
Universidade Federal de Pernambuco
Centro de Informática

Bacharelado em Ciência da Computação

Análise de soluções de rastreamento open source no contexto de aplicações
baseadas em microsserviços

Trabalho de Graduação

Matheus de Andrade Lima

Recife
2022

Universidade Federal de Pernambuco

Centro de Informática

Matheus de Andrade Lima

Análise de soluções de rastreamento open source
no contexto de aplicações baseadas em

microsserviços

Trabalho de Conclusão de Curso apresentado no
curso de Bacharelado Ciência da Computação do
Centro de Informática da Universidade Federal de
Pernambuco como requisito parcial para obtenção
do grau de Bacharel em Ciência da Computação.

Orientador: ​Vinicius Cardoso Garcia

Recife
2022

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Lima, Matheus de Andrade.
 Análise de soluções de rastreamento open source no contexto de aplicações
baseadas em microsserviços / Matheus de Andrade Lima. - Recife, 2022.
 50 : il., tab.

 Orientador(a): Vinicius Cardoso Garcia
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Ciências da Computação - Bacharelado,
2022.

 1. sistemas distribuídos. 2. microsserviços. 3. observabilidade. 4.
rastreamento distribuído. I. Garcia, Vinicius Cardoso . (Orientação). II. Título.

 000 CDD (22.ed.)

Este trabalho é dedicado aos meus familiares,
amigos e professores.

2

AGRADECIMENTOS

Primeiramente agradeço a Deus pelos dons que me deu nesta existência que

serviram na realização deste projeto.

Agradeço aos meus pais por todo o esforço investido na minha educação.

Agradeço à minha namorada que sempre esteve ao meu lado durante o meu

percurso acadêmico.

Aos meus colegas de turma, por compartilharem comigo tantos momentos de

descobertas e aprendizado e por todo o companheirismo ao longo deste

percurso.

Sou grato pela confiança depositada na minha proposta de projeto pelo meu

professor Vinícius Garcia, orientador do meu trabalho. Obrigado por me

manter motivado durante todo o processo.

Por último, quero agradecer também à Universidade Federal de Pernambuco

e a todo o seu corpo docente.

3

RESUMO

Devido a ascensão da internet e o crescimento elevado do número de usuários, a
engenharia de software foi obrigada a buscar arquiteturas mais resilientes. Uma das
soluções encontradas foi criar sistemas pequenos, independentes e com contexto
bem definido que se comunicam através da rede, padrão arquitetural que
conhecemos como microsserviços. Entretanto, este padrão arquitetural traz consigo
uma dificuldade maior em relação a observabilidade do sistema. Entre as
dificuldades podemos citar o rastreamento, encontrar o caminho que uma
determinada chamada fez dentro do sistema, pois nesta abordagem há vários
sistemas interagindo entre si. Sendo assim, o objetivo deste projeto é facilitar a
escolha de ferramentas de rastreamento por meio de uma comparação dos dois
principais produtos open source disponíveis para a plataforma JVM. Além disso,
deixar disponível um repositório com um projeto exemplo de forma que sirva de
referência para que desenvolvedores possam consultar a configuração e comparar
os benefícios de cada ferramenta, fazendo assim a melhor escolha pro seu
contexto.

Palavras-chave: sistemas distribuídos, microsserviços, observabilidade,

rastreamento distribuído.

4

ABSTRACT

Due to the rise of the internet and the high growth in the number of users, software
engineering was forced to look for more resilient architectures. One of the solutions
found was to create small, independent systems with a well-defined context that
communicate over the network, an architectural pattern we know as microservices.
However, this architectural pattern brings with it a greater difficulty in relation to the
observability of the system. Among the difficulties, we can mention the tracing,
finding the path that a given request did through the system, because in this
approach there are several systems interacting with each other. Therefore, the
objective of this project is to facilitate the choice of tracing tools through a
comparison of the two main open source products available for the JVM platform. In
addition, make available a repository with an example project so that it serves as a
reference for developers to consult the configuration and compare the benefits of
each tool, thus making the best choice for their context.

Keywords: distributed systems, microservices, observability, distributed tracing.

5

LISTA DE FIGURAS

Figura 1: Exemplo de aplicação monolítica……………………………………….. 14

Figura 2: Exemplo de aplicação em microsserviços…………………………….. 15

Figura 3: Exemplo de rastreamento……………………………………………….. 20

Figura 4: Exemplo de Dockerfile com configurações pro Jaeger………………. 27

Figura 5: Exemplo de Dockerfile com configurações pro Zipkin……………...... 27

Figura 6: Exemplo de docker-compose com configurações pro Jaeger………. 28

Figura 7: Exemplo de docker-compose com configurações pro Zipkin……….. 29

Figura 8: Script com comandos direcionados ao Jaeger……………………….. 30

Figura 9: Script com comandos direcionados ao Zipkin………………………… 31

Figura 10: Aplicação rodando……………………………………………………… 32

Figura 11: Tela inicial do Jaeger…………………………………………………… 33

Figura 12: Tela inicial do Zipkin……………………………………………………. 33

Figura 13: Arquitetura do Zipkin…………………………………………………… 36

Figura 14: Arquitetura do Jaeger (centralizada).………………………………… 37

Figura 15: Arquitetura do Jaeger (distribuída).…...……………………………… 38

Figura 16: Gráfico de dependências do Jaeger………………………………….. 39

Figura 17: Gráfico de dependências do Zipkin…………………………………… 40

Figura 18: Comparação de traces…………………………………………………. 41

6

LISTA DE SIGLAS

SOA Arquitetura Orientada a Serviços

APM Application Performance Monitoring

JVM Java Virtual Machine

API Application Programming Interface

CNCF Cloud Native Computing Foundation

7

SUMÁRIO

1. INTRODUÇÃO 9

1.1 CONTEXTO 9

1.2 OBJETIVOS 10

1.3 ORGANIZAÇÃO DO TRABALHO 11

2. CONCEITOS 12
2.1 HISTÓRIA DA ARQUITETURA DE SOFTWARE 12

2.2 ARQUITETURA DE MICROSSERVIÇOS 14

2.3 OBSERVABILIDADE 17

2.4 SÍNTESE DO CAPÍTULO 21

3. FERRAMENTAS E CONFIGURAÇÃO DO PROJETO 22
3.1 FERRAMENTAS DE APOIO 22

3.2 FERRAMENTAS DE RASTREAMENTO 24

3.3 IMPLEMENTAÇÃO 25

3.4 MÉTRICAS DE COMPARAÇÃO 34

3.5 SÍNTESE DO CAPÍTULO 34

4. DISCUSSÃO COMPARATIVA 36
4.1 ARQUITETURA 36

4.2 FUNCIONALIDADES 38

4.3 COMUNIDADE E SUPORTE 41

4.4 SÍNTESE DO CAPÍTULO 42

5. CONCLUSÃO E TRABALHOS FUTUROS 44
5.1 CONCLUSÃO 44

5.2 LIMITAÇÕES 45

5.3 TRABALHOS FUTUROS 45

6. REFERÊNCIAS 46

8

1. INTRODUÇÃO

Este primeiro capítulo busca trazer um entendimento geral do problema sobre

o qual está sendo realizado o trabalho, teremos uma breve passagem pela história

do mesmo e tudo que será abordado.

Além disso, também se faz presente os objetivos que desejamos alcançar

com a realização deste trabalho e uma visão geral do conteúdo de cada capítulo

para que o leitor tenha ciência de como o trabalho está estruturado.

