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ABSTRACT 
 

Over the last decades, due to higher specific strength and stiffness, low weight, and good 

resistance to corrosion, thermoset resin composite materials have been replacing conventional 

materials in aerospace, maritime, automotive and several other high performance engineering 

applications. These composites are usually produced in an autoclave by carrying out a cure 

schedule to crosslink the resin. However, for the case of thick thermosets, the manufacturer’s 

recommended cure (MRC) schedule cannot be followed, once it is generally intended to thin 

parts. When applied to thick components, the MRC schedule usually results in cures either that 

are unnecessarily too long or that overheat the material internally, due to the thermoactived and 

exothermic aspects of the curing reaction associated to the thermal insulating property of the 

thermoset. This local overheating results in high gradients in the thermoset properties during 

the cure that may create residual stresses and structural defects, such as bubbles and cracks. To 

avoid this and find optimal cure schedules, this work simulated the cure process of a thermoset 

using the finite element software COMSOL Multiphysics and implemented two optimization 

methods in MATLAB, connected to the simulations via the COMSOL LiveLink for MATLAB. 

The first method is an authorial conversion rate driven (CRD) strategy based on cure kinetics, 

which has a single objective: minimize the cure time. The second one is a multi-objective 

genetic algorithm (GA) with three conflicting objectives: minimize cure time, minimize the 

gradient of degree of cure after gel point (AGP) and minimize the gradient of temperature AGP, 

reflecting the existing trade-off between manufacturing speed and product quality. As 

constraints for both methods, the minimum degree of cure in the final cured part was set as 

0.854, in order to achieve the same material properties achieved by the MRC schedule; and the 

maximum temperature inside the composite during the cure was limited to 155°C, to avoid 

material degradation. Both methods searched for optimal two-step cure schedules with a 

constant heating rate of 3°C/min. The decision variables for the GA optimization and CRD 

strategy were the first and second plateau temperatures and the duration of the first plateau. The 

free MATLAB-based software package GOSET was used as the basis to execute an elitist GA, 

with 20 generations and 50 individuals per generation. The thermoset polymer selected for the 

study was the LY-556 epoxy resin system, cured in a cylindrical geometry with a height of 60 

mm and a diameter of 32 mm. It was found that, in comparison to the MRC schedule, the CRD 

strategy and GA reduced the cure time by almost the same amount: 87% and 88%, respectively; 

whereas the gradients of degree of cure and temperature AGP were reduced by the GA by 6% 



 

and 31%, respectively. Thus, the methods presented in this work were shown to be effective 

tools to optimize the cure schedule of thermosets, depending on the objective selected. 

 

Keywords: thermosets; curing process; finite element; optimization; conversion rate 

driven strategy; multi-objective genetic algorithm. 

  



 

RESUMO 

 

Ao longo das últimas décadas, devido à maior resistência e rigidez específicas, baixo 

peso e boa resistência à corrosão, os materiais compósitos de resina termofixa vêm substituindo 

os materiais convencionais em aplicações aeroespaciais, marítimas, automotivas e diversas 

outras aplicações de engenharia de alto desempenho. Esses compósitos geralmente são 

produzidos em autoclave, executando-se um cronograma de cura para reticulação da resina. No 

entanto, para o caso de termofixos espessos, o perfil de cura recomendado pelo fabricante 

(PCRF) não pode ser seguido, uma vez que geralmente é destinado a peças finas. Quando 

aplicado a componentes espessos, o PCRF geralmente resulta em curas desnecessariamente 

muito longas ou que superaquecem o material internamente, devido às características 

exotérmica e termoativada da reação de cura associadas à propriedade isolante térmica do 

polímero termofixo. Esse superaquecimento local resulta em altos gradientes nas propriedades 

do termofixo durante a cura que podem criar tensões residuais e defeitos estruturais, como 

bolhas e rachaduras. Para evitar isso e encontrar cronogramas de cura ótimos, este trabalho 

simulou o processo de cura de um termofixo usando o software de elementos finitos COMSOL 

Multiphysics e implementou dois métodos de otimização no MATLAB, conectados às 

simulações via COMSOL LiveLink for MATLAB. O primeiro método é uma estratégia autoral 

impulsionada pela taxa de conversão (ITC), que se baseia na cinética de cura e tem um único 

objetivo: minimizar o tempo de cura. O segundo é um algoritmo genético (AG) multi-objetivo 

com três objetivos conflitantes: minimizar o tempo de cura, minimizar o gradiente de grau de 

cura após o ponto de gel (APG) e minimizar o gradiente de temperatura APG, refletindo o 

conflito existente entre velocidade de fabricação e qualidade do produto. Como restrições para 

ambos os métodos, o grau mínimo de cura na peça final curada foi fixado em 0,854, a fim de 

alcançar as mesmas propriedades do material alcançadas pelo PCRF; e a temperatura máxima 

no interior do termofixo durante a cura foi limitada a 155°C, para evitar a degradação térmica 

do material. Ambos os métodos buscaram perfis de cura de duas etapas com uma taxa de 

aquecimento constante de 3°C/min. As variáveis de decisão para o AG e estratégia ITC foram 

as temperaturas do primeiro e do segundo platô e a duração do primeiro platô. O pacote de 

software gratuito GOSET, baseado em MATLAB, foi utilizado como base para executar um 

AG elitista, com 20 gerações e 50 indivíduos por geração. O polímero termofixo selecionado 

para o estudo foi o sistema de resina epóxi LY-556, curado em geometria cilíndrica com altura 

de 60 mm e diâmetro de 32 mm. Verificou-se que, em comparação com o ciclo de cura 

recomendado pelo fabricante, a estratégia ITC e o AG reduziram o tempo de cura em quase a 



 

mesma quantidade: 87% e 88%, respectivamente; enquanto que os gradientes de grau de cura 

e temperatura APG foram reduzidos pelo AG em 6% e 31%, respectivamente. Assim, os 

métodos apresentados neste trabalho mostraram-se ferramentas eficazes para otimizar o perfil 

de cura de materiais termofixos, dependendo do objetivo selecionado. 

 

Palavras-chave: termofixos; processo de cura; elementos finitos; otimização; estratégia 

impulsionada pela taxa de conversão; algoritmo genético multi-objetivo. 
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1 INTRODUCTION 

 

In many applications, plastics and composites are taking the place of conventional 

structural metals like steel and aluminum (ANDERSON, 2005; RATNA, 2009). Engineering 

plastics have a variety of advantages, such as corrosion resistance and low cost, while 

composites provide excellent strength-to-weight ratios and allow for the creation of materials 

with specific mechanical and thermal properties. 

Over the past decades, there has been a significant increase in the use of polymer matrix 

composites (PMC), particularly fiber-reinforced plastic (FRP) composites, and this trend is 

expected to continue (RATNA, 2009; GOODMAN & DODIUK, 2014; COHERENT 

MARKET INSIGHTS, 2022). Thermoset resin composites, particularly, have been widely used 

in a variety of field, including civil infrastructure, the automotive, aerospace, and renewable 

energy sectors (STRUZZIERO et al., 2019; DAI et al., 2019; TEIJIN CARBON, 2022). Several 

advantages, such as accessibility, good flow properties and low material cost, make thermoset 

resins be the predominant material in the composite industries (RATNA, 2009). 

Thermoset polymers are materials that undergo a chemical reaction called "curing", 

which transforms them into an insoluble and infusible substance. The infusibility and 

insolubility of the cured polymer are induced by the formation of a three-dimensional network 

structure. Thermosets cannot be resoftened by heat once they have fully cured. A resin cures as 

a result of an exothermic and thermoactived reaction (BLEST et al., 1999; CIRISCIOLI et al., 

1991; PITCHUMANI & YAO, 1993; HOJJATI & HOA, 1994; SURATNO et al., 1998 apud 

STRUZZIERO et al., 2019; PAIVA, 2018). All polymers are naturally thermal insulators, so 

the exothermic heat cannot easily escape the curing mass during the reaction, increasing the 

heat input and the temperature of the inner parts of the composite (GOODMAN & DODIUK, 

2014; PAIVA, 2018). When the thermoset is thick (i.e. thickness larger than 10 mm), the mass 

effect is stronger, which results in high internal gradients of temperature and degree of cure 

within the curing material. Those strong internal property gradients can result in defects like 

bubbles, cracks, and wavy fibers that will reduce the product's mechanical performance 

(PAIVA, 2018). Additionally, defects like matrix deterioration, non-homogeneous curing, and 

internal residual stress can be seen (YUAN et al., 2021). 
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Typically, thermoset resin composites are made in an autoclave by applying a cure 

schedule in order to start and maintain the resin's irreversible crosslinking (GUTOWSKI, 1997 

apud ALEKSENDRIĆ et al., 2016; YUAN, 2021). A two-step cure schedule is the typical 

process cycle for polymer-matrix composites (WHITE & HAHN, 1993), which is the cure 

schedule usually recommended by the polymer resin manufacturer. In this type of cure 

schedule, the material's temperature is raised from ambient to the first dwell temperature and 

then kept constant. The temperature is then increased to the second dwell temperature and kept 

there. This kind of cure schedule is referred to as a two-step cure schedule because there are 

two dwell times.  

 

1.1 RESEARCH ISSUE  

 

The thermoset manufacturer usually recommends a cure schedule to produce only thin 

parts. The manufacturing of thick parts are more challenging due to the potential generation of 

defects, as previously mentioned. Since the manufacturer's recommended cure schedule seems 

acceptable for the production of thin components but less successful when dealing with thick 

work pieces, significant research works have been focusing on the adoption of tools that are 

useful in optimizing the design of the curing process (ALEKSENDRIĆ et al., 2016). 

By carefully selecting the temperature profiles, it is possible to optimize cure schedules 

and create materials that are fully cured with little residual stress (GOPAL et al., 2000; RUIZ 

& TROCHU, 2006; STRUZZIERO et al., 2019). However, trial and error methods, whether 

through numerical simulations or experiments, are incredibly inefficient and ineffective when 

it comes to processing composites due to the complexity of the phenomena involved 

(STRUZZIERO et al., 2019). For instance, processing at low temperatures would decrease the 

material's internal gradients and thermally induced stresses. Nevertheless, the degree of the cure 

affects the material's mechanical properties, and cross-linking cannot begin until a minimum 

temperature is reached. In addition, longer cure schedules at low temperatures raise the cost of 

production. 

Therefore, it is extremely important to implement a method that optimizes the cure 

schedule, taking into account many conflicting variables that evolve during the cure process, 

affecting the material quality and cure time. 
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1.2 RESEARCH MOTIVATION  
 

In order to meet the demand for the highest possible product quality at the lowest 

possible production cost, cure simulation (COSTA & SOUSA, 2003; MAWARDI & 

PITCHUMANI, 2003; CARLONE & PALAZZO, 2009 apud  ALEKSENDRIĆ et al., 2016; 

PAIVA, 2018) and optimization of thick thermosets (CARLONE & PALAZZO, 2013; 

STRUZZIERO & SKORDOS, 2017; STRUZZIERO & TEUWEN, 2018; TIFKITSIS et al. 

(2018); DOLKUN et al., 2018; YUAN, 2021) have been the subject of several studies due to 

the expansion in the use of thermosetting matrix composite materials and the increased 

geometrical complexity. 

Due to its well-known capacity to provide precise and effective predictions of the 

physical behavior of a component or system subjected to various physical phenomena, the 

Finite Element Method (FEM) is one of the most used numerical methods that the scientific 

community has applied to this problem. Based on this method, commercial software has been 

constantly developed and improved, with a focus on improving the efficiency of material 

design. This type of software is particularly good at simulating the curing process (PAIVA, 

2018).  

Among the existing FEM software, COMSOL Multiphysics is one that is designed to 

run coupled phenomena problems, producing results relatively quickly in these cases. Thus, it 

has shown to be extremely appropriate for the simulation of the thermochemical phenomenon 

of the cure (PAIVA, 2018). Besides, COMSOL has very useful modules, like the COMSOL 

LiveLink for MATLAB®, which allows automatizing all the steps of a simulation model and 

optimize the process simulated from a script in MATLAB (COMSOL INC., 2019a).  

The successful implementation of the cure process of a thermoset resin systems and 

thermoset composites using a COMSOL model has stimulated the authors to develop of a 

strategy to find a cure schedule that minimized the cure time, while assuring that the material 

was not thermally degraded during cure and that the whole part reached a minimum degree of 

cure required by a given application. This strategy was developed by the authors of the present 

research, purely based on the kinetics of the cure process. No similar method was found in the 

literature. The strategy is based on a simple aspect of the cure process: the moment when the 

average conversion rate within the sample reaches its maximum value. Due to its simplicity, it 

was thought of as a highly efficient method to minimize the cure time, which could be 
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implemented manually in COMSOL, or in an automated way using COMSOL LiveLink for 

MATLAB® to run multiple cure schedules in a single script run (COMSOL INC., 2020). 

 On the other hand, a literature review on recent optimization methods for engineering 

problems demonstrated that one of the prevailing trends in composite manufacturing 

optimization is multi-objective optimization, which takes into account the trade-offs related to 

this problem (STRUZZIERO et al., 2019). Additionally, due to the complexity of the problem, 

nature-inspired algorithms are preferred, particularly Evolutionary Algorithms (EAs), such as 

Genetic Algorithms (GAs), which are able to explore a large portion of the objective space 

without getting trapped in local minima or maxima (STRUZZIERO et al., 2019). GAs are well 

suited for multi-objective optimization, due to its population-based approach, meeting the needs 

of real-world problems with conflicting objectives. In the specific problem of cure optimization, 

the three conflicting objectives that this work aimed to achieve using the GA, taking into 

account the trade-off between cure speed and product quality, were: minimize the cure time, 

minimize the gradient of degree of cure AGP and minimize the gradient of temperature AGP.  

 Although Genetic Algorithm require high computational resources, this optimization 

method has received a lot of recent attention from researchers due to the quick advancement of 

computer technology, which includes the development and accessibility of user-friendly 

software and fast, parallel processors (SUDHOFF, 2021). 

A GA optimization can be performed using different software and programming 

languages. Among the existing possibilities, the Genetic Optimization System Engineering 

Tool (GOSET) is one of the most attractive and accessible tools, which is a free MATLAB® 

based algorithm package for solving single- and multi-objective optimization problems 

(SUDHOFF, 2014). It is a direct result of three research awards from the Office of Naval 

Research (ONR) and does not require the use of any additional MATLAB toolboxes 

(SUDHOFF, 2014). Therefore, through COMSOL LiveLink for MATLAB® and the 

development of some MATLAB scripts and functions, a multi-objective cure optimization can 

be successfully performed using a bi-directional link between the COMSOL model and 

GOSET/MATLAB. 
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1.3 OBJECTIVES 
 

In this section, the general objective of the present research work is presented and the 

specific objectives taken in order to achieve it are detailed. 

 

1.3.1 General objective  

 

Simulate and optimize the cure of thick thermosets, providing better solutions than the 

MRC schedule, in terms of cure time and/or final product quality. Two methods will be used 

for the optimization: an authorial conversion rate driven (CRD) strategy, which is single-

objective, and a multi-objective Genetic Algorithm (GA). 

 

1.3.2 Specific objectives 

 

• Study thermoset characteristics, classifications, curing process and learn how this 

material has been applied in the composite industry. 

• Implement the cure simulation of an epoxy matrix on the FEM software COMSOL 

Multiphysics based on previous experimental and numerical studies, in order to monitor 

variables of interest related to the cure optimization (cure time x product quality). 

• Simulate the MRC cure schedule to analyze its results and use them a reference for the 

cure optimization. 

• Configure the COMSOL simulation model manually to perform the CRD strategy.  

• Learn how to use the module COMSOL LiveLink for MATLAB in order to establish a 

bidirectional link between the cure simulation model in COMSOL and a code in 

MATLAB. 

• Develop a MATLAB script to automate and run the CRD strategy efficiently in a 

loop, so that multiple solutions are computed and stored in a single script run.  

• Review optimization methods available in literature and compare the efficiency of the 

results obtained by them for the problem of curing thick thermoset matrices. 
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• Study multi-objective Evolutionary Algorithms, specifically Genetic Algorithms. 

• Study the software package GOSET for GA implementation in MATLAB. Then, 

develop a MATLAB script and function to initialize the multi-objective GA 

optimization of the cure schedule and compute the respective fitness values. 

• Execute the automated single-objective CRD strategy and the multi-objective GA 

optimization, storing the solutions obtained. 

• Analyze the CRD and GA results, comparing them with each other, with the MRC 

schedule results and with the literature as well. 
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2 LITERATURE REVIEW 

 

This literature review presents the essential background of the research in four domains: 

thermoset polymers; modeling of the cure of thermosets; numerical simulation; optimization; 

and state of the art. The background outlines the broad assumptions for this research work and 

reviews the data required to support the work's motivation, while the state of the art summarizes 

the most recent research in the related fields. 

 

2.1 THERMOSET POLYMERS 
 

Due to advancements in polymer science and technology, polymers have been employed 

in a variety of applications as replacements for conventional materials (ANDERSON, 2005; 

RATNA, 2009). This is motivated by their remarkable advantages, such as lightweight, low 

cost and extensive range of customizable properties (RATNA, 2009).  

A polymer (from the Greek poly, meaning many, and meros, meaning part) is a long 

molecule consisting of many small units (monomers) joined end-to-end (MCCRUM, 1997). 

The process of synthesizing these large molecules is termed polymerization, and many different 

types of monomers can be polymerized.  

Depending on the method used for polymerization, the final products can be divided 

into two categories: addition polymers and condensation polymers (CALLISTER, 2007). 

Addition polymerization is a process by which monomer units are attached one at a time in a 

chainlike way to form a linear macromolecule. The composition of the molecule formed by the 

addition reaction is an exact multiple of the initial reactant monomer. Condensation 

polymerization, on the other hand, is the synthesis of polymers by stepwise intermolecular 

chemical reactions that may involve more than one monomer species. Usually, a tiny molecular 

weight byproduct, like water, is eliminated (or condensed). No reactant species has the chemical 

formula of the repeat unit, and every time the intermolecular reaction takes place, a repeat unit 

is produced. 

Whether produced by a condensation or an addition reaction, the synthesized polymer 

might be linear, branched or cross-linked, as illustrated by Figure 1. A network polymer is 
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produced when linear polymer chains interact chemically or when a three-dimensional fish-net 

configuration is built up from monomeric resinous reactants (GOODMAN & DODIUK, 2014). 

Using the biological analogy, thermoset polymers, or thermosets, fit into the family of 

materials as shown in Figure 2, according to Goodman and Dodiuk (2014).  

Instead of being genuine straight lines, linear polymers are made up of carbon atoms 

that form a single, uninterrupted path from one end of the chain to the other. As the name 

implies, a branched polymer molecule consists of a number of smaller chains that branch off 

from a main "backbone", while a cross-linked polymer has a network structure. A highly cross-

linked structure is the main distinguishing element of a thermoset polymer. 

Figure 1 - Three types of polymer chains: (a) linear polymer, (b) branched polymer, and (c) cross-linked polymer 

 

 

 
Source: Anderson (2005) 

 

Thermoplastic and thermoset polymers are two categories of synthetic polymers, usually 

called plastics. The former gets softer with heating and stiffer with cooling. When heated, 

thermoset polymers go through a chemical reaction known as "curing", which turns them into 

an insoluble and infusible substance. The creation of a three-dimensional network structure is 

what causes the infusibility and insolubility of the cured polymer. After being fully cured, 

thermosets cannot be resoftened by heat. The term "thermo" suggests that heat energy input 

influences how cross-linking occurs, while the term "setting" denotes the occurrence of an 

irreversible reaction on a macro scale. A network polymer is produced when linear polymer 

chains interact chemically or when a three-dimensional fish-net configuration is built up from 

monomeric resinous reactants (GOODMAN & DODIUK, 2014). 

Using the biological analogy, thermoset polymers, or thermosets, fit into the family of 

materials as shown in Figure 2, according to Goodman and Dodiuk (2014).   
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Figure 2 - Relationship of thermosets in chemistry 

 

Source: Goodman & Dodiuk (2014) 

2.1.1 Classifications 

 

Thermoset polymers can be categorized as general purpose, engineering, and specialty 

(high-temperature) plastics, as explained below (GOODMAN & DODIUK, 2014):  

• General-purpose thermosets have mechanical properties that are considered average 

(for thermosets), they exhibit greater coefficients of expansion, poorer temperature 

resistance, low cost manufacturing and high production and sales volume (tons/year).  

• Engineering thermosets are thought to be more durable since they have better 

mechanical and thermal resistance qualities. They cost more and have a moderate 

production volume (kilograms/year).  

• High-temperature/specialty thermosets can withstand temperatures over 200°C for 

extended periods of time while retaining their strength, adhesiveness, thermal 

resistance, and electrical resistance. Costs are frequently greater, and production 

processes can be highly complex. Specialty thermosets are helpful because they possess 

one or more incredibly unique and specialized property that offsets any lack of other 

good properties. They are typically made in little amounts (a few kilograms each batch) 

and are quite costly. A general-purpose phenolic frequently competes with an 

engineering polyimide, and there is frequently overlap between the three groups.  

Some of the existent thermosets families can be broadly classified as seen in Table 1 

(GOODMAN & DODIUK, 2014). 
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Table 1 - Categories of thermosets 

 

Source: Goodman & Dodiuk (2014) 

 

2.1.2 Degree of polimerization  

 

A measurement of the quantity of units (mers) in a specific molecule is the degree of 

polymerization (ANDERSON, 2005). Typical engineering plastics have extremely long chains, 

with the degree of polymerization on the order of several thousand. Heat input, catalyst, as well 

as reagents that may be added to aid the polymerization process can control the degree of 

polymerization (ANDERSON, 2005). 

 

2.1.3 Molecular weight 

 

The molecular weight is a measure of the length of a polymer chain. Since a polymer 

sample often contains a range of molecule sizes, it is convenient to measure the average 

molecular weight, which can be described in one of two ways (ANDERSON, 2005):  

1) The number average molecular weight, which is the total weight divided by the 

number of molecules; and 

2) The weight average molecular weight, which places more focus on the larger 

molecules (whereas the number average molecular weight attaches equal 

importance to all molecules).  

Based on their molecular weight, thermoset polymers can be divided into rubber or 

elastomer (high molecular weight) and thermoset resins (low molecular weight) (RATNA, 

2009). Low molecular weight thermoset polymers, i.e., thermoset resins, are the subject of this 

study. Commonly used thermosetting resins typically have molecular weights between 200 and 
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400 g/mole (WANG et al., 2011), which means they have a low softening temperature and 

viscosity as well as high fluidity like other low molecular weight compounds. However, the 

molecular weight of the resin increases during the curing reaction, when cross-linking occurs, 

viscosity of the resin rises and fluidity decreases. 

 

2.1.4 Cross-linking density 

 
Cross-link density can be defined as the number of effective cross-links per unit volume 

of the thermoset material, in inverse relation to the molecular weight between cross-links 

(GOODMAN & DODIUK, 2014). There are several factors that affect this parameter 

(GOODMAN & DODIUK, 2014): 

1. Functionality: the number of reactive functional sites on the reactants 

(monomers); 

2. Actual number of functional sites that react (depends on the process); 

3. Chain length: the length between one crosslink and another; 

4. Chain mobility between cross-links (depends on the chain structure). 
 

2.1.5 Thermoset resin composites 

 

Over the last decades, in several fields, such as the aerospace, automotive, and 

renewable energy sectors, composite materials have become a viable and preferred high 

performance material solution (STRUZZIERO et al., 2019). In this context, thermosetting resin 

composites have been extensively adopted, due to their favorable properties. 

According to the traditional definition of the literature, a composite material, also known as 

a composition material or simply composite, is made up of two or more elements or phases that 

produce a superior combination of attributes than each substance or phase could provide on its own 

(ASKELAND et al., 2011; CALLISTER, 2008). A composite material is produced when two or 

more materials are combined on a macro, micro or nano scale (ASKELAND & WRIGHT, 2014). 

Regardless of the scale, to be considered a composite, the combination must have a distinguishable 

interface (RATNA, 2009). 
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Based on the matrix nature, four broad categories may be used to classify composites 

(RATNA, 2009): polymer matrix composite (PMC), metal matrix composite (MMC), ceramic 

matrix composite (CMC) and carbon matrix composite or carbon carbon composite. The usage 

of PMC, particularly fiber-reinforced plastic (FRP) composites, has dramatically increased over 

the past decades, and this trend is expected to continue (RATNA, 2009; GOODMAN & 

DODIUK, 2014; COHERENT MARKET INSIGHTS, 2022). This high interest in PMC is 

because they possess many useful properties, such as high specific stiffness and strength 

(properties-to-density ratios), dimensional stability, adequate electrical properties and excellent 

corrosion resistance (RATNA, 2009). Because of the easy transportability, high payload for 

vehicles, low stress on rotating parts, and high ranges for rockets and missiles, they are desirable 

for both civilian and military applications When a composite material is used instead of metal 

to create a component, the weight is significantly lower for a given design load. With regard to 

passenger aircraft, PMC's high specific stiffness and strength may result in a reduction in fuel 

consumption and an extension of range. It also improves military aircraft's stealth performance 

(DRZAL, 1986; MIDDLETON, 1990 apud RATNA, 2009). Besides, PMC can be processed at 

a much lower temperature compared with MMC and CMC (RATNA, 2009). Wang et al. (2011) 

lists other advantages of composites with polymer matrix:  

a) Fatigue resistance: It is equivalent to 30% to 50% of tensile stress for metal matrices, 

70% to 80% of tensile strength for carbon fiber/polyester composites, and a percentage 

between these aforementioned proportions for fiberglass composites. 

b) Damage tolerance: While common materials show the unstable propagation of the 

primary crack and its rapid failure, composite failure results from a variety of damages 

including matrix failure, fiber extraction, splitting or rupture, and interface separation; 

c) Damping characteristics: Composite materials vibrate at high frequencies that are 

proportional to the square root of a particular Young's modulus, and the interface 

between the fiber and matrix in these materials is good at absorbing vibrational energy; 

d) Multifunctional performance: among them, good friction properties, high resistance to 

chemical corrosion and superior electrical insulation performance;  

e) Good processing techniques: The material can be designed by choosing its components 

based on the conditions and demands of its intended usage. The product's molding 

enables the processing technique to be chosen in accordance with its physical properties 
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and can decrease the number of mounting parts, reducing the product's weight and the 

time and resources required to produce it.;  

f) Capacity of property design and anisotropy: For instance, fiber-reinforced composites 

increase the material's resistance in the direction of dispersed phase orientation. Thus, 

the material is created in a way that satisfies the design specifications, and optimizing 

the design of the material involves strengthening it in the desired direction.  

According to the types of polymer matrices, PMC are further classified as thermoset 

resin composites or thermoplastic resin composites (RATNA, 2009). Thermoset resins are the 

dominant material in the composite industries, due to their accessibility, relative simplicity of 

processing, less cost of processing capital equipment, and low material cost (RATNA, 2009). 

Due to their availability in low-viscosity oligomeric or monomeric liquid forms, thermosetting 

resins offer good flow properties that make it easier to impregnate fiber bundles with resin and 

properly wet the surface of the fiber with resin (RATNA, 2009). As mentioned before, they are 

characterized by a crosslinking reaction or curing, which transforms them into a three-

dimensional (3D) network form (insoluble, infusible). In comparison to many thermoplastics, 

thermoset composites have better creep properties and environmental stress cracking resistance 

due to the crosslinked structure (JANG, 1991 apud RATNA, 2009). 

However, because to the inability of remolding, thermosetting resins must be 

manufactured with the appropriate care and supervision to attain their final qualities. With the 

required heat supply, a thermosetting chemical reaction causes the crosslinking effect, which is 

what defines the material curing. The manufacture of thermosetting polymeric matrix 

composites must have the requisite control during curing, so that the desired matrix 

performance is obtained and the reinforcement is not negatively impacted (SMAALI, 2005). 

Composites are also generally classified according to the shape of the reinforcement and 

to the matrix material. Depending on the shape of the reinforcement, they can be divided into 

composites reinforced by particles, continuous fibers, staple fibers (long or short), and fabric 

fibers. Continuous fiber reinforcements, which can be used in numerous ways such as 

continuous random mats, woven fabrics, stitched fabrics, unidirectional or bidirectional fabrics, 

often offer high improvements in mechanical properties such as stiffness and strength 

(ADVANI & HSIAO, 2012). The fiber material is usually glass, carbon or aramid. Natural 

fibers such as kenaf, flax, jute, hemp and sisal have been intensely studied in the last years as 
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alternatives to artificial fibers due to their clearly positive environmental impact (BIAGIOTTI 

et al., 2008). 

Often these composite materials are introduced in a precursor form in the manufacturing 

process, where the precursor form usually mixes the fibers and resin in the form of prepregs 

(continuous fibers with resin attached to them in terms of a powder or pre-impregnated partially 

cured resin) or of a pellet (short fibers embedded in a solid matrix) (ADVANI & HSIAO, 2012). 

Because they provide a distinctive mix of properties that is not possible to achieve with 

other thermoset resins, epoxy resins are a kind of material that is widely employed in structural 

and specialty composite applications (MIRACLE & DONALDSON, 2001; RATNA, 2009; 

GOODMAN & DODIUK, 2014). Epoxies provide great electrical insulation, high strength, low 

shrinkage, chemical and solvent resistance, low cost, and low toxicity (MIRACLE & 

DONALDSON, 2001). They are easily cured without evolution of volatiles or by-products by 

a broad range of chemical species (MIRACLE & DONALDSON, 2001; RATNA, 2009; 

GOODMAN & DODIUK, 2014). Epoxy resins are also chemically compatible with most 

substrates and tend to wet surfaces easily, making them particularly well suited to composites 

applications (MIRACLE & DONALDSON, 2001; RATNA, 2009; GOODMAN & DODIUK, 

2014).  

For years now, glass fiber-reinforced epoxies have been widely used for many years as 

important parts of boats, cars, airplanes, medical prosthesis, and sporting goods (RATNA, 

2009). Besides, glass, graphite, and polyaramid-reinforced epoxy composites continue to find 

major use in such industries as space, printed circuitry, tanks, pressure vessels, and pipes 

(RATNA, 2009). In recent years, the epoxy resin is also widely used to produce carbon fiber 

and boron fiber composite materials (WANG et al., 2011). Epoxy composites are compatible 

with every reinforced plastics process (RATNA, 2009).  

The main components of thermosetting molding compounds are a resin system - which 

typically includes curing agents, hardeners, inhibitors, and plasticizers - and fillers and/or 

reinforcements - which can be made of mineral or organic particles, inorganic or organic fibers, 

inorganic or organic chopped cloth, or inorganic or organic paper (BERINS, 1991). In 

composites made of thermosetting resin, the reinforcing agent undergoes no chemical reactions, 

but the resin experiences a complicated chemical transformation, moving from a viscous flow 

state via a high elastic state to a glass state (WANG et al., 2011). 
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2.1.5.1 Manufacturing process of thermoset resin composites 
 

There are several ways to process composite materials, and there are significant 

variations among the various molding techniques (WANG et al., 2011). One of the important 

processes, which are used to produce high-performance laminated composites out of 

thermosetting-matrix composites, is the autoclave curing of the prepreg lay-ups (GOPAL et al., 

2000). In general, this procedure entails subjecting a multi-layered fiber-resin combination to 

high temperatures and pressures for predetermined lengths of time. High temperatures start and 

promote the crosslinking of polymers, and pressure applied to the mixture makes any gases and 

cavities to be removed, which allows the specimen to be compacted (GOPAL et al., 2000). 

 In fact, nowadays, most of thermal curing processes are realized in autoclave (YUAN, 

2021). Although out-of-autoclave procedures are given a lot of attention, they do not yet seem 

to be at a stage where they are ready for productions that are competitive (CENTEA et al., 2015 

apud ALEKSENDRIĆ et al., 2016). As a result, significant research has been focused on the 

adoption of tools that are useful in optimizing the design of the autoclave curing process, while 

manufacturer’s recommended cycle seem acceptable for the production of thin components but 

less successful when dealing with thick work pieces (ALEKSENDRIĆ et al., 2016; 

STRUZZIERO et al., 2019). 

 

2.1.6 The curing process 

 

Knowledge of the material properties and fabrication process must be mastered in order 

to produce materials with the desired performance, optimize designs, and reduce costs. An 

important phenomenon to consider of thermosetting polymer matrix composites manufacturing 

is the process of curing of such matrix. 

When thermosetting resins are exposed to high temperatures, ranging from room 

temperature to about 230 °C, they go through the process of curing, or polymerization, which 

is a permanent chemical reaction in which the structure's cross-linking causes the resin to harden 

(WRIGHT, 2002 apud PAIVA, 2018). After curing, the substance transforms into a solid that 

is insoluble, three-dimensional, and incapable of melting from its initial viscous flow state 

(WANG et al., 2011).  
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The reaction that causes a resin to cure is both thermoactivated and exothermic (BLEST 

et al., 1999; CIRISCIOLI et al., 1991; PITCHUMANI & YAO, 1993; HOJJATI & HOA, 1994; 

SURATNO et al., 1998 apud STRUZZIERO et al., 2019; PAIVA, 2018), and it often involves 

a combination of three ingredients: prepolymer, hardener, and accelerator (PAIVA, 2018). 

Commercial prepolymers are widely available. The Bisphenol A Diglycidyl Ether (DGEBA, or 

BADGE) epoxy resin, one of the most frequently used prepolymers for thick epoxy composites 

in the naval and offshore industries, was the one chosen for this work. They exhibit a linear 

structure at first. When hardeners (amines and anhydrides are examples of this group) react 

with epoxy, the three-dimensional network is produced. They exhibit a rather diverse chemical 

nature and control the kind of chemical bonding and the degree of cross-linking in the network, 

which affects the final product's properties and cure characteristics (MAZUMDAR, 2002 apud 

PAIVA, 2018). Finally, accelerators shorten the reaction's overall duration by promoting the 

cross-linking of the prepolymer/hardener mixture. They do not alter the glass transition 

temperature or the overall enthalpy of polymerization, for example. Additionally, the reaction's 

final degree of cross-linking is unaffected (RABEARISON, 2009). 

