UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS

Departamento de Engenharia Civil

GADADHARA DE FIGUEIREDO FERRAZ

ESTUDO DO HEC-RAS PARA ESCOAMENTO EM CANAIS

RECIFE

2015

GADADHARA DE FIGUEIREDO FERRAZ

ESTUDO DO HEC-RAS PARA ESCOAMENTO EM CANAIS

Trabalho de Conclusão de Curso apresentado a Coordenação do Curso de Graduação em Engenharia Civil da Universidade Federal de Pernambuco, como requisito parcial à obtenção do título de Engenheiro Civil. Sob a orientação do Professor José Roberto Gonçalves de Azevedo.

Recife 2015

Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198

F381e Ferraz, Gadadhara de Figueiredo.

Estudo do HEC-RAS para escoamento em canais / Gadadhara de Figueiredo Ferraz. - Recife: O Autor, 2015.

97 folhas, il., gráfs., tabs.

Orientador: Prof. Dr. José Roberto Gonçalves de Azevedo. TCC (Graduação) — Universidade Federal de Pernambuco. CTG. Departamento de Engenharia Civil, 2015.

Inclui Referências e Apêndices.

1. Engenharia Civil. 2. Canais. 3. HEC-RAS. 4. Escoamento permanente. I. Azevedo, José Roberto Gonçalves de. (Orientador). III. Título.

UFPE

624 CDD (22. ed.) BCTG/2015-203

ATA DA DEFESA DO TRABALHO DE CONCLUSÃO DE CURSO PARA CONCESSÃO DO GRAU DE ENGENHEIRO CIVIL

CANDIDATO(S): GADADHARA DE FIGUEIREDO FERRAZ

BANCA EXAMINADORA:

Orientador: PROFESSOR JOSÉ ROBERTO GONÇALVES DE AZEVEDO

Examinador 1: ROBERTA GUEDES ALCOFORADO

Examinador 2: PAULO FRASSINETE DE ARAÚJO FILHO

TÍTULO DO TRABALHO DE CONCLUSÃO DE CURSO: ESTUDO DO HEC-RAS PARA ESCOAMENTO EM CANAIS

LOCAL: CTG/UFPE; LABORATÓRIO DE HIDRÁULICA; TÉRREO; SALA DE AULAS. HORÁRIO DE INICIO: HORAS.

Em sessão pública, após exposição de cerca de.....minutos, o(s) candidato(s) foi (foram) argüido(s) oralmente pelos membros da banca, sendo considerado(s):

- 1)(..) aprovado(s), pois foi demonstrado suficiência de conhecimento e capacidade de sistematização no tema da monografia e o texto do trabalho aceito
- () Sem revisões.
- () Com revisões, a serem feitas e verificadas pelo orientador no prazo máximo de 30 dias.(o verso da folha da ata poderá ser utilizado para pontuar revisões).
- 2) (..) reprovado(s).

Na forma regulamentar foi lavrada a presente ata que é assinada pelos membros da banca e pelo(s) candidato(s).

AGRADECIMENTOS

Agradeço ao professor José Roberto Gonçalves de Azevedo pela disponibilidade e atenção na orientação do presente trabalho, aos professores do Departamento de Engenharia Civil que contribuíram para o desenvolvimento das habilidades técnicas necessárias para a formação e habilitação profissional, a Projetec Projetos Técnicos Ltda. pela oportunidade e confiança nas atividades desenvolvidas. Agradeço também a minha família e amigos pelo suporte e incentivo à minha formação.

RESUMO

O dimensionamento de canais é de extrema importância quando se fala em sistemas de irrigação e abastecimento de água, visto que mais de um bilhão de pessoas não tem acesso a água potável. Para este dimensionamento, deve-se ter uma visão sobre as diversas possibilidades de canais, acompanhado com as complexidades de seus cálculos. A fim de minimizar esta complexidade, diversos pesquisadores na área desenvolveram softwares capazes de simular canais e seus parâmetros hidráulicos mais importantes, permitindo ao usuário analisar a viabilidade de um canal. O modelo computacional aqui tratado foi o HEC-RAS, disponibilizado pela U.S. Army Corps of Enginners dos Estados Unidos. Foram desenvolvidos ao longo deste trabalho de conclusão de curso seis exemplos de canais: canal com seção constante e declividade constante, canal com seção constante e declividade variável, canal com seção variável de contração e declividade constante, canal com seção variável de expansão e declividade constante, canal com seção variável de contração e declividade variável, e por fim, canal com seção variável de expansão e declividade variável. Os mesmos exemplos também foram desenvolvidos em planilha eletrônica, de forma que os dois modelos pudessem ser comparados para analisar o grau de precisão dos dados fornecidos pelo HEC-RAS. Apesar da diferença entre os resultados ser desprezível, com os resultados obtidos em planilha eletrônica utilizarem uma maior precisão, o uso do HEC-RAS é o mais recomendado, uma vez que reduz o tempo gasto nos cálculos de dimensionamento, principalmente em canais naturais.

Palavras-chave: Canais.HEC-RAS.Escoamento permanente.

ABSTRACT

The sizing of channels is of utmost importance when it comes to irrigation and water supply systems, once that more than one billion people don't have access to safe drinking water. For this design, one must have an insight into the various possibles channels, also with the complexities of their calculations. In order to minimize this complexity, many researchers in the field have developed softwares capable of simulate channels and its most important hydraulic parameters, allowing the user to analyze the viability of the channel. The computer model hereby was the HEC-RAS, made available by the US Army Corps of Enginners from United States. It has been developed over this course conclusion work six examples of channels; channel with constant section and constant slope, channel with constant section and variable slope, channel with variable section of contraction and constant slope, channel with variable section of expansion and constant slope, channel with variable section of contraction and variable slope, and lastly, channel with variable section of expansion and variable slope. The same examples were also developed in spreadsheet, so that the two models could be compared to analyze the precision scale in data provided by the HEC -RAS. Despite the difference between the results were negligible, the use of HEC -RAS it is more recommended, since it reduces the time spent in the sizing calculations, especially in natural channels.

Keywords: Channels.HEC-RAS.SteadyFlow.

LISTA DE FIGURAS

Figura 1- Canal de Integração do Rio São Francisco	.15
Figura 2 - Canal de navegação no Canadá	.15
Figura 3 - Parâmetros característicos de algumas seções usuais	17
Figura 4 - Curva de Energia Específica em função de E e Y	.24
Figura 5 - Curva de Energia Específica em função de E, Y e Q/b	.25
Figura 6 - Seção do canal	.27
Figura 7 - Canal Retangular com Seção constante e declividade constante	.27
Figura 8 - Dados da seção do canal (Cross Section Data)	.37
Figura 9 - Dados do Escoamento Uniforme (Steady Flow Data)	.37
Figura 10 - Conclusões finais	.39
Figura 11 - Relatório de erros	.39
Figura 12 - Seção do rio com nível d'água	.40
Figura 13 - Perfil do rio	.40
Figura 14 - Variação da Velocidade ao longo do rio	.41
Figura 15 - Canal Retangular com Seção constante e declividade variável	.42
Figura 16 - Seção 1.8* (Seção Constante e Declividade Variável)	.45
Figura 17 - Seção 2 (Seção Constante e Declividade Variável)	.46
Figura 18 - Seção 2.2* (Seção Constante e Declividade Variável)	.46
Figura 19 - Perfil longitudinal do canal com seção constante e declividade variável	1.46
Figura 20 - Canal Retangular com Seção variável de expansão e declividade	
constante	
Figura 21 - Seção 1.8* (Seção Variável de Expansão e Declividade Constante)	
Figura 22 - Seção 2 (Seção Variável de Expansão e Declividade Constante)	
Figura 23 - Seção 2.2* (Seção Variável de Expansão e Declividade Constante)	
Figura 24 - Perfil longitudinal do canal com seção variável de expansão e declivida	ade
constante	52
Figura 25 - Canal Retangular com Seção variável de contração e declividade	
constante	
Figura 26 - Seção 1.8 (Seção Variável de Contração e Declividade Constante)	
Figura 27 - Seção 2 (Seção Variável de Contração e Declividade Constante)	
Figura 28 - Seção 2.2 (Seção Variável de Contração e Declividade Constante)	.56
Figura 29 - Perfil longitudinal do canal com seção variável de contração e	
declividade constante.	.57
Figura 30 - Canal Retangular com Seção variável de expansão e declividade	
variável	
Figura 31 - Seção 1.8 (Seção Variável de Expansão e Declividade Variável)	
Figura 32 - Seção 2 (Seção Variável de Expansão e Declividade Variável)	
Figura 33 - Seção 2.2 (Seção Variável de Expansão e Declividade Variável)	
Figura 34 - Perfil longitudinal do canal com seção variável de expansão e declivida	
variávelFigura 35 - Canal Retangular com Seção variável de contração e declividade	0∠
rigura 35 - Canai Retangular com Seção variavel de contração e declividade variável	63
VOLICIVE	11.

Figura 36 - Seção 1.8 (Seção Variável de Contração e Declividade Variável)	66
Figura 37 - Seção 2 (Seção Variável de Contração e Declividade Variável)	67
Figura 38 - Seção 2.2 (Seção Variável de Contração e Declividade Variável)	67
Figura 39 - Perfil longitudinal do canal com seção variável de contração e	
declividade constante	68
Figura 40 - Perfil longitudinal para o canal com seção constante e declividade	
constante	75
Figura 41 - Perfil longitudinal para o canal com seção constante e declividade	
variável	75
Figura 42 - Perfil longitudinal para o canal com seção variável de expansão e	
declividade constante	76
Figura 43 - Perfil longitudinal para o canal com seção variável de contração e	
declividade constante	76
Figura 44 - Perfil longitudinal para o canal com seção variável de expansão e	
declividade variável	77
Figura 45 - Perfil longitudinal para o canal com seção variável de contração e	
declividade variável	77
Figura 46 - Velocidade ao longo do canal (Seção Váriavel de Expansão com	
Declividade Váriavel)	78
Figura 47 - Velocidade ao longo do canal (Seção Variável de Contração com	
Declividade Variável)	78

