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ABSTRACT

Model-based engineering emerged as an approach to tackle the complexity of current
systems development. In particular, compositional strategies assume that systems can be built
from reusable and loosely coupled units. However, it is still a challenge to ensure that de-
sired properties hold for component integration. BRIC provides an approach for developing
component-based systems which guarantee deadlock freedom. Then, we present a component
based model for UML, including a metamodel, well-formedness conditions and formal seman-
tics via translation into BRIC; the presentation of the semantics is given by a set of rules that
cover all the metamodel elements and map them to their respective BRIC denotations. We use
BRIC as an underlying (and totally hidden) component development framework so that our
approach benefits from all the formal infrastructure developed for BRIC using CSP (Communi-
cating Sequential Processes). Component composition, specified via UML structural diagrams,
ensures adherence to classical concurrent properties: our focus is on the preservation of dead-
lock freedom. Automated support is developed as a plug-in to the Astah modelling tool. The
verification is carried out using FDR (a model checker for CSP), but, this is transparent to
the user. A distinguishing feature of our approach is its support for traceability. For instance,
when FDR uncovers a deadlock, a sequence diagram is constructed from the deadlock trace
and presented to the user at the modelling level. We illustrate our overall approach with a
running example and two additional case studies. We also emphasise the contributions of the
proposed component model and modelling strategy via a comparison with other approaches
in the literature.

Keywords: CSP; component; compositional verification; UML; deadlock analysis.



RESUMO

A Engenharia de Software baseada em modelos surgiu como uma abordagem para lidar
com a complexidade do desenvolvimento de sistemas atuais. Em particular, as estratégias de
composição assumem que os sistemas podem ser construídos a partir de unidades reutilizáveis
e fracamente acopladas. No entanto, ainda é um desafio garantir que propriedades desejadas
sejam válidas para a integração de componentes. BRIC provê uma abordagem para desenvol-
vimento baseado em componentes que garante a ausência de deadlock. Então, apresentamos
um modelo baseado em componentes para UML, incluindo um metamodelo, condições de boa
formação e semântica formal via tradução para BRIC; a apresentação da semântica é dada por
um conjunto de regras que abrangem todos os elementos do metamodelo e os mapeiam para
suas respectivas denotações BRIC. Usamos BRIC como um framework de desenvolvimento
de componentes subjacente (e totalmente oculto) para que nossa abordagem se beneficie de
toda a infraestrutura formal desenvolvida para BRIC usando CSP (Communicating Sequen-
tial Processes). A composição do componente especificada por meio de diagramas estruturais
UML, garante a aderência às propriedades concorrentes clássicas: nosso foco é a preservação
da ausência de deadlock. O suporte automatizado é desenvolvido como um plug-in para a
ferramenta de modelagem Astah. A verificação é realizada usando FDR (um verificador de
modelos para CSP), mas isso é transparente para o usuário. Um diferencial de nossa aborda-
gem é o suporte à rastreabilidade. Por exemplo, quando o FDR descobre um deadlock, um
diagrama de sequência é construído a partir do trace de deadlock e apresentado ao usuário
como um modelo UML. Ilustramos a aplicabilidade da nossa abordagem com um exemplo
apresentado de forma recorrente no texto e dois estudos de caso adicionais. Destacamos tam-
bém as contribuições do modelo de componentes proposto e da estratégia de modelagem por
meio de uma comparação com outras abordagens da literatura.

Palavras-chaves: CSP; componente; verificação compositional; UML; análise de deadlock.
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1 INTRODUCTION

Modelling is central to all activities that lead up to the deployment of well-designed soft-
ware. Models are built to communicate the desired structure and behaviour of the system;
to visualise and to control the system’s architecture; and to provide a better understanding
of the system, often exposing opportunities for simplification and reuse (BOOCH; RUMBAUGH;

JACOBSON, 2005). When reusable units are independent and well defined, they can be called
components.

Component-based software development (CBSD) is a widely disseminated paradigm to
build software systems by integrating independent and potentially reusable components. One
of the motivations for this paradigm is replacing conventional programming with the systematic
composition and configuration of components (OLIVEIRA et al., 2016).

In order to ensure the success of component-based software development, it is essential to
assure the correct behaviour of the components. Such trustworthiness is even more important
in critical applications.

In some contexts, particularly when there is some critical aspect involved, a reliable ar-
chitecture becomes a demand. The architecture is expected to be designed with the goal of
verifying the integration of its components in a rigorous and scalable way. However, a posteriori
verification can be costly and is often infeasible.

Therefore, a systematic approach, both to create new components from existing ones, and
to ensure that each composition preserves the desired properties, seems a promising direction
to follow.

Formal verification can greatly increase the understanding of a system by revealing incon-
sistencies, ambiguities, and incompletenesses that might otherwise go undetected (CLARKE;

WING, 1996). Particularly, model checking is a well-established approach for verification that
relies on building a finite model of a system and checking that the desired properties hold in
that model, like, for example, deadlock and livelock freedom.

There are several approaches to CBSD in the literature that include a formal method as
the main outline. For instance, in (CHEN et al., 2009) the authors present component-based
refinement that focuses on the separation of interface and functional contracts, supporting
different levels of abstraction. The approach in (BONAKDARPOUR et al., 2012; BASU; BOZGA;

SIFAKIS, 2006) is based on a semantic model encompassing composition of heterogeneous
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components; the behaviour of a component is described as an automaton or Petri net extended
by data and functions given in C++. In (HORVÁTH et al., 2020), the authors proposed a cloud-
based, end-to-end verification workflow for SysML (Object Management Group (OMG), 2017a)
State Machines and reachability properties using an intermediate language and different model
checkers; formal aspects are hidden from the engineers. Model checking is fully automated via
translations, and traceability is provided through back annotations of the resulting trace.

As far as we are aware, none of the existing approaches provide an integrated framework
that include: a formal presentation of a component model, encompassing well-formedness
conditions and a semantics systematically presented as a set of rules; support for stepwise
design and compositional verification of classical properties such as deadlock freedom, and
traceability from the counterexample verification to the component model. For instance, the
approaches in (CHEN et al., 2009; BONAKDARPOUR et al., 2012; BASU; BOZGA; SIFAKIS, 2006)
embody a component model, but do not provide traceability, nor compositional reasoning. The
work in (HORVÁTH et al., 2020) proposes a component model with support for traceability, but
verification is not compositional.

In (RAMOS; SAMPAIO; MOTA, 2009; OLIVEIRA et al., 2016) the authors proposed a formal
component model, together with a rule-based composition strategy, called BRIC. BRIC has the
process algebra Communicating Sequential Processes CSP (ROSCOE, 1997) as an underlying
semantic model. Given that the argument components are deadlock free, each composition
rule ensures that the resulting (composed) component preserves deadlock freedom. Despite
the promising results, a developer needs to have considerable knowledge of CSP and model
checking techniques to use BRIC.

UML (Object Management Group (OMG), 2016) is well-suited for modelling software systems
in general; however, it lacks support for a CBSD approach. Components in UML are assumed
to be concrete and executable artefacts. Another design element to represent a component is
a subsystem. This is a package stereotype with an explicit interface and a set of encapsulated
elements (including classes, interfaces and other subsystems). Nevertheless, an appropriate
component notion must also include a dynamic behaviour (that can be defined by a state
machine) and, considering components as independent units, ports for message passing com-
munication should also be a component design feature.

We propose a formal CBSD model for UML, motivated by the fact that UML is a widely
used notation in industry and amenable to mechanised analysis. We consider the benefits from
the overall formal infrastructure built around BRIC as a semantic model for the proposed UML
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component model.
In general, UML design elements and diagrams can be used in a very flexible way. Howe-

ver, to tailor the design to a CBSD approach, besides defining a component metamodel, we
need additional (context sensitive) conditions to ensure the well-formedness of the component
systems. We proposed a set of well-formedness conditions, in order to define how components
can be composed to give rise to more elaborate components. The well-formedness conditions
are presented as rules expressed using OCL (Object Constraint Language) (Object Management

Group (OMG), 2014).
As another contribution, we define a compositional semantics for the proposed component

model by translation into BRIC. We provide a complete formalisation as a set of rigorously
defined rules that cover all the model elements.

Components, instances and connections are translated into BRIC denotations (contracts
and CSP processes), and verification of several properties is conducted using FDR according
to the BRIC composition rules. If the verification fails, we provide a traceability mechanism
from the CSP counterexample to a UML state machine or sequence diagram. The former is
applied to the early verification of the assumed properties of BRIC contracts, as detailed in
Section 2.3, and the latter for deadlock issues.

As yet another contribution, we present a strategy for the automatic generation of protocol
implementation (a projection of the behaviour of a component over a given set of channels),
which is an important element to ensure that the BRIC compositions indeed preserves deadlock
freedom.

As our final contribution, all these are automated as a plug-in for the Astah modelling
tool (CHANGE, 2020). Astah provides a solution to support the modelling of UML diagrams.
We use the Astah Java API to access model information and to create new diagrams. The
plug-in uses the FDR tool in background, for checking the side conditions of the composition
rules at the CSP semantic level. Astah is a modelling tool that runs on top of the JVM (Java
Virtual Machine). Our plug-in is built on top of its UML version. Astah can be extended by
the addition of plug-ins to add new features.

Figure 1 illustrates the process of the verification steps of our approach. In step 1, system
engineers build components according to the UML component model, whose syntax is precisely
defined as a metamodel in UML. Step 2 corresponds to the verification of the well-formedness
conditions. If any well-formedness condition is violated, a warning message is shown indicating
where the problem is (Step 3). Step 4 corresponds to the automatic translation of the UML
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Figure 1 – The major steps of the proposed approach

Source: Author’s ownership.

model into BRIC. Then, in step 5, the communication protocol is generated. This allows
the analysis using the FDR model checker, which is shown in Step 6. If an analysis fails, the
resulting counterexample is traced back to the component model in the form of UML diagrams
in Step 7. Otherwise, the model was correctly specified, step 8.

In summary, the contributions of this thesis are the following:

• A UML component metamodel, using a subset of UML;

• Formal presentation of the well-formedness conditions in OCL;

• Formal semantics of the component model in BRIC, based on a set of rigorously defined
semantic rules;

• A strategy for the automatic generation of protocol implementations;

• Traceability via the presentation of verification results in FDR as UML diagrams;

• A tool that includes the fully automatic semantic generation and support for traceability
of well-formedness condition violations as well as deadlock scenarios;
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• Case studies: dining philosophers, ring buffer and Leadership election protocol.

1.1 STRUCTURE OF THE THESIS

We have organised the presentation of this thesis in the following structure. Chapter 2 is
devoted to background knowledge. In this chapter, we introduce the formalism that underlies
our approach, the CSP process algebra. We describe its notation and three of its semantic mo-
dels: traces, failures and failures-divergences. Then, we present the BRIC component model;
we describe its set of composition rules, which can be used to develop trustworthy systems,
guaranteeing, by construction, the absence of deadlock. Next, we briefly describe Labelled
Transition System (LTS) and weak bisimilation. These are relevant to our approach to auto-
matic generation of protocol implementations. We also describe the UML diagrams which are
used in our component metamodel.

Chapter 3 presents the proposed UML component model, the well-formedness conditions,
and the component (instance) composition approach.

Chapter 4 describes the semantic translation into BRIC together with the strategy for the
automation of protocol implementation.

Chapter 5 presents the evaluation of our approach. It is dedicated to tool support and the
development of case studies.

Chapter 6 presents related work. We analyse the advantages and limitations of our approach
in the context of related approaches.

Chapter 7 summarises our conclusions, emphasising our main contributions. Finally, we
discuss some topics for future work.
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2 BACKGROUND

This chapter presents relevant background for this work. Firstly we present the formalism
that we use in our approach, Communicating Sequential Processes (CSP). Next, we introduce
Labelled Transition System (LTS) and weak bisimulation. In addition, we show the BRIC com-
ponent model, which is an approach for compositional development of asynchronous systems.
Finally, we briefly discuss the UML diagrams that are relevant to our work.

2.1 CSP - COMMUNICATING SEQUENTIAL PROCESSES

The process algebra CSP (Communicating Sequential Processes) (HOARE, 1985; ROSCOE,
1997) is a notation used to describe concurrent systems whose processes interact by exchanging
messages. It provides a set of semantic models that help one to reason about processes and
how they interact. An advantage of CSP is that it offers consolidated semantic models, as
well as a formal theory of refinement and verification. In what follows, we describe the CSP
constructs that we use in this work, and we briefly present some of its denotational models.

2.1.1 CSP Syntax

In CSP, communication between processes takes place over named channels and their
synchronous events. CSP has two basic processes: SKIP and STOP. The former does nothing
and communicates the special event ✓, which is a visible event that indicates successful
termination of a process. The process STOP represents a broken process (deadlock); it is not
capable of communicating any event.

Processes are defined in terms of a set of events of an alphabet (Σ). An event is a single,
atomic, and instantaneously occurring action that a process might engage in. Given an event a

in the alphabet of a process P, the prefixing a → P is initially able to perform a, after which
it will behave like the process P. A structured event is given by a communication channel
that may carry values, and its declaration form is: channel c : T . In this declaration, c is
the name of the channel, and T is the type of values communicated through it. The set of
all events on a channel c is the set c.T = {c.x | x ∈ T}, which is a subset of Σ. An input
communication on c has the form c?x , and an output communication has the form c!e. The
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expression c!e is semantically equivalent to c.e, when e is an expression that denotes a single
expression.

In concurrent systems, it is useful to distinguish between the cases where control over the
resolution of choice resides within a process itself and where control is outside it (SCHNEIDER,
1999). The external choice operator (2), offers a deterministic choice to the environment.
The process P 2 Q combines two processes P and Q, and initially offers both behaviours of
P and Q to the environment; the environment chooses which one to perform. Once one of
the behaviours is chosen, the process P 2 Q behaves as the chosen process, either P or Q.

The internal choice (⊓) represents a non-deterministic choice. It also combines two proces-
ses but in a non-deterministic way; the choice is internally made by the process. In the process
P ⊓ Q the environment has no control over the choice between P and Q. The process
internally resolves the choice.

CSP offers parallel operators, possibly allowing process interaction. The interleaving opera-
tor represents the composition of two processes in parallel but with no interaction. This means
that in P ||| Q, P and Q can perform their events independently, without any communication
between them. The generalised parallel operator takes two processes, P and Q, and a set of
events, say X , as arguments. The resulting process P ||

X
Q allows P and Q to proceed indepen-

dently when performing events outside X , but they must synchronise in the events belonging
to X .

CSP provides what is called replicated forms of some of its operators. For example, the
replicated external choice 2 x : A ∙ P(x) evaluates P(x) for each value of A and composes
the resulting processes using external choice. Similarity, the construction ||| x : A ∙ P(x)

evaluates P for each value x of A and interleaves these processes.
Hiding is an operator that is used to hide the events of a process. The process P ∖ S

can perform any event that is in the alphabet of P and not in the set of events S . On the
other hand, when P performs an event in S , the process P ∖ S makes this event internal,
represented as 𝜏 (tau).

The renaming operator P[[R]] takes a process P and a renaming relation R that contains
a list of pairs a ← b. The process P[[a ← b]] behaves like the process P, but occurrences
of the event a are replaced by occurrences of the event b. For example, given a process
P = a → SKIP, the process P[[a ← b]] results in the process b → SKIP that initially offers
the event b and then successfully terminates.

The CSP notation allows expressing recursive behaviour by using the name of the process
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in its definition. For instance, P = a → P performs a and then behaves as P.
A boolean guard may be associated with a process: given a predicate z , if the condition

z is true, the process z & P behaves like P; otherwise, it deadlocks.
Processes can be combined in sequence using the sequence operator (;). The process P; Q

first behaves as P and then, if P successfully terminates (ends by a SKIP), behaves as Q.
As a running example, we consider the classical dining philosophers problem where the

philosophers are seated at a round table with a single fork between each pair of philosophers.
Each philosopher requires both neighbouring forks to eat, so if all get hungry simultaneously
and pick up their left-hand fork, then they deadlock and starve to death. It actually captures
one of the major causes of real deadlocks, namely competition for resources (ROSCOE, 1997).
In our approach, the fork and philosopher behaviours are written as simple CSP processes. A
process that captures the behaviour of a Fork is as follows.

Fork(id) = STM Fork(id)

STM Fork(id) = Available(id)

Available(id) = (fork right.id.picksup I → fork right.id.picksup O → Busy1(id))

2

(fork left.id.picksup I → fork left.id.picksup O → Busy2(id))

Busy1(id) = (fork right.id.putsdown I → fork right.id.putsdown O → Available(id))

Busy2(id) = (fork left.id.putsdown I → fork left.id.putsdown O → Available(id))

The process Fork is parametrised by its id so that several instances for distinct identifiers
can be created. All events associated to forks are represented by the channels fork right

and fork left that, apart from the id, can communicate the data picksup I , picksup O,
putsdown I and putsdown O. These values represent the actions offered by forks. Initially, a
fork is available for both philosophers; however, two philosophers can not hold the same fork
simultaneously.

The events related to picking actions are always followed by the events related to putting
a fork down. The external choice in the process Available means that if the first choice is
taken, the philosopher, on the right (of the fork) holds the fork, and similarly for the one on
the left In the first case, the process performs the event fork left.id.picksup I , and then the
event fork left.id.picksup O, where the former represents the intention to pick the fork, and



23

the latter indicates that it has been performed 1; finally, it behaves as the process Busy1.
The process Busy1 engages in two events in sequence, capturing the release of a fork and

then behaving again as Available. The process Busy2 is analogous, dealing with the second
choice.

A process that captures the behaviour of a Phil is as follows.

STM Phil(id) = HoldForkR(id)

HoldForkR(id) = (phil right.id.picksup I → phil right.id.picksup O

→ HoldForkL(id))

HoldForkL(id) = (phil left.id.picksup I → phil left.id.picksup O

→ PutsDownR(id))

PutsDownR(id) = (phil right.id.putsdown I → phil right.id.putsdown O

→ PutsDownL(id))

PutsDownL(id) = (phil left.id.putsdown I → phil left.id.putsdown O

→ HoldForkR(id))

Similar to process Fork, process Phil is parametrised by id that identify the philosopher.
In the dining philosophers problem, each philosopher must pick up two forks to avoid star-
ving: the right and the left, the former represented by the channel phil right and the latter
represented by the channel phil left that communicate the events picksup I and picksup O.
Before eating and put them down afterwards, these are represented by the events putsdown I

and putsdown O communicated through the channels phil right and phil left. After the
philosopher is able to start a new cycle and picks up a fork.

2.1.2 CSP Semantic Models

A process written in CSP may be understood in terms of operational, algebraic and denota-
tional semantics. The operational semantics transforms the processes into Labelled Transition
Systems (LTS), which is a directed graph with a label on each edge representing what happens
when taking an action: each transition represents a possible event. An algebraic semantics is
defined by a set of algebraic laws. A denotational semantics maps processes into some abstract
1 The use of a pair of events to represent a communication is a consequence of the asynchronous model

adopted in BRIC, as explained later.
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model that captures different types of behaviours such as determinism, deadlock and livelock-
freedom, recording different sorts of information about a process. All denotational models are
compositional, since the set of possible behaviours of a process can be calculated in terms of
the denotational values of its subcomponents.

In the following subsections we describe the three main denotational models of CSP: traces,
stable failures and failures-divergences (ROSCOE, 2010); these models are of particular interest
for our work.

2.1.2.1 The Traces Model

The traces model denotes a CSP process according to its traces, which are defined as the
set of sequences of events in which the process may engage.

Given a CSP process P, the traces of P are denoted as traces(P), and the symbol Σ✓

(Σ ∪ {✓}) represents the set of all the possible events for processes in the universe under
consideration, including the special termination event ✓(tick). Table 1 presents the semantic
clauses of the basic process in this model. The complete list for all CSP operators can be
found in (ROSCOE, 2010).

Table 1 – Semantic clauses for the traces model

traces(STOP) = {⟨⟩}
traces(SKIP) = {⟨⟩, ⟨✓⟩}
traces(a → P) = {⟨⟩} ∪ {⟨a⟩⌢s | s ∈ traces(P)}
traces(P 2 Q) = traces(P) ∪ traces(Q)

traces(P ⊓ Q) = traces(P) ∪ traces(Q)

traces(P ||| Q) =
⋃︀
{s ||| t | s ∈ traces(P) ∧ t ∈ traces(Q)}

traces(P ||
X

Q) =
⋃︀
{s ||

X
t | s ∈ traces(P) ∧ t ∈ traces(Q)}

traces(P ∖ X) = {s ∖ X | s ∈ traces(P)}

Source: (ROSCOE, 2010)

According to the Table 1, there is one trace associated with the process STOP, which is
the empty trace, ⟨⟩, since this process never communicates anything. The traces of SKIP are
the empty trace and the trace with the singleton termination event ✓. The traces of the prefix
process a → P are the traces formed of the event a followed by the traces of the process P, in
addition to the empty trace. Internal and external choices are not distinguished in the traces
model. Both result in the union of the traces of the two operands. The traces of P ||| Q are just
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the interleavings of traces of P and Q. The operator ||| on traces produces the interleavings of
a given pair of traces recursively. The traces of a generalised parallel composition are defined
in terms of the operator ||

X
over traces, which combines these traces in all possible ways but

forces them to agree on X . The traces resulting from hiding a set of events (P ∖ X) is given
by preserving only those events that are not in X .