Cure kinetics must be comprehended, examined, and established in order to model, 

simulate, and optimize the cure process of thermoset materials. The polymer's quality may be 

described using predictions of the local temperature and degree of conversion. Therefore, an 

overview of the cure kinetics is presented below. 

2.1.6.1 Degree of cure 
 

During curing, the thermosetting resin's state changes. A low molecular weight 

monomer undergoes a significant transformation into a strongly cross-linked polymer. The 

development of curing is usually defined by the degree of cure, which can be computed from 

the ratio of the heat generated at a certain time during the process to the total heat generated 

over the whole cure (BARAN, 2017). 

As a thermoset resin cures, a chemical reaction causes the progressive conversion of 

functional groups (RATNA, 2009). As a result, the first stage in the study of cure kinetics is to 

specify the degree of conversion, also known as the degree of cure (𝛼𝛼), which is used to describe 

and track the cure process. Theoretically, the degree of cure ranges from zero - the resin's initial 

liquid state - to one, or 100% - fully cured resin. 
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Using nuclear magnetic resonance (NMR) spectroscopy analysis or Fourier-transform 

infrared, as well as differential scanning calorimetry (DSC), the degree of cure is determined 

by the disappearance of functional groups and the heat of reaction (DSC) (RATNA, 2009). 

When processing DSC observations, the degree of cure at a particular time 𝑡𝑡 is defined as the 

ratio between the reaction’s enthalpy at that instant – (𝑡𝑡) –, and the reaction’s total enthalpy for 

a fully cross-linked resin – 𝐻𝐻𝑈𝑈 (PAIVA, 2018). It is expressed by Equation (1): 

 
 

((1) 

 

Where 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is the measured heat flux, in power units. 

The degree of cure can also be expressed in terms of the cure/conversion rate 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑⁄ 

[𝑠𝑠−1], which measures how quickly polymerization occurs and 𝛼𝛼 increases, as follows: 

 
 

((2) 

 

The higher the cure rate, the shorter the process cycle. Additionally, a higher cure 

temperature results in a resin that has a higher degree of cure and that is denser. In practice, 

degree of cure seldom reaches 100% (PAIVA, 2018). Hence, it is assumed that the curing 

process reaches its end as the degree of cure – and material properties since they depend on 𝛼𝛼 

– are stabilizing.  

             Resin begins the chemical process of curing in a viscous liquid form, transitions to a 

solid rubbery state, and then solidifies into a glassy state. These phase shifts are illustrated by 

the Time-Temperature-Transformation (T.T.T.) Diagram in Figure 3, along an isothermal cure, 

for instance, at 120°C. 
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Figure 3 - LY 556 epoxy T.T.T Cure Diagram.

 

Source: Jochum et al. (1999) 

 

The diagram displays the thermosetting system curing processes of gelation and 

vitrification. The temperature where they coexist and happen concurrently is represented by Tg 

gel. Gelation and vitrification are crucial to the curing process and, consequently, to the 

material's ultimate properties. In order to accurately predict the thermoset properties, the cure 

process must be characterized, and these phenomena should be investigated. 

 

2.1.6.2 Gelation 
 

When a thermoset resin cures, it runs into the phenomenon of gelation, which refers to 

the change of the material under curing from liquid to a cross-linked gel, or rubber (RATNA, 

2009; PAIVA, 2018). At the gel point, all the units in a polymerizing mixture are linked together 

to create a single network (RATNA, 2009). The degree of polymerization (weight average) 

tending to infinite is the most widely accepted criteria for gelation. At gel point, the material is 

a combination of a soluble phase losing way to the insoluble one as it forms—a macroscopic-

sized gel—and is neither liquid nor fully solid (PAIVA, 2018). 

After gelation, due to the increase in cross-linking density, the cure process slows down, 

reducing system mobility. Cross-linking density rise also enlarges glass transition temperature 
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and mechanical properties (COSTA et al., 1999 apud PAIVA, 2018). Moreover, the material 

cannot be processed above the gel point. The gelation process is, therefore, irreversible 

(PAIVA, 2018). The gel point can be seen in Figure 4 from the starting increase of viscosity 

(𝜇𝜇) to its divergence to considerably greater values. After the gel point, a significant rise in the 

elastic modulus can also be seen in Figure 4. 

Figure 4 - Viscosity and Elastic Modulus evolutions of the epoxy resin in the chemical reaction of 
polymerization. 

 

Source: Adapted from Rabearison (2009) by Paiva (2018) 

Flory's gel theory states that the degree of cure for any cross-linking reaction is a 

constant at gel point, independent of reaction temperature or experimental conditions (Wang et 

al., 2011). According to Rabearison (2009), the degree of cure at gel point, for epoxy systems, 

ranges from 40% to 80%. Jochum et al. (2008) determined that the initiation of gelation for the 

LY 556 epoxy blend, which is the subject of the present work, occurs at a degree of conversion 

(𝛼𝛼gel) = 55%. 

 

2.1.6.3 Vitrification 
 

During the initial stage of curing, the cure is reactivity-controlled (RATNA, 2009). 

Unlike the reaction for synthesis of small molecules, a polymerization reaction is linked to an 

increase in the medium's viscosity. As the viscosity of the medium increases and the rate at 

which molecules diffuse slows, there will be a competition between reactivity-controlled and 

diffusion-controlled reactions (RATNA, 2009; PAIVA, 2018). 

The reaction becomes completely diffusion controlled at a critical level of degree of 

cure (RATNA, 2009; PAIVA, 2018). This stage is known as "vitrification" and it marks the 
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transition from a rubbery gel to a glassy gel. The rate of diffusion will be greatly slowed down 

at this point due to a large reduction in free volume (RATNA, 2009). Tg is the term used to 

describe the temperature at which the transition to a glass occurs. Glass transition is not abrupt, 

in contrast to melting. For this reason, this range of temperatures is referred to as the "glass 

transition region". 

After cured, polymer materials are glassy at temperatures below the Tg (hard and 

strong). The polymer softens and loses its dimensional stability when the service temperature 

exceeds the Tg. The Tg area has a considerable shift in modulus (rigidity). The Tg of a 

thermoset is therefore extremely important when designing the materials for a certain 

application. 

The substance remains in a rubbery form as long as the glass transition temperature, Tg, 

is lower than the reaction temperature. However, during curing, Tg eventually approaches (and 

then surpasses) the system temperature, allowing vitrification to take place. The change in the 

material's condition from rubbery to glassy is the transformation associated to this phenomenon. 

In contrast to gelation, vitrification is reversible with heating, allowing a glassy state to 

transform back into a rubbery one (PAIVA, 2018). 

At glassy state, as the forming network's densification rises and thermal agitation 

declines, system mobility is further decreased. Diffusion of reactants increasingly controls 

reactions. Therefore, maintaining reaction temperature above Tg allows curing to continue in a 

rubbery condition, resulting in a faster reaction rate and the fullest possible degree of cure. A 

post cure is a step in a typical manufacturing process that raises the cure temperature to increase 

cross-linking density and, as a result, the degree of cure and mechanical and physical qualities 

(PAIVA, 2018). 

 

2.1.6.4 Cure (chemical e thermal) shrinkage 

 

Throughout the curing process, thermosetting resin systems shrink due to cross-linking 

and temperature changes, increasing their density (WANG et al., 2011). The shrinkage will be 

greater at higher curing temperatures, which will result in increased internal stresses (WANG 

et al., 2011). Shrinkage significantly lower the quality of a fiber-reinforced composite since 

resin shrinkage has been shown to be correlated with the production of residual stresses and, 
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consequently, fiber waviness (RABEARISON et al., 2008; LORD & STRINGER, 2009; 

MSALLEM et al., 2010 apud PAIVA, 2018). Besides, several works have shown that a 

viscoelastic behavior of the resin induces stress relaxation effects (WISNOM et al., 1999; EOM 

et al., 2000; JOCHUM et al., 1999; 2007; 2008; RABEARISON et al., 2009; PATHAM, 2009; 

2013 apud PAIVA, 2018). 

When segment displacement is fixed, internal stress is difficult to release. Furthermore, 

because resin has a limited heat conductivity, the curing exothermic peak increases as the curing 

process progresses. Different heat diffusion conditions during the curing process or a quick 

heating rate will result in an uneven temperature field in some portions of the thermoset, 

especially in thick components (WANG et al., 2011). Additionally, it will result in internal 

stresses due to varying curing temperatures and shrinkages at different sites (WANG et al., 

2011). 

Uneven temperature, particularly during shrinkage after gelation, will result in varying 

rates of stress relaxation at different locations, producing different stresses, which in turn 

generates more internal stress (WANG et al., 2011). Therefore, the faster the reaction happens 

and the thicker the pieces are, the higher the temperature gradient will be and the more the resin 

system shrinks when it cures. Then, the pieces will be more likely to distort and warp as a result 

of the higher internal stress created during the curing process. 

According to Wang et al. (2011), because the resin is in its liquid condition before the 

gel point, only a portion of curing, following gelation, influences internal tensions. The same is 

supported by Jochum et al. (2007; 2008), Rabearison (2009), and other authors: internal stresses 

first manifest during gelation, a process during which chemical shrinkage is generated, the 

polymer structure starts to take shape, and the elastic modulus of the resin changes (PAIVA, 

2018).  

In a single fiber carbon/epoxy composite, the mechanism of fiber waviness was 

observed by Jochum et al. (1999). They determined that it was a result of the shrinkage of the 

resin during the hot phase of curing, which caused the fiber microbuckling phenomena. The 

experiments were conducted at various cure cycles, but with the same cooling phase. The 

conclusion that thermal stresses do not cause the fiber microbuckling phenomenon during 

cooling was made as a result of the sample with a fast cure exhibiting fiber instability whereas 

the sample with a slow cure did not. This is proof that internal strains are mostly caused by the 
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matrix's chemical shrinkage during the curing reaction, which occurs before the cured 

composite is exposed to room temperature, and its thermal shrinkage during the cooling stage. 

Thereafter, Jochum et al. (2007) measured fiber instability experimentally at the hot 

stage of cure. The undulation evolution of a long carbon fiber in a LY 556 epoxy resin was 

captured on camera in real time, and the wavelengths measured from a sinusoidal-like behavior 

were used to characterize the undulations. At the hot stage of cure, recordings reveal lower 

wavelengths and, consequently, higher amplitudes, which demonstrate the emergence of 

strains. According to a subsequent study (JOCHUM et al., 2008), the maximum chemical 

shrinkage seen just before the transition to glass coincides with local heating rates exceeding 

3°C/min, which is when fiber instability is said to be induced. 

Hence, internal stresses are decreased through more uniform shrinkage, temperature 

distribution, and cure rates at lower temperatures. The authors continued to look into the 

development of internal residual stresses during the curing of thick epoxies, where there is more 

heterogeneity (JOCHUM et al., 2013; 2014; 2016). They used simulations of samples subjected 

to laser-induced shock waves to estimate internal stresses and forecast damage, recording 

internal strains of about 10 MPa. 

While further examining the evolution of fiber undulations, Jochum et al. (2007) 

observed a modest increase in fiber wavelength before and during the cooling stage to room 

temperature. The authors point to the matrix's viscoelastic behavior as the root reason, which 

enables matrix tensile relaxation and, as a result, a reduction in fiber compressive stress, thereby 

increasing the fiber's wavelength. Therefore, compared to a solution in the elastic framework, 

residual stresses are lower.  

The specific volume-T curve in Figure 5 depicts the volume change of an epoxy resin 

system as an example (WANG et al., 2011). The unreacted liquid epoxy resin system is heated 

from room temperature to curing temperature, and its volume expands from point X to point A 

and reaches gel point C due to curing shrinkage in curing temperature. Its volume decreases to 

point B as cure progresses. Then cooling from curing temperature to room temperature, it 

reaches point Y through point D (glass transition temperature Tg) due to cooling shrinkage. 

Two stages make up cooling: high elastic state (BD) above glass transition temperature (Tg), 

and glass state (DY) below Tg. According to Figure 5, two different line slopes, the thermal 

expansion coefficients in the two stages are different. 
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Figure 5 - The shrinkage of epoxy in curing process. 

 
Source: Wang et al. (2011) 

From point X to point A, it is the thermal expansion of non-curing system. From point 

A to point B, it is the shrinkage caused by curing reaction within given curing time at curing 

temperature, which is called polymerization shrinkage. From point B to point Y, it is the thermal 

shrinkage of cured system. The volume change between point A and point Y is the total curing 

shrinkage of system (curing shrinkage = polymerization shrinkage + thermal shrinkage). The 

volume change between point X and point Y is the volume change before and after curing, 

which is usually used to calculate the actual volume shrinkage after the system cured (WANG 

et al., 2011). 

 

2.1.6.5 Cure schedule 
 

Manufacturing of polymer composites using a curing process requires the specification 

of the temperature as a function of time, i.e., the temperature profile, also called cure schedule.  

It is extremely important that the selected cure schedule satisfies a number of criteria which 

include the minimum residual stresses, minimum cure cycle time, full degree of cure and no 

thermal degradation for the final cured material.  



42 

The cure schedule must take into account a realistic time-temperature profile that will 

produce an optimal mix of properties when more than one material property is important. Figure 

6 describes such a circumstance. Besides, the cure schedule that is chosen to manufacture a 

component is influenced by heating and cooling rates, volatiles release, part design, and many 

other aspects (GOODMAN & DODIUK, 2014). 

Figure 6 - Optimization of cure schedule for thermosetting plastics. Optimum properties occur at point A. 

 
Source: Goodman & Dodiuk (2014) 

 
Practical considerations generally dictate that the cure time be chosen at some fractional 

level of the ultimate properties (GOODMAN & DODIUK, 2014). This is because the time scale 

can often be logarithmic (GOODMAN & DODIUK, 2014). Thus 90% of, say, ultimate tensile 

strength, may be achieved in a few hours at 25°C. The remaining 10% (often not needed for 

use) may require months to years for achievement. 

If firstly pre-cure at a low temperature (then cure at a high temperature), 

macromolecules can move around during the slow-moving curing reaction, and the curing agent 

has time to fully react with the surrounding resin to create more reaction centers, which results 

in a more uniform structure and cross-linking density. If directly cure at high temperature, as a 

result of the high reaction speed and the curing agent's encapsulation, which prevents it from 

reacting with farther away macromolecules, there is a structural heterogeneity, greatly 

inhomogeneous crosslinking density, and significant internal stress. Therefore, stepped-curing 

from low to high temperature is frequently used in advanced composite material components, 

and autoclave process in particular (GOODMAN & DODIUK, 2014). 
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As previously mentioned, a two-step cure cycle is the typical process cycle for polymer-

matrix composites. The first dwell's goal is to let gases (such as trapped air, water, or volatiles) 

escape the matrix material and to let the matrix flow, which will aid in the part's compaction, 

while the second dwell's purpose is to allow the polymer crosslink (WHITE & HAHN, 1993). 

In this second stage, the composite's strength and other mechanical characteristics grow. 

 

2.1.6.6 Influence of temperature and mass/thickness on gel time 
 

Essentially, the temperature dependence of cross-linking reactions follows a 

conventional Arrhenius relationship (GOODMAN & DODIUK, 2014; PAIVA, 2018). 

Therefore, cross-linking rate is greatly influenced by ambient temperature. A mass effect affects 

the rate of reaction because all commercial thermosetting reactions are exothermic. 

The heat produced by the exothermic reaction brings on a typical viscosity decrease. 

The resultant increase in mixed viscosity outpaces and quickly surpasses any reduction brought 

on by heat as the mass' molecular weight rises. Over time, the molecular growth continues until 

a macroscopic gel-like "lump" is discernible: this is the gel time, also known as the gel point, 

or tgel (GOODMAN & DODIUK, 2014). The viscosity increases infinitely after this point. In 

other words, the polymeric mass transforms into a plastic, a macroscopic solid (GOODMAN & 

DODIUK, 2014). 

All polymers are naturally thermal insulators, so the exothermic heat cannot easily 

escape the mass curing during the reaction, increasing the heat input (GOODMAN & DODIUK, 

2014).   

Figure 7 demonstrates this effect. Curve 1 represents a normal room temperature cure. 

With added heat (T2 > T1, Curve 2) the gel time decreases. Curve 3 (T3 < T1) shows the effect 

of decreasing the temperature (i.e. tgel increases). Curve 4 (T4 << T1) describes a stable situation 

wherein the cure is arrested because the temperature is below the activation level necessary for 

the start of the reaction.  

 

Figure 7 - Influence of ambient cure temperature on the gel time of thermosets. 
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Source: Goodman & Dodiuk (2014) 

 

The temperature influence on gelation is paralleled by the mass effect (GOODMAN & 

DODIUK, 2014; PAIVA, 2018). Because polymers are thermal insulators, as a cross-linking 

mass grows larger, the ability to transmit the exothermically produced heat away from the 

reaction site is dramatically reduced. Curve A in Figure 8 shows the typical gel profile for a 

given mass. Curve B represents the doubling of the mass, whereas curve C represents a halving 

of the mass. A situation when the mass is below a crucial threshold size, which stops the cross-

linking and creates an effective latency, is described by Curve D. 

 

 

 

 

 

 

Figure 8 - Influence of mass on the gel time of thermosets 
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Source: Goodman & Dodiuk (2014) 

 

The gel duration can be increased from minutes to hours, because of the 

temperature/thickness dependency, which is quite relevant in practice (GOODMAN & 

DODIUK, 2014). For instance, a 5-gallon mixture of urethane flooring varnish compound may 

gel in 20 to 30 minutes with an often-abrupt exotherm (GOODMAN & DODIUK, 2014). The 

gel time, however, may increase to 4 to 8 hours if the same amount is immediately poured and 

distributed over a cool surface (GOODMAN & DODIUK, 2014). 

 

 

 

 

 

 

2.1.6.7 Influence of temperature on conversion rate and degree of cure evolution 
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Figure 9 and Figure 10, respectively, depict typical plots illustrating how temperature 

affects conversion rate and degree of conversion of a thermoset (in this case, a polyester) 

(RATNA, 2009). 

Figure 9 - Isothermal reaction rate versus time plot of a free radical-polymerized unsaturated polyester resin 

 

Source: Ratna (2009) 
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Figure 10 - Conversion profile versus time plot of a free radical-polymerized unsaturated polyester resin.  

 

Source: Ratna (2009) 

 

2.1.6.8 Internal gradients and defects 
 

A thermochemical, chemical, and mechanical coupling occurs during an exothermic 

process during the curing of thermosetting polymers and composites. The curing procedure 

affects the final product's material qualities. However, internal tensions produced during the 

curing process can also result in the formation of quality defects including bubbles, cracks, and 

wavy fibers, which will lower the product's mechanical performance (PAIVA, 2018). 

Figure 11 depicts the use of a carbon/epoxy composite to construct pipelines (risers) for 

the extraction of petroleum from deep wells. The composite exhibits flaws throughout its 

thickness, including bubbles, pores, fissures, and local dislocations. This illustrates the process 

of material stress generation during curing, which degrades the final product's mechanical 

quality. 
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Figure 11 - Defects through thickness in a carbon/epoxy composite riser (80-mm thickness). 

 

Source: Jochum (2009) 

Such defects become more significant in the production of thick laminates for structural 

purposes, which are increasingly being used in naval and offshore applications and typically 

have thicknesses above 4-5 mm (RABEARISON et al., 2009).  

Viscoelasticity and thermal degradation brought on by internal overheating are further 

aspects of the process that have an impact on the polymer's final state (PAIVA, 2018). 

Therefore, research has been done to optimize the cure cycle, avoid overheating and high 

internal gradients and assure higher mechanical properties for the composites during 

manufacture (PAIVA, 2018).  

 

2.1.6.9 Residual stresses 
 

Residual stress is the stress experienced without the presence of external or thermal 

loading (CALLISTER & RETHWISCH, 2007). In other words, residual stresses are those 

stresses that persist in a structural material or component after the original source of the stresses 

(external forces, heat gradient) has been eliminated. 

A thorough understanding of the process-induced residual stresses and their effects is 

necessary given the increased use of polymer composites in load-bearing applications. This is 

extremely necessary in order to have more reliable composite manufacturing since residual 
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stresses change the internal stress level of the composite part during service life and residual 

shape distortions may result in failure to meet the desired geometrical tolerances (BARAN, 

2017). 

 Residual stresses may be created through the manufacturing process or working 

conditions (TEIMOURI & SAFARABADI, 2019). The development of residual stresses during 

the manufacturing process is inevitably accompanied by a variety of interactions between the 

physical phenomena that are primarily involved with material flow, heat transfer, and 

polymerization or crystallization (BARAN, 2017).  

Process-induced residual stresses have been linked to a number of different 

mechanisms, including thermal anisotropy, chemical resin shrinkage, tool-part interaction, resin 

flow, consolidation and compaction, gradients in fiber volume fraction, moisture swelling, 

prepreg variability, gradients of temperature and degree of cure or crystallization (BARAN, 

2017). Other factors may govern the evolution of the residual stresses and deformation of 

thermoset composite structures during the fabrication process, the mismatch of thermal and 

chemical properties of constitutive materials, material degradation or viscoelastic effects during 

curing (ERSOY et al., 2005; WISNOM et al., 2006; FERNLUND et al., 2002 apud LIU & SHI, 

2018). Therefore, accurate predictions of residual stresses in thermoset resins and composites 

require detailed accounting of multiple phenomena, such as the kinetics of resin cure, the 

evolution of the resin properties with temperature and degree of cure, cure shrinkage strains, 

thermal strains and mold-part interaction (PATHAM, 2013).  

Large temperature gradients across the thickness caused by the exothermic heat of 

reaction have an additional impact on residual stress generation and shape distortions in thick 

thermoset sections (PATHAM, 2013). The matrix material experiences differential 

polymerization, shrinkage, and modulus development in the throughthickness direction as a 

result of these high thermal gradients, which cause residual stresses (BARAN, 2017). Due to 

the reduced thermal conductivity of thermoset composites, thicker sections may experience 

considerable temperature and cure gradients even though through-thickness temperature 

gradients are relatively tiny for thin parts and can be disregarded (JOHNSTON, 1997 apud 

BARAN, 2017). The evolution of macroscopic in-plane residual stresses caused by temperature 

and degree of cure gradients in thick thermoset laminates was examined in (BOGETTI & 

GILLESPIE, 1989, 1992; RUIZ & TROCHU, 2005 apud BARAN, 2017). 
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When residual stresses have the same sign as those brought on by external loads, they 

can have a negative effect on composites (SAFARABADI & SHOKRIEH, 2014 apud AGIUS 

et al., 2016).  Matrix cracking and/or excessive shape distortion can be caused by residual 

stresses (BARAN, 2017). Besides, residual stresses are very effective at reducing the strength 

of a composite structure because they cause structural delamination, fiber tear, and twist of 

asymmetrical multilayers (TEIMOURI & SAFARABADI, 2019) 

In fact, residual stresses can be high enough to cause matrix cracking even before 

mechanical loading is applied (WHITE & HAHN, 1990 apud GOPAL et al., 2000). This 

microcracking weakens the material's strength and exposes the fibers to chemical deterioration 

(HAHN, 1984 apud GOPAL et al., 2000). Even though they might not reach this level, residual 

stresses still have a negative impact on strength because the component was preloaded during 

the curing process (HAHN, 1984 apud GOPAL et al., 2000).  

Nevertheless, according to Liu and Shi (2018), residual stresses are inevitable in the 

composite structures during the manufacturing process (LIU & SHI, 2018). These process-

induced residual stresses may lead to undesirable shape distortions when the cured components 

are released from the mold and such distortions are often large enough to render the part 

unserviceable (LIU & SHI, 2018). Moreover, residual stress during fabrication greatly 

decreases the fatigue life and dimensional accuracy of composite parts (ERSOY et al., 2005; 

SALOMI et al., 2008; KAPPEL et al., 2013 apud LIU & SHI, 2018). Consequently, it is 

important to accurately predict the development of residual stresses and deformations during 

curing (ZHU et al., 2001; CAPEHART et al., 2007; WUCHER et al., 2014 apud LIU & SHI, 

2018). 

 Researchers have put in a lot of work to predict residual stresses and distortions in 

composites using analytical and numerical methods in the extensive published literature 

(BARAN, 2017). Although analytical expressions are frequently preferred to predict residual 

stresses in composite materials, numerical analysis must be used if higher accuracy is desired 

(SAFARABADI & SHOKRIEH, 2014). Generally, numerical methods include finite element 

method (FEM), finite difference method (FDM) and boundary element method (BEM) 

(SAFARABADI & SHOKRIEH, 2014). The FE method is more effective than the other two 

methods for predicting micro- and macro- residual stresses (SAFARABADI & SHOKRIEH, 

2014). FE analysis has been widely utilized to investigate the process induced stresses and 

deformations for different shaped parts, in composite manufacturing processes (ANTONUCCI 
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et al., 2006; CLIFFORD et al., 2006; ERSOY et al., 2010; CINAR et al., 2014; TAVAKOL et 

al., 2013; CINAR, 2014; WUCHER et al., 2014 apud BARAN, 2017). 

To forecast how the residual stress will evolve in composites, the viscoelastic model, 

the cure hardening instantaneously linear elastic (CHILE) model, and the elastic model are 

frequently used (LIU & SHI, 2018). These three models each have unique advantages and 

disadvantages, as well as varying degrees of adoption. Undoubtedly, during the curing process, 

particularly during the heat-up and hold phases, the polymer acquires viscoelasticity (LIU & 

SHI, 2018). The elastic model can only be used to predict how the internal stress will change 

during the cool-down period; however, it ignores how the stress will change during the curing 

process (ARAFATH, 2007; ABOUHAMZEH et al., 2015 apud LIU & SHI, 2018). In this 

regard, the CHILE model is the model suggested by some researchers to effectively assess the 

deformation and residual stress of the composite laminates (WISNOM et al., 2007; DING et 

al., 2017; KAPPEL, 2016; BELLINI & SORRENTINO, 2018 apud LIU & SHI, 2018). This is 

because the model considers the variation of elasticity modulus as a function of degree of cure 

and temperature during the cure period. 

According to Paiva (2018), many studies on thermosetting polymer curing have been shown 

that residual stresses appear during the hot stage of the curing. A prediction tool for a unidirectional 

AS4 carbon fiber embedded in a Hexcel 8552 epoxy, which is frequently used in aerospace 

composite structures, was created by Lord & Stringer (2009). Taking into account the resin 

chemistry and structural analysis, a 3D model was simulated on Abaqus with its subroutines for the 

prediction of residual stresses and distortions during and after cure. Experimental data were used to 

model cure kinetics. Both a one-step cure at 180°C and a two-step cure with isotherms at 210°C 

and 180°C were applied to the U-shaped geometries. Similar parts were created using an autoclave 

process to validate mathematical outcomes. The authors stress the significance of modeling the 

entire cure cycle because distortions are significantly increased if the expansion and cure shrinkage 

that have accumulated in the fiber and resin up to the gel point are ignored in analyses that begin at 

the gel point. Finally, there was good agreement between the numerical and experimental results; 

however, the numerical results were more accurately predicted as the simulation's element through-

thickness number increased. 

Msallem et al. (2010) also looked into the issue of residual stress generation during curing, 

which is more important in thick resin parts. FEMLAB (now COMSOL Multiphysics®) was used 

to simulate the cure of a 1D simple plate thermosetting resin using coupled thermal, chemical, and 

mechanical phenomena. According to the authors, the gel point is typically used as a criterion for 
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residual stress formation, which is primarily caused by chemical shrinkage. However, they believe 

that stresses should be considered to start forming when the resin has a yield stress.  

Patham (2009) studied the evolution of cure-induced stresses in a thick viscoelastic 

thermosetting polymeric resin using multiphysics simulations on COMSOL® that incorporated heat 

transfer and cure kinetics. In cure kinetics, diffusion effects were also taken into account. The 

attraction of a thick matrix stems from the exothermic reaction's larger temperature gradients across 

the thickness, which result in the growth of residual stresses and shape distortions. According to the 

author, thermal stresses and chemical shrinkage both contribute to the isotropic stresses that are 

produced. On the other hand, due to viscoelasticity, there is a time-dependent stress relaxation 

during cure. Viscoelastic model estimates of the first case were significantly lower than equivalent 

elastic model estimates, according to a comparison the authors made. The instantaneous stresses, 

which in a linear elastic material are only controlled by the instantaneous states of temperature and 

degree of cure, were another topic of discussion in the paper. It was found that locations with higher 

temperatures allowed quick relaxation of stresses caused by thermal shrinkage, resulting in a slower 

build-up of stresses. For a viscoelastic material, these stresses are also influenced by the resin's 

thermal history.  

Patham (2013) continues the study of cure-induced stresses in a viscoelastic epoxy/amine 

thermosetting resin system in a subsequent work. Heat transfer and a semi-empirical cure kinetics 

model were both included in COMSOL Multiphysics®, which made it easier to implement the 

model without making any simplifying assumptions. Two other equivalent material models, one 

with a constant elastic modulus and the other with a cure-dependent, time-invariant elastic modulus, 

were compared to the simulation results. The author observed lower estimates of generated stresses 

for the viscoelastic model, but found no differences in the stress response between the two elastic 

models. 

The internal stress growth during curing of a thermosetting system was also studied by 

Rabearison et al in consecutive researches using FE simulations on Abaqus and its subroutines, 

where thermal, chemistry, and mechanics were coupled within the framework of elasticity with 

small strains. The heat generated by the exothermic polymerization reaction was included in the 

heat transfer equation as a heat source, causing the resin to expand thermally before shrinking due 

to the transition between the liquid and solid states. The chemical shrinkage and property evolutions 

were accounted for by the degree of cure computed at each stage of curing. The evolution of the 

material's characteristics (temperature and degree of cure dependents) was inferred from DMA-

TMA and DSC experiments, and the cure kinetics parameters for Kamal and Sourour's 

phenomenological model were obtained. 
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In their initial study (RABEARISON et al., 2008), the rule of mixtures was used to 

predict the coefficient of thermal expansion and the specific heat capacity according to the 

degree of conversion of the reaction. The chemical shrinkage followed Li et al. (2004)’s bi-

linear relationship. They also took into account how DiBenedetto's equation would change the 

glass temperature. Two simulations were run, each with associated experiments to validate the 

models. The first one was an epoxy resin filled steel tube with a 32 mm diameter and 30 mm 

height that was heated in an oven using a 3°C/min ramp before reaching an isotherm of 100°C. 

The second model was a 20 mm Pyrex test tube filled to a height of 25 mm with epoxy resin 

and heated at a ramp rate of 3 °C/min before reaching an isothermal plateau of 120 °C in the 

oven. The authors draw attention to the significant internal stress development that was 

witnessed during a resin's cure cycle as well as the strong strain and stress gradients that were 

seen inside the matrix during formation and that, after gelation, were around 7-8 MPa. In 

conclusion, it is stated that stresses are caused by different thermal and chemical strains that 

manifest within the matrix as a result of gradients of curing caused by thermal heterogeneity. 

The results of a subsequent investigation (RABEARISON et al., 2009) were compared 

to the first one. Once more, Abaqus simulations were compared to experimental data, 

demonstrating that local temperature predictions were consistent with the data. Shear elastic 

modulus and loss modulus values for a typical curing at 120°C were obtained from DMA-TMA 

tests. It was discovered that the shear elastic modulus appeared to be sensitive to the frequency 

of the tests, indicating that the matrix exhibited viscoelastic behavior during the cure cycle and 

should be taken into account in future research for more accurate predictive models of the 

internal stress state estimation. Additionally, authors claimed that as thickness increases, the 

exothermic reaction's contribution to the curing process' heterogeneity becomes more 

pronounced. There are mass effects on the exothermically generated heat during the curing of 

thick matrices, which can decrease the composite quality. Because of this, the understanding of 

the gradients that arise within the material properties is a strategic point for thermoset composite 

manufacturing, particularly for thick matrices. 
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2.1.6.10 Thermal degradation 
 

Manufacturing components out of thermosetting resins requires performing an 

exothermic chemical reaction in addition to shaping the material. In order to achieve an 

acceptable rate of reaction without overheating and causing unwanted reactions that result in 

thermal degradation, proper temperature control is necessary (MCCRUM, 1997). 

According to Thermogravimetric Analysis (TGA), show in Figure 12, the thermal 

degradation temperature of the LY 556 epoxy system studied in this research work is around 

155 °C. When this temperature is exceeded, the epoxy starts to loose mass, followed by the 

formation of gases and bubbles, which increases the internal pressure of the component and 

generate cracks. 

It is important to note that TGA analysis indicates mass loss appearance quite early, at 

around 75°C. However, until temperature reaches around 120°C, the loss observed in the TGA 

plot is related to the release of gases (such as trapped air, water, or volatiles), not to the epoxy 

thermal degradation. 

 

Figure 12 - Mass loss evolution of the LY 556 epoxy according to TGA, indicating the material thermal 
degradation temperature 

 

Source: The author (2022) 
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2.1.7 Mechanical properties 

 

The mechanical properties of thermoset resin composite components are largely 

affected by the cure cycle, which must be designed and optimized based on the component 

geometry.  

Because of the molecular structure of polymers, they experience rate-dependent 

viscoelastic deformation (ANDERSON, 2005). The ability of materials to exhibit both viscous 

and elastic properties when deformed is known as viscoelasticity. Time affects how stress and 

strain are related (or frequency, for a frequency domain). Thus, the strain rate affects the stress-

strain plot's slope. Van der Waals bonds are weak attractive forces that act between two nearby 

molecules or various pieces of a single folded-back molecule (ANDERSON, 2005). These 

secondary bonds will resist any external force that tries to pull the molecules apart. Because the 

Van der Waals bonds in most polymers are much weaker than primary bonds, their elastic 

modulus is significantly lower than the Young's modulus for metals and ceramics. It takes 

coordinated motion between molecules to deform a polymer. If the imposed strain rate is 

sufficiently low to give molecules enough time to move, the material is considered relatively 

compliant. Higher stresses are needed to deform the material at higher strain rates due to friction 

caused by the forced molecular motion. The material tries to return to its original shape after 

the load is removed, but molecular entanglements stop this from happening instantly. If the 

strain is significant enough, yielding processes like crazing and shear deformation take place, 

and a significant portion of the induced strain becomes essentially permanent. 

