® Centrode

Informatica

UFPE
UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMATICA
CURSO DE BACHARELADO EM CIENCIAS DA COMPUTACAO

Gabriel Amancio da Silva

COMO GARANTIR QUE UM CLUSTER KUBERNETES POSSUI
COBERTURA DE FALHAS CONTINUAMENTE NA CLOUD? O USO
DE CHAOS ENGINEERING NA ESTEIRA DE ENTREGA CONTINUA

RECIFE
2022

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
CURSO DE BACHARELADO EM CIENCIA DA COMPUTACAO

Gabriel Amancio da Silva

COMO GARANTIR QUE UM CLUSTER KUBERNETES POSSUI
COBERTURA DE FALHAS CONTINUAMENTE NA CLOUD? O USO
DE CHAOS ENGINEERING NA ESTEIRA DE ENTREGA CONTINUA

Monografia apresentada ao Centro de
Informatica (CIN) da Universidade Federal de
Pernambuco (UFPE), como requisito parcial
para conclusio do Curso de Ciéncias da
Computacdo, orientada pelo professor Vinicius
Cardoso Gareia.

RECIFE
2022

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragdo automatica do SIB/UFPE

Silva, Gabriel Amancio da.

Como garantir que um cluster Kubernetes possui cobertura de falhas
continuamente na Cloud? : O uso de Chaos Engineering na esteira de entrega
continua/ Gabriel Amancio da Silva. - Recife, 2022.

46: il., tab.

Orientador(a): Vinicius Cardoso Garcia

Trabalho de Conclusdo de Curso (Graduacdo) - Universidade Federal de
Pernambuco, Centro de Informatica, Ciéncias da Computagéo - Bacharel ado,
2022.

1. DevOps. 2. Pipeline de delivery. 3. Chaos Engineering. |. Garcia,
Vinicius Cardoso . (Orientacéo). Il. Titulo.

000 CDD (22.ed.)

AGRADECIMENTOS

Agradeco a minha familia, que foi minha base em toda a minha trajetoria e principalmente a
minha mae, eu vi seus sacrificios de perto para me fazer chegar até aqui e jamais esquecerei
disso. Tudo que fago € para compensar tudo isso. Amo vocé mae, amo vocés todos.

Também agradeco a minha companheira que ndo me permitiu desanimar ¢ me deu forcas
quando eu nao tinha. Te amo Mayhhara.

E por fim, agradeco aos meus amigos que tornaram toda essa caminhada mais leve, amo

voces!

“So por que alguma coisa nao faz o que vocé
planejou que ela fizesse ndo quer dizer que cla
seja inatil.”

Thomas Edison

RESUMO

Como criar um software resiliente ¢ uma pergunta chave no mundo de desenvolvimento atual.
E cada vez mais comum casos de vazamento de dados, sistemas fora do ar por horas, erros e
falhas inesperadas. Uma das possiveis solu¢des a serem exploradas na prevencdo desses
problemas ¢ o Chaos Engineering, area que tem crescido nos ultimos anos € que possui o
claro objetivo de melhorar a qualidade e resiliéncia dos servigcos ao qual ¢ integrado. Com
uma metodologia focada na criagdo de hipdteses e experimentos para validar as mesmas, ele
funciona como uma 6tima ferramenta de design preventivo de software. No presente trabalho,
foram realizados experimentos fazendo uso do Litmus Chaos, plataforma que fornece
experimentos voltados para o Chaos Engineering, com o objetivo de colocar & prova o
ambiente no qual a aplicagdo teste estava sendo disponibilizada. Os resultados apresentados
mostram que a abordagem de uso do Chaos Engineering na esteira de entrega continua deve

ser levada em conta.

Palavras-chave: DevOps, Chaos Engineering, Pipeline de delivery

ABSTRACT

How to build resilient software is a key question in today's development world. It is
increasingly common cases of data leakage, systems down for hours, bugs and unexpected
crashes. One of the possible solutions to be explored in the prevention of these problems is
Chaos Engineering, an area that has grown in recent years and which has the clear objective
of improving the quality and resilience of the services to which it is integrated. With a
methodology focused on creating hypotheses and experiments to validate them, it works as a
great preventive software design tool. In this work, experiments were made using Litmus
Chaos, a platform that provides experiments aimed at Chaos Engineering, in order to test the
environment in which the test application was available. The results presented show that the
approach of using Chaos Engineering in the Entrega Continua approach should be taken into
consideration.

Keywords: DevOps, Chaos Engineering, Delivery Pipeline

Sumario
1. Introducao

1.1.
1.2.
1.3.

Motivacgao
Objetivos
Estrutura

2. Fundamentacao Teorica

2.1

2.2.

2.3.

24.
2.5.
2.6.

Virtualizacao

2.1.1. Docker

2.1.2. Kubernetes

DevOps

2.2.1. Integragao Continua
2.2.2. Entrega Continua

2.2.3. Implantagao Continua

SRE: Site Reliability Engineering

2.3.1. SRE vs DevOps
Chaos Engineering
Four Golden Signals

Sumario do caitulo

3 Implementacao

3.1

Tecnologias Adotadas
3.1.1. FastAPI

3.1.2. AWS

3.1.3. Github Action

3.1.4. Litmus Chaos

3.1.5. Estrutura da pipeline

3.2. Sumario do capitulo

4 Experimentos e Analise

4.1

4.2

Experimentos

4.1.1 CHAOS-LATENCY
4.1.2 CHAOS-SATURATION
4.1.3 CHAOS-ERROR

4.1.4 CHAOS-TRAFFIC

Analise

13
14
15
15
16
16
17
18
18
20
21
21
22
22
22
23
24
25
25
25
28
29
31
32
33
34
34
34
35
36
38
39

5

6

Conclusdes e Trabalhos Futuros
5.1 Contribuigdes
5.2 Problematicas
5.3 Trabalhos Futuros
Bibliografia

41
41
41
42
43

Lista de Figuras

Figura 1. Comparagdo entre Méaquina virtual e Container [43]cccceverienienenneneenennne. 17
Figura 2. Estrutura de funcionamento de Container com Docker [44]ccccoeeiiiniieniennnen. 17
Figura 3. Pipeline padrao de DevODPS [22] ..ccouiieeeiieeiieeieeeee et 19
Figura 4. Estrutura final dos arquivos que compoem @ apiccc cevvveeineennneenneannennns 26
Figura 5. Arquitetura Kubernetes do projetoo.eoeeiviiiiiiiiiiiiiiiiiiiieaenns 27
Figura 6. Integracdo Kubernetes com recursos AWS do projetocoeeeviieinnnnn.. 28
Figura 7. Estrutura de funcionamento do CI/CD no Github Actionsco.eueee. 30
Figura 8. Estrutura da pipeline criada para o projetoc.ooveiiiiiiiiiiiiieiineenneannnn. 32
Figura 9. Grafico retirado da ferramenta Locust com dados do tempo de resposta 39

10

LISTA DE TABELAS

Tabela 1. Dados do experimento de Chaos Latencyc.ccooeviiiiiiiiiiininnnn..

Tabela 2. Dados do experimento de Chaos Saturationcceevviieinienennn..

Tabela 3. Dados do experimento de Chaos Error

11

TABELA DE SIGLAS

Sigla Significado Pagina
LIB Library 30
API Application Programming Interface 29,30
AWS Amazon Web Services 29
TI Tecnologia da Informacgao 21
CE Chaos Engineering 28

12

1. Introducao

Atualmente, o ambiente cloud tem dominado o mercado de TI, causando um grande
movimento de migracdo das aplicagdes para o mesmo. A cloud tem se tornado também a
plataforma principal para novos servigos da era digital, sendo esperado que até¢ 2023 40% de
todos os workloads estejam sendo disponibilizados nela [1]. Entretanto, boa parte das
aplicagdes on-premise ndo estdo prontas para explorar os beneficios que a cloud promete
oferecer como, por exemplo, escalabilidade e alta disponibilidade [25]. Por questdes
arquiteturais e de alinhamento estratégico com o negocio, realizar essa migracdo - ou
evolugdo, adaptagdo - ndo ¢ algo tdo simples de ser feito. Uma das alternativas para essa
adaptacdo ¢ o uso de microsservicos [31], que facilita os ganhos com a cloud pelo fato de a
escalabilidade estar diretamente ligada ao seu modelo arquitetural [25].

Entretanto, apenas fazer o uso de microsservi¢os nao ird garantir com que a aplicagao
esteja extraindo a melhor performance possivel na cloud, uma das maneiras de buscar garantir
isso ¢ fazendo o uso de virtualizagdo [32], técnica que busca fazer a criagdo de uma imagem
virtual ou “versdo abstrata” de alguma aplicagdo, seja ela um servidor, sistema operacional e
afins, para que este seja utilizado em diversas maquinas ao mesmo tempo, sendo o seu
principal objetivo gerenciar a demanda de recursos para que a computacdo tradicional seja
mais escaldvel [33]. Uma das principais maneiras de se atingir a virtualizagdo ¢ fazendo o uso
de contéineres, que ¢ uma técnica de virtualizagdo em que a imagem faz uso direto do sistema
operacional da maquina que estd rodando a aplicagdo.