The trace set of process fork1 = Fork(1) includes the following sequences.

{⟨⟩, ⟨fork right.1.picksup I ⟩, ⟨fork right.1.picksup I , fork right.1.picksup O⟩,

⟨fork right.1.picksup I , fork right.1.picksup O, fork right.1.putsdown I ⟩,

...}

In the traces model for CSP, a process P is a traces refinement of a process Q (written
as Q ⊑T P) if, and only if, Q contains all traces of P. That is: Q ⊑T P ⇔ (traces(P) ⊆

traces(Q). These processes are traces equivalent (written as P ≡T Q); if Q ⊑T P and
P ⊑T Q, i.e., traces(P) = traces(Q).

The traces model describes what a process may do, but not what a process must do.
Moreover, this model does not distinguish internal and external choices. For example, the
process P = a → STOP 2 b → STOP has the same traces of the process Q = a →

STOP ⊓ b → STOP. P is not able to refuse neither a nor b, and accepts both of them. On
the other hand, the process Q initially refuses either a (and accepts b) or b (and accepts a),
but not both. As consequence, the traces model is not expressive enough for detecting the
presence or absence of nondeterminism.

2.1.2.2 The Stable Failures Model

The stable failures model gives more information about processes. For instance, it allows
us to distinguish between internal and external choices. It also allows us to detect deadlocked
processes. The stable failures model defines a process as its set of traces and a set of failures
of a process. A failure of a process is a pair (s,X), that describes a set of events X which a
process can fail to accept after executing the trace s. The set X is called the refusal set; the
process cannot perform any event in the set X .

The notation failures(P) represents the set of all failures of P. Similar to the trace se-
mantics, the clauses in Table 2 determine the failures of the various processes in the stable
failures model.
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Table 2 – Semantic clauses for the stable failures model

failures(STOP) = {(⟨⟩,X) | X ⊆ Σ✓}
failures(SKIP) = {(⟨⟩,X) | X ⊆ Σ} ∪ {(⟨✓⟩,X) | X ⊆ Σ✓}
failures(a → P) = {(⟨⟩,X) | a /∈ X} ∪ {(⟨a⟩⌢s,X) | (s,X) ∈ failures(P)}
failures(P 2 Q) ={(⟨⟩,X) | (⟨⟩,X) ∈ failures(P) ∩ failures(Q)}∪

{(t,X) | (t,X) ∈ failures(P) ∪ failures(Q) ∧ t ̸= ⟨⟩}∪
{(⟨⟩,X) | X ⊆ Σ ∧ ⟨✓⟩ ∈ traces(P) ∪ traces(Q)}

failures(P ⊓ Q) = failures(P) ∪ failures(Q)

failures(P ||| Q) =
⋃︀
{(s ||| t,Y ∪ Z ) | Y ‵{ ✓} = Z ‵{✓} ∧
(s,Y) ∈ failures(P) ∧ (t,Z ) ∈ failures(Q)}

failures(P ||
X

Q) =
⋃︀
{(s ||

X
t,Y ∪ Z ) | Y ‵(X ∪ {✓} = Z ‵(X ∪ {✓} ∧

(s,Y ) ∈ failures(P) ∧ (t,Z ) ∈ failures(Q)}
failures(P ∖ X) = {(t ∖ X ,Y ) | (t,Y ∪ X) ∈ failures(P)}

Source: (ROSCOE, 2010)

In Table 2 the process STOP initially refuses to communicate anything. The process
SKIP initially cannot refuse the termination event ✓. However, all events are refused after
termination. After the empty trace, the prefix process a → P cannot refuse the prefixing
event a. Furthermore, once the event a has occurred, the rest of the stable failure derives
from process P. In an interleaving of two processes P ||| Q an event will be refused by the
combination only when it is refused by both processes. 2 Any failure of the parallel process
P ||

X
Q will be a combination of failures of its two argument processes (SCHNEIDER, 1999). The

stable states of P ∖ X correspond precisely to states of P that cannot perform any element
of X , which is equivalent to saying that they can refuse the whole of X . Stable states are
where no transition is chosen nondeterministically; they are those in which there are no choices
between external and internal actions.

Differently from the previous model, in the stable-failures model we can distinguish external
and internal behaviours. For example, considering the processes P and Q over the alphabet
{a, b}: Let P = (a → STOP) 2 (b → STOP) and Q = (a → STOP) ⊓ (b → STOP).
These processes have the same traces. However, the stable failure sets of P and Q are different.
Initially, P can neither refuse a nor b, since the choice is made by the environment. On the
other hand, the process Q can initially refuse either a or b because the choice is made internally
by the process.
2 x‵y means: {a ∈ x | a /∈ y}
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failures(P) = {(⟨⟩, {✓})}

∪ {(⟨a⟩,X) | X ⊆ {a, b,✓}}

∪ {(⟨b⟩,X) | X ⊆ {a, b,✓}}

failures(Q) = {(⟨⟩,X) | X ⊆ {a,✓}}

∪ {(⟨⟩,X) | X ⊆ {b,✓}}

∪ {(⟨a⟩,X) | X ⊆ {a, b,✓}}

∪ {(⟨b⟩,X) | X ⊆ {a, b,✓}}

A process P is a stable failures refinement of process Q (written as Q ⊑F P ) if, and
only if, Q contains all traces of P and P presents the same or less stable failures than Q;
it refuses the same or less communications. That is: Q ⊑F P ⇔ (traces(P) ⊆ traces(Q) ∧

failures(P) ⊆ failures(Q)). Two processes P and Q are stable failures-equivalent, P ≡F Q,
if P ⊑F Q and Q ⊑F P, i.e., traces(P) = traces(Q) and failures(P) = failures(Q).

The stable-failures model allows one to capture liveness properties, such as deadlock free-
dom. Deadlock arises when two processes cannot agree to communicate with each other nor
with any other process. The simplest example of a deadlocked process in CSP is the process
STOP. In this context, a process P is deadlock-free if P after performing any trace t never
becomes equivalent to STOP. The stable-failures model is effective in contexts where pro-
cess divergence (infinite execution of internal actions) is not relevant. When divergence is a
possibility then this model is not expressive enough, since it completely ignores any divergent
behaviour that a process might have.

2.1.2.3 The Failures-Divergences model

The failures-divergences model allows one to detect not only deadlocked but also livelocked
(divergent) processes. A divergence (or livelock) occurs when a process can perform only
internal events indefinitely. Livelock is even worse than deadlock (STOP) because it behaves
like an endless loop that may consume unbounded computing resources without achieving
anything (HOARE, 1985).

The hiding operator is the most subtle and difficult one to deal with in the failures-
divergences model; this is because it turns visible actions into 𝜏 ’s and thus removes stable states
and potentially introduces divergences (ROSCOE, 1997). For instance, consider the processes
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P = P and Q = (a → Q) ∖ {a}. Q converts the external event a into an internal action
𝜏 . Therefore, Q indefinitely performs internal actions, which leads to a divergence. As a
consequence, Q and P have the same behaviour in the failures-divergences model. The CSP
process DIV represents the livelock phenomenon: it can refuse every event, and it diverges
after any trace.

In the failures-divergence model, the processes are represented by two sets of behaviours:
the failures and the divergences. So, each process P is modelled by the pair: (failures⊥(P),
divergences(P)), where:

• divergences(P) is the set of traces s after which a process can diverge.

• failures⊥(P) represents all the stable failures of P extended by all the pairs (s,X) for
s ∈ divergences(P) and X ⊆ Σ, allowing the process to refuse anything after diverging.

failures⊥(P) = failures(P) ∪ {(s,X) | s ∈ divergences(P)}

A process P is divergence-free if, and only if, divergences(P) = {}. Similar to the previous
models, the clauses in Table 3 determine the divergences of the various processes in the failures-
divergences model (where Σw is the set of infinite traces, and traces⊥(P) = traces(P) ∪

divergences(P)). As the process SKIP only communicates the event ✓, it has no infinite
traces, and, consequently, it cannot diverge. Similarly, the process STOP does not diverge
because it performs nothing. The set of traces after which a → P can diverge are prefixed
by a. The calculation of divergences for external and internal choices are the union of the
divergences of the two operands. An interleaved combination, P ||| Q, diverges as soon as one
of its processes does. Similarly, divergences in a parallel composition, P ||

X
Q, will arise from

divergences of either process (P or Q).
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Table 3 – Semantic clauses for the failures-divergences model

divergences(STOP) = ∅
divergences(SKIP) = ∅
divergences(a → P) = {⟨⟩} ∪{⟨a⟩⌢s | s ∈ divergences(P)}
divergences(P 2 Q) = divergences(P) ∪ divergences(Q)

divergences(P ⊓ Q) = divergences(P) ∪ divergences(Q)

divergences(P ||| Q) = {u | ∃ s : traces⊥(P), t : traces⊥(Q) | u ∈ (s ||| t) ∩ Σ* ∧
(s ∈ divergences(P) ∧ t ∈ traces(Q))}
∨ (s ∈ traces(P) ∧ t ∈ divergences(Q))}

divergences(P ||
X

Q) = {u⌢v | ∃ s : traces⊥(P), t : traces⊥(Q) | u ∈ (s ||
X

t) ∩ Σ* ∧

(s ∈ divergences(P) ∨ t ∈ divergences(Q))}
divergences(P ∖ X) = {(s ∖ X)⌢t | s ∈ divergences(P)} ∪

{(u ∖ X)⌢t | u ∈ Σw ∧ ¬(u ∖ X) : Σw ∧
(∀ s < u | s ∈ traces⊥(P))}

Source: (ROSCOE, 2010)

The set of divergence for P ∖ X is the union of the set of divergences of the process P with
all sequences that can be performed by P, removing the infinite occurrences of the elements
of X . Furthermore, all prefixes of the infinite traces of P, which were introduced after hiding
the events of X , must belong to traces⊥(P).

Similar to the previous models, a process P is a refinement of a process Q (written as
Q ⊑FD P) if, and only if: failures⊥(P) ⊆ failures⊥(Q) and divergences(P) ⊆ divergences(Q).
These processes are failures-divergences equivalent (P ≡FD Q) if, and only if, Q ⊑FD P and
P ⊑FD Q.

2.2 LTS AND WEAK BISIMULATION

In this section, we define the concepts of an LTS and Weak Bisimulation, which are essential
to understand the protocol implementation of BRIC contracts described in Section 4.3.1.

2.2.1 LTS

The operational semantics of a CSP process is given by Labelled Transition Systems (LTS).
An LTS is a directed graph with a label on each edge representing what happens when we

take the action which the edge represents. Most LTSs have a distinguished node q0 that is the
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one we are assumed the LTS to start from (ROSCOE, 1997).

Definition 1. (LTS) A labelled transition system is a 4-tuple ⟨Q,A,T , q0⟩ where Q is a set of
states; A is a set of labels; T is the transition relation, which satisfies T ⊆ Q×(A∪{𝜏})×Q,
with 𝜏 /∈ A; and q0 ∈ Q is the initial state.

The FDR model checker interprets a process by expanding it into a finite LTS.

2.2.2 Weak Bisimulation

There are many bisimulation relations for process algebras that are used to characterise
equivalences between nodes of LTSs and used to calculate the reduction of LTS states that
represent equivalent processes (GORRIERI; VERSARI, 2015).

Two states in an LTS are bisimulation equivalent if they can simulate each other’s transi-
tions.

A weak bisimulation is a relation in which chains of 𝜏 actions are compressed into a singular
𝜏 , and chains of 𝜏 actions before and after a visible action 𝛼 are absorbed into 𝛼, as explained
in Definition 2 (GORRIERI; VERSARI, 2015).

Definition 2. (Weak Bisimulation) For an LTS ⟨Q,A ∪ {𝜏},T , q0⟩, where 𝜏 /∈ A, a weak
bisimulation is a relation R ⊆ (Q ×Q) such that if (q1, q2) ∈ R then for all 𝛼 ∈ A

• ∀ q ′
1 such that q1

𝛼−→ q ′
1, ∃ q ′

2 such that q2
𝛼
=⇒ q ′

2 and (q ′
1, q ′

2) ∈ R,

• ∀ q ′
2 such that q2

𝛼−→ q ′
2, ∃ q ′

1 such that q1
𝛼
=⇒ q ′

1 and (q ′
1, q ′

2) ∈ R.

where if 𝛼 ̸= 𝜏 , then s 𝛼
=⇒ t means that from s one can get to t by doing zero or more 𝜏

actions, followed by the action 𝛼, followed by zero or more 𝜏 actions. On the other hand, if
𝛼 = 𝜏 , then s 𝛼

=⇒ t means that from s one can reach t by doing zero or more 𝜏 actions.

As an example, consider the following CSP process:

P = a → b → a → P 2 a → Q

Q = a → P

T = P ∖ {a}

Figure 3(a) represents the LTS of the process T that has chains of 𝜏 . Otherwise, Figure
3(b) shows its weak bisimulation equivalence with no chains of 𝜏 .
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Figure 2 – Weak Bisimulation Equivalence

(a) Original LTS (b) Weak Bisimu-
lation Equivalent
LTS

Source: Author’s ownership.

2.3 THE BRIC COMPONENT MODEL

In this section, we describe an approach for creating and composing components, BRIC,
used in this work. This approach is based on a set of rules that guarantees the absence
of deadlock and livelock by construction (RAMOS; SAMPAIO; MOTA, 2009; Conserva Filho et

al., 2018). Our focus here is on deadlock freedom. A concurrent system is deadlocked if no
component can make any progress, generally because each one is waiting for communication
with others.

Component Based Software Development (CBSD) is a widely disseminated paradigm to
build software systems by integrating independent and potentially reusable units called com-
ponents. One of the motivations for this paradigm is replacing conventional programming with
the systematic composition and configuration of components (OLIVEIRA et al., 2016).

In some contexts, particularly when there is some criticality involved, a reliable architecture
becomes a demand. The architecture is expected to be designed with the goal of verifying the
integration of its components in a rigorous and scalable way. However, a posteriori verification
can be costly and is often infeasible.

The reason is that formal verification techniques such as model checking face the well-
known state explosion problem. The number of global states of a concurrent system with
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multiple processes can be enormous; it is exponential in both the number of processes and the
number of components per process (CLARKE et al., 2012).

In order to avoid or minimize this problem, instead of verifying the entire system, other
more promising approaches focus on iteratively identifying problems in compositions; BRIC is
one of them.

BRIC formalises concepts of interfaces, dynamic behaviour, component contracts, and
communication protocols with focus on the interaction points of black box components and
their runtime behaviour. CSP, as the underlying formal notation, allows modelling system
components in terms of synchronous processes that interact through message-passing com-
munication. Process algebraic operators allow specifying elaborate concurrency and distributed
process networks.

A component contract encapsulates a component in BRIC. It is defined in terms of the
component behaviour (represented as a CSP process), its ports (represented as channels) and
their respective types.

Definition 3. (Component Contract) A component contract Ctr : ⟨B,R, I ,C ⟩ comprises an
observational behaviour B, a set of communication channels C , a set of interfaces I , and a
total function R : C → I between channels and interfaces (where each type, interface, is also
a set of values), such that B is an I/O process (see Definition 4).

We use Bctr , Rctr , Ictr and Cctr to denote the elements of the contract Ctr : behaviour,
relation among channels and interfaces, interfaces and channels, respectively. In our example,
the contracts for fork and philosopher are defined as follows:

FORK :

BFORK = Fork(id),

RFORK = ⟨(fork right.id, {picksup I , picksup O, putsdown I , putsdown O}),

(fork left.id, {picksup I , picksup O, putsdown I , putsdown O})⟩,

CFORK = {fork right.id, fork left.id},

IFORK = {picksup I , picksup O, putsdown I , putsdown O}
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PHIL :

BPHIL = Phil(id),

RPHIL = ⟨(phil right.id, {picksup I , picksup O, putsdown I , putsdown O}),

(phil left.id, {picksup I , picksup O, putsdown I , putsdown O})⟩,

CPHIL = {phil right.id, phil left.id},

IPHIL = {picksup I , picksup O, putsdown I , putsdown O}

The behaviour of these components, given by Fork(id) and Phil(id), are represented by
I/O processes.

Definition 4. (I/O Process) An I/O process is a CSP process P that satisfies the following
properties:

• I/O channels Every event in P is either an input or an output (but not both). A channel
c is an I/O channel if, for a process P:

inputs(c,P) ∪ outputs(c,P) ⊆ {| c |} ∧

inputs(c,P) ∩ outputs(c,P) = {}

where {| c |} yields the set of all events on channel c, and inputs(c,P) and outputs(c,P)
yield all input and output events on c in process P, respectively.

Let P be a process that only uses I/O channels. The inputs and outputs of P are
determined by the following, equally named, functions inputs(P) and outputs(P):

inputs(P) = {c.e | c.e ∈ inputs(c,P)} ∧ outputs(P) = {c.e | c.e ∈ outputs(c,P)}

In our example, the definitions of inputs and outputs are as follows.

inputs(Fork) = {fork right.id.picksup I , fork left.id.putsdown I}

outputs(Fork) = {fork right.id.picksup O, fork left.id.putsdown O}

inputs(Phil) = {phil right.id.picksup O, phil left.id.putsdown O}

outputs(Phil) = {phil right.id.picksup I , phil left.id.putsdown I}

No event is both input and output, in the same process. Note that the events of the
channels in inputs(Fork) and outputs(Phil) communicate the same set of data. In order
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to allow communication, outputs of one are observed as inputs of the other, and vice-
versa. In general, inputs and outputs of a process divide the events of a channel c in two
sets. However, the process is not obliged to perform all events of c. The directions of the
events as inputs or outputs are not explicit in the channel definition but implicit in the
process definitions through interfaces that define a component’s provided and required
services.

• Non-terminating P is a non-terminating process but has a finite state space. The
processes Fork and Phil satisfy this condition since they are defined as infinite loops.

• Divergence free P has no livelocks. Fork and Phil are divergence-free, that is, there
is no infinite traces of internal events.

• Input determinism If a set of input events of P is offered by the environment, none
of them is refused by P. The processes Fork and Phil are deterministic processes.
Consequently, they are input deterministic processes.

• Strong output decisive All choices (if any) among output events on a given channel
of P are internal. The process, however, must offer at least one output on that channel.

Details about these properties are presented in (RAMOS, 2011).
Normally, a component is defined once and reused multiple times and in multiple different

contexts. In BRIC, a context is represented as a set of channels since these channels represent
interaction points of the component, and each channel is used to communicate with a single
component in the environment. Then, replacing the channels of a component contract by
another set means that it supposedly interacts with another environment. This replacement
is represented by a bijection of the set of channels of the component contract into a set with
new channels.

In the example of the Fork component this bijection is realised by replacing the id para-
meter. Since the process Fork is parametrised by its id, several instances for distinct identifiers
can be created:

fork1 = Fork(1)

fork2 = Fork(2)
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2.3.1 Communication Protocol

Protocols can represent the entire observable behaviour of the component, or the behaviour
associated to an interaction point of the component; this observable behaviour is defined as a
projection over a set of channels, see Definition 6.

Communication protocols (Definition 5) are commonly associated with specifications of
component behaviours at a specific abstraction level, with an exclusive focus on a portion of
the communicated events. They are used in local analyses of component interaction before
their composition

Definition 5. (Communication protocol). We say a CSP process P is a communication pro-
tocol if :

∃ c1, c2 ∙ inputs(P) ⊆ {| c1 |} ∧ outputs(P) ⊆ {| c2 |}

Then a communication protocol is an I/O process that inputs by a unique channel (c1, for
instance) and outputs by a unique channel (c2, for instance).

Definition 6. (Projection). Let P be a process, and C a set of communication channels. The
projection of P over C (denoted by P |̀ C ) is defined as:

P |̀ C = P ∖ (Σ ∖ C )

Projections restrict the behaviour of a process to a set of events. It behaves as the hiding
of all events, except those in C . This restriction, however, might introduce divergence in the
protocol implementation, which must be avoided.

Definition 7. (Protocol implementation). Let P be an I/O process, and C a set of commu-
nication channels. The communication protocol, named ProtIMP(P,C ) and implemented by
P over C , is a protocol that satisfies the following properties;

ProtIMP(P,C ) ⊑F P |̀ C

and

P |̀ C ⊑FD ProtIMP(P,C )

ProtIMP(P,C ) is a process that is related, via refinement, to P |̀ C . However, the former
cannot have divergences. When projecting a process into a set of channels, divergence might
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be introduced, due to the use of the hiding operator. Thus, P |̀ C may diverge. In place of
the divergences of P |̀ C , ProtIMP(P,C ) is allowed to exhibit stable failures, as explained in
the stable-failures model. Hence, ProtIMP(P,C ) may have more failures than P |̀ C (first
refinement statement of Definition 7). Moreover, as ProtIMP(P,C ) cannot diverge, then, it
has less or equal divergences than P |̀ C , and the same set concerning failures⊥ (unstable
failures). That is the reason we need the second refinement of Definition 7.