Viscoelasticity is a still growing subject in composites studies, and recent works show 

relations between viscoelasticity and generated residual stresses in fiber-reinforced composites 

(PAIVA, 2018). The elastic shear modulus and loss modulus for a LY 556 epoxy system, which 

is the focus of this study, was determined through DMA-TMA experiments in accordance with 

the evolution of degree of cure shown in works by Jochum & Grandidier (2004), Smaali (2005), 

Rabearison (2009), and Rabearison et al. (2009) in Figure 13. The values were tabulated for a 

loading frequency of 0.1 Hz. 
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Figure 13 - Elastic shear modulus evolution with degree of cure. 

 
Source: Jochum & Grandidier (2004) 

 

Critical factors that affect the cured resin's properties, especially its mechanical 

properties, include cross-link density and degree of conversion (GOODMAN & DODIUK, 

2014). A thermoset resin that has a high cross-link density or degree of conversion tends to be 

harder but brittle, whereas one with a low density/degree of cure is more flexible, has better 

impact strength, and has a higher elongation. This general principle enables one to adjust the 

degree of conversion to enhance the performance of the final material (GOODMAN & 

DODIUK, 2014). 

 

2.1.8 Epoxy resins 

 

Epoxies are a class of polymers that are essential to modern industry (GOODMAN & 

DODIUK, 2014). Indeed, these materials are so common that researchers and engineers from a 

variety of fields are likely to come across them in a variety of settings. 

Epoxy resin synthesis began in the 1930s (WANG et al., 2011). Industrial usage of 

epoxies became widespread with the first commercial production beginning in 1947 

(GOODMAN & DODIUK, 2014). Since then, several applications have made the market of 

epoxy resins expand. 
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Epoxy resins are a subcategory of thermosetting resins distinguished by the presence of 

two or more oxirane rings or epoxy groups in their molecular structure (RATNA, 2009). These 

epoxy groups are situated terminally, cyclically, or internally in a molecule (GOODMAN & 

DODIUK, 2014).  

Typically, two compounds that are liquid at room temperature are combined to create 

epoxy resin, which upon curing solidifies into a cross-linked lattice (ANDERSON, 2005). 

Amines and anhydrides are the main hardeners for reinforced epoxies (BERINS, 1991). The 

choice of compounds in a formulation, their relative proportions, the processing of the recipe, 

and the configuration and environment of the finished part can all affect the properties of epoxy 

resins. The most popular form of epoxy resin, and the one selected for this work, is called 

diglycidyl ether of Bisphenol A (DGEBA), which is created when Bisphenol A (BPA) and 

epichlorohydrin (ECD) react (RATNA, 2009).  

There are undoubtedly more articles and reports based on fundamental and applied 

research on epoxy resins than any other thermosetting resin that is marketed today (RATNA, 

2009). The versatility of the epoxy group toward a variety of chemical reactions and the 

practical properties of the network polymers are the sources of epoxy resins' widespread 

interest, such as high strength, very low creep, excellent corrosion and weather resistance, 

elevated temperature service capability, and adequate electrical properties  apud (LEE & 

NEVILLE, 1967; BAUER, 1979; RATNA, 2007 apud RATNA, 2009).  

This material is extensively used in the mechanical, electrical, chemical, aerospace, 

automotive, building, and other industrial sectors (WANG et al., 2011). It can be used as 

adhesives, coatings, fluxes, casting plastics, and the matrix resin of fiber-reinforced composites 

(WANG et al., 2011). Some of their most interesting applications are found in industries where 

resins and fibers are combined to produce complex and sometimes thick composite structures, 

such as in naval and offshore industries. 

High-performance epoxies were developed in response to the needs of the structural 

composites sector. These demands were satisfied by increasing functionality (number of 

epoxide groups per molecule), altering curing agents, and substituting rigid bonds for the 

thermally weak aliphatic linkages in glycidyl groups (GOODMAN & DODIUK, 2014). 

2.2 MODELING OF THE CURE OF THERMOSETS (GOVERNING EQUATIONS) 
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A model is a mathematically idealized representation of the system or physical process. 

When developing new products, the manufacturing of composites has relied on intuition based 

on experience and trial and error methods (MIRACLE & DONALDSON, 2001). However, when 

creating new prototype geometries, this method has shown to be costly in terms of both time 

and money. The use of composite materials in numerous potential industrial applications has 

been hindered by the associated risks (MIRACLE & DONALDSON, 2001). These materials and 

their processing operations can become cost competitive with metals and other materials by 

using process simulation models to speed up the development of prototypes from concept to 

completion. 

Physically based models are used in process simulations of thermoset resins and 

composites curing in order to simulate the process and forecast the cure time and other 

properties of the finished part. The process model uses two governing equations. One is a cure 

kinetics equation, and the other is the heat transfer equation. A transient multiphysics-coupled 

problem is composed by these two equations. 

 

2.2.1 Kinetics model 

 

The curing process, which involves thermoset state change of the matrix from liquid to 

glass, is a heat transfer problem with heat generation due to the chemical reaction occurring in 

the resin during the process (BLEST et al., 1999; CIRISCIOLI et al., 1991; PITCHUMANI & 

YAO, 1993; HOJJATI & HOA, 1994; SURATNO et al., 1998 apud STRUZZIERO et al., 2019; 

PAIVA, 2018). 

Several models have been proposed to describe the curing of thermoset resins (HORIE 

et al., 1970; DUSEK et al., 1975; MUZUMDAR & LEE, 1996 apud RATNA, 2009; PAIVA, 

2018). There are two types of modelling approaches: mechanistic models and 

phenomenological models. Both of them have the purpose of determining the degree of cure 

and temperature distribution within the studied sample during the cure process and allowing the 

evaluation of its properties.  

Mechanistic models consider the mechanisms of reaction that take place during curing. 

There may be two of them: mechanism of addition and mechanism of etherification and 



59 

homopolymerization (PAIVA, 2018). Horie’s model (HORIE et al., 1970) considers these 

mechanisms while taking into account chemical species concentrations. 

According to Ratna (2009), the mostly used model for isothermal kinetic analysis is the 

phenomenological model developed by Kamal (KAMAL & SOUROUR, 1973). In many curing 

reactions, the new groups that are created as a result of curing act as catalysts (RATNA, 2009).  

Kamal and Sourour’s equation (KAMAL & SOUROUR, 1973) for an autocatalytic 

curing reaction can be represented as: 

 
 

((3) 

 

Where 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is the rate of degree of conversion 𝛼𝛼, and 𝐾𝐾1 and 𝐾𝐾2 the rate constants of the 

catalytic and auto-catalytic processes, respectively. Exponents 𝑚𝑚 and 𝑛𝑛 are, respectively, the orders 

associated with the auto-catalytic and catalytic reactions. The sum (m + n) gives the overall order 

of the curing reaction.  

The formula demonstrates that reaction rate depends on the amount of resin that has not 

yet been reacted – factor (1−𝛼𝛼)n, catalytic – and the amount of resin that has been reacted 

(reaction product) – factor 𝛼𝛼m, auto-catalytic. According to Rabearison (2009), in most studies 

on epoxy systems, 𝑛𝑛 varies between 1 and 2, while m typically takes values between 0.67 and 

1. For m=1 and n=2, Kamal and Sourour’s model is identical to Horie’s mechanistic model. 

The Arrhenius equation shown below (Equation 4) can be used to correlate the kinetic 

rate constants K1 and K2 to temperature (RATNA, 2009; PAIVA, 2018). 

 

 

 

((4) 

Where the activation energy is denoted by Ei, R is the universal gas constant (8.314 

J/(mol.K), T is the absolute temperature at the reaction site, and A is a pre-exponential constant. 
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2.2.1.1 Diffusion factor 

 
The final degree of cure predicted by Kamal and Sourour's model is 100%. However, 

experimental results rarely achieve such conversion (PAIVA, 2018). Kamal and Sourour's 

model is appropriate at the start of the evolution of the degree of conversion, where the 

molecules' reactivity is dominant, but not in a moment near the end of the thermosetting 

reaction, beginning the vitrification (PAIVA, 2018). As curing progresses, reaction becomes 

increasingly governed by diffusion of reactive species and has less molecule mobility, slowing 

the reaction rate. 

In order to incorporate diffusion effects into the cure kinetics model, which cannot be 

ignored, Fournier et al. (1996) added a diffusion factor 𝑓𝑓𝑑𝑑 to Kamal’s model. 𝑓𝑓𝑑𝑑 is a function of 

degree of conversion and a semi-empirical relationship. The following equation represents the 

extended model: 

 

 
 

((5) 

 

The diffusion factor is expressed by: 

 

 

 

((6) 

Where b is an empirical diffusion constant of the material and parameter 𝛼𝛼𝛼𝛼 is the 

conversion at the conclusion of the isothermal cure. Therefore, eight parameters must be 

determined in order to fully characterize the cure kinetics using the extended model: 𝑚𝑚, 𝑛𝑛, 𝐴𝐴1, 

𝐴𝐴2, 𝐸𝐸1, 𝐸𝐸2, 𝛼𝛼𝛼𝛼 and 𝑏𝑏. 

 

2.2.2 Glass transition temperature 

 
The glass transition temperature must be properly described because, according to 

earlier discussions, this parameter is a reference to rubbery state and glassy state 



61 

transformations that directly affect material properties. However, the temperature at which glass 

transitions occur varies over the course of the curing process. With the increase in conversion, 

the concentration of reactive functionalities decreases and crosslinks or junction points are 

formed. Thus, the glass transition temperature of the resin will rise as the curing reaction 

progresses (RATNA, 2009).  

To correlate the glass transition temperature with the degree of conversion (α), several 

models have been proposed. The models are constructed using statistical analysis of network 

formation and calculations of the concentration of junction points for various functionalities as 

a function of degree of cure (RATNA, 2009). The following equation, also referred to as the 

DiBenedetto’s equation, has been successfully used to correlate the experimental values of the 

Tg as a function of degree of conversion for numerous thermosetting resins, including epoxy 

(DIBENEDETTO, 1987; PASCAULT et al., 2002 apud PAIVA, 2018; RATNA, 2009): 

 

 

 

((7) 

 

Where 𝑇𝑇𝑔𝑔0 is the 𝑇𝑇𝑔𝑔 of the resin mixture before the cure (𝛼𝛼 = 0%), 𝑇𝑇𝑔𝑔∞ is the 𝑇𝑇𝑔𝑔 obtained 

after maximum possible curing (𝛼𝛼 = 100%), and λ is an adjustable parameter that typically 

assumes values between 0.46 and 0.58 for the majority of epoxy/amine systems (SMAALI, 2005). 

2.2.3 Heat transfer equation 

 

Curing is an exothermal reaction, whose activation is aided by the heat produced by 

itself. Thus, the model of heat transfer includes both internal and external heat sources, with a 

coupling of two physics: thermal and chemical (PAIVA, 2018; DAI et al., 2019).  

Since the interest is on the evolution of degree of cure and temperature within the 

thermoset rather than how chemical species are reacting, a straightforward coupling of these 

physics can be represented by the addition of a heat flow (𝜙𝜙) equivalent to that released by the 

chemical reaction (PAIVA, 2018). The resulting heat transfer equation is the following: 
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 ρ 𝒄𝒄𝒑𝒑
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 =  𝒅𝒅𝒅𝒅𝒅𝒅{𝒌𝒌[𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑻𝑻]} +  𝒒𝒒 + 𝝓𝝓−  𝑻𝑻 {(𝟑𝟑𝒌𝒌 +  𝟐𝟐µ)α𝑻𝑻}𝒕𝒕𝒕𝒕ε̇ (8) 

 

The local temperature T of the matrix during curing is defined by Equation (8). 

Parameters 𝜌𝜌, 𝐶𝐶𝑝𝑝, 𝑘𝑘 and α𝑇𝑇  are the density, specific heat capacity, thermal conductivity and 

coefficient of thermal expansion of the forming matrix. The heat flow imposed by the oven is 

represented by term q. The fourth and last term of the equation is the heat produced by the 

mechanics as a function of the bulk modulus κ, shear modulus μ, and second-order strain tensor 

𝛆̇𝛆, which can be considered to be neglected in comparison to the others. 

The heat flow generated by the chemical reaction (𝜙𝜙), which corresponds to the 

thermochemical coupling, can be expressed as follows (PAIVA, 2018): 

 𝝓𝝓 = 𝝆𝝆 𝜟𝜟𝜟𝜟𝒓𝒓 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅  (9) 

  
Where the term  𝛥𝛥𝛥𝛥𝑟𝑟 stands for the enthalpy of the reaction. 

 

2.2.4 Cure modelling variables 

 

Table 2 provides a summary of all the parameters and properties needed for thorough 

characterization and monitoring of the thermochemical cure process. 
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Table 2 - Cure process variables 

Field Variables 

Material Properties 𝑘𝑘,𝜌𝜌,𝑐𝑐𝑝𝑝 

Cure Kinetics 𝐴𝐴1,𝐴𝐴2,𝐸𝐸1,𝐸𝐸2,𝑚𝑚,𝑛𝑛,𝛼𝛼𝑓𝑓,𝑏𝑏 

Chemistry 𝜙𝜙 

Environmental Conditions q 

Glass Transition Temperature 𝑇𝑇𝑔𝑔𝑔𝑔, 𝑇𝑇𝑔𝑔∞,𝜆𝜆 

State variables 𝜶𝜶,𝑻𝑻,𝒕𝒕 
Source: Adapted from Paiva (2018) 

 

2.3 NUMERICAL SIMULATION 
 

Several studies have focused on the numerical simulation of the curing process of 

thermoset matrices or composites in an effort to elucidate various aspects of the process 

(COSTA & SOUSA, 2003; MAWARDI & PITCHUMANI, 2003; CARLONE & PALAZZO, 

2009 apud ALEKSENDRIĆ et al., 2016; PAIVA, 2018). Among the numerical methods that 

have been applied to this problem by the scientific community, the Finite Element Method 

(FEM) is one of the most used method, due to its widely known capacibilty of delivering 

accurate predictions of the physical behavior of a component or system subjected to different 

conditions.  

Thus, this section focuses on explaining the principles of the FEM and how it can be 

implemented thorough a commercial software.  

 

2.3.1 Finite Element Model 

 

The Finite Element Method is a numerical technique for solving partial differential 

equations that was developed in the 1950s by the aerospace industry (FISH, 2009). As the 

equations that describe the behavior of materials are written in terms of partial differential 

equations, and the solution of these equations through analytical methods for arbitrary 

geometries is extremely difficult, this method has been widely applied in Engineering in recent 
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decades. Millions of engineers and scientists around the world use FEM to predict the 

mechanical, structural, thermal, electrical and chemical behavior of systems (FISH, 2009). 

The FEM is implemented by a software in order to perform a Finite Element Analysis 

(FEA) of a physical phenomenon. The first steps in using FEA software are to create a 

computer-aided design (CAD) model of the real-world components being simulated and to 

insert the material's properties, the loads, and the constraints that have been placed on it. With 

the help of this information, real-world behavior can be predicted, frequently with astounding 

levels of accuracy. 

The FEA methodology entails dividing the component (the domain of the differential 

equation) into finite elements connected to one another, which form a mesh (Figure 14). To 

obtain the equations for each element, an integral form of the differential equation is deduced 

through the principle of virtual work (PTV). In stress analysis, the field variable of the equations 

is the displacement (u). This variable is then approximated by a linear combination (series 

expansion) of known functions (N) with unknown coefficients (a), called interpolation 

functions, also known as shape functions. The choice of these functions is conveniently made 

so that the unknown coefficients represent the nodal displacements. 

Figure 14 – A finite element mesh over a rectangular region with a central hole 

 

Source: Hutton (2004) 

The equations obtained for the elements are combined, resulting in the following global 

system of equations for the component:  

 [𝑲𝑲][𝒂𝒂] = [𝑷𝑷] ((10) 

Where [K] is the stiffness matrix, [P] is the force vector applied to the body and [a] is 

the vector of the nodal displacements. The stiffness matrix contains information about the 
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geometry and behavior of the material, and indicates the element's resistance to deformation 

when subjected to loading. Applying the boundary conditions, the system of equations is solved 

to find the vector [a], and then the displacement approximation function [u] is obtained by: 

 [𝒖𝒖] = [𝑵𝑵][𝒂𝒂] (11) 

Having found the displacement field for the component, it is possible to calculate the 

stress and strain tensors at any point on the elements. The deformation components are obtained 

through the Equations (12). Moreover, the stress components are given by the constitutive 

equations of the material, which for a linear material are expressed by the generalized Hooke's 

law. 

 

 

(12) 

 

2.3.1.1 Types of finite element mesh 

 

          The type of mesh that is selected for the simulation strongly affects the modeling 

computational requirements and the accuracy of the results. In fact, when it comes to setting 

up and resolving a finite element problem, meshing is one of the memory-intensive steps. The 

correct element types and sizes must be chosen, taking into account the trade-off between 

accuracy and computational cost, in order to determine the mesh that is best suited for a 

specific model. 

Depending on the nature of the problem, elements can take on a variety of forms, such 

as: bars for 1D elements; triangles or quadrilaterals, for 2D elements; and tetrahedrons, 

pyramids, prisms or hexahedrons, for 3D elements. 

The interpolation functions are related to the number of nodes in the element. The higher 

the geometric order of the interpolation functions, the higher the number of nodes per element, 

which imply greater accuracy in the solutions, as shown in Figure 15 for 1D elements. However, 
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the costs in terms of computational time also increase. Besides, Figure 15 shows that more 

elements (mesh refinement) also lead to solutions that are more exact, and that are more 

computationally expensive as well.  

Figure 15 – Discretization errors for 1D Finite Elements 

 

Source: Adapted from Barbero (2013) 

 

In order to validate a FEA model, increasing the element order is one approach but it is 

likely that refining the mesh instead will lead to better results (COMSOL INC., 2019e). 

 

2.3.1.2 Timestep refinement 
 

Transient simulations need to compute a discrete solution that reflects the time 

evolution. The unknown transient degrees of freedom are calculated using time-integration 

techniques starting from initial data. If the computed solution meets the predefined error 

boundaries within the specified tolerances, the time step's computed solution is approved. 

When working with transient FE models, in addition to the mesh refinement, it is 

necessary to perform a timestep refinement, by comparing the model against other models run 

with finer timesteps, to gain confidence in the simulation results (COMSOL INC., 2019f) 
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2.3.1.3 Steps of the Finite Element Analysis 

 
Finite Element Analysis consists of three main steps: 

1) Pre-processing: where the model is configured before performing the 

calculations, by specifying geometry, material properties, loading and boundary 

conditions, and the Finite Element mesh characteristics. 

2) Processing: this is the step where the calculations are actually performed by the 

Finite Element software. 

3) Post-processing: In this step, the calculation results are displayed. A critical 

analysis of the results obtained must be carried out, judging whether they are 

coherent or not. 

 

2.3.1.4 Finite Element Software 
 

Currently, there are several Finite Element software available on the market, each with 

its advantages and disadvantages in terms of graphical interface, performance, types of analysis, 

among others. Some popular commercial Finite Element software are: COMSOL®, Abaqus®, 

ANSYS®, ADINA®, Cosmos®, Nastran® and LS DYNA®. 

COMSOL Multiphysics® is a simulation platform that provides fully coupled 

multiphysics and single-physics modeling capabilities (COMSOL INC., 2019c). The entire 

modeling workflow is covered by COMSOL® Model Builder, from specifying geometry, 

material properties, and the physics that characterize particular phenomena to solving and 

postprocessing models to generate precise results (COMSOL INC., 2019c). In several areas of 

engineering, manufacturing, and scientific research, engineers and scientists simulate designs, 

devices, and processes using the COMSOL Multiphysics® program. The main capabilities and 

functionalities of this software is the following (COMSOL INC., 2019a): 

• The program provides a multiphysics interface that makes it simple to configure 

variant input parameters and solve coupled physics problems in a user-friendly 

interface. 

• There are several modules in COMSOL®, including those for math, acoustics, 

electrical, chemical, mechanical, fluid, and heat applications. 
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• It works with several space dimensions – 3D, 2D Axisymmetric, 2D, 

1DAxissymmetric, 1D and 0D – and types of study – stationary, time dependent, 

frequency domain, etc. 

• Given that the program was designed to run coupled phenomena problems, it 

produces results relatively quickly in these cases. 

• Everything is incorporated into the program, which reduces the need for 

computer memory and processing time. 

• The program has an Application Programming Interface (API) for Java and 

LiveLink for CAD software, MATLAB® and Excel®, which effectively 

integrates them with COMSOL® simulations. 

COMSOL LiveLink for MATLAB® is one of the most interesting features of COMSOL 

because it allows automatizing all the steps of a simulation model from a script in MATLAB. 

The tasks that can be performed with COMSOL LiveLink for MATLAB® are detailed below 

(COMSOL INC., 2021): 

• Create models using a script. The COMSOL® Application Programming 

Interface (API), which is part of the LiveLink™ for MATLAB®, has all the 

required methods and functions to create models from scratch. There is a 

command entered at the MATLAB prompt that corresponds to every action 

taken in the COMSOL Desktop®. It is a streamlined syntax built on the Java® 

platform and does not require any prior Java expertise. 

• Use MATLAB functions when configuring models. To use a MATLAB function 

to set model properties, use LiveLink™. Define boundary conditions or material 

properties, for instance, as a MATLAB routine that is assessed as the model is 

solved. 

• Interactive modeling using the same model in MATLAB and COMSOL 

Desktop. Every change made at the MATLAB prompt updates the COMSOL 

Desktop at the same time. 

• Utilize MATLAB's features to improve program flow. To manage the 

progression of your programs, combine MATLAB functionality with API 

syntax. For instance, use the for or while commands to implement nested loops, 

the if or switch statements to implement conditional model settings, or the try 

and catch syntax to handle exceptions. 
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• Analysis of the simulation results in MATLAB. It is simple to extract data at the 

command line thanks to the included API wrapper functions. Functions are 

available to access results at arbitrary or node points. Additionally, it possible to 

obtain detailed information about the extended mesh, such as the coordinates of 

the finite element mesh and details about the connections between the elements 

and nodes. Extracted information is available as MATLAB variables that are 

prepared for use with any MATLAB function. 

• Create models with unique interfaces. To combine a user-defined graphical 

interface with a COMSOL model, use the MATLAB Guide or the App Designer 

functionality. Create graphical user interfaces that are specifically designed to 

expose the settings and parameters of one’s choice to make the models accessible 

to others. 

• COMSOL Server™ and COMSOL Multiphysics Server can both be accessed 

through LiveLink for MATLAB®. This implies that any user with access to 

COMSOL Server™ can receive and use MATLAB scripts and GUIs that make 

use of COMSOL functionality. 

 

2.4 NUMERICAL OPTIMIZATION 
 

The broad field of optimization has drawn the intense and continuous attention of a 

number of researchers in recent years, primarily as a result of the quick development of 

computer technology, including the creation and availability of user-friendly software, fast and 

parallel processors, and artificial neural networks (SUDHOFF, 2021). Optimization is a vital 

tool in both decision science and the analysis of physical systems. 

The process of optimization involves comparing viable solutions until no better one can 

be found (DEB, 2001). Solutions are classified as good or bad in terms of an objective, which 

is frequently the price of fabrication, the quantity of harmful gases, the efficiency of a process, 

the dependability of the product, or other factors. Mathematically speaking, optimization is the 

minimization or maximization of one or more objective functions under restrictions on their 

variables (GOPAL et al., 2000). 
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Prior to performing an optimization, we must first choose an objective, which is a 

numerical evaluation of the effectiveness of the system under investigation (NOCEDAL & 

WRIGHT, 2006). This objective could be any quantity or combination of quantities that can be 

represented by a single number, including money, time, potential energy, and many others. The 

problem can be classified as a Single Objective (SO) optimization problem, which only 

considers one objective, or a Multi Objective (MO) optimization problem, which considers two 

or more objectives. 

The objective is dependent on specific system properties known as decision variables or 

unknowns. Finding decision variable values that optimize the objective is the optimization goal. 

The decision variables are frequently restricted or constrained in some manner. For example, a 

material's density is a quantity that cannot be negative. 

Identifying the objective, decision variables, and constraints for a specific problem is a 

process known as optimization modeling. The first step in the optimization process is the 

creation of a suitable optimization model. The model will not provide useful insights into the 

real-world problem if it is overly simplistic. On the other hand, it might be too difficult to solve 

if it is too complex. 

Once the model has been created, its solution can be found using an optimization 

algorithm, typically with the aid of a computer. There is not a single algorithm that can be used 

to solve all optimization problems; rather, there is a variety of algorithms, each of which is 

designed to solve a specific kind of optimization problem (NOCEDAL & WRIGHT, 2006). It 

is frequently the user's responsibility to select the algorithm that is best for a given application. 

This decision is crucial because it could affect how quickly the problem is solved, or even 

whether a solution is ever found (NOCEDAL & WRIGHT, 2006). 

After an optimization algorithm has been applied to a given model, the solution's 

interpretation in terms of the application may suggest ways that the model can be improved or 

refined (NOCEDAL & WRIGHT, 2006). 

 

2.4.1 Numerical optimisation methods 

 

According to (STRUZZIERO, 2019), there are two broad categories that can be used to 

classify optimization methods:  
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1) Gradient-based techniques: Optimization methods that use an objective 

function's derivatives to try to minimize or maximize the objective function. 

When the problem's landscape is relatively straightforward, this family of 

techniques (gradient-based) can be successfully applied. These techniques have 

the advantage of fast convergence. However, they take the approach of 

beginning with a single estimated solution and attempting to refine that estimate, 

which makes them vulnerable to being stuck at a local maximum or minimum, 

as the ones displayed in Figure 16(a). The single estimate will tend to converge 

to the local extrema if it is close to them. Thus, the success of gradient-based 

methods in situations where the landscape is filled with local minima and/or 

maxima depends heavily on the choice of the initial values of the optimization 

variables, requiring a priori knowledge of the landscape, which is frequently 

unavailable. 

2) Zero-order methods: Methods that do not require continuity of the objective 

function and of its derivatives. Hessians and gradients are not even used or 

estimated. This characteristic is advantageous when operating in a discrete 

search space or with discontinuities, as shown in Figure 16(b). The objective 

function must only be able to be assessed at any location within the chosen 

search space. Nevertheless, there is no guarantee that the solution found is 

strictly optimal and they are computationally expensive. Zero order methods can 

also be referred to as stochastic algorithms or evolutionary strategies (ES) and 

are most frequently nature-inspired. These techniques typically begin with the 

generation of a population, a first random set of solutions, and progress toward 

better sets of solutions with each algorithm iteration (generation) by assessing 

the fitness of the solutions and employing stochastic operators. These 

population-based techniques are less likely to converge to a local extrema 

because they work with several potential solutions at a single simulation run. 

 

 

Figure 16 – Function properties that are detrimental to gradient-based optimization techniques 
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Source: Sudhoff (2021) 

 Deb (2001) claims that gradient-based methods are a subset of what he calls “classical 

optimization methods”, which are defined as optimization algorithms that use a single solution 

update in every iteration and that mainly use a deterministic transition . Yet according to Deb 

(2001), classical optimization methods can be classified into two distinct groups: direct search 

methods and gradient-based techniques. In direct search methods, the search strategy is 

determined solely by the objective function and the constraint values. Because derivative 

information is not utilized, direct search methods are typically slow and require numerous 

function evaluations before convergence. However, direct search methods present many 

difficulties that are common to most classical methods (including gradient-based techniques), 

as follows:  

• Most algorithms tend to be stuck to a suboptimal solution (local minimizer or 

maximizer). 

• The initial solution that is selected determines the convergence to an optimal solution. 

• An algorithm that works well to solve one optimization problem might not work well 

to solve another one. 

• When dealing with problems with a discrete search space, theses algorithms are 

ineffective. 

• A parallel machine cannot be used to run these algorithms effectively. 

• Algorithms are inconvenient for solving multi-objective optimization problems because 

they can only find, at best, one solution in one simulation run. 
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Some examples of classical optimization methods are weighted sum, ε-constraint, 

weighted metric, Benson’s, value function and goal programming methods (DEB, 2001). 

Among the zero-order methods, the most widely used evolutionary strategies are Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO) 

(STRUZZIERO, 2019). 

 

2.4.2 Multi-objective optimization 

 
In most disciplines, problems with multiple objectives naturally arise, and finding 

solutions to these problems has long been a problem for researchers (COELLO et al., 2014).  

The key distinction between single-objective optimization and multi-objective 

optimization is that the latter searches a set of points that describe the best tradeoff between 

competing objectives, whereas the former looks for a single point associated to the maximum 

or minimum of a single objective function (SUDHOFF, 2014).  

 

2.4.2.1 Definitions 

 
A multi-objective optimization problem has a number of objective functions that are to 

be minimized or maximized. Similar to the single-objective optimization problem, there are a 

number of constraints that any feasible solution must meet. The general form of multiobjective 

optimization problem can be formally defined as (DEB, 2001): 

 

 

(13) 

 

where a solution 𝒙𝒙 is a vector of 𝑛𝑛 decision variables: 
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 𝑥𝑥 = [𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, 𝒙𝒙𝟑𝟑, … , 𝒙𝒙𝒏𝒏] (14) 

The last set of constraints are called variable bounds, restricting each decision variable 

𝑥𝑥𝑖𝑖 to take a value within a lower and an upper bound (𝑥𝑥𝑖𝑖
(𝐿𝐿) and 𝑥𝑥𝑖𝑖

(𝑈𝑈), respectively). These bounds 

delimit a decision variable space, or simply the decision space. In the present work, to refer to 

a solution vector 𝒙𝒙, the terms point and solution were used interchangeably. J  inequality and K 

equality constraints are related to the optimization problem, where 𝑔𝑔𝑗𝑗(𝒙𝒙) and ℎ𝑘𝑘(𝒙𝒙) and the 

constraint functions. The inequality constraints are handled as "greater-than-equal-to" types, 

though the above formulation also addresses a "less-than-equal-to" type inequality constraint 

(DEB, 2001). The constraint must be changed into a "greater-than-equal-to" type constraint in 

the latter situation by multiplying the constraint function by -1 (DEB & KUMAR, 1995 apud 

DEB, 2001). 

A solution 𝒙𝒙 is said to be infeasible if it fails to satisfy each of the above-mentioned 2𝑛𝑛 

variable bounds and (J + K) constraints. On the other hand, a feasible solution is one that 

satisfies all restrictions and variable bounds (DEB, 2001). 

 

2.4.2.2 Goals in multi-objective optimization 

 
A multi-objective optimization has the following two goals (DEB, 2001): 

1) To identify a set of solutions that is as near the Pareto-optimal front as possible. 

Given the significance of each objective in a multi-objective optimization, a diverse set 

of obtained solutions that are close to the Pareto-optimal front offers a range of optimal 

solutions that trade objectives in various ways. The Pareto-optimal front is explained in 

next section. 

2) To identify a set of solutions that is as diverse as possible. If a multi-objective 

optimization algorithm is unable to identify a diverse set of feasible solutions to a 

problem, it is just as effective as a single-objective algorithm. 

In order to achieve those two goals, a multi-objective optimization algorithm must 

include explicit or implicit mechanisms to emphasize convergence near the Pareto-optimal front 

and the maintenance of a diverse set of solutions (DEB, 2001). Multi-objective optimization is 

more challenging than single-objective optimization because of those two goals. 
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2.4.2.3 Pareto-optimal front 

 
In the single-objective optimization problem, it is easy to choose which solution is better 

than the others, by comparing the respective values of the objective function. However, in 

multiple-objective optimization problem, it is necessary to redefine what is good in a solution.  

With this in mind, the concept of domination was introduced. Assume that there are two 

possible solutions, 𝑥𝑥1 and 𝑥𝑥2 (here the superscript denotes only the solution number). The 

following two requirements must be met for the solution 𝑥𝑥1 to be considered to dominate 𝑥𝑥2 

(or for 𝑥𝑥2 to be dominated by 𝑥𝑥1) (SUDHOFF, 2014):  

1) The solution  𝑥𝑥1 is no worse than 𝑥𝑥2 in all objectives. 

2) The solution  𝑥𝑥1 is strictly better than 𝑥𝑥2 in at least one objective. 

The non-dominated solution set, given a set of solutions, consists of all the solutions 

that are not dominated by any of the members of the solution set (SUDHOFF, 2014). The 

Pareto-optimal solution set is the non-dominated set of all feasible solutions (feasible decision 

space) (SUDHOFF, 2014). Each solution in the feasible decision space can be mapped to the 

feasible objective space, as shown in Figure 17 for an optimization problem that possess two 

conflicting objectives, 𝑓𝑓1(𝒙𝒙) and 𝑓𝑓2(𝒙𝒙), that need to be minimized. The Pareto-optimal front is 

the set of all the points mapped from the Pareto-optimal solution set, which is shown in Figure 

17 as a bold line in the feasible objective space. 

 

 

 

 

 

 

 

Figure 17 - The Pareto-optimal front 
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Source: Sudhoff (2014) 

 

2.4.2.4 Diversity control 

 
For a given multi-objective optimization problem, there are several possible solutions, 

and any solution found in the set of Pareto-optimal solution set can be the best one according 

to the application (SUDHOFF, 2014). Finding as many Pareto-optimal solutions as possible is 

therefore necessary, but also finding solutions that are as diverse as possible on the Pareto-

optimal front. 

Five points in the Pareto-optimal front are shown in Figure 18 for cases (a) and (b). The 

solutions of (a) are concentrated on a particular area of the Pareto-optimal front, whereas (b) 

are evenly distributed throughout the Pareto-optimal front. For the given problem (a), there is 

a chance that the best solution is hidden in the Pareto-optimal front's neglected area. Thus, 

having a diversity of solutions is important. 
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Figure 18 - Different distributions of solutions: (a) concentrated on a specific part of the Pareto-optimal front and 
(b) evenly distributed over the Pareto-optimal front 

 

Source: Sudhoff (2014) 

 

There are several different techniques that can be applied in multi-objective 

optimization algorithms to control the diversity of solutions (DEB, 2001; COELLO et al., 

2014). 