Com a aplicagdao funcionando em microsservigos € fazendo uso de contéineres surge
um novo desafio, lidar com inimeros contéineres que estdo fazendo uso da infraestrutura
cloud. Dada essa necessidade, por diversas vezes se fazem uso de orquestradores de
contéineres, buscando gerenciar da melhor maneira os recursos demandados por esses
microsservigos, porém, como dito anteriormente, essa adaptacdo arquitetural ndo € algo tao
trivial, assim como as valida¢des e garantias necessarias para um bom uso dos orquestradores
apresenta diversos desafios [26]. E importante lembrar que, quando se fala de gerenciar
recursos na cloud, cada recurso tem um custo e esse custo ¢ esperado que aumente cada vez
mais, dado que o investimento das empresas vem crescendo no setor, sendo esperado atingir
um aumento de 28% gasto na cloud neste ano [2]. Sendo assim, um recurso mal gerenciado

impacta diretamente em uma perda consideravel de dinheiro.

13

Nos tultimos anos, dentre os orquestradores de contéineres um se destacou e vem
tomando grande parte do mercado, o Kubernetes [27]. Ele que, dentre as grandes empresas,
possui uma margem de uso no ambiente de producdo de 59% [28]. Mesmo sendo
open-source, o custo gerado pelo uso do Kubernetes para uma empresa ¢ consideravel quando
se trata da infraestrutura necessaria para utiliza-lo [29]. Sendo assim, o impacto causado pela
falta de validagdo em um processo no qual a aplicacdo faz uso de um cluster Kubernetes pode
ser grande ndo apenas na experiéncia do usuario da aplicacdo, mas também no financeiro
desta empresa. Dito isso, um questionamento valido ¢ como validar a garantia neste processo?
Essa pergunta guia esse projeto, que busca responder com o uso de Chaos Engineering [29] de
maneira que seu uso automatizado, antes da disponibilizagdo no ambiente de producao, possa

evitar impactos negativos ndo previstos [18].

1.1. Motivacao

Atualmente, resiliéncia tem sido a palavra chave quando se fala de aplicacdes na
cloud. Nao criar o projeto pensando em uma arquitetura pronta para lidar com o inesperado ¢
sindbnimo de impacto financeiro negativo por problemas nos servigos atingidos. E quando se
fala em cloud, basta um provedor ter problemas e inumeros servigos saem do ar, como
ocorreu diversas vezes com a AWS em 2021 [3].

Uma das possiveis solugdes a serem exploradas na prevencdo desses problemas ¢ o
Chaos Engineering, area que tem crescido nos ultimos anos € que possui o claro objetivo de
melhorar a qualidade e resiliéncia dos servigos ao qual ¢ integrado. Com uma metodologia
focada na criagdo de hipoteses e experimentos para validar as mesmas, ele funciona como
uma Otima ferramenta de design preventivo de software, onde agrega no controle de qualidade
de toda uma infraestrutura a ser validado pelos seus experimentos, possibilitando a criagcdo de
planos de agdo a partir das comprovagdes, ou nao, de hipoteses que foram testadas.

Por exemplo, como posso garantir que o cluster esta preparado para uma troca de pods
por sobrecarga de acessos? Com essa pergunta criamos a seguinte hipotese: Dado que o
nimero de acessos no servico aumente exponencialmente, o balanceador de carga devera

redistribuir os acessos, fazendo com que o servigo nao fique fora do ar. A partir disso, ¢ criado

14

um experimento que forga essa situacdo, e que de acordo com o seu resultado, caso a hipotese
ndo seja confirmada mostra que o sistema estd com potenciais problemas que devem ser
resolvidos antes de ir para um ambiente de produgdo. Sendo assim, o problema a ser
explorado neste trabalho sera:

Como o uso de Chaos Engineering pode colaborar na garantia sob a cobertura de

falhas em um cluster Kubernetes ?

1.2. Objetivos

Sendo assim, podemos definir os seguintes objetivos:
- Definir indicadores relevantes para medir eficiéncia do uso do Chaos Engineering na
esteira de entrega continua

- Avaliar utilizagdo do Chaos Engineering em projeto piloto com indicadores definidos

1.3. Estrutura

O projeto esta construido essencialmente nos proximos 5 capitulos, sendo eles:

- Fundamentacao tedrica: Possui o objetivo de construir a base de conhecimento
necessaria para se compreender o projeto e suas referéncias, trazendo os principais
topicos que guiam o trabalho e destrinchando-os.

- Implementagdo: Busca apresentar a construcao do projeto, o que foi utilizado e o
porqué, possibilitando ao leitor compreender as decisdes tomadas acerca do trabalho.

- Experimentos: Capitulo que foca no entendimento da criagdo e realizag¢do dos
experimentos, mostrando, com a ajuda da metodologia GQM [34,35], o que foi
definido, o porqué, o que foi coletado e entendendo quais indicios os resultados
apresentados nos fornece.

- Conclusdo: Se¢do que busca sintetizar tudo o que foi construido e fornecer uma
analise macro do que pode ser extraido do resultado dos experimentos, além de
mencionar as problematicas reconhecidas no trabalho em os possiveis trabalhos
futuros.

- Referéncias: Secdo final que apresenta todas as referéncias utilizadas para embasar o

projeto teoricamente.
15

2.

Fundamentacgdo Teoérica

Neste capitulo serdo apresentados e discutidos os conceitos tedricos que embasam o

presente trabalho.

2.1. Virtualizacao

Virtualizacdo ¢ uma pratica altamente utilizada pelas empresas, e que ganhou ainda
mais for¢ga com o crescimento da computacao em nuvem. Ela consiste em promover a criagao
de uma imagem virtual de uma aplicagdo, fazendo com que essa imagem possa ser usada em
diferentes maquinas e ambientes com a mesma consisténcia. Garantindo assim que o software
tenha a garantia de se comportar igual independentemente de onde seja disponibilizado [32,
42].

Dentro da virtualizagdo, temos diferentes maneiras para a criacdo e gerenciamento
dessas imagens criadas. Uma delas € o uso de um Maquinas virtuais, que ¢ uma representagao
de um computador real, porém em software. Com isso, € possivel simular um novo
dispositivo na sua propria maquina com o seu proprio sistema operacional, mas que nao ira se
comunicar com o hardware. Para existir a comunicagdo com o hardware, existe uma camada
chamada Hypervisor, que € responsavel por fazer o gerenciamento de recursos como podemos
ver na Figura 1 [42].

Uma outra maneira de realizar a virtualizagdo ¢ por meio de containers. Diferente da
maquina virtual que roda o seu proprio sistema operacional, o container simula um sistema
operacional e faz uso de tudo que for possivel da maquina hospedeira, tendo um melhor
aproveitamento de recursos e tornando todo o processo mais leve, como estd sendo mostrado

na Figura 1 [42].

16

Figura 1 [43] compara a virtualizagdo com Maquina virtual e Container

VIRTUALIZAGAO CONTAINER

app | appP app | apP
BiNs/LIBs BiNs/LIBs
. . BINs/LIBs BINs/LIBs
Sistema Sistema
Operacional Operacional Container Container

Maquina Virtual Maquina Virtual

Sistema Operacional

o

Fonte: [43]

2.1.1. Docker

Ao falar sobre Container, ¢ quase que inevitavel falar sobre Docker [43], ferramenta
voltada para o desenvolvimento, implanta¢do e disponibilizagdo remota altamente usada em
ambientes cloud [42]. Docker permite a criagdo de Docker images, que sdo as instancias do
container o qual o Docker estara rodando. Essas imagens possuem o cddigo das aplicacdes, o
runtime bindrio do préprio docker e os arquivos de configuragdo. A partir dessas imagens, o
container ¢ criado e implantado dentro do Docker, que funciona sob a camada do sistema

operacional da maquina do hospedeiro, como ¢ mostrado na Figura 2 [43, 42].

Figura 2 mostra a estrutura de funcionamento de containers com Docker

Containerized Applications

Host Operating System

Fonte: [43, 42]

17

2.1.2. Kubernetes

No ambiente de producdo, ¢ comum se ter diversos containers funcionando, inclusive
para uma mesma aplicagdo, tornando o gerenciamento complexo mesmo com a utilizacao do
Docker. Além do gerenciamento se tornar complicado, existe também o fator escalabilidade
que ¢ buscado mas nao ¢ facil de ser atingido apenas com o uso simples de containers. Para
isso, sdo utilizadas ferramentas de orquestra¢do de containers, sendo a mais popular chamada
de Kubernetes [27, 28].

Kubernetes ¢ uma aplicagdo open source, criada com o objetivo de promover o
gerenciamento de aplicagdes conteinerizadas, além de lidar também com os servigos ao redor
dos containers, como a propria comunicagdo entre eles [45].

Dentro da estrutura do Kubernetes existem uma vasta quantidade de componentes, o
componente que serd mencionado e focado nesse projeto ¢ chamado de Pod. Pod ¢ uma
unidade que possui a capacidade de agrupar contéineres, sendo este a unidade mais atomica
do Kubernetes. O Pod ¢ responsavel por compartilhar recursos entre os contéineres, como
memporia, rede e informagdes sobre a execugao dos contéineres contidos nele [27].