LISTA DE TABELAS

Tabela 1 - Dimensões da seção do canal retangular de seção constante e	
declividade constante	.28
Tabela 2 – Resultados obtidos para profundidade crítica para vazão de 500 m³/s	
(Solução acima do leito principal)	.32
Tabela 3 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s	
(Solução no leito principal).	.33
Tabela 4 - Resultados obtidos para profundidade normal com vazão de 500 m³/s	
(Solução no principal)	.33
Tabela 5 - Resultados obtidos para profundidade normal para vazão de 500 m³/s	
(Solução acima do leito principal)	.34
Tabela 6 - Profundidade Normal obtida pela planilha eletrônica e HEC-RAS	.35
Tabela 7 - Características do canal com seção constante e declividade variável	.42
Tabela 8 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s	
(Solução no leito principal)	.43
Tabela 9 - Resultados obtidos para profundidade normal para vazão de 500 m³/s	
(Solução acima do leito principal)	.44
Tabela 10 - Profundidade Normal obtida pelo planilha eletrônica e HEC-RAS	.44
Tabela 11 - Características do canal com seção variável de expansão e declividad	е
constante	.48
Tabela 12 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s	
(Solução no leito principal)	.49
Tabela 13 - Resultados obtidos para profundidade normal para vazão de 500 m³/s	
(Solução acima do leito principal)	.49
Tabela 14 - Profundidade Normal obtida pelo planilha eletrônica e HEC-RAS	.50
Tabela 15 - Características do canal com seção variável de contração e declividad	le
constante	.53
Tabela 16 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s	
(Solução no leito principal).	
Tabela 17 - Resultados obtidos para profundidade normal para vazão de 500 m³/s	
(Solução acima do leito principal)	.54
Tabela 18 - Profundidade Normal obtida pela planilha eletrônica e HEC-RAS	.55
Tabela 19 - Características do canal com seção variável de expansão e declividad	е
variável	.58
Tabela 20 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s	
(Solução no leito principal).	
Tabela 21 - Resultados obtidos para profundidade normal para vazão de 500 m³/s	
(Solução acima do leito principal)	
Tabela 22 - Profundidade Normal obtida pelo planilha eletrônica e HEC-RAS	
Tabela 23 - Características do canal com seção variável de contração e declividad	le
variável	63

SUMÁRIO

1	INTRODUÇAO	13
1.1	OBJETIVO GERAL	14
1.2	OBJETIVOS ESPECÍFICOS	14
1.3	JUSTIFICATIVA	14
2	FUNDAMENTAÇÃO TEÓRICA	14
2.1	DEFINIÇÃO DECANAIS	14
2.1.1	Características dos canais	15
2.1.2	Tipos de escoamento	18
3	MATERIAIS E MÉTODOS	19
3.1	FUNCIONAMENTO DO PROGRAMA HEC-RAS	19
3.1.1	Descrição Geral	19
3.1.2	Formulação Empregada	21
3.2	CÁLCULO DE CANAIS NA PLANILHA ELETRÔNICA	25
4	SIMULAÇÕES REALIZADAS	26
4.1 CONS	CANAL RETANGULAR COM SEÇÃO CONSTANTE E DECLIVID	
4.1.1	Solução em planilha eletrônica	27
4.1.2	Solução no HEC-RAS	36
4.2 VARIÁ	CANAL RETANGULAR COM SEÇÃO CONSTANTE E DECLIVID VEL (AUMENTO DE DECLIVIDADE)	
4.2.1	Solução em planilha eletrônica	42
4.2.2	Solução no HEC-RAS	45
4.3 DECLI	CANAL RETANGULAR COM SEÇÃO VARIÁVEL DE EXPANSÃO VIDADE CONSTANTE	
4.3.1	Solução em planilha eletrônica	48
4.3.2	Solução no HEC-RAS	50
4.4 DECLI	CANAL RETANGULAR COM SEÇÃO VARIÁVEL DE CONTRAÇÃ VIDADE CONSTANTE	
4.4.1	Solução em planilha eletrônica	53
4.4.2	Solução no HEC-RAS	55
4.5 DECLI	CANAL RETANGULAR COM SEÇÃO VARIÁVEL DE EXPANSÃO VIDADE VARIÁVEL (REDUÇÃO DE DECLIVIDADE)	
4.5.1	Solução em planilha eletrônica	58
4.5.2	Solução no HEC-RAS	60

CANAL RETANGULAR COM SEÇÃO VARIÁVEL DE CONTRAÇÃO /IDADE VARIÁVEL (REDUÇÃO DE DECLIVIDADE)	
Solução em planilha eletrônica	63
Solução no HEC-RAS	66
RESULTADOS DA COMPARAÇÃO ENTRE AS SIMULAÇÕES	68
CONCLUSÕES	79
REFERÊNCIAS	80
APÊNDICES	81
APÊNDICE A	82
APÊNDICE B	85
APÊNDICE C	88
APÊNDICE D	91
APÊNDICE E	94
APÊNDICE F	97
	VIDADE VARIÁVEL (REDUÇÃO DE DECLIVIDADE) Solução em planilha eletrônica Solução no HEC-RAS RESULTADOS DA COMPARAÇÃO ENTRE AS SIMULAÇÕES CONCLUSÕES REFERÊNCIAS APÊNDICES APÊNDICE A APÊNDICE B APÊNDICE C APÊNDICE D APÊNDICE E

1 INTRODUÇÃO

A água é provavelmente o único recurso natural que tem a ver com todos os aspectos da civilização humana, desde o desenvolvimento agrícola e industrial aos valores culturais e religiosos arraigados na sociedade. Os recursos hídricos têm profunda importância no desenvolvimento de diversas atividades econômicas. Em relação à produção agrícola, a água pode representar ate 90% da composição física das plantas. A falta d'água em períodos de crescimento dos vegetais pode destruir lavouras e até ecossistemas devidamente implantados.

Um sexto da população mundial, mais de um bilhão de pessoas, não tem acesso à água potável, sendo assim, diversos projetos são elaborados para condução e distribuição de água para essas regiões mais escassas.

Para o dimensionamento de canais, deve-se analisar o maior número possível de alternativas, com o propósito de selecionar tipos de canais que garantam, além de economicidade, eficiente condução e distribuição da água.

Para se ter informações suficientes sobre diversos tipos e tamanhos de canais, devem ser feitos diferentes cálculos de dimensionamento dos mesmos, o que exige trabalhos laboriosos e muitas vezes complexos. Para isso, existem formas de simplificar estes trabalhos através de programas computacionais e planilhas eletrônicas, como os que serão tratados neste desenvolvimento: o HEC-RAS e planilhas eletrônicas.

O modelo computacional HEC-RAS (HydrologicEngineering Center – River Analysis System), desenvolvido pelo centro de engenharia hidrológica, do *U.S. ArmyCorpsofEnginners*dos Estados Unidos, permite ao usuário desenvolver cálculos hidráulicos para escoamentos unidimensionais em regime permanente e não permanente.

O uso de modelos Hidráulicos é interessante, pois medidas diretas pode ser uma opção cara, difícil e até perigosa, enquanto modelos analíticos podem ser preditivos.

1.1 OBJETIVO GERAL

O objetivo deste trabalho é desenvolver uma planilha eletrônica de forma que o usuário seja capaz de realizar simulações distintas para obtenção de parâmetros hidráulicos, tais como: o traçado da superfície livre da água, a velocidade de escoamento, entre outros, de forma que o usuário possa aprender a simular o escoamento em canais. De forma a validar estas planilhas faz-se o uso do modelo HEC-RAS. Ambas as ferramentas podem ser utilizadas no auxilio da aprendizagem de hidráulica.

1.2 OBJETIVOS ESPECÍFICOS

Os objetivos específicos estão apresentados a seguir:

- Elaboração de planilhas eletrônicas para os cálculos de escoamentos em canais;
 - Cálculo dos parâmetros hidráulicos;
 - o Elaboração de curvas do perfil longitudinal;
- Desenvolver os seis exemplos apresentados na planilha eletrônica;
- Desenvolver os mesmos exemplos no HEC-RAS;
- Comparação das ferramentas utilizadas.

1.3 JUSTIFICATIVA

O uso das duas ferramentas utilizadas para análise de escoamento em canais: o modelo computacional HEC-RAS e planilha eletrônica proporcionará ao usuário tanto a possibilidade de comparação de resultados como, principalmente, o da aprendizagem das técnicas empregadas nos dois softwares.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 DEFINIÇÃO DECANAIS

Os canais são estruturas hidráulicas com objetivo de condução das águas de forma a compatibilizar as necessidades com os volumes disponíveis, como exemplo têm-se os canais do Projeto de Integração do Rio São Francisco (PISF), que tem por objetivo levar água de qualidade para mais de 390 municípios que sofrem com a

seca (Erro! Fonte de referência não encontrada.). Um canal pode também servir para ossibilitar ou favorecer a navegação, como é o caso do canal Rideau em Ottawa, Canadá (Erro! Fonte de referência não encontrada.).

Figura 1- Canal de Integração do Rio São Francisco.



Figura 2 - Canal de navegação no Canadá.

A existência de uma superfície livre e a declividade é a principal característica para definir o escoamento de um canal, sendo ela uma interface entre o ar atmosférico e a água. Todo canal aberto possui seu fundo inclinado, visto que o principal responsável pelo movimento do fluido é a gravidade.

2.1.1 Características dos canais

Os canais podem apresentar formas prismáticas e não prismáticas, sendo a primeira normalmente adotada para canais artificiais. As seções mais comuns são retangulares, trapezoidais, triangulares ou circulares.

Quando a seção é constante ao longo do canal, este é considerado prismático, e permite obter um escoamento uniforme, ou seja, com profundidades constantes ao longo do escoamento para uma dada vazão. Porém, na prática, esta é uma situação que não ocorre com muita frequência.

É necessário definir alguns parâmetros utilizados no dimensionamento hidráulico de um canal, em função da geometria da seção transversal e da profundidade de escoamento. São eles:

Inclinação do canal (I):é o declive do fundo do canal ao longo do escoamento;

<u>Profundidade do escoamento</u> (y): é a medida vertical desde o fundo do canal até a superfície livre do mesmo;

Área Molhada (Am): é a área da seção transversal perpendicular a direção do escoamento ocupada pela água;

<u>Perímetro Molhado</u> (Pm): comprimento da seção transversal que está em contato com o fluido:

Raio Hidráulico (Rh): relação entre a área molhada e o perímetro molhado;

Largura Superficial (B):Largura da superfície líquida em contato com a atmosfera;

<u>Profundidade hidráulica média</u> (yh):relação entre a área molhada e a largura superficial da água no canal;

<u>Coeficiente de Condução (K):</u> termo da fórmula de Manning que multiplica a raiz quadrada da declividade longitudinal do canal;

<u>Tensão de Cisalhamento (τ):</u> relação entre a força de cisalhamento e a área de contato do líquido em escoamento com as paredes e fundo do canal.

Para algumas seções de formas geométricas definidas, os elementos descritos anteriormente podem ser expressos de uma forma analítica, conforme a Erro! Fonte de referência não encontrada..

Seções trapezoidais e retangulares são bastante empregadas em canais de todos os portes, podendo ou não ter revestimento, porém, as seções retangulares precisam de estruturas mais rígidas para garantir a estabilidade dos taludes. Seções circulares são mais utilizadas para conduzir vazões reduzidas, como numa rede de esgoto ou de águas pluviais. Seções triangulares são mais utilizadas em sarjetas rodoviárias e urbanas.