1.1 CONTEXTO

Devido a ascensão da internet e o crescimento elevado do número de

usuários, a engenharia de software foi obrigada a buscar soluções para sistemas

mais confiáveis. Ao longo do tempo diversos padrões arquiteturais foram criados

com o intuito de sanar este problema, por exemplo: cliente-servidor, SOA, orientado

a eventos, microsserviços, entre outros [1].

O padrão arquitetural de microsserviços, consiste em pequenos sistemas,

independentes e fracamente acoplados [2]. Criar sistemas com arquitetura baseada

em microsserviços é muito comum no mercado de tecnologia nos dias de hoje [1].

Dado que estamos construindo sistemas cada vez mais complexos, há uma

quantidade significativa de vantagens de usar tal abordagem, tais como: conseguir

escalar cada serviço de forma independente, reduzir o tempo de inatividade por

meio do isolamento de falhas, fácil manutenibilidade, ganhos de produtividade pela

segmentação do time, entre outros [2].

Entretanto, este padrão arquitetural traz consigo uma dificuldade maior em

relação ao monitoramento e observabilidade do sistema [3]. Dentre as principais

dificuldades podemos citar o rastreamento, que podemos descrever como encontrar

o caminho que uma determinada chamada fez dentro do sistema, pois nesta

abordagem há vários sistemas interagindo entre si [4]. O rastreamento nos diz se o

sistema está funcionando conforme foi arquitetado.

9

Além disso, o rastreamento também nos ajuda a identificar componentes do

sistema com mau funcionamento. Podemos descobrir, por exemplo, que uma

lentidão na resposta está associada a uma busca muito demorada na base de

dados. Dito isto, ter tal informação é de extrema importância para fins de otimização.

Com o intuito de ajudar no esclarecimento desse problema existem as

ferramentas de APM e rastreamento, das quais podemos citar New Relic,

Dynatrace, AppDynamics, etc [5]. As ferramentas citadas são bem avaliadas pela

comunidade, conforme pode ser observado em fóruns como Reddit e Gartner [6, 7 e

8], e se bem utilizadas resolvem os problemas, contudo um obstáculo comum para

empresas pequenas ou desenvolvedores é o alto valor das licenças cobradas pelos

dominantes do mercado [9].

Felizmente há opções de ferramentas de rastreamento open source

disponíveis. No entanto, escolher qual a melhor para o seu projeto é uma tarefa

complicada pois há muitos aspectos a serem analisados, por exemplo:

compatibilidade com a linguagem utilizada, usabilidade da UI, robustez da

plataforma, modelo de implantação no ambiente de produção, entre outros.

Ademais, os aspectos citados só são plenamente verificados com o uso da

ferramenta, o que consome bastante tempo da equipe de desenvolvimento.

1.2 OBJETIVOS

Dito isso, o principal objetivo deste projeto é facilitar a escolha de ferramentas

de rastreamento open source disponíveis para a plataforma JVM por meio de uma

comparação prática. Desta forma, pretende-se conduzir um estudo com base nos

seguintes pontos:

● Arquitetura, como a ferramenta pode ser implantada para uso dentro

de uma organização.

● Funcionalidades, qual ferramenta apresenta o melhor conjunto de

soluções.

10

● Suporte e comunidade, como é a aceitação na comunidade open

source.

Além disso, este trabalho também visa analisar as ferramentas Jaeger e

Zipkin, verificar a integração dessas ferramentas em uma solução completa de

rastreamento e deixar disponível um repositório com um projeto exemplo de forma

que sirva de referência a desenvolvedores. Sendo assim, haverá uma facilidade

maior para que se possa consultar a configuração e comparar os benefícios de cada

ferramenta, ajudando assim, a fazer melhor escolha pro contexto.

1.3 ORGANIZAÇÃO DO TRABALHO

Este trabalho está organizado da seguinte forma:

O Capítulo 1 apresenta uma contextualização do problema juntamente com

os objetivos almejados.

O Capítulo 2 vem com a exposição dos principais conceitos necessários para

o entendimento do trabalho como um todo, conceitos aos quais não seria possível

realizar o trabalho sem um bom embasamento.

Já o Capítulo 3, por sua vez, é voltado para para o entendimento das

ferramentas utilizadas na realização do projeto, tanto as ferramentas que são

usadas para a comparação quanto as ferramentas de apoio. Além disso, detalha

como foi a configuração do projeto base e como será abordada a comparação no

capítulo seguinte.

O quarto capítulo, tem como objetivo expor os detalhes de cada ferramenta,

sua utilização, pontos positivos e negativos de cada critério abordado como métrica

de comparação.

Por fim, o Capítulo 6 apresenta as conclusões chegadas pelo autor durante o

desenvolvimento do trabalho e um levantamento de possíveis trabalhos futuros.

11

2. CONCEITOS

Neste capítulo serão apresentados os principais conceitos que dão

fundamento a este trabalho. Primeiramente, vamos entender um pouco sobre a

história da arquitetura de software para que possamos entender como chegamos no

cenário atual.

Em seguida, estudaremos os conceitos de microsserviços e observabilidade,

esses dois assuntos são fundamentais para a compreensão do problema do

rastreamento distribuído. As ferramentas escolhidas para comparação têm como

função o rastreamento distribuído dos sistemas.

2.1 HISTÓRIA DA ARQUITETURA DE SOFTWARE

Como forma de entender bem o presente, devemos olhar e estudar a história.

Isso é importante não apenas em computação mas em toda ciência. O filósofo

George Santayana disse, “Quem não aprende a história está condenado a repeti-la”

[42], mas nós não queremos repetir os menos erros ou repetir o mesmo processo

para resolver um problema já resolvido.

Uma decisão muito importante na concepção de um software é escolher um

estilo arquitetural. De acordo com Herberto Graça: Os estilos arquiteturais nos

dizem, em linhas muito amplas, como organizar nosso código. É o nível mais alto de

granularidade e específica camadas, módulos de alto nível da aplicação e como

esses módulos e camadas interagem entre si, as relações entre eles [33]. São

exemplos de estilos arquiteturais:

● Component-based

● Monolithic application

● Layered

● Pipes and filters

● Event-driven

● Publish-subscribe

● Plug-ins

12

● Client-server

● Service-oriented

Construir um monolito sempre foi o estilo arquitetural padrão e mais simples.

Ter um estilo de arquitetura monolítico significa simplesmente que todo o código da

aplicação está implantado e executado como um único processo em um único

servidor. Por apresentar todo o código da aplicação em um único processo,

começam a surgir problemas caso algumas das seguintes características são

necessárias [34]:

● Escalabilidade independente de diferentes componentes do domínio;

● Diferentes componentes ou módulos a serem escritos em diferentes

linguagens de programação;

● Implantação independente, talvez porque tenhamos uma taxa de

lançamento maior do que a pipeline de Implantação pode suportar

para uma base de código, fazendo com que a Implantação de uma

versão seja lenta porque ela precisa aguardar a implementação de

outras versões ou até mesmo fazendo com que a fila de Implantação

cresça mais rápido do que é consumido.

13

Figura 1: Exemplo de aplicação monolítica

Fonte: Docplayer (2021)

Com a finalidade de resolver esses problemas começaram a surgir estilos

arquiteturais com aplicações segregadas, primeiramente SOA e posteriormente

microsserviços. Na próxima seção vamos entender sobre o estilo arquitetural de

microsserviços, o qual é muito utilizado atualmente e de extrema importância para a

continuidade deste trabalho.

2.1 ARQUITETURA DE MICROSSERVIÇOS

De acordo com uma pesquisa direcionada a pessoas que trabalham na

indústria de software, a arquitetura de microsserviços é uma das mais utilizadas nas

aplicações criadas atualmente [10]. Vamos entender como chegamos neste cenário

olhando os principais benefícios de aderir a este estilo arquitetural.