One of the important contributions of this thesis is that, rather than asking the user
to propose a valid protocol implementation from a projection over a set of channels, we
compositionally derive ProtIMP(P,C ) from P |̀ C . This is detailed in Section 4.3.1.

To illustrate why simply projecting a process over a set of channels can lead to diver-
gent behaviour, consider a protocol implementation for the fork1 process over the channel
fork right.1 given by:

fork1 |̀ {fork right.1} = fork1 ∖ (Σ ∖ {| fork right.1 |})

By expanding this process, we have the following result, where all events are hidden, except
the ones related to channel fork right.1.

fork1 = FORK (1) = STM FORK (1)

STM FORK (1) = Available(1)

Available(1) = (fork right.1.picksup I → fork right.1.picksup O → Busy1(1))

2

Busy2(1)

Busy1(1) = (fork right.1.putsdown I → fork right.1.putsdown O → Available(1))

Busy2(1) = Available(1)

In this case, the projection is directly obtained by hiding the relevant events, but the resul-
ting process has the following livelock sequence: STM FORK (1); Available(1); Busy2(1);
Available(1). The attempt to conceal an infinite sequence of consecutive events leads to the
same result as an infinite loop or unguarded recursion, divergence (HOARE, 1985). Thus, this
process cannot be used as a valid protocol implementation.

In the same way if we project fork1 over the channel fork left.1, this also results in a
divergent behaviour. However, by excluding such divergence sequences from both projections,
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results in the process PROT FORK (ch) that represents the protocol related to each channel
ch from component FORK , and it is divergence free. This process is given by:

PROT FORK (ch) = ch.picksup I → ch.picksup O → ch.putsdown I →

ch.putsdown O → PROT FORK (ch)

In general, however, it might not be easy to construct a valid protocol manually. As pre-
sented in Section 4.3, we conceived an automated strategy to generate valid protocol imple-
mentations.

In a composition, protocol implementations of components have to be strongly compatible.
Before formalising the verification of this condition, we define an auxiliary notion: the dual
protocol of P, DualProt(P), is a protocol with the same traces of P, but whose inputs are the
outputs of P, and vice-versa.

Definition 8. (Dual Protocol) Let P be a deadlock-free communication protocol. The dual
protocol of P is defined as a deadlock-free communication protocol DP, such that:

inputs(P) = outputs(DP) ∧ outputs(P) = inputs(DP) ∧ traces(DP) = traces(P)

The formal verification of Strong Compatibility is characterised by assertions on simple
failures refinement: two protocols P and Q are strongly compatible if DualProt(P) ⊑F Q or if
DualProt(P) ⊑F Q ‖ CTX(P). The context protocol of P, Definition 9, CTX(P), represents
its possible communications, and is formally defined by a deadlock-free deterministic process
with the same traces as those of P.

Definition 9. (Communication context process). Let P be a deadlock-free communication
protocol. The communication context process of P (denoted by CTXp) is defined as a deadlock
free deterministic process, such that traces(CTXp) = traces(P).

Similarly to the definition of protocol implementation, there is a communication context
process associated to a specific channel.

Definition 10. (Communication context process implementation). Let P be a communication
protocol. The communication context process of P is named CTX(P).

The context protocol of P, CTX(P), represents its possible communications, and is for-
mally defined by a deadlock-free deterministic process with the same traces as those of P.
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As an example, consider the verification of a dual protocol of PROT FORK in the channel
fork left:

DualProt(PROT FORK (fork left))

⊑F

PROT PHIL(phil right) ||
{|fork left,phil right|}

CTX(PROT FORK (fork left))

Then, it is possible to verify the compatibility of two protocols PROT FORK and
PROT PHIL by assuring that dual protocol of PROT FORK is refined by protocol of
phil (PROT PHIL) in parallel with the context process process of PROT FORK .

2.3.2 Compositional Development in BRIC

Based on the work presented in (ROSCOE, 2005) on buffer tolerance, BRIC adopts an
asynchronous communication model in component interactions. To represent asynchronous
communication, buffers are introduced as intermediate elements of the composition. They
copy information from one component channel to another, preserving order and without loss.
Information is always accepted, independent of the other component being ready or not to
input. It also never refuses outputs when it is non-empty. These buffers are not first-class
elements, but are implicit to the component model. Buffers are considered infinite.

Component compositions are defined in two modes: a binary operation on two components,
and a unary operation over a single component.

In order to specify an asynchronous binary composition in BRIC, we first present an auxiliary
function AsyncComp that takes a set of processes S and a bijective function F among distinct
sets of channels used by processes within S and yields the assembly of the processes within
S , connecting each channel c to its respective channel represented by F(c).

AsyncComp(S ,F) = (|||P∈S
P) ||dom F ∪ ran F (|||c∈dom F BUFF∞

IO(c,F(c)))

The function AsyncComp runs the processes from S in interleaving. They are put in parallel
with BUFF∞

IO forcing them to synchronise on events of the set dom F ∪ ran F . The process
BUFF∞

IO(c, z) is an infinite buffer that copies information from c to z , and vice-versa.

Definition 11. (Asynchronous Binary Composition). Let Ctr1 and Ctr2 be two distinct com-
ponent contracts, and ⟨ic1, ..., icn⟩ and ⟨oc1, ..., ocn⟩ sequences of distinct channels within
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CCtr1 and CCtr2
3 , respectively, with CCtr1 ∩ CCtr2 = ∅. Then, the asynchronous binary

composition of Ctr1 and Ctr2 (namely Ctr1ic ≍oc Ctr2) is given by:

Ctr1⟨ic1,...,icn⟩ ≍⟨oc1,...,ocn⟩ Ctr2 =

(
⟨︀
AsyncComp({BCtr1 ,BCtr2}, {ici ↦→ oci | i ∈ 1..n}),RCtr3 , ICtr3 ,CCtr3

⟩︀
)

where CCtr3 = (CCtr1 ∪CCtr2 ∖ {ic1, ..., icn, oc1, ..., ocn}, RCtr3 = CCtr3 ▷ (RCtr1 ∪RCtr2), and
ICtr3 = ran RCtr3 .

In the definition above, each component has a distinct set of interaction points and their
communication is asynchronous, mediated by buffers. The behaviour of the composition is
defined by the synchronisation of the components (Ctr1 and Ctr2) with a buffer. The commu-
nications used in the composition are not offered to the environment in further compositions
(CCtr3). The operator ▷ stands for domain restriction. It is used to restrict the mapping from
channels to interfaces (RCtr3) and, furthermore, to restrict the set of interfaces in the compo-
sition contract (ICtr3).

The other composition mode concerns the assembling of channels of the same component.
Unary compositions Ctr ≍|st are needed when we want to assemble inner channels from two
channel lists s and t of a single component Ctr .

Definition 12. (Asynchronous Unary Composition). Let Ctr be a component contract, and
⟨ic1, ..., icn⟩ and ⟨oc1, ..., ocn⟩ sequences of distinct channels within CCtr , such that {ic1, ..., icn}

∩ {oc1, ..., ocn} = ∅. The asynchronous unary composition of Ctr , namely Ctr ≍|icoc, is given
by:

Ctr ≍|⟨ic1,...,icn⟩
⟨oc1,...,ocn⟩= (

⟨︀
AsyncComp(BCtr , {oci ↦→ ici | i ∈ 1...n}),RCtr ′ , ICtr ′ ,CCtr ′

⟩︀
)

where CCtr ′ = (CCtr ∖ {⟨oc1, ..., ocn, ic1, ..., icn⟩}), RCtr ′ = CCtr ′ ▷RCtr and ICtr ′ = ran RCtr ′ .

It is similar to the definition of binary asynchronous composition. However, the defini-
tion above allows us to assemble channels of the same component, instead of two distinct
components.

2.3.3 Composition Rules

The constructive design of a BRIC component architectural model is based on composition
rules for components. These rules present a systematic strategy to build systems when compo-
3 The alphabet of events of a component Ctr is given by CCtr .
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nents are able to communicate. These composition rules guarantee composition properties of
a system by construction, based on the same properties already established for the constituent
components, so that problems are anticipated before all parts are integrated. Our focus here is
on the preservation of deadlock freedom. BRIC provides four composition rules: interleaving,
communication, feedback and reflexive compositions. Each of these compositions constructs
a new component, which includes the original ones.

Figure 3 – Composition Rules

Source: (RAMOS, 2011)

Each rule (see Figure 3) has well-defined side conditions that ensure a sound composi-
tion (RAMOS; SAMPAIO; MOTA, 2009). The first composition rule is interleaving, which aggre-
gates two independent components that do not communicate with each other; the components
do not share any channels, so no synchronisation is performed. The second rule is based on
the traditional way to compose two components by connecting two channels, one from each
component. The other two rules provide unary compositions: feedback and reflexive, which
enable building systems with cyclic topologies, connecting two channels of the same compo-
nent. Feedback composition represents the simpler unary composition, where two channels of
the same component are assembled but do not introduce a new cycle of ungranted requests,
which is a circular dependency among the channels of the component (more details can be
seen in (ROSCOE, 1997)). Reflexive composition deals with more complex systems that indeed
present cycles of dependencies in the system topology.

Next we explore more about each composition rule.

Definition 13. (Interleave composition). Let Ctr1 and Ctr2 be two component contracts,
such that Ctr1 and Ctr2 have disjoint channels. Then, the interleave composition of Ctr1 and
Ctr2, namely (Ctr1[|||]Ctr2) is given by:

Ctr1[|||]Ctr2 = Ctr1⟨⟩ ≍⟨⟩ Ctr2

This rule uses the binary composition operator, ≍, which provides an asynchronous interac-
tion. This is a particular kind of direct composition that involves no communication, resulting
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in a weakly cohesive entity, which performs all events defined in the original entities without
any interference from each other. An interleave composition of two deadlock-free component
contracts is also a deadlock-free component contract.

For instance, we can build interleave compositions of fork and philosopher contracts. Let
Ctrfork1, Ctrfork2 and Ctrphil1, Ctrphil2 be fork and philosopher contracts, respectively. The
interleave composition of fork contracts is given by:

Ctrfork1 fork2 = Ctrfork1 [|||]Ctrfork2 = Ctrfork1⟨⟩ ≍⟨⟩ Ctrfork2

In the same way, the interleave composition of philosopher contracts is given by:

Ctrphil1 phil2 = Ctrphil1 [|||]Ctrphil2 = Ctrphil1⟨⟩ ≍⟨⟩ Ctrphil2

The interleave composition of all contracts is given by:

Ctrfork1 fork2 phil1 phil2 = Ctrfork1 fork2 [|||]Ctrphil1 phil2 =

Ctrfork1 fork2⟨⟩ ≍⟨⟩ Ctrphil1 phil2

Definition 14. (Communication composition). Let Ctr1 and Ctr2 be two component con-
tracts, and ic and oc two communication channels such that ic ∈ CCtr1 ∧ oc ∈ CCtr2 and
ProtIMP(Ctr1, ic) and ProtIMP(Ctr2, oc) are strongly compatible, where CCtr1 and CCtr2 are
the set of channels from Ctr1 and Ctr2, respectively. Then, the communication composition
of Ctr1 and Ctr2 namely Ctr1[ic ↔ oc]Ctr2, via ic and oc is defined as follows:

Ctr1[ic ↔ oc]Ctr2 = Ctr1⟨ic⟩ ≍⟨oc⟩ Ctr2

The communication composition of two deadlock-free component contracts is also a dea-
dlock free component contract; according to theorem Deadlock-free communication compo-
sition described in (RAMOS, 2011)

For instance, we can build compositions of fork and philosopher contracts. Let Ctrfork1 be
a fork contract and Ctrphil1 be a philosopher contract, where the communication occurs via
the channels fork left.1 and phil right.1. The communication composition of these contracts
is given by:

Ctrcomm fork1 phil1 = Ctrfork1[fork left.1↔ phil right.1]Ctrphil1 =

Ctrfork1⟨fork left.1⟩ ≍⟨phil right.1⟩ Ctrphil1

The next two composition rules allow assembling two channels of the same component.
The third composition rule (which we call feedback composition) deals with pseudo-cyclic
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topologies, which are behaviourally equivalent to systems with tree-topologies. It does have
some cycles, but none of them introduces deadlocks. However, it cannot express all possible
topologies. For this reason, verification on this topology is simpler than in arbitrary complex
topologies. The feedback composition is aligned with the incremental nature of our strategy,
dealing with one problem at a time. The feedback composition rule requires the two linked
channels to be decoupled.

Definition 15. (Decoupled channels). Two channels of a process are decoupled if communi-
cation on one channel does not interfere with communications of the other. For this reason,
the communications through the two behave as communications between channels of distinct
processes. Formally, the channels within cs are decoupled in P (denoted as cs Decoupled In
P) if, and only, if:

P |̀ cs ≡F |||c∈cs
ProtIMP(P, c)

A channel c1 is independent of (or decoupled from) a channel c2 in a process when any
communication of c2 does not interfere with the order of events communicated by c1, and vice-
versa. It means that they are offered to the environment independently. So, a communication
between two channels of a same process behaves as communications between channels of
distinct processes.

Definition 16. (Feedback composition). Let Ctr be a component contract, and ic and oc

two communication channels, such that {ic, oc} ⊆ CCtr are independent (decoupled) in Ctr ,
ProtIMP(Ctr , ic) and ProtIMP(Ctr , oc) are strong compatible. Then, the Feedback compo-
sition of Ctr , namely Ctr [oc →˓ ic], hooking oc to ic is defined as follows:

Ctr [oc →˓ ic] = Ctr ≍|icoc

When we connect two interfaces of the contract Ctrfork1 fork2 phil1 phil2, for instance
fork left.1 and phil right.1 channels, it is considered a feedback composition, which generates
a new component whose contract is CtrFEED fork1 fork2 phil1 phil2:

CtrFEED fork1 fork2 phil1 phil2 = Ctrfork1 fork2 phil1 phil2[fork left.1 →˓ phil right.1] =

Ctrfork1 fork2 phil1 phil2 ≍|phil right.1
fork left.1

The Reflexive composition rule deals with more complex systems that indeed present cy-
cles of dependencies in the topology of the system structure. This rule connects dependent
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channels, which may introduce undesirable cycles of dependencies among the communication
of events in the system. In order to make a composition using the Reflexive rule, the buffering
self injection property must be established.

Definition 17. (Buffering self-injection compatibility). Let P be a deadlock-free I/O process,
and c and z channels. Then Pj = P |̀ {| c, z |} is buffering self-injection compatible if, and
only if:

1. ∀(s,X) : failures(Pj) | (s ↓ Oc = s ↓ Iz) ∧ (s ↓ Oz = s ↓ Ic) ∙ X ∩ (Oc ∪Oz) = ∅

2. ∀(s,X) : failures(Pj) | (s ↓ Oc > s ↓ Iz ∙ (s |̀ z ,X ∪ {| c |}) ∈ failures(Pj |̀ z)

3. ∀(s,X) : failures(Pj) | (s ↓ Oz > s ↓ Ic ∙ (s |̀ c,X ∪ {| z |}) ∈ failures(Pj |̀ c)

where Oc = outputs(P, c), Oz = outputs(P, z), Ic = inputs(P, c) and Iz = inputs(P, z)

and s ↓ X returns the cardinality of events within X in the trace s.

Buffering self-injection compatibility is very similar to the notion of strong compatibility,
except for the fact that it does not compare the communication between two simple processes
(protocols) but between events of the same process, the behaviour of the contract. All the
outputs produced in s or z are consumed by the inputs of the process in a way that none of
the outputs can be refused.

Definition 18. (Reflexive composition) Let Ctr be a component contract, and ic and oc

two channels, such that: {ic, oc} ⊆ CCtr and Bctr |̀ {| ic, oc |} is buffering self-injection
compatible, then, the Reflexive composition is defined as:

Ctr [ic ˓
−−→ oc] = Ctr ≍|icoc

The structure of a reflexive composition is similar to a feedback composition. However,
it does not impose the restriction that the channels to be connected are decoupled; on the
other hand, it requires a deadlock analysis by checking if the process restricted to the channels
involved in the composition is buffering self-injection compatible.

The presented composition rules comprise a systematic method to preserve behavioural
properties by construction in component compositions, focusing on the preservation of dea-
dlock.
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2.4 UML

Our aim here is to foster a formal CBSD model for UML (Unified Model Language) (Object

Management Group (OMG), 2016), motivated by the fact that UML is a widely used notation in
industry, and amenable to mechanised analysis. We have chosen some elements from UML to
describe the behaviour of a component and how it can communicate with other ones. In this
section we briefly describe the diagrams that are used in our component metamodel: Class,
State Machine and Composite Structure Diagrams.

2.4.1 Class Diagram

A class diagram represents the static view that shows a collection of declarative (static)
model elements, such as classes, types, and their contents and relationships. Figure 4 repre-
sents the component Fork in UML. Here we use a stereotype to characterize a component;
a stereotype extension mechanism defines a new kind of model element based on an exis-
ting model element. Figure 4 shows an example of a class diagram that describes a Dining
Philosophers component. A diningPhilosophers class is composed of Phil and Fork classes.
Multiplicity specifies the number of instances of the component; in this case, there are two
instances of each Phil and Fork component that realise the same interface: interface phil fork.

Figure 4 – Class diagram of Dining Philosophers component.

Source: Author’s ownership.
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2.4.2 State Machine Diagram

A state machine diagram is used to model the dynamic aspects of a system, emphasizing
the flow of control from state to state, specifying the sequences of states an object goes
through during its lifetime in response to events. A state is a result of previous activities
performed by the object and is typically determined by the values of its attributes and links
to other objects. A transition is a relationship between two states. It has five elements: source
state, trigger, guard condition, action and target state. Except for the source and target states,
the other elements are optional. A source state is a state from which a transition is trigerred.
An event trigger is a stimulus that can trigger a source state to fire on satisfying guard
conditions. Guard conditions are boolean expressions evaluated that affect the behaviour of a
state machine by allowing the transition if evaluated to true and disabling it if evaluated to
false. In the UML notation, guard conditions are defined in square brackets ([size == 0]). An
action is an executable atomic computation that may directly act on the object that owns the
state machine and indirectly on other objects visible to the object. A target state is a state
that is active after the completion of the transition.

Figure 5 shows the state machine which represents the reactive behaviour of the Fork

component. It has three states: available, Busy1 and Busy2. It cyclically offers the possibility
of picking up the fork through its left (fork left.picksup) or right ports (fork right.picksup),
and then waits for the fork to be put down via the same port: fork right.putsdown and
fork left.putsdown.

2.4.3 Sequence diagram

In UML, there are four types of diagrams to describe interactions: sequence diagrams,
communication diagrams, interaction overview diagrams, and timing diagrams. Among them,
the sequence diagram is the most commonly used to describe interaction of system participants.

A sequence diagram describes operational scenarios of a system with an emphasis on
order. This is achieved through the use of lifelines. Each participant of the diagram, typically,
instances of classes, possesses a lifeline, so that it can represent a message-exchange order.

The sequence diagram in Figure 6 presents a scenario of the dining philosophers example
where two philosophers and two forks communicate. A lifeline is represented by a dashed
vertical line under each participant.
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Figure 5 – State Machine Diagram for the FORK Component.

Source: Author’s ownership.

Figure 6 shows the following participants: phil1 and phil2 which are instances of Phil;
fork1 and fork2 instances of Fork. Participants communicate via messages. For example,
phil2 sends message picksup to fork2. Messages are sent in sequence along a participant
lifeline. So, the first message sent by the phil2 goes to fork2, the second from phil1 to fork1,
the third from phil1 to fork2 and the fourth from phil2 to fork1.

Messages can be of three types: asynchronous (open arrowhead), synchronous call (closed
arrowhead), or reply to a synchronous call (dashed arrow). Each message shown in Figure 6
is either synchronous or reply.

2.4.4 Composite Structure Diagram

A composite structure diagram is a type of static structure diagram that shows the internal
structure of a class and the collaborations that this structure makes possible. This diagram
can include internal parts, ports through which the parts interact with each other or through
which instances of the class interact with the parts and with the outside world, and connec-
tors between parts or ports. A composite structure is a set of interconnected elements that
collaborate at runtime to achieve some purpose. Each element has some defined role in the
collaboration. In Figure 7 the composite structure diagram shows how a dining philosophers
could be composed; the parts of the diagram represent forks and philosophers that can commu-
nicate, connected through the ports (fork rigth, fork left, phil rigth, phil left); each port
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Figure 6 – Sequence Diagram

Source: Author’s ownership.

provides or requires one interface, in this case interface phil fork.

Figure 7 – UML Composite Structure Diagram.

Source: Author’s ownership.
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3 PROPOSED UML COMPONENT MODEL

Although BRIC provides a sound and systematic component development strategy, it is not
appealing for practical use, as it requires deep knowledge of CSP. This was the main motivation
for our UML based approach. First, in Section 3.1, we define a component model in UML;
this is followed by Section 3.2 that establishes the relevant well-formedness conditions. Then,
in Section 3.3, we present the approach to create and compose component instances.