Figura 3 - Parâmetros característicos de algumas seções usuais.

	Área	Perímetro Molhado	Raio Hidráulico	Largura Superficial	Profundidade Hidráulica
y =	by	b + 2y	$\frac{by}{b+2y}$	b	у
y Z	(b+Zy)y	$b + 2y\sqrt{1+Z^2}$	$\frac{(b+Zy)y}{b+2y\sqrt{1+Z^2}}$	b + 2Zy	$\frac{(b+Zy)y}{b+2Zy}$
1 Z	Zy^2	$2y\sqrt{1+Z^2}$	$\frac{Zy}{2\sqrt{1+Z^2}}$	2Zy	0,5 <i>y</i>
	$0,125(\theta$ $-sen\theta)D^2$	0,5 <i>θD</i>	$0,25(\frac{\theta-sen\theta}{\theta})D$	$2\sqrt{y(D-y)}$	$0,125(\frac{\theta - sen\theta}{sen\frac{1}{2}\theta})$
Parábola Para y < B/4	$\frac{2}{3}By$	$B + \frac{By^2}{3B}$	$\frac{2B^2y}{3B^2 + By^2}$	$\frac{3A}{2y}$	$\frac{2}{3}y$

Fonte: Baptista et. Al. (2011)

2.1.2 Tipos de escoamento

Os escoamentos podem ser classificados quanto à pressão, variação no tempo, trajetória, trajetória das partículas, direção da trajetória das partículas e velocidade angular das partículas.

Quanto à classificação devido à pressão, pode ser forçado ou livre, como já foi mencionado anteriormente. No escoamento classificado como forçado a pressão no líquido em escoamento é sempre diferente da atmosférica e acontece em condutos fechados, como em tubulações de recalque e sucção das bombas em estações elevatórias em sistema de abastecimento de água. No escoamento livre a pressão na superfície do liquido é igual à atmosférica, neste caso os condutos podem ser tanto fechados (redes coletoras de esgoto) como abertos (canais de irrigação).

Quanto à trajetória das partículas, podem ser classificados como laminar ou turbulento. No escoamento laminar, as camadas do liquido se movimentam sem perturbação. No escoamento turbulento, essa trajetória é irregular, causando uma transferência da quantidade de movimento de uma parte para outra do fluido. Em geral, considera-se que os escoamentos são turbulentos.

A classificação de regime permanente e não permanente se dá em relação à variação da profundidade e vazão com o tempo. Se as propriedades do fluido em um ponto do campo não mudam com o tempo, o escoamento é denominado escoamento em regime permanente. Neste tipo de escoamento, as propriedades podem variar de ponto para ponto no campo, mas devem permanecer constante em relação ao tempo para uma seção fixa qualquer. Se as propriedades do fluido em um ponto do campo variam com o tempo, o escoamento é dito não permanente ou transitório.

Escoamento uniforme é aquele em que a profundidade do canal permanece constante ao longo do tempo e ao longo do canal. Ocorre quando a força induzida pela aceleração da gravidade está em equilibro com as forças de resistência ao escoamento. Já o escoamento variado acontece devido à variação da profundidade ao longo do canal, porém não necessariamente com a variação do tempo.

O escoamento unidimensional é aquele em que são desprezíveis as variações das grandezas na direção transversal ao escoamento. Os escoamentos

em condutos forçados são considerados unidimensionais, uma vez que as grandezas, como velocidade, pressão e propriedades físicas são expressas em termos de valores médios constantes para toda a seção transversal.O escoamento bidimensional leva em consideração a variação das grandezas em duas direções, o que impõe nas variações da velocidade e pressão num plano paralelo ao do escoamento. No tridimensional, suas características variam nas três dimensões.

No que diz respeito à velocidade angular das partículas que compõem o fluido, os escoamentos podem ser rotacionais e irrotacionais. No escoamento rotacional a velocidade angular é diferente de zero, e no irrotacional esta velocidade é igual a zero.

3 MATERIAIS E MÉTODOS

3.1 FUNCIONAMENTO DO PROGRAMA HEC-RAS

3.1.1 Descrição Geral

O HEC-RAS permite ao usuário desenvolver cálculos hidráulicos para escoamentos unidirecionais em regime permanente e não permanente. O modelo fornece, entre outras, informações hidráulicas dos perfis da superfície da água e diversos parâmetros hidráulicos para cada seção estudada, tais como, velocidade, profundidade, tensão, largura superficial, área molhada entre outros.

Além de fornecer os perfis de escoamento permanente e não permanente, o programa também é capaz de simular o transporte de sedimentos e a qualidade da água, os quais não serão abordados neste trabalho.

O escoamento permanente pode ainda ser subdividido em supercrítico, subcrítico e ainda a junção dos dois tipos de regime ao longo de um canal.

Os perfis são calculados de uma seção para outra seguinte através das equações de Navier-Stokes, as quais englobam a equação de conservação de massa e a equação de conservação de momento. Através dessas equações podemse obter os valores de velocidade e profundidade do escoamento. De acordo com as hipóteses, a precisão dos resultados será melhor à medida que a dimensão longitudinal ébem maior que as outras duas.

O modelo usa o coeficiente de Manning para avaliar as perdas de energia e podem ser usados em simulações permanentes e transitórias.

O modelo dispõe de uma interface simples de forma a facilitar o uso do software sem maiores complicações, promovendo as seguintes funções:

- Armazenamento de arquivos;
- Entrada e edição de dados;
- Simulações para análise do escoamento em rios naturais;
- Tabelas e gráficos de parâmetros de entrada e saída;
- Ajuda online.

Além das informações especificas deste trabalho, o HEC-RAS faz simulações do escoamento em casos de pontes, bueiros, junções, entre outros.

Para uso do HEC-RAS são necessários os seguintes dados de entrada:

- Geometria:
 - Seção transversal;
 - o Espaçamento;
 - Estruturas;
 - Coeficiente de Manning;
- Vazões e condições de contorno para a simulação;
- Tipo de regime do escoamento.

O usuário após inserirtodas as informações necessárias, pode rodar o Modelo, gerando arquivos que podem ser analisados por diferentes combinações de forma a se criar vários planos de análise, dentre eles:

- Gráficos:
- Tabelas;
- Perfis longitudinais;
- Seções transversais, etc.

Para esclarecimento de dúvidas, o modelo dispõe de três documentos auxiliares, o manual do usuário, o manual de referências hidráulicas e o guia de aplicação.

O manual do usuário oferece uma introdução e revisão sobre modelagem, instruções de instalação, como chegar a um simples exemplo, descrição detalhada de cada componente modelado, e como ver a saída do modelo (tabelas e gráficos).

O manual de referências hidráulicas descreve a teoria e os requerimentos para os cálculos hidráulicos.

O guia de aplicação contém uma série de exemplos que demonstram vários aspectos do HEC-RAS.

3.1.2 Formulação Empregada

a) Equação da conservação da energia para canais abertos

Como já mencionado no item anterior, o cálculo da superfície da água é realizado de uma seção pra outra a partir da resolução da equação de Conservação de Energia por um processo iterativo conhecido como Método Passo Padrão, introduzido por CHOW (1959).

Para análise unidimensional em regime permanente de escoamento utiliza-se a equação da conservação da energia na forma da equação de Bernoulli, a qual estabelece que a diferença de energia entre duas seções é igual a perda de energia no caminho percorrido entre elas pelo fluido. A equação pode ser expressa da seguinte forma:

$$\left(Z_1 + Y_1 + \alpha \frac{{U_1}^2}{2g}\right) = \left(Z_2 + Y_2 + \alpha \frac{{U_2}^2}{2g}\right) + \Delta H$$
(1)

Sabe-se que cada parcela da equação corresponde a um tipo de energia do elemento fluido de peso unitário. As parcelas são definidas como cargas e podem ser vistas a seguir:

Z = energia ou carga de posição, representada pela cota do fundo do canal;

Y = energia ou carga de pressão, representada pela profundidade líquida da seção;

αU²/2g = energia ou carga de velocidade ou energia cinética;

 ΔH = perda de carga.

A parcela ΔH não contribui para o movimento do fluido, pois esta parcela representa a perda de energia de um fluido em movimento, por causa das resistências ao escoamento, tais como viscosidade, turbulências, atrito, etc.

A perda de carga de uma seção para outra é composta da perda de carga contínua e perda de carga localizada, dada pela equação a seguir:

$$\Delta H = LS_f + C \left| \frac{\alpha_2 V^2_2}{2g} - \frac{\alpha_1 V^2_1}{2g} \right| \tag{2}$$

Onde:

L = Comprimento do trecho;

S_f = Coeficiente de perda de carga representativo pelo trecho;

C = Coeficiente representativo de perda de carga por contração ou expansão;

Através da combinação das Equações 1 e 2, determina-se a cota da superfície liquida, através de processo iterativo.

Quando não se consegue balancear a equação de energia em uma seção, as causas comuns são normalmente um número inadequado de seções (seções muito espaçadas) ou dados inconsistentes presentes nas seções.

b) Coeficiente de condução

Uma seção transversal de um canal natural ou artificial pode ser subdividida em leito principal, direito e esquerdo, de forma que as vazões também sejam subdivididas. O coeficiente de condução é calculado para cada área do canal, baseada na equação de Manning, de acordo com a seguinte fórmula:

$$K = \frac{1}{n} A R_h^{\frac{2}{3}} \tag{3}$$

Onde:

K = coeficiente de condução para cada leito;

n = coeficiente de Manning;

A = Área molhada

R_h = Raio hidráulico.

O coeficiente de condução para a seção será a soma dos coeficientes de condução para cada leito (esquerdo, direito e canal principal).

c) Resistência ao escoamento - Fórmula de Manning

O coeficiente de rugosidade de Manning, expresso por "n", corresponde a resistência ao escoamento associada à parede do conduto, ou seja, será determinado pelo material utilizado nas paredes do conduto. A fórmula de Manning é utilizada para cálculos hidráulicos relativos a canais naturais e artificiais.

Da mesma forma que o canal é subdividido para obter o coeficiente de condução, é dividido para obtenção do coeficiente de Manning. Sendo suas regiões delimitadas pela variação no número de Manning. O valor equivalente será calculado pela seguinte equação:

$$n_c = \left[\frac{\sum_{i=1}^{N} (P_i n_i^{1,5})}{P}\right]^{2/3} \tag{4}$$

Onde:

n_c = Coeficiente de Manning equivalente;

P = Perímetro molhado:

P_i = Perímetro molhado para cada divisão;

n_i = Coeficiente de Manning para cada divisão.

d) Energia Específica

Segundo Bakhmeteff, em 1912 (Chow, 1959), pode-se considerar a quantidade de energia medida a partir do fundo do canal, que corresponde apenas à energia cinética e potencial, obtendo dessa forma a expressão da Energia Específica exibida na Equação 5. Essa energia quando assumir o valor mínimo será admitida energia crítica, ou seja, a profundidade será a crítica.

$$E = y + \frac{Q^2}{2gA^2} \tag{5}$$

Onde:

Y = Profundidade;

Q = vazão;

g = aceleração da gravidade (=9,8 m²/s);

A = Área Molhada.

