciar da melhor maneira os recursos demandados por esses

microsserviços, porém, como dito anteriormente, essa adaptação arquitetural não é algo tão

trivial, assim como as validações e garantias necessárias para um bom uso dos orquestradores

apresenta diversos desafios [26]. É importante lembrar que, quando se fala de gerenciar

recursos na cloud, cada recurso tem um custo e esse custo é esperado que aumente cada vez

mais, dado que o investimento das empresas vem crescendo no setor, sendo esperado atingir

um aumento de 28% gasto na cloud neste ano [2]. Sendo assim, um recurso mal gerenciado

impacta diretamente em uma perda considerável de dinheiro.

13

Nos últimos anos, dentre os orquestradores de contêineres um se destacou e vem

tomando grande parte do mercado, o Kubernetes [27]. Ele que, dentre as grandes empresas,

possui uma margem de uso no ambiente de produção de 59% [28]. Mesmo sendo

open-source, o custo gerado pelo uso do Kubernetes para uma empresa é considerável quando

se trata da infraestrutura necessária para utilizá-lo [29]. Sendo assim, o impacto causado pela

falta de validação em um processo no qual a aplicação faz uso de um cluster Kubernetes pode

ser grande não apenas na experiência do usuário da aplicação, mas também no financeiro

desta empresa. Dito isso, um questionamento válido é como validar a garantia neste processo?

Essa pergunta guia esse projeto, que busca responder com o uso de Chaos Engineering [29] de

maneira que seu uso automatizado, antes da disponibilização no ambiente de produção, possa

evitar impactos negativos não previstos [18].

1.1. Motivação

Atualmente, resiliência tem sido a palavra chave quando se fala de aplicações na

cloud. Não criar o projeto pensando em uma arquitetura pronta para lidar com o inesperado é

sinônimo de impacto financeiro negativo por problemas nos serviços atingidos. E quando se

fala em cloud, basta um provedor ter problemas e inúmeros serviços saem do ar, como

ocorreu diversas vezes com a AWS em 2021 [3].

Uma das possíveis soluções a serem exploradas na prevenção desses problemas é o

Chaos Engineering, área que tem crescido nos últimos anos e que possui o claro objetivo de

melhorar a qualidade e resiliência dos serviços ao qual é integrado. Com uma metodologia

focada na criação de hipóteses e experimentos para validar as mesmas, ele funciona como

uma ótima ferramenta de design preventivo de software, onde agrega no controle de qualidade

de toda uma infraestrutura a ser validado pelos seus experimentos, possibilitando a criação de

planos de ação a partir das comprovações, ou não, de hipóteses que foram testadas.

Por exemplo, como posso garantir que o cluster está preparado para uma troca de pods

por sobrecarga de acessos? Com essa pergunta criamos a seguinte hipótese: Dado que o

número de acessos no serviço aumente exponencialmente, o balanceador de carga deverá

redistribuir os acessos, fazendo com que o serviço não fique fora do ar. A partir disso, é criado

14

um experimento que força essa situação, e que de acordo com o seu resultado, caso a hipótese

não seja confirmada mostra que o sistema está com potenciais problemas que devem ser

resolvidos antes de ir para um ambiente de produção. Sendo assim, o problema a ser

explorado neste trabalho será:

Como o uso de Chaos Engineering pode colaborar na garantia sob a cobertura de

falhas em um cluster Kubernetes ?

1.2. Objetivos

Sendo assim, podemos definir os seguintes objetivos:

- Definir indicadores relevantes para medir eficiência do uso do Chaos Engineering na

esteira de entrega contínua

- Avaliar utilização do Chaos Engineering em projeto piloto com indicadores definidos

1.3. Estrutura

O projeto está construído essencialmente nos próximos 5 capítulos, sendo eles:

- Fundamentação teórica: Possui o objetivo de construir a base de conhecimento

necessária para se compreender o projeto e suas referências, trazendo os principais

tópicos que guiam o trabalho e destrinchando-os.

- Implementação: Busca apresentar a construção do projeto, o que foi utilizado e o

porquê, possibilitando ao leitor compreender as decisões tomadas acerca do trabalho.

- Experimentos: Capítulo que foca no entendimento da criação e realização dos

experimentos, mostrando, com a ajuda da metodologia GQM [34,35], o que foi

definido, o porquê, o que foi coletado e entendendo quais indícios os resultados

apresentados nos fornece.

- Conclusão: Seção que busca sintetizar tudo o que foi construído e fornecer uma

análise macro do que pode ser extraído do resultado dos experimentos, além de

mencionar as problemáticas reconhecidas no trabalho em os possíveis trabalhos

futuros.

- Referências: Seção final que apresenta todas as referências utilizadas para embasar o

projeto teoricamente.
15

2. Fundamentação Teórica

Neste capítulo serão apresentados e discutidos os conceitos teóricos que embasam o

presente trabalho.

2.1. Virtualização

Virtualização é uma prática altamente utilizada pelas empresas, e que ganhou ainda

mais força com o crescimento da computação em nuvem. Ela consiste em promover a criação

de uma imagem virtual de uma aplicação, fazendo com que essa imagem possa ser usada em

diferentes máquinas e ambientes com a mesma consistência. Garantindo assim que o software

tenha a garantia de se comportar igual independentemente de onde seja disponibilizado [32,

42].

Dentro da virtualização, temos diferentes maneiras para a criação e gerenciamento

dessas imagens criadas. Uma delas é o uso de um Maquinas virtuais, que é uma representação

de um computador real, porém em software. Com isso, é possível simular um novo

dispositivo na sua própria máquina com o seu próprio sistema operacional, mas que não irá se

comunicar com o hardware. Para existir a comunicação com o hardware, existe uma camada

chamada Hypervisor, que é responsável por fazer o gerenciamento de recursos como podemos

ver na Figura 1 [42].

Uma outra maneira de realizar a virtualização é por meio de containers. Diferente da

máquina virtual que roda o seu próprio sistema operacional, o container simula um sistema

operacional e faz uso de tudo que for possível da máquina hospedeira, tendo um melhor

aproveitamento de recursos e tornando todo o processo mais leve, como está sendo mostrado

na Figura 1 [42].

16

Figura 1 [43] compara a virtualização com Máquina virtual e Container

Fonte: [43]

2.1.1. Docker

Ao falar sobre Container, é quase que inevitável falar sobre Docker [43], ferramenta

voltada para o desenvolvimento, implantação e disponibilização remota altamente usada em

ambientes cloud [42]. Docker permite a criação de Docker images, que são as instâncias do

container o qual o Docker estará rodando. Essas imagens possuem o código das aplicações, o

runtime binário do próprio docker e os arquivos de configuração. A partir dessas imagens, o

container é criado e implantado dentro do Docker, que funciona sob a camada do sistema

operacional da máquina do hospedeiro, como é mostrado na Figura 2 [43, 42].
Figura 2 mostra a estrutura de funcionamento de containers com Docker

Fonte: [43, 42]

17

2.1.2. Kubernetes

No ambiente de produção, é comum se ter diversos containers funcionando, inclusive

para uma mesma aplicação, tornando o gerenciamento complexo mesmo com a utilização do

Docker. Além do gerenciamento se tornar complicado, existe também o fator escalabilidade

que é buscado mas não é fácil de ser atingido apenas com o uso simples de containers. Para

isso, são utilizadas ferramentas de orquestração de containers, sendo a mais popular chamada

de Kubernetes [27, 28].

