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ABSTRACT

Language constructs inspired by functional programming have made their way into
most mainstream programming languages. Many researchers and developers consider that
these constructs lead to programs that are more concise, reusable, and easier to under-
stand. Notwithstanding, few studies investigate the prevalence of these structures and the
implications of using them in mainstream programming languages. This paper quanti-
fies the prevalence of four concepts typically associated with functional programming in
JavaScript: recursion, immutability, lazy evaluation, and functions as values. We divide
the latter into two groups, higher-order functions and callbacks & promises. We focus
on JavaScript programs due to the availability of some of these concepts in the language
since its inception, its inspiration from functional programming languages, and its pop-
ularity. We mine 91 GitHub repositories (more than 22 million LOC) written mostly in
JavaScript (over 50% of the code), measuring the usage of these concepts from both static
and temporal perspectives. We also measure the likelihood of bug-fixing commits remov-
ing uses of these concepts (which would hint at bug-proneness) and their association with
the presence of code comments (which would hint at code that is hard to understand).
We find that these concepts are in widespread use (478,605 occurrences, 1 for every 46.65
lines of code, 43.59% of LOC). In addition, the usage of higher-order functions, immutabil-
ity, and lazy evaluation-related structures has been growing throughout the years for the
analyzed projects, while the usage of recursion and callbacks & promises has decreased.
We also find statistical evidence that removing these structures, with the exception of
the ones associated to immutability, is less common in bug-fixing commits than in other
commits. In addition, their presence is not correlated with comment size. Our findings
suggest that functional programming concepts are important for developers using a multi-
paradigm language such as JavaScript, and their usage does not make programs harder

to understand.

Keywords: functional programming; javascript; mining software repositories.



RESUMO

Constructos de linguagem de programacao inspirados pelo paradigma funcional che-
garam a maioria das linguagens convencionais. Muitos pesquisadores e desenvolvedores
consideram que esses constructos tornam programas mais concisos, reutilizaveis e mais
faceis de entender. No entanto, poucos estudos investigam a prevaléncia dessas estruturas
e as implicagoes de usé-las em linguagens de programagao convencionais. Este trabalho
quantifica a prevaléncia de quatro conceitos tipicamente associados a programacao funci-
onal em JavaScript: recursao, imutabilidade, avaliacdo preguicosa e fungdes como valores.
Dividimos o ultimo em dois grupos, fungoes de alta ordem e callbacks & promises. Fo-
camos em programas JavaScript devido a disponibilidade de alguns desses conceitos na
linguagem desde seu inicio, sua inspiracdo em linguagens de programagao funcionais e a
popularidade da linguagem. Mineramos 91 repositorios GitHub (mais de 22 milhoes de
linhas de cdédigo) escritos principalmente em JavaScript (mais de 50% do c6digo), me-
dindo o uso desses conceitos de perspectivas estaticas e temporais. Também medimos a
probabilidade de commits de correcao de bugs removendo usos desses conceitos (o que
sugeriria propensao a bugs) e sua associacdo com a presenca de comentarios de cédigo
mais longos (o que sugeriria um céddigo dificil de entender). Descobrimos que esses con-
ceitos sdo de uso generalizado (478.605 ocorréncias, 1 para cada 46,65 linhas de codigo,
43,59% de linhas de c6digo). Além disso, o uso de fungoes de alta ordem, imutabilidade
e estruturas relacionadas a avaliagao preguicosa vém crescendo ao longo dos anos para os
projetos analisados, enquanto o uso de recursao e callbacks & promises diminuiu. Tam-
bém encontramos evidéncias estatisticas de que a remocao dessas estruturas, com excegao
das associadas a imutabilidade, ¢ menos comum em commits de correcao de bugs do
que em outros commits. Além disso, a presenca dessas estruturas nao esté correlacionada
com o tamanho do comentario associado. Nossas descobertas sugerem que os conceitos
de programacao funcional sdo importantes para desenvolvedores que usam uma lingua-
gem multiparadigma, como JavaScript, e seu uso nao torna os programas mais dificeis de

entender.

Palavras-chave: programacao funcional; javascript; mineragao de repositorios de soft-

ware.
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1 INTRODUCTION

The rapid growth of computing power has made it possible to apply computing to com-
plicated tasks and increased the demand for software engineers (WIRTH, 2008). Modern
programs have become complex, reaching millions of lines of code written by large pro-
gram teams over many years. In this context, a language represents an abstraction whose
objects and constructs reflect a problem. In a high-level language, for example, a devel-
oper deals with numbers, indexed arrays, data types, conditional and repetitive statements
instead of bits and bytes, addressed words, jumps, and condition code (ROY et al., [2009)).

However, a programming language is not designed in a vacuum but for solving specific
problems, and each problem has a paradigm that is best for it. A paradigm is an approach
to programming a computer based on a mathematical theory or coherent principles, and
each one supports a set of concepts that makes it the best for a particular problem (ROY
et al, 2009). In this work, we focus on the functional programming paradigm.

Functional programming is a paradigm where programs are built by defining, applying,
and composing functions (SCOTT, 2016|). Many researchers (BACKUS, 1978; HUDAK, |1989;
HUGHES, (1989) consider that functional programming concepts lead to more concise,
reusable, and easier-to-understand programs. Elm, Scheme, Clojure, Erlang, Haskell, and
F+# are examples of functional programming languages. Multi-paradigm languages, such
as JavaScript and Python, also include structures popularized by functional languages,
like higher-order functions. JavaScript, for example, takes inspiration from functional
languages such as Lisp and Scheme (SATERNOS, [2014)). By mixing different paradigms,
these languages allow one to solve problems more quickly or efficiently than one could do

with a single paradigm.

1.1 PROBLEM STATEMENT

The extent to which developers use functional programming concepts in multi-paradigm
programming languages is unknown. Language structures inspired by functional program-
ming, e.g., function literals, have made their way into mainstream programming languages
like Java and C++. However, few studies (GALLABA et al., 2015} [MAZINANIAN et al., 2017}
XU et al., 2020; FIGUEROA et al., 2021)) investigate the usage of these structures, and when
they do, they evaluate few structures, few projects of multiple areas or are limited only to
purely functional languages. In particular, previous works have not investigated whether
the use of structures inspired by functional programming is connected to improvements
or decreases in code quality. In addition, they do not analyze code adjacent to these
structures, such as comments, or how the usage of these structures changes over time.

Therefore, in this work, we tackle the problem of understanding how developers use struc-
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tures inspired by functional programming in a mainstream multi-paradigm programming
language.

Studying how developers use these structures is important for several reasons. In-
vestigating their prevalence can reveal how successful their adoption by the community
has been, which can influence the design of future programming languages. Studying the
evolution in their usage provides subsidies for the development of new tools to automate
tasks such as refactoring, code analysis, and test-case generation. Analyzing their impact
on code quality can help technical managers in the decision to adopt or avoid these struc-
tures and languages that use them. It can also influence developers and maintainers to

conduct refactoring and re-engineering efforts.

1.2 GOALS AND METHODS

The goal of this work is to quantify the prevalence and significance of four concepts
typically associated with functional programming in JavaScript: recursion, immutability,
lazy evaluation, and functions as values (higher-order functions and callbacks & promises).
To do so, we measure the occurrence of these concepts and their structures from static and
temporal perspectives. We also measure the likelihood of bug-fixing commits removing
their uses, which would hint at bug-proneness, and their association with the presence of
code comments, which would indicate code that is hard to understand (HUNT; THOMAS|
1999; BECK], 2004; FOWLER et al), 2019)). We focus on JavaScript programs due to the
availability of some of these concepts and structures in the language since its inception, its
inspiration from functional programming languages (SATERNOS, 2014), and its popularity.

Based on the overall goal, we tackle the following research questions (RQs):

RQ1. How often are functional programming structures used in real software?
RQ2. How has the use of functional programming structures evolved over the years?

RQ3. Are uses of functional programming structures removed more often in bug-fixing

commits?

RQ4. Is code that employs functional programming structures associated with longer

comments?

Following the guidelines of [Easterbrook et al.| (2008)), these questions are divided into
two groups, frequency questions (RQ1 and RQ2) and relationship questions (RQ3 and
RQ4). The idea behind frequency questions is to understand the patterns of occurrence of
a phenomenon. If no base-rate questions are asked, there is no basis for saying whether a

particular situation is typical or unusual. Relationship questions, on the other hand, are
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related to the interest in knowing the relationship between two phenomena, specifically
whether one is related to the occurrence of the other.

To answer the research questions, we first select repositories from GitHub using es-
tablished criteria. After that, we give the repositories as input to our tool, PSMINER.
It starts the analysis process by ordering the repositories by Lines of Code (LOC) and
selecting the ones with the most LOC. Then, PSMINER begins its main task, which is to
mine the repositories for the usage of the functional programming concepts we investigate
in this study. It builds an abstract syntax tree from each repository’s files and recognizes
elements from the source code of these systems as functional programming structures. We
double-check the precision of the results produced by PSMINER. First, we draw a random
sample of code snippets and manually check whether the classification the tool performs
is correct. Second, to ensure that every structure is represented since some appear only
rarely, we randomly select five instances of each structure we have considered across all
the projects and manually check the results. Finally, we create scripts that can process
the data captured by PSMINER and infer knowledge from it. These results help us answer

our research questions.

1.3 CONTRIBUTIONS

The main contribution of this work is the study of the usage of functional programming
concepts in JavaScript projects. We found out that 43.59% of the ~22M analyzed lines
of code are related to functional programming structures, and it is possible to find one
use of such structures for every 46.65 lines of code. Furthermore, the usage of higher-
order functions, immutability, and lazy evaluation-related structures has been growing
throughout the years for the analyzed projects, while the usage of recursion and callbacks
& promises has decreased. In particular, the usage of immutability-related structures has
more than tripled throughout their evolution. Moreover, we find out that the concepts tend
to be removed less often in bug-fixing commits than in non-bug-fixing commits, excepting
immutability-related structures, and that there is no correlation between comment size
and source code including them. These findings highlight the importance of functional
programming structures to developers even in an inherently imperative language and
suggest that the usage of these structures is less error-prone than not using them and
does not make the source code difficult to understand.

As briefly mentioned, we developed PSMINER and created some Python scripts to
mine and measure the usage of functional programming concepts, respectively. Although
they are not frameworks and were not designed with extensibility in mind, it is possible
to customize some of their functionalities (we detail how to do that in [Section 5.3). We
also extracted and organized the data in publicly available data sets (ALVES et al., 2022a)).
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Finally, the paper entitled “On the Bug-proneness of Structures Inspired by Functional
Programming in JavaScript Projects” (ALVES et al., 2022b)) reports the study presented in

this dissertation and is currently under review.