A partir da Figura 4 constata-se que a energia especifica não é uma função monótona crescente com a profundidade. Há um valor mínimo de energia correspondente a certa profundidade, denominada de Profundidade Crítica (Yc), consequentemente, a energia correspondente à profundidade crítica é a Energia Crítica (Ec).

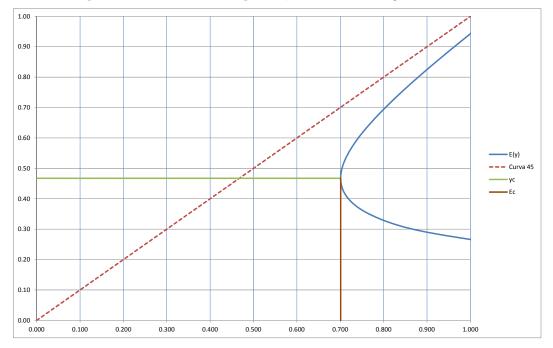


Figura 4 - Curva de Energia Específica em função de E e Y.

Devido à variação da seção do canal, a vazão específica 'q = Q/b'varia. O gráfico da energia específica será trasladada para a direita caso a seção fique mais estreita e 'q' aumente e para a esquerda se a seção alargar e 'q' diminuir (Figura 5).

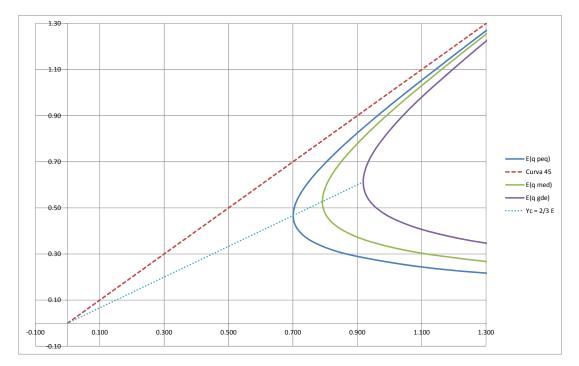


Figura 5 - Curva de Energia Específica em função de E, Y e Q/b.

3.2 CÁLCULO DE CANAIS NA PLANILHA ELETRÔNICA

A ferramenta utilizada nesta etapa é uma planilha eletrônica. Nela serão introduzidos os mesmos dados de entrada do HEC-RAS, e desenvolvidas fórmulas para cada situação, sendo possível comparar os resultados.

A partir da equação de Energia Específica pode ser obtido um número adimensional que caracteriza o regime do escoamento quanto à energia. Esse adimensional é o Número de Froude.

Para o cálculo da profundidade crítica, foi utilizada a seguinte equação do Número de Froude ao quadrado igual a unidade:

$$\frac{Q^2}{g} = \frac{Ac^3}{Bc} \tag{6}$$

Onde: $Q = vazão (m^3/s)$;

g = aceleração da gravidade (=9,8 m²/s);

Ac = área molhada critica (m²);

Bc = largura superficial critica (m).

Em seguida, segue o cálculo da profundidade normal através da equação de Manning:

$$\frac{Q \times n}{\sqrt{I}} - \frac{A^{\frac{5}{3}}}{Pm^{\frac{2}{3}}} = 0 \tag{7}$$

Onde: $Q = vazão (m^3/s)$;

n = coeficiente de Manning;

I = declividade do canal (m/m);

A = área molhada (m²);

Pm = perímetro molhado (m).

O coeficiente de Manning é um parâmetro que depende do tipo do canal (revestido, não revestido e gramado), sendo assim, em uma mesma seção podemse ter diferentes valores do coeficiente de Manning, sendo necessário dividir a seção transversal do canal em seções separadas pelo seu coeficiente.

Na maioria das vezes, tanto para a profundidade crítica quanto para a profundidade normal, os cálculos são feitos por iterações.

Outros parâmetros como velocidade, perímetro e área molhada, entre outros, também serão calculados ao longo do desenvolvimento deste trabalho.

4 SIMULAÇÕES REALIZADAS

Foram desenvolvidos seis exemplos de canais com seção retangular mostrada na Figura 6, variando ora a seção, ora a declividade. Ambos os exemplos foram desenvolvidos através de uma planilha eletrônica e sua comparação com o desenvolvimento do mesmo no HEC-RAS.

As seções foram adotadas a cada 100 metros e a vazão de 500 m³/s, com coeficientes de Manning de 0,03 para o leito principal e 0,1 para as margens esquerda e direita.

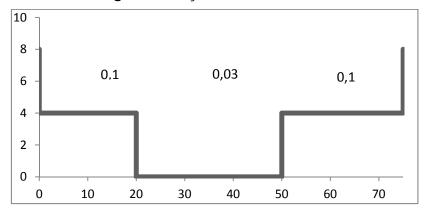
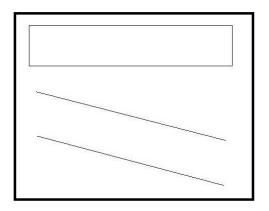



Figura 6 - Seção do canal.

4.1 CANAL RETANGULAR COM SEÇÃO CONSTANTE E DECLIVIDADE CONSTANTE

O primeiro exemplo a ser apresentado consiste em um canal retangular com seção constante e declividade constante, como mostrado na Figura 7.

Figura 7 - Canal Retangular com Seção constante e declividade constante.

4.1.1 Solução em planilha eletrônica

Nesta seção será mostrado o desenvolvimento deste exemplo de seção e declividade constante através de planilhas eletrônicas.

a) Definição das seções

A primeira etapa deste desenvolvimento é inserir as características das seções. As seções 1, 2 e 3 são definidas pelo usuário e as intermediárias são calculadas através de interpolação, como mostrado na Tabela 1. Os parâmetros representados nas tabelas correspondem a largura superficial do leito principal

(bca), largura superficial do leito esquerdo (bLe), largura superficial do leito direito (bLd), coeficientes de Manning (nca, nLe e nLd), cota de fundo (Zfundo) e declividade de cada seção (I).

Tabela 1 - Dimensões da seção do canal retangular de seção constante e declividade constante.

			CAR	ACTER	ÍSTICA	S DO	CANAL				
Seções	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3
bca =	30	30	30	30	30	30	30	30	30	30	30
bLe =	20	20	20	20	20	20	20	20	20	20	20
bLd =	25	25	25	25	25	25	25	25	25	25	25
L =	0	100	200	300	400	500	600	700	800	900	1000
nca =	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
nLe =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
nLd =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Z fundo =	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
I1 =	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
ZL1 =	4	4	4	4	4	4	4	4	4	4	4
ZL2 =	8	8	8	8	8	8	8	8	8	8	8
ZL3 =											

b) Cálculo dos parâmetros

Após definidas as seções, seguem-se com o cálculo dos diversos parâmetros hidráulicos do canal, tais quais foram definidos na seção Fundamentação Teórica. Estes cálculos são feitos para a seção mais a montante, neste caso a seção 1.

A condição crítica de escoamento corresponde ao limite entre os regimes fluvial e torrencial. A profundidade crítica corresponde a energia especifica mínima, ou seja, ao regime de escoamento crítico. Ao desenvolver a equação de Froude, tem-se a seguinte expressão para o cálculo da profundidade crítica num canal retangular:

$$y_c = \sqrt[3]{\frac{Q^2}{g * b^2}} \tag{9}$$

Onde:

Q = vazão (m³/s);

g = aceleração da gravidade (=9,8 m³/s);

b = largura superficial critica (m).

Porém, quando se tem uma seção mista, a superfície da água pode estar localizada tanto no leito principal, como no leito esquerdo e direito. Neste caso têmse duas hipóteses:

- Profundidade crítica e/ou normal no leito principal (Yc ≤ 4 m);
- Profundidade crítica e/ou normal acima do leito principal (4 < Yc ≤ 8 m).

Na primeira, a resolução da Equação Erro! Fonte de referência não encontrada. resolveria o problema. Na segunda, como a área não será única, foi utilizado um recurso de iteração automática, o qual procede da seguinte maneira:

- i. Adota-se um valor qualquer para profundidade normal;
- ii. Inserem-se todos os parâmetros já apresentados anteriormente em função da profundidade crítica (largura superficial, área molhada, perímetro molhado, raio hidráulico);
- iii. A partir da fórmula de Manning, tem-se a equação F(y) descrita a seguir:

$$F(y) = 10.000 \times \left(\frac{Q}{\sqrt{g}} - \sqrt{\frac{A_{cc}^{3}}{B_{cc}}} - \sqrt{\frac{A_{ld}^{3}}{B_{ld}}}\right)$$
 (10)

Onde:

Q = vazão:

g = aceleração da gravidade (=9,8 m²/s);

 A_{cc} = Área no leito principal do canal;

 B_{cc} = Largura no leito principal do canal;

A_{ld} = Área acima do leito principal do canal;

 B_{ld} = Largura acima do leito principal do canal;

10.000 = Utilizado somente para melhorar a precisão do processo de iteração automática.

iv. Executa-se a ferramenta de iteração automática.

Este recurso é utilizado quando se deseja chegar a um resultado, mas não se conhece o valor de entrada para chegar neste resultado. O usuário deve definir a célula de entrada, a qual deve conter uma fórmula, neste caso é a célula que contém a Equação Erro! Fonte de referência não encontrada. A mesma deve atingir o valor nulo alternando o valor da célula correspondente à profundidade crítica (Yc), de forma que a função inserida atinja o valor nulo.

Como a vazão e a seção é a mesma para todo o percurso do escoamento, não há variação da profundidade crítica.

Área molhada crítica é a multiplicação da profundidade crítica com a largura superficial crítica.

A declividade critica acontece quando há um aumento de velocidade, consequentemente há uma redução da área molhada e profundidade de escoamento até chegar a um ponto em que a profundidade atinge o valor crítico. Para o cálculo da declividade crítica, utiliza-se a dedução da fórmula de Manning dada na equação 2. Com isso, tem-se:

$$I_c = \left(\frac{Q \times n \times \sqrt[3]{Pmc^2}}{\sqrt[5]{Ac^3}}\right)^2 \tag{11}$$

Onde:

Q = vazão (m³/s);

Pmc = Perímetro molhado critico (m);

Ac = Área molhada critico (m^2) ;

n = Coeficiente de Manning.