Kubernetes é uma aplicação open source, criada com o objetivo de promover o

gerenciamento de aplicações conteinerizadas, além de lidar também com os serviços ao redor

dos containers, como a própria comunicação entre eles [45].

Dentro da estrutura do Kubernetes existem uma vasta quantidade de componentes, o

componente que será mencionado e focado nesse projeto é chamado de Pod. Pod é uma

unidade que possui a capacidade de agrupar contêineres, sendo este a unidade mais atômica

do Kubernetes. O Pod é responsável por compartilhar recursos entre os contêineres, como

memṕoria, rede e informações sobre a execução dos contêineres contidos nele [27].

O design do Kubernetes permite a automação da implantação das aplicações, além de

configurações de escalabilidade nativos, fazendo com que possa ser configurado de acordo

com o acesso dos usuários, por exemplo, evitando que com o aumento do acesso à sua

aplicação, ela não lide com a demanda. Com essa vasta parametrização, Kubernetes torna

mais prático o processo de gerenciar o ambiente de produção, favorecendo assim a qualidade

de a garantia dos serviços conteinerizados que estão sendo disponibilizados [45].

2.2. DevOps

Quando falamos sobre DevOps, podemos afirmar que se trata de um conjunto de

práticas destinadas a reduzir o período entre uma alteração em um sistema e a mudança a ser

colocada em produção, garantindo alta qualidade [9].

O surgimento do DevOps veio em conjunto com as metodologias ágeis, como o Scrum

[6], do qual se utilizou bastante como base na sua criação. O DevOps vem pregar a

18

colaboração entre times, além da ênfase em automatização e do uso de ferramentas que

auxiliam a comunicação dinâmica entre times da área de operações e da área de

desenvolvimento.

Humble e Molesky [10], buscaram definir 4 princípios para o DevOps:

● Automação: DevOps se baseia em uma automação completa de build, deploy e testes

buscando alcançar tempos curtos em suas entregas, provendo assim uma atualização

constante e expressa que também possibilita o feedback constante dos usuários finais.

● Cultura: Para que o DevOps possa ser realmente implementado, é necessária uma

mudança cultural para que a corresponsabilidade seja absorvida pelo time para que

isso possibilite uma real entrega de software com alta qualidade. Com isso, a

responsabilidade para que tudo funcione é de todos, todos são responsáveis pelo

código escrito.

● Métricas: Com a entrega constante, o acompanhamento contínuo também vem em

conjunto, e isso possibilita a criação de métricas e objetivos, visando a melhoria

contínua do software baseado em dados que ele mesmo fornece e que, graças ao

monitoramento contínuo, pode ser coletado e analisado para melhorias assertivas.

● Compartilhamento: O compartilhamento deve ser algo geral e em todos os níveis.

Desde compartilhar conhecimento, sobre features por exemplo, ou até mesmo

compartilhar ferramentas e descobertas em potencial. Isso potencializa a integração da

equipe, fortifica a cultura e incentiva a colaboração entre as áreas.
A Figura 3 [22] representa um pipeline padrão de DevOps.

Fonte: [22]

Na fig. 3 é mostrado e ciclo infinito utilizado no devops, este ciclo é composto por 8 etapas,

sendo elas:

- Plan: Fase de planejamento de um projeto
19

- Code: Fase de codificação do projeto

- Built: Fase de construção da versão codificada do projeto

- Test: Fase de teste e validação do projeto

- Release: Fase de controle para o lançamento do projeto em diversos ambientes

- Deploy: Fase de implantação do projeto no ambiente principal

- Operate: Fase de entrega do projeto implantado ao cliente

- Monitor: Fase de monitoramento e observação do projeto, para análise de erros e

percepção de potenciais melhorias, para assim voltar ao ponto de planejamento

Compreendendo este ciclo que resume o que prega a cultura DevOps, podemos

associar DevOps em uma área de pesquisa conhecida como Engenharia de Software Contínua,

Área esta que foca no desenvolvimento, implantação e obtenção de feedback de maneira

rápida e eficiente do software do cliente [11, 12].

2.2.1. Integração Contínua

Integração Contínua consiste em uma prática de desenvolvimento bem estabelecida dentro da

indústria de desenvolvimento de software, onde os membros de uma equipe realizam as

integrações e junções constantes de todo trabalho desenvolvido, sendo isso feito até mais de

uma vez em um único dia. Essa prática permite que as empresas tenham releases bem mais

frequentes e curtos, melhorando assim a produtividade e também a qualidade do que foi

produzido.

Fitzgerald e Stol definem as atividades de Integração Contínua da seguinte maneira:
Um processo normalmente disparado automaticamente que inclui etapas conectadas

entre si, como compilar código, executar testes de unidade e aceitação, validar a cobertura de

código, verificar a conformidade com o padrão de código e criar pacotes de implantação.

Embora alguma forma de automação seja comum, a frequência também é relevante, pois deve

ser regular o suficiente para garantir um feedback rápido aos desenvolvedores. Finalmente,

qualquer falha de integração contínua também é um evento importante que pode ter uma série

de cerimônias e artefatos altamente visíveis para ajudar a garantir que os problemas que levam

a falhas de integração sejam resolvidos o mais rápido possível pelos responsáveis. [12]

20

Além disso, essa etapa agrega também o processo de criação da nova versão do projeto e teste

das aplicações de forma automatizada, tornando essa prática ainda mais completa. [13].

2.2.2. Entrega Contínua

Entrega Contínua foca na garantia de que uma aplicação está sempre preparada para ir ao

ambiente de produção após passar por diversas checagens automáticas de qualidade e testes.

A Entrega Contínua implementa um conjunto de práticas, por exemplo, a Integração

Contínua, citado anteriormente, e a implementação de automação para entregar software

automaticamente para um ambiente de produção. Essa prática promove uma série de

vantagens, tais qual diminuição do risco de um deploy, redução de custos e obtenção de

feedback dos usuários com maior frequência e rapidez [14].

2.2.3. Implantação Contínua

Implantação Contínua é uma prática que foca em garantir que cada pequena alteração passe

pela pipeline definida e termine no ambiente de produção de maneira automatizada. Quando

se fala de Entrega Contínua e Implantação Contínua, no meio acadêmico não se tem um

consenso entre suas diferenças e definições [12], porém, o uso do Implantação Contínua

implica diretamente que o Entrega Contínua também está sendo usado, mas o caminho

contrário não é verdade [15].

A Implantação Contínua e o Entrega Contínua possuem uma diferença principal e

reconhecida, que é o momento da entrega do software. Enquanto na Entrega Contínua a

entrega é constante, fazendo com que o software sempre esteja em um estado de entrega

depois de qualquer mudança ter sido feita, entretanto, a entrega final não é automatizada, é

uma entrega manual como uma decisão com viés de negócio. Porém, na Implantação

Contínua esse processo é automatizado.

21

2.3. SRE: Site Reliability Engineering

Segundo Benjamin Treynor Sloss [16], SRE é o que acontece quando você pede para um

Engenheiro de Software elaborar o design de um time de operações. Com o crescimento da

cultura DevOps, não só a área de Dev precisou se readaptar, mas também a parte de Ops.

Anteriormente, com as divisões das áreas, a comunicação entre um Desenvolvedor e um

SysAdmin era rara, além de complicada. Com o incentivo para que as áreas cada vez mais se

aproximassem, foi natural que surgisse uma área de interseção entre Dev e Ops, alguém que

entendesse ambos os lados para que promovesse uma maior colaboração.