Criar uma aplicação com microsserviços significa dividir sua aplicação em

aplicações menores e com contexto bem definido. Essas pequenas aplicações,

também chamadas de micro serviço, devem ser capazes de funcionar e se

comunicar de forma independente através da rede [11].

14

Na Figura abaixo podemos ver como uma aplicação com a arquitetura de

microsserviços funciona. O uso de um API gateway, que serve como uma porta de

entrada única para toda aplicação é uma característica comum, mas não obrigatória.

Ademais, cada serviço tem sua própria função dentro da aplicação, e quando

necessário, cada serviço também tem seu próprio meio de armazenamento de

dados, evitando assim um ponto único de falha [11].

Figura 2: Exemplo de aplicação em microsserviços

Fonte: Middleware (2021)

A lista de benefícios da utilização de microsserviços é extensa, veremos aqui

as principais, de acordo com [11]:

● Escalabilidade facilitada - Já que temos sistemas independentes, o time de

desenvolvimento pode trabalhar de forma paralela nas demandas de cada

micro serviço. Com isso, a equipe tem liberdade para estudar e identificar a

necessidade de escalabilidade de cada um desses serviços.

● Implantações mais rápidas e isoladas - Um dos requisitos no contexto de

independência é que cada micro serviço possa ser implantado de forma

15

também independente das outras aplicações. Isso faz com que tenhamos

uma redução de custos e tempo na resolução de problemas.

● Agnóstico a tecnologia - Cada micro serviço tem uma função dentro do

sistema e cada aplicação pode utilizar a tecnologia que melhor resolve o

problema do seu contexto. Isso é possível devido à independência de cada

aplicação.

● Isolamento de falhas melhorado - Exceto quando temos dependências

entre micro serviços, cada aplicação está isolada de eventuais falhas que

possam ocorrer em outros microsserviços do sistema.

Os benefícios citados acima revelam o motivo da gigante adoção do estilo

arquitetural aqui discutido. Porém, há também diversos desafios que exigem muita

maturidade do time que opta por desenvolver com o padrão arquitetural de

microsserviços.

Dentre os quais podemos citar, segundo [13]:

● Consistência de dados: Primeiro, pode haver redundância nos

armazenamentos de dados, com o mesmo item de dados aparecendo

em vários lugares. Por exemplo, os dados podem ser armazenados

como parte de uma transação e, em seguida, armazenados em outro

lugar para análises, relatórios ou arquivamentos. Dados duplicados ou

particionados podem levar a problemas de integridade e consistência

de dados.

● Testes: São muito mais complexos em um ambiente de microsserviços

devido aos diferentes serviços, integração complexa e

interdependências. Outro ponto é que a equipe precisa escrever

muitos mocks, mesmo para testar pequenas partes de código [36].

● Falhas de comunicação: Sistemas distribuídos devem ser construídos

de forma que eventuais falhas não derrubem a aplicação. Portanto, os

desenvolvedores precisam conhecer todos os modos de falha e ter

backups caso ocorra alguma falha.

16

● Rastreamento distribuído: Encontrar os pontos de falha e gargalos é

difícil, caro e demorado com microsserviços. Além disso, na maioria

dos casos, os dados de falha não são propagados de maneira clara

dentro dos microsserviços. E este ponto é o principal aspecto de

estudo deste trabalho.

Como podemos observar, adotar uma arquitetura baseada em microsserviços

tem muitos ganhos, mas há também inúmeros desafios que exigem muita

maturidade da equipe de desenvolvimento. A escolha por usá-la deveria passar por

uma minuciosa análise dos requisitos do produto, conhecimento do time, tempo e

orçamento disponível para execução.

2.2 OBSERVABILIDADE

De acordo com [14], observabilidade é a habilidade de medir os estados

internos de um sistema examinando suas saídas. Que pode ser entendido como

coletar dados dos sistemas e examiná-los com o intuito de entender o seu

funcionamento.

Algumas perguntas pertinentes sobre o funcionamento de um sistema são,

segundo [15]:

● Por quais serviços uma requisição passou e onde estavam os gargalos de

desempenho?

● Por que a requisição falhou?

● Como a execução da requisição foi diferente do comportamento esperado do

sistema?

● Quantas requisições foram recebidas em um determinado intervalo de

tempo?

Para responder a estas perguntas, existem três pilares levados em

consideração:

● Logs: Registros imutáveis feitos para identificar o comportamento em um

sistema e fornecer informações sobre o comportamento do sistema quando

as coisas deram errado. É altamente recomendável ingerir logs de maneira

17

estruturada, como no formato JSON, para que os sistemas de visualização

de log possam indexar automaticamente e tornar os logs fácil de recuperar

[15].

● Métricas: São contagens ou medições que são agregadas ao longo de um

período de tempo. As métricas informarão, por exemplo, a quantidade de

memória usada por um método ou quantas solicitações um serviço processa

por segundo e etc [15].

● Traces: Para uma transação ou solicitação individual, um único rastreamento

exibe a operação conforme ela se move de um nó para outro em um sistema

distribuído [15].

A observabilidade depende da telemetria que é obtida através da

instrumentação para obter informações sobre o estado do sistema. Nesses

ambientes modernos, todos os componentes de hardware, software, infraestrutura

geram registros de todas as atividades. O objetivo da observabilidade é entender o

que está acontecendo em todos esses ambientes e entre as tecnologias, para que

possamos detectar e resolver problemas para manter os sistemas eficientes e

confiáveis [35].

Muitas organizações também adotam uma solução de observabilidade para

ajudá-las a detectar e analisar a importância de eventos para suas operações, ciclos

de vida de desenvolvimento de software, segurança de aplicativos e experiências do

usuário final [15].

A observabilidade tornou-se mais crítica nos últimos anos, à medida que os

ambientes nativos da nuvem se tornaram mais complexos e as possíveis causas de

uma falha ou anomalia tornaram-se mais difíceis de identificar. À medida que as

equipes começam a coletar e trabalhar com dados de observabilidade, elas também

percebem seus benefícios para os negócios, não apenas para a TI [35].

Neste trabalho, vamos focar na parte de rastreamento distribuído, o qual usa

os traces obtidos por meio da observabilidade do sistema.

18

RASTREAMENTO DISTRIBUÍDO

Imagine que você é um desenvolvedor backend e ao chegar para trabalhar

na segunda-feira se depara com a notícia de que algumas funcionalidades dos

sistema não estão funcionando. Neste momento você começa a fazer troubleshoot

nos logs de todos os serviços do sistema na tentativa de achar o ponto em que o

fluxo está travando. Isso é uma tarefa que demanda bastante tempo, em sistemas

que rodam dezenas de serviços é totalmente inviável fazer troubleshoot dessa

forma. Para nos ajudar nessa situação crítica podemos nos apoiar no rastreamento

distribuído de requisições.

O rastreamento de requisições não é algo novo na indústria de software. A

ideia é saber o comportamento de uma requisição dentro do sistema, desde a

interface de entrada até a camada de saída [16]. O rastreamento permite que você

entre em detalhes de requisições específicas para determinar quais componentes

causam erros no sistema, monitorar o fluxo pelos módulos e encontrar gargalos de

desempenho [15].

Com a adoção de microsserviços, o rastreamento de requisições não é mais

uma tarefa simples, agora se faz necessário fazer um rastreamento distribuído da

requisição em questão [17]. Isso é possível por meio da etiquetagem de requisições

com um identificador único que é passado em todo o percurso que a requisição faz

dentro do sistema. A imagem abaixo mostra um exemplo de rastreamento.

