[~
[[~
e

&

yRTUS 4 FAVIDY
[

Universidade Federal de Pernambuco
Centro de Informatica

Bacharelado em Ciéncia da Computacéao

Analise de solugdes de rastreamento open source no contexto de aplicagées
baseadas em microsservigos

Trabalho de Graduagao

Matheus de Andrade Lima

Recife
2022

Universidade Federal de Pernambuco

Centro de Informatica

Matheus de Andrade Lima

Analise de solugdes de rastreamento open source
no contexto de aplicagcoes baseadas em
microsservicos

Trabalho de Conclusdo de Curso apresentado no
curso de Bacharelado Ciéncia da Computagdo do
Centro de Informatica da Universidade Federal de
Pernambuco como requisito parcial para obtengdo
do grau de Bacharel em Ciéncia da Computagdo.

Orientador: Vinicius Cardoso Garcia

Recife
2022

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragdo automatica do SIB/UFPE

Lima, Matheus de Andrade.
Andlise de solucdes de rastreamento open source no contexto de aplicactes
baseadas em microsservigos/ Matheus de Andrade Lima. - Recife, 2022.
50:il., tab.

Orientador(a): Vinicius Cardoso Garcia

Trabalho de Conclusdo de Curso (Graduagao) - Universidade Federal de
Pernambuco, Centro de Informética, Ciéncias da Computacéo - Bacharelado,
2022.

1. sistemas distribuidos. 2. microsservicos. 3. observabilidade. 4.
rastreamento distribuido. |. Garcia, Vinicius Cardoso . (Orientagdo). I1. Titulo.

000 CDD (22.ed.)

Este trabalho é dedicado aos meus familiares,
amigos e professores.

AGRADECIMENTOS

Primeiramente agradego a Deus pelos dons que me deu nesta existéncia que
serviram na realizag@o deste projeto.

Agradego aos meus pais por todo o esfor¢o investido na minha educagao.
Agradeco a minha namorada que sempre esteve ao meu lado durante o0 meu
percurso académico.

Aos meus colegas de turma, por compartilharem comigo tantos momentos de
descobertas e aprendizado e por todo o companheirismo ao longo deste
percurso.

Sou grato pela confianca depositada na minha proposta de projeto pelo meu
professor Vinicius Garcia, orientador do meu trabalho. Obrigado por me
manter motivado durante todo o processo.

Por ultimo, quero agradecer também a Universidade Federal de Pernambuco

e a todo o seu corpo docente.

RESUMO

Devido a ascensao da internet e o crescimento elevado do numero de usuarios, a
engenharia de software foi obrigada a buscar arquiteturas mais resilientes. Uma das
solugdes encontradas foi criar sistemas pequenos, independentes e com contexto
bem definido que se comunicam através da rede, padrao arquitetural que
conhecemos como microsservigos. Entretanto, este padréo arquitetural traz consigo
uma dificuldade maior em relacdo a observabilidade do sistema. Entre as
dificuldades podemos citar o rastreamento, encontrar o caminho que uma
determinada chamada fez dentro do sistema, pois nesta abordagem ha varios
sistemas interagindo entre si. Sendo assim, o objetivo deste projeto € facilitar a
escolha de ferramentas de rastreamento por meio de uma comparagao dos dois
principais produtos open source disponiveis para a plataforma JVM. Além disso,
deixar disponivel um repositério com um projeto exemplo de forma que sirva de
referéncia para que desenvolvedores possam consultar a configuragdo e comparar
os beneficios de cada ferramenta, fazendo assim a melhor escolha pro seu
contexto.

Palavras-chave: sistemas distribuidos, microsservigcos, observabilidade,

rastreamento distribuido.

ABSTRACT

Due to the rise of the internet and the high growth in the number of users, software
engineering was forced to look for more resilient architectures. One of the solutions
found was to create small, independent systems with a well-defined context that
communicate over the network, an architectural pattern we know as microservices.
However, this architectural pattern brings with it a greater difficulty in relation to the
observability of the system. Among the difficulties, we can mention the tracing,
finding the path that a given request did through the system, because in this
approach there are several systems interacting with each other. Therefore, the
objective of this project is to facilitate the choice of tracing tools through a
comparison of the two main open source products available for the JVM platform. In
addition, make available a repository with an example project so that it serves as a
reference for developers to consult the configuration and compare the benefits of
each tool, thus making the best choice for their context.

Keywords: distributed systems, microservices, observability, distributed tracing.

LISTA DE FIGURAS

Figura 1: Exemplo de aplicagdo monolitica.............cccooviiiiiiiiiiiiiiiee, 14
Figura 2: Exemplo de aplicagdo em MiCroSServigos.oovviviieiieiieiinennnns 15
Figura 3: Exemplo de rastreamento..............oooiiiiii i 20
Figura 4: Exemplo de Dockerfile com configuragdes pro Jaeger................... 27
Figura 5: Exemplo de Dockerfile com configuragdes pro Zipkin..................... 27
Figura 6: Exemplo de docker-compose com configuragdes pro Jaeger.......... 28
Figura 7: Exemplo de docker-compose com configuragdes pro Zipkin........... 29
Figura 8: Script com comandos direcionados ao Jaeger.................ccevuenes 30
Figura 9: Script com comandos direcionados ao Zipkin......................c........ 31
Figura 10: Aplicag@o rodando...........ccooeiiiiiiii i 32
Figura 11: Tela inicial do Jaeger..........cooiii i 33
Figura 12: Tela inicial do ZipKin...........ooiii e 33
Figura 13: Arquitetura do ZipKin............coooiii i 36
Figura 14: Arquitetura do Jaeger (centralizada).................ccooiiiiiiiiiiinn. 37
Figura 15: Arquitetura do Jaeger (distribuida)..............cooiiiiiiiiiiis 38
Figura 16: Grafico de dependéncias do Jaeger............cccooviiiiiiiiiiiiinennnnn, 39
Figura 17: Grafico de dependéncias do ZipKin...........ccooeiiiiiiiiiiiii i, 40

Figura 18: Comparagao de tracCes.coeiiiriiiii e 41

SOA
APM
JVM
API
CNCF

LISTA DE SIGLAS

Arquitetura Orientada a Servicos
Application Performance Monitoring
Java Virtual Machine

Application Programming Interface

Cloud Native Computing Foundation

SUMARIO

1. INTRODUGAO

1.1 CONTEXTO
1.2 OBJETIVOS
1.3 ORGANIZACAO DO TRABALHO

2. CONCEITOS

2.1 HISTORIA DAARQUITETURA DE SOFTWARE
2.2 ARQUITETURA DE MICROSSERVICOS

2.3 OBSERVABILIDADE

2.4 SINTESE DO CAPITULO

. FERRAMENTAS E CONFIGURAGAO DO PROJETO
3.1 FERRAMENTAS DE APOIO

3.2 FERRAMENTAS DE RASTREAMENTO

3.3 IMPLEMENTAGCAO

3.4 METRICAS DE COMPARACAO

3.5 SINTESE DO CAPITULO

. DISCUSSAO COMPARATIVA
4.1 ARQUITETURA

4.2 FUNCIONALIDADES

4.3 COMUNIDADE E SUPORTE
4.4 SINTESE DO CAPITULO

5. CONCLUSAO E TRABALHOS FUTUROS

5.1 CONCLUSAO
5.2 LIMITAGOES
5.3 TRABALHOS FUTUROS

. REFERENCIAS

10
11

12
12
14
17
21

22
22
24
25
34
34

36
36
38
41
42

44
44
45
45

46

1. INTRODUGAO

Este primeiro capitulo busca trazer um entendimento geral do problema sobre
o qual esta sendo realizado o trabalho, teremos uma breve passagem pela histéria

do mesmo e tudo que sera abordado.

Além disso, também se faz presente os objetivos que desejamos alcancar
com a realizagao deste trabalho e uma visado geral do conteudo de cada capitulo

para que o leitor tenha ciéncia de como o trabalho esta estruturado.
1.1 CONTEXTO

Devido a ascensado da internet e o crescimento elevado do numero de
usuarios, a engenharia de software foi obrigada a buscar solugdes para sistemas
mais confiaveis. Ao longo do tempo diversos padrdes arquiteturais foram criados
com o intuito de sanar este problema, por exemplo: cliente-servidor, SOA, orientado

a eventos, microsservigos, entre outros [1].