Tendo isso em mente, o Google iniciou a criação de seus times de SRE com o pensamento

mencionado no início, causando uma mudança significativa nas estruturas comuns usadas

anteriormente. Com isso, ao invés de um time inteiro de SysAdmins, os times de SRE

começaram a ser formados também por Engenheiros de Software.

2.3.1. SRE vs DevOps

Quando falamos de SRE e DevOps, algumas confusões são criadas, principalmente por conta

do mercado de trabalho que comumente intitula vagas para a mesma função com ambos os

nomes. Entretanto, existem diferenças significativas em suas definições.

Quando falamos de DevOps, estamos falando sobre uma cultura, cultura essa proveniente do

Scrum, visando uma mudança na formação de equipes e estrutura interna de uma empresa de

Software. Enquanto SRE é focado no desenvolvimento de práticas métricas para melhorar e

implementar a colaboração incentivada pelo DevOps [17].

Em resumo, SRE vem para garantir e promover a implementação da cultura do DevOps

2.4. Chaos Engineering

Chaos Engineering é uma estratégia emergente na indústria, com o objetivo de avaliar

a resiliência de um sistema distribuído rodando experimentos nesse sistema, enquanto ele está

em produção. Esses experimentos podem identificar fraquezas que podem levar a quebra do

sistema caso seja deixada de lado [18].

22

Essa prática gira em torno de criar hipóteses e rodar experimentos ao seu redor, buscando

confirmá-la ou recusá-la. Essa hipótese se refere ao comportamento esperado do sistema, em

um cenário específico. Em um experimento, se injeta certa sobrecarga ou falhas, que são

passíveis de acontecer em situações reais, para se observar o comportamento do sistema. Essa

observação irá trazer uma nova perspectiva, além de insights sobre o estado do sistema dentro

da situação injetada, podendo assim aferir se a hipótese foi aprovada ou não.

O argumento utilizado para validar o uso de CE é que para viver em um mundo não

confiável, em que cada vez mais a complexidade dos sistemas cresce e está passível de

acontecer qualquer falha seja no próprio sistema ou na infraestrutura que ele faz uso, seria

fazer com que as falhas aconteçam de maneira controla e provocada intencionalmente, para

assim se ter resultados dessas falhas e parâmetros para se analisar e auxiliar na busca por

soluções que previnam esse tipo de acontecimento [41].

Uma grande entusiasta, e também precursora, da prática é a empresa Netflix,

responsável por criar algumas ferramentas open source conhecidas como Simian Army [18,

41], voltadas para a injeção de falhas nos ambientes da AWS. A netflix apresentou a primeira

ferramenta, chamada de Chaos Monkey, em 2010 com o objetivo de auxiliar na migração de

seus serviços de uma infraestrutura física para o ambiente cloud [42]. Com o decorrer do

tempo, o time de engenharia da Netflix expandiu ainda mais essas ferramentas lançando

também o Chaos Gorilla e o Chaos Kong, ambas ferramentas para injeção de falhas de

diferentes maneiras na AWS, e essas duas ferramentas se juntaram ao Chaos Monkey

formando o Simian Army [41].

2.5. Four Golden Signals

Quando se fala em DevOps e SRE, é inevitável falar de monitoramento. Para avaliar a

eficiência deste projeto, um dos objetivos foi a definição dos indicadores relevantes para

medir a eficiência do uso do CE, que podemos considerar a etapa de monitoramento deste

trabalho.

O time de SRE da Google define 4 métricas essenciais para um monitoramento decente [19],

e serão estas métricas usadas como indicadores para o projeto. São elas:

- Latência: O tempo que se leva para realizar uma request

- Tráfico: Acompanhamento da demanda que o projeto está tendo, e o quanto a

aplicação consegue lidar com o seu aumento
23

- Erros: A taxa de requests que falham

- Saturação: Medida que define o quão disponível está a máquina que hospeda o projeto

Esses são os 4 Golden Signals, e eles serão usados como indicadores da eficiência do CE

neste projeto. O uso dos Golden Signals proporciona um norte para as necessidades de

monitoramento de qualquer projeto, de modo que o uso deles auxilia não só na metrificação

do software enquanto monitorado, mas também na construção do monitoramento ao seu redor,

tal como definições de ferramentas, métodos de coletas dos dados e afins [40].

2.6. Sumário do capítulo

Neste capítulo foram apresentados os principais conceitos que entornam este projeto.

Tendo início pela virtualização, tecnologia que dá a base para a estrutura do ambiente em

nuvem, mencionando Docker e Kubernetes, que são as ferramentas principais neste meio [42].

Em seguida, foi discutido o tópico de DevOps, práticas essenciais para se manter a qualidade

nos ambientes de produção, trabalhando em conjunto com SRE. Além da apresentação dos 4

golden signals, que servirá de base para as métricas do projeto, guiando assim a coleta de

dados.

No Capítulo em seguida será abordado a implementação do projeto, fazendo uso de

tecnologias, ferramentas e metodologias que possuem base nas apresentadas nesta

fundamentação.

24

3. Implementação

Neste capítulo estará sendo explorado tudo que envolveu a implementação do projeto,

passando por tecnologias, ferramentas, decisões de arquitetura e escolhas pessoais.

3.1. Tecnologias adotadas

O projeto possui 3 componentes básicos, sendo eles: Api, Cloud e Pipeline.

Diferentes tecnologias foram utilizadas em cada um desses componentes, com a

intenção do melhor aproveitamento, além da praticidade para o desenvolvimento em si de

cada uma dessas etapas.

Ao falar sobre API, será abordado todo o entorno do componente, partindo de

linguagem, framework e arquitetura. Além disso, também será mostrado como a aplicação foi

implementada dentro de um cluster Kubernetes, e o design final da aplicação com os recursos

integrados entre si.

Ao falar sobre Cloud, será possível ver o design da solução kubernetes integrada com

os recursos criados no ambiente Cloud escolhido, além de explorar como foi feita a integração

e os motivos pelos quais cada componente foi escolhido.

Por fim, a Pipeline será abordada em 3 tópicos diferentes, sendo dois deles

ferramentas que foram usadas na pipeline e por último sua estrutura final, dessa maneira, será

demonstrado a motivação do uso de cada ferramenta e o conjunto final que se fez do resultado

da integração dessas ferramentas.

3.1.1. FastAPI

A API foi desenvolvida em FastAPI [8]. Tecnologia já mencionada anteriormente pela

sua praticidade no uso e curva de desenvolvimento rápida. Para o projeto, o foco foi em

desenvolver poucas rotas e com pouco processamento, como o objetivo não é testar a API em

si, e sim a resiliência do ambiente em que ela está disponibilizada, não se fazia necessário

criar algo complexo nesse componente.
25

Para este projeto, foi desenvolvida uma API que faz listas to do, que funciona como

uma lista de tarefas a qual você marca quando tiver finalizado determinada atividade. A

estrutura da api possui os seguintes componentes:

- Main: Arquivo responsável pela criação das rotas e controle central da api.

- Database: Arquivo responsável pela conexão com o banco de dados.

- Model: Arquivo responsável pela criação da estrutura de dados do to do.

- init: Arquivo python necessário para a linguagem reconhecer como um projeto.

Figura 4 mostra a estrutura final dos arquivo os quais compuseram a api

Fonte: imagem do autor

Como o objetivo deste trabalho é fazer os testes em um ambiente Kubernetes, a API

deveria estar conteinerizada para ser implantada no cluster. Dado este motivo, foi utilizado

Docker para fazer a geração da imagem. Esta imagem gerada permite que a usemos no

container de um pod dentro do cluster kubernetes no qual a aplicação irá ser disponibilizada.