19

Figura 3: Exemplo de rastreamento

Fonte: Datadoghq (2022)

Cada passo do percurso gera traces, que são nada mais do que logs

automatizados com a informações do passo atual. Esses traces, por sua vez, são

agregados por alguma ferramenta de rastreamento e disponibilizados através de

uma interface gráfica para visualização e análise [17].

Dado isso, o rastreamento distribuído traz diversos benefícios, segundo [39]:

● Melhor entendimento das relações entre os microsserviços - Ao visualizar

rastreamentos distribuídos, os desenvolvedores podem entender as relações

de causa e efeito entre os serviços e otimizar seu desempenho. Por exemplo,

visualizar um intervalo gerado por uma chamada de banco de dados pode

revelar que adicionar uma nova entrada de banco de dados causa latência

em um serviço.

● Avaliar as ações específicas do usuário - O rastreamento distribuído ajuda a

medir o tempo necessário para concluir as principais ações do usuário, como

a compra de um item. Os rastreamentos podem ajudar a identificar gargalos

de back-end e erros que estão prejudicando a experiência do usuário.

20

● Melhora a colaboração e a produtividade - Em arquiteturas de

microsserviços, equipes diferentes podem possuir os serviços envolvidos na

conclusão de uma solicitação. O rastreamento distribuído deixa claro onde

ocorreu um erro e qual equipe é responsável por corrigi-lo.

2.2 SÍNTESE DO CAPÍTULO

Neste capítulo foram apresentados os conceitos e fundamentos teóricos

referentes à arquitetura de microsserviços, observabilidade e rastreamento

distribuído. Esses conceitos são de extrema importância para o entendimento da

continuidade do trabalho e projeto desenvolvido.

No próximo capítulo vamos conhecer quais ferramentas foram escolhidas

para ajudar na fabricação e configuração do projeto. Com isso, falaremos de

ferramentas muito utilizadas no mercado: spring boot, docker e opentelemetry. Além

disso, deixaremos detalhado quais serão as métricas de comparação das

ferramentas.

21

3. FERRAMENTAS E CONFIGURAÇÃO DO PROJETO

Este capítulo mostra, primeiramente, quais ferramentas de apoio foram

utilizadas e qual é a sua utilidade dentro do projeto. Imediatamente, veremos a

escolha das ferramentas de rastreamento usadas para comparação no projeto.

Posteriormente, está escrito como foi a configuração e implementação do

projeto com todas essas ferramentas juntas, aqui não está presente a comparação

em si, que fica no próximo capítulo. Por último, olharemos para as métricas de

comparação das ferramentas que serão debatidas no capítulo seguinte.

3.1 FERRAMENTAS DE APOIO

Com o intuito de facilitar a execução do projeto, algumas ferramentas foram

utilizadas, vamos descrever brevemente qual o objetivo de uso de cada uma delas.

DOCKER

Antes de pensarmos em saber o que é como funciona o docker, precisamos

definir seu principal componente, o container. Segundo a Docker, um container é um

software que empacota o código de uma aplicação e todas as suas dependências

para que seja executada de forma rápida e confiável de diversos ambientes de

computação [18].

O docker, por sua vez, é uma plataforma que facilita a criação e

administração de containers docker [19]. Esses containers, que nada mais são do

que o código da aplicação empacotado em execução, são criados a partir de

imagens docker [18]. As imagens são criadas a partir de arquivos Dockerfile,

exemplificados nas figuras 2 e 3.

No projeto exemplo utilizaremos o docker para criar os containers contendo

cada micro serviço da aplicação e outro container contendo a ferramenta de

22

rastreamento: Jaeger e Zipkin. Assim, conseguimos simular um ambiente de

execução local completo para testes.

SPRING BOOT

O Spring boot é um framework desenvolvido para a plataforma java que tem

por objetivo facilitar o desenvolvimento de aplicações para este ecossistema por

meio da abstração da complexidade de configuração e disponibilização de

componentes de uso geral [20].

Dentre esses componentes úteis podemos citar: servidor web, bibliotecas de

integração com banco de dados, integração com serviços de computação em

nuvem, funcionalidades de segurança, entre outros. Spring boot é um framework

completo e bastante utilizado pela indústria de desenvolvimento de software [21].

No projeto utilizaremos o spring boot auxiliar na criação e configuração de

cada micro serviço java que compõe a aplicação de exemplo. Serão três aplicações

cada uma com sua função dentro do sistema.

OPENTELEMETRY

OpenTelemetry é um framework de observabilidade open source que nasceu

da necessidade de existir uma ferramenta única com todas as funcionalidades

necessárias à observabilidade: logs, métricas e rastreamento de requisições [22].

Além disso, outra importante característica é não ser restritivo a uma

linguagem específica, a ferramenta pode ser utilizada para aplicações escritas em

Java, Python, JavaScript e etc. Existem aplicações, chamadas de agentes,

específico para cada linguagem, que fazem a coleta de métricas, traces e logs de

forma automatizada [23].

O OpenTelemetry oferece ainda uma forma de exportação dessas métricas

de forma agnóstica ao provedor de armazenamento e análise visual dos dados. No

23

caso de rastreamento esse provedor pode ser: Jaeger ou Zipkin [23]. No projeto

utilizaremos esta ferramenta com o agente injetado na JVM para que os traces

coletados sejam enviados para o Jaeger ou Zipkin.

3.2 FERRAMENTAS DE RASTREAMENTO

Ao analisar as ferramentas open source para rastreamento distribuído

disponíveis no mercado é possível notar a dominância de duas, de acordo com

número de interações com o repositório oficial de cada uma delas: Jaeger e Zipkin.

As duas ferramentas apresentam propostas semelhantes, mas foram desenvolvidas

em épocas diferentes.

Zipkin é uma versão open source do Dapper do Google que foi desenvolvida

pelo Twitter. Em sua essência, o Zipkin é uma aplicação escrita em Java que

fornece o serviço de armazenamento e visualização de traces. Como opções de

armazenamento para manter os dados registrados, há integração com banco de

dados em memória, MySQL, Cassandra e Elasticsearch [24].

Já o Jaeger foi criado pela Uber e foi escrito em Go. Além do conjunto de

recursos do Zipkin, o Jaeger também fornece alguns recursos adicionais como:

amostragem dinâmica, que é uma forma mais inteligente de colher os traces; uma

API REST, que serve para fazer consulta aos dados dos seus traces de forma

programática; e suporte para armazenamento em memória Cassandra e

Elasticsearch [24].

A motivação para escolha de Jaeger e Zipkin se deu por serem as

ferramentas open source mais relevantes para rastreamento de acordo com as

interações no github, quantidade de posts escritos em blogs na comunidade sobre

cada ferramenta e recomendações de uso da comunidade. Entre as ferramentas

pesquisadas estão também: Uptrace, Grafana Tempo e Signos, porém nenhuma

delas se mostrou tão relevante dentro dos aspectos já citados, quanto as escolhidas

[29, 30, 38, 39, 40, 41, 42].

24

3.3 IMPLEMENTAÇÃO

Nesta seção vamos ver o passo a passo para a criação do projeto exemplo

utilizando todas as ferramentas e conceitos discutidos até o presente momento. O

projeto a ser desenvolvido aqui é um dos objetivos deste trabalho e permitirá que

desenvolvedores tenham uma fonte de conhecimento para comparação e consulta

durante a escolha da ferramenta de rastreamento mais adequada ao seu projeto.

ESCOLHA DO PROJETO BASE

Como mencionado anteriormente, o projeto base consiste de uma aplicação

que faz uso da arquitetura de microsserviços. Com o intuito de agilizar o

desenvolvimento, usaremos uma aplicação criada por terceiros que se encontra

disponível no github com uma licença que permite o uso. A aplicação base contém

três micro serviços que se chamam: name-generator-service,

animal-generator-service e scientist-generator-service.