3.1 COMPONENT METAMODEL

Component models define specific representation, interaction, composition, and other stan-
dards for software components (HEINEMAN; COUNCILL, 2001). Component models can be de-
fined for different levels of component abstractions. They can be very general, but they need
to define at least the (LAU; WANG, 2005):

• Syntax of components, how they are constructed and represented;

• Semantics of components, what components are meant to be;

• Composition of components, how they are composed or assembled.

Although UML has a metamodel for components, this is normally used as a way to represent
concrete artefacts, typically component implementations. We propose a component metamodel
at the design phase, which is closer to the notion of a subsystem in UML, but we define the
necessary elements to form a detailed component model, including structural and behavioural
aspects, as well as composition rules to produce more elaborate components from basic ones.

In Figure 8, we define a metamodel that formally captures the structure of the component
model we propose. This metamodel extends constructs from a subset of UML that are identified
as grey filled boxes. The unfilled boxes are the new elements introduced; these are defined as
stereotypes on standard UML design, and are explained in the sequel.

We define a component as an AbstractComponent, which inherits from a UML Subsystem.
A component must be either a BasicComponent or a HierarchicalComponent. A BasicCompo-
nent has one BasicComponentClass that describes the behaviour of the component, variables,
constants and its ports. A BasicComponentClass is a UML EncapsulatedClassifier element
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Figure 8 – The Component Metamodel

Source: Author’s ownership.

that is represented by a ComponentClass, which, apart from attributes and operations, inclu-
des ports. It is modelled in a composite structure diagram that shows the internal structure
of a class and the collaborations that this structure makes possible. The BasicComponent is
the core class of a component metamodel. Its behaviour is defined by a state machine. In
this work, it suffices considering the basic constructors of a state machine: initial pseudostate,
choice pseudostate, final pseudostate, simple state and behavioural transition with triggers,
guards and actions.

In the Dining Philosophers, Fork is an example of a BasicComponent. In Figure 9, it is
defined as a Subsystem stereotyped BasicComponent. It has a BasicComponentClass with
two ports, fork right and fork left, both realising the interface phil fork interface. Also, each
BasicComponent has one state machine whose name is formed of the prefix STM and the
component’s name.

Figure 10 shows the state machine STM Fork, which captures the reactive behaviour of
the Fork component. It cyclically offers the possibility of picking up the fork through its left
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Figure 9 – Fork Component

Source: Author’s ownership.

Figure 10 – State Machine STM FORK

Source: Author’s ownership.

or right ports and then waits for the fork to be put down via the same port. Figure 11 shows
the behaviour of the Phil component given by STM Phil.

A HierarchicalComponent is defined by the composition of component instances. This
component must have a HierarchicalComponentClass, which owns a collection of other com-
ponent classes; this is a composition relationship between the hierarchical component class
and the classes of the other components. The connections between them should be expressed
in the a HierarchicalComponentClass that is a UML EncapsulatedClassifier element, hence, it
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Figure 11 – PHIL State Machine

Source: Author’s ownership.

may have ports to interact with other components. Finally, a System is a specialisation of a
HierarchicalComponent, and it can be seen as the root component of the entire system.
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Figure 12 – Hierchical Component

Source: Author’s ownership.

The Dining Philosophers is modelled as a System element and, therefore, as a Hierarchi-
calComponent; see Figure 12. It has a HierarchicalComponentClass that is related to one or
two Fork and one or two Phil components, using a composition relationship. The ports from
Phil and Fork components realize the interface interface phil fork. This interface defines the
operations picksup and putsdown.

3.2 WELL-FORMEDNESS CONDITIONS

In addition to the metamodel, we need to define some well-formedness conditions to cha-
racterise meaningful models that can be assigned a formal semantics. Furthermore, a precise
characterisation of a meaningful model can be seen as a modelling style to guide practitio-
ners during the design. In Figure 8, these conditions are formally specified in OCL (Object
Constraint Language) (Object Management Group (OMG), 2014); their titles appear inside model
elements that represent notes, and their definitions are available in Appendix A. The informal
explanation is as follows:
Basic Component. This kind of component has one stereotyped class BasicComponentClass
whose behaviour must be described by a State Machine. The name of the BasicComponent-
Class must be the same as the one for the component. A BasicComponent may have an
associated structure to describe the ports of the BasicComponentClass, which can itself have
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attributes. In OCL, this is captured by the Constraint 1 that is about the BasicComponentClass
context where the invariant (inv) qtPortBC determines that the number of ports is at least
one. In an OCL expression, the reserved word self is used to refer to the contextual instance. In
this case, self refers to an instance of BasicComponentClass. The expression OwnedPort re-
fers to a set of ports that BasicComponentClass owns, and the arrow (→) is used to acess the
size property on set. The invariant namedPort determines that the ports must have different
names. All ports of the component must realise a provided or required interface to conform
to the constraint realizedPort. The forAll operation allows specifying a boolean expression,
which must hold for all objects in a collection. And the required() and provided() operations
refer to a set of interfaces required and provided, respectively, by the type of the port.

Constraint 1 – Basic Component Class

1 c o n t e x t Bas icComponentClass

3 i n v qtPortBC :
s e l f . ownedPort−>s i z e ( )>=1

5

i n v namedPort :
7 s e l f . ownedPort−>f o r A l l ( c1 , c2 | c1<>c2

i m p l i e s c1 . name <> c2 . name and
9 c1 . name <> ' ' and c2 . name <> ' ' )

11 i n v r e a l i z e d P o r t :
s e l f . ownedPort−>f o r A l l ( c1 |

13 c1 . r e q u i r e d ( )−>s i z e ( )>0 or c1 . p r o v i d e d ( )−>s i z e ( )>0 )

15 i n v con juga t edPo r t :
s e l f . ownedPort−> f o r A l l ( c1 | c1 . i s C o n j u g a t e d )

17

i n v i n t e r f a c e O p e r a t i o n s :
19 s e l f . ownedPort −>

f o r A l l ( c1 | c1 . r e q u i r e d ( ) . ownedOperat ion −>s i z e ( )>0 or
21 c1 . p r o v i d e d ( ) . ownedOperat ion −>s i z e ( ) >0)

Source: Author’s ownership.

Hierarchical Component. This kind of component has one stereotyped class Hierarchical-
ComponentClass. Similar to the BasicComponentClass, the name of the HierarchicalCompo-
nentClass should be the same as the one for the component, conforming to the constraint
NameHierarchicalComponent. Also, a HierarchicalComponentClass may have attributes. This
class must be the owner class of a composition relationship with other component classes to
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express the ownership of other components. The structure of a HierarchicalComponentClass
is described by a composite structure diagram where the connections among the owned com-
ponent instances are specified. A Hierarchical Component must own at least one Basic or
Hierarchical component; this is captured by the constraint MultiHierarchical.
System element. There must be exactly one System, which is the root component. This is a
special type of HierarchicalComponent. The singleness is determined by the OCL Constraint 2
with the invariant UniqueSystem in System context.

Constraint 2 – System

1 c o n t e x t System
i n v UniqueSystem : s e l f −>s i z e ( )=1

Source: Author’s ownership.

Component Instance It is an individual element with its own internal state. Each com-
ponent instance must be bounded to a type: Basic Component or Hierarchical Component.
Component instances are represented by the UML part element in the EncapsuledClassifier of
a hierarchical component. Figure 13 illustrates two instances of the Fork component and two
of the Phil component.
Multiplicities. Multiplicities with the * character are not allowed in the composite structure
diagram because we are dealing with a bounded number of instances. This is important to
make the formal analysis feasible. All parts in a composition relationship must appear in the
associated composite structure diagram in numbers compatible with their multiplicities. This
is captured by the constraint multiplicityLimited, Appendix B.
Ports. A port allows communication between component instances. Each port must realise
one interface; components do not realise interfaces directly. An interface can be realised as a
provided or required interface. A connection is established between two compatible component
ports, that is, ports that realise the same interface: one in a required mode and the other one in
a provided mode. This is described in Constraint 1 by invariant conjugatedPort that specifies
all ports are conjugated. We distinguish ports according to the components they belong to.
BasicComponent ports are connected at most to another component port. On the other hand,
a port from a HierarchicalComponent is connected at most to two other ports, one to a port
of an inner component instance, and another to a port of an external component instance.
Component Services. The contract of a component must be modelled using ports. Each
component class must have ports exposing the required and provided services. Then, Ports
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describe the operations that a component needs or performs. This is captured by invariant
interfaceOperations Constraint 1, the property ownedOperation informs a set of operations of
a interface. .
Operations. Components can execute operations that are defined in interfaces that are reali-
sed by their ports. An operation can be asynchronous or synchronous. We define asynchronous
operations as a signal; it is indicated by a stereotype signal in the operation declaration. In our
example, Figure 12, picksup and putsdown are synchronous operations and do not need an
explicit stereotype. A synchronous operation blocks the caller until the operation completes.
Operation Parameter. The parameter modes determine the behaviours of parameters. If an
operation has parameters, its parameter modes have to be defined either as in (input) or as
out (output).
State Machine. A State Machine describes the behaviour of the component. Its name needs
to be the same as that of the owner component prefixed with the term STM , to conform
to the constraint NameStateMachine. A state machine must have at least one state and one
transition. Transitions must have a valid pair (port/operation) described in their trigger or
action fields. It is also possible to describe guards for transitions.
Port Multiplicity. If there is a connector between two ports where at least one of them has
multiplicity greater than one, the connector must be labelled to indicate the port being con-
nected. The label must follow the pattern port1 name[j]↔port2 name[i], where port1 name
and port2 name are the name of ports; j and i are the indices of the port of the connection.

3.3 COMPOSITION OF COMPONENT INSTANCES

The composition of component instances is described using a Hierarchical Component
element, where it is possible to create instances of the components and make connections
between them. The simplest form of composition is Interleave composition; there is no com-
munication among the component instances. This composition is achieved by instantiating
component instances in the structure of a hierarchical component class. Each instance has
a type related to a component previously defined. For example, in Figure 13 we show two
instances of Fork and two of Phil in a hierarchical component. When component instances
are created, they are, by default, in interleaving.

Communications are performed through the connection of ports from two different com-
ponents. The same interface must be provided by one component and required by the other
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Figure 13 – Interleave

Source: Author’s ownership.

one.
Figure 14 illustrates a communication between fork1 and phil1. This communication hap-

pens through the connection from port phil left of phil1, that requires the interface inter-
face phil fork, to port fork right of fork1 that provides the interface interface phil fork.

Figure 14 – Communication

Source: Author’s ownership.
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4 FORMAL SEMANTICS AND COMPOSITIONAL VERIFICATION

In order to perform a mechanised compositional verification during the model construction,
we translate the UML Metamodel to BRIC Metamodel , which itself uses CSP as the underlying
formal notation.

One question that may arise is whether the defined semantics properly captures the intended
behaviour of the component model. This, of course, cannot be proved, unless we consider
independent semantics as reference. Unfortunately, there is no complete semantics for UML.
However, the problem is minimised in our particular case, since our semantics is inspired by
the Foundational UML works (Object Management Group (OMG), 2017b; Object Management Group

(OMG), 2019b; Object Management Group (OMG), 2019a).
Concerning component interactions, in particular, they are asynchronous: always inter-

mediated by a buffer. Interoperation of asynchronous system is an important issue an real
concurrent systems. However, the UML message exchanging (synchronous or asynchronous)
between components can be specified using this mechanism. In the context of our formal
semantics, all possible interleavings of messages must be taken into account, but operational
issues of a specific execution environment, like scheduling which may impact the order or the
priority of messages, is not our concern.

First, we give an overview of the behaviour of a component contract BRIC for UML
components; next, we present the rules that formalise the formal semantics definition, and
then we discuss the verification strategy.

4.1 OVERVIEW

In the previous Chapter, we defined well-formedness conditions for our model; this encodes
restrictions in order to define a meaningful model. The objective of providing a formal semantics
for our UML Component Model is to define the behaviour of a component, its communication
through ports and the interaction between components.
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Figure 15 – Illustration of BasicComponent in CSP

Source: Author’s ownership.

As we have previously explained, our UML Component Model has two types of components:
BasicComponent and HierarchicalComponent. Figure 15 shows the high-level architecture of
the behaviour element of BRIC contract, a BasicComponent in CSP. The rounded boxes
represent CSP processes, and the arrows illustrate communication of events related to a port.
It has two processes that are composed in parallel and ports for communication. The process
on the left-hand side, Structure, represents the attributes of the component, captured by a
process that defines a memory for accessing the attributes; these are specified in a UML
BasicComponentClass by class attributes. The need to represent this memory as a process
is that, as a process algebra, CSP processes are stateless. Instead of using CSP process with
parameters, we choose the memory process since it creates a local context. A behaviour process
uses additional events to query the memory process as to whether a guard is true.

The process on the right-hand side, Behaviour, captures the core dynamics of a component.
It results from the translation of the component State Machine.

The two processes synchronise on the set 𝛼C , which has events for reading, and setting the
value of each attribute; this set also has one event associated with each guard in the component
state machine. The event occurrence means that the corresponding guard is true. This is a
technical detail necessary to impose atomicity in the evaluation of guards that may include
global (and shared) variables. More details about this mechanism is presented in Section 4.2.

A BasicComponent allows communication with other components or with the environment
through ports. In Figure 15, this is represented by the arrows named port ev. The incoming and
outgoing arrows represent the input and output communications of a component, respectively.
Ports are translated to CSP channels, while operations and signals are translated to CSP
events.
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Figure 16 – Illustration of HierarchicalComponent in CSP

Source: Author’s ownership.

A HierarchicalComponent is specified by the parallelism of its internal component instances.
As shown in Figure 16, the behaviour element of BRIC contract, consider a HierarchicalCompo-
nent that has two internal component instances, namely C1 and C2. A HierarchicalComponent
can be composed of n components; however, the composition is made in pairs. These instan-
ces must be either a BasicComponent or a HierarchicalComponent previously defined. The
connections between instances owned by HierarchicalComponents are specified in UML using
a Composite Structure Diagram, as illustrated in Figure 14. These component instances can
communicate between themselves, which is represented by connectors.

Whenever two component instances are connected through their ports in UML, such a
connection is represented in CSP by the parallel composition of the components’ processes
and a Buffer process that orchestrates the communication between the components. The
Buffer works as an intermediate element of the composition, transferring information from one
component to another. Information is always accepted, independent of the other component
being ready to input. This Buffer is not a first-class element; it is implicit in our component
model.

The synchronisation alphabet of a component process and the Buffer is defined by the
events sent to and received from the ports for that particular connection. For instance, in
Figure 16, if component C1 requires a service provided by C2, which is represented by the
connection between their ports, then 𝛼C1 has the events of the port of C1 used in this con-
nection, and 𝛼C2 has the events of the port of C2. The Buffer process simply guarantees that
the first event comes from the port of C1 followed by the event related to the port of com-
ponent C2. In this way, in our running example, the dining philosophers, the Phil component
requires services, picking up and putting down, which are provided by the Fork component.
The communication occurs through the connection between their ports. For example, in Fi-
gure 14 the port phil left from the instance phil1 of the component Phil is connected to
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the port fork right from the instance fork1 of the component Fork ; through these ports the
events picksup and putsdown are communicated and the buffer, which is shared between the
instances of the components, ensures that the ordering of the events exchanged between the
two instances is preserved.

If there is no connection between the components, the synchronisation sets (𝛼C1 and 𝛼C2)
are empty, and the buffer has no effect. In CSP, the processes that capture the behaviour of
C1 and C2 are combined in interleaving.

Finally, a HiearchicalComponent can also communicate with external entities through its
ports: port ev arrows in Figure 16 illustrate this scenario.

4.2 FORMAL SEMANTICS

The concepts introduced in the previous section are formalised in a denotational semantics
of our Component Model using BRIC as the semantic domain. For each syntactic element
from the metamodel is given a semantic function to map this element into its denotation in
the (BRIC) semantic domain. We use double brackets, [[ ]], to identify a semantic function
and its argument is a syntactic element from our UML Component Model. Semantic functions
can use auxiliary functions.

The definition of the translation rules adopts some conventions: the title of semantic func-
tions starts with the term Semantics of and that of auxiliary functions starts with function;
the header of the rule identifies a function and its parameters; control flow statements are
presented in italics font (e.g. for each, if-then-else); elements of the Component Model are
accessed using a dot notation (e.g. c.StateMachine refers to the State Machine of the com-
ponent denoted by c and c.name accesses the name of a component), and the meta-notation
is underlined, and is written in a light-grey font colour. The content in typewriter font refers
to a CSP text.

We describe in this section the main rules. All rules and auxiliary functions are described
in Appendix B.

Rule 1 gives the semantics of a model by mapping this model to a BRIC Component; the
semantic function [[ ]]ℳ takes a model M as argument and, for each AbstractComponent, such
as BasicComponent or HierarchicalComponent, in M, it invokes the function BricContract that
builds a BRIC contract given a UML AbstractComponent passed as argument.
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Rule 1. Semantics of Component Model
[[M : Model]]ℳ : List of BricComponent =

for each c in M .AbstractComponent
BricContract(c)

end for

The auxiliary function BricContract, Rule 2, yields a tuple with the elements that compose
a BRIC contract signature, as explained previously in Section 2.3 (Definition 3); and from this
tuple all elements of BRIC are defined. The first element is the behaviour of the component.
It is represented by a CSP process that has the same name as the component (c.name) and it
is parameterised by an id to uniquely identify its instances. The range of id is defined during
the translation. This CSP process is defined by Rule 6.

Rule 2. Function bricContract
bricContract(c : AbstractComponent) : BricSignature =

⟨
c.name(id),
relation(c),
interface(c),
communicationChannel(c)
⟩
[[c]]𝒞

The fourth element of the tuple of a BRIC contract is the set of channels of the component,
which is yielded by the auxiliary function communicationChanel(c). This function, Rule 3,
fetches all port names from the structured class and concatenates each one with the identifier
.id and composes them as a set.

This set for the Fork component is:

{fork right.id, fork left.id}

Rule 3. Function communicationChannel
communicationChannel(c : AbstractComponent) : SetPortName =

{p : PortName | ∃ class ∈ c.StruturedClass ∙ ∃ port ∈ class.Ports ∙ p = port.name⌢.id}
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The third element of the contract in Rule 2 is the interface of communications interface(c).
Rule 4 describes the set of operations and signals that the component can communicate. These
elements are collected from the interfaces that the component ports realise. A port must realise
an interface. Interfaces can be realised in either provided or required mode. Interfaces describe
operations or signals in our component model. The difference between them in our semantics
is that an operation uses synchronous communication. To capture this in CSP we create two
events for each operation: an input event and output event, which represent the operation
call and its reply, respectively. An operation name is concatenated with the string I for the
former case and with O for the latter. A signal uses asynchronous communication and is
encoded as a homonymous channel. The union of these two sets composes the interface of
communications.

For the Fork component, the set of interfaces is represented by:

{picksup I , picksup O, putsdown I , putsdown O}

Rule 4. Function interface
interface(c : AbstractComponent) : SetInterfaceCommunication =

{i : interface Name | ∃ class ∈ c.StructuredClasses ∙ ∃ port ∈ class.Ports ∙ ∃ interface ∈
(port.RequiredInterfaces ∪ port.ProvidedInterfaces) ∙ ∃ operation ∈ interface.Operation ∙
i = operation.name⌢ O ∨ i = operation.name⌢ I}
∪

{i : interface Name | ∃ class ∈ c.StructuredClasses ∙
∃ port ∈ class.Ports ∙ ∃ interface ∈ (port.RequiredInterfaces
∪ port.ProvidedInterfaces) ∙ ∃ signal ∈ interface.Signal ∙ i = signal.name}

The bricContract function, Rule 2, also invokes the function relation(c) that describes the
relationship between the channels and the interfaces. It is presented in Rule 5, and it yields a
set of pairs (portName, {interface}) that represents the link between ports (channels) and the
interfaces (types). We use required provided interface(p) as an auxiliary function to return
all interfaces that are realised by port p. The symbol P stands for power set.
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Rule 5. Function relation
relation(c : AbstractComponent) : relationPortInterface =

{(p : portName, i : P interface) | ∃ class ∈ c.StructureClass ∙
∃ port ∈ class.Port ∙ p = port.name ∧
i = required provided interface(port)}

The relation between communication channels and interfaces from Fork is defined by the
tuple:

⟨(fork right.id, {picksup I , picksup O, putsdown I , putsdown O}),

(fork left.id, {picksup I , picksup O, putsdown I , putsdown O})⟩

The semantic function [[ ]]𝒞 , Rule 6, defines the semantics of a behaviour of a BRIC
component. This function takes a component as argument and defines the CSP Specification
that captures the component behaviour. It verifies if the component is a BasicComponent or
a HierarchicalComponent, and it invokes the corresponding semantic function [[ ]]ℬ𝒞 or [[ ]]ℋ𝒞

to define the behaviour of a component.