Para a aplicação desenvolvida, a arquitetura Kubernetes montada teve o objetivo de

ser simplória, focando na demonstração do potencial do uso do CE em uma pipeline para

validar a arquitetura e não na complexidade e exploração do Kubernetes. A Figura 5 ilustra a

arquitetura criada para a aplicação.

26

Figura 5 ilustra arquitetura kubernetes deste projeto

Fonte: imagem do autor

Na Figura 5 conseguimos enxergar todos os componentes Kubernetes usados neste

projeto e como interagem entre si. Primeiro temos o Deployment, componente responsável

pelo gerenciamento de um grupo de contêineres e sua rede. No Deployment existe um

processo chamado Replica Set, este processo se mantém observando todo e qualquer Pod

contido nele, para que em caso de erro ou queda do pod, ele consiga recriar uma cópia o

quanto antes, para evitar com que sua queda tenha impacto no acesso a aplicação [47]. Nesta

aplicação foi definido que o número de pods que deveriam estar no ar era de apenas 1.

Na criação de um Pod só é possível acessá-lo via o IP criado para ele dentro do cluster

Kubernetes no qual ele foi disponibilizado. Para conseguir ter o acesso externo, foram

utilizados dois componentes: Service e Ingress. Como os Pods possuem um ciclo de vida

efêmeros, ou seja, eles vêm e vão constantemente, se faz necessário alguma maneira que

garanta acesso a aplicação disponibilizada pelos pods mesmo com suas idas e vindas [47]. O

IP criado para o pod não é fixo dado este ciclo de vida, com isso, o Service é a solução para

que se crie um acesso fixo aos pods, mesmo com as constantes mudanças.

Neste projeto, o objetivo era a análise a partir do uso externo ao cluster, dado que a

intenção é avaliar o usuário final usando a aplicação e a sua experiência dentro dos possíveis

problemas simulados com o CE. Por este motivo, a configuração utilizada no Service foi a de

Load Balancer, opção voltada para prover o acesso externo do cluster ao pod. Já o Ingress, tal

qual o deployment, é um mecanismo de gerenciamento e agrupamento de services, que visa

facilitar a manipulação desses recursos [47]. O seu uso teve o objetivo de simplificar a

27

associação entre o Service e um DNS (Domain Name System) atribuído a aplicação, para

facilitar os testes.

Com essa arquitetura se faz possível uma fácil integração com os recursos usados pelo

Cloud Provider usado no projeto que será abordado no tópico seguinte.

3.1.2. AWS

A AWS é o Cloud Provider mais utilizado do mercado [20], isso foi o fator principal

para sua escolha para esse projeto.

Foi utilizado o Terraform[21], que é uma ferramenta de IAC, para criar e gerenciar toda

infraestrutura necessária para o projeto na AWS, otimizando o desenvolvimento e permitindo

um maior controle de todos os recursos envolvidos. Sendo esses recursos respectivamente:

Cluster EKS, Load Balancer e DNS no Route53.

Figura 6 representa a relação dos recursos da AWS com os do Kubernetes

Fonte: imagem do autor

Na Figura 6 conseguimos observar a estrutura AWS que funciona ao redor dos

componentes Kubernetes criados para a aplicação. Todos os componentes estão implantados

dentro do cluster EKS, serviço provido pela AWS que busca facilitar a execução do

Kubernetes, por ser gerenciado pela própria AWS, sem necessidade do usuário fazer isto.

Como mencionado no tópico anterior, o Service da aplicação foi configurado para uso

do Load Balancer, pois o objetivo era o acesso externo do usuário final. Sendo assim, foi

28

criado um recurso de Load Balancer que foi conectado com o Ingress da Aplicação. Neste

Load Balancer foi associado uma regra de roteamento, para que haja a associação entre o

DNS registrado no Route53 e a url disponibilizada pelo Load Balancer para acesso externo.

Como foi dito anteriormente, o Ingress foi usado para facilitar essa associação do DNS com o

Service, permitindo assim que após a configuração, o usuário consiga atingir o pod por meio

deste DNS.

O uso do cluster EKS permitiu que houvesse uma integração de maneira simples com

a ferramenta definida para a criação de pipelines, uma vez que a configuração desta

integração é feita apenas pela configuração de uma chave de segurança.

3.1.3. Github Action

Github Action é uma ferramenta integrada ao Github [37], que permite fazer o uso de

CI/CD em seus próprios repositórios [38]. Quando se trata de CI/CD e gerir pipelines,

diversas ferramentas existem para este objetivo, uma amplamente usada é o Jenkins [39],

ferramenta open source de grande popularidade no segmento. A opção de uso do Github

Action se fez pela sua praticidade, dado que o projeto já estava no ambiente do repositório do

Github, a configuração de uma outra ferramenta necessitaria de mais tempo.

Para compreender o funcionamento do Github Action é necessário entender sua

estrutura de funcionamento que possui 2 principais estruturas:

- Steps: Steps são um conjunto de atividades com o propósito de executar alguma

função, sendo ela a execução de um script ou a configuração de algum ambiente, por

exemplo.

- Jobs: Jobs são um conjunto de Steps que deverão ser executados em paralelo ou em

uma determinada sequência, como por exemplo ter um job que faz a configuração de

um ambiente e após o término iniciar um job que realiza testes com o ambiente

configurado pelo job anterior.

Na Figura 7 é possível observar uma representação da estrutura de steps e jobs em um CI/CD

do Github Actions.

29

Figura 7 representa os componentes de um CI/CD no Github Action

Fonte: imagem do autor

O github actions provê inúmeros steps pré-prontos, criados pela comunidade que faz uso da

ferramenta. Dentro do projeto foram utilizados alguns desses steps, para otimizar o processo

de configuração, dado que, em uma pipeline é criado uma vm a qual irá executar todos os

comandos definidos. Como será necessário fazer uso de python, docker e kubernetes neste

projeto, é necessário configurar cada uma dessas ferramentas e serviços. Foram utilizados os

seguintes steps pré-prontos:

- actions/checkout@v3: Step responsável por garantir que a vm está usando o projeto a

partir da raiz da pasta no qual ele está contido.

- kodermax/kubectl-aws-eks@master: Step responsável por realizar a instalação e

configuração do kubectl, ferramenta que permite fazer o uso de comandos Kubernetes

em um cluster como o EKS.

- docker-practice/actions-setup-docker@master: Step responsável por realizar a

instalação e configuração do docker na vm.

- actions/setup-python@v2: Step responsável por realizar a instalação e configuração do

python na vm.

Além desses steps, existem outros que foram criados porém todos foram feitos a partir da

necessidade do projeto. Cada um dos Jobs será detalhado posteriormente.
30

3.1.4. Litmus Chaos

O Litmus Chaos é uma plataforma Open Source de Chaos Engineering no ambiente

Cloud. Eles proveem um hub de experimentos que facilita a implementação e incentiva a

comunidade DevOps e SRE a compartilharem os seus, promovendo organicamente um maior

número de usuários desta prática.

Além do Litmus Chaos, outras plataformas existem para o mesmo objetivo, como o

Chaos Monkey e Chaos Kong da Netflix [18], entretanto, para utilizar essas alternativas uma

configuração maior é necessária de ser realizada no ambiente, pois elas funcionam com outras

ferramentas e não sozinhas. Este foi o motivo principal pelo qual foi escolhido o Litmus

Chaos, por ser uma ferramenta de fácil configuração permite que maior tempo possa ser

dedicado à análise e realização dos experimentos, ao invés da ambientação.