1.4 TEXT ORGANIZATION

The remainder of this document is organized as follows. describes the foun-
dations of this work, the historical origins of functional programming, examples of lan-
guages and concepts commonly related to this paradigm, and an overview of what mining
software repositories is and how it can be applied. It also presents the works related to the
usage of functional programming structures, the usage of other structures in terms of un-
derstandability, and JavaScript data mining. presents the design of our study,
including the research questions, the selection of projects, and how we mined the con-
cepts specifically in JavaScript code and automated this process in PSMINER.
presents the results for each research question and discusses the threats to the validity
of this study. presents PSMINER, explaining how it works and how it can be
used and customized. Finally, concludes this work with our main findings, their

implications, and avenues for future works.
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2 FOUNDATIONS

In this chapter, we present the foundations of this work. It is organized into three sections.
is composed of the definition, origin, evolution, and use of concepts that in-
spired functional programming languages, as well as the definition of multi-paradigm lan-
guages and how languages such as JavaScript take advantage of the functional paradigm.
We briefly define mining software repositories in and present where and how
it is used in this work. Finally, we describe the related works in [Section 2.3

2.1 FUNCTIONAL PROGRAMMING

Functional programming is a paradigm where programs are built by defining, apply-
ing, and composing functions (SCOTT, [2016). Unlike imperative programming, which has
roots in the Turing machine, functional programming has roots in the Lambda Calcu-
lus (CHURCH, |1936). Many researchers (BACKUS, |1978; HUDAK, |1989; [HUGHES, |1989)
consider that functional programming concepts are more concise, reusable, and easier to
understand. Although academic research was the initial focus of this paradigm, functional
programming has been popularized in the industry in the last few years. Elm, Scheme,
Clojure, Erlang, and Haskell are examples of functional programming languages.

A fundamental characteristic of a functional programming language is that functions
can be assigned to variables, passed as arguments, and returned from functions. Also, like
mathematical functions, the outputs of a function depend only on its inputs because the
functions have no internal state (no side effects) (SCOTT, 2016). It eliminates a significant
source of bugs, making the order of execution irrelevant. Variables never change once given
a value because functional programs do not have assignment statements. One can evalu-
ate expressions anytime and replace variables by their values and vice versa (referential
transparency) (HUGHES, [1989). Furthermore, anonymous functions can be defined.

Functional languages typically include features not generally available in imperative
languages, such as lazy evaluation, partial function application, and absence of side ef-
fects. A functional language is considered pure when it treats every computation as the
evaluation of a mathematical expression, i.e., not allowing state changes and mutable
data. Likewise, a function that satisfies this property is called a pure function.

Some widely popular languages, such as Python and Swift, include structures popular-
ized by functional languages since their first versions. In addition, many mainstream im-
perative languages, such as C#, Java, and C++-, have introduced structures and libraries
to support a programming style heavily inspired by functional languages. JavaScript, for

example, takes inspiration from functional languages like Lisp and Scheme. The Lisp



17

community itself considers ECMAScript[l] which JavaScript is based on, as a dialect of
Lisp (SATERNOS, 2014). By mixing different paradigms, these languages allow one to solve

problems more easily or efficiently than one could do with a single paradigm.

2.1.1 Functional programming concepts

This section presents concepts that are considered elements of the functional program-
ming paradigm by multiple authors (WATT, 2004; SCOTT), 2016; KEREKI, [2020). However,
they do not represent everything possible in the languages of this paradigm. The con-
cepts presented in this section include those investigated in our study (see

and others that are important to the functional programming paradigm.

Pure functions: Functions are pure when they do not affect any state outside their scope.
In other words, they do not cause side effects. An important concept that pure functions
follow is that an expression must always evaluate the same result in any contextf] It means

that the output of a function application will always be the same given an input.

Algebraic data types: These are structured types formed by composing other types.
Programming languages support various composite values in terms of structuring con-
cepts, such as Cartesian products (tuples, records), mappings (arrays), disjoint unions
(algebraic types, discriminated records, objects), and recursive types (lists, trees) (WATT,
2004)). In Haskell, for example, it is possible to understand algebraic data types in terms
of disjoint unions, as presented in [Listing 2.1}

data Number = Exact Int | Inexact Float

Listing 2.1 — Disjoint Unions in Haskell

In Elm, these custom types are called “union types” and have a very similar syntax
to Haskell, as presented in |Listing 2.2|

type User = Student | Teacher

Listing 2.2 — Union Types in Elm

Pattern matching: In the context of programming languages, pattern matching is check-
ing one or more inputs against a pre-defined pattern and seeing if they match. It consists
of specifying patterns to which some data should conform, then checking to see if it
does, and deconstructing the data according to those patterns (LIPOVACA| 2011). Pat-
tern matching, especially for strings, appears in many programming languages. ML, for
example, is known for extending pattern matching to the full range of constructed values
- including tuples, lists, records, and variants - and integrating it with static typing and
type inference (SCOTT, [2016).

< https://www.ecma-international.org/publications-and-standards/standards/ecma-262/>

2 <https://elmprogramming.com /pure-functions.html>
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Listing 2.3|is an example of a factorial function using pattern matching in Haskell from
(LTPOVACA, |2011)). It depicts a function recursively, as it is usually defined in mathematics.
It starts by expressing that the factorial of 0 is 1. Then it displays that the factorial of any
positive integer is that integer multiplied by the factorial of its predecessor (LIPOVACA,
2011).

factorial :: (Integral a) => a -> a
factorial @ = 1
factorial n = n x factorial (n - 1)

Listing 2.3 — Factorial function in Haskell using pattern matching

Recursion: A function is recursive if it calls itself directly or indirectly (HINSEN, 2009).
Although this is not specific to functional programming languages, recursion is an impor-
tant concept because, in the absence of side effects, it provides the only general means of
performing repetition (SCOTT, [2016)).

Immutability: Immutable data is a standard feature of functional programming, and
it is used to prevent changes (mutation) in data structures. In other words, it means
the value of an expression depends only on the referencing environment in which it is
evaluated and not on the time at which the evaluation occurs. If an expression yields a
specific value at one point in time, it is guaranteed to yield the same value at any point in
time (referential transparency) (SCOTT), [2016)). Immutability, when applied to objects, for
example, creates objects that cannot be modified after they have been created (BRADY|,
2021)).

Functions as values: In functional languages, functions are values, which means that
they can be passed as parameters, returned from subroutines, or assigned to variables
(SCOTT, 2016). A function that takes another function as an argument or returns a
function as its result is called a higher-order function (SCOTT, 2016). This concept is
derived from mathematics and can be intuitively considered a function of functions (XU
et all 2020)). An example of a higher-order function is map, which takes a list [ and a
function f as its arguments and applies f to each element of 1. is an example
of a higher-order function in Elm. The map function takes function String.length and list
names as its arguments and applies the function to each element of the list returning a
list of their lengths.

names = [ "Fernando”, "foo"”, "bar" ]
lengths = List.map String.length names

Listing 2.4 — The map function in Elm

Lambdas: Lambda expressions are a core feature of functional programming. The term

Lambda function or Lambda expression is derived from Lambda Calculug’] In most of

3 <https://csmith111.gitbooks.io/functional-reactive-programming-with-elm /content /section2/

LambdaFunctions.html>
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the functional programming languages, lambda expressions are declared in the form of
anonymous functions which can be passed to or returned by other functions similar to
Lambda Calculus (MAZINANIAN et al}, 2017)). In Elm, they start with a “\” followed by a
list of parameters, the “~>” and the function body. is an example of lambda
expression in Elm. In this work, we do not map lambda functions individually, but we

look for thunks that are structured in the form of lambdas and related to lazy evaluation.
\n -> n + 1

Listing 2.5 — Lambda expression in Elm

Lazy evaluation: This concept is related to the idea that an expression is only evaluated
when its value is necessary, e.g., because it is used in an /O operation. Lazy evaluation is
a counterpoint to eager evaluation, where an operator is applied as soon as its operands
are known (WATT, 2004). With lazy evaluation, it is possible, for example, to avoid un-
necessary calculations and create infinite lists. Languages like Haskell make use of laziness
in its core (LIPOVACA, [2011]).

Currying: It is the process of transforming a function with multiple arguments into a
sequence of functions. Each of them receives one argument from the original function,
from left to right, returns a function that receives the other argument, and so on. Upon
being called with an argument, each function produces the next one in the sequence, and
the last one does the actual calculations (KEREKI, 2020).

In Elm, every function only takes one parametexﬂ So all the functions that accept
several parameters are automatically curried by the language. Consider that each space
in a function call is a function application in Elm. For example, the function max 1 3
is partitioned into two functions, one that receives 1 as an argument and another that
receives the other (3) and compares it to 1 to find the maximum value between them.
This process is called partial function application. It allows passing not all arguments to a
function, applying the given arguments to it, and returning a new one that can be applied
to the remaining arguments later. Consider the [Listing 2.6] It is possible to define a new
function called addTwo. It happens because the partial application of a function returns
another function.

add a b =a +b
addTwo = add 2

Listing 2.6 — Partial function application in Elm

4 |<https://learnyouanelm.github.io/pages/06-higher-order-functions.html>
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2.1.2 Historical origins of functional programming

In the 1930s, mathematicians like Alan Turing, Alonzo Church, Stephen Kleene, and
Emil Post worked in imperative and functional models, developing several formalizations
of the notion of an algorithm. Even working largely independently, these formalizations
were powerful enough: anything that could be computed in one could be computed in the
others (SCOTT), 2016)). From all of that work, Turing created the Turing Machine, which
computed imperatively, changing values in the cells of its tapes exactly as an imperative
program changes the values of variables. In contrast, Church created a model of compu-
tation called Lambda Calculus (CHURCH, (1936)), based on the notion of parameterized
expressions. This model strongly inspired functional programming because computation
is done by substituting parameters in expressions, and in a functional program, arguments
are passed to functions (SCOTT), 2016).

According to Turner| (2012), in 1958, Lisp began life as a project led by John McCarthy
at MIT. McCarthy himself wrote the first published account of the language and theory
of Lisp in 1960 (MCCARTHY|, 1960)). Also, in the early 60s, Peter Landin wrote a series of
seminal papers on the relationship between programming languages and lambda calculus.
In 1966, he described an idealized language family, ISWIM (If you See What I Mean). It
was the first appearance of algebraic type definitions used to define structures. Around
1967, PAL, the Pedagogic Algorithmic Language, was created as a vehicle for teaching
programming linguistics - it had run-time type checking. Between 1973 and 1975, John
Darlington made NPL (New Programming Language) with Rod Burstall. The language
was first order, strongly typed, purely functional, and had a call-by-value semantics. It
evolved into HOPE (BURSTALL et al., [1980)), a higher-order, strongly typed language with
explicit types, polymorphic type variables, and purely functional. Also, in Edinburgh, from
1973 to 78, the programming language ML emerged as the meta-language of Edinburgh
LCF (GORDON et al., [1979)). The language was higher-order, call-by-value, and allowed
assignment and mutable data. Standard ML (MILNER et al., [1997), which appeared later,
in 1986, is a mix of HOPE and ML but is not pure - it has references and exceptions.

Also, according to [Turner| (2012)), between 1983 and 1986, Miranda emerged as a lazy,
purely functional language, polymorphic with type inference, list comprehensions, and
optional type specifications. In 1984, an independent group of researchers at Chalmers
University implemented Lazy ML. It was a pure, lazy version of ML, used by Lennart
Augustsson and Thomas Johnsson as both source and implementation language for their
work on compiled graph reduction.

In 1987, a committee of researchers was organized and started work on the Haskell
Report at the FPCA’87 Conference. In 1990, they published the first Haskell Report,
which describes the motivation for creating the language. In 1992, occurs the creation

of GHC (Glasgow Haskell Compiler), an open-source compiler for the language. In 1994,
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the Haskell web pageﬂ was created, the primary information source about the language.
Finally, in 2010, another version of Haskell was released, and it stands as the current for
most Haskell developerd’|

Miranda strongly influenced Haskell’s design, so there are many similarities between
the two languages, like purity, higher-order, laziness, static typing, pattern matching, and
list comprehensions (HUDAK et al) 2007; TURNER, 2012). In Haskell, functions are also
curried but, like many other languages, a function with two arguments may be represented
as a function of one argument that returns a function of one argument, so Haskell supports
both curried and uncurried definitions (HUDAK et al., 2007)).