Rule 6. Semantics of Component
[[c : AbstractComponent]]𝒞 : CSPSpecification =

if isbasicComponent(c) then
[[c]]ℬ𝒞

else
[[c]]ℋ𝒞

The function [[ ]]ℬ𝒞, presented in Rule 7, considers all elements of a basic component.
The first one are events that represent operations of the component and are derived from the
interfaces realised by the ports of the component: input and output channels. Each operation
from the interface produces two datatypes, both named after the operation, but, the first,
suffixed by I, indicates that this type encodes the operation call, and the input parameters;
the second, suffixed by O, indicates that this type encodes the reply to the call together with
the output parameter. To generate this information, inputs and outputs, we use the functions
subtype operationsInput(c) and subtype operationsOutput(c), respectively.



64

The ports of the FORK component provides one interface that has two operations: picksup
and putsdown. Then they are translated to a CSPM datatype and two subtypes (one for inputs
and another for outputs). 1

datatype fork operation = picksup I | picksup O | putsdown I | putsdown O

subtype fork I = picksup I | putsdown I

subtype fork O = picksup O | putsdown O

The function [[ ]]ℬ𝒞 also retrieves the ports of the component which, in CSP, are channels
that are generated by the auxiliary function channel port(c), Rule 8. Each port gives rise to
one channel of communication if the port belongs to a BasicComponent. Otherwise, if it is
part of a HierarchicalComponent, two communication channels are associated with its sides:
internal and external. The internal channel refers to the connection of internal components to
the port. The external channel refers to an external connection to the port or the environment.

Rule 7. Semantics of Basic Component BRIC
[[c : AbstractComponent]]ℬ𝒞 : CSPSpecification =

datatype c.name operation = subtype operationsInput(c) | subtype operationsOutput(c)
subtype c.name I = subtype operationsInput(c)
subtype c.name O = subtype operationsOutput(c)
channel port(c)
channel get var(c)
channel set var(c)
memory(c)
[[c.State]]𝒮𝒯 ℳ

mainProcess(c)

The channels that represent ports of the Fork component are:

channel fork right : id Fork.fork operation

channel fork left : id Fork.fork operation
1 Complex data types can be defined in CSPM by the construtors datatype and subtype that specify set of

atomic constants. In CSP there is no need of using constructors.
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Rule 8. Function Channel Port
channel port(c : AbstractComponent) :: CSPSpecification =

for each class in c.StructureClass
for each port in class.port
if (port.OwnedByBasicComponent)
channel port.name : ID c.name.c.name operation

else
channel port.name internal : ID c.name.c.name operation

channel port.name external : ID c.name.c.name operation

end for
end for

As previously mentioned, as a process algebra, CSP is stateless. Then, in our work, class
attributes are represented as a memory process. Therefore set and get channels are necessary
to assign and recover values to and from these attributes. The function channel set var(c) cre-
ates, for each attribute of a component, a channel used to assign new values to this attribute.
There is no attribute in the Dining Philosophers, however, considering a component with an
attribute, namely philosopherName, this function would yield channel set philosopherName:
id Phil.String where id Phil is the identifier of the component and String is the type of phi-
losopherName. Similarly, function channel get var(c) creates channels to access the values of
the attributes. In this case, the channel would be channel get philosopherName: id Phil.String.

In Rule 9 we have function memory(c) that defines the memory process for a component
(Structure process illustrated in Figure 15). As already explained, its purpose is to control the
access to attributes and internal events of the component. The process for the component
memory records local variables (attributes of the component). These variables/attributes are
generated by the function varList(c). The function vid calculates a unique identifier for variables
formed for component name and attribute name. This function, vid(v), is used to define set
and get channels.

By varList(c)[valueName(v) := x] we denote the list of variables by the name valueName(v)
replaced with the value x, when the set event is communicated.

Guarded transitions in the process resulting from the semantic definition of a state machine
(Rule 11) are also controlled by events of the memory process. This mechanism allows the
atomicity for checking a guard that uses attributes of the component, thus, avoiding changes
in the value of attributes while a guard is being evaluated.
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Rule 9. Function memory
memory(c : AbstractComponent) :: CSPSpecification =

c.name memory (id,varList(c) ) =

(2 v:varList(c) ∙ get vid(v)id!name(v)→ c.name memory (id , varList(c)))
2

(2 v:varList(c) ∙ set vid(v)id?vl→ c.name memory (id,varList(c)[name(v) := vl]))
2

memoryGuards(c.StateMachine.transitions)

The guards are translated by the function memoryGuards(c). Each iteration of the for
each construct generates a process that captures the behaviour of a transition. The sep clause
with the external choice operator (2) means that each pair of such processes is combined by
external choice.

For each transition from the state machine, Rule 10 verifies if there is a guard and if there
is a trigger. When both exist, a boolean expression is formed of the semantics of a guard,
[[ ]]𝒢ℛ𝒟; then a trigger, [[ ]]𝒯 ℛ𝒢, is indexed by a number that identifies this statement as unique.
This identifier is given by the function generatedIdTrs(). Otherwise, if there is no trigger, an
expression is formed of the semantics of the guard, as a prefix (→) and an internal event
that is indexed by the result from generatedIdTrs(). This memory process enables or disables
a particular event internal.x, where x comes from generatedIdTrs(), depending on whether
the guard for the transition with identifier x holds or not. This allows the synchronisation
with the process that represents the state machine. Since the synchronisation involves the
trigger channel that can be constrained by different guards in other transitions, the unique
identification avoids ambiguity. On the other hand, when a transition includes only a guard,
this guard is associated to a channel named internal and, in a similar way to guards and
triggers, it has an identifier given by generatedIdTrs().
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Rule 10. Function memoryGuards
memoryGuards(c : AbstractComponent) :: CSPSpecification =

for each t in c.StateMachine.transitions sep 2

if (not empty(t.guard) and not empty(t.trigger)) then
[[t.guard]]𝒢ℛ𝒟 & [[t.trigger]]𝒯 ℛ𝒢 .generatedIdTrs()
→ c.name memory (id, varList(c))

elseif (not empty(t.guard) and empty(t.trigger)) then
[[t.guard]]𝒢ℛ𝒟 → internal.generatedIdTrs()
→ c.name memory (id, varList(c))

end if
end for

As the Dining Philosopher example does not have attributes, we illustrate Rule 10 with
the memory process of the Control component from the Ring Buffer case study presented
in Section 5.1. It is parameterised by id and the other component attributes. We present a
fragment of this process. The get size.id!size event communicates the current value of the
attribute size for this instance identified by id, after which the process recurses preserving
the values of all attributes in the memory. The event set size.id?vl receives the new value
(vl) of the size attribute so that the memory is updated with this value in the subsequent
recursive call. Events get and set for the other attributes are similar. When the attribute size is
greater than zero and the event port env.id.retrieve data I is performed, and when the size

is equal to one, and the event internal.3 is engaged, the memory process is called recursively
preserving all attributes.

CONTROL memory(id, size, cache, top, bot, vl env) =

get size.id!size → CONTROL memory(id, size, cache, top, bot, vl env)

2

...

set size.id?vl → CONTROL memory(id, vl, cache, top, bot, vl env)

2

...

size > 0 & port env.id.retrieve data I → CONTROL memory(id, size, cache, top, bot, vl env)

2

size == 1 & internal.3 → CONTROL memory(id, size, cache, top, bot, vl env)

...

Rule 11 specifies the semantic function [[ ]]𝒮𝒯 ℳ that formalises the core behaviour of the
component by translating its state machine to a CSP process that has as signature the string
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STM concatenated with the component name, and it is parameterised by the component
instance identifier id. Each state of the state machine becomes a CSP process also with
a component instance identifier id as argument and the semantics of a state is given by the
function [[ ]]𝒮𝒯 𝒜𝒯 ℰ . The first invoked process is the one reachable from the initial pseudostate.
It is represented by stm.FirstState.name(id).

Rule 11. Semantics of State Machine
[[stm : StateMachine]]𝒮𝒯 ℳ : CSPSpecification =

STM stm.name(id) = stm.FirstState.name(id)
for each st in stm.State

st.name(id)= [[st]]𝒮𝒯 𝒜𝒯 ℰ

end for

We consider only simple states. Therefore, in the definition of [[ ]]𝒮𝒯 𝒜𝒯 ℰ each transition
from the source state is evaluated using [[ ]]𝒯 ℛ; the transitions are composed in external
choice.

Rule 12. Semantics of State
[[st : State]]𝒮𝒯 𝒜𝒯 ℰ : CSPProcess =

2 tr : transitionFrom(st) ∙ [[tr]]𝒯 ℛ

The semantics of a transition, Rule 13, is given by the evaluation of str transition that
is formed of the translation of guards, trigger and action of a transition; it behaves as a process
that has the name of the target state of the transition and is parameterised by the component
identifier. The auxiliary function getIdTrs(tr) yields a number that indexes the transition. Note
that, in Rule 13, if an action is not present, then the process str action behaves like SKIP.
The process str trigger action captures the semantics of a trigger, if it exists, and then
behaves as the process that captures the behaviour of str action. Finally, str transition

behaves as str trigger action, but preceded by an internal event that represents the guard
evaluation, if there is a guard and no trigger. This internal event synchronises the memory
with the event described in Rule 10.
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Rule 13. Semantics of Transition
[[tr : Transition]]𝒯 ℛ : CSPProcess =

let

str action =

if not empty(tr .action) then
[[tr.action]]𝒜𝒞𝒯 ℐ𝒪𝒩 → SKIP

else
SKIP

end if

str trigger action =

if not empty(tr .trigger) then
[[tr.trigger]]𝒯 ℛℐ𝒢𝒢ℰℛ.getIdTrs(tr)→ str action

else
str action

end if

str transition =

if not empty(tr .guard) and empty(tr .trigger) then
internal.getIdTrs(tr)→ str trigger action

else
str trigger action

end if

within
str transition ; tr .target.name(id)

Considering again our running example, the Dining Philosophers, we show in Figure 11
(on page 51) the state machine diagram of Phil. It is translated to a CSP process where each
state is a process. The main process is the first one that can be reached in the machine:
HoldForkR, where the philosopher picks up the right fork. In this machine, operations are
designed as actions without guards. Triggers and actions on transitions are represented by
channels; in this case the action phil right is a channel that represents the communication
through the port of the same name. Events are communicated through this channel whose
type is a pair: id.operation: id is the component instance identifier, and operations is the set
{putsdown I , putsdown O, picksup I , picksup O}. The evaluation of a transition from the
state HoldForkR to HoldForkL results into a sequence of input and output events:

phil right.id.picksup I → phil right.id.picksup O → HoldForkL(id)

The following process represents the behaviour of Phil, modelled in the state machine
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diagram showed in Figure 11. It cyclically picks up a fork in the right port, then in the left
one, and finally puts down via the same port.

STM Phil(id) = HoldForkR(id)

HoldForkR(id) = (phil right.id.picksup I → phil right.id.picksup O → HoldForkL(id))

HoldForkL(id) = (phil left.id.picksup I → phil left.id.picksup O → PutsDownR(id))

PutsDownR(id) = (phil right.id.putsdown I → phil right.id.putsdown O → PutsDownL(id))

PutsDownL(id) = (phil left.id.putsdown I → phil left.id.putsdown O → HoldForkR(id))

The last step of Rule 7 is a call to the function mainProcess(c) (Rule 14), which defines a
process that represents the structure and behaviour of a component. This process is defined by
STM c.name(id) composed in parallel with memory c.name(id, valueList(c)) where valueList(c)
returns the default values of the attributes. The synchronisation set provided by the function
setSync(c) includes get and set channels and internal events. In order to keep only the channels
that represent ports visible to other components, channels as get, set and internal channels
are hidden; this set is obtained by the function setHidden(c).

Rule 14. Function Main Process
mainProcess(c : Component) : CSPProcess =

c.name(id) =

(STM c.name(id)
||

{|setSync(c)|}

memory c.name(id, valueList(c))) ∖ {| setHidden(c) |}

In the Dining Philosophers example, neither Fork nor Phil components have attributes.
Therefore, there is no need for a memory to record state information. They are represented
only by their state machine processes. Then, in these cases the Rule 14 is replace by Rule 15
where the main process is formed only by the process that describes the state machine.

FORK (id) = STM Fork(id)

PHIL(id) = STM Phil(id)
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Rule 15. Function Main Process
mainProcessNoMemory(c : Component) : CSPProcess =

c.name(id) = STM c.name(id)

With the basic component definition it is possible to define the semantics of hierarchical
components since this is a collection of component instances.

In Rule 17, the semantic function [[ ]]ℋ𝒞 describes the behaviour of the hierarchical com-
ponent. It retrieves the instances from the hierarchical component metamodel element, and,
initially, composes all of them in interleaving, which is the type of communication when none
of the instances are connected, as shown in process CON(0), as described in Rule 16 . In this
rule, component instances are composed in pairs in interleaving.

Rule 16. Function Intervealing Component
InterleaveProcess : CSPProcess =

let
interleave(0) = SKIP
i = length(c.instances)

for each instance in c.instances
interleave(i) = interleave(i − 1) ||| instance.name

end for
within

CON (0) = interleave(length(c.instances)) ||| portProcess(c)

The result of the interleave composition is also composed in interleave with ports from a
HierarchicalComponent. These ports are described as a process yielded by the function call
portProcess(c), which returns the interleaving of all port processes. Each port process uses two
channels, as defined in Rule 8 (internal and external). This process relays the communication
according to its direction. When an external message arrives at the port, the event from
the external port happens followed by the event of the internal port. When the message
comes from an internal communication, then the events occur in the opposite direction. Then,
for each connection between two component instances, a new process CON(i) is defined by
composing CON(i-1) in parallel with a Buffer process (Rule 18) that orchestrates the message
communication order; the synchronisation set is formed of the ports involved in the connection
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(i.port[1] and i.port[2]). 2 Then, it is a representation of a behaviour of unary composition
where assemble distinct channels of a same component.

Rule 17. Semantics of Hiearchical Component Behaviour
[[c : AbstractComponent]]ℋ𝒞 : CSPProcess =

let
CON(0) = InterleaveProcess(c)
for each i in c.connections
CON(i) = CON(i − 1) ||

{|i.port[1],i.port[2]|}
Buffer(i.port[1],i.port[2])

end for
within

c.name(id) = CON(length(c.connections))

Figure 17 shows the hierarchical component DiningPhilosophers, where each instance of
basic components Fork and Phil (fork1, fork2, phil1, phil2) are connected. In our translation
it is represented in CSP by the parallel composition of the component processes and a buffer
process that orchestrates the communication in each pair of connections between component
instances. Although there is no ordering for the connections, we have numbered them in
Figure 17 to facilitate the understanding of how we compose the different instances.

Figure 17 – Dining Philosophers - connections

Source: Author’s ownership.

2 The function length returns the number of connections.
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The function [[ ]]ℋ𝒞 composes all instances from the Dining Philosophers component in
interleaving, generating the CON(0) process. Then, a process is generated for each connection
between component instances. The CON(1) process is defined to represent the connection
between phil1 and fork2. This new process composes in parallel the previous process CON(0)
and the BFIO process, which is a buffer with two channels, one input (ci) and one output
(co) of the same type (see Rule 18). It copies information from its input channel (ci) to
its output channel (co), without loss or ordering. In our example, the BFIO process has as
arguments the channels that represent the ports of this particular connection. That is, channels
port fork right.2 (i.port[1]) and port phil left.1 (i.port[1]) form the synchronisation set for
connection 1.

CON (0) = Fork(1) ||| Fork(2) ||| Phil(1) ||| Phil(2)

CON (1) = CON (0) ||
{|port fork right.2,port phil left.1|}

BFIO(port fork right.2, port phil left.1)

In a similar way, other connections can be established between instances. For example, a
connection 2 between fork1 and phil1 produces CON(2) that is given by parallel composition
of CON(1) and a buffer, synchronising on port fork left.1 and port phil right.1.

Rule 18. Function Buffer Process
BFIO(ci : channel, co : channel) : CSPProcess =

Buffer aux(ci, co, 1) ||| Buffer aux(co, ci, 1)

The intermediary buffer maps outputs from an instance of FORK into inputs to an instance
of PHIL, and vice-versa. These internal buffers perform asynchronous bidirectional communi-
cation, which conveys information in both directions (see Rule 19). The process Buffer is a
buffer of size n. The information communicated are defined by type of ci and co.This buffer
gathers these information from the function outputC All with receives a channel ci as para-
meter and returns all events x, such that the event ci.x is an output of the component on the
channel ci. 3

3 The length s of a sequence s is the number of elements it contains.
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Rule 19. Function Buffer Auxiliary Process
Buffer(ci : channel, co : channel, n : integer) : CSPProcess =

let
B(⟨⟩) =2 x : outputsC All(ci) ∙ ci.x → B(⟨x⟩)
B(s) = (co!head(s)→ B(tail(s)))

2

(#s < n &

2 x : outputsC All(ci) ∙ ci.x → B(s⌢⟨x⟩))
within

B(⟨⟩)

Once the semantics is defined, it is possible to translate well-formed UML component
models, based in our metamodel, to BRIC components and, afterwards, the composition rules
are applied, conduct formal analyses.

4.3 PROTOCOL GENERATION AND VERIFICATION STRATEGY

As the behaviour of a BRIC component is described in CSP, it can be formally verified
using the FDR model checker (GIBSON-ROBINSON et al., 2014). BRIC defines a set of assertions
that represent the BRIC properties that must be checked of a BRIC model. For instance,
it is mandatory to check whether a contract is an I/O Process. Additionally, we described
the composition rules that provide a systematic method to preserve deadlock freedom by
construction where, for each connection, a set of verifications is performed in a compositional
fashion. As we translate the UML components to BRIC, the BRIC-related properties for each
component and the connections between them are also checked in a compositional way.

In this section, we describe the mechanisation of the protocol implementation generation
that is necessary in the side conditions of the feedback and reflexive BRIC composition rules.
Local analyses are made to check the compatibility between communication protocols, verifying
whether any communication problem such as deadlock is introduced with the composition.

Then, we recall that performing such analyses is simpler than verifying the complete model
and we show how the deadlock verification can be performed and how we trace the results
back to the UML model.
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4.3.1 Automatic Protocol Generation

When a component is modelled in UML according to our metamodel and then translated
into BRIC, it is necessary to define a protocol implementation to allow communication between
component instances.

A protocol implementation is given by the projection of the process over a subset of the
communication channels. However, as the projection is expressed by internalising the other
channels (those not in the projected set), this may introduce divergence (livelock) due to the
usage of the CSP hiding operator, which may create cycles of internal events.

So far, the definition of a protocol implementation is a completely manual task, where
the designer must analyse the process of a component and define this process accordingly. In
order to facilitate this endeavour and make the methodology less error-prone, we propose an
automated strategy for generating a protocol for a component process. We systematise the
generation of the protocol as shown in Figure 18.

Figure 18 – Protocol Implementation Steps

Source: Author’s ownership.

The first step is obtained by Rule 14 which generates a process P that represents the
behaviour of a component. Next, we create a temporary process Q given by the process P
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with the projection over the communication channels: Q = P ∖ (diff (Σ,C )) 4, where C is
the set of channels being projected. In other words, we hide all the channels, except those in
C, which are of interest to the protocol. This can result in a process with livelock, as already
explained. To overcome this issue, we perform normalisation on process Q to remove possible
livelocks. First, we obtain the Labelled Transition System (LTS), which gives an operational
semantics for this process. The LTS can be automatically obtained from a CSP process using,
for example, the FDR tool.

In the third step, we use the weak bisimulation (Definition 2) to compress the result of the
projection step.

FDR implements a different notion of weak bisimulation known as divergence-respecting
weak bisimulation; this differs from that presented in Definition 2 in that it preserves 𝜏 self-
loops that characterise divergence.

For compressing a process, FDR uses a variation of LTS, called GLTS (Generalised LTS) (BOUL-

GAKOV; GIBSON-ROBINSON; ROSCOE, 2014), in which there are no 𝜏 actions in transitions; a
𝜏 self-loop is represented as an attribute of a GLTS state. Then, in the fourth step of Figure
18, an LTS is extracted from the GLTS, and these 𝜏 self-loop attributes are ignored. In this
way, the resulting LTS has no divergences and conforms to the weak bisimulation notion as
defined in Definition 2.

The last step is to convert this LTS into a new CSP process. For this, we use an approach
defined in (SAMPAIO et al., 2014), where each transition is translated into a CSP process pre-
fixed with the corresponding event, and whose behaviour is given by recursively mapping the
transitions of the target state. After this step, we have a valid protocol implementation. The
resulting process preserves the refinement expressions of Definition 7. The fact that these asser-
tions are obeyed by the generated protocol implementation follows from the relation between
the two variations of bisimulation: Definition 2 and the divergence-respecting weak bisimu-
lation implemented by FDR; for more technical details we refer the reader to (BOULGAKOV;

GIBSON-ROBINSON; ROSCOE, 2014).

4.3.2 Verification Strategy

Considering the overall process, the first verification that is perfomed concerns the well-
formedness of the component model, expressed in OCL, which is checked before the translation
4 Function diff returns the relative complement of two sets.
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into CSP. After the translation, we split the formal verification into two major steps: the
first one checks the properties that must be met by a BRIC contract, and the second step
verifies whether the connections between the components preserve deadlock freedom after the
compositions.