O padrao arquitetural de microsservigos, consiste em pequenos sistemas,
independentes e fracamente acoplados [2]. Criar sistemas com arquitetura baseada
em microsservigos € muito comum no mercado de tecnologia nos dias de hoje [1].
Dado que estamos construindo sistemas cada vez mais complexos, ha uma
quantidade significativa de vantagens de usar tal abordagem, tais como: conseguir
escalar cada servico de forma independente, reduzir o tempo de inatividade por
meio do isolamento de falhas, facil manutenibilidade, ganhos de produtividade pela

segmentacgao do time, entre outros [2].

Entretanto, este padrao arquitetural traz consigo uma dificuldade maior em
relagdo ao monitoramento e observabilidade do sistema [3]. Dentre as principais
dificuldades podemos citar o rastreamento, que podemos descrever como encontrar
o caminho que uma determinada chamada fez dentro do sistema, pois nesta
abordagem ha varios sistemas interagindo entre si [4]. O rastreamento nos diz se o

sistema esta funcionando conforme foi arquitetado.

Além disso, o rastreamento também nos ajuda a identificar componentes do
sistema com mau funcionamento. Podemos descobrir, por exemplo, que uma
lentiddo na resposta esta associada a uma busca muito demorada na base de

dados. Dito isto, ter tal informagao é de extrema importancia para fins de otimizagao.

Com o intuito de ajudar no esclarecimento desse problema existem as
ferramentas de APM e rastreamento, das quais podemos citar New Relic,
Dynatrace, AppDynamics, etc [5]. As ferramentas citadas sdo bem avaliadas pela
comunidade, conforme pode ser observado em foruns como Reddit e Gartner [6, 7 e
8], e se bem utilizadas resolvem os problemas, contudo um obstaculo comum para
empresas pequenas ou desenvolvedores € o alto valor das licengas cobradas pelos

dominantes do mercado [9].

Felizmente ha opcg¢des de ferramentas de rastreamento open source
disponiveis. No entanto, escolher qual a melhor para o seu projeto € uma tarefa
complicada pois ha muitos aspectos a serem analisados, por exemplo:
compatibilidade com a linguagem utilizada, usabilidade da Ul, robustez da
plataforma, modelo de implantagdo no ambiente de producdo, entre outros.
Ademais, os aspectos citados s6 sao plenamente verificados com o uso da

ferramenta, o que consome bastante tempo da equipe de desenvolvimento.

1.2 OBJETIVOS

Dito isso, o principal objetivo deste projeto é facilitar a escolha de ferramentas
de rastreamento open source disponiveis para a plataforma JVM por meio de uma
comparagao pratica. Desta forma, pretende-se conduzir um estudo com base nos
seguintes pontos:

e Arquitetura, como a ferramenta pode ser implantada para uso dentro
de uma organizagao.
e Funcionalidades, qual ferramenta apresenta o melhor conjunto de

solucdes.

10

e Suporte e comunidade, como €& a aceitagdo na comunidade open

source.

Além disso, este trabalho também visa analisar as ferramentas Jaeger e
Zipkin, verificar a integragdo dessas ferramentas em uma solugdo completa de
rastreamento e deixar disponivel um repositério com um projeto exemplo de forma
que sirva de referéncia a desenvolvedores. Sendo assim, havera uma facilidade
maior para que se possa consultar a configuracdo e comparar os beneficios de cada

ferramenta, ajudando assim, a fazer melhor escolha pro contexto.

1.3 ORGANIZAGAO DO TRABALHO

Este trabalho esta organizado da seguinte forma:

O Capitulo 1 apresenta uma contextualizagdo do problema juntamente com
0s objetivos almejados.

O Capitulo 2 vem com a exposigao dos principais conceitos necessarios para
o entendimento do trabalho como um todo, conceitos aos quais nao seria possivel
realizar o trabalho sem um bom embasamento.

Ja o Capitulo 3, por sua vez, € voltado para para o entendimento das
ferramentas utilizadas na realizagcdo do projeto, tanto as ferramentas que sao
usadas para a comparagao quanto as ferramentas de apoio. Além disso, detalha
como foi a configuragdo do projeto base e como sera abordada a comparagédo no
capitulo seguinte.

O quarto capitulo, tem como objetivo expor os detalhes de cada ferramenta,
sua utilizagao, pontos positivos e negativos de cada critério abordado como métrica
de comparacéo.

Por fim, o Capitulo 6 apresenta as conclusdes chegadas pelo autor durante o

desenvolvimento do trabalho e um levantamento de possiveis trabalhos futuros.

11

2. CONCEITOS

Neste capitulo serdo apresentados o0s principais conceitos que dao
fundamento a este trabalho. Primeiramente, vamos entender um pouco sobre a
histéria da arquitetura de software para que possamos entender como chegamos no

cenario atual.

Em seguida, estudaremos os conceitos de microsservigos e observabilidade,
esses dois assuntos sdo fundamentais para a compreensdo do problema do
rastreamento distribuido. As ferramentas escolhidas para comparagcéo tém como

funcao o rastreamento distribuido dos sistemas.

2.1 HISTORIA DA ARQUITETURA DE SOFTWARE

Como forma de entender bem o presente, devemos olhar e estudar a historia.
Isso € importante ndo apenas em computagdo mas em toda ciéncia. O filésofo
George Santayana disse, “Quem né&o aprende a histéria esta condenado a repeti-la”
[42], mas nds ndo queremos repetir 0s menos erros ou repetir o mesmo processo

para resolver um problema ja resolvido.

Uma decisdo muito importante na concepg¢ado de um software € escolher um
estilo arquitetural. De acordo com Herberto Graga: Os estilos arquiteturais nos
dizem, em linhas muito amplas, como organizar nosso cédigo. E o nivel mais alto de
granularidade e especifica camadas, mdédulos de alto nivel da aplicagdo e como
esses moédulos e camadas interagem entre si, as relagdes entre eles [33]. Sao
exemplos de estilos arquiteturais:

e Component-based

e Monolithic application
e Layered

e Pipes and filters

e Event-driven

e Publish-subscribe

e Plug-ins

12

e Client-server

e Service-oriented

Construir um monolito sempre foi o estilo arquitetural padrao e mais simples.
Ter um estilo de arquitetura monolitico significa simplesmente que todo o cédigo da
aplicagado esta implantado e executado como um unico processo em um Unico
servidor. Por apresentar todo o codigo da aplicagdo em um unico processo,
comegam a surgir problemas caso algumas das seguintes caracteristicas sao
necessarias [34]:

e Escalabilidade independente de diferentes componentes do dominio;

e Diferentes componentes ou médulos a serem escritos em diferentes
linguagens de programacao;

e Implantacdo independente, talvez porque tenhamos uma taxa de
lancamento maior do que a pipeline de Implantacado pode suportar
para uma base de cdédigo, fazendo com que a Implantagdo de uma
versdo seja lenta porque ela precisa aguardar a implementacao de
outras versdes ou até mesmo fazendo com que a fila de Implantacéo

cresca mais rapido do que é consumido.

13

Figura 1: Exemplo de aplicagdo monolitica

Arquitetura Tradicional de uma Aplicacdo WEB

Servico Financeiro Banco de

Dadas
MYSQL

Browser Apache

Servico de Estoque

Sewigo de Logistica |
/ Envio

Fonte: Docplayer (2021)

Com a finalidade de resolver esses problemas comecgaram a surgir estilos
arquiteturais com aplicacbes segregadas, primeiramente SOA e posteriormente
microsservigos. Na proxima segcdo vamos entender sobre o estilo arquitetural de
microsservicos, o qual € muito utilizado atualmente e de extrema importancia para a

continuidade deste trabalho.

2.1 ARQUITETURA DE MICROSSERVICOS

De acordo com uma pesquisa direcionada a pessoas que trabalham na
industria de software, a arquitetura de microsservigcos € uma das mais utilizadas nas
aplicagdes criadas atualmente [10]. Vamos entender como chegamos neste cenario

olhando os principais beneficios de aderir a este estilo arquitetural.

Criar uma aplicagdo com microsservigos significa dividir sua aplicagao em
aplicagdbes menores e com contexto bem definido. Essas pequenas aplicacoes,
também chamadas de micro servico, devem ser capazes de funcionar e se

comunicar de forma independente através da rede [11].

14

Na Figura abaixo podemos ver como uma aplicagdo com a arquitetura de
microsservigos funciona. O uso de um API gateway, que serve como uma porta de
entrada unica para toda aplicagao é uma caracteristica comum, mas nao obrigatoria.
Ademais, cada servico tem sua propria fungao dentro da aplicagdo, e quando
necessario, cada servico também tem seu proprio meio de armazenamento de

dados, evitando assim um ponto unico de falha [11].