In 2005, the first release of F# became available. Originally developed at Microsoft
Research, Cambridge, it is a strongly typed functional-first, multi-paradigm language. It
descends from the ML language and was heavily inspired by OCaml (FANCHER, [2014)).
It has anonymous functions, immutable variables, lazy evaluation support, higher-order
functions, currying, and pattern matching.

In 2007, Rich Hickey released Clojurd| It is predominantly a functional programming
language and features a rich set of immutable, persistent data structures, functions as
first-class objects, and emphasizes recursive iteration instead of side-effect-based looping.
Moreover, Clojure is a dialect of Lisp and shares the code-as-data philosophy and an
influential macro system.

In 2012, José Valim released the first version of Elixir, a concurrent, functional pro-
gramming language designed to implement distributed, fault-tolerant systems built on
top of Erlang’s Virtual Machine. It is structured in functions and modules (groups of
functions), supports pattern matching and higher-order functions, and all the data types
are immutabld®]

Also, in 2012, Evan Czaplicki designed Elm as his thesis (CZAPLICKI, [2012). Elm in-
cludes traditional if-expressions, let-expressions, and case-expressions for pattern match-
ing. It supports higher-order and anonymous functions, partial application of curried
functions, immutable values, stateless functions, and static typing with type inferencd’|

able 1| summarizes the important facts about the origin and evolution of functional
programming.

Besides those already mentioned, many other languages use concepts typically asso-
ciated with functional programming. Swift, for example, has higher-order functions, re-
cursion, algebraic data types, and pattern matching, among other features. Java adopted

Lambda Expressions (also called closures) since its 8th version, adding support to anony-

<https://www.haskell.org/>
<https://serokell.io/blog/haskell-history>
<https://clojure.org/>

<https://serokell.io /blog/introduction-to-elixir>
<https://elmprogramming.com/>
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Table 1 — Timeline of important facts about functional programming.

Period Fact

1930s Alan Turing, Alonzo Church, Stephen Kleene, and Emil Post developed several formalizations of the notion of an algorithm.
1958 Lisp began life as a project led by John McCarthy at MIT.

1966 Peter Landin described an idealized language family, ISWIM (If you See What I Mean).

1967 PAL, the Pedagogic Algorithmic Language, was created.

19731975 John Darlington made NPL (New Programming Language) with Rod Burstall.
1973—1978 ML emerged as the meta-language of Edinburgh LCF.

1984 An independent group of researchers at Chalmers University implemented Lazy ML.

1985 First release of Miranda.

1986 Standard ML appears as a mix of HOPE and ML.

1987 A committee of researchers was organized and started work on the Haskell Report at the FPCA’87 Conference.
1990 The first Haskell Report, which describes the motivation for creating the language, was published.
1992 GHC (Glasgow Haskell Compiler), an open-source compiler for the language, is created.

2005 First release of F#.

2007 Rich Hickey released Clojure.

2010 The last formal specification of Haskell was made.

2012 In 2012, José Valim released the first version of Elixir.

2012 Evan Czaplicki designed Elm as his thesis.

Source: the author (2022)

mous functions. Python functions are first-class and can be higher-order or anonymous

too. Scala includes currying, immutability, and pattern matching.

2.1.3 Multi-paradigm programming languages

A programming language is considered to be multi-paradigm when it includes concepts
from multiple paradigms, like the imperative and functional ones. JavaScript and Python
are examples of multi-paradigm programming languages.

The extent to which developers use functional programming concepts to develop in
multi-paradigm programming languages is unknown. Perhaps developers are not even
aware they are using these concepts when programming with these languages. Moreover,
the use of functional programming concepts in a language that is not purely functional can
be confusing. Consider callbacks, for example, which are functions passed as arguments
to other functions and executed after them. They induce a non-linear control flow and
can be deferred to execute asynchronously, declared anonymously, and may be nested
to arbitrary levels, which can be challenging to understand and maintain (GALLABA et
all 2015)). Studying how developers use structures inspired by functional programming in
a mainstream multi-paradigm programming language can show us how these structures
are used in practice and provide subsidies for researchers and tool builders to propose
improvements.

In this work, we investigate the use of concepts inspired by the functional program-
ming paradigm in JavaScript, a mainstream, imperative, multi-paradigm language. More

specifically, we investigate the prevalence of the usage of functional programming con-
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cepts in software projects, their evolution, bug-proneness, and understandability (using

association to the presence of code comments as a proxy).

2.2 MINING SOFTWARE REPOSITORIES

Data mining is a set of techniques for uncovering patterns and other valuable infor-
mation from large data sets{r_gl. According to [Siddiqui e Ahmad| (2018)), mining software
repositories focuses on extracting and analyzing heterogeneous data, like bugs, issues, and
source code available in software repositories. Usually, this is done to uncover interesting,
helpful, and actionable information about software systems and projects. These data sets
can be, for example, code snippets available on sites like Stack Overflow or software repos-
itories from GitHub. Historical and valuable information stored in software repositories
provides an excellent opportunity to acquire knowledge and help monitor complex projects
and products without interfering with development activities and deadlines. Mining soft-
ware repositories is so related to software engineering nowadays that several conferences
are dedicated to the topic, such as MSRE].

In this work, we mine 91 open-source repositories in JavaScript and collect data
about the usage of 22 functional programming structures related to the concepts of that

paradigm.

2.3 RELATED WORKS

We organize related work in terms of three main lines: studies on the usage of func-
tional programming (Section 2.3.1)), understandability of structures other than functional

programming ones ([Section 2.3.2)), and mining studies targeting JavaScript projects
tion 2.3.3).

2.3.1 Usage of functional programming structures

We found in the literature studies investigating the usage of specific functional pro-
gramming structures. For example, |Gallaba et al| (2015) investigated the usage of call-
back in a corpus of 138 JavaScript programs. They found out that, on average, every 10th
function definition takes a callback as an argument. Xu et al.| (2020) analyzed the use
of high-order functions in Scala programs. They collected 8,285 higher-order functions
from 35 Scala projects and found out that 6.84% of functions are defined as higher-order

functions on average. Figueroa et al.| (2021]) analyzed the use of monads as a dependency

10 <https: //www.ibm.com/cloud /learn /data-mining>
1 <https:/ /www.msrconf.org/>
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Table 2 — Related works.

Work Functional programming concepts Programming Investigated factors
language

Gallaba et al.| (2015) Functions as value (callbacks) JavaScript usage frequency

Xu et al.| (2020 Functions as value (high-order functions) Scala usage frequency

Figueroa et al.| (2021) Monads Haskell usage frequency

Magzinanian et al.|(2017) Lambda Expressions Java usage frequency

This work Recursion, lazy evaluation, functions as  JavaScript usage frequency  and

value, immutability evolution, bug-proneness,

and association with code
comments

Source: the author (2022)

in 85,135 packages in the Haskell language. They found that 32% of the packages depend
on the packages that implement monads. [Mazinanian et al. (2017)) analyzed the usage
of lambda expressions in 241 open-source Java projects. The authors found out that the
ratio of lambdas introduced per added line of code increased by 54% between 2015 and
2016 and also discovered that developers adopt lambdas for reasons such as making code
more concise and avoiding duplication. These are the closest related work to ours.
summarizes these similarities. We investigated more than one functional programming
concept in our work, differently from those studies that focused on one specific concept.

Following along different lines, Lubin e Chasins (2021) studied how programmers write
code in several statically-typed functional programming languages, including Haskell,
Elm, F#, and others. The authors conducted a grounded theory analysis of 30 program-
ming sessions, combined with 15 semi-structured interviews, and produced a theory of how
programmers write code in these languages. They then validated some of the elements of
that theory in a controlled experiment and found out, for example, that programmers in
these languages tend to code in a cycle of writing a bit of code and running the compiler,
even when it is clear that compilation will fail. Furthermore, pattern matching tended to
incur a reduced workload compared to combinators.

Kamps et al.| (2020)) studied structural degradation in Haskell programs by monitoring
three static metrics related to size, cohesion, and coupling. The authors leveraged the
Gini coefficient to measure structural inequality. They found out that post-release defects
correlate significantly with the degree of inequality between the size of the modules in

three mature Haskell systems.

2.3.2 Understandability of structures other than functional programming ones

One related work that inspired us, particularly for the research questions, is the work
by |Gopstein et al.| (2018). They used a corpus of fourteen C and C++ projects measuring

the prevalence and significance of 15 atoms of confusion, which are small code patterns,
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such as conditional operator, that can cause programmers’ misunderstandings. Among
the research questions of their work are questions that seek to find the frequency of
use of atoms, whether the age of projects influences the number of atoms, whether they
are removed more frequently in bug-fix commits, and if atoms are commented out more
frequently than any other type of structure. All these questions inspired our research
questions.

Despite the inspiration, we gather and interpret the data differently than (Gopstein et
al.| (2018)). First, how we choose the repositories differs mainly because of the nature of
each work. Gopstein et al.| (2018]) obtained the list of repositories from the US DOD FOSS
GRAS (United States Department of Defense Free and Open Source Software Generally
Recognized as Safe) and The IDA Open Source Migration Guidelines from the European
Commission. In our case, we selected projects with SeArt[% using the criteria described in
[Chapter 3| Regarding the research question concerning bug fixes, only one of the fourteen
repositories was chosen in their work. They analyzed the repository commit by commit to
determine whether it was a bug fix. In our case, we search all repositories as described in
[Chapter 3] Another example of a different approach is the question related to comments
associated with code. Gopstein et al. (2018)) sought to understand only the relationship
between the existence of comments associated or not with atoms of confusion. In our
case, we seek to understand the length of comments rather than simply looking for their

presence.

2.3.3 Mining JavaScript projects

We found some studies that mined JavaScript repositories. Hanam et al.| (2016) mined
105K commits from 134 server-side JavaScript projects aiming to discover bug patterns. In
a study by Campos et al.| (2019), they mined code snippets in JavaScript on Stack Overflow
to analyze them using ESLinter, a JavaScript linter. Furthermore, they investigated the
use of those code snippets in GitHub projects. [Saboury et al.| (2017a)) investigated code
smells in 537 releases of five popular JavaScript applications aiming to understand how
they impact the fault-proneness of applications. They detected 12 types of code smells
(e.g., nested callbacks and variable re-assign) and found out that, on average, files without
code smells have hazard rates 65% lower than files with code smells.

Richards et al.| (2011]) conducted a large-scale study of the use of the eval function in
JavaScript-based web applications. They recorded the behavior of 337TMB of strings given
as arguments to 550,358 calls to eval exercised in over 10,000 websites and observed that,
at the time, between 50% and 82% of the most popular websites used eval. They also
confirmed, in that context, that eval usage is pervasive and not necessarily something

problematic.

12 <https:/ /seart-ghs.si.usi.ch />
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In our work, we mine 91 GitHub repositories (more than 22 million LOC) written

mostly in JavaScript (over 50% of the code).
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3 STUDY DESIGN

The goal of this study is to quantify the prevalence and significance of recursion, im-
mutability, lazy evaluation, and functions as values in JavaScript programs. To do so, we
measure the occurrence of these concepts and their structures from static and temporal
perspectives, as well as the likelihood of bug-fixing commits removing their uses and their
association with the presence of code comments. In this chapter, we present our research

questions (Section 3.1J), how we select projects ([Section 3.2)), how we mine functional pro-
gramming concepts in JavaScript programs ([Section 3.3)), and our methods to answer the

research questions (Section 3.4)).