 

2.4.3 Evolutionary Algorithms 

 

Among the existing optimization algorithms, Evolutionary algorithms (EAs) EAs are 

ideal candidates for solving multi-objective optimization problems (DEB, 2001). This is 

because they can find multiple optimal solutions in one single simulation run due to their 

population-approach.  

Evolutionary algorithms (EAs) are search and optimization techniques that mimic 

natural evolutionary principles (DEB, 2001). They are a subclass of Evolutionary Computation, 

which work with the concept of populations, and correspond to the set of general stochastic 

search algorithms (VIKHAR, 2016).  

Other population-based optimization methods, such as particle swarm optimization, 

have also been used successfully in literature (SUDHOFF, 2021). Nevertheless, here the 

emphasis is given to the study of EAs and, specifically, Genetic Algorithms (GAs), which are 

Evolutionary Algorithms that have proven to be very effective in solving design optimization 

problems (SUDHOFF, 2021).  
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Although the use of traditional multi-objective optimization methods to address issues 

in a variety of fields - such as management, engineering, and science - dates back to 1951, it 

wasn't until the middle of the 1980s that Multi-Objective Evolutionary Algorithms (MOEAs) 

were used for the first time (ITO et al., 1983; SCHAFFER, 1985; FOURMAN, 1985 apud 

COELLO et al., 2014). However, the number of MOEA applications has significantly increased 

since the late 1990s (COELLO et al., 2014). This was largely stimulated by MOEAs' success 

in resolving real-world problems. MOEAs have produced results that are either competitive to 

or superior to those obtained using other search strategies (COELLO et al., 2014).  

 

2.4.3.1 Advantages when compared to classical methods 
 

The main advantages that an Evolutionary Algorithm has over classical search and 

optimization techniques, which stimulate its wide use in complex problem solving, are the 

following (WHITLEY, 2001; AL-SALAMI, 2009 apud VIKHAR, 2016): 

1) It is conceptually simple and flexible because it is inspired by natural evolution; 

2) It is representation independent, while there are some numerical optimization techniques 

that can only be used in applications with continuous values or with constrained sets. 

3) Evolution is a parallel process. Each evaluation in an EA performs parallel operations, 

only operations carried out during the selection process requires serial processing. 

4) Evolutionary Algorithms are robust and develop to adapt the solution in a changing 

environment, while classical optimization methods change with dynamic variation that 

takes place in problem environment; 

5) EAs are capable of solving problems without the aid of any human expertise. If human 

expertise is available, an EA can use it; however, human expertise may not be reliable, 

qualified, or accurate. 

The advantage number 3 must be highlighted. The objective functions and constraints 

of many real-world optimization problems are usually computed using simulation software 

involving the finite element method, the computational fluid mechanics approach, nonlinear 

equation solving, or other computationally intensive methods (DEB, 2001). Since most 

classical methods use the point-by-point approach, where a single solution is updated to a new 

solution in one iteration, the benefits of parallel systems cannot be fully utilized. On the other 

hand, Evolutionary Algorithms can use parallelism, which highly reduces the computational 
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time and also increases the quality of the solutions found (SUDHOLT, 2007 apud VIKHAR, 

2016). This is a relevant benefit considering that parallel computing systems are now practical 

to use due to their availability and affordability.  

 

2.4.3.2 Difficulties of evolutionary algorithms 

 

In spite of having many advantages, EA possesses some drawbacks, such as (VIKHAR, 

2016):  

1) Inability to always provide the optimal solution to a given problem in a 

predictable amount of time;  

2) Potential need for parameter tuning through trial and error or another method; 

and 

3) High computational resource requirements. 

There are two basic reasons for the large amount of computational resources that can be 

required by EAs (VIKHAR, 2016). The first one is that the evaluation of the objective (and 

fitness) functions may be complex and slow. The second one is that the size of the population 

may need be too large. To tackle this drawback, the natural solution is to split up the workload 

among several computers and run all computations in parallel. 

2.4.3.3 Operators and parameters tuning 
 

When implementing an Evolutionary Algorithm, two optimization problems are faced 

(YU & GEN, 2010):  

1. Finding the optimal solution(s) of the original optimization problem, which is 

associated to the problem parameter;  

2. And finding the optimal optimization operators and their respective optimal 

parameters, which is associated to the strategy parameter. 

The second problem can occasionally be even more challenging than the first one 

because of the nonlinear intrinsic properties of EAs (YU & GEN, 2010). That explains why 

there are so many papers on how to optimize the performance of optimization algorithms (YU 

& GEN, 2010). 
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The factors affecting the results of optimization can be roughly divided into two 

categories: local factors and global factors (YU & GEN, 2010). Those factors that will only have 

effects at the individual (solution) level are local factors, such as crossover and mutation 

operators and their parameters. On the other hand, factors that will have effects at the population 

(set of solutions per iteration) level are global factors, such as selection type and its parameters, 

stop criteria and population size. Local factors have less of an impact on population diversity 

and selective pressure than do global factors (YU & GEN, 2010). Consequently, they are more 

difficult to set.  

An extensive study on strategy parameter setting was performed by Eiben et al. (1999) 

apud Yu and Gen (2010). Much effort has been dedicated to fine-tuning the strategy parameters 

for most problems in a numerical way. The most well-known work is De Jong’s experiments 

in his Ph.D. thesis (DE JONG, 1975 apud YU & GEN, 2010), where he suggested that the 

following optimization operators and parameters were proper strategy parameters for his test 

functions: population size = 50, crossover probability  = 0.6, mutation probability = 0.001, and 

elitism. Grefenstette, in turn, used a meta-level GA to handle the strategy parameter 

optimization problem (GREFENSTETTE, 1986 apud YU & GEN, 2010). The optimal solution 

of the meta-level GA, that is, the best strategy parameters for a given performance criteria were 

population size = 30, crossover probability = 0.95, mutation probability = 0.01, and elitism. 

As can be seen from the above studies, suggestions from different researchers are 

achieved by different test functions and different performance criteria, which makes it difficult 

to choose the best strategy parameters for a specific problem based on literature data, because 

different problems might require different optimal strategy parameters. 

Therefore, sometimes EAs users need to do the parameter tuning on their problems, 

thorough trial-and-error or another method, such as the meta-GA (YU & GEN, 2010). Both of 

these methods can be very time consuming because the possible value number of the strategy 

parameters might be large and the coupling between strategy parameters might be tight (YU & 

GEN, 2010). 

 

 

2.4.3.4 Types of evolutionary algorithms 
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There are numerous Evolutionary Algorithms available nowadays. As displayed in 

Figure 19, they can be divided into four categories: Evolutionary Strategies (ES), Genetic 

Algorithm (GA), Genetic Programming (GP) and Evolutionary Programming (EP) (DE JONG, 

1997; WHITLEY, 2001 apud VIKHAR, 2016). 

 

Figure 19 - Classification of Evolutionary Algorithms 

 
Source: Vikhar (2016) 

 

According to Vikhar (2016), the most popular type of EA is the Genetic Algorithm (GA) 

because it presents the most accurate computer mapping of the natural evolution process. It is 

frequently used for machine learning, pattern recognition and optimization problem (COELLO, 

2005 apud VIKHAR, 2016). In the next sections, we will discuss in detail the canonical and 

real-coded genetic algorithms.  

 

2.4.3.5 Genetic Algorithm 

 
A century after the work of Mendel and Darwin on genetics and evolution, by the mid-

1960s, John Holland, a professor at the University of Michigan, developed a computation 

algorithm for optimization using biological genetics principles, the Genetic Algorithm (GA) 

(HOLLAND, 1992 apud SUDHOFF, 2021). In 1984, Schaffer implemented the first multi-

objective Genetic Algorithm (SCHAFFER, 1984 apud SUDHOFF, 2014). However, 

researchers did not start working on this topic actively until the middle of the 1990s 

(SUDHOFF, 2014). 
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2.4.3.5.1 Review of Biological Genetics 
 

By going over some fundamental concepts of biological genetics, this section will 

prepare the ground for the use of GAs as optimization engines.  

Every living thing is built according to a specific set of instructions. Deoxyribonucleic 

acid (DNA), found in each living thing's cell, contains these instructions (SUDHOFF, 2021). A 

sequence of compounds in a DNA molecule forms a gene of a living being (SUDHOFF, 2021). 

In terms of optimization, the gene is seen as a decision variable, also called design parameter, 

of a living organism. Chromosome is the name given to each DNA molecule found in a living 

thing. Most living things have several chromosomes. Humans, for instance, have 46 

chromosomes per cell (SUDHOFF, 2021). In contrast, the number of chromosomes in artificial 

GAs is much lower and frequently consists of just one chromosome per individual (SUDHOFF, 

2021). 

In addition to having a basic understanding of DNA, chromosomes, and genes, one also 

needs to take into account sexual reproduction, especially the development of gametes (sperm 

and egg cells). Meiosis is the process by which gametes are created. The pairing of the 

chromosomes provided by the mother and father initiates meiosis. It is possible for the 

chromosome arms to switch places during this pairing process, creating a new chromosome 

with a mixture of genes from the mother and the father. The crossover point typically occurs 

between genes (SUDHOFF, 2021). All chromosomes are capable of multiple crossovers. 

Numerous additional genotypes of gametes can be produced as a result of the crossover. In fact, 

the number of genotypes that can be produced is related to the number of genes because of 

crossover. Consequently, crossover is crucial for achieving genetic diversity (SUDHOFF, 

2021). 

In addition to the diversity of gametes brought about by genetic crossover, mutation also 

results in additional diversity. Errors in the DNA copying process lead to mutation. It is usually 

for the worse when mutation has a noticeable effect. However, occasionally advantageous 

mutations take place that increase an individual's (and eventually a species') capacity for 

survival. 

The idea of natural selection and the survival of the fittest, which originated during 

Charles Darwin's travels, is the final biological concept that will serve our needs for an 

optimization engine (SUDHOFF, 2021). GAs directly employ the notion that only the 
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population's fittest members survive to reproduce. The individuals who "survive" and are 

inserted into a mating pool will be chosen using these algorithms, based on an explicit fitness 

function (SUDHOFF, 2021). 

 

2.4.3.5.2 The Canonical Genetic Algorithm 
 

In this section, the canonical GA, similar to Holland’s original vision, will be explained. 

The first concept that needs to be established in a GA is that it operates on a population, not an 

individual, just like evolution does (SUDHOFF, 2021). The population of the GA will be 

represented by the symbol P[k], where k is the generational number. There are many individuals 

in the kth generation, as shown below: 

  (15) 

 

Where 𝛉𝛉𝑖𝑖 is the genetic code for the 𝑖𝑖th individual in the 𝑘𝑘th generation of the population 

and 𝑁𝑁𝑝𝑝 represents the number of individuals in the population, which should be an even number. 

The 𝑖𝑖th individual’s genetic code may be structured as: 

 

 

((16) 

 

Where 𝑁𝑁𝑐𝑐  is the number of chromosomes, 𝑁𝑁𝑔𝑔  is the number of genes, and 𝛉𝛉𝑗𝑗
𝑖𝑖 is the 𝑗𝑗th 

gene of the 𝑖𝑖th individual, related to the 𝑘𝑘th generation. Every gene, in the canonical GA, is a 

binary string sequence. Thus, 𝛉𝛉𝑖𝑖 is represented by a binary number. It should be noted that many 

GAs only allow for the existence of one chromosome per individual, in which case genetic 

diversity is only produced through crossover and mutation (SUDHOFF, 2021).  
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A decoding function d is associated with the genetic code of the individuals, in order to 

translate the genetic code into a parameter vector (SUDHOFF, 2021): 

 
 

((17) 

 

Where 𝐱𝐱𝑖𝑖 is the parameter vector of the 𝑖𝑖th member of the population and is structured 
as 

 

 

((18) 

 

As can be seen, 𝐱𝐱𝑖𝑖 has one element for each gene, denoted with a subscript, but it is not 

divided into chromosomes (SUDHOFF, 2021). Based on the parameter vector of 𝑖𝑖th population 

member, the objective function 𝑓𝑓(𝐱𝐱𝑖𝑖) can be evaluated: 

 

 
 

((19) 

 

The objective function in a GA is referred to as a fitness function (SUDHOFF, 2021). It 

will be used to decide which members of the population will mate to create the following 

generation in the "survival of the fittest" sense. Fitness is viewed positively in the context of a 

GA, so it is assumed that we want to maximize the fitness function. Fortunately, converting 

between a function's maximization and minimization is a simple process (SUDHOFF, 2021). 

The canonical GA has a simple algorithm composed of three operators: selection, 

crossover and mutation (GOLDBERG, 1989). The fundamental aspects of a GA are illustrated 

in Figure 20. 

Figure 20 – Canonical Genetic Algorithm 
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Source: Adapted from Sudhoff (2021) 

Initialization 
 

Initialization, the first process in the GA, results in the initial population. Every 

individual's genetic code is given a random initialization (SUDHOFF, 2014). This yields an 

initial population of designs, designated P[1]. 

Fitness Evaluation 
 

The genes are then encoded, and the fitness of each population member is assessed 

(SUDHOFF, 2021). The fitness value is a measure of an individual's worth (SUDHOFF, 2014). 

An individual is typically more optimal when their fitness value is higher . 

Selection 

 
Based on the fitness, the selection process establishes a mating pool M[k]. In nature, the 

more adapted individuals have a higher chance of surviving and procreating. In order to 

simulate this scenario, the selection operator makes sure that individuals with higher fitness 

values have a higher likelihood of surviving and reproducing. The roulette wheel and 
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tournament selection algorithms are typically used to create a mating pool, among the many 

different selection techniques (SUDHOFF, 2014): 

a) Roulette wheel selection: It is one of the most widely used methods of selection 

(SUDHOFF, 2021). Let's assume that each individual has been evaluated and 

given a fitness value. Then, one can picture a roulette wheel with sections whose 

total number is equal to the total number of individuals and whose areas are 

proportional to the corresponding individual's fitness levels. After that, a 

chromosome is chosen and copied to the mating pool by turning the wheel. The 

mating pool is complete after several repetitions of this process. 

b) Tournament selection: According to the name, two or more individuals are 

randomly selected from the population, and the one who has the highest fitness 

value is chosen and reproduced in the mating pool. Compared to the roulette 

wheel method, this one is easier to implement (SUDHOFF, 2021). 

 
In order to create the children who will make up the following generation, P[k + 1], the 

individuals chosen from the population will mate. Genetic operators like crossover and 

mutation will then be used to create the offspring. 

Crossover 

The crossover operator simulates the reproduction of living organisms by transferring 

genes between chromosomes. New individuals created through crossover have traits inherited 

from both of their parents. Crossover is performed on the mating pool Mk and it can be of two 

types (SUDHOFF, 2014): 

a) Single-point crossover: in which a random crossover point is chosen, and after 

that point, the genes of the parents are switched; and 

b) Multiple-point crossover: where the parents' genes are switched in between a 

number of crossover points that are randomly selected. 

Mutation 

A mistake in copying the gene information leads to mutation in natural evolution. 

Similar to this, the process of mutation in GA involves changing a random subset of genes in 

chromosomes. Maintaining the population's diversity is the primary role of the mutation 

operator. In the canonical GA with binary representation, mutation operator acts by flipping the 

chosen bit value (SUDHOFF, 2014). 
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Following mutation, a stopping criterion is then checked. An easy way to do this is to 

check the generation number. When the stopping criterion is satisfied, the algorithm comes to 

an end by choosing the optimizer from the final population who is the most fit. 

 

2.4.3.5.3 Enhanced Real-Coded Genetic Algorithm 
 

 

Real-coded GAs are very similar to canonical GAs except that instead of each gene 

being represented as a binary string, each gene is represented by a real number (SUDHOFF, 

2021). Beyond the change of the way in which a gene is represented, there are many other 

algorithms that can be employed in real-coded GAs to achieve crossover and mutation 

(SUDHOFF, 2021). Additional genetic operators are also used in real-coded GAs, aiming to 

enhance the performance of the algorithm (SUDHOFF, 2021). These operators were introduced 

below and placed into the diagram of Figure 21, so that the relationships between them can be 

made clear and, consequently, an enhanced real-coded GA is well understood. 

Figure 21 - Enhanced real-coded genetic algorithm. 

 

Source: Adapted from Sudhoff (2021) 
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Scaling 

 
If there are only a few individuals with very high fitness values in the early stages of 

evolution, these powerful individuals will quickly dominate the entire population, which can 

result in convergence to some local optimum without thorough exploration of the search space. 

This is called as premature convergence. The evolution process slows down as the population 

approaches convergence, with the majority of individuals having similar fitness values. At this 

point, there is little competition among individuals. Scaling can be used to address these issues 

by preserving the proper evolution pressure throughout the evolution process (SUDHOFF, 

2014). 

In multi-objective optimization problems, where the objective functions have different 

scales, scaling is also helpful (SUDHOFF, 2014). Several different scaling methods are 

available and can be applied to the fitness values (SUDHOFF, 2014). As the first step in the 

scaling operation, the fitness values are scaled using a chosen method. After scaling, all 

negative fitness values are clipped to zero, and the fitness values in the multi-objective 

optimization are then scalarized using a normalized objective function weight vector 

(SUDHOFF, 2014). Finally, a penalty vector is applied and the scalarized fitness values are 

penalized to yield the aggregated fitness values that are used in the selection operation 

(SUDHOFF, 2014).  

 

Diversity Control 

 
There are multiple optimal solutions for some optimization problems. However, the 

solutions may converge to one optimal solution as a result of naive GA application (SUDHOFF, 

2014). Even when there is only one optimal solution, it is undesirable to have multiple solutions 

that all explore the same area of the solution space. As a result, a diversity control needs to be 

employed (SUDHOFF, 2014).  

In the diversity control algorithms, the underrepresented solutions are highlighted, and 

similar solutions are punished by lowering their fitness values (SUDHOFF, 2014). To maintain 

the diversity of the solutions, many algorithms are available (SUDHOFF, 2014). These 

algorithms determine each individual's fitness weight value, which is the fitness penalty vector 

that is used for generate an aggregated fitness in the scaling process. Individuals with a large 

number of close neighboring individuals are given a low fitness weight value, which lowers 
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their effective fitness, while those with a small number of neighbors are given a fitness weight 

value that is close to unity (thus, the fitness is less penalized).   

Either the parameter (or decision) space or the fitness function (or objective) space can 

be subject to the diversity control (SUDHOFF, 2014). 

 

Death 

 
Children replace the whole population in the canonical GA (SUDHOFF, 2014). 

However, in some GAs, a mating pool that is only a fraction of the size of the population is 

formed, giving rise to a population of offspring that is only a fraction of the size of the 

population (SUDHOFF, 2014). The children replace members of the existing population, 

creating a new population that includes the children as well as some individuals from the 

previous population. 

Then, it becomes necessary to choose which members of the current population will 

"die" to make room for the arrival of children maintaining the population size constant. The 

individuals who will be replaced can be chosen based on factors other than those used for 

selection, such as diversity (or, more specifically, a lack of it) or another property (SUDHOFF, 

2014). 

 

Migration 

 
Only when a multiple-region (or multiple-population) scheme is used does this operator 

function (SUDHOFF, 2014). The population is split into n distinct populations by increasing the 

number of regions, n, above one. These populations typically develop independently 

(SUDHOFF, 2014). Some of the individuals occasionally move from one region to another and 

are redistributed. 

 

Elitism 

 
Elitism serves as a measure to prevent the best individual from being damaged and lost 

through genetic operations. The simplest way to implement elitism is to transfer the best 
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member of the current population to the following one without using any genetic manipulations 

(SUDHOFF, 2014). Elitism ensures that the maximum fitness in the population will never 

decrease. 

 

Random (local) search 

 
By randomly mutating the best individual, random search is a method of exploring the 

area around the best individual in search of a better solution. It may shorten the time needed for 

the GA to reach the optimal solution (SUDHOFF, 2014).  

To create mutants, the best individual is randomly perturbed. The fitness of the created 

mutants are then assessed. If the best mutant has a higher fitness value than the current best 

individual, the current best individual is replaced by the best mutant. Otherwise, the original 

best individual is placed back to the population. 

Deterministic search 

 
When initialized close to the solution, many traditional optimization techniques are very 

effective. Although GAs are frequently very effective at approaching a global optimum, they 

might not always converge quickly from a good approximation of a solution to the exact 

solution (SUDHOFF, 2021). This suggests combining the two strategies, initializing a classical 

optimization method with the best member of the final population of a GA (SUDHOFF, 2021). 

The Nelder-Mead simplex method (CHONG & ZAK, 2008 apud SUDHOFF, 2021) is 

particularly appealing in this regard because it does not call for gradients or Hessians. 

Given the extensive use of optional operators, the algorithm shown in Figure 21 is 

probably more complex than is typical (SUDHOFF, 2021). Diversity control and scaling are 

not always required. If the population is entirely replaced by children, no separate death 

algorithm is required either. Random and deterministic search routines are frequently not used 

(SUDHOFF, 2021). On the other hand, elitism is a fairly important algorithm among the 

optional ones (SUDHOFF, 2021). 

Despite not being used as frequently as elitism, the migration operator has been shown 

to significantly affect performance (SUDHOFF, 2021). There are undoubtedly many different 

types of GA operators, and there are numerous books that discuss them. Several references   
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(ZBIGNIEW, 1999; GOLDBERG, 1989; 2002; OSYCZKA, 2002 apud SUDHOFF, 2021) for 

genetic operators can be found in the literature. The good news is that nearly all variations are 

effective optimizations: they differ mainly in their rates of convergence and likelihood of 

discovering global solutions (SUDHOFF, 2021). 

 

2.4.3.5.4 Genetic algorithms for multi-objective optimization 

 

            GAs are well suited for multi-objective optimization, and there are a large number of 

multi-objective genetic algorithms that have been developed over the years (SUDHOFF, 2021). 

The goal in all of these methods is to evolve the population so that it becomes a Pareto-optimal 

set. Some of the multi-objective GAs are listed below (SUDHOFF, 2014):  

• Vector Evaluated GA (Schaffer, 1984) 

• Non-Dominated Sorting GA – NSGA (Goldberg, 1989) 

• Vector-optimized ES ((Frank Kursawe, 1990) 

• Multiple objective GA (Fonseca & Fleming, 1993) 

• Weighted-Based GA (Hajela and Lin, 1993) 

• Niched-Pareto GA (Horn et al., 1994) 

• Random Weighted GA (Murata & Ishibuchi, 1995) 

• Distance-based Pareto GA (Osyczka & Kundu., 1995) 

• Strength Pareto EA (Zitzler & Thiele., 1998) 

• Elitist NSGA – NSGA-II (Deb et al., 2000) 

• Pareto-archived ES (Knowles & Corne., 2000) 

• Rudolph’s elitist MOEA (Rudolph, 2001) 

 

There are two main types of multi-objective GAs: non-elitist and elitist. 

 Elitist strategies are particularly effective because they explicitly identify and preserve, 

when possible, the nondominated individuals (SUDHOFF, 2021). Elitist strategies include the 

elitist nondominated sorting GA (NSGA-II), distance-based Pareto GA, and the strength Pareto 

GA (DEB, 2001 apud SUDHOFF, 2021). 

In fact, the studies  have demonstrated that the elitist NSGA (NSGA-II) finds more non-

dominated solutions in the obtained non-dominated front than the non-elitist NSGA for a 
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number of problems (DEB, 2001). This result is expected because an elitist algorithm should 

preserve and propagate more non-dominated solutions than its non-elitist counterpart. Better 

offspring are generated when there are more non-dominated solutions in the parent population. 

Furthermore, once a set of non-dominated solutions is identified, it is only possible to get rid of 

them if a better set is found.  

Observations made in many studies suggest that the use of elitist algorithms is also 

advantageous in the case of multi-objective optimization problems (ZITZLER, 1999 apud DEB, 

2001; SUDHOFF, 2021). Thus, in the present work, the focus was placed on the elitist GA.  

 

 

 

 

2.4.3.5.5 GOSET (MATLAB TOOTBOX)  
 

A GA optimization can be performed using different software and programming 

languages. Among the existing possibilities, the Genetic Optimization System Engineering 

Tool (GOSET) is one of the most attractive and accessible tools.  

GOSET is a MATLAB® based algorithm package for solving single- and multi-

objective optimization problems (SUDHOFF, 2014). It is a free software, thus, it can be 

redistributed and/or modified under the terms of the GNU Lesser General Public License as 

published by the Free Software Foundation, either version 3 of the License, or any later version 

(SUDHOFF, 2014). Besides, GOSET runs on MATLAB® without requiring the use of any 

other MATLAB toolboxes, although the MATLAB Paralleling Computing Toolbox can be 

used to enable GOSET to execute parallel computing (SUDHOFF, 2014). 

GOSET is a direct result of three research awards from the Office of Naval Research 

(ONR), which an organization within the United States Department of the Navy responsible for 

the science and technology programs of the U.S. Navy and Marine Corps (SUDHOFF, 2014). 

GOSET allows the user to become deeply involved in its algorithms and the parameters used 

in these algorithms. In other words, it gives the user a powerful tool for automating the 

engineering design process. The GOSET algorithm's execution involves a lot of information. 

In order to facilitate the organization of the information, GOSET stores it in the following the 

three data structures shown in Table 3:  
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Table 3 - Data structures of GOSET 

MATLAB 
Structure 

Name 
Contents 

P Population information: All the information related to the current 
population. 

GAP Genetic Algorithm Parameters: All the parameters about genetic operations. 

GAS 

Genetic Algorithm Statistics: The best fitness values, median fitness values, 
average fitness values, and best chromosomes over the generations are 
stored in GAS. Current generation number and the number of total objective 
function evaluations are also stored. 

Source: Sudhoff (2014) 

Its algorithm execution flow is depicted in Figure 22, which contains a short description 

of each step and the respective GOSET function names. As it can be seen from the images, 

various genetic operators act on the current population to generate a new one. Once the new 

population has been produced, the best fitness value, the average fitness value, and the gene 

values of the individuals are stored in the data structure named GAS. This task is referred to as 

post-processing. At the completion of the genetic operations, GOSET reports the information 

on the new population in the gene distribution plot and/or the Pareto plot. In the gene 

distribution plot, the normalized gene values of the individuals are plotted and also the best 

fitness value, the average fitness value, the average fitness value, and the worst fitness value 

over the generations are plotted. In the Pareto plot, the population is plotted in the objective 

function space. The Trim GA step is executed only in single objective optimization problem. 

This step utilizes the Nelder-Mead simplex algorithm and carries out an optimization to enhance 

the best solution after the evolution process is complete. The detailed descriptions of all 

operators present in GOSET can be found in SUDHOFF (2014).  
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Figure 22 - GOSET algorithm execution flow

 

Source: Sudhoff (2014) 
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GOSET was heavily employed during its development at a number of universities, 

companies, and laboratories to address many engineering issues, particularly those involving 

the design optimization of inductors, brushless dc motors, power supplies, and inverters, and 

those related to the parameter identification of synchronous machines, induction machines, gas 

turbines, etc. (SUDHOFF, 2014).  

In the literature, many research works have employed GOSET together with COMSOL, 

through the COMSOL LiveLink for MATLAB, to optimize different systems. Some of them 

are cited next.  

Subbiah and Laldin (2016) developed a framework consisting of a genetic algorithm 

coupled with the finite element method to perform the multi-objective optimization of an 

electromagnetic actuator design. The optimization framework was set forth with a MATLAB 

implementation of a GA, the Genetic Optimization System Engineering Tool (GOSET), used 

in conjunction with an FE model implemented in the COMSOL AC/DC module. Ten design 

parameters were selected aiming to achieve two objectives: minimizing the actuator volume 

and minimizing losses, with the constraint of producing a minimum electromagnetic force of 

2500 N. The GA was responsible to invoke a fitness function in MATLAB that computed 

objectives values and verified all the constraints. By using COMSOL LiveLink for MATLAB, 

this function transmitted geometry, material, and winding parameters to the COMSOL AC/DC 

module. The GA was initialized with 200 individuals and was run for 200 generations. The 

optimization process took approximately 30 hours on a computer containing 24 CPU cores, 

clocked at 2.5 GHz, and 128 GB RAM. A resulting family of designs containing approximately 

70 optimal choices was available for consideration based on system-level requirements. 

Adomanis et al. (2017) also implemented a multi-objective GA optimization, but with 

the goal of improving the design of a metasurface. As an example of a single-objective GA 

optimization performed with GOSET and COMSOL that can be found in the literature is the 

one developed by Pierrick et al. (2019). In this work, presented a method based on GOSET to 

design a high efficient klystron, operating in the X band, through the optimization of a bunching 

circuit and a multi-cell output cavity. 
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2.4.3.6 No Free Lunch Theorem 
 

When working with optimization and Evolutionary Algorithms, it is important to learn 

about the No Free Lunch (NFL) theorem, which was developed by Wolpert and Macready 

(1997) regarding the performance of optimization algorithms.  According to the NFL theorem, 

it is impossible to develop a general-purpose, universal optimization strategy; one strategy can 

only outperform another one if it is customized for the configuration of the particular problem 

being studied. In their work, Wolpert and Macready (2005) state that “any two optimization 

algorithms are equivalent when their performance is averaged across all possible problems”.  

The interpretation of the No Free Lunch theorem can be illustrated by Figure 23. 

Different problem types are represented on the horizontal axis, and we assume that they have 

been skillfully arranged so that those with similar properties are closer to one another. 

Concerning Figure 23, a few things should be mentioned (YU & GEN, 2010): 

1) The more we comprehend the optimization problem, the more customized a technique 

we can develop to address it and the better it will perform, but the less robust it will be 

to other problems. 

2) General purpose EAs are reliable methods when a blind or near blind search is 

performed, in most cases. 

3) If problem information could be incorporated into the encoding and decoding process, 

as well as into the EA operators, together with a problem-dependent local search 

method, the algorithm's performance would be enhanced (at the expense of decreased 

adaptability for other problems). 
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Figure 23 - One kind of interpretation of the No Free Lunch theorem 

 

Source: Yu & Gen (2010) 

 

2.4.3.7 Enhancements in Evolutionary Algorithms 
 

Although Evolutionary Algorithms are widely applicable to many fields, it delivers only 

marginal performance (YU & GEN, 2010; VIKHAR, 2016), as mentioned in the previous 

section. Therefore, current efforts are concentrated on applying some complementary 

algorithms to EA that may enhance its performance (YU & GEN, 2010). Hybridizing two or 

more algorithms or improving the ones that already exist is a current trend (YU & GEN, 2010).  

Table 4 shows some recent enhanced EAs along with their descriptions. 
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Table 4 - Enhancements in EAs 

No Enhanced EA  Description 

1 

Genetic Swarm 
Optimization (GSO)  
(CHAKRADEO et al., 
2014) 

Combines GA and PSO to 
solve electromagnetic problem 

2 
Hybrid PSO  
(CHAKRADEO et al., 
2014) 

It reduces probability of 
trapping local optima using 
Cauchy mutation for PSO 

3 
Self-adaptive differential 
evolution (SaDE)  
(SUN et al., 2012) 

It adaptively search for suitable 
strategy and associated 
parameter setting 

4 

Immune self-adaptive 
differential evolution 
(ISDE) 
(SUN et al., 2012) 

Scale and crossover factors of 
DE are adaptively modified by 
information process mechanism 
of 
biological immune system 

5 

Multi-objective 
Evolutionary algorithm 
(MOEAs)  
(LI et al., 2015; HE et al., 
2014) 

Extension to simple 
evolutionary multi-objective 
optimizer 

6 

Multi-objective 
Evolutionary algorithm 
based on decomposition 
(MOEA/D)  
(LIU et al., 2015) 

Based on simple evolutionary 
multi-objective optimizer and 
decomposition 

7 Dynamic multi-agent GA 
(LIU et al., 2015) 

Integrates dynamic multi-agent 
with Genetic algorithm 

8 

Multi-objective Particle 
Swarm Optimization 
(MOPSO)  
(ZENG & SUN, 2014) 

Given multi-objective functions 
to solve optimization problem 

 
Source: Vikhar (2016) 
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2.5 STATE OF THE ART  
 

In this section, the current state of the art regarding the numerical simulation and 

optimization of the cure of thick thermosets is presented. For the design of the curing process 

of thick parts, computational procedures, primarily based on numerical simulation (COSTA & 

SOUSA, 2003; MAWARDI & PITCHUMANI, 2003; CARLONE & PALAZZO, 2009 apud  

ALEKSENDRIĆ et al., 2016; PAIVA, 2018) and optimization (JAHROMI et al., 2012 apud 

ALEKSENDRIĆ et al., 2016; STRUZZIERO & SKORDOS, 2017; STRUZZIERO & 

TEUWEN, 2018; TIFKITSIS et al. (2018); DOLKUN et al., 2018; YUAN, 2021) have recently 

been proposed as an alternative to empiric approaches. The aforementioned studies highlighted 

some benefits offered by simulation-based optimization procedures due to the numerous 

potential solutions that could be investigated, regardless of the computational method used 

(ALEKSENDRIĆ et al. 2016).  

The goal here is to gather the most updated scientific knowledge and methods applied 

to this problem, as well as the respective results, to serve as the basis for the development and 

analysis of the present research work. The main aspects of the optimization that were observed 

were the following: the decision variables, the constraints, the objective(s), whether the 

optimization was single or multi-objective, and the types of algorithms used.  

The literature research focus was placed on cure simulation and optimization to address 

the demand for maximum product performance/quality at a minimum production cost/time. 

Simulation of the curing is a necessary step towards the optimization of thermosets and 

thermoset composites manufacturing. Therefore, several simulation tools have been created to 

address the curing process. The commercial FE software shows a great capacity in composites 

simulation, especially in coupled predictions of the cycle of cure, constantly providing reliable 

results (PAIVA, 2018). 

Although the majority of real-world problems involve multiple objectives, prior to the 

2000s, a significant portion of optimization research focused on a single objective (DEB, 2001). 