A BRIC contract verification includes a set of assertions that confirms some characteristics
of a component as checking if its behaviour conforms to an I/O Process, described in Section
2.3. Table 4 presents some of the mechanised verification of I/O Process characterisation. 5 6

Table 4 – Assertions

I/O Process Characterisation CSP assertion
I/O Channels assert not Test(inter(inputs(P),outputs(P)) == {})[T= ERROR
Infinite Traces assert not HideAll(P):[divergence free [FD]]
Divergence Free assert P:[divergence free [FD]]
Input Determinism assert LHS InputDet(P) [F= RHS InputDet(P)

Strong Output Decisive
assert LHS OutputDec A(P) [F= RHS OutputDec A(P)
assert LHS OutputDec B(P,c1) [F= RHS OutputDec B(P,c1)
assert LHS OutputDec B(P,c2) [F= RHS OutputDec B(P,c2)

Source: Author’s ownership.

When one of these refinements fails, FDR returns a counterexample in terms of a trace
of events. We have created a mechanism where every event is traced back to the elements of
the state machine at the UML level. Thus, the user can navigate the transitions of the state
machine up to the point where the violation occurs. This helps in identifying the cause of the
issue. As these properties are checked for each component in isolation, we do not need to
worry about interactions with other components at this point. We provide an example of this
kind of traceability in Section 5.

Once no violation is identified, and the protocol implementation is automatically generated,
it is possible to verify if each connection preserves deadlock freedom.

Although the user submits the entire model to be verified, each component instance is
translated independently into BRIC. More importantly, the verification of each composition is
carried out by applying a BRIC rule in a compositional way, as already explained. Therefore,
deadlock freedom is ensured by construction at the semantic (BRIC) verification level.

Particularly, there is no specific order to translate and verify a model such as that in
Figure 19. However, in this example, the deadlock will always be found when the last connection
5 The function inter returns the events of the intersection between both process events.
6 Infinite traces are checked by asserting that hiding all events (HideAll) introduces divergence.
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is processed, since this is the one that entails a cyclic communication topology. Suppose the
dotted line between the component instances fork2 and phil2 is the last one to be processed,
causing a deadlock in the Dining Philosophers. When a deadlock is found, FDR yields a trace
with the events that led to the deadlock. We convert this result to a sequence diagram, in
which the component instances are represented by lifelines where messages are exchanged. In
this way we provide the traceability back from the formal specification to the UML view.

This traceability mechanism is different from the previous one because now we are concer-
ned with the connections between the different components. Therefore, as the purpose of a
sequence diagram is to illustrate interactions between elements, it provides better visualisation
than navigating through state machines.

Figure 19 – Deadlock

Source: Author’s ownership.

Figure 20 shows the traceability of the deadlock situation as a sequence diagram that shows
component instance interactions arranged in time and the respective messages exchanged. Li-
felines represent the component instances with the respective component type and stereotype;
for example, the lifeline phil2 is an instance of Phil, a BasicComponentClass, and fork2 is an
instance of Fork. Between these two instances, there is a message exchange picksup from phil2,
that requires this service to fork2 to provide. The instance fork2 sends an ack message to
phil1 indicating that the communication was successful. However, between the instances phil1
and fork2 there is no ack message, indicating that there is a problem in the communication,
in this case a deadlock. This view can help the user to identify where the flaw is and fix the
problem.



79

Figure 20 – Automatically generated deadlock trace as a Sequence Diagram

Source: Author’s ownership.

These different traceability mechanisms help users in identifying flaws in their models and
fixing them. The primary purpose here is to refrain the user from being aware of the formal
aspects of the approach through the application of hidden formal methods (HORVÁTH et al.,
2020).
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5 TOOL SUPPORT AND CASE STUDIES

To support the modelling of components according to the proposed meta-model and trans-
late these models to BRIC contracts described in CSP, we have developed a plug-in to the
Astah modelling environment (CHANGE, 2020), 21. Astah has been chosen due to the fol-
lowing reasons: its extension capabilities facilitate the creation of plug-ins; models can be
created using several UML elements and diagrams, which allows us to reuse the notation to
define our component model and extend our approach to other model elements in the future;
and it has a large community of active users. Also, Astah plug-ins allow easy integration with
other tools. In our case, we need to integrate with FDR for the purpose of mechanised verifica-
tion. This plug-in was developed in java and we reuse libraries, with assertions, from (PEREIRA;

OLIVEIRA; SILVA, 2016)
Creating models using Astah is considerably intuitive for UML practitioners. With the

plug-in, while creating a model, the user may choose to check if the model is deadlock free by
clicking a button. This triggers a list of tasks on the model. First, the component model well-
formedness conditions are checked; next, the CSP specifications related to the components
and their relationships are generated. Afterwards, each component (BRIC Contract) is verified
concerning its adherence to an I/O process, that is, the component is semantically well formed;
and then, its protocol is automatically generated. Finally, each connection between components
is verified in a compositional way. The tool maintains traceability of the UML models in the
generated CSP semantics. Therefore, given that a deadlock is identified, the user is notified
via UML diagrams and refrained from needing to interact at the CSP semantic level. In this
way, the tool support we provide indeed implements the concept of hidden formal methods.

Our plugin supports the creation of basic and hierarchical components. For example, when
the user creates a new basic component, a collection of related (empty) diagrams is auto-
matically created. This includes a state machine diagram, a composite structure diagram and
a class diagram. Afterwards, the user can edit these diagrams to define the complete model
of the component. At any time, the user can press a button to verify the component model,
which is carried out automatically and with traceability to the model, as already explained.

After the translation of the component model into BRIC, based on the rules presented in
Section 4.2, the verification is divided into two phases. The initial step of the formal verification
concerns the contract of a component, to check whether the contract is valid concerning the
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BRIC conditions related to the notion of an I/O process. If the component contract is not
valid, the tool exhibits an animation of its state machine execution where it is possible to
navigate and realise the exact point that causes the problem. Otherwise, the tool runs FDR
in background to check whether each composition between components is deadlock-free. If
the verification fails, the problem is traced back to the UML component level; we show a
counterexample as a sequence diagram that can help the user to understand the issue and
repair the component model.

We previously used the Dining Philosophers as our running example. In order to show
more features of our component model and of the strategy for translation and automatic
verification, we present two other examples: a Ring Buffer (Section 5.1) and a Leadership
Election (Section 5.2).

Figure 21 – Astah Plug-in

Source: Author’s ownership.

5.1 RING BUFFER

A Ring Buffer is a reactive bounded buffer composed of a ring of storage cells with a
controller and a cache. It is a circular queue with FIFO data characteristics. A Ring Buffer
is used for memory with a restricted size. It is found in many embedded systems and can be
used to control multiple requests for a single resource such as memory, modems and printers.

A Ring Buffer has a cell for storing cached data and a number N of cells to store additional
data. This first-in-first-out mechanism of storage keeps the current data to be output in a cache
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slot, and the rest of data is stored in the cells. These cells act as slots of a circular list; the
buffer keeps the information about which cell is at the top of the list and which one is at the
bottom. The top cell is the one that is going to store new data, and the bottom cell has the
data to be output immediately after the data held in the cache slot is emptied.

In addition to this information, it also records the current size of the buffer, considering
occupied cells and the cache slot. The information about the top and bottom is updated
depending on inputs and outputs to the buffer. Moreover, the buffer refuses to input data if
completely full, and refuses to output if empty. In addition to the ring, there is a controller
that is responsible for storing input data in the appropriate cell, and it possesses the cache
slot. The appropriate cell is chosen based on the information about the top and bottom indices
of the buffer kept by the controller. The controller also keeps track of the size of the buffer.

Figure 22 – Ring Buffer Component

Source: Author’s ownership.

Part of the structure of the Ring Buffer component model in UML is shown in Figure 22. It
is a System component composed of a CELL component and a CONTROL component. Both
of them, CELL and CONTROL, are of the type BasicComponentClass. These two basic
components have attributes: the CELL component has an attribute val that stores values; the
CONTROL component has the cache that stores the head of the ring buffer; the size of the
list stored in the buffer; and two indices, bottom and top, to delimit the relevant values. It
has two constants: the size limit of the buffer, maxbuffer, and the number of storage cells,
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Figure 23 – CONTROL Component

Source: Author’s ownership.

maxring, defined as maxbuffer − 1, which gives the bound for the ring considering the size of
the buffer. Also, it has an attribute, vl env, to store values received from the environment.

In order to allow communication between the controller component and the cells, a com-
mon interface is realised by their ports: interface cell control. While the CONTROL port
port control requires this interface, the CELL port provides it. The interface ctr cell defi-
nes the operations: write and read, which are performed by the components. These operations
have parameters: the first one has an input parameter that represents the value to be written
in a cell, and the second one has an output parameter, the current value read from a cell.

Similarly, interface env is realised by the CONTROL port port env component for the
input and output exchanged with the environment. The operation receive data of this interface
is asynchronous, which means that the caller of the operation does not expect an immediate (if
any) return from the caller. This communication is modelled in terms of signals. In the model,
a signal is identified by the async stereotype; it also may have parameters as an operation.
This interface has one signal receive data and an operation retrieve data with out and in
parameters.

Figure 23 shows the basic component CONTROL (composite structure diagram pers-
pective). It has two ports: port env that provides the interface interface env and the port
port control that requires the interface interface cell control. The latter has multiplicity 3,
represented by port control[3], which is indexed from 1 to 3, to establish the connections with
the three cells.

The state machine diagram that describes the behaviour of the CONTROL component is
shown in Figure 24. The CONTROL component is responsible for receiving input and output
requests from the environment and for interacting accordingly with the ring of storage cells. In
this way, the state machine has three states: Init Control, Read and Write. The Init Control
state has a choice between Read and Write states where the read() and write() operations
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Figure 24 – State Machine of CONTROL Component

Source: Author’s ownership.

are handled, respectively. The decision between these two branches is made according to the
trigger fired by the events communicated through the port port env and the guard evaluation.

If port env.retrieve data is triggered (the environment requests some data) and the size
of the buffer is greater than zero, that is, there is at least one element available to be read,
the value in the cache is always communicated through the statement: return(cache). After
this, the state Read is reached.

The other possibility is when the event triggered is port env.receive data (the environment
sends a data in order to be stored in the buffer) and there is space in the buffer; in other words,
when the attribute size is less than the constant maxbuffer. In this scenario, the write state is
reached.

In the Read state, when the size of the buffer is equal to one, it means that the cells do
not store values, and the returned value was the one available in the cache (as in the previous
transition). Now the cache should be empty; then, we set the size attribute to zero. On the
other hand, when the size is greater than one, a new value is read from the cell indexed by
bot, and the cache is updated. Also, the new value of the bottom and size of the buffer are
updated, because the cell whose value was retrieved is now available to be written.

In the Write state, when the buffer is empty, i.e. the size is equal to zero, a value vl env
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is cached. The ring indices do not change, and the buffer now contains a single item in the
cache. If the buffer is not empty, the CONTROL sends the vl env value to the ring along with
the position top in which the value is to be stored. In this case, the cache is not changed, but
the indices and the size of the ring are updated.

Since the elements of the CONTROL component are well-formed, the tool generates CSP
files with the corresponding specification. This specification is available in Appendix C.

The process CONTROL memory represents the memory of the component CONTROL
whose attributes can be accessed and updated. This process has as parameters the attributes
of the component. As previously shown in Section 4.3, each attribute is associated to channels
get and set. This process is also responsible for evaluating the guards.

If a guard is associated with a trigger event, this is translated to a CSP guarded statement.
For instance, the transition between the states Init Control and Read has a guard size > 0

and the trigger event port env.retrieve data() that returns the value of cache. We translate it
as the CSP guarded statement size > 0 & port env.id.1.retrieve data!cache, where the
number 1 is an identifier of the pair guard and transition. As mentioned, transitions may have
guards, which, besides the trigger, impose firing conditions to transitions. The memory process
enables or disables particular events depending on whether the guard for the transition with
the relevant identifier, 1 in this case, holds or not. In case there is no trigger associated with a
transition guard, the statement is formed of a boolean expression, and the event internal, as
explained in Rule 9 of Section 4.2. For instance, the transition between the states Read and
Init Control has a guard size == 1 and an action size = 0 that translates into the statement
size == 1 & internal.3. The event internal.3 is used in STM CONTROL in order to allow
the synchronisation when the guard holds.

Figure 25 – State Machine of the CELL Component

Source: Author’s ownership.
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The behaviour of the memory process of the component CONTROL is described in Section
4.2 Rule 9.

The process STM CONTROL is the outcome of the application of the rules described
in Section 4.2 related to the state machine. Each state of the diagram becomes a process
parameterised by the identifier id that represents a unique component instance. We use ellipses
for better readability. The complete specification is available in Appendix C.

STM CONTROL(id) = Init Control(id)

Init Control(id) =

(port env.id.1.retrieve data I → get control cache.id?cache →

port env.id.1.retrieve data O?cache → Read(id))

2

...

Read(id) =

(internal.3 → set control size.id!0 → Init Control(id))

2

...

Write(id) =

...

2

(internal.6 → get control vl env.id?vl env → set control cache.id!vl env →

set control size.id!1 → Init Control(id))

The other component of the Ring Buffer is the CELL and its behaviour is modelled in
Figure 25. The responsibility of this component is to store the value of a buffer cell and
make it available when requested. It has one state: Init Cell whose transition can be triggered
by port cell.write when the value vl is stored in the attribute val, or can be triggered by
port cell.read when the component yields the value currently stored in val.

As explained in Section 4.2, a BasicComponent has its semantics defined by the structural
and behavioural processes composed in parallel; the synchronisation set is formed of the union
of the getter and setter events and the events used to communicate guard evaluations. All these
events are hidden outside the parallel composition. Thus, the basic component CONTROL has
its semantics given by the following process:
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CONTROL(id) = STM CONTROL(id)

[| {| get size.id, set size.id, get cache.id, set cache.id, get top.id, set top.id, get bot.id,

set bot.id, get vl env.id, set vl env.id, internal, port env.id.2.receive data,

port env.id.1.send data |} |]

CONTROL memory(id, 0, 0, 1, 1, 0)

∖ {| get size.id, set size.id, get cache.id, set cache.id, get top.id, set top.id,

get bot.id, set bot.id, get vl env.id, set vl env.id, internal |}

The values passed as parameters to the process CONTROL memory are the initial values
of the component attributes; these correspond to the first value of the range defined in the
class diagram in Figure 22.

Following the same rules, the basic component CELL is represented by the process CELL:

CELL(id) = STM CELL(id)[| {| get val.id, set val.id |} |]CELL memory(id, 0) ∖ {| get val.id, set val.id |}

Figure 26 – Ring Bufffer Component

Source: Author’s ownership.

After the basic components are translated, it is possible to make connections that allow
communication between them. We consider the information provided in the Composite Struc-
ture diagram of the hierarchical component to define the corresponding BRIC-CSP semantics.
Figure 26 shows an example configuration of the hierarchical component Ring Buffer that is
composed of three instances of the CELL and one instance of the CONTROL component. To
define how an indexed port of port control of instance control 1 is connected with a port
of one of the instances of the Cell component, a label is used in the connector, for instance:
port cell <-> port control[1].
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Figure 27 – State Machine of Control Component.

Source: Author’s ownership.

Some errors can be introduced when designing a component. For instance, Figure 27
shows a state machine diagram of the component CONTROL that describes a behaviour with
divergence, violating one of the required properties of an I/O Process (see Definition 4). The
divergence is introduced by the self transition (in state Read) with guard size == 2 and action
top = 1, as this can be indefinitely fired when the guard is true, and produces no visible effect.
When this UML model is submitted to verification, this is automatically identified (verifying
by checking assertion using FDR). In order to facilitate the identification of the issue, the tool
creates a copy of the state machine diagram with numbered transitions (numbers between
parentheses) to express the order of its execution in a counterexample. Note, in particular,
that the enumeration format allows to recording multiple firings of a same transition. For
instance, the transition from Init Control to write is fired on the first and on the third
execution steps. This can be seen in the state machine diagram illustrated in Figure 28. The
boldface transition indicates the one that introduces divergence. It also allows the user to
navigate through the transitions and realise where the problem is.

Another design mistake identified is the structural problems that occur when component
instances are connected. In the modelling of the basic component CONTROL, its singleton
instance has one port named port control with multiplicity three. This implies that the ma-
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Figure 28 – State Machine with Divergence Counterexample

Source: Author’s ownership.

ximum number of cells that can be part of the RingBuffer is three. When a fourth cell is
added to the model and connected to the control, a structural problem occurs in the system.
In Figure 29 the fourth instance of CELL, cell 4, is connected to the port port control in the
index 3 that is also connected to cell 3.

Figure 29 – Ring Bufffer Component with 4 cells

Source: Author’s ownership.
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Figure 30 – Automatically generated Sequence Diagram with deadlock

Source: Author’s ownership.

Since the multiplicity of the port has been previously defined, it does not allow a connection
to more elements. This type of structural verification is part of the well-formedness conditions
that raises eventual problems to the user.

Now we describe an example of the introduction of deadlock due to a composition mistake.
A possible problematic behaviour of the CONTROL component happens if replacing the guard
size > 1 to size > 2 in the transition between the Read and Init Control states. It obeys all
I/O process criteria. However, when a CONTROL instance is composed with three instances
of CELL, as shown in Figure 26, it produces a deadlock. The CONTROL instance, control 1,
receives through the port env.receive data signal a value, which is stored; then the buffer
size is incremented. When this event happens twice, the buffer size becomes 2. With this
configuration size ==2 and the port env.retrieve data operation being requested, the cache
value is returned. However, in this scenario there is no path to proceed, thus, leading to a
deadlock.

This problem is identified using FDR assertions, and a sequence diagram is automatically
generated to illustrate the communication problem among the component instances, Figure 30.
It is also exposed from another perspective through a composite structure diagram, Figure 31.
A dotted line between instances control 1 and cell 2 evidences the connection in which the
deadlock occurs.
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Figure 31 – Ring Buffer Deadlock Traceability

Source: Author’s ownership.

5.2 LEADERSHIP ELECTION

Another case study we explore is the leadership election. It consists of choosing a leader
for a distributed system by an election process, which involves a network of participants. An
example application is the audio and video system of Bang & Olufsen (B&O). In such a system,
several devices are dynamically connected. Commonly, such a device could be a cellphone, a
home theatre, a television, and so on. All these devices run in parallel and share information.
When these participants notice the absence of a leader, they start an election process in which
a leader is elected. One participant communicates with every other participant sending its
internal state and receiving the internal information of the others. The state of the participant
consists of a priority and a claim, which represents the current status of this participant in the
network, either undecided, leader or follower. The leader is elected based on the priority of the
nodes.

We model this problem as follows: two basic components are defined. One represents the
participants, NODE component, and the other a transport layer, BUSCELL component. In
this model, the participants exchange messages via the transport layer and recursively send
messages to all their peers and receive messages from them. We model a concise leadership
election that has two devices.

Figure 32 shows the LeaderShip System composed by the basic components NODE and
BUSCELL. As participants interact sending by messages from one participant’s transmitter to
another participant’s receiver for a 2-Node configuration the number of instances of NODE
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Figure 32 – Leadership Election Component

Source: Author’s ownership.

and BUSCELL is the same; in our example, two. The ports of NODE and BUSCELL realise
two interfaces: interface receiver and interface sender. The former provides an operation that
receives data from its peers, receive pack. The other interface has the asynchronous operation,
send status, that allows a participant to send its status; and the operation send pack that
allows one participant to send data to other participants.

Figure 33 shows the state machine of the BUSCELL component. The responsibility of
this component is to provide an unidirectional communication channel between a pair of
NODE s. This state machine has two states: CellIdle state that has a self transition which
can be triggered to transfer a node timeout by bus receive.receive pack(pack), where the
claim is ’u’(undecided) and the petition is 0, and another transition that is triggered to iden-
tify an online status from a node by bus sender.send status(1); the target of this transi-
tion is the CellON state. In this state, a pack of information is received from one node by
bus sender.send pack(pack) and transferred to another one by bus receiver.receive pack().

Figure 34 shows the state machine with the behaviour of the NODE component. Each
node is initially turned off, state OFF ; in this state, it can only turn on. Before turning on,
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Figure 33 – BUSCELL Component

Source: Author’s ownership.

the node reduces its petition, sets its claim to undecided (’u’), and sends its status and
the pack with its petition and claim to the bus component (node sender .send status(1)

and node sender .send pack(pack)). Then, reaching the CHOICE state, the node waits for
the information from the other node (node receiver .receive pack(pack)) and updates the
attribute received pack with the received data. When in the state Choice, the role of the
node is determined: undecided (’u’), follower(’f’) or leader(’l’). This decision is given by the
petition of a node and its claim. For instance, if a NODE verifies that there is no leader
and its petition is greater than other petition´s node, the current node changes its claim to
leader(′l ′), and another decision can start, recursively.