A missão é gerar nomes aleatórios concatenando nomes de cientistas

famosos a nomes de animais. Cada micro serviço tem sua função dentro de um

sistema e os microsserviços scientist-generator-service e animal-generator-service

apenas expõem uma interface que retorna um nome aleatório de um cientista e

animal, respectivamente.

Já o name-generator-service, expõe uma interface que ao ser invocada,

acessa os micro serviços scientist-generator-service e animal-generator-service,

obtendo assim o nome de um cientista e de um animal. Feito isso, os nomes são

concatenados e um temos assim um nome aleatório gerado, como por exemplo:

alan-turing-canaan-dog.

Apesar de simples, a aplicação explora um cenário de chamadas síncronas a

outros serviços do sistema, aspecto muito comum em uma aplicação distribuída.

Agora teremos que fazer a configuração do docker para fazer a geração de imagens

25

docker a partir do nosso código. O código base usado está disponível neste

repositório: https://bit.ly/3BmtmBC.

CONFIGURAÇÃO DO DOCKER E OPENTELEMETRY

Antes de começarmos esta fase, devemos nos certificar de que nossa

aplicação Java está compilando e executando corretamente. Dito isto, vamos criar

um Dockerfile, que é um arquivo usado para definir como o docker irá criar a nossa

imagem, que irá conter o código desenvolvido na nossa aplicação, e futuramente

será estará rodando no container.

Na criação do Dockerfile devemos indicar a partir de qual imagem queremos

criar a nossa, já que estamos usando java, devemos usar uma imagem que tenha a

JVM disponível para rodarmos nossa aplicação. Depois, devemos copiar o arquivo

.jar, o qual contém as classes java compactadas geradas na compilação do

programa, para dentro da imagem.

Agora só nos resta configurar o OpenTelemetry e indicar como a imagem

deverá rodar a nossa aplicação. A documentação oficial do OpenTelemetry

recomenda usar o agente específico da linguagem, por isso estamos copiando

também o agente para dentro da nossa imagem. Por último, devemos indicar como

a imagem irá rodar nossa aplicação quando o container for criado e passar as as

configurações que o agente deve usar para que mande o traces para o rastreador

que quisermos.

As imagens abaixo mostram como ficaram os arquivos com configuração

voltada a cada rastreador, Jaeger e Zipkin.

26

https://bit.ly/3BmtmBC

Figura 4: Exemplo de Dockerfile com configurações pro Jaeger

Fonte: Autor (2022)

Figura 5: Exemplo de Dockerfile com configurações pro Zipkin

Fonte: Autor (2022)

Agora temos os arquivos de geração de imagem da nossa aplicação

direcionado a cada rastreador, agora precisamos criar um arquivo que nos ajude a

rodar todas imagens para criar os containers ao mesmo tempo para que possamos

deixar nossa aplicação disponível de maneira mais rápida.

27

Para fazer isso, vamos criar um arquivo de configuração do docker-compose.

Dito isso, precisamos definir os três micro serviços e o rastreador desejado.

Devemos definir cada um deles para que sejam criados isoladamente, na definição

de cada serviço podemos passar alguns parâmetros: o nome da imagem, política de

reinicialização do container, variáveis de ambiente e expor portas quando

necessário. Há muitos outros parâmetros disponíveis mas iremos utilizar apenas os

citados.

Figura 6: Exemplo de docker-compose com configurações pro Jaeger

Fonte: Autor (2022)

28

Figura 7: Exemplo de docker-compose com configurações pro Zipkin

Fonte: Autor (2022)

Depois de termos configurado o arquivo docker-compose já temos tudo

pronto para rodar nossa aplicação e gerar os nomes aleatórios. Porém como temos

três serviços, construir a imagem de cada um de cada vez pode se tornar uma

tarefa tediosa e repetitiva. Para resolver isso vamos escrever um script que contém

a sequência de comandos para subir tudo que precisamos direcionado a cada

rastreador.

29

Primeiramente, o arquivo de script mostrado nas imagens abaixo entra na

pasta de cada micro serviço, cria o arquivo .jar da aplicação e cria a imagem a partir

do Dockerfile passando como parâmetro.

Feito isso, executamos o comando docker-compose para subir toda a nossa

infraestrutura e deixar disponível nossa aplicação e o serviço de rastreamento

escolhido. Por último, como boa prática, limpamos as imagens e containers sem

uso.

Figura 8: Script com comandos direcionados ao Jaeger

Fonte: Autor (2022)

30

Figura 9: Script com comandos direcionados ao Zipkin

Fonte: Autor (2022)

RODANDO O PROJETO E OLHANDO OS TRACES

Neste momento, finalmente, temos tudo pronto para rodar a aplicação com o

rastreador que quisermos. Podemos, inclusive, subir as duas para comparar ao

mesmo tempo, entretanto devemos colocar configurações de portas diferentes para

o name-generator-service.

31

Para rodar compilar e rodar a aplicação com o Zipkin basta digitar o seguinte

comando: sudo bash docker-setup-with-zipkin.sh, já para rodar com o Jaeger,

devemos escrever: sudo bash docker-setup-with-jaeger.sh.

Dentro de alguns instantes a aplicação estará disponível para uso, podemos

então acessar o link: http://localhost:9090/api/v1/names/random, e deveremos obter

um nome aleatório tal como na imagem abaixo. Sempre que atualizarmos a página

um novo nome será gerado.

Figura 10: Aplicação rodando

Fonte: Autor (2022)

Após termos feito alguns testes na aplicação, podemos ver como está o

rastreamento das requisições. Primeiramente, vamos ver como o Jaeger nos mostra

as informações de rastreamento, e para isso vamos acessar:

http://localhost:16686/search.

A imagem abaixo mostra a tela inicial do Jaeger, na qual podemos ver a

possibilidade de buscar os traces. Há filtros pelo nome do serviço, operação

executada, tags e horário. No lado direito vemos um gráfico que mostra os traces

coletados de acordo com o tempo. E por fim, a lista de traces para serem analisados

individualmente.

32

http://localhost:9090/api/v1/names/random
http://localhost:16686/search

Figura 11: Tela inicial do Jaeger

Fonte: Autor (2022)

Agora vamos analisar os rastreamentos usando o Zipkin, para isso devemos

acessar: http://localhost:9411. A tela inicial também nos mostra a lista de traces e

tem todos os filtros presentes no Jaeger, a maior diferença é a ausência do gráfico

que mostra as requisições com base no tempo.

Figura 12: Tela inicial do Zipkin

Fonte: Autor (2022)

O código fonte do projeto base está disponível no repositório:

https://bit.ly/3qpPIf2. O repositório é público e pode ser utilizado para quaisquer fins.

33

http://localhost:9411
https://bit.ly/3qpPIf2

3.4 MÉTRICAS DE COMPARAÇÃO

Agora que já sabemos configurar o projeto com as ferramentas escolhidas,

nos resta fazer a discussão comparativa, que é um dos objetivos deste trabalho.

Entretanto, isso será realizado no capítulo seguinte, nesta seção trataremos apenas

da escolha das métricas a serem utilizadas na comparação.

Como o intuito deste trabalho é facilitar a escolha para que a ferramenta

possa ser implementada com mais agilidade dentro de uma organização, não

podemos deixar de falar da arquitetura e forma de implantação utilizada. Uma

empresa maior pode necessitar de uma ferramenta que tenha uma arquitetura mais

robusta, já uma empresa pequena deve escolher uma arquitetura mais simples.

Com isso, saber quais modelos de arquitetura estão disponíveis em cada

ferramenta é de suma importância.