However, SO optimization does not address the challenges of the manufacturing process as a 

whole and its results do not consider the trade-offs between the variables involved, even though 

it is possible to restrict the outcomes of the objectives not specifically addressed by the 

optimization (STRUZZIERO et al., 2019). Because of this, recent research efforts have shifted 

from SO optimization to MO optimization. 
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A timeline of the significant events in the field of numerical optimization of composite 

curing is shown in Figure 24. The earliest works in the field focused on SO optimization 

problems, which were then followed by the simultaneous treatment of competitive objectives 

in a MO optimization framework (STRUZZIERO et al., 2019). The most recent trend involves 

taking variability into account in a stochastic modeling framework, which results in robust MO 

optimization (STRUZZIERO et al., 2019). 

 

Figure 24 - Time line depicting the milestones in numerical optimization of composite curing 

 

Source: Adapted from Struzziero et al. (2019) 

The optimization of the cure of thermoset composites has been addressed as a 

minimization problem for cost related objectives (such as cure time) and quality related 

objectives (e.g. temperature overshoot or residual stresses) (STRUZZIERO et al., 2019).  

SO optimization of thick components indicated that the use of a three dwell cure profile 

can reduce the process time in 60% when compared to a two dwell profile (LI et al., 2001 apud 

STRUZZIERO et al., 2019) In the process of curing, weighted objectives have been used in SO 

problems to take both quality- and cost-related objectives into account. Ruiz & Trochu (2005; 

2006) developed a weighted fitness function to take into account the shortest cure time, the 

greatest degree of final cure, and the fewest residual stresses. VAFAYAN et al. (2015) used a 

GA optimizer with a weighted fitness function taking into account cure time, temperature and 

cure gradients through the thickness to determine optimal cure cycle; and execution of the cure 

schedule found led to negligible temperature and degree of cure gradients through thickness. 

However, since prior understanding of the problem's requirements is necessary, SO 

optimization through the definition of weighted fitness functions is only applicable in certain 

circumstances. 

On the other hand, MO optimization releases the designer from the need for a priori 

process knowledge and offers a collection of optimal solutions that can be used in a variety of 

applications. Using a MO optimization method, Matsuzaki et al. (2019) minimized curing time 
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and degree of cure inhomogeneity, and also identified relevant trade-offs. Struzziero and 

Skordos (2012; 2017), as well as Struzziero and Teuwen (2018), carried out a MO optimization 

of the curing process, with GA, taking cure time and overshoot temperature as the objective 

variables, and obtained a Pareto-optimal set of cure schedules with significant improvements 

in both objectives. Compared to the other thermoset composite manufacturing steps, the concept 

of MO optimization for optimal cure process solutions is more well established (STRUZZIERO 

et al., 2019). 

Typical constraints for the cure optimization of thermoset composites are minimum 

degree of cure reached within the part at the end of the process and the maximum temperature 

permitted throughout the cure (STRUZZIERO et al., 2019). 

The implementation of a gradient based technique by Rai and Pitchumani (1997) to a 

cure optimization problem resulted in a 60% reduction in cure time. Kennedy and Hansen 

(2010) identified optimal parameters for curing of thermoset composite laminates to maximize 

material properties via gradient-based techniques and achieved improvements in the order of 

10–20%. 

Nevertheless, according to (STRUZZIERO et al., 2019), the use of zero order search 

methods (GA, for example) is required to avoid becoming trapped in local minima because the 

design search space of a cure process optimization contains multiple local minima. Pillai et al., 

(1994; 1996) apud STRUZZIERO et al. (2019) found a near optimal cure profile using a zero-

order search algorithm for thick composite laminates resulting in a roughly 40% process time 

reduction and a roughly 60% reduction in overshoot temperature, taking a recommended cure 

profile as a reference. 

It has been common practice to combine two different algorithms, such as a gradient-

based algorithm and a zero-order algorithm (STRUZZIERO et al., 2019). This is done to 

combine the best aspects of each method, such as the EA solution's global optimality and a 

gradient-based technique's quick convergence to local optimal points. To design the best cure 

profiles with the shortest process times, Carlone and Palazzo (2011), as well as Mawardi and 

Pitchumani (2003), investigated various combinations of zero order search algorithms.  

Pagano (2014), Skordos and Partridge (2004) applied GA and PSO to minimize the cure 

time and reduced its time by about 25% compared to standard cure schedules, whereas a GA 

combined with ANN implemented Aleksendrić et al. (2016) reduced the cure time by about 

40%. In order to minimize a weighted fitness function, which included cure time and uniformity 
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through the thickness, Pantelelis et al. (2003) compared gradient-based techniques and 

Evolutionary Strategies to identify the best cure cycles. The results showed that the hybrid 

algorithm produces better overall performance in terms of CPU time. 

 Furthermore, several works in literature tried to find the best cure profiles to reduce 

residual stress and/or temperature overshoot (STRUZZIERO et al., 2019). Investigations into 

the impact of various cure profiles on residual stress formation resulted in residual stress 

reductions of 25-30% (WHITE & HAHN, 1993). Gopal et al. (2000), Olivier and Cottu (1998) 

identified optimal cure profiles to minimize residual stresses using graphical methods and the 

sensitivity of process stresses to cycle parameters, achieving a reduction of approximately 30%. 

The minimization of residual stress was also addressed by Bailleul et al. (2003) and Jahromi et 

al. (2012), that configured SO problems using different gradient based techniques aimed to 

minimize the temperature gradients in the through thickness direction. A quasi-uniform 

temperature distribution through the thickness was achieved by successfully implementing 

those techniques. According to Struzziero et al. (2019), research efforts in the optimization of 

composites cure should move towards direct minimization of residual stresses. 

Yuan et al. (2021) optimized the cure process of thick composites using a multi-field 

coupled FE model, surrogate model and genetic algorithm. The non-dominated sorting genetic 

algorithm-II (NSGA-II) was combined with the surrogate model to search for global optimum 

solution. To reduce the computational cost, the radial basis function (RBF) surrogate model 

was developed to substitute the FE model in the optimization procedure. Their model took into 

account the interaction between heat transfer and resin flow during the cure. The polymer 

matrix composite studied was a carbon fiber-reinforced epoxy. The composite laminate was a 

plate 157.6 mm × 157.6 mm with a thickness of 35.76 mm. The design variables in the model 

were the first and second dwell temperatures, the first and second dwell time, and the first and 

second heating rates. The three optimization objectives of the work were to select the two-step 

cure profile that: minimize the cure time, minimize the gradient of temperature after gel point 

(AGP) and minimize the gradient of degree of cure AGP. The definition of gradient used in the 

referred work was the difference between the maximum and minimum values of a variable 

within the sample at a given time, regardless of the distance between the material points that 

possess those values. As constraints for the optimization, the minimum degree of cure in the 

final cured part was set as 0.96 in order to keep the desired mechanical properties and the 

maximum temperature inside the thermoset during the cure was limited to 220°C to avoid resin 

degradation and exceeding the capacity of the equipment. The parameters of the NSGA-II 
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algorithm are set as: population size 100, crossover fraction 0.9, section process tournament 

and stop generations 5000. To select the best solution from the Pareto-Optimal set, the authors 

used the TOPSIS method (Technique for Order Preference by Similarity to Ideal Situation), 

putting more emphasis on the reduction of the gradients of temperature and degree of cure AGP 

than on the reduction of cure time, with the following weight factors: 0.4, 0.4 and 0.2, 

respectively. The resulting optimal cure profile derived from the Pareto-optimal set reduced the 

maximum gradient of degree of cure by 16.88%, decreased the maximum gradient of 

temperature by 45.76%, and cut down the cure time by 30.9%. 

Tifkitsis et al. (2018) developed a stochastic multi-objective cure optimization 

methodology and applied to the case of thick flat carbon fibre/epoxy laminate. The thickness 

considered for the composite laminate was 15.6mm. A Finite Element (FE) model was applied 

for the cure simulation. The cure kinetics model applied to the resin system of study took into 

account the combination of the catalytic and autocatalytic processes. Kriging was used to 

construct a surrogate model of the cure substituting Finite Element (FE) simulation aiming to 

increase computational efficiency. The surrogate model was coupled with Monte Carlo and 

integrated into a stochastic multi-objective optimization framework based on Genetic 

Algorithms. The individual (or chromosome) was a two-dwell cure profile, whose genes 

(optimization variables) were the first dwell temperature, the second dwell temperature, the 

duration of the first dwell and the heating rate. Two optimization objectives were selected: 

minimize the cure time and minimize the maximum temperature overshoot. Cure time was 

defined as the time at which the minimum degree of cure of the part is greater than 88%. The 

temperature overshoot was defined as the maximum difference between the tool control 

temperature and the temperature in the composite during the process. The optimal cure profiles 

results were compared to the results of a standard one-dwell cure profile and a standard two-

dwell cure profile. The average temperature overshoot of a short dwell optimal profile was 

lower by about 40%. The same short dwell optimal profile resulted in an approximately 40% 

reduction of cure time in comparison with the standard two dwell profile and a slightly faster 

cure time than the standard one-dwell profile. 

Struzziero and Skordos (2017) addressed the multi-objective optimization of the cure 

stage of composites manufacture using a Genetic Algorithm implemented in C++. The 

methodology developed combined the GA with a finite element (FE) model of the cure process 

and was applied to the case of thick (24 mm) and ultra-thick (60 mm) characteristic composite 

component geometries. The materials utilized were a pseudo unidirectional carbon fabric and 
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an epoxy resin. Six test geometries in total were taken into account. A flat panel, an L-shape, 

and a T-joint were the components that were chosen with an increasing level of complexity. In 

the case of thick components, a two-dwell cure profile was considered and parameterized using 

four design parameters: the temperatures of the first and second dwell, the duration of the first 

dwell and the heating rate. In the case of ultrathick components, the complexity of the cure 

profile was increased by incorporating a third dwell, and the profile was parameterized using 

six parameters: the temperatures of the first, second and third dwell, the durations of the first 

and second dwell and the heating rate. The optimization objectives were to minimize the cure 

time and maximum temperature overshoot within the curing part. In the case of ultra-thick 

components, improvements of up to 70% in terms of overshoot and 14 h in terms of process 

time, compared to conventional cure profiles for ultra-thick components, can be achieved. In 

the case of thick components reduction up to 50% can be achieved in both temperature 

overshoot and process duration. The analysis did not take into account residual stress and 

distortion effects. 

Summarizing, residual stresses and the maximum temperature overshoot within the 

composite part have been addressed with regard to the cure stage as quality-related objectives 

to be minimized, while the cure time has been minimized to try to minimize manufacturing 

cost. In some cases, residual stresses have been indirectly addressed by the minimization of the 

gradients of temperature and/or degree of cure.  The maximum temperature overshoot within 

the part has been considered in some studies as an optimization constraint rather than an 

objective. Other common optimization constraint set was the minimum degree of cure reached 

within the part at the end of the process. As for the design decision variables, all the studies 

found in the literature intended to optimize the composite cure of batch processes, such as 

autoclave, considered the properties of the cure temperature profile as those variables. 

Therefore, the decision variables were the isothermal temperatures, the duration of the 

isotherms and sometimes the heating/cooling rates between the isotherms.   

The state of the art demonstrate that multi-objective optimization is one of the prevailing 

trends in composite manufacturing optimization. This is a logical progression from the research 

on single-objective optimization with constraints or the combination of multiple objectives in 

a weighted sum. The disadvantages of the latter strategy include hindering each objective's 

effectiveness, making it impossible to draw broad conclusions about each objective separately. 

By allowing two or more objectives to compete, using a pure multi-objective setting, liberates 

the designer from having to predict the benefits of the objective a priori. This competition 
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reveals the best trade-offs governing the problem. The process designer may have a wide range 

of design options to choose from if a MO optimization strategy is implemented. The Pareto-

optimal front contains the best design points for various end applications, from which one can 

choose based on risk preferences and the associated process cost/time versus quality 

prioritization. 

Furthermore, the complexity of the cure optimization problems drives the selection 

towards nature-inspired algorithms, especially GAs, which are capable of exploring a 

substantial part of the objective space without being stuck in local minima or maxima. 

Variability and robust optimization have also been studied, however this area still needs more 

research (STRUZZIERO et al., 2019). 
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3 METHODOLOGY 

 

Facing the need to optimize the curing process of thick thermosetting polymers and 

composites, this work investigated two different approaches: 

1. A conversion rate driven (CRD) strategy: which is a strategy based on the 

cure kinetics of the thermoset material that detects the instant when the average 

conversion rate of the sample reaches its maximum value and uses this data as a 

reference to reduce the total duration of the cure. This strategy was conceived 

by the authors of this work as a simple and fast way to find cure schedules that 

provide satisfactory results in terms of cure time. A similar study was not found 

in the literature. 

2. A multi-objective Genetic Algorithm (GA) optimization: which is a well-

established algorithm in the scientific community, being the most popular of the 

evolutionary algorithms (EAs). GA has been presented as a powerful solution to 

optimize manufacturing and curing processes of thermoset polymers taking into 

account the conflicting objectives that exist in this activity. 

Both CRD strategy and GA optimization were implemented in MATLAB®, because of 

two mains reasons: it is a widely used and consolidated software to solve engineering problems; 

and it is capable to communicate with the finite element software used for the simulation of the 

curing process, COMSOL Multiphysics®, through the module COMSOL LiveLink for 

MATLAB®. The details of the methodology used for the numerical simulation and curing 

optimization were described in the sections below. 

All simulations and optimizations were performed on an Intel® Core™ i5-8400 

Desktop at 2.80 GHz with 8.00 GB of RAM. 

After obtaining the results of the two approaches, CRD and GA, in order to evaluate the 

effectiveness of each method and its advantages and disadvantages, the solutions from both 

approaches were compared with each other and also with the generic cure schedule 

recommended by the thermoset manufacturer in the material datasheet. 

 

 



107 

3.1 NUMERICAL SIMULATION 
 

Numerical simulations of the curing process were performed based on the work 

conducted by Paiva (2018), who successfully implemented a thermochemical simulation model 

of the curing process of a thermoset polymer in the finite element software COMSOL 

Multiphysics ®, validating it with many experimental results. 

The simulation model of Paiva (2018) was generated from the replication of a model 

run on Abaqus FEA® provided by ENSTA Bretagne, while taking the studies of Rabearison 

(2009) and Rabearison et al. (2008; 2009) as a reference for the development of the cure 

investigation. 

The curing of the thermosetting polymer matrix was implemented in COMSOL® and 

the simulations were performed with the coupling between the thermal and chemical physics. 

COMSOL Multiphysics® was the FEA software selected due to its high specialization in these 

kind of couplings.  

 

3.1.1 Model geometry 

 

The geometry investigated numerically in this work is displayed in Figure 25. It is a 2D-

axissymetric geometry, corresponding to the thermoset resin system (in blue), cured in the 

cylindrical steel mold (in gray). The geometry of the resin system is a cylinder that has a 

diameter of 32 mm and a height of 60 mm, while the steel mold has an external diameter of 45 

mm and a total height of 79 mm, with a vertical depth of 65 mm. 
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Figure 25 – 2D-axissymeric geometry used in the COMSOL cure simulation numerical model 

 

Source: The author (2022) 

3.1.2 Materials and its properties  

 

The resin system studied in this work is a three-component anhydride-epoxy system 

from Ciba. The blend consists of: 

1) A bifunctional DGEBA-type epoxy (Araldite LY556, EEW=183-192 g/eq, n=0.3); 

2) A tetra-functional anhydride hardener (methyl-tetrahydrophthalic anhydride HY 917, 

anhydride equivalent weight = 166g/eq); and 

3) An accelerator (l-methyl imidazole DY 070). 

The components are mixed in LY 556/HY 917/DY 070 weight ratio of 100/90/2, 

resulting in a stoichiometric epoxy-anhydride mixture. This system has been used in several 

publications, which provides adequate data as simulation parameters. 

The variable epoxy material properties were established. Equations 20 to 28 give the 

specific heat capacity, thermal conductivity, and coefficient of thermal expansion as determined by 

the Rule of Mixtures (RABEARISON et al., 2009), as a function of properties for the uncured resin 

– 𝑐𝑐𝑝𝑝(0,𝑇𝑇) , 𝑘𝑘(0,𝑇𝑇) – and the fully cured resin – 𝑐𝑐𝑝𝑝(1,𝑇𝑇), 𝑘𝑘(1,𝑇𝑇). These properties are given in 

ANNEXES A and B. 

 𝒄𝒄𝒑𝒑(𝜶𝜶, 𝑻𝑻)  =  (𝟏𝟏 –  𝜶𝜶)𝒄𝒄𝒑𝒑(𝟎𝟎, 𝑻𝑻)  +  𝜶𝜶 𝒄𝒄𝒑𝒑(𝟏𝟏, 𝑻𝑻) [𝑱𝑱/(𝒈𝒈 °𝑪𝑪)] (20) 
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 𝒄𝒄𝒑𝒑(𝟎𝟎, 𝑻𝑻)  =  𝟏𝟏. 𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖 +  𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ∗ 𝑻𝑻[°𝑪𝑪] (21) 

 

𝒄𝒄𝒑𝒑(𝟏𝟏, 𝑻𝑻) =  𝟏𝟏. 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 +  𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ∗ 𝑻𝑻[°𝑪𝑪], 𝑻𝑻 

<  𝑻𝑻𝒈𝒈∞ 𝒐𝒐𝒐𝒐 𝒄𝒄𝒑𝒑(𝟏𝟏, 𝑻𝑻) =  𝒄𝒄𝒑𝒑(𝟎𝟎, 𝑻𝑻), 

𝑻𝑻 ≥  𝑻𝑻𝒈𝒈∞ 

(22) 

  𝒌𝒌(𝜶𝜶, 𝑻𝑻)  =  (𝟏𝟏 –  𝜶𝜶) 𝒌𝒌(𝟎𝟎)  +  𝜶𝜶 𝒌𝒌(𝟏𝟏, 𝑻𝑻) [𝑾𝑾/(𝒎𝒎 °𝑪𝑪)] (23) 

  𝒌𝒌(𝟎𝟎)  =  𝟎𝟎. 𝟏𝟏𝟏𝟏𝟏𝟏 (24) 

  𝒌𝒌(𝟏𝟏, 𝑻𝑻)  =  −𝟐𝟐. 𝟕𝟕𝟕𝟕𝟕𝟕 𝟏𝟏𝟏𝟏−𝟒𝟒 ∗ 𝑻𝑻[°𝑪𝑪]  +  𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑. 𝟓𝟓𝟓𝟓𝟓𝟓 ∗ 𝟏𝟏𝟏𝟏−𝟒𝟒 (25) 

  𝜶𝜶𝑻𝑻(𝜶𝜶, 𝑻𝑻)  =  (𝟏𝟏 –  𝜶𝜶)𝜶𝜶𝑻𝑻(𝟎𝟎, 𝑻𝑻)  +  𝜶𝜶 𝜶𝜶𝑻𝑻(𝟏𝟏, 𝑻𝑻) [𝟏𝟏/ °𝑪𝑪] (26) 

  𝜶𝜶𝑻𝑻(𝟎𝟎, 𝑻𝑻)  =  𝟓𝟓 ∗ 𝟏𝟏𝟏𝟏−𝟒𝟒 (27) 

  

𝜶𝜶𝑻𝑻(𝟏𝟏, 𝑻𝑻) =  𝟒𝟒𝟒𝟒𝟒𝟒 ∗ 𝟏𝟏𝟏𝟏−𝟔𝟔, 𝑻𝑻 <  𝑻𝑻𝒈𝒈  𝒐𝒐𝒐𝒐   

𝜶𝜶𝑻𝑻(𝟏𝟏, 𝑻𝑻)  =  𝟒𝟒𝟒𝟒𝟒𝟒 ∗ 𝟏𝟏𝟏𝟏−𝟔𝟔  +  𝟒𝟒. 𝟏𝟏 ∗ 𝟏𝟏𝟏𝟏−𝟔𝟔 ∗ (𝑻𝑻 –  𝑻𝑻𝒈𝒈),

𝑻𝑻 ≥  𝑻𝑻𝒈𝒈 

(28) 

 

The density varies less than 10% throughout the curing; therefore, it was considered 

constant and assuming the value of 1170.6 kg/m³ (PAIVA, 2018). The steel mold that the epoxy 

was placed in had a density of 7800 kg/m3,  and respective thermal conductivity and specific 

heat capacities at 293 K of 24 W/(m.K) and 460 J/(kg.K), and at 773 K of 29 W/(m.K) and 540 

J/(kg.K). 

The glass transition temperature of the system 𝑇𝑇𝑔𝑔 was modeled using DiBenedetto’s 

equation (Equation 7), based on the glass transition temperatures for the uncured resin 𝑇𝑇𝑔𝑔0 and 

fully cured resin 𝑇𝑇𝑔𝑔∞, and an adjustable parameter 𝜆𝜆, which can be found in Table 5. 
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Table 5 – Material properties related to glass transition 

𝑻𝑻𝑻𝑻𝑻𝑻 [°C] 𝑻𝑻𝑻𝑻∞ [°C] 𝝀𝝀 

-37 136 0.57 

Source: Rabearison et al. (2011) 

COMSOL interpolation, piecewise, and analytical functions were employed to add the 

variable parameters as input; no related programming language was required. 

3.1.3 Cure kinetics model 

The model used to describe the cure kinetics of the epoxy matrix was Kamal and 

Sourour’s phenomenological model Kamal (KAMAL & SOUROUR, 1973) extended by 

Fournier et al. (1996), Equation 5, which includes the phenomenon of diffusion, as explained 

in a previous section. COMSOL® module Domain ODEs and DAEs was used to implement 

the cure kinetics model. 

The cure kinetic parameters of the LY556 epoxy resin were identified by Rabearison et 

al. (2011), which were applied in the simulations and can be found in Table 6. 

Table 6 – Cure kinetic parameters 

𝑨𝑨𝟏𝟏 [1/s] 1339879.17 

𝑨𝑨𝟐𝟐 [1/s] 21042820.69 

𝑬𝑬𝟏𝟏 [kJ/mol] 69.14 

𝑬𝑬𝟐𝟐 [kJ/mol] 72.62 

𝒎𝒎 [-] 1 

𝒏𝒏 [-] 2 

𝜶𝜶𝒇𝒇 [-] 4.0646 10−3 𝑇𝑇[𝐾𝐾]  −  8.2434 10−1 

𝒃𝒃 [-] 7.1588 10−4 𝑇𝑇[𝐾𝐾]  −  2.2816 10−1 

Source: Rabearison et al. (2011) 
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Parameters 𝛼𝛼𝑓𝑓 and 𝑏𝑏 are limited to the temperature range 360 K to 420 K for which they 

were specified. Additionally, 𝛼𝛼𝑓𝑓 is unaffected by temperature changes above 448.8 K because 

a physical limitation prevents the degree of cure from going above 100%. The avoidance of a 

null value for b is another limitation, which is why b is kept constant below 319 K and prevents 

indeterminacy in 𝑓𝑓𝑑𝑑(𝛼𝛼). 

 

3.1.4 Heat transfer equation (thermo-chemical coupling) 

 

The heat transfer equation was modified to incorporate the equivalent heat flow 

produced by the exothermic curing reaction, bringing chemistry into the process (2). The 

resultant heat transfer equation, with temperature and degree of cure as dependent variables, is 

written as Equation (29): 

 ρ 𝒄𝒄𝒑𝒑
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 =  𝒅𝒅𝒅𝒅𝒅𝒅{𝒌𝒌[𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝑻𝑻]} +  𝒒𝒒 +  𝝆𝝆 𝜟𝜟𝜟𝜟𝒓𝒓
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 (29) 

 

COMSOL® module Heat Transfer was applied to include the heat transfer equation and 

the thermo-chemical coupling. 

 

3.1.5 Boundary conditions 

 

Two boundary conditions were added to the heat transfer module: the heat flow imposed 

by the oven and the heat flow generated by the exothermic cure reaction.  

The heat flow imposed by the oven (𝑞𝑞) was considered to be only convection due to the 

considerably larger dimensions of the oven in comparison to the epoxy sample. It is expressed 

by Equation 30 with previously calculated coefficient of convection ℎ (RABEARISON et al., 

2008) shown in Table 7, and oven temperature 𝑇𝑇𝑒𝑒 as: 

 𝒒𝒒 =  𝒉𝒉(𝑻𝑻 −  𝑻𝑻𝒆𝒆) ((30) 
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Table 7 - Variation of the coefficient of heat transfer by convection with temperature 

𝑻𝑻 [𝑲𝑲] 𝒉𝒉 [𝑾𝑾/(𝒎𝒎2𝑲𝑲)] 

300.779 147.0992149 

318.15 80.46560193 

353.15 48.69074624 

373.15 38.73839524 

423.15 26.45964679 

Source: Rabearison (2008) 

As to the heat flow from the chemical reaction, previous DSC experiments provided the 

total enthalpy of the complete reaction 𝐻𝐻𝑈𝑈 as 355 ± 25 J/g (RABEARISON, 2009). Considering 

𝐻𝐻𝑇𝑇 as the enthalpy of the reaction at a given temperature, the heat flow from curing was defined 

by Equations 31 or 32, depending on the temperature value being below or above the glass 

transition: 

 𝝆𝝆 𝑯𝑯𝑼𝑼
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 =  𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ∗ 𝟑𝟑𝟑𝟑𝟑𝟑 ∗
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

 , 𝑻𝑻 <  𝑻𝑻𝒈𝒈 (31) 

 
𝝆𝝆 𝑯𝑯𝑼𝑼  �

𝑯𝑯𝑻𝑻

𝑯𝑯𝑼𝑼
�

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

  =  𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ∗ 𝟑𝟑𝟑𝟑𝟑𝟑 ∗ (𝟎𝟎. 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ∗ 𝑻𝑻[𝑲𝑲] –  𝟎𝟎. 𝟏𝟏𝟏𝟏𝟏𝟏) ∗ 𝒅𝒅𝒅𝒅/𝒅𝒅𝒅𝒅 ,

𝑻𝑻 ≥  𝑻𝑻𝒈𝒈 
(32) 

 

3.1.6 Monitored variables for cure optimization 

 

In order to perform the cure optimizations, it was created in the COMSOL model, 

operators that computed the maximum, minimum and average value of the variables of interest. 

This was important because the thick resin system exhibits highly heterogeneous properties 

throughout the cure and, therefore, it is not possible to get the properties of some point of the 

resin matrix and consider them as representants of the whole sample behavior.  

The variables of interest for the cure optimization monitored in the domain of the resin 

sample were: degree of cure, temperature, conversion rate, gradient of degree of cure AGP and 

gradient of temperature AGP. The two last variables were defined in this work as the magnitude 

of the spatial gradients of degree of cure and temperature AGP, respectively. After the 

application of the operators, the most important variables for the correct implementation of the 
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CRD strategy and GA optimization are the ones explained below, because they are either to the 

objectives or to the restrictions of the algorithms: 

1) Minimum degree of cure reached by the sample at the end of cure: this value 

must reach the degree of cure required by the application (CRD and GA 

optimization restriction); 

2) Maximum value throughout the cure of the volume average conversion 

rate: this value and the time it occurs are the most important parameters for the 

CRD strategy, because they determine the duration of the first temperature 

plateau of the resulting cure schedule, reducing the total cure time, as explained 

in a previous section (CRD objective); 

3) Maximum temperature reached by the sample throughout the cure:  this 

value cannot exceed the material thermal degradation (CRD and GA 

optimization restriction); 

4) Maximum gradient of degree of conversion reached by the sample AGP:  

this value must be minimized in order to avoid residual stress within the matrix 

and related problems (GA optimization objective). To ignore the gradients of 

degree of cure achieved before the gel point, a variable was created in COMSOL, 

using a condition in its expression that sets the variable value to zero if the gel 

point has not been reached, and, otherwise, copies the value of a variable that 

stores the gradient of degree of conversion. Then, the maximum gradient was 

computed from this new variable. 

5) Maximum gradient of temperature reached by the sample AGP:  this value 

must be minimized in order to avoid residual stress within the matrix and related 

problems (GA optimization objective). The same procedure executed to ignore 

the gradients of degree of cure achieved before the gel point was performed to 

ignore the gradients of temperature before gel point. That is, a variable was 

created in COMSOL, using a condition in its expression that sets the variable 

value to zero if the gel point has not been reached, and, otherwise, copies the 

value of a variable that stores the gradient of degree of temperature. Then, the 

maximum gradient was computed from this new variable. 

The computation of the five variables listed above were performed on the epoxy domain, 

excluding a 3-mm-height cylindrical slice from the top, rather than in the whole epoxy domain, 

as shown in Figure 26. 
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Figure 26 – Region of the epoxy domain considered for computation of the optimization variables (in 

blue) 

 

Source: The author (2022) 
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Figure 27 – Numerical singularity when computing the gradient of the degree of cure within the epoxy 

  

Source: The author (2022) 

 

Figure 28 - Numerical singularity when computing the gradient of the temperature within the epoxy 

  

Source: The author (2022) 

 

. In this figure, the blue region is the epoxy domain considered for the computations. 

This has been done due to a numerical singularity found on the upper right point of the epoxy 

2D-axissymetric geometry, as displayed by Figure 27 and Figure 28, which resulted in 

convergence problems when computing the maximum gradients of degree of cure and 
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temperature on the whole epoxy domain. It was found that this singularity is related to the 

boundary condition of convection, because it disappears when simulating the same cure process 

with a solid cover right on top of the epoxy. By removing the singularity region, mesh 

convergence for the five variables was achieved. 

 

Figure 26 – Region of the epoxy domain considered for computation of the optimization variables (in blue) 

 

Source: The author (2022) 
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Figure 27 – Numerical singularity when computing the gradient of the degree of cure within the epoxy 

  

Source: The author (2022) 

 

Figure 28 - Numerical singularity when computing the gradient of the temperature within the epoxy 

  

Source: The author (2022) 
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3.1.7 Mesh selection  

 

In COMSOL, different physics interfaces can use different sets of shape functions. That 

is, each physics interface has its own unique discretization settings that govern what order 

shape functions are using for those dependent variables.  

For the present study, both modules employed in the cure simulation model 

(COMSOL® modules Heat Transfer and Domain ODEs and DAEs) used second-order 

(quadratic) Lagrange elements as their default shape functions. 

To gain trust in the results of the FE cure simulation model, the FE mesh was carefully 

analyzed through a mesh convergence study. The strategy used for the convergence study was 

the refinement by reducing the size of the elements, which is a simple and effective approach. 

The steps taken in the mesh convergence study were the following: 

1) Ran the model with successively finer and finer meshes, using five element sizes 
predefined by COMSOL, which are called Normal, Fine, Finer, Extra Fine and 
Extremely fine, written here in the increasing order of refinement. 

2) Compared the results between these different meshes. The results compared were the 
values obtained for the five variables of interest of the CRD strategy and GA cure 
optimization listed in Section 3.1.6. 

3) Computed the differences between the normalized values of the variables; 

4) Selected the mesh size that respected the error tolerance of 1.5% in relation to the 
next most refined size for all the variables. 

The steps above were executed for three different element shape configurations: 

triangular elements in the whole geometry; quadrilateral elements in the whole geometry; and 

a combination of triangular elements (in the mold) and quadrilateral elements (in the resin). 

Considering the error tolerance and the simulation times, the best mesh configuration obtained 

and adopted for all cure simulations of the present work was: triangular elements in the whole 

geometry with Extra Fine mesh size, which resulted in 1781 elements, shown in Figure 29. As 

the shape function selected was quadratic, every mesh element contains 6 nodes. The results of 

the mesh convergence study performed with triangular elements can be found in the 

APPENDIX A. 

 

 

https://www.comsol.com/support/knowledgebase/1270In
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Figure 29 – Mesh selected for the cure simulations 

 
 

Source: The author (2022) 

3.1.8 Timestep refinement 

 

COMSOL Multiphysics are by default solved with an adaptive timestepping approach. 

This means that the software will automatically modify the timestep size to maintain the 

required relative tolerance. The default setting for this is “physics controlled”, but it was 

changed to “user controlled” and then lower relative tolerances were manually informed to 

perform the timestep refinement. Lowering the relative tolerance to smaller numbers results in 

smaller timesteps, which increases solution accuracy, and solving time. This was done using 

the triangular Extra Fine mesh selected in the previous step.  

Through the timestep refinement study, the relative tolerance selected was 0.0001, 

which resulted in solutions with tolerable errors (below 1.5%) when compared to the solutions 

of a model with a maximum time step constraint of 1 s (which is extremely fine). 
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3.2 OPTIMIZATION APPROACHES 

 

As stated previously, aiming to optimize the cure process of thick thermosets, this 

research work implemented two different approaches: the conversion rate driven (CRD) 

strategy and the multi-objective genetic algorithm (GA) optimization, following that order. 

Those approaches were investigated because they possess different characteristics and, 

therefore, each of them promised to have benefits over the other according to the application 

needs.  

The common features selected for the two approaches are the following:  

• Two-step cure schedule: both approaches search for a two-step cure schedule, 

as the one in Figure 30, with two plateaus at given temperatures CT1 and CT2. 

This type of schedule was chosen because it is the standard cure cycle for 

thermoset resin composites; 

• Constant heating rate: the heating rate from room temperature to CT1 and from 

CT1 to CT2 is fixed at 3°C/min for all cure schedules tested, as this rate is 

commonly used in the industry and higher values are difficult to achieve due to 

equipment capacity restrictions. 

• Restrictions for the minimum degree of cure at the end and maximum 

temperature reached by the sample throughout the cure: All the cure 

schedules tested must meet two conditions to be considered a potential solution. 

The first one is that the whole thermoset must achieve the degree of conversion 

required by the application at the end of the cure process, since many properties 

of the material depend on this variable. As explained previously, it is not viable 

to reach 100% of cure as it would take too long to accomplish that due to 

mobility restrictions of the highly crosslinked polymers. Therefore, the 

application will dictate the minimum degree of cure that is acceptable, 

considering both material properties and manufacturing time. The second 

condition is that the maximum temperature reached by the sample during the 

cure cannot exceed the material degradation temperature (155°C), that is, it 

cannot be thermally degraded. Therefore, those two conditions were inserted 

into the COMSOL cure models employed in both strategies, CRD and GA, as 

stop conditions for the studies. When the simulation stopped because of thermal 

degradation, the study was dismissed. The opposite happens with the other stop 
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condition: when the minimum degree of cure is reached by the whole sample, 

the simulation study is stopped and saved as a viable solution for the problem.  