The communication among the instances of these components is illustrated in Figure 35.
In this diagram, there are two instances of the NODE component that its ports provide the
interface interface receiver and require interface sender, and two instances of the BUSCELL
component that its ports provide the interface interface sender and require interface receiver.
Connections are made between conjugated ports. For example, instance node 1 is connected
via its port node sender with bus 1 via bus sender. This connection allows node 1 to send
information to bus 1 that itself communicates with node 2 via node receiver.
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Figure 34 – NODE Component

Source: Author’s ownership.

Figure 35 – Leadership Election Composition

Source: Author’s ownership.
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Figure 36 – Component with deadlock

Source: Author’s ownership.

Even though each individual component is proved to be an I/O Process, their composition
can result in a deadlock. To illustrate the detection of potential deadlock situations in the
model, consider the addition of a new pack value, EMPTY, a new action, (data = EMPTY),
in the self-transition of CellOn state that can be triggered by bus sender.send pack, and a
new guard in the self-transition of CellOn state has the action bus receiver.receive pack. This
transition has its trigger and action marked in boldface in Figure 36. In this context, a node can
send information to the Buscell, send status(ON), and then the BusCell moves from CellIdle
to the CellOn state. When the send pack is triggered, data receives EMPTY. In this way in
the CellOn state, the Buscell is not allowed to receive information from a node since the guard
will never hold in the sef-transition that triggers receive pack. This malfunction is traced back
as a sequence diagram, as shown in Figure 37.
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Figure 37 – Sequence Diagram with deadlock

Source: Author’s ownership.

5.3 SCALABILITY

Scalability is always a major concern of verification approaches. At present, the CSP models
(generated from their input UML component models) do not scale well. For example, for
the Dining Philosophers, we considered two configurations: one with five phil instances and
five fork instances; and another configuration with seven instances of each component. The
deadlock verification of the former configuration has taken 4 seconds using FDR; the latter has
taken about 50 minutes. We considered a 2-Node configuration for the Leadership Election
component, which has taken about 5 seconds to complete; for a 3-Node configuration, the
verification is completed in about 3 hours. The experiment was executed on an Intel core
i7-65000, 2.66GHz with 16GB ram.

In our approach, we decided to separate the concern of a formal (CSP) semantics for the
proposed UML component model from that of the performance of deadlock verifications. Based
on the results achieved in (OLIVEIRA et al., 2016), we will address scalability using metadata that
record relevant component information (like protocol compatibility) so that these are reused
in progressive compositions. Another promising direction to improve verification efficiency is
to adopt behavioural patterns that impose behavioural and structural restrictions on a process
network, as a means to guarantee deadlock freedom (ROSCOE, 1997). The experiments in
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(OLIVEIRA et al., 2016) show that these can significantly improve scalability. For example, the
deadlock verification of 10.000 forks and the same number of philosophers took 5 hours, and
the verification of a leadership election instance with ten fully connected nodes (which involved
180 compositions) took about 2.5 hours.
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6 RELATED WORK

There are several approaches to define component models and verification strategies, which
are based on a variety of formalisms and each one has its benefits and deficiencies, depending
on the context in which it is analysed. In this chapter, we will consider some of the closest
related to our work.

For instance, the Foundational UML Subset (fUML) (Object Management Group (OMG),
2017b) provides a precise semantics for UML classes, activities and actions. The operatio-
nal semantics of fUML maps UML activities to an executable model with methods written in
Java. The declarative semantics of fUML is specified in first order logic and based on PSL
(Process Specification Language) (GRÜNINGER; MENZEL, 2003). Precise Semantics of UML
State Machine (PSSM) (Object Management Group (OMG), 2019b) is an extension of fUML that
defines a foundational semantics for UML state machines. Precise Semantics of UML Compo-
site Structure (PSCS) (Object Management Group (OMG), 2019a) is another extension of fUML
for dealing with UML composiste strucuture diagrams. However, these works do not embrace
component concepts and they focus on specifying a rigorous semantics with a test suite to
demonstrate semantic conformance. In our case, the rules presented in Chapter 4 define a
CSP semantics for the component model we propose that follows several aspects defined in
the fUML work. In addition to these semantic rules, we provide a systematic and automated
verification support.

The framework rCOS (CHEN et al., 2009; CHEN; MORISSET; STOLZ, 2010) is a refinement
calculus for the design of object and component oriented software systems, in which a com-
ponent is an aggregation of objects and processes with their interfaces. A use case is taken as
a component, and the functionalities of the use case are modelled as methods in the provided
interfaces. The functionality of each method of the interface is specified by preconditions and
postconditions, and the order of interactions, between an actor and a component, as a set of
traces of method invocations, graphically represented by a sequence diagram. A State machine
describes how the system internally changes states during execution. Refinement properties
can be verified using laws provided by rCOS. Like in our approach components can be com-
posed hierarchically, and the compatibility of the compositions can be checked by using CSP
and FDR. Unlike our approach, however, the formal notation is not completely hidden from
the user; there is no traceability to the model.
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We can also cite BIP (Behaviour, Interaction, Priority) (BONAKDARPOUR et al., 2012;
BASU; BOZGA; SIFAKIS, 2006) which is a modelling framework supporting the formal definition
of heterogeneous systems. It uses the BIP language and an associated toolset supporting the
design flow. The BIP language allows building complex systems by coordinating the behaviour
of a set of atomic components. Behaviour is described as a Petri net extended with data and
functions described in C. BIP has an operational semantics, which describes the behaviour
of both atomic and compound components. The behaviour of atomic components is based
on a rigorous transition system model; thus, formal verification of invariant properties and
deadlock-freedom is also supported. In (CHEHIDA; BAOUYA; BENSALEM, 2021) the authors
present an extension that combines UML and BIP, where UML models are translated into
BIP. State machine specifies the behaviour of the system, and the component diagram is
used to define the system architecture. Also, they use Statistical Model Checking to verify
temporal properties. However, the semantic translation from UML to BIP is presented in an
informal way. Also, no well-formedness conditions for the UML model are presented. Finally,
no traceability is available and the communication among components is only synchronous.

The strategy described in (GRAICS et al., 2020) provides a formalisation of the Gamma Com-
position Language that is part of the Gamma Framework (Molnár et al., 2018). It is a modelling
tool supporting the hierarchical design, implementation and verification of reactive systems. A
component is defined by a statechart that can be composed using the Gamma Composition
Language. The three distinguished composition modes support synchronous, asynchronous and
cascade; the latter stands for a pipeline-like behaviour. It also provides a Java code generator
for the implementation of composition-related code and applies the UPPAAL model checker
for formal verification and test generation. The queries representing the properties to be chec-
ked on the model are either given directly as UPPAAL temporal logic formulas or constructed
using fillable patterns (for the most frequent safety and liveness properties). In (HORVÁTH

et al., 2020), which is an extension of (GRAICS et al., 2020; Molnár et al., 2018), the authors
proposed a cloud-based, end-to-end verification workflow for SysML (Object Management Group

(OMG), 2017a) State Machines and reachability properties using an intermediate language and
different model checkers. Model checking is fully automated, and traceability is provided th-
rough back annotations of the resulting trace. In this way, formal aspects are hidden from the
users, as in our case. Nevertheless, our approach verification is compositional and we focus on
deadlock freedom, while their work deals with reachability properties.

In (BREU et al., 1997), they have proposed a formal language called System Model to
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specify object oriented systems in the style of UML. A System Model specification has a
pre-defined mathematical structure comprising object identifiers, message passing, behaviour,
communication histories, states, and so on. A UML diagram is modelled as a projection of a
System Model, which is regarded as a complete and unified model of the entire system. Class
diagrams, state-machine diagrams and sequence diagrams can be translated to a System
Model. On the other hand, although the semantics of these diagrams is defined in a single
formalism, the verification of the consistency between the diagrams and the development of
tools have not been reported.

In (LIMA et al., 2017), the authors present a formal semantics for a comprehensive subset
of SysML (Object Management Group (OMG), 2017a) via a mapping into CML (WOODCOCK et

al., 2012), a formalism that combines CSP and VDM (FITZGERALD; LARSEN, 2009). The work
proposes guidelines of usage for the construction of meaningful SysML models; a state-rich
process algebraic semantics for SysML models, in particular, CML semantics; and applications
of the CML model in reasoning at the diagrammatic level. These guidelines assign some design
roles to be played by each of the considered elements in an integrated model. It focuses on state
machine, activity, sequence, block definition (class) and internal block (composite structure)
diagrams. However, the purpose of (LIMA et al., 2017) is not on component-based design nor
on ensuring property preservation compositionally.

Collaborating SysML state machines are used to model systems in (GIBSON et al., 2014),
which is translated to Java. The work uses the Java Path Finder (JPF) model checker that
provides a basis for checking fault protection design against a defined failure space and enables
validation of the logical design against domain specific constraints. When a logical assertion
is negated, counterexample trace is output in a textual form, but this is not traced back to
the SysML model. Furthermore, in this work, there seems to be no conformance notion for
components or compositions.

The ProMoBox framework (MEYERS et al., 2014) enables the automatic verification of
Domain Specific Modelling Languages (DSML). Temporal properties are translated to LTL
and Promela. These properties are checked by SPIN. The verification results in the case
of a counterexample are translated back to the DSML level. Its concrete syntax is defined
graphically, and its semantics is given by the transformation model. On the other hand, the
verification support does not include analysis of deadlock, and it is not component-based.

In (BESNARD et al., 2019) the authors address a run-time monitoring and formal verification
of UML models of embedded systems. Safety properties can be expressed directly in UML
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using the same UML subset as the one used for the system model and an extension of the C
action language. The verification of these properties is made using model verification with the
OBP2 model-checker, and results are compared with verification results of identical properties
expressed in LTL (linear-time temporal logic). However, there is no notion of traceability, and
its verification does not include analysis of deadlock.

In (DIAS et al., 2020) the authors present an approach that provides a translation from
a SysADL architectural description to a CSP-based formal semantics and verify properties
such as deadlock freedom, livelock freedom, and consistency among the structural, behavioral,
and execution viewpoints of the model. SysADL is a specialisation of SysML to the software
architectural description domain, where components are defined as blocks (Block Definition
Diagram) and the specification of the behaviour is of the elements described in the structural
viewpoint. However, (DIAS et al., 2020) do not provide traceability nor compositional reasoning
and it focus on the conceptual architectural model while our work focus on the design phase.

In (PEREIRA; OLIVEIRA; SILVA, 2016) the authors present a tool, BTS (BRIC Tool Support),
which provides textual support to create and compose BRIC components and an analysis of
the components and their compositions. However, the input to the tool has the form of a
specific textual template. There is no support for UML and no notion of traceability.

Some works provide model specification for a specific domain. RoboChart (MIYAZAWA et al.,
2017) and RoboSim (CAVALCANTI et al., 2019) have a graphical language that use statechart
models tailored to describe design of robotic applications. These models can generate CSP
specifications automatically. Its formal semantics allows a verification of the designed systems.
However this model is not component based. In (MARTINEZ et al., 2021), they present a
component model for embedded systems. It defines elements that are relevant for the domain
in form of libraries. It is a graphical modelling language offering known abstractions such as
classes and relationships among these components. The customization of these abstractions
is based on the UML concept of a profile. Assertions are made with OCL and Othello. This
work does not have a formal semantics.
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UML-RT (SELIC; GULLEKSON; WARD, 1994) is a UML profile that facilitates the modular
development of software systems. Communication is modelled by means of input and output
message exchange, which can be synchronous or asynchronous. The main UML-RT design
elements are capsule, protocol, port and connector. The basic building block of a UML-RT
model is a capsule whose behaviour can be defined using statecharts; the unique points of
interaction are called ports, which are assembled by connectors and realise communication
signals previously declared in a protocol. A capsule can contain parts, which are instances of
other capsules; this, as in our case, hierarchical modelling is supported. Even though UML-RT
provides constructs to model real time systems, its major drawback is the lack of a precise
semantics, despite some attempts like, for example, that in (RAMOS; SAMPAIO; MOTA, 2005)
where the authors present a mapping from UML-RT to the Circus process algebra. Also, UML-
RT offers no explicit support to create more active classes from existing ones via composition
rules.

Table 5 summarises the related work described in this chapter, as well as our own work.
Each column represents a feature that we consider relevant of a component based Model, and
these are used as a comparison basis. The Composed Based column indicates whether the work
features a component model; the Approach to Verification one denotes the way the verification
is made; the next column mentions the representation of the models. The columns Hierarchical
Composition, Well-Formedness Conditions and Traceability indicate the presence or absence of
these characteristics. Formalism shows the formalism used and the last column indicates which
kind of property is addressed. Our work is distinctive in its definition of the component model
based on well-formed conditions and formal semantics. Components are described as a UML
profile; these components can be composed hierarchically. Several properties can be verified
to check whether a component meets the required properties of an I/O Process, including
livelock analysis. In terms of compositional analysis to ensure sound component integration,
we currently focus on deadlock freedom. The formalism is hidden from the user and, when a
counterexample is found, this is traced back and presented as UML diagrams.
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7 CONCLUSION

In this work, we have presented a UML Component Model with a precise syntax defined
in the form of a metamodel (as a UML profile), well-formedness conditions formalised as
OCL constraints, and a formal semantics defined in BRIC, which itself has a process algebraic
semantics defined in CSP. The proposed approach supports an incremental design and ensures
the preservation of desired properties; we have focused on the constructive preservation of
deadlock, but the framework also supports the verification of other properties like livelock
freedom, input determinism, strong output decisiveness, and non-termination; these properties
are required for a component to be adherent to an I/O Process.

The formal semantics is presented as a comprehensive set of denotational rules and auxili-
ary functions that map each metamodel element into its BRIC denotation. The behaviour of
components, instances and connections are captured by CSP processes, and deadlock verifica-
tions, as well as the properties required for a component to be an I/O process, are conducted
using the FDR tool.

We have also implemented the approach in the form of a plug-in to the Astah modelling
tool. Using the plug-in, the CSP notation and the formal verification are hidden from the
user. It ensures adherence to the metamodel and the related well-formedness conditions. The
plug-in also implements the translation into BRIC.

When using the plug-in, if a verification fails, the problem is traced back to the UML
component level, and the problematic composition is exhibited to the developer as a state
machine diagram if the component, as a unit, has some unexpected behaviour. Complementary,
if there are problems in the connections between component instances, these are exhibited as
sequence diagrams.

We applied our approach to three case studies: the classical Dining Philosophers, a Ring
Buffer and a Leadership Election protocol. They exemplify the modelling of basic and hierarchi-
cal components, with associated state machine and composite structure diagrams, including
the connection of component instances. Concerning these examples, we have explored viola-
tions of well-formedness conditions, deadlock situations, violation of I/O process properties,
and traceability to the component model.

Despite the promising results and the emphasised contributions, our approach has some
limitations. The BRIC constraints may reduce the applicability of our approach concerning
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modelling, since it requires that component contracts have an associated behaviour and it is
not always the case in several components, but they are necessary to ensure the preservation
of desired properties. As a major topic for future work we plan to explore is scalability of the
verifications, based on metadata and behavioural patterns, as discussed in Chapter 5.

Our view in this thesis is that the translation of the UML component model elements into
BRIC provides a formal semantics for these elements. In order to establish a notion of correct-
ness for our translation, a semantics for UML is necessary; unfortunately, to our knowledge,
there is no complete formal semantics for UML in the literature. A possible contribution in
this direction is to use the fUML approach as a basis for proving correctness. In this way, it
would be necessary to extend the fUML work to cover the semantics of all the elements of the
proposed component model.

Our component model can be more expressive with the addition of advanced constructs in
state machines, such as composed states; or with the addition of other model elements from
UML.

Currently, our approach does not allow broadcast in the communication among compo-
nents, as each composition rule is concerned with a pair of components or with two channels
of a same component. In some applications, broadcast communication is certainly useful and
we plan to consider this as future work.

As another future direction, we plan to adapt the approach proposed in (CAVALCANTI et

al., 2018) for the construction of heterogeneous collections of components that are defined
as patterns using generic (rather than concrete) instances. This allows one to parametrise a
composite structure diagram with the number of instances involved in a system configuration,
rather than being forced to statically determine a particular configuration.

Although our framework supports several properties required for a component to be an I/O
Process, including livelock analysis, these are checked for the entire component (which can
cause scalability problems in analysis ); only deadlock freedom is verified in a compositional way.
The proposed approach can also be extended in order to allow the compositional verification
of other classical behaviour properties such as determinism and livelock-freedom. There is a
theoretical infrastructure for compositional livelock analysis (Conserva Filho et al., 2018) as well
as for analysis of determinism (OTONI; CAVALCANTI; SAMPAIO, 2017). We plan to integrate
these theoretical results into the proposed component model and related verification strategy.
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APPENDIX A – WELL-FORMEDNESS CONDITIONS

This appendix summarises the constraints that represent well-formedness conditions in our
component metamodel:

The first OCL constraint is related to the System; there is only one System in the compo-
nent specification:

2 context System

inv UniqueSystem:

4 self ->size()=1

A component can be a BasicComponent or a HierarchicalComponent. The AbstractCom-
ponent represents this generalisation. There are, in this context, some constraints on both
types of components.

A BasicComponent must have a state machine diagram with at least one state.

context BasicComponent

2

inv STMBasicComponent:

4 self.componentstatemachine ->size()=1

and self.componentstatemachine.region.state ->size() >1

Component instances and parts are present only in hierarchical components.

context AbstractComponent

2

inv STRBasicComponent:

4 self.oclIsTypeOf(BasicComponent)

implies

6 self.componentclass.part -> size()=0

8 inv STRHierarchicalComponent:

self.oclIsTypeOf(HierarchicalComponent)

10 implies self.componentclass.part ->size() >0
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12 inv multiplicityLimited:

self.oclIsTypeOf(HierarchicalComponent) implies

14 self.componentclass.part ->size() <> UnlimitedNatural

The State Machine of a component has the same name as the owner component.

2 context ComponentStateMachine

4 inv NameStateMachine:

self.name = self.abstractcomponent.name

A BasicComponent has the same name as its BasicComponentClass.

context BasicComponent

2

inv BasicName:

4 self.name =

self.basiccomponentclass.name

A HierarchicalComponent has the same name of its HierarchicalComponentClass. And a
HierarchicalComponent has at least one other component.

context HierarchicalComponent

2

inv HierarchicalName:

4 self.name =

self.hierarchicalcomponentclass.name

6

inv MultiHierarchical:

8 self.abstractcomponent ->

forAll(AbstractComponent ->size() >=1)

Each HierarchicalComponentClass must have at least one port. Port names must be unique.
Ports must realise or provide an interface.

context BasicComponentClass

2

inv qtdPortBC:
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4 self.ownedPort ->size() >=1

6 inv namedPort:

self.ownedPort ->

8 forAll(c1,c2|c1<>c2 implies

c1.name <>c2.name and

10 c1.name <>'' and c2.name <>'')

12

inv realizedPort:

14 self.ownedPort ->

forAll(c1| c1.required ()->size() >0

16 or

c1.provided ()->size() >0 )
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APPENDIX B – RULES

In this appendix, we present the translations rules and auxiliary functions.
Auxiliary function that returns input operations of a component:

Rule 20. Function Subtype Operations Input
subtype operationsInput(c : AbstractComponent) :: CSPSpecification =

for each class in c.Interface
for each operation in class.operation sep |

operation.name I

end for
end for

Auxiliary function that returns output operations of a component:

Rule 21. Function Subtype Operations Output
subtype operationsOutput(c : AbstractComponent) :: CSPSpecification =

for each class in c.Interface
for each operation in class.operation sep |

operation.name O

end for
end for

Auxiliary function that define get channels.

Rule 22. Function Channel get var
channel get var(c : AbstractComponent) :: CSPSpecification =

for each class in c.classes
for each v in class.attributes
channel get vid(v) : ID c.name.type vid(v)

end for
end for
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Auxiliary function that define set channels:

Rule 23. Function Channel set var
channel set var(c : AbstrcatComponent) :: CSPSpecification =

for each class in c.classes
for each v in class.attributes
channel set vid(v) : ID c.name.type vid(v)

end for
end for

It provides a set of synchronisation component:

Rule 24. Function Set Sync
setSync(c : AbstractComponent) :: CSPSpecification =

getvarname(c) ∪ setvarname(c) ∪ guard(c)
∪ ⟨internal⟩

List of get channels:

Rule 25. Function Get Variable Names
getvarname(c : AbstractComponent) :: CSPSpecification =

for each class in c.classes
for each v in class.attributes sep ,

get vid(v).id
end for

end for

List of set channels:

Rule 26. Function Set Variable Names
setvarname(c : AbstractComponent) :: CSPSpecification =

for each class in c.classes
for each v in class.attributes sep ,

set vid(v).id
end for

end for
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Auxiliary function that gives the set of channels that must be hidden in a component
definition:

Rule 27. Function set Hidden
setHidden(c : AbstractComponent) :: CSPSpecification =

getvarname(c) ∪ setvarname(c) ∪ {internal}

List of attributes´s component:

Rule 28. Function Variable List
varList(c : AbstractComponent) :: CSPSpecification =

for each cl inc.Classes
for each v in cl.vars sep ,

v.name
end for

end for

A process of hierarchical port.