No hub, existem diversos experimentos que podem ser aplicados diretamente no

cluster Kubernetes, para o projeto serão utilizados 2:

- pod-network-latency: Este experimento consiste em interromper a conectividade de

rede dos pods do Kubernetes. O experimento pode injetar atrasos de rede aleatórios

nos pods de réplica do aplicativo. Esse indo de encontro a métrica de latência,

- pod-cpu-hog: Esse experimento consiste em interromper o estado dos recursos do

Kubernetes. O experimento pode injetar um pico de CPU em um nó em que o pod do

aplicativo está agendado. Esse indo de encontro a métrica de Saturação.

Assim como algumas ferramentas mencionadas anteriormente, o Litmus Chaos também

possui steps pré-prontos no github actions para uso direto [48], porém, no momento que este

projeto foi desenvolvido eles apresentavam certa instabilidade, o que dificultou o uso e

configuração. Com isso, foi decidido fazer um uso direto utilizando os arquivos yaml, que são

usados para recursos kubernetes, configurando individualmente cada um desses experimentos

e aplicando no cluster na etapa que fosse necessária. Dessa maneira, a ferramenta teve o

comportamento estável e sem necessidade de configurações extras para contornar problemas.

31

3.1.5. Estrutura da pipeline

Ao criar uma pipeline deve-se pensar em uma estrutura sequencial, onde cada uma de

suas operações automatizadas possa ser considerada uma parte de entrega do software e

também uma parte que garante a sua qualidade [36].

Cada pipeline deve se adaptar ao projeto no qual irá atuar, sendo cada passo

configurado para isto. No projeto em questão, temos quatro necessidades básicas:

Configuração do ambiente, realização dos experimentos, coleta de dados gerados nos

experimentos e limpeza do ambiente após a realização dos experimentos.

Tendo isso definido, a pipeline para o projeto se mostrou eficiente tendo 6 passos.

Sendo desses passos 1 responsável pela configuração do ambiente, 4 pelos experimentos e

coleta de dados, o último responsável pela limpeza do ambiente após os experimentos. Na

Figura 6 podemos observar a estrutura da pipeline, com cada um dos passos na sequência

determinada.

Figura 8 representa a estrutura da pipeline final criada para o projeto

Fonte: imagem do autor

Ao observar cada um dos passos separadamente, as seguintes tarefas são realizadas::

- Setup-cluster: Etapa para realizar a instalação do Litmus Chaos no cluster e dos

experimentos que serão realizados.

- Chaos-Latency: O primeiro experimento realizado é o Chaos injetado na latência. É

utilizado o experimento do Litmus Chaos para causar uma variação brusca da latência

no pod da aplicação. No momento que esse experimento se inicia, se dispara a coleta

da latência, utilizando a ferramenta wrk[24], ferramenta utilizada para fazer

benchmark HTTP, com ela é coletado a latência média da aplicação no período em que

o experimento está ativo, após isso esse resultado é adicionado na planilha para

melhor visualização. Após subir os dados para a planilha, o pod é resetado para ficar

pronto para o próximo experimento.

32

- Chaos-Saturation: Segundo experimento realizado é o Chaos injetado no consumo de

recursos da CPU do pod da aplicação. No momento que esse experimento se inicia, se

dispara a coleta do tempo de resposta das requisições usando um script próprio em

python e logo após o fim adicionando os dados na planilha. Após subir os dados para a

planilha, o pod é resetado para ficar pronto para o próximo experimento.

- Chaos-Error: Terceiro experimento realizado é um teste de estresse em um só

endpoint. Esse teste de estresse foi feito utilizando um script em python fazendo uso

da lib locust, ferramenta que é voltada para load testing em APIs. Ao fim do

experimento o resultado vai para planilha. Após subir os dados para a planilha, o pod é

resetado para ficar pronto para o próximo experimento.

- Chaos-Traffic: Quarto e último experimento realizado é semelhante ao teste de

estresse anterior, porém, ao invés do foco ser em apenas um endpoint, ele é feito de

diversos endpoints ao mesmo tempo, também fazendo uso de um script python que faz

uso do locust. Ao fim do experimento os resultados vão para planilha.

- Clean-up-Cluster: Ao fim dos experimentos, os recursos envolvidos são deletados.

3.2. Sumário do capítulo

Este capítulo teve como objetivo mostrar como foi pensado e executado a

implementação do projeto desenvolvido neste trabalho e como as ferramentas foram

integradas entre si.

Foi mostrado como a API desenvolvida foi disponibilizada em um cluster EKS, e

como foi montada a arquitetura dos recursos do próprio kubernetes e também do Cloud

Provider usado, a AWS. Além disso, também foi abordado as ferramentas usadas para a

pipeline e parte dos experimentos do CE, sendo essas o Litmus Chaos e o Github Actions

respectivamente. Foi apresentado cada um dos passos definidos na pipeline e o motivo para a

existência de cada um.

Dito isso, no próximo capítulo será abordada a fase de experimentos que foram

aplicados diretamente nos recursos apresentados neste capítulo. Será apresentado a construção

de cada experimento e os dados coletados em sua execução. Além disso, será apresentada

uma análise referente aos dados coletados em cada um dos experimentos.

33

4. Experimentos e Análise

Nesta seção será apresentado individualmente cada experimento e os dados coletados para

fins de análise. Para cada experimento será apresentado a coleta de dados sem o

experimento do Chaos estar em andamento e com o experimento em andamento, para

haver uma comparação.

4.1. Experimentos

Para criação dos experimentos foi utilizada a metodologia GQM [34, 35], que traz

uma estrutura top-down para proporcionar a criação de métricas direcionadas a um objetivo.

Em cada um dos experimentos será apresentado a estrutura GQM que guiou sua construção.

4.1.1. CHAOS-LATENCY

Seguindo os Golden Signals, o primeiro a ser analisado foi a latência. Quando se fala

de resiliência de aplicações de software de maneira direta se fala sobre a capacidade de um

software falhar e, ainda assim, seguir funcionando [46]. Seguindo essa premissa, qual o

objetivo de se analisar latência de uma aplicação no contexto de resiliência? A latência é

responsável pelo tempo de processamento da informação que está sendo recebida pela

aplicação. Sendo assim, uma latência estável é um indicativo de que a aplicação é capaz de

responder ao usuário, mesmo em casos de erro, de maneira eficiente e não afetar a experiência

do usuário. Dito isso, o objetivo deste experimento foi definido como: Garantir o tempo de

resposta estável para o usuário final.

Para analisar o comportamento da aplicação dado um pico de latência é necessário

provocar um problema na rede a qual a aplicação faz uso. Neste caso, foi usado o Litmus

Chaos, mencionado no capítulo anterior, para ajudar na injeção da falha no cluster. O Litmus

Chaos fornece alguns experimentos relacionados à rede, um deles é chamado

pod-network-latency, já mencionado anteriormente. Com ele se faz possível inserir atrasos e

interrupções na rede utilizada pelos pods.

Dado que já se tem o objetivo, o que deve ser provocado e como provocar esse

acontecimento, para finalizar é necessário coletar o tempo de resposta da aplicação enquanto a

34

rede dos pods está sofrendo a injeção de falhas, assim será possível analisar se mesmo com as

falhas a aplicação mantém o comportamento esperado, não tendo picos no tempo de resposta.