3.1 RESEARCH QUESTIONS

To understand the use of concepts inspired by functional programming in JavaScript
programs, we formulated research questions that would indicate whether the phenomenon
in question is a commonplace situation or not (EASTERBROOK et al., 2008). In addition,
we are also looking to answer questions relating these structures’ use to associated bug-fix

rates and comments. Therefore, we focus on the following questions:

RQ1. How often are functional programming structures used in real software?
RQ2. How has the use of functional programming structures evolved over the years?

RQ3. Are uses of functional programming structures removed more often in bug-fixing

commits?

RQ4. Is code that employs functional programming structures associated to longer com-

ments?

RQ1 aims to gauge the pervasiveness of functional programming structures in real-
world JavaScript software. RQ2 provides a temporal perspective, measuring the evolution
in using these structures in the studied projects. For RQ3, we are interested in assessing
bug-proneness. Although it is difficult to identify the causes, we can use the code that
changes when bugs are fixed as a proxy (SLIWERSKI et al., [2005)). Therefore, the rationale
for RQ3 is that if bug-fixing commits are more likely to remove instances of functional
programming structures than non-bug-fixing commits, this may indicate that these struc-
tures are bug-prone. Finally, the rationale behind RQ4 is that, since developers write
comments to help them better understand the functioning and the intent of code snip-
pets, we expect code with longer comments to be more troublesome to understand than
code with shorter comments, as reported in previous work (BUSE; WEIMER, 2008; STEIDL
et al) 2013} /AMAN et al., 2015). With this question, we seek to understand whether there

is an association between comment length and functional programming structures. We

provide more details about these questions in [Section 3.4]
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3.2 PROJECT SELECTION

We first select the repositories to be analyzed to answer our research questions. We
aim to select a representative sample of mature repositories written mainly in JavaScript.
We also want our sample to follow good GitHub data-mining practices. More specifically,
as mentioned by Hinsen| (2009), the selected projects should be active, i.e., with at least
one commit in the last six months, at least 1,000 commits, and 1,000 issues overall, not
personal or archived projects, and created before six months ago. We use GitHub because
of its popularity among developers, documented ways of accessing its content through
APIs, and the possibility of accessing open-source software (OSS) from diverse domains.

Unfortunately, GitHub does not offer ways of directly obtaining a list of repositories
using the earlier criteria. It provides channels to search for repositories through its search
API[]and using the advanced search?| but not without having to develop a software system
to group the returned data. So, after testing some methods (KRISHNA et al) [2018)) and
tools (e.g., Reaper (MUNAIAH et al},2017)), we decided to use a tool called SeArt ]| (DABIC
et al., 2021)), because it allows us to get a list of repositories with the mentioned criteria.

We use the following settings to search repositories using SeArt: Language (JavaScript),
Number of commits (1,000, at minimum), Number of contributors (2, at minimum,
to avoid personal repositories), Number of issues (1,000, at minimum), Created at
(before 2021-01-01, six months before collection date), Last commit at (after 2021-01-
01, six months after collection date) and Exclude forks (yes). This search returns 357
repositories. We then remove the archived ones, not found (git cloning returned a not
found error), and the ones whose GitHub topics were related to documentation or guides.
After this filtering step, we keep 338 repositories.

With these results, we run a tool called clod to obtain the Count of Lines of Code
(CLOC) of each repository because we use this information in some research questions and
also to prioritize repository processing. We ignore some folders (node_modules, coverage,
build, bin, stories, dist and 3rdParty) trying to avoid code that is usually related to
the build process, third-party libraries, or auto-generated code. Despite searching only for
JavaScript projects, we consider code written in TypeScript. According to its Websiteﬂ
TypeScript is just “JavaScript with syntax for types”. In other words, we accept all ex-
tensions related to JS and TS as options for cloc. Executing cloc resulted in a count
of 35,396,336 lines of code. Finally, we order the repository list by CLOC and select the
100 projects with the most LOC. Since we could not parse nine of them, our final list
has 91 projects amounting to 22,326,070 LOC. summarizes some statistics of the

<https://docs.github.com/en/rest /reference/search>
<https://github.com/search/advanced>
<https://seart-ghs.si.usi.ch/>
<https://github.com/kentcdodds/cloc>
<https://www.typescriptlang.org/>
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Table 3 — Selected projects.

Min 25% 50% 5% Max
LOC 101,952 116,077 173,106 284,617 1,857,932
# Stargazers 17 380 2,982  17,840.5 171,203
# Contributors 13 76 171 346 1,504
# Commits 1,765 5,924 9,768 17,849 77,667
# Issues 1,007 1,878 2,879 6,939 21,538

# Pull requests 1,002  1,775.5 2,971 5,089 36,763

Source: the author (2022)

selected projects. It shows that our sample comprises mature repositories with extensive
histories in the number of commits and diverse in several aspects such as popularity (i.e.,

number of stars) and number of contributors.

3.3 MINING USAGES OF FUNCTIONAL PROGRAMMING CONCEPTS IN JAVASCRIPT
PROJECTS

When mining for the usage of functional programming concepts, we search for specific
blocks of code that can represent those concepts described in [Section 2.1.1} To process
them, we developed a tool, named PSMINER (see , that can build an AST
(Abstract Syntax Tree) from the files of each repository and recognize elements from
the source code of these systems as functional programming structures. Our tool was
developed by extending the TypeScript Compiler API because it allows us to infer types
in a way that other parsers we have tested (e.g., Esprima@ were not able to, adding more
reliability to the results.

We also verify the precision of the results produced by our tool in two ways. First, we
draw a random sample of 384 code snippets and manually check whether the classification
the tool performs is correct. To have a confidence level of 95% that the real value is within
+5% of the measured value, 384 or more samples are needed. To reduce the impact of
disproportionately large projects, we randomly select a project and then randomly pick one
code snippet including a potential functional programming structure from that project.
We repeat this procedure 384 times. In this step, we did not find any misclassifications.
Second, to ensure that every structure is represented, since some appear only rarely,
e.g., the flatMap function, we randomly select five instances of each structure we have
considered, across all the projects, totaling 105 code snippets. Also, we did not find any
misclassification in this step. Table 4] presents the complete list of structures.

In the remainder of this section, we explain the JavaScript structures we selected to

represent the functional programming concepts described in [Section 2.1.1].
6 |<https://esprima.org/>
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3.3.1 Recursion

We looked for function declarations whose names are used as call expressions once or
more inside their bodies. We consider only direct recursion, i.e, we do not account for
cases where a function f calls a function g which calls f. Previous work has shown that
indirectly recursive calls are uncommon (CARTER et al), 2018). Furthermore, this analysis
would considerably increase the processing time since it would require the identification

of cycles in the program call graph.

3.3.2 Immutability

When parsing for immutability, we look for structures representing the idea of shal-
lowly copying a data structure (object or array) or preventing it from being changed. We
do not, for example, look for deep clones or libraries related to immutability (e.g., Ramda,
Underscore.js). Therefore, we consider four scenarios for immutability.

The first case we consider is the use of the Object.freeze method. It prevents an
object (and its prototype) from being changed. When analyzing the repositories, we used
the TypeScript type checker to infer when a call expression has a left-hand side expression
with an object constructor, whose name is freeze, to reduce the probability of false
positives.

Next, we consider the use of spread syntax for immutability because it is used to
(shallowly) copy or destructure arrays and objects without modifying them. To process
these structures, we search for array literal expressions that represent spread elements and
spread assignments. shows an example of an object (person) being shallowly
copied into another object (anotherPerson). This new object has its age property changed
to 51, but that does not affect the first object.

const person = { age: 50 };
const anotherPerson = { ...person, age: 51 };

console.log(person.age); // 50
console.log(anotherPerson.age); // 51

Listing 3.1 — Example of spread syntax.

In addition to the spread syntax for shallow copies, we also look at two other struc-
tures with the same purpose, Object.assign (with an empty object passed in the first
parameter) and Array.slice (with no arguments taken). In the first situation, we look for
a call expression with precisely two arguments where the first one is an empty object and
the second one is an object. We also take uses of Array.slice into account because, when

no arguments are taken, the slice function returns a copy of an array in its entirety, in a
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similar way to those previously mentioned. Parsing this structure requires only searching

for call expressions from arrays whose names are slice with zero arguments.

3.3.3 Lazy evaluation

Although JavaScript does not support lazy evaluation inherently, it includes mecha-
nisms that can delay the evaluation of an expression (or execution of a statement) until
it is necessary. This work examines two such mechanisms, named generator functions and
thunks.

Generator functions are not directly inspired by functional programming (KEREKI,
2020). Notwithstanding, we consider them a way of achieving lazy evaluation because
instead of immediately processing an expression when invoked, these functions return a
particular type of iterator called generator. This iterator only has its value consumed
when the generator’s next method is called, executing the function until it finds the
yield keyword. With generators, it is possible, for example, to create infinite lists, a
typical example of the uses of lazy evaluation (HUGHES| [1989)). An asterisk token can
identify generator functions or methods in their declarations.

In [Listing 3.2] there is a generator function that returns numeric values every time
its next method is called. It is important to note that, thanks to lazy evaluation, it is
possible to use an infinite data structure (Infinity) without running out of memory.
function* range() {

let count = 0;
for (let i = @0; i < Infinity; i++) {

count++;
yield i;
3
return count;
3
const iterator = range();

console.log(iterator.next().value); // 0
console.log(iterator.next().value); // 1

Listing 3.2 — Example of a generator function.
A thunk is a nullary function literal, i.e., an arrow function that has no parameters.
Thunks encapsulate computations that are only executed when they are actually invoked.
Consequently, they can also be used to delay evaluation (KEREKI, 2020). In [Listing 3.3]

the expression “2 + 27 is only evaluated when the thunk four is called.
const four = () => 2 + 2;

Listing 3.3 — Example of a thunk.
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3.3.4 Functions as values

Due to the emphasis of this work on JavaScript, we divide functions as values into two
groups: higher-order functions (HOFs) and callbacks & promises.

When parsing for HOFs, we look for two specific scenarios. The first scenario occurs
when a function takes another function as an argument and uses it to traverse a list
applying it to each component of the list (WATT, 2004)). To identify this scenario, we look
for function names that refer to native functions from Array.prototype (every, filter,
find, findIndex, flat, flatMap, forEach, map, reduce, reduceRight and some), and
receive functions as arguments to traverse a list. We search for type-inferred arguments
that are arrow functions, function expressions, or type-inferred functions. We ignore cases
where TypeScript is unable to infer the type of the argument.

The second scenario consists of non-native functions (created by a developer) returning
another function as their result. We disregard non-native function declarations that take
functions as parameters due to a limitation of the Typescript compiler API that does not
infer functions types in that manner. This does not include callbacks, which we address
later in this section. In addition, there are many ways to call functions in JavaScript but
we decided to only parse property access expressions, i.e., of the form o.f(). We are
also not considering Array.prototype overriding. We discuss these limitations in more
detail in [Section 4.6l

Callbacks are functions passed as an argument to another (parent) function and they
are typically used in asynchronous calls such as timeouts and XMLHttpRequests (XHRs).
Callbacks are executed after the parent function has completed its execution (FARD; MES-
BAH, 2013)), that is, “as a handler to be called in response to some future event.” (SCOTT,
2016)). In this work, we only look for functions that use callbacks, that is, functions whose
parameter names are called once or more inside their bodies. More specifically, we con-
sider scenarios where declared functions are passed as arguments or where the argument
is an anonymous function.