Figura 2: Exemplo de aplicagdo em microsservigos

o]

388

o Clients
e e e i
! L]
¢ rmm=m—a-.
API Gateway
T e (e s
1 o, S N i, " 1
1 I ! [o
i . |
00— 00 — 00— 20 — 09 —
00 - 00— 00 - o0 - Qo -
Mircroservice Mircroservice Mircroservice Mircroservice Mircroservice
' 4
¢ 3 o o H vt

LMW middile

Fonte: Middleware (2021)

A lista de beneficios da utilizagdo de microsservigos é extensa, veremos aqui

as principais, de acordo com [11]:

e Escalabilidade facilitada - Ja que temos sistemas independentes, o time de
desenvolvimento pode trabalhar de forma paralela nas demandas de cada
micro servico. Com isso, a equipe tem liberdade para estudar e identificar a

necessidade de escalabilidade de cada um desses servicos.

¢ Implantagées mais rapidas e isoladas - Um dos requisitos no contexto de

independéncia € que cada micro servigo possa ser implantado de forma

15

também independente das outras aplicagdes. Isso faz com que tenhamos

uma reducéao de custos e tempo na resolugao de problemas.

e Agnéstico a tecnologia - Cada micro servico tem uma fungao dentro do

sistema e cada aplicagdo pode utilizar a tecnologia que melhor resolve o

problema do seu contexto. Isso é possivel devido a independéncia de cada

aplicagao.

e Isolamento de falhas melhorado - Exceto quando temos dependéncias

entre micro servicos, cada aplicacdo esta isolada de eventuais falhas que

possam ocorrer em outros microsservigos do sistema.

Os beneficios citados acima revelam o motivo da gigante adog¢&o do estilo

arquitetural aqui discutido. Porém, ha também diversos desafios que exigem muita

maturidade do time que opta por desenvolver com o padrdo arquitetural de

MIiCrosservicgos.

Dentre os quais podemos citar, segundo [13]:

Consisténcia de dados: Primeiro, pode haver redundancia nos
armazenamentos de dados, com o mesmo item de dados aparecendo
em varios lugares. Por exemplo, os dados podem ser armazenados
como parte de uma transacéo e, em seguida, armazenados em outro
lugar para analises, relatérios ou arquivamentos. Dados duplicados ou
particionados podem levar a problemas de integridade e consisténcia
de dados.

Testes: Sdo muito mais complexos em um ambiente de microsservicos
devido aos diferentes servigos, integragdo complexa e
interdependéncias. Outro ponto é que a equipe precisa escrever
muitos mocks, mesmo para testar pequenas partes de cédigo [36].
Falhas de comunicacao: Sistemas distribuidos devem ser construidos
de forma que eventuais falhas ndo derrubem a aplicacéo. Portanto, os
desenvolvedores precisam conhecer todos os modos de falha e ter

backups caso ocorra alguma falha.

16

e Rastreamento distribuido: Encontrar os pontos de falha e gargalos &
dificil, caro e demorado com microsservigos. Além disso, na maioria
dos casos, os dados de falha ndo sao propagados de maneira clara
dentro dos microsservicos. E este ponto é o principal aspecto de

estudo deste trabalho.

Como podemos observar, adotar uma arquitetura baseada em microsservigos
tem muitos ganhos, mas ha também inumeros desafios que exigem muita
maturidade da equipe de desenvolvimento. A escolha por usa-la deveria passar por
uma minuciosa analise dos requisitos do produto, conhecimento do time, tempo e

orgamento disponivel para execugao.

2.2 OBSERVABILIDADE

De acordo com [14], observabilidade € a habilidade de medir os estados
internos de um sistema examinando suas saidas. Que pode ser entendido como
coletar dados dos sistemas e examina-los com o intuito de entender o seu
funcionamento.

Algumas perguntas pertinentes sobre o funcionamento de um sistema séo,
segundo [15]:

e Por quais servigos uma requisicdo passou e onde estavam os gargalos de
desempenho?

e Por que a requisigao falhou?

e Como a execucgao da requisicao foi diferente do comportamento esperado do
sistema?

e Quantas requisicoes foram recebidas em um determinado intervalo de

tempo?

Para responder a estas perguntas, existem trés pilares levados em
consideragao:

e Logs: Registros imutaveis feitos para identificar o comportamento em um

sistema e fornecer informagdes sobre o comportamento do sistema quando

as coisas deram errado. E altamente recomendavel ingerir logs de maneira

17

estruturada, como no formato JSON, para que os sistemas de visualizagao
de log possam indexar automaticamente e tornar os logs facil de recuperar
[15].

e Meétricas: Sdo contagens ou medicbes que sdo agregadas ao longo de um
periodo de tempo. As métricas informardo, por exemplo, a quantidade de
memodria usada por um método ou quantas solicitagdes um servigo processa
por segundo e etc [15].

e Traces: Para uma transagao ou solicitagdo individual, um unico rastreamento
exibe a operacado conforme ela se move de um né para outro em um sistema
distribuido [15].

A observabilidade depende da telemetria que ¢é obtida através da
instrumentacdo para obter informagbes sobre o estado do sistema. Nesses
ambientes modernos, todos os componentes de hardware, software, infraestrutura
geram registros de todas as atividades. O objetivo da observabilidade € entender o
que esta acontecendo em todos esses ambientes e entre as tecnologias, para que
possamos detectar e resolver problemas para manter os sistemas eficientes e

confiaveis [35].

Muitas organizagdes também adotam uma solugdo de observabilidade para
ajuda-las a detectar e analisar a importancia de eventos para suas operagoes, ciclos
de vida de desenvolvimento de software, seguranga de aplicativos e experiéncias do

usuario final [15].

A observabilidade tornou-se mais critica nos ultimos anos, a medida que os
ambientes nativos da nuvem se tornaram mais complexos e as possiveis causas de
uma falha ou anomalia tornaram-se mais dificeis de identificar. A medida que as
equipes comegam a coletar e trabalhar com dados de observabilidade, elas também

percebem seus beneficios para os negocios, ndo apenas para a Tl [35].

Neste trabalho, vamos focar na parte de rastreamento distribuido, o qual usa

os traces obtidos por meio da observabilidade do sistema.

18

RASTREAMENTO DISTRIBUIDO

Imagine que vocé é um desenvolvedor backend e ao chegar para trabalhar
na segunda-feira se depara com a noticia de que algumas funcionalidades dos
sistema nao estdo funcionando. Neste momento vocé comeca a fazer troubleshoot
nos logs de todos os servigos do sistema na tentativa de achar o ponto em que o
fluxo esta travando. Isso é uma tarefa que demanda bastante tempo, em sistemas
que rodam dezenas de servigcos € totalmente inviavel fazer troubleshoot dessa
forma. Para nos ajudar nessa situacao critica podemos nos apoiar no rastreamento

distribuido de requisicoes.

O rastreamento de requisigdes nao € algo novo na industria de software. A
ideia € saber o comportamento de uma requisicdo dentro do sistema, desde a
interface de entrada até a camada de saida [16]. O rastreamento permite que vocé
entre em detalhes de requisi¢gdes especificas para determinar quais componentes
causam erros no sistema, monitorar o fluxo pelos médulos e encontrar gargalos de

desempenho [15].

Com a adocao de microsservicos, o rastreamento de requisicdes ndo é mais
uma tarefa simples, agora se faz necessario fazer um rastreamento distribuido da
requisicao em questao [17]. Isso € possivel por meio da etiquetagem de requisi¢coes
com um identificador Unico que é passado em todo o percurso que a requisigcao faz

dentro do sistema. A imagem abaixo mostra um exemplo de rastreamento.

19

Figura 3: Exemplo de rastreamento

Example Flame Graph for a Distributed Trace

Trace ID: 123

USE COUPON REQUEST (Parent) Span ID: ABC

API: FRAUD CHECK
Trace ID: 123
Span ID: GHI

API: USER AUTH API: APPLY COUPON
Trace ID: 123 Trace ID: 123

SERVICE Span ID: DEF Span ID: JKL

CALLS

Trace ID: 123
Span ID: PQR

FUNCTION: PROCESS COUPON
Trace ID: 123
Span ID: MNO

TIME

Fonte: Datadoghq (2022)

Cada passo do percurso gera fraces, que sao nada mais do que logs
automatizados com a informacdes do passo atual. Esses traces, por sua vez, sao
agregados por alguma ferramenta de rastreamento e disponibilizados através de

uma interface grafica para visualizagao e analise [17].