O design do Kubernetes permite a automacao da implantacao das aplicagoes, além de
configuragdes de escalabilidade nativos, fazendo com que possa ser configurado de acordo
com o acesso dos usuarios, por exemplo, evitando que com o aumento do acesso a sua
aplicagdo, ela nao lide com a demanda. Com essa vasta parametrizacdo, Kubernetes torna
mais pratico o processo de gerenciar o ambiente de produgdo, favorecendo assim a qualidade

de a garantia dos servigos conteinerizados que estao sendo disponibilizados [45].

2.2. DevOps

Quando falamos sobre DevOps, podemos afirmar que se trata de um conjunto de
praticas destinadas a reduzir o periodo entre uma alteracdo em um sistema ¢ a mudanga a ser
colocada em producdo, garantindo alta qualidade [9].

O surgimento do DevOps veio em conjunto com as metodologias dgeis, como o Scrum
[6], do qual se utilizou bastante como base na sua criagdo. O DevOps vem pregar a

18

colaboragdo entre times, além da énfase em automatizagdo e do uso de ferramentas que

auxiliam a comunicacdo dinamica entre times da 4area de operagdes e¢ da areca de

desenvolvimento.

Humble e Molesky [10], buscaram definir 4 principios para o DevOps:

e Automacdo: DevOps se baseia em uma automacao completa de build, deploy e testes

buscando alcancar tempos curtos em suas entregas, provendo assim uma atualizacao
constante e expressa que também possibilita o feedback constante dos usuarios finais.
Cultura: Para que o DevOps possa ser realmente implementado, ¢ necessaria uma
mudanca cultural para que a corresponsabilidade seja absorvida pelo time para que
isso possibilite uma real entrega de software com alta qualidade. Com isso, a
responsabilidade para que tudo funcione ¢ de todos, todos sdo responsaveis pelo
codigo escrito.

Métricas: Com a entrega constante, o acompanhamento continuo também vem em
conjunto, e isso possibilita a criacdo de métricas e objetivos, visando a melhoria
continua do software baseado em dados que ele mesmo fornece e que, gracas ao
monitoramento continuo, pode ser coletado e analisado para melhorias assertivas.
Compartilhamento: O compartilhamento deve ser algo geral e em todos os niveis.
Desde compartilhar conhecimento, sobre features por exemplo, ou até mesmo
compartilhar ferramentas e descobertas em potencial. Isso potencializa a integragao da

equipe, fortifica a cultura e incentiva a colaboragdo entre as areas.

A Figura 3 [22] representa um pipeline padréo de DevOps.

Fonte: [22]

Na fig. 3 é mostrado e ciclo infinito utilizado no devops, este ciclo é composto por 8 etapas,

sendo elas:

Plan: Fase de planejamento de um projeto
19

- Code: Fase de codificagdo do projeto

- Built: Fase de construcao da versao codificada do projeto

- Test: Fase de teste e validacao do projeto

- Release: Fase de controle para o langamento do projeto em diversos ambientes

- Deploy: Fase de implantag¢ao do projeto no ambiente principal

- Operate: Fase de entrega do projeto implantado ao cliente

- Monitor: Fase de monitoramento e observacdo do projeto, para analise de erros e

percepcao de potenciais melhorias, para assim voltar ao ponto de planejamento

Compreendendo este ciclo que resume o que prega a cultura DevOps, podemos
associar DevOps em uma area de pesquisa conhecida como Engenharia de Software Continua,
Area esta que foca no desenvolvimento, implantacdo e obten¢io de feedback de maneira

rapida e eficiente do software do cliente [11, 12].

2.2.1. Integracao Continua

Integracdo Continua consiste em uma pratica de desenvolvimento bem estabelecida dentro da
industria de desenvolvimento de software, onde os membros de uma equipe realizam as
integragdes e jungdes constantes de todo trabalho desenvolvido, sendo isso feito até mais de
uma vez em um Unico dia. Essa pratica permite que as empresas tenham releases bem mais
frequentes e curtos, melhorando assim a produtividade e também a qualidade do que foi

produzido.

Fitzgerald e Stol definem as atividades de Integragdo Continua da seguinte maneira:

Um processo normalmente disparado automaticamente que inclui etapas conectadas
entre si, como compilar cddigo, executar testes de unidade e aceitacdo, validar a cobertura de
codigo, verificar a conformidade com o padrio de codigo e criar pacotes de implantagdo.
Embora alguma forma de automacgéo seja comum, a frequéncia também ¢é relevante, pois deve
ser regular o suficiente para garantir um feedback rapido aos desenvolvedores. Finalmente,
qualquer falha de integracdo continua também ¢ um evento importante que pode ter uma série
de cerimdnias e artefatos altamente visiveis para ajudar a garantir que os problemas que levam

a falhas de integrago sejam resolvidos o mais rapido possivel pelos responsaveis. [12]

20

Além disso, essa etapa agrega também o processo de criagdo da nova versao do projeto e teste

das aplicagdes de forma automatizada, tornando essa pratica ainda mais completa. [13].

2.2.2. Entrega Continua

Entrega Continua foca na garantia de que uma aplicacdo estd sempre preparada para ir ao
ambiente de produgdo apds passar por diversas checagens automaticas de qualidade e testes.

A Entrega Continua implementa um conjunto de praticas, por exemplo, a Integracao
Continua, citado anteriormente, ¢ a implementacdo de automagdo para entregar software
automaticamente para um ambiente de producdo. Essa pratica promove uma série de
vantagens, tais qual diminui¢do do risco de um deploy, redu¢do de custos e obtengdo de

feedback dos usuarios com maior frequéncia e rapidez [14].

2.2.3. Implantacido Continua

Implantacdo Continua ¢ uma pratica que foca em garantir que cada pequena alteragdo passe
pela pipeline definida e termine no ambiente de producdo de maneira automatizada. Quando
se fala de Entrega Continua e Implantacdo Continua, no meio académico ndo se tem um
consenso entre suas diferencas e definicdes [12], porém, o uso do Implantagdo Continua
implica diretamente que o Entrega Continua também estd sendo usado, mas o caminho
contrario nao ¢ verdade [15].

A Implantagdo Continua e o Entrega Continua possuem uma diferenca principal e
reconhecida, que ¢ o momento da entrega do software. Enquanto na Entrega Continua a
entrega € constante, fazendo com que o software sempre esteja em um estado de entrega
depois de qualquer mudanca ter sido feita, entretanto, a entrega final ndo ¢ automatizada, ¢
uma entrega manual como uma decisdo com viés de negdcio. Porém, na Implantagdo

Continua esse processo ¢ automatizado.

21

2.3. SRE: Site Reliability Engineering

Segundo Benjamin Treynor Sloss [16], SRE é o que acontece quando vocé€ pede para um
Engenheiro de Software elaborar o design de um time de operagdes. Com o crescimento da
cultura DevOps, ndo s6 a area de Dev precisou se readaptar, mas também a parte de Ops.
Anteriormente, com as divisOes das areas, a comunicagdo entre um Desenvolvedor e um
SysAdmin era rara, além de complicada. Com o incentivo para que as areas cada vez mais se
aproximassem, foi natural que surgisse uma area de intersecdo entre Dev e Ops, alguém que
entendesse ambos os lados para que promovesse uma maior colaboracao.

Tendo isso em mente, o Google iniciou a criagdo de seus times de SRE com o pensamento
mencionado no inicio, causando uma mudancga significativa nas estruturas comuns usadas
anteriormente. Com isso, ao invés de um time inteiro de SysAdmins, os times de SRE

comecaram a ser formados também por Engenheiros de Software.

2.3.1. SRE vs DevOps

Quando falamos de SRE e DevOps, algumas confusdes sdo criadas, principalmente por conta
do mercado de trabalho que comumente intitula vagas para a mesma fun¢do com ambos os
nomes. Entretanto, existem diferengas significativas em suas definigdes.

Quando falamos de DevOps, estamos falando sobre uma cultura, cultura essa proveniente do
Scrum, visando uma mudang¢a na formag¢do de equipes e estrutura interna de uma empresa de
Software. Enquanto SRE ¢ focado no desenvolvimento de praticas métricas para melhorar e
implementar a colaboracao incentivada pelo DevOps [17].

Em resumo, SRE vem para garantir e promover a implementa¢do da cultura do DevOps

2.4. Chaos Engineering

Chaos Engineering ¢ uma estratégia emergente na induastria, com o objetivo de avaliar
a resiliéncia de um sistema distribuido rodando experimentos nesse sistema, enquanto ele esta
em producdo. Esses experimentos podem identificar fraquezas que podem levar a quebra do

sistema caso seja deixada de lado [18].

22

Essa pratica gira em torno de criar hipdteses e rodar experimentos ao seu redor, buscando
confirma-la ou recusa-la. Essa hipotese se refere ao comportamento esperado do sistema, em
um cenario especifico. Em um experimento, se injeta certa sobrecarga ou falhas, que sao
passiveis de acontecer em situagdes reais, para se observar o comportamento do sistema. Essa
observag¢ao ird trazer uma nova perspectiva, além de insights sobre o estado do sistema dentro
da situagdo injetada, podendo assim aferir se a hipotese foi aprovada ou nio.