A promise is an object that represents the eventual completion (or failure) of an
asynchronous operation and its resulting value. We consider it an excellent example of
the native use of functions as values because when promises are created, it is possible to
pass at least two arguments (two functions) that will be called when a promise succeeds
(resolve) or fails (rejects). Promises became popular in JavaScript as an approach to
discipline the use of callbacks. To parse them, we look only for declarations of promises,
so we type-check new expressions creating objects of type Promise. presents a
promise that fulfills with the value 1 when it resolves, printing it in the console.

new Promise((resolve) => {
resolve (1)
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}).then(console.log) // 1

Listing 3.4 — Example of a promise.

3.4 METHODS

To answer RQ1, we first identify all uses of functional programming concepts from
the main revision of each repository. To do this, we visit every AST node searching for
specific node kinds that can include uses of these concepts, as explained in the previous
section. This process is done in conjunction with the data extraction of RQ2, except that,
for RQ1, we only consider the revision marked with GitHub’s main revision SHA.

To get data to answer RQ2, we go through each commit for each repository, analyzing
one snapshot (due to computational cost) per month when available. This process starts on
the main revision date and ends with the first available commits made in the repositories.
For each set of functional programming concepts we identify, we save this data to use
during the analysis step.

To address RQ3, we need to obtain commits and classify them as bug-fixing or non-
bug-fixing commits. To do so, we rely on labels provided by developers to categorize issues
and pull requests on GitHub repositories. We use the REST and GraphQL GitHub APIs
to fetch issues and pull requests based on queried labels related to bugs and then obtain
the commits that closed these issues and pull requests for every analyzed project.

First, we define a list of terms that are related to bugs, which is composed of bug,
error, defect, failure, fault, and exception. These terms are used in a query to fetch
labels related to bugs in a given repository. In this matching process, we ignore labels
that contain one bug-related term together with the term unconfirmed or not.

After that, we start the process for each repository included in our study. We first get
all labels from a given repository and classify them as bug-related labels or not according
to the terms described above. Then, we fetch issues and pull requests from the repository
because when we were developing our extraction tool, there was no way of directly down-
loading commits based on the labels of the associated issues and pull requests. Thus, for
each bug-related label in the repository, we download up to 1,000 closed issues or pull
requests since the last repository commit date using a GraphQL query. We chose not to
recursively download all issues and pull requests because it would take much longer to
get all the data in each repository, which would also add considerable processing time
to the data analysis. We only consider the issues that were closed by a commit or by
a pull request through the GraphQL GitHub closing event (CLOSED_EVENT) so that we
can associate them with their fixing commits. Finally, from the selected issues and pull
requests, we fetch the last associated commit and consider them bug-fixing commits. To
download non-bug-fixing commits, we follow the same steps, but the query to fetch the

issues and pull requests is made so as not to bring data that contains the bug-related
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labels. We consider that the commits found in these issues and pull requests are not from
bug fixes.

Our tool analyzes the repository versions from the bug-fixing and non-bug-fixing com-
mits to identify and count how many occurrences of functional programming structures
were removed. Note that this analysis is performed on the complete snapshots of the iden-
tified commits and their parents, not the git difference between them. We consider the
entire snapshot because we leverage the available information to improve the precision
of detecting some functional programming structures—loading only the modified parts of
the code limit TypeScript’s ability to infer types.

To answer RQ4, we visit every AST node on each repository’s main git revision,
looking for comments. To parse them, we use the TypeScript Compiler API to collect
information about the positioning of the comments, based on ranges from the full text
of each source file and node positioning (full start for leading comments and end
for trailing comments), their types (leading or trailing), whether they are adjacent to
functional programming structures or not, and whether they have JSDoc tags. In addition,
we also remove repeated comments, as the same comment can appear in more than one

AST node and persist in CSV files.
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4 STUDY RESULTS

In this chapter, we present the results of the study. Each one of the four research questions

(RQs) is addressed in its respective section.

41 HOW OFTEN ARE FUNCTIONAL PROGRAMMING STRUCTURES USED IN REAL
SOFTWARE? (RQ1)

In our corpus of 91 open-source JavaScript projects, we identified 478,605 occur-
rences of functional programming structures. Considering that the analyzed projects have
22,326,070 lines of code, that means that there is one use of functional programming
concepts for every 46.65 lines of code, on average. Table 4| shows a breakdown of these
occurrences in terms of these structures (column “Occurrences (#)”) and the percentage
of the overall LOC of the analyzed projects related to functional programming (column
“% LOC?).

If we examine the number of lines of code of the functional programming structures,
43.59% of all of them, in the projects, are related to functional programming. It means that
almost one out of every two lines in these projects is related to functional programming.
This number may sound inflated, but it makes sense when we consider that, for example,
for a higher-order function, we include all the lines of the function in this count, as
we show in Listing [4.1] The rationale for this conservative approach is to account for
the code affected by functional programming in its entirety. For example, for the code
snippet in Listing [3.4] we would count three lines of code. It may lead to some lines
of code being counted more than once for different structures, e.g., a callback may use
higher-order functions and invoke Object.freeze. This is the reason why, if we add up
all the percentages in the column “% LOC” of Table [4 the result will be greater than
the aforementioned 43.59%. Different approaches could have been employed, but then
identifying which parts of the code pertain to functional programming concepts and which
ones do not become fuzzy. For example, in an anonymous function used as a callback,
should we ignore its body when counting the lines of code? The answer is not clear.
We mitigate this problem by presenting both the number of LOC and the number of
occurrences of each structure.

In total, the most pervasive concept is lazy evaluation, with 299,520 occurrences.
The least pervasive one is recursion, with only 7,879 occurrences. When we consider the
structures related to the concepts, the most and least frequent ones are, respectively,
thunks, with 298,797 instances, and the higher-order function reduceRight, with only
25 occurrences. Furthermore, we did not find occurrences of flat functions. When we

consider the number of lines of code, callbacks & promises comprise 4,168,527 LOC, i.e.,
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Table 4 — Prevalence of functional programming structures.

Concept Structure % LOC  Occurrences (478,605)
Higher-order every 0.0133% 0.1272% (609)
functions filter 0.0753% 1.0971% (5,251)
find 0.0181% 0.4461% (2,135)
findIndex 0.0021% 0.0501% (240)
flat 0% 0% (0)
flatMap 0.0010% 0.0079% (38)
forEach 0.6475% 2.9024% (13,891)
map 0.3179% 2.1454% (10,268)
reduce 0.0879% 0.4643% (2,222)
reduceRight 0.0005% 0.0052% (25)
some 0.0160% 0.2513% (1,203)
Non-native 8.8892% 7.4418% (35,617)
Total 10.0688% 14.9388% (71,499)
Immutability — Array.slice 0.0034% 0.1529% (732)
Object.assign 0.0067% 0.2171% (1,039)
Object.freeze 0.0526% 0.3661% (1,752)
Spread Assignment  0.6263% 5.4366% (26,020)
Spread Element 0.0916% 1.0403% (4,979)
Total 0.77% 7.213% (34,522)
Callbacks &  Callback 17.8525% 9.2330% (44,190)
Promises Promise 0.8767% 4.3867% (20,995)
Total 18.67% 13.6197% (65,185)
Lazy Generator 0.0435% 0.1510% (723)
evaluation Thunk 15.3588% 62.4308% (298,797)
Total 15.4023% 62.5818% (299,520)
Recursion 1.2233% 1.6462% (7,879)

18.67% of all the LOC in the analyzed projects. Immutability, the functional programming
concept with the least lines of code, comprises only 172,462 LOC, i.e., 0.77% of all the

LOC.

Table [] also presents the proportions of all the occurrences of functional program-
ming concepts represented by each structure. Furthermore, the sum of the occurrences of

thunks and callbacks accounts for 71.66% of all the occurrences of functional programming

Source: the author (2022)

structures in the analyzed projects.

function () {

var canSetImmediate

= typeof window !==

&& window.setImmediate;

var canPost

typeof window !==

'undefined’

'undefined’

&& window.postMessage && window.addEventListener

’
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if (canSetImmediate) (
return function (f) { return window.setImmediate(f) }I;

if (canPost) {

var queue = [];
window.addEventListener ('message', function (ev) {
var source = ev.source;
if ((source === window || source === null) && ev.data === '

process-tick') {
ev.stopPropagation();
if (queue.length > 0) {

var fn = queue.shift();

fnQ);

}
}, true);

return function nextTick(fn) {
queue.push(fn);
window.postMessage ('process-tick', 'x');

};

return function nextTick(fn) {
setTimeout(fn, 0);
i

Listing 4.1 — Example of a higher-order function mined in a repository (ajaxorg/ace).

Figure 1| shows the distributions of the usages of functional programming concepts in
the repositories. The LOC of the projects normalizes the distributions. Note that the scale
is different for each violin plot. The usage of callbacks & promises, higher-order functions,
and recursion is overall consistent for the projects, which is observed by the density of
projects in the median of the distributions. However, this consistency does not exist with

immutability-related structures and the lazy-evaluation-related ones.

Key takeaways for RQ1. We found out that functional programming concepts are
used very often in the analyzed projects, on average, once for every 46.65 lines of code.
In addition, the code related to these structures comprises 43.59% of all the LOC in
these projects. The most popular of these structures are thunks. They represent 62.43%

of all functional programming structures and occur six times more often than the second

most popular one, callbacks.
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Figure 1 — Distribution of use of functional programming concepts in repositories
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42 HOW HAS THE USE OF FUNCTIONAL PROGRAMMING STRUCTURES EVOLVED
OVER THE YEARS? (RQ2)

We also investigate how the use of functional programming concepts changes through-
out the evolution of the 91 repositories. We adopt the following approach. First, for each
monthly snapshot (see Section of each project (totaling 5,757 monthly snapshots),
we count the number of lines of the functional programming concepts, normalized by the
overall number of LOC of the project. Second, we calculate the percentage change for each
pair of consecutive monthly snapshots. If any of the two snapshots has a zero value, we
discard it and use the next one with a non-zero value. Finally, we compute the geometric
mean of all the percentage changes for each repository and structure. The geometric mean
is useful to summarize changes in percentages over time. For example, if the geometric
mean of the percentage changes for one of the functional programming concepts, for one
project, is exactly 1.0, this means that the use of that concept did not change throughout
the evolution of that project. In case it is 1.01, this means that, on average, the use of
that concept grew 1% per subsequent snapshot. Since the values are normalized by the
number of LOC, this is a real growth in the use of functional programming.

The violin plot in presents the result of the processing. Each violin shows
the distribution of the geometric means of the analyzed projects for each functional pro-

gramming concept. The white dot in each violin indicates the median geometric mean.
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Figure 2 — Distribution of evolution of functional programming concepts in repositories
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Table 5 — Order statistics for the geometric means summarizing the evolution in the use of functional
programming structures in the analyzed projects. A value of 1.0 means no change.

Concept Min 25% 50% 75% Max

Callbacks & promises 0.834839 0.981676 0.997667 1.010751 1.119621
Higher-order functions 0.849989 0.994403 1.001208 1.012228 1.170697

Immutability 0.926663 1.007126 1.020825 1.044866 1.161784
Lazy evaluation 0.895239 0.998629 1.012532 1.057329 1.185875
Recursion 0.783807 0.980235 0.998015 1.006601 1.089953

Source: the author (2022)

The numbers at the bottom of the plot show the median number of snapshots based on
the geometric means calculated. The plot shows that all the medians sit close to 1.0.
Table |5| presents the order statistics for the data in the plot. It is possible to see that 50%
of the projects exhibited a monthly growth of 2.0825% in the use of immutability struc-
tures. Since we are considering 61.5 snapshots (as shown at the bottom of the plot), this
represents an overall growth of 255% (1.0208258%%%) in the use of immutability-related
structures, on average. The usage of two other functional programming concepts also grew
in the analyzed projects: lazy evaluation (107.21%) and higher-order functions (9.74%).
For the two remaining concepts, there was a reduction. Overall usage of recursion fell by
13.67% and callbacks & promises by 16.65%.
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Key takeaways for RQ2. The use of functional programming structures has been
growing throughout the years for the analyzed projects. However, this growth is uneven
and inconsistent for all functional programming concepts. Usage of immutability-related
structures has grown by more than 255% whereas usage of structures for lazy evaluation
has doubled. On the other hand, the usage of recursion and callbacks & promises has
decreased by 13.67% and 16.65%, respectively.