  

 

Figure 30 – Two-step cure schedule used for the CRD and GA approaches, with its parameters of temperature 
and time 

                   

Source: The author (2022) 

 

While the CRD strategy has a single objective, which is to minimize the cure time, the 

GA optimization aims to optimize three different objectives: (1) minimize the cure time; (2) 

minimize the maximum gradient of degree of cure reached by the material After Gel Point 

(AGP); and (3) minimize the maximum gradient of temperature AGP. The first GA objective 

is the same as the CRD strategy objective and is related to the increasing need to design fast 

manufacturing processes for thermosets and thermoset composites that meet the high demand 

for these materials in a multitude of applications. The last two GA objectives are associated to 

the quality of the cured product. It is widely acknowledged by the scientific community that 

high gradients of degree of cure and temperature within the thermoset material after the gel 

point results in a product with residual stresses and related problems, such as cracking, 

deformations, composite delamination and fiber ondulations (in the case of fiber-reinforced 

composites). Since no stresses are built up before gelation, the residual stress starts when the 
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degree of cure reaches 55% for the present resin system. Therefore, those intense gradients must 

be avoided once this point is reached. 

There is clearly a trade-off between GA objectives 1 and 2, and between objectives 1 

and 3. This is because when we increase the cure rate (and decrease the cure time) the intense 

thermal energy released by the exothermic cross-linking reaction has less time to be conducted 

out of the thick thermal insulating sample, which is in a rubbery or glass state after the gel point. 

As a result, high gradients of temperature and degree of cure arise inside of the material, with 

the highest temperatures and degree of conversion appearing in the central region of the 

specimen. As demonstrated through the literature review, multi-objective GA can successfully 

handle problems with this kind of conflicting goals, such as the trade-off between 

manufacturing time and product quality.  

On the other hand, in cases that the most important concern is to minimize the cure time 

through fast simulations, the CRD strategy can be more appropriate then the GA algorithm. 

This is because the CRD algorithm is based on a simple concept of the cure kinetics and does 

not require the simulation of hundreds of different cure schedules to find good results, as is the 

case for the GA. 

Having in mind that the CRD strategy has the benefit of being simple and fast, while 

the multi-objective GA has the advantage of considering the trade-off between different 

objectives, both strategies were implemented in MATLAB, connected to the same COMSOL 

cure simulation model. The use of the same COMSOL model allowed the authors to effectively 

compare the solutions provided from the two strategies in terms of the variables of interest, 

which are the following: 

• Cure schedule: CT1, CT2, time in CT1, time in CT2; 

• Constrained variables: maximum temperature reached during the cure, 

minimum degree of cure achieved at the end of the cure process; 

• Objective variables: cure time, maximum gradient of degree of cure AGP and 

maximum gradient of temperature AGP. 

Before executing the CRD strategy and the GA optimization, a cure schedule 

recommended by the manufacturer in the material’s datasheet was simulated with the COMSOL 

model and the results obtained for the objective variables listed above were taken as a reference 

to judge the efficacy of the algorithms in finding optimal solutions. The manufacturer’s 

recommended cure schedule (MRC) selected was a two-step cure cycle with CT1 = 80°C, CT2 
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= 140°C, time in CT1 = 4h and time in CT2 = 8h. The heating ramp adopted was, in accordance 

with the other cure simulations, 3°C/min. 

As explained previously, the minimum degree of cure required for the sample depends 

on its application. In this research work, for the sake of evaluating the performance of the CRD 

strategy and GA optimization and being able to compare theirs results with the MRC, the 

minimum degree of cure required at the end of all cure schedules was set as the same degree of 

conversion provided by the MRC schedule, which was 85.4%. A detailed explanation of the 

CRD strategy and GA optimization is provided below.  

 

3.2.1 Conversion Rate Driven strategy  

 

The conversion rate-driven (CRD) strategy was designed in this research work with the 

objective of minimizing the cure time of thick thermosets, while making sure that the cured 

component achieves the minimum degree of cure required and is not thermally degraded. The 

implementation of this strategy was possible due to the numerical simulation of the cure 

process, which allows monitoring easily the evolution of many time-dependent variables of the 

curing, including the average conversion rate within the sample studied. Figure 31 shows the 

moment when the average conversion rate of the studied sample reaches its maximum value if 

cured for 2h at 80°C after a 20-min heating ramp of 3°C/min from room temperature.  
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Figure 31 – Average conversion rate of a sample cured at 80°C for 2h with an initial heating rate of 3°C/min and 
the time when this variable reaches its maximum value 

 

Source: The author (2022) 

The leading idea of the strategy is to simulate the cure of a thermoset resin at a given 

temperature plateau (CT1) for some hours, as in Figure 31, and detect the time when the average 

conversion rate of the specimen reaches its maximum value, in order to set it as the time when 

the external temperature starts to increase from the first plateau (CT1) to the second one (CT2). 

That is, the CRD strategy defines the duration of the first temperature plateau (t_CT1) in a way 

that avoids wasting time on it once the conversion rate begins to decrease. For the case of Figure 

31, following the CRD procedure, the first temperature plateau should end at 4380 s (73 min) 

and the second heating ramp should start towards CT2. This would result in a first temperature 

plateau of 53 min. 

The duration of the second temperature plateau (t_CT2) is defined as the time when all 

points of the specimen reaches at least the minimum degree of cure required by the application. 

As an initial configuration, t_CT1 and t_CT2 were set as equal to 2 hours and 4 hours, 

respectively. However, the COMSOL model automatically stops the simulation study if one of 

the two conditions are met: (1) if the whole sample reaches the minimum required degree of 

cure or (2) if the degradation temperature is reached anywhere within the sample. This 

contributes to have short simulation times, as we do not need to wait until the end of the 

simulation if the sample is cured enough or if it is thermally degraded.  
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At first, the CRD was implemented directly in COMSOL, without the use of any 

additional software or script to automatize the procedure. Once the method was successfully 

completed in this way, aiming to be able to perform several different cure schedules for many 

combinations of CT1 and CT2 with the CRD strategy in an efficient mode, the strategy was 

completely automated by the development of a MATLAB script that runs in a loop. This 

automation allows the investigation of the behavior of a great number of cure schedules 

provided by the CRD results and select the best one for the objective of reducing the cure time. 

The125evelopped MATLAB script configures and runs the COMSOL cure simulation 

model through the module COMSOL LiveLink for MATLAB®. The input parameters of the 

CRD strategy script and the values set for them are presented in Table 8. The cure schedules 

simulated with the strategy corresponds to the combinations of the temperatures CT1 and CT2 

informed in vectors. The vector CT1 contains 16 temperatures and the vector CT2 has 3 

temperatures. Thus, the total number of cure schedules simulated were 48. From a previous 

work (PAIVA, 2018), it was known that the sample would be thermally degraded if cured at 

CT1 = 100°C, that is why the upper limit for CT1 without thermally damaging the specimen 

was supposed to be around 95°C. The lower limit was set as 80°C to match the manufacturer’s 

recommendation. The same idea was applied to CT2: the lower limit was defined as the 

temperature recommended by the manufacturer (140°C) and the upper limit was set as 150°C 

to avoid the thermal degradation that occurs at 155°C. A higher number of temperatures was 

set for CT1, when compared to CT2, because the CRD strategy acts mostly on the first 

temperature plateau and the main intention of running those simulations in mass was to 

investigate the behavior of the algorithm, in addition to finding the cure schedule that minimizes 

the cure time.  

Table 8 – Input parameters of the CRD strategy script and the values set for them 

PARAMET
ER NAME 

PARAMETER 
DESCRIPTION 

VALUE UNIT 

CT1 Vector of temperatures for the 
first plateau 

[80;81;82;83;84;85;86;87;88;
89;90;91;92;93;94;95] 

[°C] 

CT2 Vector of temperatures for the 
second plateau 

[140;145;150] [°C] 

r Heating rate for both ramps: 
from room temperature to CT1 
and from CT1 to CT2 

3 [°C/mi
n] 
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t_CT1_0 Duration of the first temperature 
plateau in the first cure 
simulation, through which the 
time when the average 
conversion rate reaches its 
maximum value is detected 

2 [h] 

t_CT2_0 Maximum duration of the second 
temperature plateau 

4 [h] 

T_degrad Material degradation 
temperature 

155 [°C] 

alpha_min_re
q 

Minimum degree of cure 
required at the end of the cure 

0.854 [1] 

Source: The author (2022) 

 

 The complete MATLAB script developed for the CRD strategy can be found in 

APPENDIX B. The steps taken by the algorithm for a given combination of CT1 and CT2, 

considering that the thermal degradation does not occur, are roughly summarized below: 

1. Initialize the plateau temperatures (CT1 and CT2) and the heating rate I; 

2. Computes the duration of the heating ramps from room temperature to CT1 
(t_ramp1) and from CT1 to CT2 (t_ramp2); 

3. Simulate the cure of the sample with the following cure schedule: heating ramp 
from room temperature (20°C) to CT1 at the rate r + temperature plateau at CT1 for 
the time t_CT1_0; 

4. Detect the time when the average conversion rate reaches its maximum value; 

5. Set that time as the end of the first temperature plateau; 

6. Computes the duration of the first temperature plateau (t_CT1), subtracting the time 
in the first heating ramp (t_ramp1); 

7. Simulate the cure with a new schedule: heating ramp from room temperature (20°C) 
to CT1 at the rate r + temperature plateau at CT1 for the time t_CT1 + heating ramp 
from CT1 to CT2 at the rate r + temperature plateau at CT2 for the time t_CT2_0; 

8. Get the minimum degree of cure within the sample at the end of the cure and the 
maximum temperature reached by the sample throughout the cure; 

If the material is cured enough and not thermally degraded: 

9. Store the time of the end of the simulation as the cure time; 

10. Compute the duration of the second temperature plateau (t_CT2), subtracting 
t_ramp1, t_CT1 and t_ramp2 from the cure time; 
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11. Get the maximum gradients of degree of cure and temperature reached by the 
sample AGP; 

12. Print the results on the screen; 

13. Saves COMSOL model. 

 

For each cure schedule simulated, the computed values are stored by the script in a 

MATLAB structure named CRD, whose variables are listed in Table 9. Once the CRD strategy 

run was completed for the 48 cure schedules, the data of the structure was exported to an Excel 

spreadsheet in order to perform the results analysis. After each cure schedule simulation, the 

CRD script was programmed to save the COMSOL model as well, so that the model results 

could be further analyzed in the FEM software.  

 

Table 9 – Fields of the MATLAB structure named CRD that stores the output of the simulations performed with 
the CRD strategy 

STRUCTURE FIELD FIELD DESCRIPTION UNIT 

CT1 Temperature of the first plateau [°C] 

CT2 Temperature of the second plateau [°C] 

t_CT1 Time in CT1 [s] 

t_CT2 Time in CT2 [s] 

t_CT1_min Time in CT1 [min] 

t_CT2_min Time in CT2 [min] 

t_ramp1 Time in the first heating ramp [min] 

t_ramp2 Time in the second heating ramp [min] 

T_max Maximum temperature reached by the sample 
throughout the cure [°C] 

max_alphat Historical maximum of the volume average 
conversion rate [1/s] 

t_max_alphat Time when the volume average conversion rate 
reaches its maximum [s] 

last_min_alpha Volume minimum degree of cure at the end of the 
cure [1] 

t_cure Cure time [s] 

t_cure_min Cure time [min] 

max_grad_alpha_AGP Maximum gradient of degree of cure AGP [1/mm] 
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max_grad_T_AGP Maximum gradient of temperature AGP [°C/mm] 

S_min_alpha Flag for the stop condition 1: sample cured enough [1] 

t_min_alpha Time when the stop condition 1 is met [s] 

S_critic_T Flag for the stop condition 2: thermal degradation [1] 

t_critic_T Time when the stop condition 2 is met [s] 

t_cure_sim Cure time computed by the simulation (without 
rounding to integer) [s] 

Source: The author (2022) 

 

3.2.2 Genetic Algorithm optimization 

 

As explained before, a genetic algorithm is a specific type of evolutionary algorithm, 

which evolves primal solutions (“individuals”) into refined ones. It accomplishes this by 

choosing the solutions that are the most “fit” and changing their parameters to create brand-

new, perhaps better solutions. 

For the present optimization work, the “individual” is a two-step cure schedule as the 

one in Figure 30, which contains three “genes”: the plateau temperatures CT1 and CT2 and the 

time in CT1. The time in CT2 was not included in the GA as a “gene” because it is not a 

parameter to be optimized, once its value is fully determined by the time when the whole sample 

reaches the minimum degree of cure required. 

The multi-objective genetic algorithm was executed in MATLAB using the Genetic 

Optimization System Engineering Tool (GOSET) version 2.6 in conjunction with the 

previously described COMSOL cure simulation model. GOSET toolbox was chosen because it 

is a reliable free resource, trusted by the scientific community, that can be easily customized 

and applied in many problems. While GOSET was responsible for running the genetic 

algorithm operators that it contains in its library, it was left for the authors’ of this research 

work to: 

• Find the GA parameters that result in an effective multi-objective optimization. 

That is, find the GA parameters that lead to a diverse set of solutions, close to a 

Pareto-Optimal Front; 
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• Implement a MATLAB script that initialize the GOSET with the GA 

parameters, plot the solutions, and calls GOSET main optimization function, 

passing a fitness function handle as an argument; 

• Implement a MATLAB fitness function, to compute the fitness of every cure 

schedule and check all the constraints, by executing the cure simulations in 

COMSOL through the COMSOL LiveLink for MATLAB and extracting the 

results of the variables of interest; and 

• Invoke MATLAB’s Parallel Processing Toolbox to use multiple cores to 

calculate the fitness of the population. 

 

From the CRD strategy results, it was verified that the sample was thermally degraded 

for temperatures above 94° in the first plateau. Therefore, this temperature was configured as 

the upper limit for CT1 in the GA optimization. Besides, the minimum duration of the first 

plateau (t_CT1) provided by the CRD strategy, without thermally damaging the sample, was 

32 min. In the hope of finding shorter cure times, with shorter temperature plateaus, the lower 

limit for the duration of CT1 was set as 10 min. The lower limits for CT1 and CT2 and the 

upper limit for CT2 were defined as equal to the parameters of the manufacturer’s 

recommended cure schedule, while the upper limit for CT2 was set as 150°C, resulting in search 

spaces for the temperature plateaus that were almost the same of the CRD strategy, only 

excluding CT1 = 95°C. The full ranges configured by the three “genes” of the GA are presented 

in Table 10. The GA searches cure schedules whose genes have integer values within those 

ranges.  

 

Table 10 – Lower and upper limits configured for the GA “genes” 

Gene Lower 
limit 

Upper 
limit Unit 

CT1 80 94 [°C] 

CT2 140 150 [°C] 

Time in 
CT1 10 240 [min] 

Source: The author (2022) 

A parameter tuning of the standard GA configured in GOSET was conducted by trial-

and-error. After performing many GA optimization runs, changing the number of generations, 
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individuals per gelation and some of the GA operators, a configuration that resulted in a diverse 

set of solutions for the Pareto-Optimal Front was obtained with 20 generations having 50 

individuals/generation. That number of generations and individuals have also been considered 

satisfactory by other author’s in the literature for different applications (GOLDBERG, 1989; 

DOLKUN et al., 2018). All the values selected as the GA parameters were stored in the GOSET 

structure named GAP, whose fields are shown in Table 11. Parameters that are not present in 

this table were set with the default GOSET value. The resulting GA was an elitist GA. Detailed 

explanations on the GA parameters used by GOSET can be found in its documentation 

(SUDHOFF, 2014).  

Table 11 – Genetic Algorithm parameters and the values set for them in the GOSET Structure named GAP 

GENETIC ALGORITHM 
PARAMETER 

GOSET 
VARIABLE 

(STRUCTURE 
FIELD) 

PARAMETER 
VALUE 

No. of generations to evolve GAP.fp_ngen 20 

No. of chromosomes in initial 
population GAP.fp_ipop 50 

No. of chromosome in the population GAP.fp_npop 50 

No. of objective functions GAP.fp_nobj 3 

Objective to optimize GAP.fp_obj 0 (Multi-objective 
optimization) 

Diversity control algorithm GAP.dc_alg 3 

Diversity control space GAP.dc_spc 1 (Parameter space) 

Scaling algorithm GAP.sc_alg 1 

Selection algorithm GAP.sl_alg 1 (Roulette wheel 
selection) 

Death algorithm GAP.dt_alg 3 (Tournament on 
fitness) 

No. of individuals used in a death 
tournament  GAP.dt_nts 4 

Percentage of pop. Replaced by children GAP.mc_pp 0.6 

Fraction of chromosomes involved in 
crossover GAP.mc_fc 1 

Crossover algorithm GAP.mc_alg 6 (Random 
algorithms) 
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No. of gen. btw changing Algs for 
random crossover Alg GAP.mc_gac 3 

Probability of a total gene mutation GAP.mt_ptgm - 

Initial value of GAP.mt_ptgm GAP.mt_ptgm0 0.01 

Final value of GAP.mt_ptgm GAP.mt_ptgmf 0.001 

Gene repair algorithm GAP.gr_alg Hard limiting (1) 

No. of geographic regions the 
population is distributed GAP.mg_nreg 1 

Time between migrations in generations GAP.mg_tmig 5 

Probability of an individual to migrate GAP.mg_pmig 0.1 

Use parallel processing GAP.ev_pp true 

Number of cores being used GAP.ev_npg 6 

Fraction of pop. Protected as elite for 
multi-objective optimization GAP.el_fpe - 

Initial value of GAP.el_fpe GAP.el_fpe0 0.2 

Final value of GAP.el_fpe GAP.el_fpef 0.8 

Fraction of generations on which to 
execute the algorithm GAP.rs_fea 0.5 

Generation between reports GAP.rp_gbr 1 

List of objectives to make objective 
plots for GAP.op_list [1,2,3] (3 objectives) 

Style for each objective GAP.op_style [1 1 1] (linear) 

Sign of fitness for each objective GAP.op_sign [-1 -1 -1] (negative) 

List of 2 or 3 objectives to be used in 
Pareto plot [ ]/[ GAP.pp_list 

[1,2] -> (Pareto Plot 
1); [2, 3] -> (Pareto 

Plot 2); [1,3] -> 
(Pareto Plot 3) 

x-axis label GAP.pp_xl 

Curing time (s)’ -> 
(Pareto Plot 1) ; 

‘Curing time (s)’ -> 
(Pareto Plot 2) ; 

‘Max. gradient of 
degree of cure AGP 
(1/mm) -> (Pareto 

Plot 3) 
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y-axis label GAP.pp_yl 

Max. gradient of 
degree of cure AGP 
(1/mm)’ -> (Pareto 

Plot 1) ; ‘Max. 
gradient of 

temperature AGP 
(°C/mm)’ -> (Pareto 

Plot 2) ; ‘Max. 
gradient of 

temperature AGP 
(°C/mm)’ -> (Pareto 

Plot 3) 

Style for each objective GAP.pp_style [1,1,1] (linear) 

Sign of fitness for each objective GAP.pp_sign [-1,-1,-1] (negative) 

Row vector of minimum gene values GAP.gd_min [80  140  10] 

Row vector of maximum gene values GAP.gd_max [94  150  240] 

Row vector of gene types GAP.gd_type [1  1  1] (integer) 

Row vector of chromosome ID number GAP.gd_cid [1  1  1]  
Source: The author (2022) 

 

For the scalarization of the fitness values in the multi-objective optimization problem, 

the normalized weight vector [0.4 0.3 0.3] was used, aiming to apply similar weights for the 

three different objectives. In order to exclude solutions that did not meet the optimization 

restrictions, a bad fitness value was attributed to every objective variable of them. The complete 

MATLAB script and fitness function developed for the GA optimization can be found in 

APPENDIX C and APPENDIX D, respectively. 

As in the case of the CRD optimization, the results of the multi-objective optimization 

were stored in a MATLAB structure (the GOSET structure named GAS), and after that, 

exported do a spreadsheet in order to analyze better the results and compare them with the 

solutions provided by the CRD strategy and by the manufacturer.  
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4 RESULTS AND DISCUSSION 

 

In this section, the results of the conversion rate driven strategy (CRD) and multi-

objective genetic algorithm (GA) optimization are presented and discussed, taking the 

simulation results of the manufacturer’s recommended cure schedule (MRC) as a reference for 

the analysis.  

For each case, the best solution obtained is detailed and the values of the respective Cure 

schedule, constrained variables and objective variables are displayed. The heating ramp applied 

in all cases was 3°C/min. The results of every cure schedule simulated can be found in the 

APPENDIX E.  

4.1 MANUFACTURER’S RECOMMENDED CURE SCHEDULE 
 

The simulation of the manufacturer’s recommended cure schedule (MRC) selected 

provided the results shown in Table 12. The minimum degree of cure reached at the end of the 

cure process was not 100%, but 85.4% instead, due to diffusion restrictions to the continuity of 

the reaction, which can still occur but at an extremely slow rate.  

Table 12 – Parameters and results of the manufacturer’s recommended cure schedule 

Cure schedule Constrained variables 
Optimization objective variables (to 

minimize) 

Objective 1 Objective 2 Objective 3 

CT1  
(°C) 

CT2  
(°C) 

Time 
in CT1  
(min) 

Time 
in CT2  
(min) 

Min. 
alpha – 

end of the 
cure 

Max. T 
during the 

cure  
(°C) 

Cure 
time 
(min) 

Cure 
time  
(s) 

Max. 
grad. Of 

alpha 
AGP 

(1/mm) 

Max. grad.  
of T  
AGP 

(°C/mm) 

80 140 240 480 85.4% 140 760 45600 1.45E-02 1.76E+00 

Source: The author (2022) 

As for the maximum temperature reached by the sample during the cure, it was the same 

as the second plateau temperature (140 °C), staying away from the LY556 epoxy system 

thermal degradation temperature, which is 155 °C. That proves that the MRC schedule is 

thermally safe for the studied sample. 

In order to analyze the thickness effect on the properties of the cured epoxy, Figures 32 

and 34 were obtained from the simulation. They display the maximum, minimum and average 
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temperatures and degrees of conversion, as well as maximum gradients of temperature and 

degree of conversion AGP, reached by the sample during the cure. Two peaks can be observed 

in the maximum gradients of temperature and degree of conversion AGP. The first one occurs 

right after the gel point has been reached. This is related to heat provided at the first step of the 

cure schedule, associated with the exothermic polymerization reaction that takes place during 

the gelation period, from room temperature to the fist temperature plateau.  

The exothermic aspect of the reaction is highlighted by the epoxy temperature rise above 

the external temperature displayed in Figure 32, and also by the temperature distribution within 

the epoxy shown in Figure 33, at the time when the temperature overshoot inside the thermoset 

reaches its maximum value. The second peak in the maximum gradients happens when the 

external temperature starts to increase again, from the first to the second temperature plateau, 

providing more thermal energy for the curing reaction occur and increase the crosslinking 

density of the sample. It is important to note that the first peak of the maximum gradient of 

temperature is less intense than the second one, while the opposite occurs with the peaks of the 

maximum gradient of degree of cure. This shows that these two variables are affected 

differently by the cure schedule and, thus, must be studied independently when optimizing the 

cure process. 
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Figure 32 – Temperatures and maximum gradients of temperature AGP reached by the sample during the cure, 
following the MRC schedule 

 

Source: The author (2022) 

 

Figure 33 – Temperature distribution within the epoxy at the maximum temperature overshoot due to the intense 
exothermic heat

 

Source: The author (2022) 
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Figure 34 – Degrees of conversion and maximum gradients of degree of conversion AGP reached by the sample 
during the cure, following the MRC schedule 

 

Source: The author (2022) 

 

 As the conversion rate increases with temperature, two peaks in this variable can also 

be observed during the heating ramps, as shown in Figure 35. 
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Figure 35 - Degrees of conversion and average conversion rate reached by the sample during the cure, following 
the MRC schedule 

 

Source: The author (2022) 

 

From Figure 34, it is evident that the this MRC schedule is too long for the specimen 

studied, because the sample reaches a uniform and stable degree of conversion (85.4%) before 

half the cure time has elapsed. So, for more than seven hours (25,200 s), the epoxy degree of 

conversion remains practically constant and homogeneous until the end of the cure, wasting 

time and energy in the manufacturing process. 

In this context, the CRD strategy and multi-objective GA optimization promise to 

deliver cure schedules that take less time, and therefore, result in a lower cost of manufacturing 

when compared to a default MRC. Besides, multi-objective GA optimization also promises to 

find cure schedules that are not only more economic, but also that produce better quality 

thermosets and thermosetting matrix composites, by trying to minimize the gradients of 

temperature and degree of cure AGP that arise during the curing process, in addition to 

minimizing the curing time. The results obtained using both approaches were detailed in the 

following sections. 
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4.2 CONVERSION RATE-DRIVEN STRATEGY 
 

As explained previously, the conversion rate-driven strategy was designed with the 

objective of minimizing the curing time of a sample, by tying the moment of completion of the 

first temperature plateau to the moment when the conversion rate of the sample is on the verge 

of starting to decrease, that is, when it reaches its maximum point. 

Due to the automation of the strategy, it was possible to obtain several cure schedules 

in a single algorithm run, simply by providing as input the CT1 and CT2 temperatures, which 

were combined with each other to generate the cure schedules. The code returned the times of 

each temperature plateau, the values of the important variables (constrained and objective 

variables) and saved the simulation models so that a more sophisticated post-processing of the 

results of each cure schedule could be carried out. 

In this study, 48 cure schedules were produced to be investigated through the CRD 

strategy, from the combinations of CT1 and CT2 provided:  

1) CT1 = {80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95} °C and  

2) CT2 = {140,145,150} °C. 

However, it was found that curing the sample under study with CT1 = 95°C using the 

CRD strategy makes the material to reach its thermal degradation temperature (155 °C), which 

is not desired. Therefore, the three results obtained from the combination of CT1 = 95°C with 

CT2 = {140,145,150} °C were excluded from the feasible solution because they generated a 

thermally degraded specimen. Thus, only the 45 remaining combinations (cure schedules) were 

considered, whose results can be seen in APPENDIX E. Running the code took a total time of 

about 9 hours on the selected computer. 

As expected, it was found that the fastest curing corresponds to the cure schedule with 

the maximum values for CT1 and CT2 among the selected temperatures, since the curing speed 

increases with temperature (and the thermal degradation limit is not hit). The durations of each 

plateau at these temperatures and the total cure time are the most important results of the CRD 

strategy, shown in Table 13. With the CRD strategy it was possible to reduce the MRC cure 

time from 12.7h (760 min) to just 1.6h (96 min), which is an impressive improvement of the 

process time. 

In Table 13, the values obtained for the maximum gradients of temperature and degree 

of curing AGP obtained during the curing are also presented. It is observed that they are much 
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higher than those resulting from the MRC schedule, which raises a concern about the residual 

stresses that can be generated by the high levels of internal gradients. 

With the CRD strategy, there is no time for the conversion rate to drop during the first 

temperature plateau, so the maximum gradients of degree of cure and temperature AGP that 

arise in the sample do not have time to subside by the heat conduction through the sample. Such 

behavior is highlighted by Figures 36,  37 and 38, which mostly show only one peak for the 

maximum temperature gradients, degree of curing and average conversion rate, but with higher 

values when compared to the MRC schedule. 

Besides, from Table 13 and Figure 36, it can be seen that the best solution provided by 

the CRD strategy leads to a high peak of temperature within the sample during the curing, due 

to the fast curing with high temperatures for the two plateaus CT1 and CT2, almost reaching 

the material degradation temperature. 

Table 13 – Best cure schedule found with the CRD strategy to minimize the cure time 

Cure schedule Constrained 
variables 

Optimization objective variables (to 
minimize) 

Objective 1 Objective 
2 Objective 3 

CT1  
(°C) 

CT2  
(°C) 

Time 
in 

CT1  
(min) 

Time 
in CT2  
(min) 

Min. 
alpha - 

end of the 
cure 

Max. T 
during 

the cure  
(°C) 

Cure 
time 
(min) 

Cure 
time  
(s) 

Max. 
grad. of 
alpha 
AGP 

(1/mm) 

Max. 
grad.  
of T  
AGP 

(°C/mm) 

94 150 32 21 85.5% 152 96 5780 4.52E-02 5.00E+00 
Source: The author (2022) 
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Figure 36 - Temperatures and maximum gradients of temperature AGP reached by the sample during the cure, 
following the best cure schedule found with the CRD strategy to minimize the cure time 

 

Source: The author (2022) 
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Figure 37 - Degrees of conversion and maximum gradients of degree of conversion AGP reached by the sample 
during the cure, following the best cure schedule found with the CRD strategy to minimize the cure time

 

Source: The author (2022) 

Figure 38 - Temperatures and average conversion rate reached by the sample during the cure, following the best 
cure schedule found with the CRD strategy to minimize the cure time 

 

Source: The author (2022) 
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Investigating in more detail the cure times and gradients exhibited by the sample with 

the different cure schedules obtained by the CRD strategy, the following phenomena were 

observed: 

a) The higher the CT2, the shorter the time in CT2 and the cure time to reach a given 
degree of cure (Figures 39 and  42); 

b) The higher the CT1, the shorter the time in CT1 and the cure time to reach a given 
degree of cure (Figures 39 and  42); 

c) The minimum values for the maximum gradient of degree of cure AGP and the 
maximum gradient of temperature AGP occur when CT1 is around 84 and 85 °C, 
respectively (Figures 40, 41, 43 and 44); 

d) Low CT2 has no benefits (for the variables studied). The higher the CT2 the better, as 
long as the maximum temperature reached by the sample is below the material 
degradation temperature. That is, the higher the CT2, the shorter the cure time, while 
the maximum gradient of degree of cure AGP and the maximum gradient of 
temperature AGP remain the same (Figures 40, 41, 43 and 44). 

 

Figure 39 – Variation of cure time with CT2 in the CRD strategy, for constant CT1 

 

Source: The author (2022) 
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Figure 40 – Variation of the maximum gradient of degree of cure AGP with CT2 in the CRD strategy, for 
constant CT1 

 

Source: The author (2022) 

 

Figure 41 - Variation of the maximum gradient of temperature AGP with CT2 in the CRD strategy, for constant 
CT1 

 

Source: The author (2022) 
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Figure 42 - Variation of cure time with CT1 in the CRD strategy, for constant CT2 

 

Source: The author (2022) 

 

Figure 43 - Variation of the maximum gradient of degree of cure AGP with CT1 in the CRD strategy, for 
constant CT2 

 

Source: The author (2022) 
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Figure 44 - Variation of the maximum gradient of temperature AGP with CT1 in the CRD strategy, for constant 
CT2 

 

Source: The author (2022) 

 

Evidently, the CRD strategy proved to be a very effective strategy for reducing the 

curing time of a thick epoxy matrix. The development of a code in MATAB linked to the finite 

element software COMSOL allowed the automatic execution of the simulation of several 

different cure schedules and their analysis according to the variables of interest: temperature, 

degree of cure, conversion rate, cure time and gradients of degree of cure and temperature AGP.  

However, although the CRD strategy allows the verification of the maximum values of 

gradients of degree of cure and temperature reached by the matrix AGP, there is no routine in 

this algorithm that aims to reduce or minimize such gradients, while minimizing the curing 

time. For this reason, the Genetic Algorithm was selected as an additional solution to be studied, 

in order to optimize the curing process of thermoset matrices, as it can be programmed to be 

multi-objective and find cure schedules that tries to minimize simultaneously the curing time 

and the gradients of degree of cure and temperature AGP, finding a variety of cure schedules 

that are optimal for different applications with different requirements for the values of such 

variables. 
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4.3 GENETIC ALGORITHM 
 

The execution of the GA for the multi-objective optimization of the cure schedule 

resulted in 31 different solutions (cure schedule), that is, 31 non-dominated solutions. The 

numerical values of all GA non-dominated results can be found in the APPENDIX E.  

Figures 45, 46 and 47 show the combinations, 2 by 2, of the three optimization 

objectives. It is clear that Figure 45 and Figure 46 present variables that are in conflict with 

each other (when one increases, the other decreases). Therefore, the resulting curves correspond 

to a “front”, called the Pareto-Optimal Front. 

Figure 45 - 2D Pareto-Optimal Front: Objective 2 x Objective 1 

 

 

Source: The author (2022) 
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Figure 46 - 2D Pareto-Optimal Front: Objective 3 x Objective 1 

 

 

Source: The author (2022) 

Figure 47, on the other hand, highlights two objectives that usually agree with each 

other, the gradients of degree of cure and temperature. This is because the degree of cure 

gradients are directly affected by the temperature gradients, so they both increase and decrease 

together. 
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Figure 47 - 2D Pareto-Optimal Front: Objective 3 x Objective 2 

 

 

 

Source: The author (2022) 

 

It was verified that, although the determined number of generations and individuals per 

generation was not high, the graphs obtained show a diverse set of solutions, which is highly 

beneficial in this multi-objective optimization, as there is no prior definition of which objective 

is more important. Thus, one can decide the weights of each objective after the optimization, 

depending on the application, and still obtain extremely satisfactory results due to the diversity 

of the solution set. 

The solutions obtained for the optimization decision variables (or “genes”), which are 

the cure parameters CT1, CT2 and the time in CT1, can be seen graphically in Figure 48. 

Interestingly, the vast majority of solutions have lower values for CT1, close to its selected 

minimum limit, between 80 and 84°C, even those cure schedules that result in shorter curing 

times, contrary to the behavior of the CRD strategy, which raised CT1 to 94°C to obtain the 

shortest curing time, almost reaching the material's thermal degradation temperature. On the 

other hand, CT2 assumed values that were better distributed within its total range of 
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possibilities, but showing a greater tendency to be close to the maximum limit, between 145 

and 150°C.  