Dado isso, o rastreamento distribuido traz diversos beneficios, segundo [39]:

e Melhor entendimento das relagdes entre os microsservigos - Ao visualizar
rastreamentos distribuidos, os desenvolvedores podem entender as relagdes
de causa e efeito entre os servigos e otimizar seu desempenho. Por exemplo,
visualizar um intervalo gerado por uma chamada de banco de dados pode
revelar que adicionar uma nova entrada de banco de dados causa laténcia

em um servigo.

e Avaliar as acgdes especificas do usuario - O rastreamento distribuido ajuda a
medir o tempo necessario para concluir as principais agdes do usuario, como
a compra de um item. Os rastreamentos podem ajudar a identificar gargalos

de back-end e erros que estao prejudicando a experiéncia do usuario.

20

e Melhora a colaboragdo e a produtividade - Em arquiteturas de
microsservicos, equipes diferentes podem possuir os servigos envolvidos na
conclusao de uma solicitagdo. O rastreamento distribuido deixa claro onde

ocorreu um erro e qual equipe € responsavel por corrigi-lo.

2.2 SINTESE DO CAPITULO

Neste capitulo foram apresentados os conceitos e fundamentos tedricos
referentes a arquitetura de microsservicos, observabilidade e rastreamento
distribuido. Esses conceitos sdo de extrema importancia para o entendimento da

continuidade do trabalho e projeto desenvolvido.

No proximo capitulo vamos conhecer quais ferramentas foram escolhidas
para ajudar na fabricacdo e configuracdo do projeto. Com isso, falaremos de
ferramentas muito utilizadas no mercado: spring boot, docker e opentelemetry. Além
disso, deixaremos detalhado quais serdo as métricas de comparacao das

ferramentas.

21

3. FERRAMENTAS E CONFIGURAGAO DO PROJETO

Este capitulo mostra, primeiramente, quais ferramentas de apoio foram
utilizadas e qual € a sua utilidade dentro do projeto. Imediatamente, veremos a

escolha das ferramentas de rastreamento usadas para comparag¢ao no projeto.

Posteriormente, esta escrito como foi a configuracdo e implementacdo do
projeto com todas essas ferramentas juntas, aqui ndo esta presente a comparagao
em si, que fica no proximo capitulo. Por ultimo, olharemos para as métricas de

comparacgao das ferramentas que seréao debatidas no capitulo seguinte.
3.1 FERRAMENTAS DE APOIO

Com o intuito de facilitar a execugao do projeto, algumas ferramentas foram

utilizadas, vamos descrever brevemente qual o objetivo de uso de cada uma delas.
DOCKER

Antes de pensarmos em saber o que € como funciona o docker, precisamos
definir seu principal componente, o container. Segundo a Docker, um container € um
software que empacota o cédigo de uma aplicagdo e todas as suas dependéncias
para que seja executada de forma rapida e confiavel de diversos ambientes de

computacéo [18].

O docker, por sua vez, é uma plataforma que facilita a criacdo e
administragao de containers docker [19]. Esses containers, que nada mais sao do
que o coédigo da aplicagdo empacotado em execugdo, sao criados a partir de
imagens docker [18]. As imagens sdo criadas a partir de arquivos Dockerfile,

exemplificados nas figuras 2 e 3.

No projeto exemplo utilizaremos o docker para criar os containers contendo

cada micro servigo da aplicacdo e outro container contendo a ferramenta de

22

rastreamento: Jaeger e Zipkin. Assim, conseguimos simular um ambiente de

execucao local completo para testes.

SPRING BOOT

O Spring boot é um framework desenvolvido para a plataforma java que tem
por objetivo facilitar o desenvolvimento de aplicagdes para este ecossistema por
meio da abstracdo da complexidade de configuracdo e disponibilizacdo de

componentes de uso geral [20].

Dentre esses componentes uteis podemos citar: servidor web, bibliotecas de
integracdo com banco de dados, integracdo com servicos de computacdo em
nuvem, funcionalidades de seguranga, entre outros. Spring boot € um framework

completo e bastante utilizado pela industria de desenvolvimento de software [21].

No projeto utilizaremos o spring boot auxiliar na criacdo e configuracao de
cada micro servigo java que compde a aplicacdo de exemplo. Serao trés aplicagdes

cada uma com sua fung¢ao dentro do sistema.

OPENTELEMETRY

OpenTelemetry é um framework de observabilidade open source que nasceu
da necessidade de existir uma ferramenta Unica com todas as funcionalidades

necessarias a observabilidade: logs, métricas e rastreamento de requisigdes [22].

Além disso, outra importante caracteristica € nao ser restritvo a uma
linguagem especifica, a ferramenta pode ser utilizada para aplicagdes escritas em
Java, Python, JavaScript e etc. Existem aplicagdes, chamadas de agentes,
especifico para cada linguagem, que fazem a coleta de métricas, traces e logs de

forma automatizada [23].

O OpenTelemetry oferece ainda uma forma de exportagdo dessas métricas

de forma agnéstica ao provedor de armazenamento e analise visual dos dados. No

23

caso de rastreamento esse provedor pode ser: Jaeger ou Zipkin [23]. No projeto
utilizaremos esta ferramenta com o agente injetado na JVM para que os traces

coletados sejam enviados para o Jaeger ou Zipkin.

3.2 FERRAMENTAS DE RASTREAMENTO

Ao analisar as ferramentas open source para rastreamento distribuido
disponiveis no mercado € possivel notar a dominédncia de duas, de acordo com
numero de interagdes com o repositorio oficial de cada uma delas: Jaeger e Zipkin.
As duas ferramentas apresentam propostas semelhantes, mas foram desenvolvidas

em épocas diferentes.

Zipkin € uma versao open source do Dapper do Google que foi desenvolvida
pelo Twitter. Em sua esséncia, o Zipkin € uma aplicacdo escrita em Java que
fornece o servico de armazenamento e visualizacdo de traces. Como opgdes de
armazenamento para manter os dados registrados, ha integracdo com banco de

dados em memoria, MySQL, Cassandra e Elasticsearch [24].

Ja o Jaeger foi criado pela Uber e foi escrito em Go. Além do conjunto de
recursos do Zipkin, o Jaeger também fornece alguns recursos adicionais como:
amostragem dinamica, que é uma forma mais inteligente de colher os traces; uma
APl REST, que serve para fazer consulta aos dados dos seus traces de forma
programatica; e suporte para armazenamento em memoéria Cassandra e

Elasticsearch [24].

A motivacdo para escolha de Jaeger e Zipkin se deu por serem as
ferramentas open source mais relevantes para rastreamento de acordo com as
interagdes no github, quantidade de posts escritos em blogs na comunidade sobre
cada ferramenta e recomendagdes de uso da comunidade. Entre as ferramentas
pesquisadas estdo também: Uptrace, Grafana Tempo e Signos, porém nenhuma
delas se mostrou tao relevante dentro dos aspectos ja citados, quanto as escolhidas
[29, 30, 38, 39, 40, 41, 42].

24

3.3 IMPLEMENTAGAO

Nesta secdo vamos ver 0 passo a passo para a criagao do projeto exemplo
utilizando todas as ferramentas e conceitos discutidos até o presente momento. O
projeto a ser desenvolvido aqui € um dos objetivos deste trabalho e permitira que
desenvolvedores tenham uma fonte de conhecimento para comparagao e consulta

durante a escolha da ferramenta de rastreamento mais adequada ao seu projeto.

ESCOLHA DO PROJETO BASE

Como mencionado anteriormente, o projeto base consiste de uma aplicagao
que faz uso da arquitetura de microsservigos. Com o intuito de agilizar o
desenvolvimento, usaremos uma aplicagcao criada por terceiros que se encontra
disponivel no github com uma licenga que permite o uso. A aplicagdo base contém
trés micro servigos que se chamam: name-generator-service,

animal-generator-service e scientist-generator-service.

A missdo € gerar nomes aleatérios concatenando nomes de cientistas
famosos a nomes de animais. Cada micro servico tem sua fungdo dentro de um
sistema e os microsservigcos scientist-generator-service e animal-generator-service
apenas expdéem uma interface que retorna um nome aleatério de um cientista e

animal, respectivamente.

Ja o name-generator-service, expdbe uma interface que ao ser invocada,
acessa 0sS micro servigos scientist-generator-service e animal-generator-service,
obtendo assim o nome de um cientista e de um animal. Feito isso, os nomes sao
concatenados e um temos assim um nome aleatério gerado, como por exemplo:

alan-turing-canaan-dog.

Apesar de simples, a aplicagdo explora um cenario de chamadas sincronas a
outros servigos do sistema, aspecto muito comum em uma aplicagao distribuida.

Agora teremos que fazer a configuragao do docker para fazer a geragao de imagens

25

docker a partir do nosso cédigo. O codigo base usado esta disponivel neste
repositorio: https://bit.ly/3BmtmBC.