4.3 ARE USES OF FUNCTIONAL PROGRAMMING STRUCTURES REMOVED MORE
OFTEN IN BUG-FIXING COMMITS? (RQ3)

In our corpus of 91 open-source JavaScript projects, in this research question, we use
151,489 commits, where 42,929 are classified as bug-fixing commits and 117,558 as non-
bug-fixing commits. To analyze the error-proneness of functional programming concepts,
we start from the null hypothesis that there is no relationship between bug-fixing commits
and the removal of functional programming structures. More specifically, we formulate
five null hypotheses, one for each functional programming concept. We perform the chi-
square test considering two dimensions: bug-fixing vs. non-bug-fixing commits and with
vs. without removal of functional programming structures. Since we test five hypotheses,
we apply the Bonferroni adjustment to the alpha. Thus, we use an alpha of 0.01.

Table [6] presents the obtained p-values for the chi-square test. In all comparisons, the
null hypotheses are rejected, excepting immutability. In other words, there is a relationship
between the removal of functional programming structures and bug-fixing commits but
not for the latter. For all the tests that rejected the null hypothesis, the p-values are
orders of magnitude lower than 0.01.

We then calculate the odds ratio to quantify the odds of functional programming
structures removed in a bug-fix commit. Table [6] shows the results for the functional

programming concepts. For example, the odds ratio for recursion is 0.622. It indicates

Table 6 — The p-values and odds ratios for the relationship between bug-fixing commits and the removal
of functional programming structures. For all the cases, excepting immutability, the removal of
functional programming structures is less likely to occur in bug fixing commits than in non-bug
fixing commits.

Concept Chi-square test (p-value) Odds ratio
Recursion 4.580 x 10793 0.622
Lazy evaluation 2.591 x 107 0.958
Higher-order functions 5.049 x 10714 0.931
Callbacks & Promises  1.196 x 10752 0.826
Immutability 0.015276

Source: the author (2022)
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that functional programming structures are 37.77% less likely to be removed in bug-
fixing commits than in non-bug-fixing commits. This same phenomenon can be observed
for all the cases that rejected the null hypothesis, although less intense. Structures related
to lazy evaluation, higher-order functions, and callbacks & promises are 4.16%, 6.89% and
17.38% less likely to be removed in bug-fixing commits, respectively. These results suggest
that using functional programming structures in JavaScript programs is less bug-prone

than not using them, except for immutability.

Key takeaways for RQ3. Functional programming structures tend to be removed less
often in bug-fixing commits than in non-bug-fixing commits. It can be observed for all
the functional programming concepts, excepting immutability. The difference is more
prominent for recursion and callbacks & promises than for other functional programming
concepts. They are 37.77% and 17.38% less likely to be removed in bug-fixing commits,

respectively.

4.4 1S CODE THAT EMPLOYS FUNCTIONAL PROGRAMMING STRUCTURES ASSOCI-
ATED TO LONGER COMMENTS? (RQ4)

Code comments aim to make code easier for developers by explaining how it works or
the rationale behind its leading design and implementation decisions. Some authors (BECK,
2004; HUNT; THOMAS, 1999; [FOWLER et al., 2019) argue that comments indicate problems
with their associated code, especially if they appear within methods. [Fowler et al.| (2019)

states the following about code comments:

It is surprising how often you look at thickly commented code and notice that

the comments are there because the code is bad.

We investigate whether comments associated with code that leverages functional pro-
gramming concepts tend to be longer than comments for code that does not include
these structures. We expect longer comments associated with code that is harder to un-
derstand (AMAN et al., 2015; STEIDL et al., 2013; BUSE; WEIMER), |2008)). Our sample has
1,644,133 comments, 17,772 of them are adjacent to the functional programming struc-
tures and 1,626,361 are not. Of these comments, 131,342 are trailing and 1,512,791 are
leading. 311,365 are using JSDoc tags. The most commented concept is higher-order func-
tions with 13,842 comments. The one with the least is immutability.

We use the point-biserial correlation coefficient to check the correlation between com-
ment size (a continuous variable) and the presence of functional programming structures
(a dichotomous variable) in the associated code snippet. We do not take JSDoc tag com-
ments into account as they have a specific structure used to generate documentation for
coarse-grained entities, e.g., entire methods or classes. shows the results of the
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Table 7 — Correlations between usage of functional programming structures and code comment size. The
p-values only indicate statistical significance for functional programming in general. For all the
cases, correlation was negligible.

Concept Point-biserial coefficient  p-value
Recursion —12.064 x 1075 0.889
Lazy evaluation —13.906 x 10~° 0.872
Higher-order functions —50.456 x 107> 0.560
Callbacks & Promises  —23.197 x 107° 0.789
Immutability —6.026 x 1075 0.944
All —57.107 x 107° 0.510

Source: the author (2022)

point-biserial correlation for each of the functional programming concepts. For all the
concepts the correlations are negligible, and the p-values suggest that it is not possible
to infer a relationship between comment size and the use of functional programming con-
cepts. Considering the combination of all structures, without distinguishing between the
concepts, we obtain a p-value of 0.510 and a correlation of —57.107 x 10~°. This correlation
is negligible, and the p-value indicates no statistical significance. This result suggests that
code including functional programming concepts is not more challenging to understand
than code that does not.

Key takeaways for RQ4. We found no correlation between comment size and code
with functional programming concepts. When examining the different functional pro-
gramming concepts separately it is not possible to ascertain whether there is a relation-

ship or not.

4.5 DISCUSSION

The JavaScript language includes support for higher-order functions and enables every
function to be treated as a value since its first version in 1995. More recent versions of
the ECMAScript specification, e.g., ES 6, in 2015, extend this support with structures
such as arrow functions and the const declaration. This study shows that these struc-
tures have widespread adoption in the analyzed projects. At the same time, besides the
use of callbacks (GALLABA et al/, [2015; [GALLABA et al., 2017; SABOURY et al., 2017Db]), we
are not aware of any other study in the literature that studies how ideas from functional
programming influence software development in JavaScript. Researchers have an opportu-
nity to fill in this knowledge gap by investigating in-depth topics such as how developers
use immutability structures, how to support these developers in building (mostly) purely
functional programs in JavaScript, and how to refactor existing systems to leverage these

structures.
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Not only are functional programming structures in widespread use, but their use has
also been growing even when we normalize that growth based on the number of lines of
code in each project. As pointed out in Section[4.2] on average, the frequency of occurrence
of structures related to lazy evaluation, mainly thunks, has grown by more than 100%
throughout the life of these projects. Although there was a reduction in recursion and
callbacks & promises, these reductions were comparatively small. In the former case, the
reduction may be explained by the growth in the use of higher-order functions, since
many of these functions (map, filter, reduce) perform operations that are typically
implemented recursively. In the latter case, part of the reduction can be explained by the
use of alternative structures, such as async-await, introduced in ECMAScript 8 (2017),
which provide a more disciplined way of using promises. Similarly, the growth in the use of
thunks can be partially explained by the publication of the ECMAScript 6 specification,
which introduced these structures. Notwithstanding, it does not explain why 62% of all
the occurrences of functional programming structures in projects pertain to this case.
Investigating these changes in tendencies in more depth is left for future work.

An important point raised during the execution of this research was whether we should
consider const declarations or not. A const declaration can be seen as connected to
immutability because it declares a block-scoped, read-only variable. So, the value of a
const variable will not be reassigned or redeclared within the same scope because its
reference is immutable. Despite this, the Mozilla Developer Network Web Doc{] consider
that const is not an immutability structure because such as variable may be assigned
an object or array, which is mutable. If we hypothetically consider this element to be
related to the functional programming concept of immutability in our analyses, it would
significantly impact the results. For example, it becomes the most pervasive structure,
with 900,858 instances. About one in every 25 lines of code in the analyzed projects would
consist of a const declaration. Also, almost two out of every three occurrences of functional
programming structures would be uses of const declarations. The sum of the occurrences
of const declarations, thunks, and callbacks would account for 90% of all the occurrences
of functional programming structures. Furthermore, the usage of immutability structures
would have grown, on average, by approximately 400% throughout the evolution of the
analyzed projects.

Since the early days of functional programming, it has been touted to as a way to write
code that is clearer and easier to understand. In his Turing Award Lecture, [Backus| (1978])
remarked about a functional program that “its structure is helpful in understanding it
without mentally executing it”. A decade later, [Hughes (1989) argued that “[functional
programming/ allows improved modularization.”. According to him, mechanisms such as
lazy evaluation and higher-order functions make it possible to write simpler programs by

decomposing them into small, easy-to-write and read pieces. Hudak| (1989) emphasized

1 <https://developer.mozilla.org />


https://developer.mozilla.org/
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the importance of immutability, arguing that “although the notion of referential trans-
parency may seem like a simple idea, the clean equational reasoning that it allows is very
powerful, not only for reasoning formally about programs but also informally in writing
and debugging programs.” These authors and their ideas have been very influential in the
Programming Languages and Software Engineering communities. Even though they focus
on statically-typed, purely functional languages, this paper shows that there is potential
benefit in leveraging these ideas, even if only partially, in the context of a dynamically-
typed, imperative programming language. Our study provides evidence that the use of
structures inspired by functional programming does not make code harder to understand
while being potentially less bug-prone. Considering that functional programming struc-
tures have seen little empirical evaluation, this is an important step that can motivate
the community to conduct more studies.

Finally, we tried to understand if there is any correlation between comment length and
the usage of functional programming-inspired structures in the neighboring code, but this
is not the only aspect to be considered. The presence of Self-Admitted Technical Debt
(SATD) comments has been analyzed by some works (BAVOTA; RUSSO, 2016; MALDON-
ADO et al., [2017). Analyzing whether there is any relationship between SATD comments
and the use of functional programming is another dimension for future work. In addition,

an in-depth analysis can also be performed on the removal of these comments.

4.6 THREATS TO VALIDITY

Construct validity. Some structures cannot be directly related to their concept. For exam-
ple, we considered spread as a structure that promotes immutability because developers
use it to create copies of objects and arrays when they do not want to change the origi-
nal ones. However, someone can use it to create copies for another intention that is not
immutability.

Some ways of mining structures were not considered because they were not representa-
tive enough. For example, there are many ways to call functions in JavaScript, but, after
sampling four GitHub popular projects (React, Angular, ESLint, and Hoodie), we discov-
ered that only 0.07% of function call expressions were not property access expressions,
so we decided to ignore other access expressions, e.g., element access erpression, when
parsing. We also searched for Prototype overriding of higher-order functions, e.g., redef-
initions of function map, and found no cases in our random sample. It means that it is
possible to identify native higher-order JavaScript functions by their name and target
object type.