Ademais, também é importante saber se o conjunto de funcionalidades de

cada ferramenta se adequa às necessidades da organização. Neste quesito,

faremos uma comparação entre as funcionalidades semelhantes e será ressaltado

também as funcionalidades adicionais que uma ferramenta pode ter de diferente da

outra [31].

Por último, um fator essencial na escolha de ferramentas open source é

saber como é a adoção pela comunidade. Perguntas que podem nos ajudar: A

comunidade continua fazendo manutenções na ferramenta? Existe alguma

organização que dá suporte? A comunidade fala sobre essa ferramenta em blogs e

fóruns? Essas perguntas vão nos ajudar a saber se a ferramenta tem um futuro

longo ou se está caindo em desuso, a intenção é escolher ferramentas que tenham

um longo futuro para não ter retrabalho [31, 32].

3.5 SÍNTESE DO CAPÍTULO

Iniciamos este capítulo entendendo a para que serve e como usamos as

ferramentas de apoio, e posteriormente, vimos todo o processo para criação do

34

projeto base, desde a escolha das ferramentas até a visualização dos traces nas

ferramentas de rastreamento. Por último, também foi importante analisarmos as

métricas de comparação a serem utilizadas na discussão.

No próximo capítulo vamos nos aprofundar na comparação entre os

rastreadores, falar dos pontos positivos e negativos e negativos de cada ferramenta

e discutir alguns casos de uso. Utilizaremos como base as métricas abordadas na

seção anterior deste capítulo.

35

4. DISCUSSÃO COMPARATIVA

Chegou o momento de refletirmos sobre as duas ferramentas

apresentadas neste trabalho e quais as vantagens e desvantagens de ambas. As

ferramentas apresentadas existem para resolver o mesmo problema, o

rastreamento de requisições, porém foram construídas em momentos distintos e de

forma diferente. Utilizaremos as métricas descritas no capítulo 3, seção 4 como um

guia para a discussão deste capítulo. Como um lembrete, a motivação de escolha

das ferramentas comparadas aqui se encontram no capítulo 3, seção 2.

4.1 ARQUITETURA

A arquitetura do Zipkin consiste de quatro serviços: Coletor, que tem como

função receber os traces das aplicações e repassar para serem armazenados;

Armazenamento deve fazer a ponte entre a API e o banco de dados escolhido; API

serve como uma camada para expor os dados; E a interface gráfica consome a API

para exibir os traces. A arquitetura montada fica de acordo com a imagem abaixo.

Figura 13: Arquitetura do Zipkin

Fonte: Zipkin (2022)

36

O Jaeger, contudo, possui uma arquitetura um pouco diferente e mais flexível. Esta

ferramenta foi pensada para ser disponibilizada de duas formas, com todos os

componentes em um único processo, ou de forma distribuída. Vamos estudar

primeiro a forma centralizada.

Figura 14: Arquitetura do Jaeger (centralizada)

Fonte: Jaeger (2022)

A arquitetura acima é composta por elementos muito semelhantes à

arquitetura do Zipkin, com exceção de que não existe um serviço para gravação de

dados e acesso à base de dados. O coletor grava diretamente no banco e a busca

faz as consultas direto também.

Importante ressaltar também que com o Jaeger é possível ter uma

abordagem mais distribuída e resiliente. Essa abordagem consiste em colocar o

Kafka como intermediário entre o coletor e o banco de dados, isso faz com que o

sistema de ingestão de dados na base seja mais confiável.

A utilização do Kafka, que é uma plataforma distribuída de envio de

mensagens, faz com que a arquitetura do Jaeger seja mais confiável pois provê

37

alguns mecanismos como: escalabilidade, armazenamento permanente, alta

disponibilidade, entre outros [25].

Figura 15: Arquitetura do Jaeger (distribuída)

Fonte: Jaeger (2022)

A escolha da arquitetura usada para um sistema de rastreamento distribuído

depende muito das necessidades que os sistemas a serem monitorados

apresentam. No contexto de uma grande empresa, é provável que usar o Jaeger

com uma arquitetura distribuída faça mais sentido, pois a quantidade de traces

gerados será maior.

Quando se trata de empresas não tão grandes, com sistemas menos críticos,

tanto Zipkin quanto Jaeger podem ser utilizados com a arquitetura centralizada, isto

é, o deploy pode ser feito usando a imagem docker que contém todos os serviços

em um só. Cabe ao time analisar o seu cenário e escolher a melhor solução.

4.2 FUNCIONALIDADES

Um fator que contribui muito para a escolha de uma ferramenta são as suas

funcionalidades e os detalhes podem fazer a diferença a favor de uma ferramenta

em comparação a outra.

38

As duas ferramentas apresentadas têm a funcionalidade de busca de traces

nas suas telas iniciais (figuras 9 e 10). Ambas apresentam filtros por serviço,

duração, tags, horário e etc. Podemos notar que as funcionalidades são muito

parecidas, porém o Jaeger apresenta um gráfico com a duração das requisições ao

longo do tempo, o que ajuda a identificar de forma rápida e visual um possível

gargalo no sistema.

Outra funcionalidade muito interessante presente nos dois rastreadores é

mostrar como estão dispostas as dependências entre os serviços. Esse tipo de

abordagem é útil para a identificação de dependências cíclicas entre os serviços

que compõem o sistema, tal problema pode causar fluxos que não têm fim. No caso

de grandes sistemas, que rodam centenas ou até milhares de serviços, para a

correta identificação desse tipo de problema é necessário uma ferramenta que faça

esse trabalho. As imagens abaixo mostram como é montado esse gráfico em cada

ferramenta.

Figura 16: Gráfico de dependências do Jaeger

Fonte: Autor (2022)

39

Figura 17: Gráfico de dependências do Zipkin

Fonte: Autor (2022)

Há funcionalidades, porém, que só estão disponíveis no Jaeger. Uma delas é

a comparação de traces, que fornece uma visualização de dois traces na mesma

tela para que o desenvolvedor possa analisar as similaridades e diferenças entre

eles. Essa funcionalidade é útil para depurar o fluxo de uma requisição com

problema, que pode ser comparada com uma requisição de sucesso. A imagem

abaixo mostra como é a interface de comparação.

40

Figura 17: Comparação de traces

Fonte: Autor (2022)

4.3 COMUNIDADE E SUPORTE

As ferramentas aqui utilizadas, por se tratarem de softwares open source, um

fator muito importante que deve ser levado em consideração é como é o uso e

aceitação da ferramenta na comunidade. Ferramentas com comunidades ativas têm

melhor resolução de problemas e ajuda para configuração [26].

Um bom norte para olhar como é o engajamento da comunidade com a

ferramenta é olhar o repositório oficial no github. Falando em números, Jaeger tem

16.4 mil stars, mais de 2 mil forks, 311 issues e cerca de 250 contribuidores. Já o

Zipkin apresenta 15.6 mil stars, mais de 3 mil forks, 180 issues e aproximadamente

152 contribuidores. Os números apresentados mostram uma semelhança de

engajamento entre as duas ferramentas, Jaeger apresenta mais stars, porém o

Zipkin tem mais forks, e etc [27, 28].

Além do github, podemos olhar também para a quantidade de posts em blogs

da comunidade. No site da dev.to, que é um site para engajamento da comunidade

de desenvolvedores, existe conteúdo sobre quase todas as ferramentas do mundo

de desenvolvimento de software. Comparando a quantidade de posts sobre cada

41

https://dev.to/

ferramenta, podemos ver que o Jaeger leva uma certa vantagem contra o Zipkin, 18

a 3 [29, 30].