Figure 48 - 2D Pareto-Optimal Set: CT1 x time in CT1 

 

Source: The author (2022) 
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Figure 49 - 2D Pareto-Optimal Set: CT1 x CT21

 

Source: The author (2022) 

 

4.3.1 Objective 1 

 

The best cure schedule provided by the GA optimization to minimize the cure time 

(objective 1) is presented in Table 14. With this solution, it was possible to reduce the MRC 

time from 12.7h (760 min) to just 1.5h (90 min), an incredible improvement in the cure time. 
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Table 14 - Best cure schedule found with the GA optimization to minimize the cure time 

Cure schedule  Constrained variables 

Optimization objective variables (to 
minimize) 

Objective 1 Objective 
2 Objective 3 

CT1  
(°C) 

CT2  
(°C) 

Time 
in 

CT1  
(min) 

Time 
in CT2  
(min) 

Min. 
alpha - 

end of the 
cure 

Max. T 
during 

the cure  
(°C) 

Cure 
time 
(min) 

Cure 
time  
(s) 

Max. 
grad. of 
alpha 
AGP 

(1/mm) 

Max. 
grad.  
of T  
AGP 

(°C/mm) 

84 149 32 15 85.5% 154 90 5400 3.61E-02 4.03E+00 
Source: The author (2022) 

For this solution, the curve shapes of the conversion rate, gradients of degree of cure 

and temperature AGP, shown in Figures 50, 51 and 52, resemble the curve shapes of the best 

solution obtained by the CRD strategy aiming to minimize the cure time. This was completely 

expected as both cure schedules have the same goal. The cure time on the first plateau is very 

short compared to the MRC schedule, and equal to the CT1 time of the fastest MRC solution. 

So again what happens are virtually unique peaks in the conversion rate and in the gradients of 

degree of cure and temperature AGP, as these occur on the heating ramp from the first plateau 

to the second, a few minutes after the gel point has been reached, and there is no time for the 

conversion rate and maximum gradients AGP to stabilize before curing reaches the second 

plateau. 

The levels reached by these three variables, however, are not as high as those observed 

in the MRC schedule, since the temperatures selected for both plateaus in the GA algorithm are 

lower, which is very advantageous to avoid residual stresses and related problems. It is also 

important to point out that, although the cure is extremely fast, it does not degrade the epoxy 

matrix (since it does not reach 155°C) and the spatial distribution of the degree of conversion 

at the end of the cure schedule is practically uniform, with a minimum degree of cure of 85.4°C, 

as in the case of the MRC schedule. 
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Figure 50 - Temperatures and maximum gradients of temperature AGP reached by the sample during the cure, 
following the best cure schedule found with the GA optimization to minimize the cure time 

 

Source: The author (2022) 
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Figure 51 - Degrees of conversion and maximum gradients of degree of conversion AGP reached by the sample 
during the cure, following the best cure schedule found with the GA optimization to minimize the cure time 

 

Source: The author (2022) 

Figure 52 - Degrees of conversion and average conversion rate reached by the sample during the cure, following 
the best cure schedule found with the GA optimization to minimize the cure time 

 

Source: The author (2022) 
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4.3.2 Objective 2 

 

While reducing the cure time is very important for designing more efficient 

manufacturing processes, it is also necessary to ensure that the cured product achieves the 

quality required by its field of application. Minimizing the gradients of degree of cure and 

temperature developed by the epoxy matrix AGP material is one of the ways to obtain the 

desired quality. Considering only the minimization of the maximum gradient of degree of cure 

AGP (objective 2), Table 15 presents the optimal cure schedule found by the GA optimization. 

 

Table 15 - Best cure schedule found with the GA optimization to minimize the maximum degree of cure AGP 

Cure schedule  Constrained variables 

Optimization objective variables (to 
minimize) 

Objective 1 Objective 
2 

Objective 
3 

CT1  
(°C) 

CT2  
(°C) 

Time 
in 

CT1  
(min) 

Time 
in 

CT2  
(min) 

Min. 
alpha - 

end of the 
cure 

Max. T 
during 

the cure  
(°C) 

Cure 
time 
(min) 

Cure 
time  
(s) 

Max. 
grad. of 
alpha 
AGP 

(1/mm) 

Max. 
grad.  
of T  
AGP 

(°C/mm) 

80 150 76 20 85.5% 147 139 8360 1.37E-02 1.45E+00 
Source: The author (2022) 

 

For the cure schedule obtained, it can be seen from Figures 53 and 54 that the maximum 

gradient of degree of cure AGP starts to decrease as the external temperature begins to increase 

towards the second plateau. Thus, the heat flow supplied to the sample is responsible for 

increasing the gradient of the AGP cure degree again, generating a new peak, higher than the 

first one. 

It is worth noting that the temperature set for the first plateau is the same as that of the 

MRC schedule, however, by ending this plateau just after the maximum gradient of degree of 

cure AGP starts to decrease, the cure can be much faster than that of the MRC, while the 

maximum value of the gradients of degree of cure reached AGP is approximately equal to the 

one obtained by the MRC. 
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Figure 53 - Temperatures and maximum gradients of temperature AGP reached by the sample during the cure, 
following the best cure schedule found with the GA optimization to minimize the maximum gradient of degree 

of cure AGP 

 

Source: The author (2022) 
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Figure 54 - Degrees of conversion and maximum gradients of degree of conversion AGP reached by the sample 
during the cure, following the best cure schedule found with the GA optimization to minimize the maximum 

gradient of degree of cure AGP 

 

Source: The author (2022) 

Figure 55 - Degrees of conversion and average conversion rate reached by the sample during the cure, following 
the best cure schedule found with the GA optimization to minimize the maximum gradient of degree of cure 

AGP 

 

Source: The author (2022) 
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4.3.3 Objective 3 

 

Considering only the minimization of the maximum gradient of temperature reached by 

the specimen AGP (objective 3), Table 16 presents the optimal cure schedule determined by 

the GA optimization.  

Table 16 - Best cure schedule found with the GA optimization to minimize the maximum temperature AGP 

Cure schedule  Constrained variables 

Optimization objective variables (to 
minimize) 

Objective 1 Objective 
2 

Objective 
3 

CT1  
(°C) 

CT2  
(°C) 

Time 
in CT1  
(min) 

Time 
in CT2  
(min) 

Min. 
alpha - 

end of the 
cure 

Max. T 
during 

the cure  
(°C) 

Cure 
time 
(min) 

Cure 
time  
(s) 

Max. 
grad. of 
alpha 
AGP 

(1/mm) 

Max. 
grad.  
of T  
AGP 

(°C/mm) 

83 140 57 67 85.4% 140 164 9840 1.88E-02 1.21E+00 
Source: The author (2022) 

 

The behavior of the variables in this optimal cure schedule is similar to that of the cure 

schedule that minimizes the maximum gradient of degree of cure AGP (objective 2), as 

presented in Figures 56, 57 and 58. One of the differences from the previous cure schedule is 

that this phenomenon occurs at the very end of the first plateau at a faster rate, as CT1 was 

selected with a higher value. Another important difference is that, as the external temperature 

increases towards the second plateau, the heat supplied by the environment and the heat 

generated by the exothermic reaction within the thick sample result in temperature gradients 

that occur in two peaks and lead to a higher (historical) global maximum value for the gradient 

of temperature AGP when compared to the previous cure schedule. One explanation for this is 

that the temperature selected for the second plateau is 10 °C lower. 

In relation to the MRC schedule, there was also a good reduction in the maximum 

gradient of degree of cure AGP, from 1.76 to 1.21 °C/mm. 
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Figure 56 - Temperatures and maximum gradients of temperature AGP reached by the sample during the cure, 
following the best cure schedule found with the GA optimization to minimize the maximum gradient of 

temperature AGP 

 

Source: The author (2022) 
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Figure 57 - Degrees of conversion and maximum gradients of degree of conversion AGP reached by the sample 
during the cure, following the best cure schedule found with the GA optimization to minimize the maximum 

gradient of temperature AGP 

 

Source: The author (2022) 

Figure 58 - Degrees of conversion and average conversion rate reached by the sample during the cure, following 
the best cure schedule found with the GA optimization to minimize the maximum gradient of temperature AGP 

 

Source: The author (2022) 
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4.3.4 Weighted objectives 

 

So far, the optimal solutions provided by GA optimization that minimize each objective 

separately have been presented. However, in real life applications, it is necessary to take into 

account the tradeoff that exists between the different objectives and the weight that each of 

them has in a specific application of the thermoset polymer. 

It is of utmost importance that the selected temperature profile satisfies a number of 

criteria which include the minimum residual stresses, minimum cure cycle time, no thermal 

degradation and high degree of cure. 

The need to have available a set of solutions that optimize the cure schedule considering 

different objectives for the manufacturing process and are optimal for different cases is the main 

motivation for the development of multi-objective optimization based on a population of 

solutions, such as GA. 

Therefore, we will illustrate the selection of one of the non-dominant solutions provided 

by GA taking into consideration the requirements of a fictitious application. For the sake of 

comparison, in the selection of the solution, more emphasis will be put on the reduction of the 

gradients of degree of cure and temperature, in the same way done by YUAN et al. (2021). 

Thus, the weights of each objective are defined as follows: 

• Objective 1 (cure time): Weight 0.2; 

• Objective 2 (maximum gradient of degree of cure AGP): Weight 0.4; 

• Objective 3 (maximum gradient of temperature AGP): Weight 0.4. 

 

Such weights are then applied to the normalized and opposite values of each objective, 

to obtain the sum of those results in the fitness value. Normalization of the value of each 

objective is necessary so that different scales of the objective values do not impact the decision. 

Besides, the opposite value of each objective is used as we are working with three objectives 

that must be minimized and what we are calculating by weighing the normalized solutions and 

summing them is how fit they are for the application. That is, the lower the objective values, 

the higher the fitness value (f) must be, which is calculated using the expression below: 

 
f = Wobj1 * (-Valueobj1) + Wobj2 * (-Valueobj2) + Wobj3 * (-Valueobj3) 
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Where Wobj1, Wobj2 and Wobj3 are the weights of the objectives 1, 2 and 3, respectively. 
And Valueobj1, Valueobj2, Valueobj3 are the values obtained for the objectives 1, 2 and 3 variables, 
respectively. 

Then, the best cure schedule obtained by the GA optimization that maximizes the 

fitness, considering the weights informed above, is presented in Table 17.  

Table 17 - Best cure schedule found with the GA optimization that maximizes the solution fitness, applying the 
weights 0.2, 0.4 and 0.4 for objectives 1, 2 and 3, respectivly 

Cure schedule parameters  

Constrained variables 

Optimization objective variables (to 
minimize) 

Objective 1 Objective 
2 Objective 3 

CT1  
(°C) 

CT2  
(°C) 

Time 
in 

CT1  
(min) 

Time 
in 

CT2  
(min) 

Min. 
alpha - 
end of 

the cure 

Max. T 
during the 

cure  
(°C) 

Cure 
time 
(min) 

Cure 
time  
(s) 

Max. 
grad. of 
alpha 
AGP 

(1/mm) 

Max. grad.  
of T  
AGP 

(°C/mm) 

81 150 65 19 85.5% 147 127 17% 99% 72% 
Source: The author (2022) 

 

YUAN et al. (2021) implemented a NSGA-II cure optimization model, which possess 

optimization objectives, restrictions and decision variables similar to the ones selected for this 

research work. As previously reported at the state of the art section, the optimal solution found 

by YUAN et al. (2021) from the Pareto-optimal set, considering the weights informed above, 

reduced the maximum gradient of degree of cure by 17%, decreased the maximum gradient of 

temperature by 46%, and cut down the cure time by 31%. When compared to the optimal result 

of the present work, which provided reductions of 1%, 18% and 83% in the respective 

objectives, it is easy to see that the optimization performed by YUAN et al. (2021) was much 

more effective in decreasing the differences of the degree of cure and temperature found within 

the thermoset component. On the other hand, the present work was much better in improving 

the cure time. Although these two optimizations have similar parameters, there are still many 

differences between them, such as the definition of gradients of degree of cure and temperature, 

the number of decision variables, the thickness of the sample studied, the material composition, 

the elitist GA parameters, etc. So, one cannot expect that the results from both optimization 

works be the same.  
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4.4 COMPARISON BETWEEN THE SOLUTIONS 
 

In order to better evaluate the results obtained for both the CRD strategy and the multi-

objective GA optimization, the solutions were presented together in Table 18 and the values 

found for the objectives were expressed in relative terms to the values obtained by the MRC. 

For the CRD strategy, the result that minimizes the curing time was indicated, which is the 

focus of this algorithm. For GA, solutions that minimize individually each of the three 

objectives (curing time, maximum gradient of degree of cure AGP and maximum gradient of 

temperature AGP) were listed:  

 

Table 18 – Results of the CRD strategy and GA optimization: values of the objective variables presented in 
relation to the MRC schedule results 

 

Cure schedule parameters Constrained 
variables 

Optimization objective variables (to 
minimize) 

 Objective 
1 Objective 2 Objective 3 

Solution CT1  
(°C) 

CT2  
(°C) 

Time 
in 

CT1  
(min) 

Time 
in 

CT2  
(min) 

Min. 
alpha 
- end 
of the 
cure 

Max. 
T 

during 
the 

cure  
(°C) 

Cure 
time  
(%) 

Max. grad. 
of alpha 

AGP (%) 

Max. grad. 
of  

T AGP  
(%) 

MRC 80 140 240 480 85.4% 140 100% 100% 100% 

CRD 94 150 32 21 85.5% 152 13% 312% 284% 

GA OBJ. 1 84 149 32 15 85.5% 154 12% 249% 229% 

GA OBJ. 2 80 150 76 20 85.5% 147 18% 94% 82% 

GA OBJ. 3 83 140 57 67 85.4% 140 22% 129% 69% 
Source: The author (2022) 

 

It is clear from Table 18 that both the CRD and GA strategies are extremely effective in 

reducing the cure time of the studied sample, with incredible reductions of 87 and 88% of the 

total cure time recommended by the manufacturer, respectively. Without surprise, these high 

reductions in the cure time ended up more than doubling the values obtained for the gradients 

of degree of cure and temperature AGP in the GA cure schedule, and approximately tripling 

these gradients in the CRD solution. 
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The best solution found through the GA optimization to minimize objective 2, which 

reduced by 6% the maximum gradient of degree of cure AGP of the MRC schedule, also 

generated considerable reductions in the values of the two other objectives obtained by the 

MRC. Therefore, this cure schedule can be regarded as the best alternative solution to the MRC 

schedule among the four presented in Table 18, if the purpose is to improve the manufacturer's 

results in all objectives. 

As for objective 3, a great reduction of 31% of the maximum gradient of temperature of 

AGP was obtained by the GA, however increasing in 29% the maximum gradient of degree of 

cure AGP, in relation to the MRC.  

The evolution of the maximum gradients of degree of conversion and temperature AGP 

reached by the sample during the cure for the five cure schedules shown in Table 18  were 

presented in a superimposed way in the plots of Figures 59 and 60. This type of plots allow an 

easier comparison of the solutions found for the 3 objectives and a better understanding of the 

curing phenomena that has been discussed so far. The horizontal axis of the graphs of both 

figures ends at 25,000 s, because from this moment on, only the manufacturer's cure schedule 

continues to run, but with all the variables stabilized (they no longer suffer any noticeable 

variation during the cure, which ends in 45,600 s). Therefore, plotting the final part of the MRC 

would not bring any additional information.   
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Figure 59 - Cure time and maximum gradient of temperature AGP of the MRC schedule and the best solutions 

given by the CRD strategy and GA optimization  

 

Source: The author (2022) 
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Figure 60 - Cure time and maximum gradient of degree of cure AGP of the MRC schedule and the best solutions 

given by the CRD strategy and GA optimization  

 

Source: The author (2022) 

  

Analyzing all the feasibles solutions obtained by the CRD strategy and the non-

dominant solutions found by the GA, which add up to the 76 cure schedules that are tabulated 

in APPENDIX E and plotted in Figures 61, 62 and 63, the following observations were made: 

• For objective 1 (minimize cure time): All the 76 cure schedules obtained by 

both methods are better than the MRC schedule. The best solution was provided 
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by GA. A very interesting aspect of the optimal result obtained by GA for 

objective 1 is that it shows that it is possible to obtain faster cures than the CRD, 

using lower temperature plateaus with shorter durations, and ensuring that the 

sample will have the required minimum degree of cure without being thermally 

degraded. 

• For objective 2 (minimize the maximum gradient of degree of cure AGP): GA 

resulted in 9 cure schedules that are better than the one recommended by the 

manufacturer. CRD strategy could not improve the MRC schedule results for 

this objective. 

• For objective 3 (minimize the maximum gradient of temperature AGP): The 

best solution was provided by GA. CRD strategy provided 9 cure schedules 

schedules that are better than the MRC schedule, while GA provided an even 

higher number of better solutions: 25 cure schedules. 

 

Figure 61 – Maxixum gradient of degree of cure AGP vs. cure time for the CRD strategy feasible solutions and 
GA non-dominated solutions 

 

Source: The author (2022) 
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Figure 62 - Maxixum gradient of temperature AGP vs. cure time for the CRD strategy feasible solutions and GA 
non-dominated solutions 

 

Source: The author (2022) 

Figure 63 - Maxixum gradient of degree of cure AGP vs. maxixum gradient of temperature AGP for the CRD 
strategy feasible solutions, GA non-dominated solutions, and MRC schedule 

 

Source: The author (2022) 
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With the configuration selected in this work for the GA, the computational time to run 

the algorithm was around 103 hours = 4.3 days. While to run the CRD strategy using the same 

computer, the running time was around 9 hours. These results show that the CRD approach has 

the benefit to be based on a simple aspect of the thermoset cure kinetics, providing fast results. 

On the other hand, the multi-objective GA has the advantage of considering the real world 

trade-off between manufacturing speed and product quality, being capable of finding cure 

schedules that reduce internal gradients that arise during the cure process (and thus, reduce the 

residual stresses), in addition to reducing the cure time. 
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5 CONCLUSIONS 

 

 The present work successfully simulated and optimized the cure schedule of a thick 

thermoset, through two different methods: an authorial method based on the cure kinetics, 

called Conversion Rate Driven (CRD) strategy; and a multi-objective Genetic Algorithm (GA). 

Both methods were implemented in MATLAB and commanded the cure simulation models 

running in COMSOL through the COMSOL LiveLink for MATLAB.  

A manufacturer’s recommended cure (MRC) schedule was also simulated and it was 

verified that it is highly ineffective for the materials, geometries and boundary conditions 

studied, as the cure time was extremely overestimated, which in real world would lead to high 

manufacturing costs. This confirmed the need for the cure optimization and served as the basis 

for the analysis of the CRD strategy and GA optimization results. 

An easy implementation of the multi-objective GA was possible due to use of the free 

MATLAB-based software package GOSET, which delivered a diverse Pareto-Optimal front, 

with 31 non-dominated solutions (cure schedules) that could meet the needs of different 

composite manufacturing applications, considering the trade-off between three different 

objectives: minimize the cure time, minimize the gradient of degree of cure AGP and minimize 

the gradient of temperature AGP. The automation of the CRD strategy through the development 

of a script in MATLAB allowed finding many feasible cure schedules, 45 in total, in a single 

algorithm run. As this strategy was developed with a single objective (minimize the cure time), 

a single solution was selected from the as the optimal one. 

Both CRD and GA approaches were extremely effective in minimizing the cure time of 

a thick thermoset matrix. They are both excellent tools if the most important goal in an 

application is to increase the speed of the thermoset fabrication process, while assuring that the 

minimum degree of cure required for the resulting polymer is reached and that thermal 

degradation does not occur. It is important to highlight that each of the methods, CRD and GA, 

has its advantages and disadvantages in relation to the other.  

As advantages of the multi-objective GA in this work, we have that: 

• The algorithm seeks to find solutions that minimize all objectives at the same 

time. Thus, the optimal solution found by the multi-objective GA to minimize 

the curing time also resulted in values for the other two objectives that are better 

than those obtained by the CRD strategy, since this strategy only focuses on the 
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curing time. Besides, this algorithm managed to improve all 3 objective variables 

over the MRC. 

• In addition to presenting the minimum curing time, the shortest cure schedule 

found by the GA also has lower temperatures for both plateaus, when compared 

to the CRD solution, which facilitates the manufacturing process. 

On the other hand, the main advantage of the CRD strategy is that it is based on the 

kinetics of the curing process and takes less time to run than the GA, which needs to simulate 

hundreds of cures or more to obtain reliable solutions. With the parameters selected for the 

algorithms in this work, The CRD approach took around 91% less time than the GA to run, 

using the same computer. 

Although GA requires high computational resources to run in a feasible time, it gives 

highly satisfactory results. The literature has been reporting that its performance can be largely 

improved when it is combined with other optimization or heuristic techniques. Therefore, this 

algorithm hybridization is left here as a future work suggestion. 
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6 FUTURE WORKS SUGGESTIONS 

 

From the present work, many research paths can be followed in order to advance in the 

study of thermosets and composites cure optimization. Some of them are suggested below: 

• Reproduce experimentally the best cure schedules obtained by the CRD strategy and 

multi-objective GA optimization and check the integrity and mechanical behavior of the 

cured samples. 

• Perform the cure optimization of the whole thermoset resin composite, considering the 

interactions between the polymer matrix and the reinforcements, since possible failures 

may occur due to thermal mismatches between the matrix and reinforcements, fiber 

undulations, delaminations, etc. 

• Study cure schedules with a higher number of temperature plateaus (three or four, for 

example) and see the impact on the optimization objectives: cure time and internal 

gradients AGP. 

• Initialize the multi-objective GA optimization with solutions provided by the CRD 

strategy, instead of initializing it randomly, seeking to improve the optimization 

performance. 

• Hybrid Optimization: combine the multi-objective GA optimization with a local search 

method to increase its performance.  

• Run the GA optimization or the hybrid optimization with a higher number of 

generations and individuals per generation, using a cluster (parallel computing) to 

achieve good results in shorter times. 

• Implement a multiphysics cure simulation model that takes into consideration the 

coupling between the thermal, chemical and mechanical aspects of the curing, in order 

to directly compute the residual stress generated by the internal gradients that appear 

during the cure process and assess how they affect the final product properties. Then, 

optimize the cure process taking the maximum residual stresses observed within the 

sample either as a constrained variable or as an objective to be minimized. 

• Study the effect of the cooling stage of the cure schedule on the generations of internal 

gradients and residual stresses. 
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• Execute a robust cure optimization, taking into account the variability of the 

optimization parameters (decision variables). 
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7 SCIENTIFIC CONTRIBUTIONS 

 

The scientific contributions that were made by the authors of the present work, related 

to this research, are presented below: 

• Presented at the 5th Brazilian Conference on Composite Materials (BCCM5) and 

published in the Conference Proceedings the work entitled “Exotherm issues 

predictions during the curing of a thick epoxy matrix and effects on elastic 

properties”; 

• Submitted to the journal Materials Research (on-line ISSN: 1980-5373) the paper 

entitled “Exotherm issues predictions during the curing of a thick epoxy matrix and 

effects on elastic properties”; 

• Presented at the 14th International Conference on Advanced Computational 

Engineering and Experimenting (ACEX 2021) the work entitled “A thermal 

degradation modelling for exothermal effects on the specs of thick epoxies: 

Experiments vs physico chemical coupled approaches”; 

• Presented at the 15th International Conference on Advanced Computational 

Engineering and Experimenting (ACEX 2022) the work entitled “A novel cure 

optimization strategy for thick thermosets based on thermal damage risks and curing 

time optimization: application to mechanical properties”; 

• Submitted to the journal Advanced Engineering Materials (online ISSN: 1527-2648) 

the paper entitled “A thermal degradation modelling for exothermal effects on the 

elastic modulus of thick epoxies: Experiments vs physico-chemical coupled 

simulations”. 

 

  



174 

REFERENCES 

 
ABOUHAMZEH, M. et al. Closed form expression for residual stresses and warpage 
during cure of composite laminates. Composite Structures, v. 133, p. 902-910, 2015. 

ADOMANIS, Bryan; BURCKEL, D. Bruce; MARCINIAK, Michael. COMSOL 
Multiphysics® Implementation of a Genetic Algorithm Routine for Metasurface 
Optimization. Proceedings of the 2017 COMSOL Conference in Boston. 2017. 

ADVANI, Suresh G.; HSIAO, Kuang-Ting. Manufacturing techniques for polymer matrix 
composites (PMCs). Elsevier, 2012. 

AGIUS, S. L. et al. Rapidly cured epoxy/anhydride composites: Effect of residual stress 
on laminate shear strength. Composites Part A: Applied Science and Manufacturing, v. 90, 
p. 125-136, 2016. 

ALBERT, Carolyne; FERNLUND, Göran. Spring-in and warpage of angled composite 
laminates. Composites Science and Technology, v. 62, n. 14, p. 1895-1912, 2002. 

ALEKSENDRIĆ, Dragan; CARLONE, Pierpaolo; ĆIROVIĆ, Velimir. Optimization of the 
temperature-time curve for the curing process of thermoset matrix composites. Applied 
Composite Materials, v. 23, n. 5, p. 1047-1063, 2016. 

AL-SALAMI, Nada MA. Evolutionary algorithm definition. American J. of Engineering 
and Applied Sciences, v. 2, n. 4, p. 789-795, 2009. 

ANDERSON, Ted L. Fracture Mechanics—Fundamentals and Applications. 3rd edn. 
CRC. 2005. 

ANTONUCCI, Vincenza et al. Cure-induced residual strain build-up in a thermoset 
resin. Composites Part A: Applied Science and Manufacturing, v. 37, n. 4, p. 592-601, 2006. 

ARAFATH, Abdul Rahim Ahamed. Efficient numerical techniques for predicting process-
induced stresses and deformations in composite structures. Ph.D. Thesis, The University 
of British Columbia, Vancouver, BC, Canada, 2007. 
ASKELAND, D. R.; FULAY, P. P.; WRIGHT, W. J. The Science and Engineering of 
Materials. 6th Ed. Boston: Cengage Learning, 2011. 956 p. 

ASKELAND, D. R.; WRIGHT, W. J. Ciência e engenharia dos materias. São Paulo: 
Cengage Learning, 2014. 

BAILLEUL, J.-L. et al. Inverse algorithm for optimal processing of composite materials. 
Composites Part A: Applied Science and Manufacturing, v. 34, n. 8, p. 695-708, 2003. 

BARAN, Ismet et al. A review on the mechanical modeling of composite manufacturing 
processes. Archives of computational methods in engineering, v. 24, n. 2, p. 365-395, 2017. 

BARBERO, Ever J. Finite element analysis of composite materials using Abaqus. Boca 
Raton, EUA: CRC Press, 2013. 

BAUER, Ronald S. Epoxy resin chemistry. ACS Symposium Series No.114, American 
Chemical Society, Washington, DC, US. 1979. 

BELLINI, Costanzo; SORRENTINO, Luca. Analysis of cure induced deformation of 
CFRP U-shaped laminates. Composite Structures, v. 197, p. 1-9, 2018. 



175 

BERINS, Michael (Ed.). Plastics engineering handbook of the society of the plastics 
industry. Springer Science & Business Media, 1991. 

BIAGIOTTI, J.; PUGLIA, D.; KENNY, J. M. A Review on Natural Fibre-Based Composites-
Part I. Journal of Natural Fibers, 1:2, p. 37-68. 2008. DOI: 
http://dx.doi.org/10.1300/J395v01n02_04. 

BLEST, D. C. et al. Curing simulation by autoclave resin infusion. Composites Science 
and Technology, v. 59, n. 16, p. 2297-2313, 1999. 
BOGETTI, T. A.; GILLIPSE, J. W. Process-induced stress and deformation in thick-
section thermoset composite laminates. Journal of composite materials, v. 26, n. 5, p. 626-
660, 1992. 
BOGETTI, T. A.; GILLIPSE, J. W. Processing-induced stress and deformation in thick 
section thermosetting composite laminates. CCM report. University of Delaware, August, 
p. 89-21, 1989. 
CALLISTER, W. D.; RETHWISCH, D. G. The structure of crystalline solids. Materials 
science and engineering: an introduction. New York: John Wiley & Sons, Inc, p. 38-79, 
2007. 

CALLISTER, William D. An introduction: material science and engineering. New York, 
v. 106, p. 139, 2007. 

CALLISTER, William D. Ciência e Engenharia de Materiais: Uma Introdução. 7ª Ed. Rio 
de Janeiro: LTC, 2008. 589 p. 

CAPEHART, T. W.; MUHAMMAD, Nouman; KIA, Hamid G. Compensating thermoset 
composite panel deformation using corrective molding. Journal of composite materials, v. 
41, n. 14, p. 1675-1701, 2007. 

CARLONE, Pierpaolo; PALAZZO, Gaetano S. A simulation based metaheuristic 
optimization of the thermal cure cycle of carbon‐epoxy composite laminates. In: AIP 
Conference Proceedings. American Institute of Physics, 2011. p. 5-10. 

CARLONE, Pierpaolo; PALAZZO, Gaetano S. Composite laminates cure cycle 
optimisation by meta-heuristic algorithms. International Journal of Materials and Product 
Technology, v. 46, n. 2-3, p. 106-123, 2013. 

CARLONE, Pierpaolo; PALAZZO, Gaetano S. Thermo-chemical and rheological finite 
element analysis of the cure process of thick carbon-epoxy composite laminates. 
International Journal of Material Forming, v. 2, n. 1, p. 137-140, 2009. 

CENTEA, Timotei; GRUNENFELDER, Lessa K.; NUTT, Steven R. A review of out-of-
autoclave prepregs–Material properties, process phenomena, and manufacturing 
considerations. Composites Part A: Applied Science and Manufacturing, v. 70, p. 132-154, 
2015. 

CHAKRADEO, Sarvesh S.; HENDRE, Aishwarya S.; DESHPANDE, Shantanu U. 
Generalized theory for hybridization of evolutionary algorithms. In: 2014 IEEE 
International Conference on Computational Intelligence and Computing Research. IEEE, 
2014. p. 1-5. 

CHONG, Edwin KP; ZAK, Stanislaw H. An introduction to optimization. 3. ed. John Wiley 
& Sons, 2008. 



176 

CINAR, K. et al. Modelling manufacturing deformations in corner sections made of 
composite materials. Journal of Composite Materials, v. 48, n. 7, p. 799-813, 2014. 
CINAR, K. Process modelling for distortions in manufacturing of fibre reinforced 
composite materials. 2014. Tese de Doutorado. Ph. D. thesis, Bogazici University. 
CIRISCIOLI, Peter R.; SPRINGER, George S.; LEE, Woo Il. An expert system for 
autoclave curing of composites. Journal of Composite Materials, v. 25, n. 12, p. 1542-1587, 
1991. 
CLIFFORD, S. et al. Thermoviscoelastic anisotropic analysis of process induced residual 
stresses and dimensional stability in real polymer matrix composite components. 
Composites Part A: Applied Science and Manufacturing, v. 37, n. 4, p. 538-545, 2006. 
COELLO, Carlos A. Coello et al. Evolutionary algorithms for solving multi-objective 
problems. New York: Springer, 2014. 

COELLO, Carlos A. Coello. An introduction to evolutionary algorithms and their 
applications. In: International Symposium and School on Advancex Distributed Systems. 
Springer, Berlin, Heidelberg, 2005. p. 425-442. 

COHERENT MARKET INSIGHTS. Polymer Matrix Composites Market Analysis. 2022. 
Available at: https://www.coherentmarketinsights.com/market-insight/polymer-matrix-
composites-market-560. Access in: 09 Aug 2022. 

COMSOL INC. Automatic Time Step and Order Selection in Time-Dependent Problems, 
2019f.  Available at https://www.comsol.com/blogs/automatic-time-step-and-order-selection-
in-time-dependent-problems/. Access in 22 Oct 2019. 

COMSOL INC. COMSOL Multiphysics® Simulation Software Understand, Predict, and 
Optimize, 2019c.  Available at https://www.comsol.com/comsol-multiphysics. Access in 15 
Aug 2019. 

COMSOL INC. Controlling the Time Dependent solver timesteps, 2019e.  Available at 
https://www.comsol.com/support/knowledgebase/1254. Access in 17 Oct 2019. 

COMSOL INC. Download COMSOL software documentation, 2019a.  Available at 
https://br.comsol.com/documentation. Access in 10 Aug 2019. 

COMSOL INC. Finite Element Mesh Refinement: Definitions and Techniques, 2019b.  
Available at https://www.comsol.com/multiphysics/mesh-refinement. Access in 15 Aug 2019. 

COMSOL INC. Introduction to LiveLink for MATLAB - COMSOL Documentation, 
2021.  Available at 
https://doc.comsol.com/5.6/doc/com.comsol.help.llmatlab/IntroductionToLiveLinkForMATL
AB.pdf. Access in 30 jan 2021. 

COMSOL INC. Run COMSOL Multiphysics® Simulations with MATLAB®, 2020. 
Available at: https://www.comsol.com/livelink-for-matlab. Access in: 12 Aug 2020. 

COMSOL INC. Understanding, and changing, the element order – Knowledge base, 
2019d.  Available at https://www.comsol.com/support/knowledgebase/1270. Access in 12 Sep 
2019. 



177 

COSTA, Michelle L.; REZENDE, Mirabel C.; PARDINI, Luiz C. Métodos de estudo da 
cinética de cura de resinas epóxi. Polímeros, v. 9, p. 37-44, 1999. 

COSTA, V. A. F.; SOUSA, A. C. M. Modeling of flow and thermo-kinetics during the 
cure of thick laminated composites. International Journal of Thermal Sciences, v. 42, n. 1, 
p. 15-22, 2003. 

DAI, Jianfeng; XI, Shangbin; LI, Dongna. Numerical analysis of curing residual stress and 
deformation in thermosetting composite laminates with comparison between different 
constitutive models. Materials, v. 12, n. 4, p. 572, 2019. 

DE JONG, Kenneth Alan. An analysis of the behavior of a class of genetic adaptive 
systems. University of Michigan, 1975. 