Rule 29. Function Process Port
portProcess(c : AbstractComponent) :: CSPSpecification =

for each class inc.StructureClass
for each port in class.port

if (port.OwnedbyHierarchicalComponent)
port process c.name( id) =

(2 op : port.Operations ∙ port.name internal.op → port.name external.op →
port process c.name( id))

2

(2 op : port.Operations ∙ port.name external.op → port.name internal.op →
port process c.name( id))

end if
end for

end for
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APPENDIX C – CSP -CASE STUDIES

This appendix contains the UML component model translation to CSP written using the
machine-readable CSPM , an ASCII syntax for CSP combined with a functional programming
language. Details about the constructions of CSPM are presented in (ROSCOE, 1997).

C.1 DINING PHILOSOPHER

channe l f o r k _ l e f t : id_Fork . o p e r a t i o n
2 channe l f o r k _ r i g h t : id_Fork . o p e r a t i o n

channe l p h i l _ r i g h t : i d _ P h i l . o p e r a t i o n
4 channe l p h i l _ l e f t : i d _ P h i l . o p e r a t i o n

6 da ta t ype o p e r a t i o n = p i ck sup_ I | picksup_O | putsdown_I | putsdown_O
subtype P h i l _ I = p i ck sup_ I | putsdown_I

8 subtype Fork_I = p i ck sup_ I | putsdown_I

10 subtype Phil_O = picksup_O | putsdown_O
subtype Fork_O = picksup_O | putsdown_O

12

14 −− Fork
STM_Fork( i d ) = A v a i l a b l l e ( i d )

16 A v a i l a b l l e ( i d ) = ( f o r k _ r i g h t . i d . p i cksup_I −> f o r k _ r i g h t . i d . picksup_O
−>Busy1 ( i d ) )

18 [ ]
( f o r k _ l e f t . i d . p i c k sup_ I −> f o r k _ l e f t . i d . picksup_O

20 −>Busy2 ( i d ) )
Busy1 ( i d ) = ( f o r k _ r i g h t . i d . putsdown_I −> f o r k _ r i g h t . i d . putsdown_O

22 −> A v a i l a b l l e ( i d ) )

24 Busy2 ( i d ) = ( f o r k _ l e f t . i d . putsdown_I −> f o r k _ l e f t . i d . putsdown_O
−> A v a i l a b l l e ( i d ) )

26

Fork ( i d ) =STM_Fork( i d )
28

−−P h i l o s o p h e r
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30 STM_Phil ( i d ) = HoldForkR ( i d )
HoldForkR ( i d ) = ( p h i l _ r i g h t . i d . p i c k sup_ I −> p h i l _ r i g h t . i d . picksup_O

32 −> HoldForkL ( i d ) )
HoldForkL ( i d ) = ( p h i l _ l e f t . i d . p i c k sup_ I −> p h i l _ l e f t . i d . picksup_O

34 −> PutsDownR ( i d ) )
PutsDownR ( i d ) = ( p h i l _ r i g h t . i d . putsdown_I −> p h i l _ r i g h t . i d . putsdown_O

−>PutsDownL ( i d ) )
36 PutsDownL ( i d ) = ( p h i l _ l e f t . i d . putsdown_I −> p h i l _ l e f t . i d . putsdown_O

−>HoldForkR ( i d ) )
38

P h i l ( i d ) =STM_Phil ( i d )

C.2 RING BUFFER

2 channe l port_env : id_CONTROL . t_ id . o p e r a t i o n
channe l p o r t _ c o n t r o l : id_CONTROL . i ndex . o p e r a t i o n

4 channe l p o r t _ c e l l : id_CELL . t_ id . o p e r a t i o n

6 i n d e x = { 1 . . 3 }
maxr ing=3

8 maxbuf f e r=4

10 t y p e _ s i z e ={0. .4}
type_cache ={0. .2}

12 type_top ={1. .3}
type_bot ={1. .3}

14 type_v l_env ={0. .2}
type_va l ={0. .2}

16 type_data ={0. .1}

18 t_ id = { 0 . . 9 }
channe l i n t e r n a l : t_ id

20

channe l g e t _ s i z e : id_CONTROL . t y p e _ s i z e
22 channe l s e t _ s i z e : id_CONTROL . t y p e _ s i z e

channe l get_cache : id_CONTROL . type_cache
24 channe l se t_cache : id_CONTROL . type_cache
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channe l get_top : id_CONTROL . type_top
26 channe l se t_top : id_CONTROL . type_top

channe l get_bot : id_CONTROL . type_bot
28 channe l se t_bot : id_CONTROL . type_bot

channe l get_v l_env : id_CONTROL . type_v l_env
30 channe l s e t_v l_env : id_CONTROL . type_v l_env

channe l ge t_va l : id_CELL . t ype_va l
32 channe l s e t _ v a l : id_CELL . t ype_va l

channe l get_data : id_CELL . type_data
34 channe l s e t_data : id_CELL . type_data

36

da ta t ype o p e r a t i o n = r e t r i e v e _ d a t a _ I | r e t r i e ve_data_O . type_v l_env |
38 w r i t e _ I . t ype_va l | write_O | read_I |

read_O . type_va l | r e c e i v e _ d a t a . type_v l_env
40 subtype CELL_I = w r i t e _ I . t ype_va l | r ead_I

subtype CONTROL_I = r e t r i e v e _ d a t a _ I | r e c e i v e _ d a t a . type_v l_env |
42 w r i t e _ I . t ype_va l | r ead_I

subtype CELL_O = write_O | read_O . type_va l
44 subtype CONTROL_O= ret r i e ve_data_O . type_v l_env | write_O |

read_O . type_va l
46

CONTROL_memory( id , s i z e , cache , top , bot , v l_env )=
48 g e t _ s i z e . i d ! s i z e −>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )

[ ]
50 get_cache . i d ! cache−>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )

[ ]
52 get_top . i d ! top−>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )

[ ]
54 get_bot . i d ! bot−>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )

[ ]
56 get_v l_env . i d ! v l_env−>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )

[ ]
58 s e t _ s i z e . i d ? v l −> CONTROL_memory( id , v l , cache , top , bot , v l_env )

[ ]
60 se t_cache . i d ? v l −> CONTROL_memory( id , s i z e , v l , top , bot , v l_env )

[ ]
62 se t_top . i d ? v l −>CONTROL_memory ( id , s i z e , cache , v l , bot , v l_env )

[ ]
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64 se t_bot . i d ? v l −> CONTROL_memory( id , s i z e , cache , top , v l , v l_env )
[ ]

66 se t_v l_env . i d ? v l −> CONTROL_memory( id , s i z e , cache , top , bot , v l )
[ ]

68 s i z e >0 & port_env . i d . 1 . r e t r i e v e _ d a t a _ I −>CONTROL_memory( id , s i z e , cache ,
top , bot , v l_env )

[ ]
70 s i z e <maxbuf f e r & port_env . i d . 2 . r e c e i v e _ d a t a ? v l −>CONTROL_memory( id , s i z e ,

cache , top , bot , v l_env )
[ ]

72 s i z e==1 & i n t e r n a l . 3 −>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )
[ ]

74 s i z e >0 & i n t e r n a l . 4 −>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )
[ ]

76 s i z e >1 & i n t e r n a l . 5 −>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )
[ ]

78 s i z e==0 & i n t e r n a l . 6 −>CONTROL_memory( id , s i z e , cache , top , bot , v l_env )

80

82 CELL_memory ( id , v a l ) =
ge t_va l . i d ! va l −> CELL_memory ( id , v a l )

84 [ ]
s e t _ v a l . i d ? v l −> CELL_memory ( id , v l )

86

88 STM_CONTROL( i d ) = I n i t _ C o n t r o l ( i d )
I n i t _ C o n t r o l ( i d ) =

90 ( port_env . i d . 1 . r e t r i e v e _ d a t a _ I −> get_cache . i d ? cache−>
port_env . i d . 1 . r e t r i e ve_data_O ? cache −> Read ( i d ) )

92 [ ]
( port_env . i d . 2 . r e c e i v e _ d a t a ? v l −> set_v l_env . i d ! v l −>Write ( i d ) )

94 Read ( i d ) = ( i n t e r n a l .3−> s e t _ s i z e . i d !0−> I n i t _ C o n t r o l ( i d ) )
[ ]

96 ( i n t e r n a l .5−> get_bot . i d ? bot−> p o r t _ c o n t r o l . i d . bot . read_I−>
p o r t _ c o n t r o l . i d . bot . read_O? v l −> set_cache . i d ! v l −>get_bot . i d ? bot−>

98 se t_bot . i d ! ( bot%maxr ing ) +1 −> g e t _ s i z e . i d ? s i z e −>
s e t _ s i z e . i d ! ( s i z e −1)%maxbuf f e r −> I n i t _ C o n t r o l ( i d ) )

100 Write ( i d ) = ( i n t e r n a l .4−> get_v l_env . i d ? vl_env−>get_top . i d ? top−>
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p o r t _ c o n t r o l . i d . top . w r i t e _ I ! v l_env−> p o r t _ c o n t r o l . i d . top . write_O −>
102 g e t _ s i z e . i d ? s i z e −> s e t _ s i z e . i d ! ( s i z e %maxbu f f e r )+1 −>

get_top . i d ? top−> set_top . i d ! ( top%maxr ing )+1 −> I n i t _ C o n t r o l ( i d ) )
104 [ ]

( i n t e r n a l .6−> get_v l_env . i d ? vl_env−> set_cache . i d ! v l_env
106 −>s e t _ s i z e . i d !1−> I n i t _ C o n t r o l ( i d ) )

108

STM_CELL( i d ) = I n i t _ C e l l ( i d )
110 I n i t _ C e l l ( i d ) = ( p o r t _ c e l l . i d . w r i t e ? v l −> p o r t _ c e l l . i d . wr i t e_ack

−>s e t _ v a l . i d ! v l −> I n i t _ C e l l ( i d ) )
112 [ ]

( p o r t _ c e l l . i d . read−>get_va l . i d ? va l −> p o r t _ c e l l . i d . read_ack ! v a l
114 −>I n i t _ C e l l ( i d ) )

116

CELL( i d ) = STM_CELL( i d ) [ | { | g e t_va l . id , s e t _ v a l . id , i n t e r n a l | } | ]
118 CELL_memory ( id , 0 ) \{ | get_va l , s e t_va l , i n t e r n a l | }

120 CONTROL( i d ) =STM_CONTROL( i d )
[ | { | g e t _ s i z e . id , s e t _ s i z e . id , get_cache . id , se t_cache . id , get_top . id ,

122 se t_top . id , get_bot . id , se t_bot . id , get_v l_env . id , s e t_v l_env . i ,
port_env . i d . 2 . r e c e i v e_da ta , port_env . i d . 1 . r e t r i e v e _ d a t a _ I , i n t e r n a l | } | ]

124 CONTROL_memory( id , 0 , 0 , 1 , 1 , 0 )
\{ | g e t_s i z e , s e t _ s i z e , get_cache , set_cache , get_top , set_top , get_bot ,

set_bot , get_vl_env , set_v l_env , i n t e r n a l | }

C.3 LEADERSHIP ELECTION

1

channe l b u s _ r e c e i v e r : id_BUS . o p e r a t i o n
3 channe l bus_sender : id_BUS . o p e r a t i o n

channe l n o d e _ r e c e i v e r : id_NODE . o p e r a t i o n
5 channe l node_sender : id_NODE . o p e r a t i o n

7

t yp e_s t a t u s ={0 ,1}
9 type_c la im ={ ' u ' , ' f ' , ' l ' }
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t y p e _ p e t i t i o n ={0. .3}
11 c l a im = { ' u ' , ' f ' , ' l ' }

p e t i t i o n ={0. .3}
13 maxPet i t i on =4

15 da ta t ype type_data = pack . c l a im . p e t i t i o n

17

t_ id = { 1 . . 5 }
19 channe l i n t e r n a l : t_ id

21 channe l get_BUSCELL_data : id_BUS . type_data
channe l set_BUSCELL_data : id_BUS . type_data

23 channe l set_Node_data : id_NODE . type_data
channe l get_Node_data : id_NODE . type_data

25 channe l get_Node_myClaim : id_NODE . type_c la im
channe l set_Node_myClaim : id_NODE . type_c la im

27 channe l get_Node_myPetit ion : id_NODE . t y p e _ p e t i t i o n
channe l set_Node_myPet i t ion : id_NODE . t y p e _ p e t i t i o n

29 channe l set_Node_rece ivedPack : id_NODE . type_data
channe l get_Node_rece ivedPack : id_NODE . type_data

31

33 da ta t ype o p e r a t i o n = send_pack_I | send_pack_O . type_data | r e c e i v e_pack_ I
| rece ive_pack_O . type_data | s end_s ta tu s . t y p e_s t a t u s |

35

subtype BUS_I = re c e i v e_pack_ I | send_pack_I
37 subtype BUS_O = rece ive_pack_O . type_data | send_pack_O . type_data |

s end_s ta tu s . t y p e_s t a t u s
39

41 subtype NODE_O = rece i v e_pack_ I | send_pack_I | s end_s ta tu s .
t yp e_s t a t u s

43 subtype NODE_I = rece ive_pack_O . type_data | send_pack_O . type_data

45

pack_cla im ( pack . c l a im . p e t i t i o n ) = c l a im p a c k _ p e t i t i o n ( pack . c l a im . p e t i t i o n
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) = p e t i t i o n
47

49 NODE_memory( id , myClaim , myPet i t i on , data , r e c e i v edPack ) =
get_Node_myClaim . i d ! myClaim −> NODE_memory( id , myClaim , myPet i t i on , data ,

r e c e i v edPack )
51 [ ]

set_Node_myClaim . i d ? v l −> NODE_memory( id , v l , myPet i t i on , data , r e c e i v edPack )
53 [ ]

get_Node_myPetit ion . i d ! myPe t i t i on −> NODE_memory( id , myClaim , myPet i t i on ,
data , r e c e i v edPack )

55 [ ]
set_Node_myPet i t ion . i d ? v l −> NODE_memory( id , myClaim , v l , data ,

r e c e i v edPack )
57 [ ]

get_Node_data . i d ! data −> NODE_memory( id , myClaim , myPet i t i on , data ,
r e c e i v edPack )

59 [ ]
set_Node_data . i d ? v l −> NODE_state ( id , myClaim , myPet i t i on , v l , r e c e i v edPack )

61 [ ]
get_Node_rece ivedPack . i d ! data −> NODE_memory( id , myClaim , myPet i t i on ,

data , r e c e i v edPack )
63 [ ]

se t_Node_rece ivedPack . i d ? v l −> NODE_memory( id , myClaim , myPet i t i on , data
, v l )

65 [ ]
( ( pack_cla im ( r e c e i v edPack ) == ' u ' and p a c k _ p e t i t i o n ( r e c e i v edPack ) ==0

and myClaim != ' l ' )
67 or ( ( pack_cla im ( r e c e i v edPack ) == ' u ' and p a c k _ p e t i t i o n ( r e c e i v edPack )

>= myPet i t i on ) and myClaim == ' u ' )
o r ( pack_cla im ( r e c e i v edPack ) == ' l ' and myClaim == ' l ' ) )

69 & i n t e r n a l . 2 −> NODE_memory( id , myClaim , myPet i t i on , data , r e c e i v edPack
)

[ ]
71 ( pack_cla im ( r e c e i v edPack ) == ' l ' and myClaim != ' l ' ) & i n t e r n a l . 3 −>

NODE_memory( id , myClaim , myPet i t i on , data , r e c e i v edPack )
[ ]

73

( ( pack_cla im ( r e c e i v edPack ) != ' l ' and myClaim == ' l ' )
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75 or
( pack_cla im ( r e c e i v edPack ) == ' u ' and ( myClaim == ' u ' and myPet i t i on >

p a c k _ p e t i t i o n ( r e c e i v edPack ) ) ) )
77 & i n t e r n a l . 4 −> NODE_memory( id , myClaim , myPet i t i on , data , r e c e i v edPack

)

79 STM_NODE( i d ) = OFF( i d )
OFF( i d ) = node_sender . i d . s end_s ta tu s !1 −> set_Node_myClaim . i d ! ' u ' −>

81 get_Node_myPetit ion . i d ? myPet i t i on −> set_Node_myPet i t ion . i d ! ( (
myPet i t i on −1)% maxPet i t i on ) −>

get_Node_myPetit ion . i d ? myPet i t i on −>
83 set_Node_data . i d ! pack . ' u ' . myPe t i t i on −>

get_Node_data . i d ? data −>
85 node_sender . i d . send_pack_I −> node_sender . i d . send_pack_O ! data

−>
ON( i d )

87

ON( i d ) = n o d e _ r e c e i v e r . i d . r e c e i v e_pack_ I −> n o d e _ r e c e i v e r . i d .
rece ive_pack_O ? data_ −>

89 set_Node_rece ivedPack . i d ! data_ −>
CHOICE( i d )

91 [ ]
node_sender . i d . s end_s ta tu s !0 −> OFF( i d )

93

CHOICE( i d ) = i n t e r n a l . 2 −> set_Node_myClaim . i d ! ' u ' −> UNDECIDED( i d )
95

[ ]
97

i n t e r n a l . 4 −> set_Node_myClaim . i d ! ' l ' −>
get_Node_myPetit ion . i d ? mypet ion −> set_Node_myPet i t ion . i d
! ( mypet ion +1)%maxPet i t i on −> LEADER( i d )

99

101 [ ]

103 i n t e r n a l . 3 −> set_Node_myClaim . i d ! ' f ' −> FOLLOWER( i d )

105

UNDECIDED( i d ) = get_Node_myClaim . i d ? myclaim −> get_Node_myPetit ion . i d ?
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mypet ion −>
107 node_sender . i d . send_pack_I −> node_sender . i d . send_pack_O ! pack .

myclaim . mypet ion −> ON( i d )

109

111

LEADER( i d )= get_Node_myClaim . i d ? myclaim −> get_Node_myPetit ion . i d ?
mypet ion −>

113 node_sender . i d . send_pack_I −> node_sender . i d . send_pack_O ! pack .
myclaim . mypet ion −> ON( i d ) −−v a l L e a d e r s > 0

115

117

FOLLOWER( i d ) = get_Node_myClaim . i d ? myclaim −> get_Node_myPetit ion . i d ?
mypet ion −>

119 node_sender . i d . send_pack_I −> node_sender . i d . send_pack_O ! pack .
myclaim . mypet ion −> ON( i d )

121

123 NODE( i d ) = STM_NODE( i d )
[ | { |

125 set_Node_data . id , get_Node_data . id ,
get_Node_myClaim . id , set_Node_myClaim . id ,

127 set_Node_myPet i t ion . id , get_Node_myPetit ion . id ,
set_Node_rece ivedPack . id , get_Node_rece ivedPack . id ,

129 i n t e r n a l
| } | ]

131 NODE_memory( id , ' u ' , 1 , pack . ' u ' . 0 , pack . ' u ' . 0 )
\{ | set_Node_data , get_Node_data , get_Node_myClaim , set_Node_myClaim ,

133 set_Node_myPetit ion , get_Node_myPetit ion , set_Node_rece ivedPack ,
get_Node_rece ivedPack , i n t e r n a l | }

135

137
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139

BUS_memory( id , data ) =
141 get_BUSCELL_data . i d ! data −> BUS_memory( id , data )

[ ]
143 set_BUSCELL_data . i d ? v l −> BUS_memory( id , v l )

145

147 STM_BUS( i d ) = C e l l I d d l e ( i d )
C e l l I d d l e ( i d ) =

149 ( bus_sender . i d . s end_s ta tu s . 1 −>Cel lOn ( i d ) )
[ ]

151 ( b u s _ r e c e i v e r . i d . r e ce i v e_pack_I −>
b u s _ r e c e i v e r . i d . rece ive_pack_O ! pack . ' u ' . 0 −> C e l l I d d l e ( i d ) )

153

Cel lOn ( i d ) =
155 ( bus_sender . i d . s end_s ta tu s . 0 −>C e l l I d d l e ( i d ) )

[ ]
157 ( b u s _ r e c e i v e r . i d . r e ce i v e_pack_I −>get_BUSCELL_data . i d ? data−>

b u s _ r e c e i v e r . i d . rece ive_pack_O ! data −>Cel lOn ( i d ) )
159 [ ]

( bus_sender . i d . send_pack_I−>
161 bus_sender . i d . send_pack_O?pack . c l a im . p e t i t i o n −>

set_BUSCELL_data . i d ! pack . c l a im . p e t i t i o n −>Cel lOn ( i d ) )
163 [ ]

get_BUSCELL_data . i d ? data −> b u s _ r e c e i v e r . i d . r e c e i v e_pack_ I −>
b u s _ r e c e i v e r . i d . rece ive_pack_O ! data −> Cel lOn ( i d )

165

167 BUS( i d ) =STM_BUS( i d )
[ | { | get_BUSCELL_data . id , set_BUSCELL_data . id , i n t e r n a l | } | ]

169 BUS_memory( id , pack . ' u ' . 0 )
\{ | get_BUSCELL_data , set_BUSCELL_data , i n t e r n a l | }
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