O argumento utilizado para validar o uso de CE ¢ que para viver em um mundo ndo
confidvel, em que cada vez mais a complexidade dos sistemas cresce e estd passivel de
acontecer qualquer falha seja no proprio sistema ou na infraestrutura que ele faz uso, seria
fazer com que as falhas acontecam de maneira controla e provocada intencionalmente, para
assim se ter resultados dessas falhas e pardmetros para se analisar e auxiliar na busca por
solucdes que previnam esse tipo de acontecimento [41].

Uma grande entusiasta, e também precursora, da pratica ¢ a empresa Netflix,
responsavel por criar algumas ferramentas open source conhecidas como Simian Army [18,
41], voltadas para a inje¢ao de falhas nos ambientes da AWS. A netflix apresentou a primeira
ferramenta, chamada de Chaos Monkey, em 2010 com o objetivo de auxiliar na migracao de
seus servigos de uma infraestrutura fisica para o ambiente cloud [42]. Com o decorrer do
tempo, o time de engenharia da Netflix expandiu ainda mais essas ferramentas langcando
também o Chaos Gorilla e o Chaos Kong, ambas ferramentas para injecao de falhas de
diferentes maneiras na AWS, e essas duas ferramentas se juntaram ao Chaos Monkey

formando o Simian Army [41].

2.5. Four Golden Signals

Quando se fala em DevOps e SRE, ¢ inevitavel falar de monitoramento. Para avaliar a
eficiéncia deste projeto, um dos objetivos foi a definicdo dos indicadores relevantes para
medir a eficiéncia do uso do CE, que podemos considerar a etapa de monitoramento deste
trabalho.

O time de SRE da Google define 4 métricas essenciais para um monitoramento decente [19],
e serdo estas métricas usadas como indicadores para o projeto. Sdo elas:

- Laténcia: O tempo que se leva para realizar uma request

- Trafico: Acompanhamento da demanda que o projeto estd tendo, e o quanto a

aplicagdo consegue lidar com o seu aumento
23

- Erros: A taxa de requests que falham

- Saturacdo: Medida que define o quao disponivel estd a maquina que hospeda o projeto
Esses sao os 4 Golden Signals, e eles serdo usados como indicadores da eficiéncia do CE
neste projeto. O uso dos Golden Signals proporciona um norte para as necessidades de
monitoramento de qualquer projeto, de modo que o uso deles auxilia ndo s6 na metrificacdo
do software enquanto monitorado, mas também na constru¢do do monitoramento ao seu redor,

tal como defini¢des de ferramentas, métodos de coletas dos dados e afins [40].

2.6. Sumario do capitulo

Neste capitulo foram apresentados os principais conceitos que entornam este projeto.
Tendo inicio pela virtualizagdo, tecnologia que da a base para a estrutura do ambiente em
nuvem, mencionando Docker e Kubernetes, que sdo as ferramentas principais neste meio [42].
Em seguida, foi discutido o toépico de DevOps, praticas essenciais para se manter a qualidade
nos ambientes de produg¢do, trabalhando em conjunto com SRE. Além da apresentacdo dos 4
golden signals, que servird de base para as métricas do projeto, guiando assim a coleta de
dados.
No Capitulo em seguida serd abordado a implementacdo do projeto, fazendo uso de
tecnologias, ferramentas e metodologias que possuem base nas apresentadas nesta

fundamentagao.

24

3.

Implementacao

Neste capitulo estara sendo explorado tudo que envolveu a implementagdo do projeto,

passando por tecnologias, ferramentas, decisdes de arquitetura e escolhas pessoais.

3.1. Tecnologias adotadas

O projeto possui 3 componentes basicos, sendo eles: Api, Cloud e Pipeline.

Diferentes tecnologias foram utilizadas em cada um desses componentes, com a
intencdo do melhor aproveitamento, além da praticidade para o desenvolvimento em si de

cada uma dessas etapas.

Ao falar sobre API, sera abordado todo o entorno do componente, partindo de
linguagem, framework e arquitetura. Além disso, também serd mostrado como a aplicagao foi
implementada dentro de um cluster Kubernetes, e o design final da aplicacdo com os recursos

integrados entre si.

Ao falar sobre Cloud, serd possivel ver o design da solu¢do kubernetes integrada com
os recursos criados no ambiente Cloud escolhido, além de explorar como foi feita a integragdo

e os motivos pelos quais cada componente foi escolhido.

Por fim, a Pipeline serd abordada em 3 topicos diferentes, sendo dois deles
ferramentas que foram usadas na pipeline e por ultimo sua estrutura final, dessa maneira, sera
demonstrado a motivag¢do do uso de cada ferramenta e o conjunto final que se fez do resultado

da integragdo dessas ferramentas.

3.1.1. FastAPI

A API foi desenvolvida em FastAPI [8]. Tecnologia j4 mencionada anteriormente pela
sua praticidade no uso e curva de desenvolvimento rapida. Para o projeto, o foco foi em
desenvolver poucas rotas e com pouco processamento, como o objetivo ndo ¢é testar a API em
si, ¢ sim a resiliéncia do ambiente em que ela estd disponibilizada, ndo se fazia necessario

criar algo complexo nesse componente.
25

Para este projeto, foi desenvolvida uma API que faz listas fo do, que funciona como
uma lista de tarefas a qual vocé marca quando tiver finalizado determinada atividade. A

estrutura da api possui os seguintes componentes:

- Main: Arquivo responsavel pela criacao das rotas e controle central da api.
- Database: Arquivo responsavel pela conexdao com o banco de dados.
- Model: Arquivo responsavel pela criagdo da estrutura de dados do to do.

- init: Arquivo python necessario para a linguagem reconhecer como um projeto.

Figura 4 mostra a estrutura final dos arquivo os quais compuseram a api

- api
~ app
__init__.py
database.py

main.py

models.py

Fonte: imagem do autor

Como o objetivo deste trabalho ¢ fazer os testes em um ambiente Kubernetes, a API
deveria estar conteinerizada para ser implantada no cluster. Dado este motivo, foi utilizado
Docker para fazer a geragdo da imagem. Esta imagem gerada permite que a usemos no

container de um pod dentro do cluster kubernetes no qual a aplicagdo ird ser disponibilizada.

Para a aplicacdo desenvolvida, a arquitetura Kubernetes montada teve o objetivo de
ser simploria, focando na demonstragdo do potencial do uso do CE em uma pipeline para
validar a arquitetura e nao na complexidade e exploracao do Kubernetes. A Figura 5 ilustra a

arquitetura criada para a aplicagao.

26

Figura 5 ilustra arquitetura kubernetes deste projeto

f Deployment

;*@ Replica Set

- > od
—_—
Ingress Service

Fonte: imagem do autor

Na Figura 5 conseguimos enxergar todos os componentes Kubernetes usados neste
projeto e como interagem entre si. Primeiro temos o Deployment, componente responsavel
pelo gerenciamento de um grupo de contéineres e sua rede. No Deployment existe um
processo chamado Replica Set, este processo se mantém observando todo e qualquer Pod
contido nele, para que em caso de erro ou queda do pod, ele consiga recriar uma copia o
quanto antes, para evitar com que sua queda tenha impacto no acesso a aplicacdo [47]. Nesta

aplicacgdo foi definido que o nimero de pods que deveriam estar no ar era de apenas 1.

Na criagdo de um Pod s6 ¢ possivel acessa-lo via o IP criado para ele dentro do cluster
Kubernetes no qual ele foi disponibilizado. Para conseguir ter o acesso externo, foram
utilizados dois componentes: Service e Ingress. Como os Pods possuem um ciclo de vida
efémeros, ou seja, eles vém e vao constantemente, se faz necessario alguma maneira que
garanta acesso a aplicag¢do disponibilizada pelos pods mesmo com suas idas e vindas [47]. O
IP criado para o pod nao ¢ fixo dado este ciclo de vida, com isso, o Service ¢ a solucdo para

que se crie um acesso fixo aos pods, mesmo com as constantes mudangas.

Neste projeto, o objetivo era a analise a partir do uso externo ao cluster, dado que a
inten¢do ¢ avaliar o usuario final usando a aplicagdo e a sua experiéncia dentro dos possiveis
problemas simulados com o CE. Por este motivo, a configuracdo utilizada no Service foi a de
Load Balancer, op¢ao voltada para prover o acesso externo do cluster ao pod. J& o Ingress, tal
qual o deployment, ¢ um mecanismo de gerenciamento e agrupamento de services, que visa

facilitar a manipulacdo desses recursos [47]. O seu uso teve o objetivo de simplificar a

27

associagdo entre o Service e um DNS (Domain Name System) atribuido a aplicagdo, para

facilitar os testes.

Com essa arquitetura se faz possivel uma facil integragdo com os recursos usados pelo

Cloud Provider usado no projeto que serd abordado no topico seguinte.

3.1.2. AWS

A AWS ¢ o Cloud Provider mais utilizado do mercado [20], isso foi o fator principal

para sua escolha para esse projeto.