Para isso foi utilizado a ferramenta wrk2, já mencionada no capítulo anterior. Com ela foi

possível fazer a coleta do tempo de resposta no decorrer de 5 minutos para poder avaliar se

houve, ou não, diferença no comportamento da aplicação.

Sendo assim, ao montar o GQM para este experimento, obtemos a seguinte definição:

● Goal: Garantir um tempo de resposta estável para o usuário final.

● Question: Em um aumento temporário da latência nos pods, o usuário irá ter

um acréscimo do tempo de resposta?

● Metric: Tempo médio de resposta

Após essa definição, tudo foi executado e os seguintes dados foram gerados para análise:

Sem Chaos 0,051s 0,050s 0,051s 0,050s 0,052s

Com Chaos 1,05s 1,14s 1,14s 1,14s 1,14s

Cada coluna se refere a uma coleta diferente, cada uma dessas informações corresponde a

latência média em um período de 1 minuto. É possível ver o aumento da latência gritante no

momento em que o experimento está sendo executado.

4.1.2. CHAOS-SATURATION

Em seguida vamos à saturação. A saturação pode ser interpretada como diferentes

métricas dentro dos Golden Signals, mas geralmente estão relacionadas aos recursos da

máquina a qual está rodando a aplicação. Neste caso foi decidido usar a CPU como alvo dessa

métrica, dado que a CPU tem relação direta com o processamento das informações em

qualquer aplicação. Dado que ao disponibilizar uma aplicação em um cluster kubernetes um

dos parâmetros passados para a definição de recursos é CPU, é interessante avaliar se o

recurso alocado foi suficiente para a aplicação e sua demanda, sendo assim, o objetivo que se

tem com isso é: Garantir que uma crescente no uso de memória não torne a aplicação lenta.

Para analisar como a aplicação responderá em um pico de consumo da CPU é

necessário provocar esse pico. Para isso, novamente se fez uso do Litmus Chaos, que já fora

35

mencionado, para injetar o consumo exacerbado da CPU. Um dos experimentos fornecidos

pelo Litmus Chaos é o pod-cpu-hog, que nos permite fazer com que a cpu da aplicação

definida tenha um pico no seu consumo em determinado pod.

Após a definição do objetivo e da provocação necessária para gerar a falha, é

necessário definir a métrica e coletar este dado. A CPU está ligada diretamente com o

processamento de informações realizado pela aplicação. Quando se fala de processamento de

informações, existe o tempo que a aplicação leva para entender o que está sendo requisitado

para ela, como mencionado no tópico anterior esse tempo é a latência. Sendo assim, nesse

experimento, será coletado o tempo médio de latência da aplicação no decorrer de 5 minutos

de injeção de falha, pois o tempo de latência nos indica como a aplicação está se comportando

no processamento das informações recebidas, em caso de subida no momento de um maior

consumo do cpu pode ser um indício de que o CPU definido para aplicação não é suficiente e

não é escalável.

Dito isso, ao montar o GQM para este experimento, obtemos a seguinte definição:

● Goal: Garantir que o pico de uso de memória não torne a aplicação lenta

● Question: Dado um pico de consumo de memória em parte dos pods, a latência

da aplicação irá subir?

● Metric: Tempo médio de latência

Após essa definição, tudo foi executado e os seguintes dados foram gerados para análise:

Sem Chaos 0,486829262 0,40380679 0,397924899 0,395656465

Com Chaos 24,30273714 24,59412916 44,81050761 51,06785581

Cada linha se refere a uma coleta sequencial, ao final de uma requisição a outra logo foi

executada e assim por diante, coletando o tempo de resposta de cada uma delas. Fica claro o

aumento significativo do tempo de resposta da aplicação durante o experimento.

4.1.3. CHAOS-ERROR

O terceiro ponto analisado foi o sinal referente ao erro. A taxa de erros de uma

aplicação web deve ser analisada e capturada de diferentes formas, indo de analisar o código

36

HTTP até checar o conteúdo da resposta da requisição [19]. Para analisar esse sinal neste

trabalho foi decidido observar o código HTTP das requisições e a consistência dessas

respostas, dado que com um alto índice de requisições idênticas para um endpoint, a resposta

deve se manter constante preservando o comportamento da aplicação. Sabe-se que é

improvável que as respostas sempre serão sucesso, tanto é que o Chaos Engineering se baseia

neste fato, pois a falha é algo que não deve ser evitado mas sim ser preparado para lidar com

ela [29]. Tendo isso em mente, o objetivo definido foi: Garantir confiabilidade do sistema

mantendo uma taxa de erros http abaixo de 20% do total das requisições. Em diversos

sistemas e projetos, a taxa de sucesso que se busca é por volta de 99%, esse valor busca ser

definido com o usuário do sistema em questão, dado que esse valor é o indicador que o cliente

julga aceitável perante o uso da aplicação. Como este projeto está usando uma aplicação

simples, foi decidido deixar a taxa de sucesso mais baixa, levando em conta que o resultado

ainda assim nos mostrará um indício do que se está comprovando ou não.

Para avaliar a porcentagem de erros da aplicação dentro do número de requisições é

preciso criar antes o mecanismo que irá promover esses potenciais erros. Para isso foi

utilizado a lib locust, ferramenta apresentada em um capítulo anterior, que nos auxilia na

criação de scripts para obter um pico de requisições em endpoints definidos. Com isso, se faz

possível avaliar a consistência das respostas da aplicação em um alto índice de requisições.

Sendo assim, foi realizada a coleta desses dados a partir de uma planilha, gerada pela

própria lib locust, que permitiu fazer a análise dos dados coletados, dando foco na

porcentagem dos erros no decorrer de 5 minutos com um número de requisições crescente.

Dito isso, ao montar o GQM para este experimento, se obtém a seguinte definição:

● Goal: Garantir confiabilidade do sistema tenha uma taxa de erros http abaixo

de 20% do total das requisições

● Question: Em um pico de requisições, a aplicação continuará a responder com

sucesso a maioria dessas?

● Metric: Porcentagem de erros http

37

Após essa definição, tudo foi executado e os seguintes dados foram gerados para análise:

Requests/s Falhas/s Total de Requests Total de falhas

57.900.000 6.200.000 12755 2717

108.900.000 29.200.000 12900 2825

118.700.000 44.300.000 12919 2825

106.700.000 45.300.000 12960 2825

Cada linha se refere a um certo número de requisições realizadas para o mesmo endpoint, que

foi crescendo de maneira sequencial controlado pelo script. É possível ver que ao chegar em

um número alto de requisições por segundo, a aplicação começa a responder com erros uma

certa porcentagem das requisições, ficando na média de 20% das respostas sendo erro, o que é

um número muito significativo e no limite do objetivo definido.

4.1.4. CHAOS-TRAFFIC

Por último foi analisado o sinal de tráfego. O tráfego é um sinal que muda de acordo

com o tipo de aplicação, dado que cada software tem sua demanda específica. No caso deste

projeto, a aplicação é web, então a demanda é referente a requisições HTTP por segundo. A

aplicação deve ser capaz de lidar com uma grande quantidade de requisições por segundo sem

que isso impacte em sua performance. Neste caso, a percepção de mudança na performance

por parte do usuário seria o tempo de resposta, dado que quanto mais lenta a aplicação, mais

demorada a resposta chega no usuário. Dito isso, o objetivo definido para este experimento

foi: Garantir que o aumento no número de requisições por segundo não impactem no tempo

de resposta.