CONFIGURAGAO DO DOCKER E OPENTELEMETRY

Antes de comecarmos esta fase, devemos nos certificar de que nossa
aplicagao Java esta compilando e executando corretamente. Dito isto, vamos criar
um Dockerfile, que € um arquivo usado para definir como o docker ira criar a nossa
imagem, que ira conter o cédigo desenvolvido na nossa aplicagao, e futuramente

sera estara rodando no container.

Na criacdo do Dockerfile devemos indicar a partir de qual imagem queremos
criar a nossa, ja que estamos usando java, devemos usar uma imagem que tenha a
JVM disponivel para rodarmos nossa aplicacdo. Depois, devemos copiar o arquivo
Jar, o qual contém as classes java compactadas geradas na compilagdo do

programa, para dentro da imagem.

Agora sO nos resta configurar o OpenTelemetry e indicar como a imagem
devera rodar a nossa aplicagdo. A documentacdo oficial do OpenTelemetry
recomenda usar o agente especifico da linguagem, por isso estamos copiando
também o agente para dentro da nossa imagem. Por ultimo, devemos indicar como
a imagem ira rodar nossa aplicagdo quando o container for criado e passar as as
configuragbes que o agente deve usar para que mande o traces para o rastreador
que quisermos.

As imagens abaixo mostram como ficaram os arquivos com configuragao

voltada a cada rastreador, Jaeger e Zipkin.

26

https://bit.ly/3BmtmBC

Figura 4: Exemplo de Dockerfile com configuragdes pro Jaeger
openjdk:8-Jdk-alpine

Fonte: Autor (2022)

Figura 5: Exemplo de Dockerfile com configuragdes pro Zipkin

e [i-7dk-al

Fonte: Autor (2022)

Agora temos os arquivos de geragdo de imagem da nossa aplicagéao
direcionado a cada rastreador, agora precisamos criar um arquivo que nos ajude a
rodar todas imagens para criar os containers ao mesmo tempo para que possamos

deixar nossa aplicagao disponivel de maneira mais rapida.

27

Para fazer isso, vamos criar um arquivo de configuragao do docker-compose.
Dito isso, precisamos definir os trés micro servicos e o rastreador desejado.
Devemos definir cada um deles para que sejam criados isoladamente, na definigao
de cada servigo podemos passar alguns parametros: o nome da imagem, politica de
reinicializacdo do container, variaveis de ambiente e expor portas quando
necessario. Ha muitos outros parametros disponiveis mas iremos utilizar apenas os

citados.

Figura 6: Exemplo de docker-compose com configuragdes pro Jaeger

Fonte: Autor (2022)

28

Figura 7: Exemplo de docker-compose com configuragdes pro Zipkin

com.example/fanimal-name-service:B

scientist-name-service:d

Fonte: Autor (2022)

Depois de termos configurado o arquivo docker-compose ja temos tudo
pronto para rodar nossa aplicagédo e gerar os nomes aleatorios. Porém como temos
trés servigos, construir a imagem de cada um de cada vez pode se tornar uma
tarefa tediosa e repetitiva. Para resolver isso vamos escrever um script que contém
a sequéncia de comandos para subir tudo que precisamos direcionado a cada

rastreador.

29

Primeiramente, o arquivo de script mostrado nas imagens abaixo entra na
pasta de cada micro servigo, cria 0 arquivo .jar da aplicagao e cria a imagem a partir

do Dockerfile passando como parametro.

Feito isso, executamos o comando docker-compose para subir toda a nossa
infraestrutura e deixar disponivel nossa aplicagéo e o servigo de rastreamento

escolhido. Por ultimo, como boa pratica, limpamos as imagens e containers sem

uso.

Figura 8: Script com comandos direcionados ao Jaeger

Service
1 install

-t com.example/animal-n service: .

build -t 3 i generator-service: 8.

Fonte: Autor (2022)

30

Figura 9: Script com comandos direcionados ao Zipkin

#!'/bin/bash

animal-name-service
clean install

build -t com.example/animal-name-service:8.1.8 -f Dock

enerator-service
Lnstall

t com.example/name-generator-service:0.1.0 -f Dock

lame-service

clean install

huild -t com.example/scientist-name-service:0.1.8 -f Dock

Fonte: Autor (2022)
RODANDO O PROJETO E OLHANDO OS TRACES
Neste momento, finalmente, temos tudo pronto para rodar a aplicagao com o
rastreador que quisermos. Podemos, inclusive, subir as duas para comparar ao

mesmo tempo, entretanto devemos colocar configuragbes de portas diferentes para

0 name-generator-service.

31

Para rodar compilar e rodar a aplicagdo com o Zipkin basta digitar o seguinte
comando: sudo bash docker-setup-with-zipkin.sh, ja para rodar com o Jaeger,

devemos escrever: sudo bash docker-setup-with-jaeger.sh.

Dentro de alguns instantes a aplicagdo estara disponivel para uso, podemos

entdo acessar o link: http://localhost:9090/api/vi1/names/random, e deveremos obter

um nome aleatério tal como na imagem abaixo. Sempre que atualizarmos a pagina
um novo nome sera gerado.

Figura 10: Aplicagcédo rodando
& localhost:9090/apifvi/n x +

C 1t @ localhost:9090/api/v1/names/random
» [0 g SIG@UFPE) GitHub /A Drive

james-croll-squirrel

Fonte: Autor (2022)

Apos termos feito alguns testes na aplicagdo, podemos ver como esta o
rastreamento das requisi¢oes. Primeiramente, vamos ver como o Jaeger nos mostra
as informagdes de rastreamento, e para isso vamos acessar:
http.//localhost:16686/search.

A imagem abaixo mostra a tela inicial do Jaeger, na qual podemos ver a
possibilidade de buscar os traces. Ha filtros pelo nome do servigo, operagao
executada, tags e horario. No lado direito vemos um grafico que mostra os traces
coletados de acordo com o tempo. E por fim, a lista de traces para serem analisados

individualmente.

32

http://localhost:9090/api/v1/names/random
http://localhost:16686/search

Figura 11: Tela inicial do Jaeger
JAEGER Ul Search Compare System Architecture About Jaeger v

Search JSON File

Service

name-generator-senvice

Operation 06:42:30 06:43:20 06:44°10 pm 06:45:00 pm 06:45:50
all
12 Traces Sort:| Longest First Deep Dependency Graph
Tags ()

Compare traces by selecting result items

Lookback
Last Hour
name-generator-service: /api/vl/namesfrandom 7aafdss 151s
Max Duration Min Duration 8 Spans B animat.name service 2) name-generator-service (4) | [scientist.name senice 2) Today 6:41:40 pm
11 minutes ago.
Limit Results name-generator-service: /apiivl/namesfrandom 5017975 42.04ms
20
8 Spans B animainame-service 2) name-generator-service @) | [scientst-name-service @) Today 6:45:53 pm
6 minutes ago

Fonte: Autor (2022)

Agora vamos analisar os rastreamentos usando o Zipkin, para isso devemos

acessar: http://localhost:9411. A tela inicial também nos mostra a lista de traces e

tem todos os filtros presentes no Jaeger, a maior diferenga é a auséncia do grafico

que mostra as requisicoes com base no tempo.

Figura 12: Tela inicial do Zipkin

Zipkin % EncLisH ~ X
.
6 Results EXPANDALL | COLLAPSE ALL Service filters -
Root Start Time Spans L Duration
A namegenevalor—service' fapifvlinamesirandom a minute ago (08/11 19:17:04:370) 8 2.073s SHOW

Trace 1D: a66c25534040b82f76531caazb601723

name-generator-service (4) Jl scientist-name-service (2)

~ name-generator-service: /apivlnames/random aminute ago (08/11 19:17:12:275) B 75.503ms sHow

Trace 1D: 999501ab45c4b477be437bb8e3451044

name generator-service (4) | animal-name-service (2) | scientist-name-service (2)

~ name-generator-sefvice: /api/vl/namesirandom aminute ago (08/11 19:17:14:200 8 60.843ms SHOW

Trace 1D: fafc6bd57f219eb6d0d8755a066fdebd

Name-generalorsevice (4) ll animal-name-service (2]

Fonte: Autor (2022)

O codigo fonte do projeto base esta disponivel no repositorio:

https://bit.ly/3gpP1f2. O repositério € publico e pode ser utilizado para quaisquer fins.

33

http://localhost:9411
https://bit.ly/3qpPIf2

3.4 METRICAS DE COMPARAGAO

Agora que ja sabemos configurar o projeto com as ferramentas escolhidas,
nos resta fazer a discussdao comparativa, que € um dos objetivos deste trabalho.
Entretanto, isso sera realizado no capitulo seguinte, nesta secéo trataremos apenas

da escolha das métricas a serem utilizadas na comparagao.