Seguindo a mesma linha de raciocínio da declividade crítica, pode-se introduzir o conceito de velocidade crítica, também associada a condição critica de escoamento. Para o cálculo da velocidade crítica, utiliza-se a seguinte fórmula:

$$Vc = \frac{Q}{4c} \tag{12}$$

Onde:

Q = vazão (m³/s);

Ac = Área molhada critico (m^2) ;

A energia específica é calculada conforme Equação 5.

A profundidade associada ao escoamento permanente e uniforme é denominada profundidade normal, tal qual é constante ao longo do canal, assim como área molhada, seção transversal e velocidades constantes.

A linha de energia total, a superfície do líquido e o fundo do canal possuem a mesma declividade. Portanto, pode-se associar a perda de carga no escoamento ao próprio desnível do canal.

O método de cálculo desta profundidade normal consiste também no uso de ferramenta de iteração automática, desta vez satisfazendo a seguinte equação:

$$F(y) = 10.000 \times \left(\frac{Q \times n}{\sqrt{I_n}} - \frac{\sqrt[3]{Am_n^5}}{\sqrt[3]{Pm^2}} \right)$$
 (13)

Onde:

Q = vazão;

n = Coeficiente de Manning;

I = declividade do canal:

 $A_m =$ Área molhada;

 P_m = Perímetro molhado.

10.000 = Utilizado somente para melhorar a precisão do processo de iteração automática.

c) Resultados da planilha eletrônica

Como a vazão adotada possui um valor elevado, 500 m³/s, primeiramente será adotada a hipótese da profundidade crítica acima do limite do leito principal, ou seja, entre as cotas 4 e 8 m, este cálculo resultou nos valores representados na Tabela 2. Ondeosparâmetros representados nas tabelas correspondem a largura superficial crítica do leito principal (Bcca), largura superficial crítica do leito esquerdo (Bcle), largura superficial crítica do leito direito (Bcld), áreas críticas (Acca, Acld e

AcLe), perímetros molhados críticos (Pmcca, PmcLd e PmLe) e declividade crítica (Ic).

Tabela 2 – Resultados obtidos para profundidade crítica para vazão de 500 m³/s (Solução acima do leito principal).

Q3 =	500
Se	4 < yc ≤ 8
yc =	3.170261937
bc12 =	63.3333333
Bcca =	59.18464302
BcLe =	0
BcLd =	-41.48690313
Bc =	17.69773989
Acca =	135.8377525
AcLd =	17.21163131
AcLe =	0
Ac =	153.0493838
F(yc) =	#NÚM!
Pmcca =	60.08563616
PmcLd =	-41.49519968
PmcLe =	0
Pmc =	18.59043648
Ic =	#NÚM!

Pode-se observar que a hipótese não é valida, pois o recurso de iteração automática não conseguiu encontrar nenhuma solução. Portanto, espera-se que o resultado obtido para a profundidade crítica deva estar abaixo do intervalo do referido limite. Logo, foi necessário recalcular a profundidade considerando agora a profundidade abaixo do limite do leito principal.

Como o leito principal do canal é retangular a profundidade crítica é determinada de forma direta, portanto, sem a necessidade de utilização da ferramenta de iteração automática (função F(yc)). Os resultados encontrados para a profundidade crítica e demais parâmetros, situada dentro dos limites do leito do canal, encontram-se na Tabela 3.

Tabela 3 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s (Solução no leito principal).

Q3 =	500					
	Se yc ≤ 4					
yc =	3.047961643					
Bc =	30					
Ac =	91.43884928					
F(yc) =						
Pmc =	36.09592329					
Ic =	0.007792753					
vc =	5.468135305					
Ec =	4.571942464					

Com o valor da declividade crítica conhecida, observa-se que como a declividade do canal é menor implica em que o regime seja subcrítico.

Depois de calculada a profundidade crítica, foi calculada a profundidade normal para a seção mais a jusante do canal. Para isto, segue-se o mesmo procedimento para descoberta da localização da superfície livre da água utilizada para o regime crítico. Como a profundidade crítica resultou dentro do leito principal, foi adotado, inicialmente, que a profundidade normal também estaria dentro do mesmo leito, o que resulta nos valores encontrados na Tabela 4 a seguir.

Tabela 4 - Resultados obtidos para profundidade normal com vazão de 500 m³/s (Solução no principal).

Q3 =	500
	Se yn ≤ 4
yn1 =	4.001431418
B1 =	63.34526182
A1 =	186.7573317
Pm1 =	64.32876704
F(y1) =	-954612.3978
v1 =	2.677271063
E1 =	4.366761711
yh =	2.948244688
t =	28.48009542

Mais uma vez, a hipótese adotada não é valida, pois a ferramenta de iteração automática não conseguiu encontrar uma solução. Foi então necessário recalcular os valores da profundidade normal e parâmetros hidráulicos a ela relacionados, agora admitindo que o escoamento normal ocupe os três leitos do canal. Os valores obtidos encontram-se na Tabela 5.

Tabela 5 - Resultados obtidos para profundidade normal para vazão de 500 m³/s (Solução acima do leito principal).

Q3 =		500				
Se 4 < yn ≤ 8						
yn1 =	5.561	QLe =	12.630			
b12 =	30.000	QLd =	15.941			
Bca =	30.000	Qtotal =	500.000			
BLe =	20.000	vca =	2.826			
BLd =	25.000	vLd =	0.409			
B1 =	75.000	vLe =	0.405			
Aca =	166.815	v_media =	2.109			
ALd =	39.013	Alfa =	1.695			
ALe =	31.210	Eci =	0.384			
A =	237.038	E1 =	5.945			
Pmca =	38.000	yhca =	5.561			
PmLd =	26.561	yhLe =	1.561			
PmLe =	21.561	yhLd =	1.561			
Pm =	86.121	tca =	43.065			
F(y1) =	0.000	tLe =	14.201			
Qca =	471.429	tLd =	14.409			

Como a seção transversal e a declividade do fundo do canal são constantes ao longo do escoamento a energia específica também será o que comprova que o regime de escoamento será permanente e uniforme com profundidade normal Y_n.

A Tabela 6 mostra os resultados encontrados para profundidade normal pelas duas ferramentas, mostrando assim, uma diferença mínima entre elas.

Tabela 6 - Profundidade Normal obtida pela planilha eletrônica e HEC-RAS.

Seção	Yn (Planilha Eletrônica)	Yn (HEC-RAS)	Diferença	
	(m)	(m)	(m)	%
0	5.5605	5.5595	-0.001	-0.02%
100	5.5605	5.5596	-0.0009	-0.02%
200	5.5605	5.5597	-0.0008	-0.01%
300	5.5605	5.5598	-0.0007	-0.01%
400	5.5605	5.5599	-0.0006	-0.01%
500	5.5605	5.56	-0.0005	-0.01%
600	5.5605	5.5598	-0.0008	-0.01%
700	5.5605	5.5598	-0.0007	-0.01%
800	5.5605	5.5599	-0.0006	-0.01%
900	5.5605	5.56	-0.0005	-0.01%
1000	5.5605	5.5601	-0.0004	-0.01%

Como nesse primeiro cenário adotado o escoamento é permanente e uniforme os valores calculados para essa seção mais a jusante se mantêm inalterados. Os valores obtidos para os demais parâmetros de cada seção serão mostrados no Apêndice A.

Para todas demais simulações realizadas, onde o escoamento é permanente, mas não uniforme, os parâmetros das seções de montante foram calculados adotandoa mesma metodologia utilizada pelo HEC-RAS, ou seja, a partir desta primeira com o uso do seguinte processo iterativo:

- Arbitra-se um valor para Y_i (Seção i);
- Calculam-se os elementos hidráulicos e geométricos da seção:
 - Largura Superficial;
 - Área Molhada:
 - Perímetro Molhado;
 - o Coeficiente de Condução;
- Calcula-se o Coeficiente de Coriolis (α);
- Calcula-se a velocidade e energia cinética;

- Calcula-se a declividade média da linha de energia através da Fórmula de Manning;
- Calcula-se a vazão e a velocidade em cada leito do canal;
- Calcula-se a perda de carga contínua, localizada e total entre duas seções;
- Calcula-se a profundidade da seção por Bernoulli;
- Se o resultado da profundidade for diferente do valor arbitrado inicialmente, admite-se este valor como o novo valor para profundidade, retornando ao início da sequência (Arbitrar valor para Y_i);
- Repete-se o procedimento até atingir uma precisão desejável.

4.1.2 Solução no HEC-RAS

O procedimento de inserção do canal, definindo as seções e as características do escoamento, será o mesmo para todos os exercícios, modificando apenas os valores, por isso apenas será explicado neste item. Em seguida, serão mostrados apenas os resultados.

a) Definição das seções

As seções devem ser entradas em ordem crescente, a primeira seção inserida corresponde à seção mais afastada da captação ou nascente (seção mais a jusante). As principais informações que devem ser levantadas quando se define a seção são descritas a seguir e podem ser observadas na Figura 8.

- Distância da seção atual a seção imediatamente a jusante (100 m);
- Coeficientes de Manning (0,1 para os leitos direito e esquerdo, e 0,03 para o leito principal);
- Limite das Margens;
- Estações e cotas (geometria do canal);

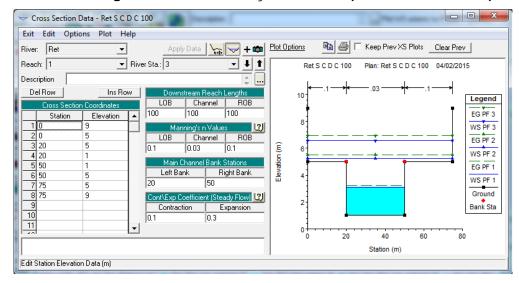


Figura 8 - Dados da seção do canal (Cross Section Data).

b) Definição do escoamento

Após definida a seção, são inseridas as características do tipo do escoamento. Na opção do menu principal "Steady Flow Data" são inseridas as vazões de cada um dos cenários, com que se deseja trabalhar (nesse exemplo, foi utilizado o cenário 3 - PF3, correspondente a vazão de 500 m³/s), como pode ser observado na Figura 9.

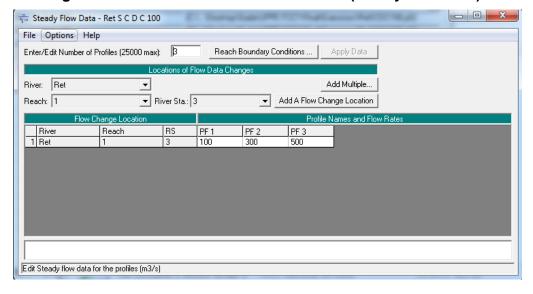


Figura 9 - Dados do Escoamento Uniforme (Steady Flow Data).