Foi utilizado o Terraform[21], que ¢ uma ferramenta de IAC, para criar e gerenciar toda
infraestrutura necessaria para o projeto na AWS, otimizando o desenvolvimento e permitindo
um maior controle de todos os recursos envolvidos. Sendo esses recursos respectivamente:

Cluster EKS, Load Balancer e DNS no Route53.

Figura 6 representa a relagdo dos recursos da AWS com os do Kubernetes

@
i - e prv—rees

'
User DNS - Route 53 Deployment

@ Replica Set

< o @ -0

Ingress Service

o /

Fonte: imagem do autor

Load Balancer

Na Figura 6 conseguimos observar a estrutura AWS que funciona ao redor dos
componentes Kubernetes criados para a aplicagdo. Todos os componentes estao implantados
dentro do cluster EKS, servico provido pela AWS que busca facilitar a execugdo do

Kubernetes, por ser gerenciado pela propria AWS, sem necessidade do usuario fazer isto.

Como mencionado no topico anterior, o Service da aplicacao foi configurado para uso

do Load Balancer, pois o objetivo era o acesso externo do usuario final. Sendo assim, foi

28

criado um recurso de Load Balancer que foi conectado com o Ingress da Aplicacdo. Neste
Load Balancer foi associado uma regra de roteamento, para que haja a associagdo entre o
DNS registrado no Route53 e a url disponibilizada pelo Load Balancer para acesso externo.
Como foi dito anteriormente, o Ingress foi usado para facilitar essa associagdo do DNS com o
Service, permitindo assim que apds a configuracdo, o usudrio consiga atingir o pod por meio

deste DNS.

O uso do cluster EKS permitiu que houvesse uma integracdo de maneira simples com
a ferramenta definida para a criagdo de pipelines, uma vez que a configuracdo desta

integragdo ¢ feita apenas pela configuragao de uma chave de seguranca.

3.1.3. Github Action

Github Action ¢ uma ferramenta integrada ao Github [37], que permite fazer o uso de
CI/CD em seus proprios repositorios [38]. Quando se trata de CI/CD e gerir pipelines,
diversas ferramentas existem para este objetivo, uma amplamente usada ¢ o Jenkins [39],
ferramenta open source de grande popularidade no segmento. A opc¢do de uso do Github
Action se fez pela sua praticidade, dado que o projeto ja estava no ambiente do repositorio do

Github, a configura¢do de uma outra ferramenta necessitaria de mais tempo.

Para compreender o funcionamento do Github Action ¢ necessario entender sua

estrutura de funcionamento que possui 2 principais estruturas:

- Steps: Steps sdo um conjunto de atividades com o propdsito de executar alguma
fun¢do, sendo ela a execugdo de um script ou a configuragcdo de algum ambiente, por
exemplo.

- Jobs: Jobs sao um conjunto de Steps que deverao ser executados em paralelo ou em
uma determinada sequéncia, como por exemplo ter um job que faz a configuragdo de
um ambiente e apds o término iniciar um job que realiza testes com o ambiente

configurado pelo job anterior.

Na Figura 7 ¢ possivel observar uma representacao da estrutura de steps e jobs em um CI/CD

do Github Actions.

29

Figura 7 representa os componentes de um CI/CD no Github Action

v
JOB JOB
STEP STEP
v v
STEP STEP
v v
STEP STEP

Fonte: imagem do autor

O github actions prové inimeros steps pré-prontos, criados pela comunidade que faz uso da
ferramenta. Dentro do projeto foram utilizados alguns desses steps, para otimizar o processo
de configuracdo, dado que, em uma pipeline ¢ criado uma vm a qual ird executar todos os
comandos definidos. Como sera necessario fazer uso de python, docker ¢ kubernetes neste
projeto, € necessario configurar cada uma dessas ferramentas e servigos. Foram utilizados os

seguintes steps pré-prontos:

- actions/checkout@yv3: Step responsavel por garantir que a vm estd usando o projeto a
partir da raiz da pasta no qual ele esta contido.

- kodermax/kubectl-aws-eks@master: Step responsavel por realizar a instalacdo e
configura¢do do kubectl, ferramenta que permite fazer o uso de comandos Kubernetes
em um cluster como o EKS.

- docker-practice/actions-setup-docker@master: Step responsavel por realizar a
instalacdo e configuragdo do docker na vm.

- actions/setup-python@v2: Step responsavel por realizar a instalagdo e configuraciao do

python na vm.

Além desses steps, existem outros que foram criados porém todos foram feitos a partir da

necessidade do projeto. Cada um dos Jobs serd detalhado posteriormente.
30

3.1.4. Litmus Chaos

O Litmus Chaos ¢ uma plataforma Open Source de Chaos Engineering no ambiente
Cloud. Eles proveem um hub de experimentos que facilita a implementacao e incentiva a
comunidade DevOps e SRE a compartilharem os seus, promovendo organicamente um maior

nimero de usudrios desta pratica.

Além do Litmus Chaos, outras plataformas existem para o mesmo objetivo, como o
Chaos Monkey e Chaos Kong da Netflix [18], entretanto, para utilizar essas alternativas uma
configuragdo maior € necessaria de ser realizada no ambiente, pois elas funcionam com outras
ferramentas e ndo sozinhas. Este foi o motivo principal pelo qual foi escolhido o Litmus
Chaos, por ser uma ferramenta de fécil configuracdo permite que maior tempo possa ser

dedicado a andlise e realizagdao dos experimentos, ao invés da ambientacao.

No hub, existem diversos experimentos que podem ser aplicados diretamente no

cluster Kubernetes, para o projeto serdo utilizados 2:

- pod-network-latency: Este experimento consiste em interromper a conectividade de
rede dos pods do Kubernetes. O experimento pode injetar atrasos de rede aleatorios
nos pods de réplica do aplicativo. Esse indo de encontro a métrica de laténcia,

- pod-cpu-hog: Esse experimento consiste em interromper o estado dos recursos do
Kubernetes. O experimento pode injetar um pico de CPU em um n6 em que o pod do

aplicativo estd agendado. Esse indo de encontro a métrica de Saturagao.

Assim como algumas ferramentas mencionadas anteriormente, o Litmus Chaos também
possui steps pré-prontos no github actions para uso direto [48], porém, no momento que este
projeto foi desenvolvido eles apresentavam certa instabilidade, o que dificultou o uso e
configura¢do. Com isso, foi decidido fazer um uso direto utilizando os arquivos yaml, que sdo
usados para recursos kubernetes, configurando individualmente cada um desses experimentos
e aplicando no cluster na etapa que fosse necessaria. Dessa maneira, a ferramenta teve o

comportamento estdvel e sem necessidade de configuragdes extras para contornar problemas.

31

3.1.5. Estrutura da pipeline

Ao criar uma pipeline deve-se pensar em uma estrutura sequencial, onde cada uma de
suas operagdes automatizadas possa ser considerada uma parte de entrega do software e

também uma parte que garante a sua qualidade [36].

Cada pipeline deve se adaptar ao projeto no qual ird atuar, sendo cada passo
configurado para isto. No projeto em questdo, temos quatro necessidades basicas:
Configuracdo do ambiente, realizacdo dos experimentos, coleta de dados gerados nos

experimentos e limpeza do ambiente ap0s a realizagdo dos experimentos.

Tendo isso definido, a pipeline para o projeto se mostrou eficiente tendo 6 passos.
Sendo desses passos 1 responsavel pela configuragdo do ambiente, 4 pelos experimentos e
coleta de dados, o ultimo responséavel pela limpeza do ambiente apds os experimentos. Na
Figura 6 podemos observar a estrutura da pipeline, com cada um dos passos na sequéncia

determinada.

Figura 8 representa a estrutura da pipeline final criada para o projeto

Setup-cluster » Chaos-Latency » Chaos-Saturation » Chaos-Error » Chaos-Traffic » Clean-up-Cluster

Fonte: imagem do autor
Ao observar cada um dos passos separadamente, as seguintes tarefas sao realizadas::

- Setup-cluster: Etapa para realizar a instalagdo do Litmus Chaos no cluster e dos
experimentos que serdo realizados.

- Chaos-Latency: O primeiro experimento realizado ¢ o Chaos injetado na laténcia. E
utilizado o experimento do Litmus Chaos para causar uma variacao brusca da laténcia
no pod da aplicacdo. No momento que esse experimento se inicia, se dispara a coleta
da laténcia, utilizando a ferramenta wrk[24], ferramenta utilizada para fazer
benchmark HTTP, com ela ¢ coletado a laténcia média da aplicag@o no periodo em que
o experimento estd ativo, apoOs isso esse resultado € adicionado na planilha para
melhor visualizagao. Apds subir os dados para a planilha, o pod ¢ resetado para ficar

pronto para o proximo experimento.

32

- Chaos-Saturation: Segundo experimento realizado ¢ o Chaos injetado no consumo de
recursos da CPU do pod da aplicagdo. No momento que esse experimento se inicia, se
dispara a coleta do tempo de resposta das requisi¢des usando um script proprio em
python e logo apos o fim adicionando os dados na planilha. Apds subir os dados para a
planilha, o pod ¢ resetado para ficar pronto para o proximo experimento.