Como o intuito deste trabalho é facilitar a escolha para que a ferramenta
possa ser implementada com mais agilidade dentro de uma organizagédo, nao
podemos deixar de falar da arquitetura e forma de implantagao utilizada. Uma
empresa maior pode necessitar de uma ferramenta que tenha uma arquitetura mais
robusta, ja uma empresa pequena deve escolher uma arquitetura mais simples.
Com isso, saber quais modelos de arquitetura estdo disponiveis em cada

ferramenta é de suma importancia.

Ademais, também ¢é importante saber se o conjunto de funcionalidades de
cada ferramenta se adequa as necessidades da organizagdo. Neste quesito,
faremos uma comparagao entre as funcionalidades semelhantes e sera ressaltado
também as funcionalidades adicionais que uma ferramenta pode ter de diferente da
outra [31].

Por ultimo, um fator essencial na escolha de ferramentas open source é
saber como € a adogao pela comunidade. Perguntas que podem nos ajudar: A
comunidade continua fazendo manutengdes na ferramenta? Existe alguma
organizacao que da suporte? A comunidade fala sobre essa ferramenta em blogs e
féruns? Essas perguntas vao nos ajudar a saber se a ferramenta tem um futuro
longo ou se esta caindo em desuso, a intengao é escolher ferramentas que tenham

um longo futuro para nao ter retrabalho [31, 32].

3.5 SINTESE DO CAPIiTULO

Iniciamos este capitulo entendendo a para que serve e como usamos as

ferramentas de apoio, e posteriormente, vimos todo o processo para criagao do

34

projeto base, desde a escolha das ferramentas até a visualizagdo dos traces nas
ferramentas de rastreamento. Por ultimo, também foi importante analisarmos as

meétricas de comparagao a serem utilizadas na discussao.

No préximo capitulo vamos nos aprofundar na comparacdo entre os
rastreadores, falar dos pontos positivos e negativos e negativos de cada ferramenta
e discutir alguns casos de uso. Utilizaremos como base as métricas abordadas na

secao anterior deste capitulo.

35

4. DISCUSSAO COMPARATIVA

Chegou o momento de refletrmos sobre as duas ferramentas
apresentadas neste trabalho e quais as vantagens e desvantagens de ambas. As
ferramentas apresentadas existem para resolver o0 mesmo problema, o
rastreamento de requisicées, porém foram construidas em momentos distintos e de
forma diferente. Utilizaremos as métricas descritas no capitulo 3, secido 4 como um
guia para a discussao deste capitulo. Como um lembrete, a motivacao de escolha

das ferramentas comparadas aqui se encontram no capitulo 3, se¢ao 2.

4.1 ARQUITETURA

A arquitetura do Zipkin consiste de quatro servigos: Coletor, que tem como
funcao receber os traces das aplicacbes e repassar para serem armazenados;
Armazenamento deve fazer a ponte entre a APl e o banco de dados escolhido; API
serve como uma camada para expor os dados; E a interface grafica consome a API

para exibir os traces. A arquitetura montada fica de acordo com a imagem abaixo.

Figura 13: Arquitetura do Zipkin

Instrumented client
(Reporter)

!

Instrumented server
(Reporter)

Mon-instrumented server |

Transport

9
=]
)
o
Q
=]
pe
LY

Database

Fonte: Zipkin (2022)

36

O Jaeger, contudo, possui uma arquitetura um pouco diferente e mais flexivel. Esta
ferramenta foi pensada para ser disponibilizada de duas formas, com todos os
componentes em um Uunico processo, ou de forma distribuida. Vamos estudar

primeiro a forma centralizada.

Figura 14: Arquitetura do Jaeger (centralizada)

;_-|au_a] m-de Q @@a G\I

v

I

t or Contai
ost or Container Ul

Application

jaeger-collector

adaptive | DB jaeger-query
sampling
jaeger-agent

|
X . |
I
e e ! Spark jobs
Control flow poll

(sampling, etc.)

Spans 'I‘Control
4 (UDP) | flow

]

]

]

]

]

]

]

] A 5
1 jaeger-client
]

]

]

]

]

]

]

]

]

Fonte: Jaeger (2022)

A arquitetura acima é composta por elementos muito semelhantes a
arquitetura do Zipkin, com excegédo de que ndo existe um servigo para gravagao de
dados e acesso a base de dados. O coletor grava diretamente no banco e a busca

faz as consultas direto também.

Importante ressaltar também que com o Jaeger € possivel ter uma
abordagem mais distribuida e resiliente. Essa abordagem consiste em colocar o
Kafka como intermediario entre o coletor e o banco de dados, isso faz com que o

sistema de ingestao de dados na base seja mais confiavel.

A utilizacdo do Kafka, que é uma plataforma distribuida de envio de

mensagens, faz com que a arquitetura do Jaeger seja mais confiavel pois prové

37

alguns mecanismos como: escalabilidade, armazenamento permanente, alta

disponibilidade, entre outros [25].

Figura 15: Arquitetura do Jaeger (distribuida)

= |av_a P m-dc ‘a @@ a G\,

4 (UDP) : flow

Fmmmmm—m— e —m——
| Host or Container ;

' v jaeger _ ul
. Apolicati K collector e VR fEiEglEr 'y

. pplication ' : »| Kafka F——| ingester

' g adaptive o _/ 88YNC | & indexer

L jaeger-client || ; sampling .

s b | jaeger
! Spans ' Control query
: | push A

))

1)

)

1)

))

‘ jaeger-agent

I

I

: D
! Flink

! streaming

I

I

I

—— e == ——

Control flow poll
(sampling, etc.)

Fonte: Jaeger (2022)

A escolha da arquitetura usada para um sistema de rastreamento distribuido
depende muito das necessidades que os sistemas a serem monitorados
apresentam. No contexto de uma grande empresa, € provavel que usar o Jaeger
com uma arquitetura distribuida faca mais sentido, pois a quantidade de traces

gerados sera maior.

Quando se trata de empresas ndo tdo grandes, com sistemas menos criticos,
tanto Zipkin quanto Jaeger podem ser utilizados com a arquitetura centralizada, isto
€, o deploy pode ser feito usando a imagem docker que contém todos os servigos

em um sO. Cabe ao time analisar o seu cenario e escolher a melhor solugao.
4.2 FUNCIONALIDADES

Um fator que contribui muito para a escolha de uma ferramenta séo as suas

funcionalidades e os detalhes podem fazer a diferenca a favor de uma ferramenta

em comparagao a outra.

38

As duas ferramentas apresentadas tém a funcionalidade de busca de traces
nas suas telas iniciais (figuras 9 e 10). Ambas apresentam filtros por servigo,
duracgdo, tags, horario e etc. Podemos notar que as funcionalidades sdo muito
parecidas, porém o Jaeger apresenta um grafico com a duragao das requisi¢des ao
longo do tempo, o que ajuda a identificar de forma rapida e visual um possivel

gargalo no sistema.

Outra funcionalidade muito interessante presente nos dois rastreadores é
mostrar como estdo dispostas as dependéncias entre os servigos. Esse tipo de
abordagem é util para a identificacdo de dependéncias ciclicas entre os servigos
que compdem o sistema, tal problema pode causar fluxos que ndo tém fim. No caso
de grandes sistemas, que rodam centenas ou até milhares de servigos, para a
correta identificacao desse tipo de problema é necessario uma ferramenta que faca
esse trabalho. As imagens abaixo mostram como € montado esse grafico em cada

ferramenta.

Figura 16: Grafico de dependéncias do Jaeger

Search Compare System Architecture

Force Directed Graph DAG

name-generator-service

.scientist—name—service

animal-name-service

Fonte: Autor (2022)

39

Figura 17: Grafico de dependéncias do Zipkin

Zipkin Q, Findatace g™ Dependencies F ENGLISH v X Search by trace ID
Start Time End Time
08/10/2022 19:18:54 m - 08/11/2022 19:18:54 m m
. nan’]e»geﬂerator-serwce Q TRACES
Uses

I Service Name call Error
W animal-name-service 6 0

B scientist-name-service 6 0

Fonte: Autor (2022)

Ha funcionalidades, porém, que so estdo disponiveis no Jaeger. Uma delas é
a comparacao de traces, que fornece uma visualizacdo de dois traces na mesma
tela para que o desenvolvedor possa analisar as similaridades e diferengas entre
eles. Essa funcionalidade ¢ util para depurar o fluxo de uma requisicdo com
problema, que pode ser comparada com uma requisicdo de sucesso. A imagem

abaixo mostra como € a interface de comparagéo.