O regime subcrítico é produzido quando a velocidade do fluido é menor que a velocidade da gravidade que o acompanha, sendo definido pelo número de Froude. A expressão que caracteriza a existência deste regime é:

$$Fr = \frac{V}{\sqrt{gh}} < 1 \tag{8}$$

Neste caso de escoamento subcrítico, são conhecidas as condições de contorno para obtenção do nível d'água a jusante. Quando o número de Froude for maior que um, o escoamento é dito supercrítico e as condições de contorno do nível d'água devem ser conhecidas a montante. Nos rios é geralmente encontrado o valor de Froude entre 0,2 e 0,4.

As condições de contorno são inseridas na opção "Reach Boundary Conditions". Existem quatro tipos de opções:

O conhecimento da superfície da água é usado quando o usuário deseja determinar uma condição para a altura do nível da água para cada vazão. Quando a opção *profundidade crítica* é selecionada, o programa irá calcular o nível d'água considerando o número de Froude igual a um (a jusante) para cada vazão, neste caso o usuário não define nenhum parâmetro e o regime de escoamento é considerado lento. Neste exemplo foi adotada a opção *profundidade normal*, o programa irá calcular o nível da água através da Equação de Manning e de um dado valor de declividade (I), nesse exemplo igual a 0,001.

O próximo passo após inserir todas as informações necessárias para simulação do escoamento em canais é criar um plano de ação e rodar o programa.

c) Criação do plano de execução

O HEC-RAS possui em sua interface os botões de planos permanente e transitório, que permitem que possam avaliar diferentes arquivos de diferentes geometrias por diferentes arquivos de dados de vazão ou de hidrogramas.

Para criar a simulação é necessário criar este plano, o qual irá conter as informações da geometria e do escoamento. É neste momento que escolhe se o regime será supercrítico, subcrítico ou misto, onde haverá presença dos dois regimes (a escolha depende da condição de contorno escolhida).

Ao final de uma simulação deve-se procurar avaliar possíveis erros, advertências ou notas que o HEC-RAS verifica durante os cálculos, como é mostrado na figura a seguir.

A Figura 10 mostra a interface de conclusões finais, mostrada no fim de uma simulação, e a Figura 11 mostra o relatório de erros e advertências.

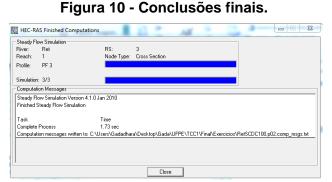


Figura 11 - Relatório de erros.

d) Saída do HEC-RAS

Os resultados podem ser mostrados em forma de figuras e tabelas. A seção do rio juntamente com os níveis d'água, profundidade crítica e energia obtidos para cada vazão podem ser encontrados na opção "View Cross Section", como mostrado na Figura 12.

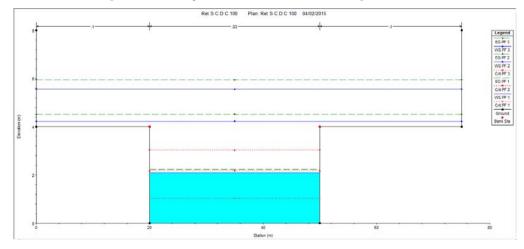


Figura 12 - Seção do rio com nível d'água.

Em seguida é mostrado o gráfico do perfil longitudinal do rio juntamente com seus valores de profundidade para os três tipos de perfis (Figura 13). Neste tipo de variação é possível ver, neste exemplo de declividade e seção constante, que não há variação do nível d'água ao longo do canal. Pode-se observar que os níveis d'água encontram-se abaixo do nível crítico para todas as vazões simuladas, confirmando que o regime é realmente subcrítico.

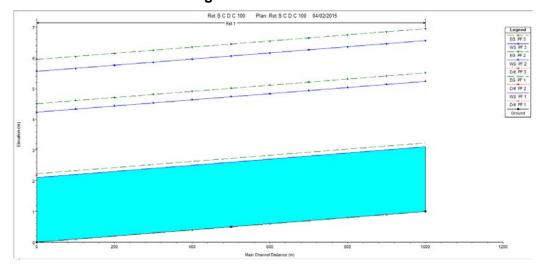


Figura 13 - Perfil do rio.

Outras variáveis são representadas em gráfico através da opção "View general profile plot", onde o usuário pode escolher entre diferentes variáveis como velocidades, área e outros. As velocidades ao longo do rio são representadas na Figura 14.

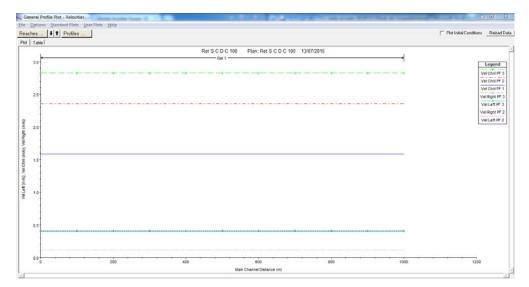
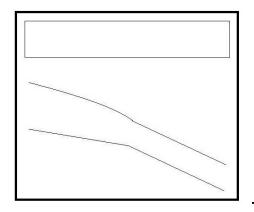


Figura 14 - Variação da Velocidade ao longo do rio.


Pode-se observar através destes resultados que o nível d'água e velocidade não sofre alterações ao longo do rio, isso se dá devido ao escoamento ser do tipo subcrítico e não há nenhum interferência ao longo do percurso, como comportas, variação do perfil, variação da declividade e outros parâmetros que possam interferir no regime do rio ou canal.

4.2 CANAL RETANGULAR COM SEÇÃO CONSTANTE E DECLIVIDADE VARIÁVEL (AUMENTO DE DECLIVIDADE)

Neste exemplo a seção do canal continua a mesma e não varia ao longo do canal, como pode ser visto na Figura 15. Por outro lado a declividade varia de 0,08 metros a cada 100 m, até atingir o meio do canal, seguindo para jusante com uma declividade de 0,1 a cada 100.

Como já foi dito anteriormente, a metodologia para todos os exemplos é bastante similar, não sendo necessário repetir toda a explicação. Portanto, apenas serão mostrado nessa seção alguns pontos importantes e diferentes e os resultados obtidos.

Figura 15 - Canal Retangular com Seção constante e declividade variável.

4.2.1 Solução em planilha eletrônica

a) Definição das seções

Os valores das características do canal são encontrados na tabela a seguir.

Tabela 7 - Características do canal com seção constante e declividade variável.

	CARACTERÍSTICAS DO CANAL										
Seções	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3
bca =	30	30	30	30	30	30	30	30	30	30	30
bLe =	20	20	20	20	20	20	20	20	20	20	20
bLd =	25	25	25	25	25	25	25	25	25	25	25
L =	0	100	200	300	400	500	600	700	800	900	1000
nca =	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
nLe =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
nLd =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Z fundo =	0	0.1	0.2	0.3	0.4	0.5	0.58	0.66	0.74	0.82	0.9
l1 =	0.001	0.001	0.001	0.001	0.001	0.001	0.0008	0.0008	8000.0	0.0008	0.0008
ZL1 =	4	4	4	4	4	4	4	4	4	4	4
ZL2 =	8	8	8	8	8	8	8	8	8	8	8
ZL3 =											

b) Resultados da planilha eletrônica

A profundidade crítica encontrada foi tomada abaixo da divisa entre o leito principal e os marginais. Os resultados obtidos para os outros parâmetros hidráulicos são encontrados na Tabela 8.

Tabela 8 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s (Solução no leito principal).

Q3 =	500						
Se yc ≤ 4							
yc =	3.047961643						
Bc =	30						
Ac =	91.43884928						
F(yc) =							
Pmc =	36.09592329						
Ic =	7.79E-03						
vc =	5.468135305						
Ec=	4.571942464						

Quanto à profundidade normal, a mesma foi localizada acima do leito principal, como mostrado na

Q	3 =	500							
Se 4 < yn ≤ 8									
yn1 =	5.561	QLe =	12.630						
b12 =	30.000	QLd =	15.941						
Bca =	30.000	Qtotal =	500.000						
BLe =	20.000	vca =	2.826						
BLd =	25.000	vLd =	0.409						
B1 =	75.000	vLe =	0.405						
Aca =	166.815	v_media =	2.109						
ALd =	39.013	Alfa =	1.695						
ALe =	31.210	Eci =	0.384						
A =	237.038	E1 =	5.945						
Pmca =	38.000	yhca =	5.561						
PmLd =	26.561	yhLe =	1.561						
PmLe =	21.561	yhLd =	1.561						
Pm =	86.121	tca =	43.065						
F(y1) =	0.000	tLe =	14.201						
Qca =	471.429	tLd =	14.409						

.

Tabela 9 - Resultados obtidos para profundidade normal para vazão de 500 m³/s (Solução acima do leito principal).

Q	3 =	50	0					
Se 4 < yn ≤ 8								
yn1 =	5.561	QLe =	12.630					
b12 =	30.000	QLd =	15.941					
Bca =	30.000	Qtotal =	500.000					
BLe =	20.000	vca =	2.826					
BLd =	25.000	vLd =	0.409					
B1 =	75.000	vLe =	0.405					
Aca =	166.815	v_media =	2.109					
ALd =	39.013	Alfa =	1.695					
ALe =	31.210	Eci =	0.384					
A =	237.038	E1 =	5.945					
Pmca =	38.000	yhca =	5.561					
PmLd =	26.561	yhLe =	1.561					
PmLe =	21.561	yhLd =	1.561					
Pm =	86.121	tca =	43.065					
F(y1) =	0.000	tLe =	14.201					
Qca =	471.429	tLd =	14.409					

A partir desta simulação, o parâmetro mais importante a determinar é a profundidade em cada seção. A Tabela 10 a seguir mostra os valores obtidos de profundidade para as duas ferramentas.

Tabela 10 - Profundidade Normal obtida pela planilha eletrônica e HEC-RAS.

Seção	Yn (planilha eletrônica)	Yn (HEC-RAS)	Difer	ença
	(m)	(m)	(m)	%
0	5.5605	5.5595	-0.001	-0.02%
100	5.5605	5.5596	-0.0009	-0.02%
200	5.5605	5.5597	-0.0008	-0.01%
300	5.5605	5.5598	-0.0007	-0.01%
400	5.5605	5.5599	-0.0006	-0.01%
500	5.5605	5.56	-0.0005	-0.01%
600	5.5846	5.5836	-0.001	-0.02%
700	5.6066	5.6054	-0.0012	-0.02%
800	5.6269	5.6252	-0.0017	-0.03%
900	5.6455	5.6437	-0.0018	-0.03%
1000	5.6627	5.6605	-0.0022	-0.04%

Para todas demais seções de montante, os parâmetros foram calculados adotando a mesma metodologia mencionada anteriormente, ou seja, a partir desta primeira com o uso do seguinte processo iterativo já mencionado anteriormente. Os valores obtidos para os demais parâmetros de cada seção serão mostrados no Apêndice B.