- Chaos-Error: Terceiro experimento realizado é um teste de estresse em um sO
endpoint. Esse teste de estresse foi feito utilizando um script em python fazendo uso
da 1ib locust, ferramenta que ¢ voltada para load testing em APIs. Ao fim do
experimento o resultado vai para planilha. Apds subir os dados para a planilha, o pod ¢
resetado para ficar pronto para o proximo experimento.

- Chaos-Traffic: Quarto e ultimo experimento realizado ¢ semelhante ao teste de
estresse anterior, porém, ao invés do foco ser em apenas um endpoint, ele ¢ feito de
diversos endpoints a0 mesmo tempo, também fazendo uso de um script python que faz

uso do locust. Ao fim do experimento os resultados vao para planilha.

- Clean-up-Cluster: Ao fim dos experimentos, os recursos envolvidos sao deletados.

3.2. Sumario do capitulo

Este capitulo teve como objetivo mostrar como foi pensado e executado a
implementagdo do projeto desenvolvido neste trabalho e como as ferramentas foram

integradas entre si.

Foi mostrado como a API desenvolvida foi disponibilizada em um cluster EKS, e
como foi montada a arquitetura dos recursos do proprio kubernetes e também do Cloud
Provider usado, a AWS. Além disso, também foi abordado as ferramentas usadas para a
pipeline e parte dos experimentos do CE, sendo essas o Litmus Chaos e o Github Actions
respectivamente. Foi apresentado cada um dos passos definidos na pipeline € o motivo para a

existéncia de cada um.

Dito isso, no proximo capitulo serd abordada a fase de experimentos que foram
aplicados diretamente nos recursos apresentados neste capitulo. Serd apresentado a construcao
de cada experimento e os dados coletados em sua execugdo. Além disso, serd apresentada

uma analise referente aos dados coletados em cada um dos experimentos.

33

Experimentos e Analise

Nesta se¢do sera apresentado individualmente cada experimento e os dados coletados para
fins de andlise. Para cada experimento sera apresentado a coleta de dados sem o
experimento do Chaos estar em andamento ¢ com o experimento em andamento, para

haver uma comparagao.

4.1. Experimentos

Para criagdo dos experimentos foi utilizada a metodologia GQM [34, 35], que traz
uma estrutura top-down para proporcionar a criagdo de métricas direcionadas a um objetivo.

Em cada um dos experimentos sera apresentado a estrutura GQM que guiou sua construgao.

4.1.1. CHAOS-LATENCY

Seguindo os Golden Signals, o primeiro a ser analisado foi a laténcia. Quando se fala
de resiliéncia de aplicagdes de software de maneira direta se fala sobre a capacidade de um
software falhar e, ainda assim, seguir funcionando [46]. Seguindo essa premissa, qual o
objetivo de se analisar laténcia de uma aplicagdao no contexto de resiliéncia? A laténcia ¢
responsavel pelo tempo de processamento da informag¢do que esta sendo recebida pela
aplica¢do. Sendo assim, uma laténcia estavel ¢ um indicativo de que a aplicagdo ¢ capaz de
responder ao usuario, mesmo em casos de erro, de maneira eficiente e ndo afetar a experiéncia
do usuério. Dito isso, o objetivo deste experimento foi definido como: Garantir o tempo de

resposta estavel para o usudrio final.

Para analisar o comportamento da aplicagdo dado um pico de laténcia € necessario
provocar um problema na rede a qual a aplicacdo faz uso. Neste caso, foi usado o Litmus
Chaos, mencionado no capitulo anterior, para ajudar na inje¢do da falha no cluster. O Litmus
Chaos fornece alguns experimentos relacionados a rede, um deles ¢ chamado
pod-network-latency, j& mencionado anteriormente. Com ele se faz possivel inserir atrasos e

interrupgdes na rede utilizada pelos pods.

Dado que ja se tem o objetivo, o que deve ser provocado e como provocar esse

acontecimento, para finalizar ¢ necessario coletar o tempo de resposta da aplica¢do enquanto a

34

rede dos pods esta sofrendo a injecdo de falhas, assim sera possivel analisar se mesmo com as
falhas a aplicagdo mantém o comportamento esperado, ndo tendo picos no tempo de resposta.
Para isso foi utilizado a ferramenta wrk2, j& mencionada no capitulo anterior. Com ela foi
possivel fazer a coleta do tempo de resposta no decorrer de 5 minutos para poder avaliar se

houve, ou ndo, diferenca no comportamento da aplicacao.
Sendo assim, ao montar o GQM para este experimento, obtemos a seguinte defini¢ao:

e (Goal: Garantir um tempo de resposta estavel para o usuario final.
e Question: Em um aumento temporario da laténcia nos pods, o usudrio ira ter
um acréscimo do tempo de resposta?

e Metric: Tempo médio de resposta

Apos essa defini¢do, tudo foi executado e os seguintes dados foram gerados para analise:

Sem Chaos 0,051s 0,050s 0,051s 0,050s 0,052s

Com Chaos 1,05s 1,14s 1,14s 1,14s 1,14s

Cada coluna se refere a uma coleta diferente, cada uma dessas informagdes corresponde a
laténcia média em um periodo de 1 minuto. E possivel ver o aumento da laténcia gritante no

momento em que o experimento estd sendo executado.

4.1.2. CHAOS-SATURATION

\

Em seguida vamos a saturacdo. A saturagdo pode ser interpretada como diferentes
métricas dentro dos Golden Signals, mas geralmente estdo relacionadas aos recursos da
maquina a qual estd rodando a aplicagdo. Neste caso foi decidido usar a CPU como alvo dessa
métrica, dado que a CPU tem relagdo direta com o processamento das informagdes em
qualquer aplicagdo. Dado que ao disponibilizar uma aplicagdo em um cluster kubernetes um
dos parametros passados para a definicdo de recursos ¢ CPU, ¢ interessante avaliar se o
recurso alocado foi suficiente para a aplicacdo e sua demanda, sendo assim, o objetivo que se

tem com isso ¢: Garantir que uma crescente no uso de memoria ndo torne a aplicagdo lenta.

Para analisar como a aplicagdo responderd em um pico de consumo da CPU ¢
necessario provocar esse pico. Para isso, novamente se fez uso do Litmus Chaos, que ja fora

35

mencionado, para injetar o consumo exacerbado da CPU. Um dos experimentos fornecidos
pelo Litmus Chaos ¢ o pod-cpu-hog, que nos permite fazer com que a cpu da aplicagdo

definida tenha um pico no seu consumo em determinado pod.

Apos a definigdo do objetivo e da provocagdo necessdria para gerar a falha, ¢
necessario definir a métrica e coletar este dado. A CPU estd ligada diretamente com o
processamento de informagdes realizado pela aplicacdo. Quando se fala de processamento de
informagdes, existe o tempo que a aplicacdo leva para entender o que esta sendo requisitado
para ela, como mencionado no topico anterior esse tempo ¢ a laténcia. Sendo assim, nesse
experimento, serd coletado o tempo médio de laténcia da aplicacao no decorrer de 5 minutos
de injecao de falha, pois o tempo de laténcia nos indica como a aplicagdo esta se comportando
no processamento das informacgdes recebidas, em caso de subida no momento de um maior
consumo do cpu pode ser um indicio de que o CPU definido para aplicagao ndo € suficiente e

nao ¢ escalavel.
Dito isso, ao montar o GQM para este experimento, obtemos a seguinte defini¢ao:

e Goal: Garantir que o pico de uso de memoria ndo torne a aplicacao lenta
e Question: Dado um pico de consumo de meméria em parte dos pods, a laténcia
da aplicagao ird subir?

e Metric: Tempo médio de laténcia

Ap6s essa definicdo, tudo foi executado e os seguintes dados foram gerados para analise:

Sem Chaos 0,486829262 0,40380679 0,397924899 0,395656465

Com Chaos 24,30273714 24,59412916 44,81050761 51,06785581

Cada linha se refere a uma coleta sequencial, ao final de uma requisi¢do a outra logo foi
executada e assim por diante, coletando o tempo de resposta de cada uma delas. Fica claro o

aumento significativo do tempo de resposta da aplicagcdo durante o experimento.

4.1.3. CHAOS-ERROR

O terceiro ponto analisado foi o sinal referente ao erro. A taxa de erros de uma
aplicagdo web deve ser analisada e capturada de diferentes formas, indo de analisar o codigo

36

HTTP até checar o contetido da resposta da requisi¢do [19]. Para analisar esse sinal neste
trabalho foi decidido observar o codigo HTTP das requisi¢des e a consisténcia dessas
respostas, dado que com um alto indice de requisi¢des idénticas para um endpoint, a resposta
deve se manter constante preservando o comportamento da aplicagdo. Sabe-se que ¢
improvavel que as respostas sempre serdo sucesso, tanto ¢ que o Chaos Engineering se baseia
neste fato, pois a falha ¢ algo que ndo deve ser evitado mas sim ser preparado para lidar com
ela [29]. Tendo isso em mente, o objetivo definido foi: Garantir confiabilidade do sistema
mantendo uma taxa de erros http abaixo de 20% do total das requisi¢des. Em diversos
sistemas e projetos, a taxa de sucesso que se busca € por volta de 99%, esse valor busca ser
definido com o usudrio do sistema em questdo, dado que esse valor ¢ o indicador que o cliente
julga aceitdvel perante o uso da aplicagdo. Como este projeto estad usando uma aplicagdo
simples, foi decidido deixar a taxa de sucesso mais baixa, levando em conta que o resultado

ainda assim nos mostrard um indicio do que se estd comprovando ou nao.