40

Figura 17: Comparacao de traces

JAEGER UI Search Compare System Architecture Q About Jaeger v

name-generator-service: /api/vl/names/ name-generator-service: /api/vl/names/
v
A random 2] B random 2]

Today, 6:45:54 pm 18.1ms 8 Today, 6:45:54 pm 15.11ms 8

ams generuor sznnce
[T — et

Fonte: Autor (2022)

4.3 COMUNIDADE E SUPORTE

As ferramentas aqui utilizadas, por se tratarem de softwares open source, um
fator muito importante que deve ser levado em consideragdo é como é o0 uso e
aceitacao da ferramenta na comunidade. Ferramentas com comunidades ativas tém

melhor resolugéo de problemas e ajuda para configuragao [26].

Um bom norte para olhar como € o engajamento da comunidade com a
ferramenta é olhar o repositorio oficial no github. Falando em numeros, Jaeger tem
16.4 mil stars, mais de 2 mil forks, 311 issues e cerca de 250 contribuidores. Ja o
Zipkin apresenta 15.6 mil stars, mais de 3 mil forks, 180 issues e aproximadamente
152 contribuidores. Os numeros apresentados mostram uma semelhanca de
engajamento entre as duas ferramentas, Jaeger apresenta mais stars, porém o

Zipkin tem mais forks, e etc [27, 28].

Além do github, podemos olhar também para a quantidade de posts em blogs
da comunidade. No site da dev.to, que € um site para engajamento da comunidade
de desenvolvedores, existe conteudo sobre quase todas as ferramentas do mundo

de desenvolvimento de software. Comparando a quantidade de posts sobre cada

41

https://dev.to/

ferramenta, podemos ver que o Jaeger leva uma certa vantagem contra o Zipkin, 18
a 3 [29, 30].

O Zipkin tem um menor numero de issues abertas no repositorio em relagao
ao Jaeger, isso pode ser um indicio de que tem uma plataforma mais estavel. Além
disso, é amplamente utilizado na industria e tem uma comunidade bastante ativa.
Isso pode ser importante para empresas mais conservadoras € que prezam por

confiabilidade e seguranca [24].

Ja o Jaeger, apesar de ser uma ferramenta mais nova, também tem uma
comunidade ativa. Outro ponto importante € que o Jaeger tem suporte da Cloud
Native Computing Foundation (CNCF), que é uma organizagao voltada a ajudar

projetos open source que contribuam para aplicagdes implantadas na cloud [24].

4.4 SINTESE DO CAPITULO

Neste capitulo olhamos detalhadamente para a comparacédo entre Jaeger e
Zipkin, vimos os pontos positivos e negativos de cada ferramenta para que
possamos fazer a escolha que melhor se adequa ao nosso contexto. A fim de
termos uma comparagcdo mais visual entre as ferramentas, podemos analisar as

tabelas abaixo.

Jaeger Zipkin
Busca de traces X X
Grafico de dependencias X X
Comparacao de traces X
Filtros de traces X X

Tabela 4.1. Funcionalidades de cada ferramenta

42

Jaeger Zipkin
Forks 2k 3k
Stars 16.4 k 15.6 k
Contribuidores 250 152
Issues 31 180
Tabela 4.2. Numeros dos repositorios no github

43

5. CONCLUSAO E TRABALHOS FUTUROS

Este capitulo apresenta a conclusdo deste trabalho, algumas limitagdes
encontradas no projeto e perspectivas de trabalhos futuros. Primeiro veremos as
consideragdes finais sobre o projeto aqui apresentado, depois abordaremos as
limitacbes presentes e posteriormente os possiveis trabalhos futuros que podem vir

a ser realizados.

5.1 CONCLUSAO

A arquitetura de microsservigos € uma arquitetura muito robusta e a sua
utilizagdo deve sempre ser analisada para projetos de larga escala. Principalmente

em negocios onde alta disponibilidade é um requisito primordial.

Como ja sabemos, com o uso da arquitetura de microsservigos, ha inumeros
beneficios, mas também varios desafios. Um dos principais desafios € que a maior
complexidade causa dificuldades no quesito da observabilidade do sistema como
um todo. Mais especificamente, tratamos neste trabalho sobre o problema de

rastreamento de requisicbes em um sistema distribuido.

Para auxiliar nesta tarefa, existem ferramentas open source no mercado tao
efetivas quanto outros softwares pagos, que sao inacessiveis para pequenas
empresas e desenvolvedores independentes. Depois de um estudo sobre quais
ferramentas sao mais relevantes para serem comparadas, as escolhidas foram

Jaeger e Zipkin devido a grande aceitacdo de ambas pela comunidade Java.

O Zipkin é uma ferramenta mais antiga, mas ainda assim muito usada,
estavel e com um bom leque de funcionalidades. O Jaeger é uma ferramenta mais
recente e traz consigo uma personalizagdo maior e funcionalidades inovadoras. As

duas ferramentas escolhidas entregam bem o prometido.
Este trabalho conseguiu alcangar o resultado esperado: ajudar na escolha de

ferramentas de rastreamento por meio de uma comparagao pratica das duas

ferramentas open source mais relevantes e deixar disponivel um repositério de

44

exemplo para consulta. O cddigo criado e utilizado neste trabalho esta disponivel
em https://bit.ly/3qpPIf2.

5.2 LIMITACOES

Na analise realizada durante o desenvolvimento deste trabalho foi utilizada
uma aplicagdo com trés servigos. Seria interessante uma aplicagdo com mais
servigos executando ao mesmo tempo. Porém, devido ao esfor¢o de configuragao
ser muito grande e exigir uma capacidade de processamento maior do que esta
disponivel para o autor, este trabalho ndo contemplou uma quantidade maior de

servigos.

5.3 TRABALHOS FUTUROS

Como trabalhos futuros a serem desenvolvidos a partir deste, podem-se

sugerir:

1. Estudo da economia obtida pela adocao de uma ferramenta de
rastreamento open source em detrimento as ferramentas pagas. Como
discutido anteriormente, ferramentas de APM e rastreamento pagas sao
inacessiveis para muitos desenvolvedores independentes e empresas de
pequeno porte, por isso a existéncia de ferramentas open source é tao
importante. O estudo proposto faria uma analise da economia mensal com a
adocao de um rastreador open source em comparagdo com um pago,

mostrando a diferenca de valores a medida em que o projeto cresce.

2. Outra opgado muito interessante seria uma Analise comparativa das
variagoes de implantagao do Jaeger e qual se encaixa melhor para cada
contexto dentro de uma empresa. Na nossa analise de arquitetura esta
presente a discussao sobre os modelos de implantacdo do Jaeger dentro de
uma organizagdo, que podem ser varios, visto que quanto maior for a
empresa, maior € a necessidade de se utilizar uma arquitetura mais robusta,

a fim de minimizar a perda de traces por indisponibilidade do rastreador.

45

https://bit.ly/3qpPIf2

REFERENCIAS

[1] WALPITA, Priyal. Evolution in Software Architecture. medium.com, 2022.
Disponivel em:
<https://priyalwalpita.medium.com/evolution-in-software-architecture-a607db64958
6>. Acesso em: 17. ago. 2022.

[2] DIGUER, Sarah. Microservices Advantages and Disadvantages:
Everything You Need to Know. Solace, 2020. Disponivel em:
<https://solace.com/blog/microservices-advantages-and-disadvantages/>. Acesso
em: 16. fev. 2022.

[3] KUMAR JHA, Abhishek. 4 Difficult Microservices Observability
Challenges and How to Address Them. TechWorm, 2022. Disponivel em:
<https://lwww.techworm.net/2021/07/microservices-observability-challenges.html>.
Acesso em: 08. fev. 2022.

[4] KOWALL, Jonah. How microservices broke monitoring (and how to fix
it). Tech Beacon, 2022 . Disponivel em:
<https://techbeacon.com/app-dev-testing/how-microservices-broke-monitoring-how
-fix-it>. Acesso em: 18. fev. 2022.

[5] sem autor. Application Monitoring Tools List — Top 16 Compared?.
Dotcom tools, 2022. Disponivel em:
<https://www.dotcom-tools.com/web-performance/list-of-application-monitoring-tool
s-apm/>. Acesso em: 18. fev. 2022.

[6] u/mrjenkins2017. “What are people's opinion on Datadog for
monitoring?”. Reddit, 2022. Disponivel em:
<https://www.reddit.com/r/devops/comments/7bb2ao/what_are_peoples_opinion_o
n_datadog_for_monitoring/>. Acesso em: 21 Fev. 2021.

7] u/deleted. “What do you guys think of AppDynamics?”. Reddit, 2022.
Disponivel em:
<https://lwww.reddit.com/r/sysadmin/comments/6ef90e/what_do_you_guys_think_o
f appdynamics/>. Acesso em: 21 Fev. 2021.