4.2.2 Solução no HEC-RAS

a) Definição das seções

A mudança de declividade no HEC-RAS foi feita na inserção das seções. Até a seção 2, seguiram-se com declividade 0,001 m/m, depois com declividade 0,0008 m/m. As figuras a seguir mostram a seção posterior á seção 2, a seção 2.2 e a seção anterior a ela, seção 1.8. Nelas é possível observar esta mudança de declividade, porém, mantendo a seção geométrica constante. As seções 1.8 e 2.2 têm uma * indicando que foram obtidas no HEC-RAS por interpolação entre as seções 1 e 2 para a primeira e 2 e 3 para a segunda.

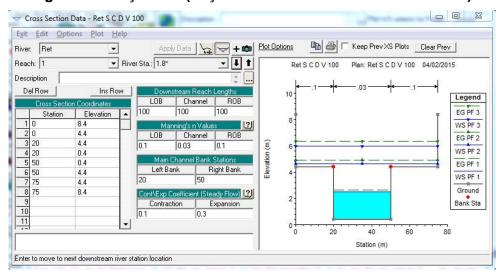


Figura 16 - Seção 1.8* (Seção Constante e Declividade Variável)

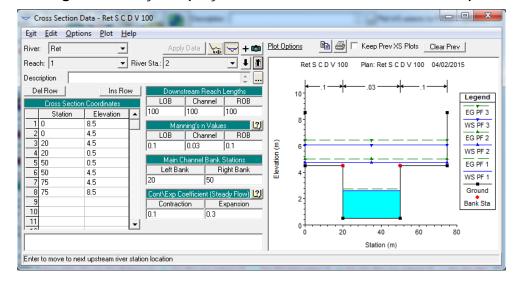
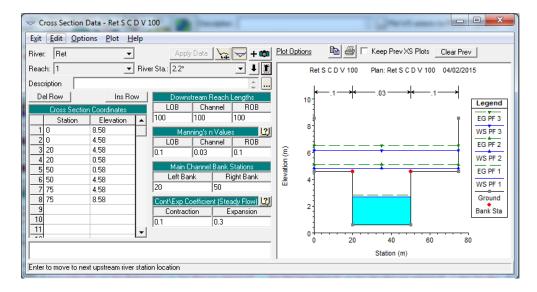
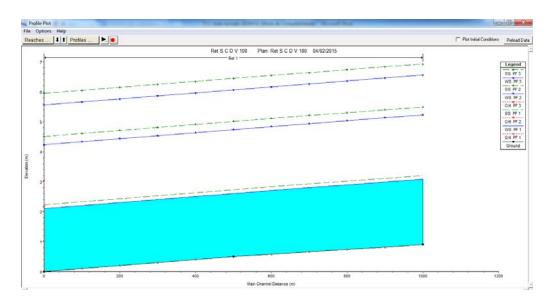



Figura 17 - Seção 2 (Seção Constante e Declividade Variável)

Figura 18 - Seção 2.2* (Seção Constante e Declividade Variável).

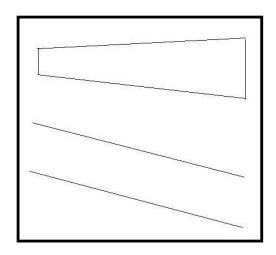


b) Resultados do HEC-RAS

Também não há diferença entre este exemplo e o outro quanto às vazões e condições de contorno. Após rodar o programa o perfil resultado é mostrado na

Figura 19.

Figura 19 - Perfil longitudinal do canal com seção constante e declividade variável.


4.3 CANAL RETANGULAR COM SEÇÃO VARIÁVEL DE EXPANSÃO E DECLIVIDADE CONSTANTE

Deste exemplo em diante a seção varia ao longo do canal. Neste exemplo a variação será de expansão, ou seja, a largura das seções irá aumentando de montante a jusante. Por outro lado a declividade será constante. A Figura 20 ilustra esta situação.

Do ponto mais a montante até o meio do canal, a largurasuperficial aumenta em 3 m a cada 100 m, do meio do canal em diante aumenta em 2,4 m a cada 100 m. O leito esquerdo aumenta 0,8 m a cada 100 m a montante do meio do canal, e 1 m a cada 100 m a jusante do meio do canal. O leito direito aumenta em 0,8 m a cada 100m a montante do meio do canal, e 1 m a cada 100 m a jusante do meio do canal. O leito principal aumenta em 0,96 m a cada 100m a montante do meio do canal, e 1,2 m a cada 100 m a jusante do meio do canal.

Como já foi dito anteriormente, a metodologia para todos os exemplos é bastante similar, não sendo necessário repetir toda a explicação. Portanto, apenas serão mostrado nessa seção alguns pontos importantes e diferentes e os resultados obtidos.

Figura 20 - Canal Retangular com Seção variável de expansão e declividade constante.

4.3.1 Solução em planilha eletrônica

a) Definição das seções

Os valores das características do canal são encontrados na Tabela 11.

Tabela 11 - Características do canal com seção variável de expansão e declividade constante.

-	CARACTERÍSTICAS DO CANAL										
Seções	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3
bca =	30	28.8	27.6	26.4	25.2	24	23.04	22.08	21.12	20.16	19.2
bLe =	20	19.2	18.4	17.6	16.8	16	15.36	14.72	14.08	13.44	12.8
bLd =	25	24	23	22	21	20	19.2	18.4	17.6	16.8	16
L =	0	100	200	300	400	500	600	700	800	900	1000
nca =	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
nLe =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
nLd =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Z fundo =	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
I1 =	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
ZL1 =	4	4	4	4	4	4	4	4	4	4	4
ZL2 =	8	8	8	8	8	8	8	8	8	8	8
ZL3 =											

b) Resultados da planilha eletrônica

A profundidade crítica encontrada foi tomada abaixo da divisa entre o leito principal e os marginais. Os resultados obtidos para os outros parâmetros hidráulicos são encontrados na Tabela 12.

Tabela 12 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s (Solução no leito principal).

Q3 =	500							
Se	Se yc ≤ 4							
yc =	3.047961643							
Bc =	30							
Ac =	91.43884928							
F(yc) =								
Pmc =	36.09592329							
Ic =	7.79E-03							
vc =	5.468135305							
Ec =	4.571942464							

Quanto à profundidade normal, a mesma foi localizada acima do leito principal, como mostrado na Tabela 13.

Tabela 13 - Resultados obtidos para profundidade normal para vazão de 500 m³/s (Solução acima do leito principal).

Q	3 =	500	0					
Se 4 < yn ≤ 8								
y1 =	5.561	QLe =	12.630					
b12 =	30.000	QLd =	15.941					
Bca =	30.000	Qtotal =	500.000					
BLe =	20.000	vca =	2.826					
BLd =	25.000	vLd =	0.409					
B1 =	75.000	vLe =	0.405					
Aca =	166.815	v_media =	2.109					
ALd =	39.013	Alfa =	1.695					
ALe =	31.210	Eci =	0.384					
A =	237.038	E1 =	5.945					
Pmca =	38.000	yhca =	5.561					
PmLd =	26.561	yhLe =	1.561					
PmLe =	21.561	yhLd =	1.561					
Pm =	86.121	tca =	43.065					
F(y1) =	0.000	tLe =	14.201					
Qca =	471.429	tLd =	14.409					

A partir desta simulação, o parâmetro mais importante a determinar é a profundidade em cada seção. A Tabela 14 a seguir mostra os valores obtidos de profundidade para as duas ferramentas.

Tabela 14 - Profundidade Normal obtida pelo planilha eletrônica e HEC-RAS.

Seção	Yn (planilha eletrônica)	Yn (HEC-RAS)	Difer	ença
	(m)	(m)	(m)	%
0	5.5605	5.5595	-0.001	-0.02%
100	5.5404	5.5395	-0.0009	-0.02%
200	5.5299	5.5291	-0.0008	-0.01%
300	5.5301	5.5295	-0.0007	-0.01%
400	5.5419	5.5414	-0.0005	-0.01%
500	5.5663	5.5659	-0.0004	-0.01%
600	5.6127	5.612	-0.0007	-0.01%
700	5.6692	5.6687	-0.0005	-0.01%
800	5.736	5.7356	-0.0004	-0.01%
900	5.8133	5.813	-0.0003	-0.01%
1000	5.9013	5.9011	-0.0002	0.00%

Para todas demais seções de montante, os parâmetros foram calculados adotando a mesma metodologia mencionada anteriormente, ou seja, a partir desta primeira com o uso do seguinte processo iterativo já mencionado anteriormente. Os valores obtidos para os demais parâmetros de cada seção serão mostrados no Apêndice C.

4.3.2 Solução no HEC-RAS

a) Definição das seções

A expansão das seções no HEC-RAS foi feita na inserção das seções. Até a seção 2, de montante a jusante, seguiram-se aumentando a largura em 3,2 m, depois 2,4 m. As figuras a seguir mostram a seção anterior áseção 2, a seção 2.2 e a seção posterior a ela, a seção 1.8 Nelas é possível observar esta mudança da largura do canal, porém, mantendo a declividade constante.

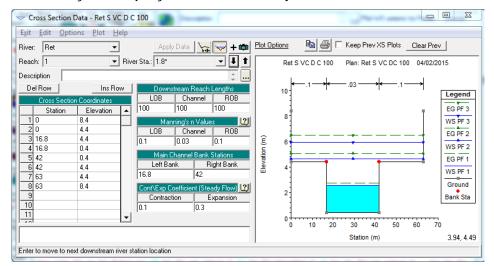


Figura 21 - Seção 1.8* (Seção Variável de Expansão e Declividade Constante)

Figura 22 - Seção 2 (Seção Variável de Expansão e Declividade Constante)

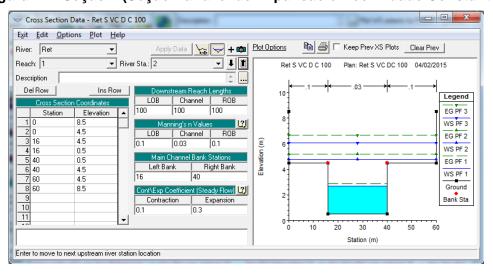
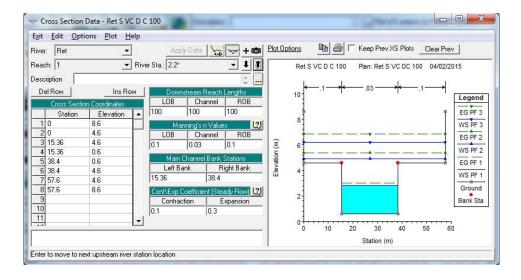



Figura 23 - Seção 2.2* (Seção Variável de Expansão e Declividade Constante)

b) Resultados do HEC-RAS

Também não há diferença entre este exemplo e o primeiro quanto às vazões e condições de contorno. Após rodar o programa o perfil resultado é mostrado naFigura 24.