O Zipkin tem um menor número de issues abertas no repositório em relação

ao Jaeger, isso pode ser um indício de que tem uma plataforma mais estável. Além

disso, é amplamente utilizado na indústria e tem uma comunidade bastante ativa.

Isso pode ser importante para empresas mais conservadoras e que prezam por

confiabilidade e segurança [24].

Já o Jaeger, apesar de ser uma ferramenta mais nova, também tem uma

comunidade ativa. Outro ponto importante é que o Jaeger tem suporte da Cloud

Native Computing Foundation (CNCF), que é uma organização voltada a ajudar

projetos open source que contribuam para aplicações implantadas na cloud [24].

4.4 SÍNTESE DO CAPÍTULO

Neste capítulo olhamos detalhadamente para a comparação entre Jaeger e

Zipkin, vimos os pontos positivos e negativos de cada ferramenta para que

possamos fazer a escolha que melhor se adequa ao nosso contexto. A fim de

termos uma comparação mais visual entre as ferramentas, podemos analisar as

tabelas abaixo.

Jaeger Zipkin

Busca de traces X X

Gráfico de dependencias X X

Comparação de traces X

Filtros de traces X X
Tabela 4.1. Funcionalidades de cada ferramenta

42

Jaeger Zipkin

Forks 2 k 3 k

Stars 16.4 k 15.6 k

Contribuidores 250 152

Issues 311 180
Tabela 4.2. Números dos repositórios no github

43

5. CONCLUSÃO E TRABALHOS FUTUROS

Este capítulo apresenta a conclusão deste trabalho, algumas limitações

encontradas no projeto e perspectivas de trabalhos futuros. Primeiro veremos as

considerações finais sobre o projeto aqui apresentado, depois abordaremos as

limitações presentes e posteriormente os possíveis trabalhos futuros que podem vir

a ser realizados.

5.1 CONCLUSÃO

A arquitetura de microsserviços é uma arquitetura muito robusta e a sua

utilização deve sempre ser analisada para projetos de larga escala. Principalmente

em negócios onde alta disponibilidade é um requisito primordial.

Como já sabemos, com o uso da arquitetura de microsserviços, há inúmeros

benefícios, mas também vários desafios. Um dos principais desafios é que a maior

complexidade causa dificuldades no quesito da observabilidade do sistema como

um todo. Mais especificamente, tratamos neste trabalho sobre o problema de

rastreamento de requisições em um sistema distribuído.

Para auxiliar nesta tarefa, existem ferramentas open source no mercado tão

efetivas quanto outros softwares pagos, que são inacessíveis para pequenas

empresas e desenvolvedores independentes. Depois de um estudo sobre quais

ferramentas são mais relevantes para serem comparadas, as escolhidas foram

Jaeger e Zipkin devido a grande aceitação de ambas pela comunidade Java.

O Zipkin é uma ferramenta mais antiga, mas ainda assim muito usada,

estável e com um bom leque de funcionalidades. O Jaeger é uma ferramenta mais

recente e traz consigo uma personalização maior e funcionalidades inovadoras. As

duas ferramentas escolhidas entregam bem o prometido.

Este trabalho conseguiu alcançar o resultado esperado: ajudar na escolha de

ferramentas de rastreamento por meio de uma comparação prática das duas

ferramentas open source mais relevantes e deixar disponível um repositório de

44

exemplo para consulta. O código criado e utilizado neste trabalho está disponível

em https://bit.ly/3qpPIf2.

5.2 LIMITAÇÕES

Na análise realizada durante o desenvolvimento deste trabalho foi utilizada

uma aplicação com três serviços. Seria interessante uma aplicação com mais

serviços executando ao mesmo tempo. Porém, devido ao esforço de configuração

ser muito grande e exigir uma capacidade de processamento maior do que está

disponível para o autor, este trabalho não contemplou uma quantidade maior de

serviços.

5.3 TRABALHOS FUTUROS

Como trabalhos futuros a serem desenvolvidos a partir deste, podem-se

sugerir:

1. Estudo da economia obtida pela adoção de uma ferramenta de
rastreamento open source em detrimento às ferramentas pagas. Como

discutido anteriormente, ferramentas de APM e rastreamento pagas são

inacessíveis para muitos desenvolvedores independentes e empresas de

pequeno porte, por isso a existência de ferramentas open source é tão

importante. O estudo proposto faria uma análise da economia mensal com a

adoção de um rastreador open source em comparação com um pago,

mostrando a diferença de valores à medida em que o projeto cresce.

2. Outra opção muito interessante seria uma Análise comparativa das
variações de implantação do Jaeger e qual se encaixa melhor para cada

contexto dentro de uma empresa. Na nossa análise de arquitetura está

presente a discussão sobre os modelos de implantação do Jaeger dentro de

uma organização, que podem ser vários, visto que quanto maior for a

empresa, maior é a necessidade de se utilizar uma arquitetura mais robusta,

a fim de minimizar a perda de traces por indisponibilidade do rastreador.

45

https://bit.ly/3qpPIf2

REFERÊNCIAS

[1] WALPITA, Priyal. ​Evolution in Software Architecture. medium.com, 2022.
Disponível em:
<https://priyalwalpita.medium.com/evolution-in-software-architecture-a607db64958
6>. Acesso em: 17. ago. 2022.

[2] DIGUER, Sarah. ​Microservices Advantages and Disadvantages:
Everything You Need to Know. Solace, 2020. Disponível em:
<https://solace.com/blog/microservices-advantages-and-disadvantages/>. Acesso
em: 16. fev. 2022.

[3] KUMAR JHA, Abhishek. ​4 Difficult Microservices Observability
Challenges and How to Address Them. TechWorm, 2022. Disponível em:
<https://www.techworm.net/2021/07/microservices-observability-challenges.html>.
Acesso em: 08. fev. 2022.

[4] KOWALL, Jonah. How microservices broke monitoring (and how to fix
it). Tech Beacon, 2022 . Disponível em:
<https://techbeacon.com/app-dev-testing/how-microservices-broke-monitoring-how
-fix-it>. Acesso em: 18. fev. 2022.

[5] sem autor. Application Monitoring Tools List – Top 16 Compared?.
Dotcom tools, 2022. Disponível em:
<https://www.dotcom-tools.com/web-performance/list-of-application-monitoring-tool
s-apm/>. Acesso em: 18. fev. 2022.

[6] u/mrjenkins2017. “What are people's opinion on Datadog for
monitoring?”. Reddit, 2022. Disponível em:
<https://www.reddit.com/r/devops/comments/7bb2ao/what_are_peoples_opinion_o
n_datadog_for_monitoring/>. Acesso em: 21 Fev. 2021.

[7] u/deleted. “What do you guys think of AppDynamics?”. Reddit, 2022.
Disponível em:
<https://www.reddit.com/r/sysadmin/comments/6ef90e/what_do_you_guys_think_o
f_appdynamics/>. Acesso em: 21 Fev. 2021.

[8] sem autor. Application Performance Monitoring Reviews and Ratings.
Gartner 2022. 21 Fev. 2022. Disponível em:
<https://www.gartner.com/reviews/market/application-performance-monitoring/>.
Acesso em: 18. fev.

[9] HUBBARD, Patrick. The Expensive History of APM. pingdom, 2022.
Disponível em: https://www.pingdom.com/blog/the-expensive-history-of-apm/.
Acesso em: 18. fev. 2022.