Para promover um pico de requisições foi feito o uso da lib locust, já mencionada

anteriormente. Nela foi montado um script apontando para diferentes endpoints na aplicação

em loops, para manter um alto índice de requisições por segundo. A locust já fornece uma

interface que cria gráficos voltados para o tempo de resposta ao longo do teste, facilitando

assim a análise dos dados coletados.

38

Dito isso, ao montar o GQM para este experimento, obtemos a seguinte definição:

● Goal: Garantir que o aumento no número de requisições não impacte no tempo

de resposta

● Question: Em um pico de requisições, o usuário irá ter um acréscimo do tempo

de resposta?

● Metric: Tempo médio de resposta

Após essa definição, tudo foi executado e os seguintes dados foram gerados para análise:

Figura 9 apresenta o gráfico do tempo de resposta do experimento

Fonte: imagem do autor

Na Figura 6 podemos observar a variação do tempo de resposta ao longo de 7 minutos.

Nesse período de tempo o número de requisições por segundo e de usuários simulados

subiram de maneira automatizada, como definido no script, atingindo um pico de 1000

usuários e 150 mil requisições por segundo. É claramente perceptível como o acréscimo no

decorrer do tempo fez com que a média do tempo de resposta obtivesse uma variação

constantemente, atingindo picos de 60000ms.

4.2. Análise

Baseado nos dados coletados em cada um dos experimentos conseguimos enxergar

como essa aplicação de teste não estaria pronta para um ambiente de produção. Cada um dos

experimentos do Chaos conseguiu mostrar com diferentes dados como essa aplicação, mesmo

estando em um ambiente propício para escalabilidade, que é o Kubernetes, não está projetada

para ser escalável.

39

Quando falamos de resiliência, nos referimos sempre a uma aplicação que consegue se

manter disponível mesmo em ambientes conturbados, entretanto, para isso poder ser garantido

é necessário realizar as devidas checagens antes de um possível deploy em produção. Com

esta análise é possível perceber a relevância que o uso do Chaos Engineering pode

proporcionar quando utilizado não de maneira isolada, mas sim como parte do processo

incluído no próprio pipeline de testes da aplicação, para uma checagem e garantia mais

robusta de qualidade.

40

5. Conclusões e Trabalhos Futuros

5.1. Contribuições

Ao fim deste trabalho é possível concluir que o uso do Chaos Engineering em uma

pipeline de entrega contínua pode contribuir para a garantia de qualidade de aplicações que

fazem uso do Kubernetes e de infraestruturas no ambiente da cloud. Foi possível enxergar as

falhas da aplicação simulando cenários caóticos, mas possíveis, buscando validar a resiliência

da aplicação antes de ir para um ambiente de produção.

Avaliando os 4 Golden Signals que a Google nos dá como pontos chave para um

monitoramento, foi possível coletar informações de diferentes tipos que se complementam ao

final dos experimentos, trazendo uma análise mais completa da aplicação em si. Com isso,

podemos dizer que o uso de CE enriquece a esteira de entrega contínua.

5.2. Problemáticas

No decorrer do desenvolvimento do projeto, uma das principais complicações que foi

enfrentado foi o uso de diferentes ferramentas para cada um dos cenários de Chaos. Esse

acontecimento aumentou a complexidade da implementação além de dificultar a análise dos

dados coletados, levando em conta que não vinham de uma fonte única e com a mesma

estrutura.

Além disso, por ser uma aplicação muito simplória a qual está sendo utilizada para

avaliar a infraestrutura na qual foi implementada, ela não foi projetada para fazer o melhor

uso dos recursos do Kubernetes como sua premissa. Esse fato pode fazer com que alguns dos

resultados causados pelos experimentos sejam desproporcionais, ainda que evidenciados, de

um caso mais real.

41

5.3. Trabalhos futuros

Para trabalhos futuros, é interessante fazer a avaliação de uma aplicação mais robusta

que faça uso de mais recursos que o Kubernetes fornece, e com isso fazer experimentos mais

complexos validando outros pontos de avaliação e não apenas os 4 Golden Signals.

42

6. Bibliografia

[1] “Gartner predicts the futures of Cloud Computing and Edge Infrastructure”. Gartner.

Disponível em:

https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-inf

rastructure. Acesso em 10 de fevereiro de 2022

[2] “Cloud Shift Impacts All IT Markets”. Gartner. Disponível em:

https://www.gartner.com/smarterwithgartner/cloud-shift-impacts-all-it-markets. Acesso em 10

de fevereiro de 2022

[3] “Falha na nuvem gera instabilidade em Amazon, iFood e Disney+”. Folha de São Paulo.

Disponível em:

https://www1.folha.uol.com.br/tec/2021/12/falha-na-nuvem-gera-instabilidade-em-amazon-if

ood-e-disney.shtml. Acesso em 14 de fevereiro de 2022

[4] “Top computer languages". Disponível em:

https://statisticstimes.com/tech/top-computer-languages.php. Acesso em 15 de junho de 2022

[5] “Django makes it easier to build better web apps more quickly and with less code”.

Disponível em: https://www.djangoproject.com. Acesso em 15 de junho de 2022.

[6] “Web development drop at a time”. Disponível em:

https://flask.palletsprojects.com/en/2.2.x/. Acesso em 15 de junho de 2022.

[7] “O que é um microframework?”. Disponível em:

https://www.treinaweb.com.br/blog/o-que-e-um-micro-framework. Acesso em 15 de junho de

2022.

[8] “FastAPI framework, high performance, easy to learn, fast to code, ready for production”.

Disponível em: https://fastapi.tiangolo.com/. Acesso em 15 de junho de 2022.

[9] Len Bass, Ingo Weber, e Liming Zhu. 2015. DevOps: A Software Architect’s Perspective.

Addison-Wesley, New York.

[10] Humble, J. , Molesky, J. , 2011. Why enterprises must adopt devops to enable

Continuous Delivery. Cutter IT J. 24 (8), 6–12 .

[11] Jan Bosch. 2014. Continuous Software Engineering: An Introduction. Springer

International Publishing, Cham, 3–13.

[12] Brian Fitzgerald e Klaas-Jan Stol. 2017. Continuous software engineering: A roadmap

and agenda. Journal of Systems and Software 123 (jan 2017), 176–189.

43

https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-infrastructure
https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-infrastructure
https://www.gartner.com/smarterwithgartner/cloud-shift-impacts-all-it-markets
https://www1.folha.uol.com.br/tec/2021/12/falha-na-nuvem-gera-instabilidade-em-amazon-ifood-e-disney.shtml
https://www1.folha.uol.com.br/tec/2021/12/falha-na-nuvem-gera-instabilidade-em-amazon-ifood-e-disney.shtml
https://statisticstimes.com/tech/top-computer-languages.php
https://www.djangoproject.com
https://flask.palletsprojects.com/en/2.2.x/
https://www.treinaweb.com.br/blog/o-que-e-um-micro-framework
https://fastapi.tiangolo.com/

[13] M. Leppänen et al., ‘‘The highways and country roads to Continuous Deployment,’’

IEEE Softw., vol. 32, no. 2, pp. 64–72, Mar. 2015.

[14] Lianping Chen. 2015. Continuous Delivery: Huge Benefits, but Challenges Too. IEEE

Software 32, 2 (mar 2015), 50–54.

[15] J. Humble, e D. Farley, Continuous Delivery: Reliable Software Releases Through Build,

Test, and Deployment Automation, 1st ed. Reading, MA, USA: Addison-Wesley, 2010.

[16] “Google’s Approach to Service Management: Site Reliability Engineering”. Disponível

em: https://sre.google/sre-book/introduction/. Acesso em 12 de junho de 2022.