Furthermore, as in most implementations of source code analysis, our parser has some
limitations. For example, we did not find any case of flat functions. An in-depth analysis

would show the reasons for it. Moreover, in a literal array where each element is in one line,
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and there is a comment in each line, the parser only returns the comment in the last line of
the literal array. Also, due to the nature of the structures we mine and the high dynamism
of the JavaScript language, the precision of the mining process may be negatively affected.
We gauge the precision of the tool we have built by manually checking the results produced
by it, as reported in Section [3.3] We did not find any misclassifications.

Internal validity. To mine the usage of functional programming structures, we analyzed
the entire projects’ versions to find additions and removals instead of the actual changes
between pairs of versions. Analyzing the changes would increase the engineering effort for
implementing the parser and make it impossible to mine some structures. However, by
analyzing the entire versions of the projects, we do not have the mapping of the actual
structures from one version to another, which is a threat to our study. For instance, if a
given existing structure in a version of the project was deleted in a subsequent one, but
in that subsequent version, a different structure, but of the same kind, was added, our
parser will count it as the same structure.

Moreover, for RQ3, we hypothesize that if functional programming structures are
deleted in bug-fixing commits, their usage might be bug-prone. This hypothesis assumes
that all changes in a bug-fixing commit are about the bug fix. However, research projects
have shown that bug-fixing commits contain other changes that are not related to bug
fixes (HERBOLD et al., [2021)).

Finally, for RQ4, we compared the size of comments in source code related to functional
programming structures with the size of comments in other source code. Our analysis is
performed at the AST level, and a comment might belong to more than one AST node
since comments are at the line level. It would bias our results because the same comment
would be counted for several nodes. To solve that, each comment found in multiple AST
nodes was considered only for the first node. However, the existing threat to our study’s
validity is that a comment might belong to AST nodes related to functional programming
structures and other code, and we cannot know for sure what the comment is about. In
such a case, we keep the comment for one AST node of each type of code (related and

non-related to functional programming structures).

Ezxternal validity. Even though we searched for projects from various domains, it is still
possible that our sample is not representative enough among the many repositories avail-
able on GitHub. Furthermore, it is impossible to relate our findings with enterprise soft-
ware development, mainly because we analyzed only open-source software. Moreover, the
functional programming structures we choose may not be representative when general-
izing functional languages. As we decided to focus on some scenarios, we know that we
do not evaluate several other functional programming structures, so we can not say how

representative these other structures would be.
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5 PSMINER

This chapter presents PSMINER, which is the programming structures’ Miner developed
in this work to mine software repositories. It explains how PSMINER can be installed
and configured (Section [5.1]), how it is implemented (Section [5.2), and how it can be
customized to be used in further studies (Section [5.3)).

PSMINER is publicly available at
<https://doi.org/10.5281 /zenodo.6425005>| (ALVES et al., 2022a).

5.1 INSTALLING & CONFIGURING

Figure 3 — Reopen in Container option listed in Visual Studio Code menu.
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Reopen in Container Remote-Containers
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Attach to Running Container...

Add Development Container Configuration Files...

Source: the author (2022)

Some applications must be installed and configured to run PSMINER. Docker and
Visual Studio Code are examples of this. In addition to them, the Remote Containers
extensionﬂ should also be installed to deal with running containers in Visual Studio Code.
After that, it is only necessary to open the project in Visual Studio Code and select the
option “Reopen in Container” from this extension. It will open the project in a Docker

container with the project’s dependencies installed. In cases where it is not possible to

L <https://code.visualstudio.com/docs /remote /containers>
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use Docker, PSMINER can be installed using a local instance of Node.jf]. In both cases,
the central command to run the mining process is npm start.
Besides that, it is mandatory to configure a .env file to run this project. This file

accepts five variables:

TOKEN: In this variable, it is required to place a Personal Access Token (PAT) from
GitHubﬂ with permissions read:gpg_key, repo and user with all options selected.
This token is used to make requests to GitHub APIs.

NODE_OPTIONS: This is where the environment variables are passed to Node. By
default, we recommend passing the max-old-space-size setting to at least 8192
(8GB of memory). This option increases the memory space available to PSMINER

while it is running.

START: This variable is the starting point index for PSMINER to create a range of
repositories to be analyzed. The minimum value is zero, and the maximum value

is the number of available repositories in results.csv, the output file of the SeArt
(Section [3.2)) tool, minus one.

END: This variable is the final index in the list of repositories to PSMINER analyze. The
value must always be greater than or equal to START. The maximum value is the

number of repositories available in the results.csv file.

STEP: This variable indicates how many repositories should be downloaded and analyzed
in parallel while running PSMINER. The database back-end that the tool employs,
SQLite, does not support parallelism, though. Therefore, when using it, the value

of this variable should always be 1.

5.2 DEVELOPMENT
This section describes each step of the mining tool. It is where we seek to justify every

decision made during the development of the tool. When possible, we go into more specific

details regarding commands executed or other tools that have been added.

5.2.1 Input data pre-processing

Before starting the data extraction, PSMINER must preprocess the SeArt file (results.csv).

In our study, preprocessing consisted of obtaining the number of lines of codes (LOC) in

2 <https://nodejs.org/>
3 <https://docs.github.com /en/authentication /keeping-your-account-and-data-secure /
creating-a-personal-access-token>


https://nodejs.org/
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
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each repository. This data is extracted by running clocﬂ It is an NPM package, created
by Kent C. Dodds, based on another tool of the same namd’} which counts the number
of files, the number of blank lines, comment lines, and code lines of the source files in a
set of repositories. For each analyzed project, cloc measures the number of LOC for each
language employed in its source files and export their counts to CSV files. For our study,
we consider only the sum of all the lines of code instead of counting languages separately.
With this information in hand, PSMINER exports a new file (cloc.csv) concatenating
the information available in results.csv adding a new column, named cloc, to store the

generated information. This file is the starting point for all further analyses.

5.2.2 Data extraction from repositories

After completing the process described in the previous section, PSMINER extracts data
from the repositories. It loads the list of selected repositories and sorts them by size (col-
umn cloc) to analyze the largest repositories first. It does this because these repositories
take longer to load and have the potential to have more of the functional programming
concepts we are looking for. If it is not possible to analyze all selected repositories, these
are the ones with the highest priority. It then validates through GitHub’s REST API if
any selected repository was archived. As the repository environment on GitHub is very dy-
namic, this possibility exists. After that, PSMINER downloads all the chosen repositories
to be analyzed.

Downloading a repository includes verifying whether it already exists in the destination
folder, is up to date, and the default revision branch is still available (if not, PSMINER
fetches from GitHub which one is the new default using the REST API). It also includes
checking if the branch master was renamed to main| in cases where the master is the
default branch in cloc.csv file. PSMINER uses simple—git[] to run git commands when
manipulating repositories.

We created a GraphQL query that returns all labels from a repository and groups
them by name. PSMINER transforms all the labels into lowercase letters and removes
duplicates before storing them. PSMINER then filters the list of labels searching for the
ones related to bug classification, stores them in CSV files, and then classifies commits.

As there was no way of directly downloading commits with specific labels from GitHub
at the time, PSMINER took another approach to obtain this data. Using a GraphQL query,
it downloads closed issues (or pull requests) up to the limit imposed by GitHub (1,000)
for each bug label in each repository since the last repository commit date (obtained in

the SeArt data file). It only considers the issues closed by a commit or a pull request

<https://github.com/kentcdodds/cloc>
<https://github.com/AlDanial /cloc>
<https://github.com/github/renaming>
<https://www.npmjs.com/package/simple-git>
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through the CLOSED_EVENT event. In other words, PSMINER considers that a commit or
a pull request that closed last the issue is the one that fixed the bug (after all, an issue
can be closed or reopened several times). PSMINER classifies them as bug fixes and stores
them in a SQLite database. In this case, it uses Sequelizd, a TypeScript ORM, to manage
data. This way, PSMINER checks if there is already a commit with the same URL while
storing it, avoiding duplicated data.

When an issue was closed because of a pull request (instead of a commit), PSMINER
gets the resource information (in this case, a pull request) through a GraphQL query
(fetchPullRequest). We do this because if PSMINER were to pull the information all at
once while downloading issues, it could have millions of nested results, thus maxing out
the limitf’] of a GraphQL query in GitHub. This fetched information only considers up to
the limit imposed by GitHub (100) of the most recent commits that remain associated
with the pull request plus the commit that was responsible for merging it (mergeCommit).
PSMINER considers that these commits are from bug fixes and then follows the same steps
for each pull request returned from this search.

When downloading the list of non-bug-fix commits, PSMINER repeats the steps, slightly
changing the query to fetch them. It uses a property called -label, populated with all
those labels used in the step of capturing bug labels. This property excludes issues or pull
requests from the search with these labels. We consider that the commits found in these
issues and pull requests are not from bug fixes and save them in the SQLite database. It
excludes commits that are not part of the repository but are related to it (for example,
when related to external pull requests). These commits require us to process their original
repositories, which may be unavailable considering our resources. PSMINER does the same
to listed commits that are not part of the repository anymore, e.g., because of a removed
branch or fork™|

Next, PSMINER identifies differences by comparing the complete snapshots of the
project before and after a commit because the TypeScript parser cannot make type infer-
ences accurately without loading the entire projects. Moreover, PSMINER checks whether
the commit exists locally through the command git cat-file -s and, if not available, it
performs a git fetch origin passing the commit’s SHA as a parameter. In this manner,
a temporary branch called FETCH_HEAD is created to represent the state of the repository
locally at that revision. After that, PSMINER checks out to this new branch and runs
the commit size verification process (to ensure that the commit is downloaded). With the
commit locally available, it is necessary to load the list of changed files using the command
git diff-tree with some parameters that ignore file removals and file renaming without

changes. In the first case, it is not possible to analyze the file further (because it is not

8 <https://sequelize.org/>

9 |<https://docs.github.com/en/github-ae@latest /graphql /overview /resource-limitations#rate-limit >

10 <https://docs.github.com /pt /github /committing-changes-to-your-project /
troubleshooting-commits/commit-exists-on-github-but-not-in-my-local-clone>
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available in the revision), and in the second one, there are no code changes other than
the filename. From this list of files, it analyzes only those that fit the same criteria used
to filter files during the CLOC counter step, and for each file found, PSMINER runs a git
log -n 2 command to get the SHA from the previous commit that also changed that
file. PSMINER uses this list of differences for each repository to start parsing when the
commits were made. It parses for every difference found, obtaining functional program-
ming structures for the list of files of each difference. It keeps track of these differences
in the SQLite database. A comparison is made between the FPS lists of the involved re-
visions, looking for different FPS quantities from one revision to another. PSMINER then
compares if there are fewer structures in that revision representing the base commits. We
consider that a commit removed functional programming structures when this happens.
PSMINER tracks this information in CSV files marking whether it came from a bug-fix or
not, based on the classification made in the previous steps. Otherwise, it considers that
the number of functional programming structures grew or did not change, storing only

SHA information and whether it came from a bug-fix.

5.2.3 Parsing JavaScript projects

During parsing, PSMINER identifies the functional programming concepts and struc-
tures listed in [Chapter 3] Moreover, as already said, our parser uses the TypeScript
compiler API because it provides a series of methods that help us traverse the Abstract
Syntax Tree (AST) by identifying certain types and syntaxes available in the analyzed
code.

represents the parsing process. It is done by a function that receives three
parameters: (i) the list of files of the project that PSMINER will analyze, (ii) a boolean
to check if, during the parsing process, it is necessary to analyze the comments, and (iii)
if we want to filter the parsing to only some files. We pass the list of files and an object
of options as parameters to TypeScript’s createProgram method (Algorithm 1] line 4).
The object of options has two properties: allowJs (passed true to consider JavaScript
files too) and removeComments (passed false to avoid discarding comments during the
parser). It instantiates a Program object and gives access to methods that manipulate
source files. Program is the type in TypeScript’s API of the object that stores all the
parsed information, e.g., the available files from a repository.