[10] LOUKIDES, M; SWOYER, S. Microservices Adoption in 2020. oreilly,
2020. Disponível em:

46

https://www.reddit.com/r/devops/comments/7bb2ao/what_are_peoples_opinion_on_datadog_for_monitoring/
https://www.reddit.com/r/devops/comments/7bb2ao/what_are_peoples_opinion_on_datadog_for_monitoring/
https://www.reddit.com/r/sysadmin/comments/6ef90e/what_do_you_guys_think_of_appdynamics/
https://www.reddit.com/r/sysadmin/comments/6ef90e/what_do_you_guys_think_of_appdynamics/
https://www.gartner.com/reviews/market/application-performance-monitoring

https://www.oreilly.com/radar/microservices-adoption-in-2020. Acesso em: 23. ago.
2022.

[11] MW Team. What Are Microservices? How Microservices Architecture
Works. middleware, 2021. Disponível em:
https://middleware.io/blog/microservices-architecture/ . Acesso em: 23. ago. 2022.

[12] RICHARDSON, Mary Ann. Top 10 Challenges of Using Microservices
for Managing Distributed Systems. spiceworks, 2021. Disponível em:
https://www.spiceworks.com/tech/data-management/articles/top-10-challenges-of-
using-microservices-for-managing-distributed-systems/. Acesso em: 23. ago.
2022.

[13] KURMI, Anil. What are the challenges in Microservices Architecture?.
medium, 2020. Disponível em:
https://medium.com/microservices-architecture/what-are-the-challenges-in-microse
rvices-architecture-2ee9149cfc4e. Acesso em: 23. ago. 2022.

[14] sem autor. What Is Observability?. splunk, 2022. Disponível em:
https://www.splunk.com/en_us/data-insider/what-is-observability.html. Acesso em:
23. ago. 2022.

[15] EGILMEZ, Ismail. Monitoring vs. Observability: What’s the Difference?.
thenewstack, 2020. Disponível em:
https://thenewstack.io/monitoring-vs-observability-whats-the-difference/. Acesso
em: 23. ago. 2022.

[16] BIGELOW, Stephen J. Distributed tracing. techtarguet, 2022. Disponível
em: https://www.techtarget.com/searchitoperations/definition/distributed-tracing.
Acesso em: 23. ago. 2022.

[17] MOREHOUSE, John. What Is Distributed Tracing? Key Concepts and
Definition. orangematter, 2022. Disponível em:
https://orangematter.solarwinds.com/2022/01/28/what-is-distributed-tracing.
Acesso em: 23. ago. 2022.

[18] sem autor. Use containers to Build, Share and Run your applications.
docker, 2022. Disponível em: https://www.docker.com/resources/what-container.
Acesso em: 23. ago. 2022.

[19] sem autor. O que é o Docker?. oracle, 2022. Disponível em:
https://www.oracle.com/br/cloud/cloud-native/container-registry/what-is-docker/#do
cker-basics. Acesso em: 4. set. 2022.

[20] sem autor. Spring Boot: Tudo que você precisa saber!. geekhunter,
2022. Disponível em:
https://blog.geekhunter.com.br/tudo-o-que-voce-precisa-saber-sobre-o-spring-boot
/. Acesso em: 4. set. 2022.

47

[21] sem autor. Spring Boot. spring, 2022. Disponível em:
https://spring.io/projects/spring-boot. Acesso em: 4. set. 2022.

[22] sem autor. What is OpenTelemetry?. opentelemetry, 2022. Disponível em:
https://opentelemetry.io/docs/concepts/what-is-opentelemetry/. Acesso em: 4. set.
2022.

[23] sem autor. What is OpenTelemetry?. splunk, 2022. Disponível em:
https://www.splunk.com/en_us/data-insider/what-is-opentelemetry.html. Acesso
em: 4. set. 2022.

[24] ÖZAL, Serkan. Jaeger vs. Zipkin: Battle of the Open Source Tracing
Tools. splunk, 2022. Disponível em:
https://thenewstack.io/jaeger-vs-zipkin-battle-of-the-open-source-tracing-tools/.
Acesso em: 4. set. 2022.

[25] sem autor. APACHE KAFKA. kafka, 2022. Disponível em:
https://kafka.apache.org/. Acesso em: 9. set. 2022.

[26] Avyaa. Role of Community in Scaling Open Source Projects. dev.to,
2021. Disponível em:
https://dev.to/aviyel/role-of-community-in-scaling-open-source-projects-19g6.
Acesso em: 13. set. 2022.

[27] sem autor. [Lista de artigos sobre o Jaeger]. dev.to, 2022. Disponível em:
https://dev.to/t/jaeger. Acesso em: 13. set. 2022.

[28] sem autor. [Lista de artigos sobre o Zipkin]. dev.to, 2022. Disponível em:
https://dev.to/t/zipkin. Acesso em: 13. set. 2022.

[29] sem autor. [Repositório oficial do Jaeger]. github, 2022. Disponível em:
https://github.com/jaegertracing/jaeger. Acesso em: 13. set. 2022.

[30] sem autor. [Repositório oficial do Zipkin]. github, 2022. Disponível em:
https://github.com/openzipkin/zipkin. Acesso em: 13. set. 2022.

[31] CROUCH, Steve. Choosing the right open-source software for your
project. software.ac, 2022. Disponível em:
https://www.software.ac.uk/choosing-right-open-source-software-your-project.
Acesso em: 28. set. 2022.

[32] sem autor. Tips To Choose the right open source tool. eclature, 2022.
Disponível em: https://eclature.com/open-source-tool/. Acesso em: 28. set. 2022.

[33] GRAÇA, Herberto. Architectural Styles vs. Architectural Patterns vs.
Design Patterns. herbertograca.com, 2022. Disponível em:
https://herbertograca.com/2017/07/28/architectural-styles-vs-architectural-patterns
-vs-design-patterns/. Acesso em: 30. set. 2022.

48

[34] GRAÇA, Herberto. Monolithic Architecture. herbertograca.com, 2022.
Disponível em: https://herbertograca.com/2017/07/31/monolithic-architecture/.
Acesso em: 30. set. 2022.

[35] LIVENS, Jay. What is observability? Not just logs, metrics and traces.
dynatrace.com, 2021. Disponível em:
https://www.dynatrace.com/news/blog/what-is-observability-2/. Acesso em: 3. out.
2022.

[36] FOWLER, Martin. Testing Strategies in a Microservice Architecture.
martinfowler.com, 2022. Disponível em:
https://martinfowler.com/articles/microservice-testing/. Acesso em: 3. out. 2022.

[37] DINUWAN, Chanuka. Getting started with Microservices Architecture.
blog.devgenius.io, 2021. Disponível em:
https://blog.devgenius.io/getting-started-with-microservices-architecture-2031723
90928. Acesso em: 3. out. 2022.

[38] sem autor. [Repositório oficial do Uptrace]. github, 2022. Disponível em:
https://github.com/uptrace/uptrace. Acesso em: 6. out. 2022.

[39] sem autor. [Repositório oficial do Grafana Tempo]. github, 2022. Disponível
em: https://github.com/grafana/tempo. Acesso em: 13. set. 2022.

[40] sem autor. [Repositório oficial do Signoz]. github, 2022. Disponível em:
https://github.com/SigNoz/signoz. Acesso em: 13. set. 2022.

[41] BARKER, Dan. 3 open source distributed tracing tools.
opensource.com, 2021. Disponível em:
https://opensource.com/article/18/9/distributed-tracing-tools. Acesso em: 6. out.
2022.

[41] sem autor. Free and Open Source Distributed Tracing Tools.
uptrace.dev, 2021. Disponível em:
https://uptrace.dev/get/compare/distributed-tracing-tools.html#uptrace. Acesso em:
6. out. 2022.

[42] sem autor. George Santayana. wikiquote.org, 2021. Disponível em:
https://en.wikiquote.org/wiki/George_Santayana#Quotes_about_Santayana.
Acesso em: 18. out. 2022.

49