[17] “SRE vs DevOps: What 's The Difference?”. Disponível em:

https://www.bmc.com/blogs/sre-vs-devops. Acesso em 14 de junho de 2022.]

[18] Basiri, A., Hochstein, L., Jones, N., Tucker, H. ‘‘Automating chaos experiments in

production,’’ 2019, arXiv:1905.04648. [Online]. Disponível em:

http://arxiv.org/abs/1905.04648. Acesso em 10 de junho de 2022.

[19] “Monitoring distributed systems”. Disponível em:

https://sre.google/sre-book/monitoring-distributed-systems/. Acesso em 15 de junho de 2022.

[20] “Cloud infrastructure services vendor market share worldwide from 4th quarter 2017 to

1st quarter 2022”. Disponível em:

https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-sh

are-vendor/. Acesso em 26 de agosto de 2022.

[21] “Automate Infrastructure on Any Cloud”. Disponível em: https://terraform.io. Acesso em

10 de junho de 2022.

[22] “Criação de pipelines”. Disponível em:

https://www.logicus.com.br/criacao-de-pipelines/. Acesso em 12 de junho de 2022.

[23] M. Shahin et al., “Continuous Integration, Delivery and Deployment”IEEE Softw., vol 5,

pp. 3909-3943. Mar. 2017.

[24] “Modern HTTP benchmark tool”. Disponível em: https://github.com/wg/wrk. Acesso em

20 de agosto de 2022.

[25] Megargel, A., Shankararaman, V., Walker, D.K. (2020). “Migrating from Monoliths to

Cloud-Based Microservices: A Banking Industry Example. In: Ramachandran, M., Mahmood,

Z. (eds) Software Engineering in the Era of Cloud Computing. Computer Communications

and Networks. Springer”

[26] Tosatto, A., Ruiu, P., & Attanasio, A. (2015). Container-Based Orchestration in Cloud:

State of the Art and Challenges. 2015 Ninth International Conference on Complex,

Intelligent, and Software Intensive Systems.
44

https://sre.google/sre-book/introduction/
http://arxiv.org/abs/1905.04648
https://sre.google/sre-book/monitoring-distributed-systems/
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/#:~:text=In%20the%20first%20quarter%20of,with%20eight%20percent%20market%20share
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/#:~:text=In%20the%20first%20quarter%20of,with%20eight%20percent%20market%20share

[27] 2021. Kubernetes: Production-Grade Container Orchestration. Disponível em:

https://kubernetes.io/. Acesso em 9 de setembro de 2022.

[28] “The true cost of Kubernetes: People, Time and Productivity”. Disponível em:

https://www.koyeb.com/blog/the-true-cost-of-kubernetes-people-time-and-productivity.

Acesso em 9 de setembro de 2022.

[29] “Principles of Chaos Engineering”. Disponível em: https://principlesofchaos.org/.Acesso

em 9 de setembro de 2022.

[30] “Why Large Organizations Trust Kubernetes”. Disponível em:

https://tanzu.vmware.com/content/blog/why-large-organizations-trust-kubernetes. Acesso em

9 de setembro de 2022.

[31] YaleYu, H. Silveira e M.Sundaram,“A microservice based reference architecture model

in the context of enterprise architecture,” 2016 IEEE Advanced Information Management,

Communicates, Electronic and Automation Control Conference (IMCEC).

[32] H. Khazaei, C. Barna, N. Beigi-Mohammadi e M. Litoiu, “Efficiency Analysis of

Provisioning Microservices,” 2016 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), Luxembourg City, 2016, pp. 261-268.

[33] Malhotra L., Agarwal D and Jaiswal A., “Virtualization in Cloud Computing”, Journal of

Information Technology and Software Engineering, 2014, 4:2.

[34] Basili, V. e Rombach, D. 1988. “The TAME project: Towards

improvement-oriented software environments.” , IEEE Trans. Softw. Eng. 14, 6, 758 –773.

[35] Basili, V. 1994. “GQM approach has evolved to include models.”, IEEE Softw. 11, 1,

8.

[36] Rafal Leszko. 2017. Continuous delivery with Docker and Jenkins : delivering software

at scale. Packt Publishing, Birmingham, UK.

[37] “Github: Where the world builds software”, Disponível em: https://github.com/, Acesso

em 14 de setembro de 2022.

[38] A. Decan, T. Mens, P. R. Mazra e M. Golzadeh, “On the Use of GitHub Actions in

Software Development Repositories”, 38th IEEE International Conference on Software

Maintenance and Evolution (ICSME), Limassol, Cyprus, 2022

[39] “Build great things at any scale”, Disponível em: https://www.jenkins.io/, Acesso em 14

de setembro de 2022.

[40] “Golden Signals: Why are they so important to DevOps/SRE teams”, Disponível em:

https://iamondemand.com/blog/the-golden-signals-why-theyre-so-important-to-devops-sre-tea

ms/ , Acesso em 15 de setembro de 2022.
45

https://www.koyeb.com/blog/the-true-cost-of-kubernetes-people-time-and-productivity
https://github.com/
https://www.jenkins.io/
https://iamondemand.com/blog/the-golden-signals-why-theyre-so-important-to-devops-sre-teams/
https://iamondemand.com/blog/the-golden-signals-why-theyre-so-important-to-devops-sre-teams/

[41] “Chaos Engineering: the history, principles and practice”, Disponível em:

https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-p

ractice, Acesso em 15 de setembro de 2022.

[42] Agarwal A., Rao S. K. S. e Mahendra B. M, 2020, “Comprehensive review of

virtualization tools”, International Research Journal of Engineering and Technology (IRJET),

7, 6.

[43] “Virtualização x Container”, Disponível em:

https://www.funcao.com.br/2019/01/11/virtualizacao-x-container/, Acesso em 17 de setembro

de 2022.

[44] “Develop Faster. Run Anywhere”, Disponível em: https://www.docker.com/, Acesso em

17 de setembro de 2022.

[45] Dewi, L. P., Noertjahyana, A., Palit, H. N. e Yedutun, K, 2019, “Server Scalability Using

Kubernetes”, 4th Technology Innovation Management and Engineering Science International

Conference (TIMES-iCON). doi:10.1109/times-icon47539.2019.9024501

[46] “Implementar aplicativos resilientes”, Disponível em:

https://learn.microsoft.com/pt-br/dotnet/architecture/microservices/implement-resilient-applic

ations/, Acesso em 22 de setembro de 2022.

[47] “Tutoriais | Kubernetes”, Disponível em: https://kubernetes.io/pt-br/docs/tutorials/,

Acesso em 26 de setembro de 2022.

[48] “Github actions to trigger chaos on your review apps”, Disponível em:

https://github.com/litmuschaos/github-chaos-actions, Acesso em 26 de setembro de 2022.

46

https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice
https://www.docker.com/
https://learn.microsoft.com/pt-br/dotnet/architecture/microservices/implement-resilient-applications/
https://learn.microsoft.com/pt-br/dotnet/architecture/microservices/implement-resilient-applications/
https://kubernetes.io/pt-br/docs/tutorials/
https://github.com/litmuschaos/github-chaos-actions

	4f8c1a0e71dcc19c7cabaf3c351138725258f75ece8575a52db710d0b3c3d453.pdf
	4f8c1a0e71dcc19c7cabaf3c351138725258f75ece8575a52db710d0b3c3d453.pdf
	4f8c1a0e71dcc19c7cabaf3c351138725258f75ece8575a52db710d0b3c3d453.pdf