Para avaliar a porcentagem de erros da aplica¢do dentro do nimero de requisi¢des €
preciso criar antes o mecaniSmo que ird promover esses potenciais erros. Para isso foi
utilizado a lib locust, ferramenta apresentada em um capitulo anterior, que nos auxilia na
criacdo de scripts para obter um pico de requisi¢des em endpoints definidos. Com isso, se faz

possivel avaliar a consisténcia das respostas da aplicacdo em um alto indice de requisigdes.

Sendo assim, foi realizada a coleta desses dados a partir de uma planilha, gerada pela
propria lib locust, que permitiu fazer a andlise dos dados coletados, dando foco na

porcentagem dos erros no decorrer de 5 minutos com um numero de requisi¢des crescente.
Dito isso, ao montar 0 GQM para este experimento, se obtém a seguinte definigdo:

e (Goal: Garantir confiabilidade do sistema tenha uma taxa de erros http abaixo
de 20% do total das requisi¢des

e Question: Em um pico de requisi¢des, a aplicagdo continuard a responder com
sucesso a maioria dessas?

e Metric: Porcentagem de erros http

37

Ap6s essa definicdo, tudo foi executado e os seguintes dados foram gerados para analise:

Requests/s Falhas/s Total de Requests Total de falhas
57.900.000 6.200.000 12755 2717
108.900.000 29.200.000 12900 2825
118.700.000 44.300.000 12919 2825
106.700.000 45.300.000 12960 2825

Cada linha se refere a um certo numero de requisi¢des realizadas para o mesmo endpoint, que
foi crescendo de maneira sequencial controlado pelo script. E possivel ver que ao chegar em
um namero alto de requisi¢des por segundo, a aplicagdo comega a responder com erros uma
certa porcentagem das requisi¢des, ficando na média de 20% das respostas sendo erro, o que é

um numero muito significativo e no limite do objetivo definido.

4.1.4. CHAOS-TRAFFIC

Por ultimo foi analisado o sinal de trafego. O trafego ¢ um sinal que muda de acordo
com o tipo de aplicacdo, dado que cada software tem sua demanda especifica. No caso deste
projeto, a aplicacdo ¢ web, entdo a demanda ¢ referente a requisicdes HTTP por segundo. A
aplica¢do deve ser capaz de lidar com uma grande quantidade de requisi¢des por segundo sem
que isso impacte em sua performance. Neste caso, a percepcdo de mudanca na performance
por parte do usuario seria o tempo de resposta, dado que quanto mais lenta a aplicacdo, mais
demorada a resposta chega no usuario. Dito isso, o objetivo definido para este experimento
foi: Garantir que o aumento no nimero de requisi¢des por segundo ndo impactem no tempo

de resposta.

Para promover um pico de requisi¢des foi feito o uso da lib locust, j4 mencionada
anteriormente. Nela foi montado um script apontando para diferentes endpoints na aplicagao
em loops, para manter um alto indice de requisi¢cdes por segundo. A locust ja fornece uma
interface que cria gréaficos voltados para o tempo de resposta ao longo do teste, facilitando

assim a analise dos dados coletados.

38

Dito isso, ao montar 0 GQM para este experimento, obtemos a seguinte definigao:

e (Goal: Garantir que o aumento no nimero de requisi¢des nao impacte no tempo
de resposta

e Question: Em um pico de requisi¢des, o usudrio ira ter um acréscimo do tempo
de resposta?

e Metric: Tempo médio de resposta

Ap6s essa definicdo, tudo foi executado e os seguintes dados foram gerados para analise:

Figura 9 apresenta o grafico do tempo de resposta do experimento

Response Times (ms)

Fonte: imagem do autor

Na Figura 6 podemos observar a variacdo do tempo de resposta ao longo de 7 minutos.
Nesse periodo de tempo o nimero de requisi¢des por segundo e de usudrios simulados
subiram de maneira automatizada, como definido no script, atingindo um pico de 1000
usuarios e 150 mil requisi¢des por segundo. E claramente perceptivel como o acréscimo no
decorrer do tempo fez com que a média do tempo de resposta obtivesse uma variagdo

constantemente, atingindo picos de 60000ms.

4.2. Analise

Baseado nos dados coletados em cada um dos experimentos conseguimos enxergar
como essa aplicacdo de teste ndo estaria pronta para um ambiente de producdo. Cada um dos
experimentos do Chaos conseguiu mostrar com diferentes dados como essa aplicagdo, mesmo
estando em um ambiente propicio para escalabilidade, que ¢ o Kubernetes, ndo esta projetada

para ser escalavel.

39

Quando falamos de resiliéncia, nos referimos sempre a uma aplicagdo que consegue se
manter disponivel mesmo em ambientes conturbados, entretanto, para isso poder ser garantido
¢ necessario realizar as devidas checagens antes de um possivel deploy em produgdao. Com
esta andlise ¢ possivel perceber a relevancia que o uso do Chaos Engineering pode
proporcionar quando utilizado ndo de maneira isolada, mas sim como parte do processo
incluido no proprio pipeline de testes da aplicacdo, para uma checagem e garantia mais

robusta de qualidade.

40

5.

Conclusoes e Trabalhos Futuros

5.1. Contribuicoes

Ao fim deste trabalho ¢ possivel concluir que o uso do Chaos Engineering em uma
pipeline de entrega continua pode contribuir para a garantia de qualidade de aplicagdes que
fazem uso do Kubernetes e de infraestruturas no ambiente da cloud. Foi possivel enxergar as
falhas da aplicagdo simulando cenarios cadticos, mas possiveis, buscando validar a resiliéncia

da aplicacdo antes de ir para um ambiente de produgao.

Avaliando os 4 Golden Signals que a Google nos d4 como pontos chave para um
monitoramento, foi possivel coletar informacdes de diferentes tipos que se complementam ao
final dos experimentos, trazendo uma analise mais completa da aplicagdo em si. Com isso,

podemos dizer que o uso de CE enriquece a esteira de entrega continua.

5.2. Problematicas

No decorrer do desenvolvimento do projeto, uma das principais complicagdes que foi
enfrentado foi o uso de diferentes ferramentas para cada um dos cendrios de Chaos. Esse
acontecimento aumentou a complexidade da implementacdo além de dificultar a analise dos
dados coletados, levando em conta que ndo vinham de uma fonte Unica e com a mesma

estrutura.

Além disso, por ser uma aplicagdo muito simploria a qual esta sendo utilizada para
avaliar a infraestrutura na qual foi implementada, ela ndo foi projetada para fazer o melhor
uso dos recursos do Kubernetes como sua premissa. Esse fato pode fazer com que alguns dos
resultados causados pelos experimentos sejam desproporcionais, ainda que evidenciados, de

um caso mais real.

41

5.3. Trabalhos futuros

Para trabalhos futuros, ¢ interessante fazer a avaliacdo de uma aplicagao mais robusta
que faca uso de mais recursos que o Kubernetes fornece, e com isso fazer experimentos mais

complexos validando outros pontos de avaliagdo e ndo apenas os 4 Golden Signals.

42

6.

Bibliografia

[1] “Gartner predicts the futures of Cloud Computing and Edge Infrastructure”. Gartner.
Disponivel em:
https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-inf
rastructure. Acesso em 10 de fevereiro de 2022

[2] “Cloud Shift Impacts All IT Markets”. Gartner. Disponivel em:
https://www.gartner.com/smarterwithgartner/cloud-shift-impacts-all-it-markets. Acesso em 10
de fevereiro de 2022

[3] “Falha na nuvem gera instabilidade em Amazon, iFood e Disney+”. Folha de Sao Paulo.
Disponivel em:
https://www].folha.uol.com.br/tec/2021/12/falha-na-nuvem-gera-instabilidade-em-amazon-if
ood-e-disney.shtml. Acesso em 14 de fevereiro de 2022

4] “Top computer languages". Disponivel em:
https://statisticstimes.com/tech/top-computer-languages.php. Acesso em 15 de junho de 2022
[5] “Django makes it easier to build better web apps more quickly and with less code”.
Disponivel em: https://www.djangoproject.com. Acesso em 15 de junho de 2022.

[6] “Web development drop at a time”. Disponivel em:
https://flask.palletsprojects.com/en/2.2.x/. Acesso em 15 de junho de 2022.

[7] “O que ¢ um microframework?”. Disponivel em:
https://www.treinaweb.com.br/blog/o-que-e-um-micro-framework. Acesso em 15 de junho de
2022.

[8] “FastAPI framework, high performance, easy to learn, fast to code, ready for production”.
Disponivel em: https://fastapi.tiangolo.com/. Acesso em 15 de junho de 2022.

[9] Len Bass, Ingo Weber, e Liming Zhu. 2015. DevOps: A Software Architect’s Perspective.
Addison-Wesley, New York.

[10] Humble, J. , Molesky, J. , 2011. Why enterprises must adopt devops to enable
Continuous Delivery. Cutter IT J. 24 (8), 612 .