DE JONG, Kenneth; FOGEL, David B.; SCHWEFEL, Hans-Paul. A history of evolutionary 
computation. Handbook of Evolutionary Computation A, v. 2, p. 1-12, 1997. 
DEB, K. Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & 
Sons, Inc., 2001. 
DEB, K; KUMAR, A. Real-coded genetic algorithms with simulated binary crossover: 
Studies on multi-modal and multi-objective problems. Complex Systems, v. 9, n. 6, p. 
431-454. 1995. 
DIBENEDETTO, A. T. Prediction of the glass transition temperature of polymers: a 
model based on the principle of corresponding states. Journal of Polymer Science Part B: 
Polymer Physics, v. 25, n. 9, p. 1949-1969, 1987. 
DING, A.; Li, S.;Wang, J.; Ni, A. A new analytical solution for spring-in of curved 
composite parts. Composites Science and Technology, v. 142, p. 30-40, 2017. 
DOLKUN, Dilmurat et al. Optimization of cure profile for thick composite parts based on 
finite element analysis and genetic algorithm. Journal of Composite Materials, v. 52, n. 28, 
p. 3885-3894, 2018. 

DRZAL, L. T. Epoxy Resins and Composites II. Advanced Polymer Science Series, 
Springer-Verlag, Berlin, Germany, p. 75, 1986. 

DUSEK, K.; ILAVSKI, M.; LUNAK, S. Curing of epoxy resins. I. Statistics of curing of 
diepoxides with diamines. In: Journal of polymer science: Polymer Symposia. New York: 
Wiley Subscription Services, Inc., A Wiley Company, 1975. p. 29-44. 

EOM, Yongsung et al. Time‐cure‐temperature superposition for the prediction of 
instantaneous viscoelastic properties during cure. Polymer Engineering & Science, v. 40, 
n. 6, p. 1281-1292, 2000. 

ERSOY, Nuri et al. Development of spring-in angle during cure of a thermosetting 
composite. Composites Part A: Applied Science and Manufacturing, v. 36, n. 12, p. 1700-
1706, 2005. 
ERSOY, Nuri et al. Modelling of the spring-in phenomenon in curved parts made of a 
thermosetting composite. Composites Part A: Applied Science and Manufacturing, v. 41, n. 
3, p. 410-418, 2010. 
FERNLUND, G. et al. Experimental and numerical study of the effect of cure cycle, tool 
surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed 



178 

composite parts. Composites part A: applied science and manufacturing, v. 33, n. 3, p. 341-
351, 2002. 
FISH, Jacob. Um primeiro curso em elementos finitos. Rio de Janeiro: LTC, 2009. 

FOURMAN, Michael P. Compaction of symbolic layout using genetic algorithms. In: 
Proceedings of the 1st international conference on genetic algorithms. 1985. p. 141-153. 

FOURNIER, Jérôme et al. Changes in molecular dynamics during bulk polymerization of 
an epoxide− amine system as studied by dielectric relaxation spectroscopy. 
Macromolecules, v. 29, n. 22, p. 7097-7107, 1996. 

GOLBERG, David E. Genetic algorithms in search, optimization, and machine learning. 
Addion wesley, v. 1989, n. 102, p. 36, 1989. 

GOLDBERG, David Edward. Genetic Algorithms in Search, Optimization & Machine 
Learning. 401pp. Addison-Wesley, 1989. 

GOLDBERG, David Edward. The design of innovation: Lessons from and for competent 
genetic algorithms. Boston: Kluwer Academic Publishers, 2002. 

GOODMAN, S. H.; DODIUK, H. Handbook of Thermoset Plastics. 2014. 

GOPAL, Ajith K.; ADALI, Sarp; VERIJENKO, Viktor E. Optimal temperature profiles for 
minimum residual stress in the cure process of polymer composites. Composite 
Structures, v. 48, n. 1-3, p. 99-106, 2000. 

GUTOWSKI, Timothy George Peter; GUTOWSKI, Timothy George Peter (Ed.). Advanced 
composites manufacturing. New York: Wiley, 1997. 

HAHN, H. T. Effects of residual stresses in polymer matrix composites. Journal of the 
Astronautical Sciences, v. 32, p. 253-267, 1984. 

HOJJATI, M.; HOA, S. V. Curing simulation of thick thermosetting 
composites. Composites Manufacturing, v. 5, n. 3, p. 159-169, 1994. 
HOLLAND, John H. Adaptation in natural and artificial systems: an introductory 
analysis with applications to biology, control, and artificial intelligence. MIT press, 1992. 
HORIE, K. et al. Calorimetric investigation of polymerization reactions. III. Curing 
reaction of epoxides with amines. Journal of Polymer Science Part A‐1: Polymer Chemistry, 
v. 8, n. 6, p. 1357-1372, 1970. 
HUTTON, David V. Fundamentals of finite element analysis. New York, EUA: McGraw-
Hill, 2004. 

ITO, Koichi; AKAGI, Shinsuke; NISHIKAWA, Masaaki. A multiobjective optimization 
approach to a design problem of heat insulation for thermal distribution piping network 
systems. In: Journal of Mechanisms, Transmissions and Automation in Design (Transactions 
of the ASME), 1983. p. 206–213. 

JAHROMI, Parisa Eghbal; SHOJAEI, Akbar; REZA PISHVAIE, S. Mahmoud. Prediction 
and optimization of cure cycle of thick fiber-reinforced composite parts using dynamic 
artificial neural networks. Journal of reinforced plastics and composites, v. 31, n. 18, p. 
1201-1215, 2012. 



179 

JANG, B. Z. Fracture behavior of fiber-resin composites containing a controlled 
interlaminar phase (CIP). Science and Engineering of Composite Materials, v. 2, n. 1, p. 29-
48, 1991. 

JOCHUM, Ch. et al. A cut-off fracture approach for residual stress estimation in thick 
epoxies. Materialwissenschaft und Werkstofftechnik, Vol. 47, Issue 5-6, 2016. p. 530-538. 
JOCHUM, Ch. et al. Cure multiphysic couplings effects on the dynamic behaviour of a 
thick epoxy. The 19th International Conference on Composite Materials. Montreal, Canada, 
2013.  
JOCHUM, Ch. et al. Estimation of the residual stress state generated during the curing of 
a thick epoxy matrix by pulsed laser. 16th European Conference on Composite Materials, 
Seville, Spain, 2014.  
JOCHUM, Ch. Thermosetting laminates quality: from fiber waviness to FEM cure 
modeling. Habilitation à Diriger des Recherches, ENSIETA, 2009. 

JOCHUM, Ch.; GRANDIDIER, J. C.; POTIER-FERRY, M. Modeling approach of 
microbuckling mechanism during cure in a carbon epoxy laminate. The 12th Conference 
on Composite Materials, Paris, France, 1999.  
JOCHUM, Ch.; GRANDIDIER, J. C.; SMAALI, M. A. Experimental study of long T300 
carbon fibre undulations during the curing of LY556 epoxy resin. Composites Science 
and Technology, Vol. 67, 2007. p. 2633-2642.  
JOCHUM, Ch.; GRANDIDIER, J. C.; SMAALI, M. A. Proposal for a long-fibre 
microbuckling scenario during the cure of a thermosetting matrix. Composites: Part A, 
Vol. 39, 2008. p. 19-28. 

JOCHUM, Ch; GRANDIDIER, J. C. Microbuckling elastic modelling approach of a single 
carbon fibre embedded in an epoxy matrix. Composites science and technology, v. 64, n. 
16, p. 2441-2449, 2004. 
JOHNSTON, Andrew A. An integrated model of the development of process-induced 
deformation in autoclave processing of composite structures. 1997. Tese de Doutorado. 
University of British Columbia. 

KAM, Tai-Yan; LAI, F. M.; SHER, H. F. Optimal paramerers for curing graphite/epoxy 
composite laminates. Journal of materials processing technology, v. 48, n. 1-4, p. 357-363, 
1995. 
KAMAL, M. R.; SOUROUR, S. Kinetics and thermal characterization of thermoset cure. 
Polymer Engineering & Science, v. 13, n. 1, p. 59-64, 1973. 

KAPPEL, Erik. Forced-interaction and spring-in–relevant initiators of process-induced 
distortions in composite manufacturing. Composite Structures, v. 140, p. 217-229, 2016. 

KAPPEL, Erik; STEFANIAK, Daniel; HÜHNE, Christian. Process distortions in prepreg 
manufacturing–an experimental study on CFRP L-profiles. Composite Structures, v. 106, 
p. 615-625, 2013. 
KENNEDY, Graeme J.; HANSEN, Jorn S. The hybrid-adjoint method: a semi-analytic 
gradient evaluation technique applied to composite cure cycle optimization. Optimization 
and Engineering, v. 11, n. 1, p. 23-43, 2010. 
LEE, Henry; NEVILLE, Kris. Handbook of epoxy resins. McGraw-Hill, New York, NY, 
USA, 1967. 



180 

LI, Chun et al. In-situ measurement of chemical shrinkage of MY750 epoxy resin by a 
novel gravimetric method. Composites Science and Technology, v. 64, n. 1, p. 55-64, 2004. 

LI, Min et al. Optimal curing for thermoset matrix composites: thermochemical 
considerations. Polymer Composites, v. 22, n. 1, p. 118-131, 2001. 

LI, Yuan-Long et al. A primary theoretical study on decomposition-based multiobjective 
evolutionary algorithms. IEEE Transactions on Evolutionary Computation, v. 20, n. 4, p. 
563-576, 2015. 
LIU, Chao; SHI, Yaoyao. An improved analytical solution for process-induced residual 
stresses and deformations in flat composite laminates considering thermo-viscoelastic 
effects. Materials, v. 11, n. 12, p. 2506, 2018. 

LIU, Jing; CHI, Yaxiong; ZHU, Chen. A dynamic multiagent genetic algorithm for gene 
regulatory network reconstruction based on fuzzy cognitive maps. IEEE Transactions on 
Fuzzy Systems, v. 24, n. 2, p. 419-431, 2015. 

LORD, S. J.; STRINGER, L. G. A modelling approach for predicting residual stresses 
and distortions in polymer composites. In: 17th International Conference on Composite 
Materials. Edinburgh. 2009. 

MATSUZAKI, Ryosuke et al. Multi-objective curing optimization of carbon fiber 
composite materials using data assimilation and localized heating. Composites Part A: 
Applied Science and Manufacturing, v. 119, p. 61-72, 2019. 

MAWARDI, A.; PITCHUMANI, R. Optimal temperature and current cycles for curing 
of composites using embedded resistive heating elements. J. Heat Transfer, v. 125, n. 1, p. 
126-136, 2003. 

MAZUMDAR, S. K. Composites Manufacturing: Materials, Product and Process 
Engineering. Boca Raton: CRC Press, 2002. 416 p.   

MCCRUM, Norman Gerard et al. Principles of polymer engineering. Oxford University 
Press, USA, 1997. 

MIDDLETON, Don H. (Ed.). Composite materials in aircraft structures. John Wiley & 
Sons, 1990. 

MIRACLE, D. B.; DONALDSON, S. L. ASM Handbook: Composites. v. 21. Metals Park, 
EUA: ASM International, 2001. 

MSALLEM, Youssef Abou; JACQUEMIN, Frédéric; POITOU, Arnaud. Residual stresses 
formation during the manufacturing process of epoxy matrix composites: resin yield 
stress and anisotropic chemical shrinkage. International journal of material forming, v. 3, 
n. 2, p. 1363-1372, 2010. 

MUZUMDAR, Shailesh V.; JAMES LEE, L. Chemorheological analysis of unsaturated 
polyester‐styrene copolymerization. Polymer Engineering & Science, v. 36, n. 7, p. 943-
952, 1996. 

NOCEDAL, Jorge; WRIGHT, Stephen J. (2nd Ed.). Numerical optimization. New York, 
NY: Springer New York, 2006. 

OLIVIER, Ph; COTTU, J. P. Optimisation of the co-curing of two different composites 
with the aim of minimising residual curing stress levels. Composites science and 
technology, v. 58, n. 5, p. 645-651, 1998. 



181 

OSYCZKA, Andrzej. Evolutionary algorithms for single and multicriteria design 
optimization. Heidelberg: Physica-Verlag, 2002. 
PAGANO, Rogério L. et al. Proposal of an optimum cure cycle for filament winding 
process using a hybrid neural network‐first principles model. Polymer composites, v. 35, 
n. 7, p. 1377-1387, 2014. 

PAIVA, Vivianne Marie Bruère de Carvalho. A multiphysics numerical simulation of the 
curing process of a thermosetting polymer resin. 2018. Dissertação de Mestrado. 
Universidade Federal de Pernambuco. 

PANTELELIS, N.; VROUVAKIS, Th; SPENTZAS, K. Cure cycle design for composite 
materials using computer simulation and optimisation tools. Forschung im 
Ingenieurwesen, v. 67, n. 6, p. 254-262, 2003. 
PATHAM, Bhaskar. COMSOL® Implementation of a viscoelastic model with cure-
temperature-time superposition for predicting cure stresses and springback in a 
thermoset resin. In: Excerpt from the proceedings of the COMSOL conference. 2009. 
PATHAM, Bhaskar. Multiphysics simulations of cure residual stresses and springback in 
a thermoset resin using a viscoelastic model with cure‐temperature‐time superposition. 
Journal of applied polymer science, v. 129, n. 3, p. 983-998, 2013. 

PIERRICK, Hamel et al. Klystron efficiency optimization based on a genetic algorithm. 
In: 2019 International Vacuum Electronics Conference (IVEC). IEEE, 2019. p. 1-2. 
PILLAI, V.; BERIS, A. N.; DHURJATI, P. Heuristics guided optimization of a batch 
autoclave curing process. Computers & chemical engineering, v. 20, n. 3, p. 275-294, 1996. 
PILLAI, V.; BERIS, A. N.; DHURJATI, P. Implementation of model-based optimal 
temperature profiles for autoclave curing of composites using a knowledge-based 
system. Industrial & engineering chemistry research, v. 33, n. 10, p. 2443-2452, 1994. 
PITCHUMANI, Rangarajan; YAO, Shi-Chune. Non-dimensional analysis of an idealized 
thermoset composites manufacture. Journal of composite materials, v. 27, n. 6, p. 613-636, 
1993. 
RABEARISON, N. Elaboration d’un outil numérique dédié à la simulation du procédé 
de fabrication des matériaux composites à résine thermodurcissable - prédiction des 
contraintes internes. 2009. 172 p. Thesis (Doctorate in Mécaniques des matériaux et 
structures) – École Doctorale SICMA, Université de Bretagne Occidentale, France, 2009. 

RABEARISON, N.; JOCHUM, Ch.; GRANDIDIER, J. C. A cure kinetics, diffusion 
controlled and temperature dependent, identification of the Araldite LY556 epoxy. 
Journal of Materials Science, v. 46, n. 3, p. 787-796, 2011. 

RABEARISON, N.; JOCHUM, Ch.; GRANDIDIER, J. C. A FEM coupling model for 
properties prediction during the curing of an epoxy matrix. Computational Materials 
Science. Vol. 45, p. 715-724, 2009. 

RABEARISON, N.; JOCHUM, Ch; GRANDIDIER, J. C. A finite element coupling model 
for internal stress prediction during the curing of thick epoxy composites. In: The 9th 
International Conference on Flow Processes in Composite Materials, Montreal, Canada, 2008. 

RATNA, Debdatta. Epoxy composites: impact resistance and flame retardancy. iSmithers 
Rapra Publishing, 2007. 

RATNA, Debdatta. Handbook of thermoset resins. Shawbury, UK: ISmithers, 2009.  



182 

RUIZ, Edu; TROCHU, F. Comprehensive thermal optimization of liquid composite 
molding to reduce cycle time and processing stresses. Polymer composites, v. 26, n. 2, p. 
209-230, 2005. 
RUIZ, Edu; TROCHU, F. Multi-criteria thermal optimization in liquid composite 
molding to reduce processing stresses and cycle time. Composites Part A: Applied Science 
and Manufacturing, v. 37, n. 6, p. 913-924, 2006. 

SAFARABADI, M.; SHOKRIEH, M. M. Understanding residual stresses in polymer 
matrix composites. In: Residual stresses in composite materials. Woodhead Publishing, 
2014. p. 197-232. 

SALOMI, A. et al. Spring-in angle as molding distortion for thermoplastic matrix 
composite. Composites Science and technology, v. 68, n. 14, p. 3047-3054, 2008. 

SCHAFFER, J. David. Multiple objective optimization with vector evaluated genetic 
algorithms. In: Proceedings of the First International Conference of Genetic Algorithms and 
Their Application. 1985. p. 93-100. 

SCHAFFER, James David. Some experiments in machine learning using vector evaluated 
genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition). 
1984. Tese de Doutorado. Vanderbilt University. 

SKORDOS, Alexandros A.; PARTRIDGE, Ivana K. Inverse heat transfer for optimization 
and on-line thermal properties estimation in composites curing. Inverse Problems in 
Science and Engineering, v. 12, n. 2, p. 157-172, 2004. 

SMAALI, M. A. Contribution à l’étude expérimentale du phénomène d’ondulation d’une 
fibre de carbone noyée dans une résine thermodurcissable tout au long de la cuisson. 
2005. 216 p. Thesis (Doctorate in Mécanique des Solides, des Matériaux, des Structures et des 
Surfaces) - Sciences pour l’Ingénieur, École Nationale Supérieure de Mécanique et 
d’Aérotechnique & Faculté des Sciences Fondamentales et Appliquées, France, 2005. 

STRUZZIERO, G.; SKORDOS, A. A. Multi-objective optimisation of composites cure 
using genetic algorithms. In: ECCM15-15th European conference on composite materials. 
Venice, Italy. 2012. 
STRUZZIERO, G.; SKORDOS, A. A. Multi-objective optimisation of the cure of thick 
components. Composites Part A: Applied Science and Manufacturing, v. 93, p. 126-136, 
2017. 
STRUZZIERO, G.; TEUWEN, J. E. Optimal cure cycles for manufacturing of thick 
composite parts using multi-objective genetic algorithms. In: ECCM18–18th European 
conference on composite materials. Athens, Greece. 2018. 
STRUZZIERO, Giacomo; TEUWEN, Julie JE; SKORDOS, Alexandros A. Numerical 
optimisation of thermoset composites manufacturing processes: A review. Composites 
Part A: Applied Science and Manufacturing, v. 124, p. 105499, 2019. 

SUBBIAH, A.; LALDIN, O. Genetic algorithm based multi-objective optimization of 
electromagnetic components using COMSOL® and MATLAB®. In: COMSOL 
Conference Proceedings. 2016. 

SUDHOFF, S. D. Genetic Optimization System Engineering Tool (GOSET) Version 2.6 
Manual 2014 [Online]. 2014. Available at 



183 

https://engineering.purdue.edu/ECE/Research/Areas/PES/Software/genetic-optimization-
toolbox-2.6. Access in 05 Fev 2021. 

SUDHOFF, Scott D. Power magnetic devices: a multi-objective design approach. John 
Wiley & Sons, 2021. 

SUDHOLT, Dirk. Parallel evolutionary algorithms. In: Handbook of Computational 
Intelligence, University of Sheffield, UK, 2007. 
SUN, Chengfo; ZHOU, Haiyan; CHEN, Liqing. Improved differential evolution 
algorithms. In: 2012 IEEE International Conference on Computer Science and Automation 
Engineering (CSAE). IEEE, 2012. p. 142-145. 

SURATNO, Basuki R.; YE, Lin; MAI, Yiu-Wing. Simulation of temperature and curing 
profiles in pultruded composite rods. Composites Science and Technology, v. 58, n. 2, p. 
191-197, 1998. 

TAVAKOL, Behrouz et al. Prediction of residual stresses and distortion in carbon fiber‐
epoxy composite parts due to curing process using finite element analysis. Journal of 
Applied Polymer Science, v. 128, n. 2, p. 941-950, 2013. 
TEIJIN CARBON. Applications. 2022. Available at: 
https://www.teijincarbon.com/applications/. Access in: 15 Jul 2022. 
TEIMOURI, V.; SAFARABADI, M. Semi-analytical study of thick polymer composites 
behavior during curing process. Engineering Solid Mechanics, v. 7, n. 3, p. 205-216, 2019. 

TIFKITSIS, Konstantinos I. et al. Stochastic multi-objective optimisation of the cure 
process of thick laminates. Composites Part A: Applied Science and Manufacturing, v. 112, 
p. 383-394, 2018. 

VAFAYAN, Mehdy et al. Development of an optimized thermal cure cycle for a complex-
shape composite part using a coupled finite element/genetic algorithm technique. Iranian 
Polymer Journal, v. 24, n. 6, p. 459-469, 2015. 

VIKHAR, Pradnya A. Evolutionary algorithms: A critical review and its future 
prospects. In: 2016 International conference on global trends in signal processing, 
information computing and communication (ICGTSPICC). IEEE, 2016. p. 261-265. 

WANG, R-M.; ZHENG, S-R.; ZHENG, Y-P. Polymer matrix composites and technology. 
Beijing: Woodhead Publishing, 2011. 555 p. 

WHITE, S. R.; HAHN, H. T. Cure cycle optimization for the reduction of processing-
induced residual stresses in composite materials. Journal of Composite Materials, v. 27, n. 
14, p. 1352-1378, 1993. 

WHITE, S. R.; HAHN, H. T. Mechanical property and residual stress development 
during cure of a graphite/BMI composite. Polymer Engineering & Science, v. 30, n. 22, p. 
1465-1473, 1990. 
WHITLEY, Darrell. An overview of evolutionary algorithms: practical issues and 
common pitfalls. Information and software technology, v. 43, n. 14, p. 817-831, 2001. 

WISNOM, M. R. et al. Curing stresses in thick polymer composite components. Part i: 
analysis. In: 12th International Conference on Composite Materials, Paris, July. 1999. p. 859. 



184 

WISNOM, M. R. et al. Mechanisms generating residual stresses and distortion during 
manufacture of polymer–matrix composite structures. Composites Part A: Applied 
Science and Manufacturing, v. 37, n. 4, p. 522-529, 2006. 
WISNOM, Michael R.; POTTER, Kevin D.; ERSOY, Nuri. Shear-lag analysis of the effect 
of thickness on spring-in of curved composites. Journal of composite materials, v. 41, n. 11, 
p. 1311-1324, 2007. 
WOLPERT, David H.; MACREADY, William G. Coevolutionary free lunches. IEEE 
Transactions on evolutionary computation, v. 9, n. 6, p. 721-735, 2005. 
WOLPERT, David H.; MACREADY, William G. No free lunch theorems for optimization. 
IEEE transactions on evolutionary computation, v. 1, n. 1, p. 67-82, 1997. 
WRIGHT, Ralph E. Thermosets, reinforced plastics, and composites. Handbook of 
Plastics, Elastomers, and Composites, p. 109-188, 2002. 

WUCHER, B. et al. Tooling geometry optimization for compensation of cure-induced 
distortions of a curved carbon/epoxy C-spar. Composites Part A: Applied Science and 
Manufacturing, v. 56, p. 27-35, 2014. 

YU, Xinjie; GEN, Mitsuo. Introduction to evolutionary algorithms. Springer Science & 
Business Media, 2010. 

YUAN, Zhenyi et al. Multi-objective approach to optimize cure process for thick 
composite based on multi-field coupled model with RBF surrogate model. Composites 
Communications, v. 24, p. 100671, 2021. 

ZBIGNIEW, Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. 
Third, revised and extended edition. Berlin: Springer-Verlag, 1999. 
ZENG, Yujiao; SUN, Yanguang. Comparison of multiobjective particle swarm 
optimization and evolutionary algorithms for optimal reactive power dispatch problem. 
In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014. p. 258-265. 
ZHU, Q.; GEUBELLE, P.H.; Li, M.; TUCKER, C.L. Dimensional accuracy of thermoset 
composites: simulation of process-induced residual stresses. Journal of composite 
materials, v. 35, n. 24, p. 2171-2205, 2001. 
ZITZLER, Eckart. Evolutionary algorithms for multiobjective optimization: Methods 
and applications. Ithaca: Shaker, 1999. Ph. D. Thesis, Zurich, Switzerland: Swiss Federal 
Institute of Technology (ETH) (Dissertation ETH No. 13398). 
 

 

 

 

 

 

 

 



185 

APPENDIX A – MESH CONVERGENCE STUDY RESULTS 

 
 MESH SIZES 

VARIABLE Normal Fine Finer Extra 
Fine 

Extremely 
Fine 

Min. degree of cure reached by the 
sample at the end of cure (1) -3.22% -1.25% 0.00% 0.00% 0.00% 

Max. temperature reached by the 
sample throughout the cure (°C) 0.26% 0.22% -0.01% 0.01% 0.00% 

Max. gradient of temperature 
reached by the sample AGP 
(°C/mm) 

23.70% 23.93% 5.75% 0.60% 0.00% 

Max. gradient of degree of 
conversion reached by the sample 
AGP (1/mm) 

532.46% 581.76% -0.51% 1.50% 0.00% 

Max. value of the volume average 
conversion rate throughout the 
cure (1/s) 

8.41% 7.29% -1.24% 0.38% 0.00% 

SIMULATION TIME 502 502 518 588 936 
NUMBER OF ELEMENTS 236 236 591 1783 7086 
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APPENDIX B – MATLAB SCRIPT FOR THE CONVERSION RATE DRIVEN (CRD) 

STRATEGY 
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APPENDIX C – MATLAB SCRIPT FOR THE MULTI-OBJECTIVE GENETIC 

ALGORITHM (GA) OPTIMIZATION 
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APPENDIX D – MATLAB FUNCTION THAT COMPUTES THE FITNESS OF A 

CURE SCHEDULE FOR THE MULTI-OBJECTIVE GENETIC ALGORITHM (GA) 

OPTIMIZATION 
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APPENDIX E – RESULTS OF THE MANUFACTURER’S RECOMMENDED CURE 

SCHEDULE, CONVERSION RATE DRIVEN STRATEGY AND MULTI-

OBJECTIVE GENETIC ALGORITHM OPTIMIZATION 

 

Method CT1  
(°C) 

CT2  
(°C) 

Time 
in 

CT1  
(min) 

Time 
in 

CT2  
(min) 

Min. 
alpha - 
end of 

the 
cure 

Max. 
T 

during 
the 
cure  
(°C) 

Cure 
time 
(min) 

Cure 
time  
(s) 

Max. grad. 
of alpha 

AGP (1/mm) 

Max. grad.  
of T  

AGP (°C/mm) 

MRC 80 140 240 480 85.4% 140 760 45600 1.450400E-
02 1.758738E+00 

GA 84 149 32 15 85.5% 154 90 5400 3.613083E-
02 4.028064E+00 

GA 90 145 32 25 85.5% 143 99 5920 3.264634E-
02 3.181300E+00 

GA 80 149 41 15 85.5% 152 99 5940 3.166027E-
02 3.392312E+00 

GA 82 148 41 17 85.5% 145 101 6040 2.793968E-
02 2.847233E+00 

GA 81 148 41 17 85.5% 147 101 6040 2.975206E-
02 3.084031E+00 

GA 82 150 47 17 85.5% 146 107 6440 2.193098E-
02 2.185444E+00 

GA 84 149 47 19 85.5% 146 109 6540 1.937290E-
02 1.683725E+00 

GA 82 150 57 19 85.5% 147 119 7160 1.541973E-
02 1.349670E+00 

GA 82 149 57 20 85.5% 146 120 7200 1.541972E-
02 1.349673E+00 

GA 82 148 57 21 85.5% 145 121 7240 1.541972E-
02 1.349672E+00 

GA 83 148 57 21 85.4% 145 121 7240 1.876637E-
02 1.228392E+00 

GA 82 147 57 22 85.5% 145 121 7280 1.541973E-
02 1.349670E+00 

GA 81 150 61 18 85.5% 147 122 7340 1.417046E-
02 1.343327E+00 

GA 83 147 57 23 85.5% 145 122 7340 1.876637E-
02 1.228361E+00 

GA 82 150 61 19 85.4% 147 123 7400 1.655796E-
02 1.240613E+00 

GA 82 148 61 21 85.5% 145 125 7480 1.655795E-
02 1.240615E+00 

GA 81 146 61 24 85.5% 144 127 7620 1.417045E-
02 1.343325E+00 

GA 82 146 61 24 85.5% 144 127 7620 1.655795E-
02 1.240617E+00 
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GA 81 150 65 19 85.5% 147 127 7640 1.439326E-
02 1.263197E+00 

GA 82 145 61 26 85.4% 143 129 7720 1.655795E-
02 1.240615E+00 

GA 81 146 65 24 85.4% 144 131 7860 1.439326E-
02 1.263195E+00 

GA 82 144 61 29 85.5% 143 131 7880 1.655796E-
02 1.240613E+00 

GA 82 143 61 32 85.5% 142 134 8040 1.655795E-
02 1.240617E+00 

GA 80 150 76 20 85.5% 147 139 8360 1.369253E-
02 1.446501E+00 

GA 80 148 76 22 85.5% 145 141 8440 1.369253E-
02 1.446497E+00 

GA 82 141 61 42 85.4% 141 143 8600 1.655796E-
02 1.240046E+00 

GA 80 144 76 29 85.5% 143 146 8780 1.369253E-
02 1.446501E+00 

GA 80 143 76 32 85.5% 142 149 8940 1.369253E-
02 1.446499E+00 

GA 80 142 76 36 85.4% 141 153 9160 1.369253E-
02 1.446496E+00 

GA 83 140 57 67 85.4% 140 164 9840 1.876637E-
02 1.208578E+00 

GA 82 140 61 68 85.4% 140 169 10140 1.655795E-
02 1.240050E+00 

CRD 94 150 32 21 85.5% 152 96 5780 
4.524162E-

02 4.996324E+00 

CRD 93 150 34 21 85.5% 148 98 5900 
4.320814E-

02 4.646478E+00 

CRD 91 150 36 20 85.5% 147 99 5960 
3.775106E-

02 3.702488E+00 

CRD 92 150 35 21 85.5% 147 99 5960 
4.045397E-

02 4.170036E+00 

CRD 90 150 38 20 85.5% 147 101 6080 
3.537003E-

02 3.319597E+00 

CRD 94 145 32 28 85.5% 152 102 6100 
4.524162E-

02 4.996324E+00 

CRD 89 150 39 20 85.5% 147 102 6140 
3.241552E-

02 2.843575E+00 

CRD 93 145 34 27 85.4% 148 103 6160 
4.320814E-

02 4.646478E+00 

CRD 92 145 35 27 85.5% 144 104 6220 
4.045397E-

02 4.170036E+00 

CRD 88 150 41 20 85.5% 147 104 6260 
2.988124E-

02 2.464465E+00 

CRD 91 145 36 27 85.4% 143 105 6280 
3.775106E-

02 3.702488E+00 

CRD 86 150 44 19 85.5% 147 106 6380 
2.420268E-

02 1.663500E+00 
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CRD 87 150 43 20 85.5% 147 106 6380 
2.732556E-

02 2.088699E+00 

CRD 89 145 39 26 85.4% 143 107 6400 
3.241552E-

02 2.843575E+00 

CRD 90 145 38 27 85.5% 143 107 6400 
3.537003E-

02 3.319597E+00 

CRD 84 150 47 18 85.5% 146 108 6500 
1.937288E-

02 1.683724E+00 

CRD 85 150 46 19 85.5% 147 108 6500 
2.164025E-

02 1.543725E+00 

CRD 88 145 41 26 85.5% 143 109 6520 
2.988124E-

02 2.464465E+00 

CRD 83 150 48 18 85.5% 146 109 6560 
1.967349E-

02 1.832096E+00 

CRD 82 150 50 17 85.5% 146 110 6620 
1.946504E-

02 1.898448E+00 

CRD 87 145 43 26 85.5% 143 111 6640 
2.732556E-

02 2.088699E+00 

CRD 86 145 44 26 85.5% 143 112 6700 
2.420268E-

02 1.663500E+00 

CRD 81 150 52 17 85.4% 146 112 6740 
1.949057E-

02 1.982924E+00 

CRD 85 145 46 25 85.5% 143 113 6760 
2.164025E-

02 1.543725E+00 

CRD 80 150 53 17 85.5% 147 113 6800 
2.043112E-

02 2.154546E+00 

CRD 83 145 48 24 85.4% 143 114 6820 
1.967349E-

02 1.832096E+00 

CRD 84 145 47 25 85.5% 143 114 6820 
1.937288E-

02 1.683724E+00 

CRD 82 145 50 24 85.5% 143 116 6940 
1.946504E-

02 1.898448E+00 

CRD 80 145 53 23 85.5% 143 118 7060 
2.043112E-

02 2.154546E+00 

CRD 81 145 52 24 85.5% 143 118 7060 
1.949057E-

02 1.982924E+00 

CRD 94 140 32 70 85.4% 152 142 8520 
4.524162E-

02 4.996324E+00 

CRD 92 140 35 68 85.4% 143 143 8580 
4.045397E-

02 4.170036E+00 

CRD 91 140 36 69 85.4% 140 145 8700 
3.775106E-

02 3.702488E+00 

CRD 93 140 34 71 85.4% 148 145 8700 
4.320814E-

02 4.646478E+00 

CRD 89 140 39 68 85.4% 140 147 8820 
3.241552E-

02 2.843575E+00 

CRD 90 140 38 70 85.4% 140 148 8880 
3.537003E-

02 3.319597E+00 

CRD 87 140 43 67 85.4% 140 150 9000 
2.732556E-

02 2.088699E+00 
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CRD 88 140 41 69 85.4% 140 150 9000 
2.988124E-

02 2.464465E+00 

CRD 86 140 44 67 85.4% 140 151 9060 
2.420268E-

02 1.663500E+00 

CRD 83 140 48 64 85.4% 140 152 9120 
1.967349E-

02 1.832096E+00 

CRD 85 140 46 66 85.4% 140 152 9120 
2.164025E-

02 1.543725E+00 

CRD 84 140 47 66 85.4% 140 153 9180 
1.937288E-

02 1.683724E+00 

CRD 82 140 50 64 85.4% 140 154 9240 
1.946504E-

02 1.898448E+00 

CRD 80 140 53 62 85.4% 140 155 9300 
2.043637E-

02 2.154546E+00 

CRD 81 140 52 63 85.4% 140 155 9300 
1.949057E-

02 1.982924E+00 
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ANNEX A – EPOXY RESIN’S SPECIFIC HEAT CAPACITY (RABEARISON, 2009) 
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ANNEX B – EPOXY RESIN’S THERMAL CONDUCTIVITY (RABEARISON, 2009) 
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