After creating the Program object, PSMINER loads the type checker through the
getTypeChecker method available in it , line 6). This checker is fundamental
for locating some structures and was one of the great motivators for using the TypeScript
compiler API instead of other parsers. Next, it checks if the third parameter (the list of
files we want to load) has been passed , line 7), so it has to filter the source
files that will be loaded in the program to those passed as parameters line
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Algorithm 1 Parsing of Functional Programming Structures.

Input: fileNames — the list of files of the project to be analyzed
Input: parseComments — a boolean to check if it is necessary analyzing the comments
Input: includeOnly — filter to some files
Output: records with parsed structures
Output: comments with parsed comments
. let records + ||
. let sourceFiles < ||
. let comments < ||
. const options < {allowJs : true, removeComments : false}
const program < create Program( fileNames, options)
. const typeChecker < program.getTypeChecker()
. if includeOnly.length > 0 then
sourceF'iles < program.getSourceFiles(). filter(() — includeOnly)
else
sourceF'iles < program.getSourceFiles()
. end if
: for const sourceF'ile of sourceFiles do
forEachChild(sourceFile, visit)
: end for
. return {records, comments}
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8). If not, it loads the list of source files (Algorithm 1} line 10). It then visits each AST
node from these source files looking for structures from that moment on using the visit

method (Algorithm 1], line 13). [Algorithm 2| represents that visit method. Inside this

method, there are three steps. The first step parses the comments when the parameter
for this is true (Algorithm 2| line 1). The second is where PSMINER mines structures
, line 4-23), and the third is where the visit method is called recursively for
each child node (Algorithm 2| line 24).

When the mining process enters the first step, PSMINER loads a source file, looks
for leading or trailing comment ranges (positioning intervals occupied by the code), and
returns an array with the identified comments. This array of objects contains the line
numbers where the block of comments starts and ends, whether there is any JSDoc tag
inside it, whether it is a leading comment, in which file this comment was, and its length
(considering the positioning).

In the second step, PSMINER has a switch statement (Algorithm 2| line 4) with some
cases as entry points to find structures. The TypeScript compiler differentiates between
kind and type, and PSMINER considers the node syntax kind in these cases. The former
is related to what is possible to find statically, and the latter to what can be found by
inferring types.

For the syntax kind CallExpression (Algorithm 2] line 5), it is able to find immutabil-

ity structures and higher-order functions. The search for immutability, for example, makes



52

Algorithm 2 Function visit.

Input: node — AST node
if parseComments then
2: comments < commentsParser.parse(node)
end if
4: switch node.kind do
case SyntaxrKind.Call Expression

6: searchForStructures() > immutability and HOFs
break
8: case SyntaxKind.ArrowFunction

case SyntaxKind.FunctionDeclaration
10: case SyntaxKind.MethodDeclaration

case Syntax Kind.FunctionExpression

12: searchForStructures() > HOFs, lazy evaluation, recursion and callbacks
break
14: case SyntaxKind.ArrayLiteral Expression
case SyntaxKind.Object Literal Expression
16: searchForStructures() > immutability
break
18: case SyntaxrKind.NewFEzxpression
searchForStructures() > promises
20: break
case SyntaxKind.VariableStatement
22: searchForStructures() > const statements
break

24: forEachChild(sourceFile, visit)

use of the type checker to infer whether the expression inside a node is an object or an
array when looking for Object.freeze, Object.assign, or Array.slice.

When looking for non-native higher-order functions, lazy evaluation, recursion, or
callbacks (not taking into account async methods in any of them), PSMINER consid-
ers the syntax types ArrowFunction, FunctionDeclaration, MethodDeclaration, and
FunctionExpression , line 8-11). For spread search cases, it takes into ac-
count ArrayLiteralExpression and ObjectLiteralExpression kinds (Algorithm 2] line
14-15). In both, the process is similar: calling a search method of each type of structure
and returning the records found.

Next, PSMINER has a case for the kind NewExpression line 18). We also
pass the type checker as a parameter, but it is used to get the Symbol of the node. If the
name of this Symbol is “Promise”, then PSMINER considers that it found an instantiation
of a promise and returns its record.

To identify const statements, it uses VariableStatement nodes (Algorithm 2| line
21). PSMINER temporarily creates a file from the node text and checks if the node flag is

the Const enum in the first statement. If so, we assume that PSMINER has found a const
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Table 8 — Syntax node kinds.

Syntax node kind Concepts

CallExpression Immutability, functions as values (higher-order functions)
ArrowFunction, FunctionDeclaration, MethodDec- Lazy evaluation, recursion, functions as values (higher-
laration, FunctionExpression order functions and callbacks)

ArrayLiteralExpression, ObjectLiteralExpression Immutability

NewExpression Functions as values (promises)

VariableStatement Immutability

Source: the author (2022)

statement. In [Table &, we summarize each used syntax node kind relating them to their
respective concepts.
Finally, in the third step, the parser calls the visit method recursively until there are

no more child nodes.

5.2.4 Exporting

After parsing the structures, PSMINER exports what data the previous step had re-
turned. We created two functions for this: exportRecords and exportComments. The first
one receives as parameters the authored date and SHA from revision commit, the list of
found records, the name of the repository, and a flag to determine whether it is necessary
to remove the exporting file if it already exists. The tool exports this data to a CSV
file. The second function takes a list of records, a list of comments, and the repository’s
name where the tool found the comments. In this function, the tool filters all comments
inside the list of records to compare them with the comments list. This way, PSMINER
can identify which comments are related to functional programming structures or not.
PSMINER removes duplicate comments from the filtered list before this comparison. After
the comparison, the data is persisted in a CSV file, recording a list of comments with
additional information such as the name of the repository they belong to, whether they
are from a functional programming structure or not, and which functional programming

concept they are and which structure.

5.2.5 Sampling

Seeking to validate the parsing step, we created two functions to generate functional
programming structure samples. The first function randomly chooses one of the available
repositories, loads the list of structures from its main revision, randomly chooses one of
these structures, and repeats this process until it finds 384 samples. This approach finds
structures randomly but may miss a structure that has rare occurrences. Therefore, we

chose to create a function with another approach.
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The second function starts by loading all found structures into their respective main
revisions in all repositories. PSMINER then randomly chooses up to five structures of each
type and stores them in a list. Then, it groups the list by repository and sends the list
of files where the structures are to the parser. Finally, PSMINER exports the data of each

structure in a CSV file so that they can also be manually evaluated.

5.3 TOOL CUSTOMIZATION

Although PSMINER is not a framework and was not designed with extensibility in
mind, it is possible to customize some functionality of it. Some examples are presented

as follows.

New types of preprocessing. A new file can be generated from SeArt for pre-processing.
For this, it is only necessary that the name of the exported file is results.csv, that
it is in the data folder, and that the command npm run cloc has been run to

generate the cloc.csv file.

Other JavaScript-based programming languages. It is also possible to change the
types of languages taken into account during the analysis. For that, in the getCLOC
function in src/utils.ts, the option —include-lang must change for the new lan-

guages to be analyzed (and that cloc supports).

Topics to be removed. There is a set of words used to remove repositories that are doc-
umentation or guides. These words can also be changed in the filterReposByTopic

function inside src/extractor/repos.ts.

GitHub labels. The terms used when searching for labels can also be modified. Inside
the exportBuglabels function in src/extractor/labels. ts are the rules and terms
used to filter labels.

Number of samples. Another option available is to generate a different number of
samples of the concepts and programming structures sought. In this case, it is
only necessary to change the value of the constant NUM_OF_SAMPLES inside the

generateCommitSample function in src/sampler/index. ts.

Other functional programming concepts. Finally, extending PSMINER with new func-
tional programming structures is possible. It is necessary to create a file in src/parser/
structures with a search function and all the logic to parse inside it. After that, the
new structure needs to be added to the visit method in both src/parser/program.ts

and src/sampler/index. ts.
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6 CONCLUSION

In this work, we tackle the problem of understanding how developers use structures in-
spired by functional programming in a mainstream multi-paradigm programming lan-
guage. We analyzed 91 projects amounting to more than 22 million lines of code, measuring
the prevalence and significance of these concepts (recursion, immutability, lazy evaluation,
and functions as values) from static and temporal perspectives. We also measured the like-

lihood of bug-fixing commits removing uses of these concepts and their association with
the presence of code comments. In this chapter, we present our main findings ([Section 6.1J),

implications (Section 6.2)), and avenues for future works (Section 6.3)).

6.1 MAIN FINDINGS

Our investigation has revealed that the projects employ functional programming struc-
tures intensively: they occur, on average, once for every 46.65 lines of code, and more
than 44% of all the lines of code in these projects are related in some way to these struc-
tures. Furthermore, there is some evidence that their adoption is growing intensively.
Immutability- and lazy evaluation-related structures have exhibited growths of 255% and
107% along with the evolution of the analyzed projects. We also found that functional
programming structures, except the immutability-related ones, tend to be removed less
often in bug-fixing commits than in non-bug-fixing ones. For callbacks & promises and re-
cursion, occurrences of these concepts are 17.38% and 37.77% less likely to be removed in
bug-fixing commits, respectively. Finally, we did not find a correlation between comment

size and the use of functional structures.

6.2 IMPLICATIONS

Our findings highlight that it is possible to say that developers who work with primarily
written JavaScript open-source projects can benefit from using the structures we have
investigated, especially by knowing that they are less bug-prone. However, as we have
shown, the structures related to immutability suggest the opposite, so in this case, caution
is necessary mainly because their use has grown. We also demonstrated that mixing
different paradigms is something that developers internalize in such a way that functional
programming concepts are used very often in the analyzed projects.

It is also important to note that researchers now have a parameterized tool to down-
load and handle structures related to JavaScript-based languages from repositories on
GitHub. Although it was not designed with customization, the tool is easily expandable

and adaptable. In addition, we managed to reduce the lack of knowledge in the area and
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also demonstrated that there is room for research related to functional programming in

multi-paradigm languages such as JavaScript.

6.3 FUTURE WORKS

There are some ideas for future works that we believe are relevant and that would
positively add to the work.

One of these ideas would be the addition of other functional programming concepts
such as pattern matching, pure functions, or indirect recursion. Also, it is essential to un-
derstand why immutability concepts had different results for bug-fixing commits and why
thunks are so prevalent. Furthermore, we would like to analyze if there are cultural dif-
ferences between code written in TypeScript, JavaScript Web, and JavaScript for Node.js
applications. It would undoubtedly make our method more robust and mature.

We believe it would be beneficial to increase the number of analyzed projects. With
more time and computational resources, compelling results may be found from the repos-
itories not analyzed by this project.

Specifically, regarding the analysis of the removal of functional programming structures
in bug-fix commits, we believe that it is worth checking further whether a structure was
removed in the comparison between commits. It would imply comparing not only the
number of structures from each commit but also checking if the structure was moved to
another file, for example.

Analyzing whether there is any relationship between SATD comments and the use of
functional programming is another dimension for future work.

Still, concerning the analysis made in the comments, it would be interesting to conduct
a study with developers to assess the length of comments associated with functional
programming structures. We believe this would bring more confidence to our results.

Finally, we also would like to modularize the PSMINER better, making it more cus-
tomizable and easy to adapt for use in other studies. It would include making the code

available for external collaboration in some repository on GitHub, for example.
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