[8] sem autor. Application Performance Monitoring Reviews and Ratings.
Gartner 2022. 21 Fev. 2022. Disponivel em:
<https://lwww.gartner.com/reviews/market/application-performance-monitoring/>.
Acesso em: 18. fev.

[9] HUBBARD, Patrick. The Expensive History of APM. pingdom, 2022.
Disponivel em: https://www.pingdom.com/blog/the-expensive-history-of-apm/.
Acesso em: 18. fev. 2022.

[10] LOUKIDES, M; SWOYER, S. Microservices Adoption in 2020. oreilly,
2020. Disponivel em:

46

https://www.reddit.com/r/devops/comments/7bb2ao/what_are_peoples_opinion_on_datadog_for_monitoring/
https://www.reddit.com/r/devops/comments/7bb2ao/what_are_peoples_opinion_on_datadog_for_monitoring/
https://www.reddit.com/r/sysadmin/comments/6ef90e/what_do_you_guys_think_of_appdynamics/
https://www.reddit.com/r/sysadmin/comments/6ef90e/what_do_you_guys_think_of_appdynamics/
https://www.gartner.com/reviews/market/application-performance-monitoring

https://www.oreilly.com/radar/microservices-adoption-in-2020. Acesso em: 23. ago.
2022.

[11] MW Team. What Are Microservices? How Microservices Architecture
Works. middleware, 2021. Disponivel em:
https://middleware.io/blog/microservices-architecture/ . Acesso em: 23. ago. 2022.

[12] RICHARDSON, Mary Ann. Top 10 Challenges of Using Microservices
for Managing Distributed Systems. spiceworks, 2021. Disponivel em:
https://www.spiceworks.com/tech/data-management/articles/top-10-challenges-of-
using-microservices-for-managing-distributed-systems/. Acesso em: 23. ago.
2022.

[13] KURMI, Anil. What are the challenges in Microservices Architecture?.
medium, 2020. Disponivel em:
https://medium.com/microservices-architecture/what-are-the-challenges-in-microse
rvices-architecture-2ee9149cfc4e. Acesso em: 23. ago. 2022.

[14] sem autor. What Is Observability?. splunk, 2022. Disponivel em:
https://www.splunk.com/en_us/data-insider/what-is-observability.html. Acesso em:
23. ago. 2022.

[15] EGILMEZ, Ismail. Monitoring vs. Observability: What’s the Difference?.
thenewstack, 2020. Disponivel em:
https://thenewstack.io/monitoring-vs-observability-whats-the-difference/. Acesso
em: 23. ago. 2022.

[16] BIGELOW, Stephen J. Distributed tracing. techtarguet, 2022. Disponivel
em: https://www.techtarget.com/searchitoperations/definition/distributed-tracing.
Acesso em: 23. ago. 2022.

[17] MOREHOUSE, John. What Is Distributed Tracing? Key Concepts and
Definition. orangematter, 2022. Disponivel em:
https://orangematter.solarwinds.com/2022/01/28/what-is-distributed-tracing.
Acesso em: 23. ago. 2022.

[18] sem autor. Use containers to Build, Share and Run your applications.
docker, 2022. Disponivel em: https://www.docker.com/resources/what-container.
Acesso em: 23. ago. 2022.

[19] sem autor. O que é o Docker?. oracle, 2022. Disponivel em:
https://www.oracle.com/br/cloud/cloud-native/container-registry/what-is-docker/#do
cker-basics. Acesso em: 4. set. 2022.

[20] sem autor. Spring Boot: Tudo que vocé precisa saber!. geekhunter,
2022. Disponivel em:
https://blog.geekhunter.com.br/tudo-o-que-voce-precisa-saber-sobre-o-spring-boot
/. Acesso em: 4. set. 2022.

47

[21] sem autor. Spring Boot. spring, 2022. Disponivel em:
https://spring.io/projects/spring-boot. Acesso em: 4. set. 2022.

[22] sem autor. What is OpenTelemetry?. opentelemetry, 2022. Disponivel em:
https://opentelemetry.io/docs/concepts/what-is-opentelemetry/. Acesso em: 4. set.
2022.

[23] sem autor. What is OpenTelemetry?. splunk, 2022. Disponivel em:
https://www.splunk.com/en_us/data-insider/what-is-opentelemetry.html. Acesso
em: 4. set. 2022.

[24] OZAL, Serkan. Jaeger vs. Zipkin: Battle of the Open Source Tracing
Tools. splunk, 2022. Disponivel em:
https://thenewstack.io/jaeger-vs-zipkin-battle-of-the-open-source-tracing-tools/.
Acesso em: 4. set. 2022.

[25] sem autor. APACHE KAFKA. kafka, 2022. Disponivel em:
https://kafka.apache.org/. Acesso em: 9. set. 2022.

[26] Avyaa. Role of Community in Scaling Open Source Projects. dev.to,
2021. Disponivel em:
https://dev.to/aviyel/role-of-community-in-scaling-open-source-projects-19g6.
Acesso em: 13. set. 2022.

[27] sem autor. [Lista de artigos sobre o Jaeger]. dev.to, 2022. Disponivel em:
https://dev.to/t/jaeger. Acesso em: 13. set. 2022.

[28] sem autor. [Lista de artigos sobre o Zipkin]. dev.to, 2022. Disponivel em:
https://dev.to/t/zipkin. Acesso em: 13. set. 2022.

[29] sem autor. [Repositério oficial do Jaeger]. github, 2022. Disponivel em:
https://github.com/jaegertracing/jaeger. Acesso em: 13. set. 2022.

[30] sem autor. [Repositério oficial do Zipkin]. github, 2022. Disponivel em:
https://github.com/openzipkin/zipkin. Acesso em: 13. set. 2022.

[31] CROUCH, Steve. Choosing the right open-source software for your
project. software.ac, 2022. Disponivel em:
https://www.software.ac.uk/choosing-right-open-source-software-your-project.
Acesso em: 28. set. 2022.

[32] sem autor. Tips To Choose the right open source tool. eclature, 2022.
Disponivel em: https://eclature.com/open-source-tool/. Acesso em: 28. set. 2022.

[33] GRACA, Herberto. Architectural Styles vs. Architectural Patterns vs.
Design Patterns. herbertograca.com, 2022. Disponivel em:
https://herbertograca.com/2017/07/28/architectural-styles-vs-architectural-patterns
-vs-design-patterns/. Acesso em: 30. set. 2022.

[34] GRACA, Herberto. Monolithic Architecture. herbertograca.com, 2022.
Disponivel em: https://herbertograca.com/2017/07/31/monolithic-architecture/.
Acesso em: 30. set. 2022.

[35] LIVENS, Jay. What is observability? Not just logs, metrics and traces.
dynatrace.com, 2021. Disponivel em:
https://www.dynatrace.com/news/blog/what-is-observability-2/. Acesso em: 3. out.
2022.

[36] FOWLER, Martin. Testing Strategies in a Microservice Architecture.
martinfowler.com, 2022. Disponivel em:
https://martinfowler.com/articles/microservice-testing/. Acesso em: 3. out. 2022.

[37] DINUWAN, Chanuka. Getting started with Microservices Architecture.
blog.devgenius.io, 2021. Disponivel em:
https://blog.devgenius.io/getting-started-with-microservices-architecture-2031723
90928. Acesso em: 3. out. 2022.

[38] sem autor. [Repositério oficial do Uptrace]. github, 2022. Disponivel em:
https://github.com/uptrace/uptrace. Acesso em: 6. out. 2022.

[39] sem autor. [Repositério oficial do Grafana Tempo]. github, 2022. Disponivel
em: https://github.com/grafana/tempo. Acesso em: 13. set. 2022.

[40] sem autor. [Repositério oficial do Signoz]. github, 2022. Disponivel em:
https://github.com/SigNoz/signoz. Acesso em: 13. set. 2022.

[41] BARKER, Dan. 3 open source distributed tracing tools.
opensource.com, 2021. Disponivel em:
https://opensource.com/article/18/9/distributed-tracing-tools. Acesso em: 6. out.
2022.

[41] sem autor. Free and Open Source Distributed Tracing Tools.
uptrace.dev, 2021. Disponivel em:

https://uptrace.dev/get/compare/distributed-tracing-tools.html#uptrace. Acesso em:

6. out. 2022.

[42] sem autor. George Santayana. wikiquote.org, 2021. Disponivel em:
https://en.wikiquote.org/wiki/George_Santayana#Quotes_about Santayana.
Acesso em: 18. out. 2022.

49