[11] Jan Bosch. 2014. Continuous Software Engineering: An Introduction. Springer
International Publishing, Cham, 3—13.

[12] Brian Fitzgerald e Klaas-Jan Stol. 2017. Continuous software engineering: A roadmap

and agenda. Journal of Systems and Software 123 (jan 2017), 176—189.

43

https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-infrastructure
https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-cloud-and-edge-infrastructure
https://www.gartner.com/smarterwithgartner/cloud-shift-impacts-all-it-markets
https://www1.folha.uol.com.br/tec/2021/12/falha-na-nuvem-gera-instabilidade-em-amazon-ifood-e-disney.shtml
https://www1.folha.uol.com.br/tec/2021/12/falha-na-nuvem-gera-instabilidade-em-amazon-ifood-e-disney.shtml
https://statisticstimes.com/tech/top-computer-languages.php
https://www.djangoproject.com
https://flask.palletsprojects.com/en/2.2.x/
https://www.treinaweb.com.br/blog/o-que-e-um-micro-framework
https://fastapi.tiangolo.com/

[13] M. Leppénen et al., “The highways and country roads to Continuous Deployment,”
IEEE Softw., vol. 32, no. 2, pp. 64-72, Mar. 2015.

[14] Lianping Chen. 2015. Continuous Delivery: Huge Benefits, but Challenges Too. IEEE
Software 32, 2 (mar 2015), 50-54.

[15] J. Humble, e D. Farley, Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation, 1st ed. Reading, MA, USA: Addison-Wesley, 2010.

[16] “Google’s Approach to Service Management: Site Reliability Engineering”. Disponivel
em: https://sre.google/sre-book/introduction/. Acesso em 12 de junho de 2022.

[17] “SRE vs DevOps: What 's The Difference?”. Disponivel em:
https://www.bmc.com/blogs/sre-vs-devops. Acesso em 14 de junho de 2022.]

[18] Basiri, A., Hochstein, L., Jones, N., Tucker, H. ‘““Automating chaos experiments in
production,” 2019, arXiv:1905.04648. [Online]. Disponivel em:
http://arxiv.org/abs/1905.04648. Acesso em 10 de junho de 2022.

[19] “Monitoring distributed systems”. Disponivel em:
https://sre.google/sre-book/monitoring-distributed-systems/. Acesso em 15 de junho de 2022.
[20] “Cloud infrastructure services vendor market share worldwide from 4th quarter 2017 to
Ist quarter 2022”. Disponivel em:
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-sh
are-vendor/. Acesso em 26 de agosto de 2022.

[21] “Automate Infrastructure on Any Cloud”. Disponivel em: https://terraform.io. Acesso em
10 de junho de 2022.

[22] “Criacao de pipelines”. Disponivel em:
https://www.logicus.com.br/criacao-de-pipelines/. Acesso em 12 de junho de 2022.

[23] M. Shahin et al., “Continuous Integration, Delivery and Deployment”IEEE Softw., vol 5,
pp- 3909-3943. Mar. 2017.

[24] “Modern HTTP benchmark tool”. Disponivel em: https://github.com/wg/wrk. Acesso em
20 de agosto de 2022.

[25] Megargel, A., Shankararaman, V., Walker, D.K. (2020). “Migrating from Monoliths to
Cloud-Based Microservices: A Banking Industry Example. In: Ramachandran, M., Mahmood,
Z. (eds) Software Engineering in the Era of Cloud Computing. Computer Communications
and Networks. Springer”

[26] Tosatto, A., Ruiu, P., & Attanasio, A. (2015). Container-Based Orchestration in Cloud:
State of the Art and Challenges. 2015 Ninth International Conference on Complex,

Intelligent, and Software Intensive Systems.
44

https://sre.google/sre-book/introduction/
http://arxiv.org/abs/1905.04648
https://sre.google/sre-book/monitoring-distributed-systems/
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/#:~:text=In%20the%20first%20quarter%20of,with%20eight%20percent%20market%20share
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/#:~:text=In%20the%20first%20quarter%20of,with%20eight%20percent%20market%20share

[27] 2021. Kubernetes: Production-Grade Container Orchestration. Disponivel em:
https://kubernetes.io/. Acesso em 9 de setembro de 2022.

[28] “The true cost of Kubernetes: People, Time and Productivity”. Disponivel em:
https://www.koyeb.com/blog/the-true-cost-of-kubernetes-people-time-and-productivity.
Acesso em 9 de setembro de 2022.

[29] “Principles of Chaos Engineering”. Disponivel em: https://principlesofchaos.org/. Acesso
em 9 de setembro de 2022.

[30] “Why Large Organizations Trust ~ Kubernetes”. Disponivel em:
https://tanzu.vmware.com/content/blog/why-large-organizations-trust-kubernetes. Acesso em
9 de setembro de 2022.

[31] YaleYu, H. Silveira e M.Sundaram,“A microservice based reference architecture model
in the context of enterprise architecture,” 2016 IEEE Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC).

[32] H. Khazaei, C. Barna, N. Beigi-Mohammadi e M. Litoiu, “Efficiency Analysis of
Provisioning Microservices,” 2016 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Luxembourg City, 2016, pp. 261-268.

[33] Malhotra L., Agarwal D and Jaiswal A., “Virtualization in Cloud Computing”, Journal of
Information Technology and Software Engineering, 2014, 4:2.

[34] Basili, V. e Rombach, D. 1988. “The TAME project: Towards
improvement-oriented software environments.” , IEEE Trans. Softw. Eng. 14, 6, 758 —773.
[35] Basili, V. 1994. “GQM approach has evolved to include models.”, IEEE Softw. 11, 1,
8.

[36] Rafal Leszko. 2017. Continuous delivery with Docker and Jenkins : delivering software
at scale. Packt Publishing, Birmingham, UK.

[37] “Github: Where the world builds software”, Disponivel em: https://github.com/, Acesso
em 14 de setembro de 2022.

[38] A. Decan, T. Mens, P. R. Mazra e M. Golzadeh, “On the Use of GitHub Actions in
Software Development Repositories”, 38th IEEE International Conference on Software
Maintenance and Evolution (ICSME), Limassol, Cyprus, 2022

[39] “Build great things at any scale”, Disponivel em: https://www.jenkins.io/, Acesso em 14
de setembro de 2022.

[40] “Golden Signals: Why are they so important to DevOps/SRE teams”, Disponivel em:
https://iamondemand.com/blog/the-golden-signals-why-theyre-so-important-to-devops-sre-tea

ms/ , Acesso em 15 de setembro de 2022.
45

https://www.koyeb.com/blog/the-true-cost-of-kubernetes-people-time-and-productivity
https://github.com/
https://www.jenkins.io/
https://iamondemand.com/blog/the-golden-signals-why-theyre-so-important-to-devops-sre-teams/
https://iamondemand.com/blog/the-golden-signals-why-theyre-so-important-to-devops-sre-teams/

[41] “Chaos Engineering: the history, principles and practice”, Disponivel em:
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-p
ractice, Acesso em 15 de setembro de 2022.

[42] Agarwal A., Rao S. K. S. e Mahendra B. M, 2020, “Comprehensive review of
virtualization tools”, International Research Journal of Engineering and Technology (IRJET),
7, 6.

[43] “Virtualizacao X Container”, Disponivel em:
https://www.funcao.com.br/2019/01/11/virtualizacao-x-container/, Acesso em 17 de setembro
de 2022.

[44] “Develop Faster. Run Anywhere”, Disponivel em: https://www.docker.com/, Acesso em
17 de setembro de 2022.

[45] Dewi, L. P., Noertjahyana, A., Palit, H. N. e Yedutun, K, 2019, “Server Scalability Using
Kubernetes”, 4th Technology Innovation Management and Engineering Science International
Conference (TIMES-iCON). doi:10.1109/times-icon47539.2019.9024501

[46] “Implementar aplicativos resilientes”, Disponivel em:
https://learn.microsoft.com/pt-br/dotnet/architecture/microservices/implement-resilient-applic
ations/, Acesso em 22 de setembro de 2022.

[47] “Tutoriais | Kubernetes”, Disponivel em: https://kubernetes.io/pt-br/docs/tutorials/,
Acesso em 26 de setembro de 2022.

[48] “Github actions to trigger chaos on your review apps”, Disponivel em:

https://github.com/litmuschaos/github-chaos-actions, Acesso em 26 de setembro de 2022.

46

https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice
https://www.docker.com/
https://learn.microsoft.com/pt-br/dotnet/architecture/microservices/implement-resilient-applications/
https://learn.microsoft.com/pt-br/dotnet/architecture/microservices/implement-resilient-applications/
https://kubernetes.io/pt-br/docs/tutorials/
https://github.com/litmuschaos/github-chaos-actions

	4f8c1a0e71dcc19c7cabaf3c351138725258f75ece8575a52db710d0b3c3d453.pdf
	4f8c1a0e71dcc19c7cabaf3c351138725258f75ece8575a52db710d0b3c3d453.pdf
	4f8c1a0e71dcc19c7cabaf3c351138725258f75ece8575a52db710d0b3c3d453.pdf