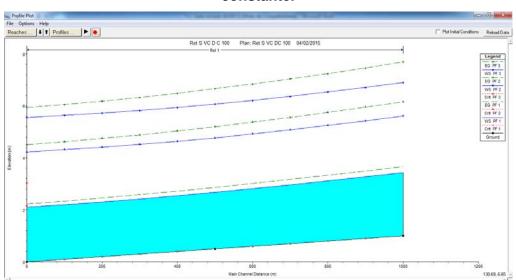
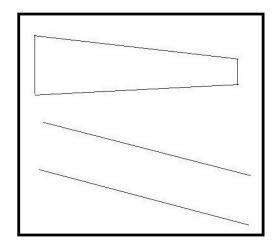


Figura 24 - Perfil longitudinal do canal com seção variável de expansão e declividade constante.


4.4 CANAL RETANGULAR COM SEÇÃO VARIÁVEL DE CONTRAÇÃO E DECLIVIDADE CONSTANTE

Neste exemplo a variação será de contração, ou seja, a largura das seções irá diminuindo de montante a jusante. Por outro lado a declividade será constante. A Figura 25 ilustra esta situação.

Do ponto mais a montante até o meio do canal, a largura superficial diminui em 3 m a cada 100 m, do meio do canal em diante diminui em 3,6 m a cada 100 m. O leito esquerdo diminui 0,96 m a cada 100 m à montante do meio do canal, e 0,8 m a cada 100 m à jusante do meio do canal. O leito direito diminui em 1,2 m a cada 100m à montante do meio do canal, e 1 m a cada 100 m à jusante do meio do canal. O leito principal diminui em 1,44 m a cada 100m à montante do meio do canal, e 1,2 m a cada 100 m à jusante do meio do canal.

Como já foi dito anteriormente, a metodologia para todos os exemplos é bastante similar, não sendo necessário repetir toda a explicação. Portanto, apenas serão mostrado nessa seção alguns pontos importantes e diferentes e os resultados obtidos.

Figura 25 - Canal Retangular com Seção variável de contração e declividade constante.

4.4.1 Solução em planilha eletrônica

a) Definição das seções

Os valores das características do canal são encontrados na Tabela 15.

Tabela 15 - Características do canal com seção variável de contração e declividade constante.

CARACTERÍSTICAS DO CANAL											
Seções	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3
bca =	30	31.2	32.4	33.6	34.8	36	37.44	38.88	40.32	41.76	43.2
bLe =	20	20.8	21.6	22.4	23.2	24	24.96	25.92	26.88	27.84	28.8
bLd =	25	26	27	28	29	30	31.2	32.4	33.6	34.8	36
L =	0	100	200	300	400	500	600	700	800	900	1000
nca =	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
nLe =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
nLd =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Z fundo =	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
l1 =	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
ZL1 =	4	4	4	4	4	4	4	4	4	4	4
ZL2 =	8	8	8	8	8	8	8	8	8	8	8
ZL3 =											

b) Resultados da planilha eletrônica

A profundidade crítica encontrada foi tomada abaixo da divisa entre o leito principal e os marginais. Os resultados obtidos para os outros parâmetros hidráulicos são encontrados na Tabela 16.

Tabela 16 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s (Solução no leito principal).

Q3 =	500						
Se yc ≤ 4							
yc =	3.047961643						
Bc =	30						
Ac =	91.43884928						
F(yc) =							
Pmc =	36.09592329						
Ic =	7.79E-03						
vc =	5.468135305						
Ec =	4.571942464						

Quanto à profundidade normal, a mesma foi localizada acima do leito principal, como mostrado na Tabela 17.

Tabela 17 - Resultados obtidos para profundidade normal para vazão de 500 m³/s (Solução acima do leito principal).

Q	3 =	500						
Se 4 < yn ≤ 8								
y1 =	5.561	QLe =	12.630					
b12 =	30.000	QLd =	15.941					
Bca =	30.000	Qtotal =	500.000					
BLe =	20.000	vca =	2.826					
BLd =	25.000	vLd =	0.409					
B1 =	75.000	vLe =	0.405					
Aca =	166.815	v_media =	2.109					
ALd =	39.013	Alfa =	1.695					
ALe =	31.210	Eci =	0.384					
A =	237.038	E1 =	5.945					
Pmca =	38.000	yhca =	5.561					
PmLd =	26.561	yhLe =	1.561					
PmLe =	21.561	yhLd =	1.561					
Pm =	86.121	tca =	43.065					
F(y1) =	0.000	tLe =	14.201					
Qca =	471.429	tLd =	14.409					

A partir desta simulação, o parâmetro mais importante a determinar é a profundidade em cada seção. A Tabela 18 a seguir mostra os valores obtidos de profundidade para as duas ferramentas.

Tabela 18 - Profundidade Normal obtida pela planilha eletrônica e HEC-RAS.

Seção	Yn (planilha eletrônica)	Yn (HEC-RAS)	Difer	ença
	(m)	(m)	(m)	%
0	5.5605	5.5595	-0.001	-0.02%
100	5.5927	5.5919	-0.0009	-0.02%
200	5.6085	5.6077	-0.0008	-0.01%
300	5.6116	5.6105	-0.0012	-0.02%
400	5.6048	5.6041	-0.0007	-0.01%
500	5.59	5.5893	-0.0007	-0.01%
600	5.572	5.571	-0.0009	-0.02%
700	5.5468	5.5459	-0.0009	-0.02%
800	5.5157	5.5149	-0.0008	-0.01%
900	5.4797	5.4789	-0.0008	-0.01%
1000	5.4396	5.4389	-0.0007	-0.01%

Para todas demais seções de montante, os parâmetros foram calculados adotando a mesma metodologia mencionada anteriormente, ou seja, a partir desta primeira com o uso do seguinte processo iterativo já mencionado anteriormente. Os valores obtidos para os demais parâmetros de cada seção serão mostrados no Apêndice D.

4.4.2 Solução no HEC-RAS

a) Definição das seções

A contração das seções no HEC-RAS foi feita na inserção das seções. Até a seção 2, de montante a jusante, seguiram-se diminuindo a largura em 3 m, depois 3,6 m. As figuras a seguir mostram a seção anterior à seção 2, a seção 2 e a seção posterior a ela. Nelas é possível observar esta mudança da largura do canal, porém, mantendo a declividade constante.

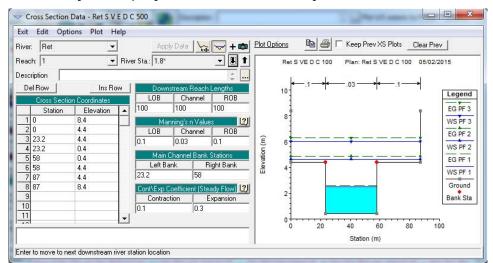


Figura 26 - Seção 1.8 (Seção Variável de Contração e Declividade Constante)

Figura 27 - Seção 2 (Seção Variável de Contração e Declividade Constante)

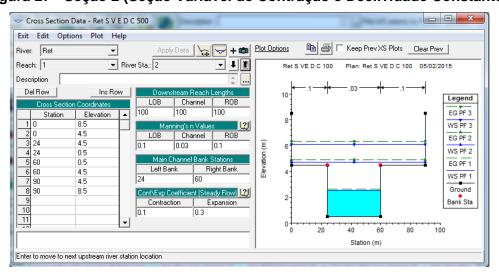
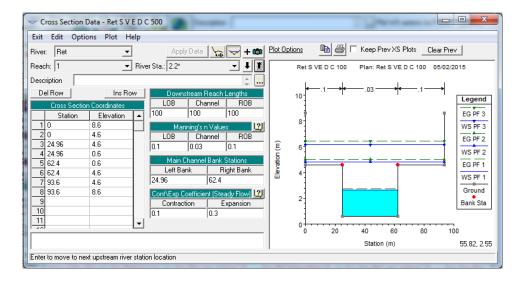



Figura 28 - Seção 2.2 (Seção Variável de Contração e Declividade Constante)

b) Resultados do HEC-RAS

Também não há diferença entre este exemplo e o primeiro quanto às vazões e condições de contorno. Após rodar o programa o perfil resultado é mostrado na Figura 29.

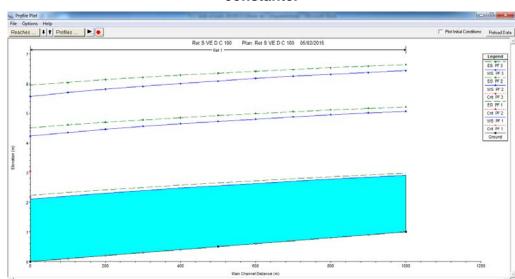
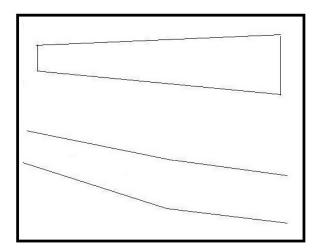


Figura 29 - Perfil longitudinal do canal com seção variável de contração e declividade constante.


4.5 CANAL RETANGULAR COM SEÇÃO VARIÁVEL DE EXPANSÃO E DECLIVIDADE VARIÁVEL (REDUÇÃO DE DECLIVIDADE)

Neste exemplo a seção do canal varia ao longo do canal. Neste exemplo a variação será de expansão, ou seja, a largura das seções irá aumentando de montante a jusante. Desta vez a declividade será variável. A Figura 30 ilustra esta situação.

Do ponto mais a montante até o meio do canal, a largurasuperficial aumenta em 2,4 ma cada 100 m e a declividade é de 0,08 m/100m, do meio do canal em diante a larguraaumentapara3 ma cada 100 m e a declividade passa a ser de 0,1m/100m.O leito esquerdo aumenta 0,64 m a cada 100 m à montante do meio do canal, e 0,8 m a cada 100 m à jusante do meio do canal. O leito direito aumenta em 0,8 m a cada 100 m à montante do meio do canal, e 1 m a cada 100 m à jusante do meio do canal. O leito principal aumenta em 0,96 m a cada 100m à montante do meio do canal, e 1,2 m a cada 100 m à jusante do meio do canal.

Como já foi dito anteriormente, a metodologia para todos os exemplos é bastante similar, não sendo necessário repetir toda a explicação. Portanto, apenas serão mostrado nessa seção alguns pontos importantes e diferentes e os resultados obtidos.

Figura 30 - Canal Retangular com Seção variável de expansão e declividade variável.

4.5.1 Solução em planilha eletrônica

a) Definição das seções

Os valores das características do canal são encontrados na Tabela 19.

Tabela 19 - Características do canal com seção variável de expansão e declividade variável.

	CARACTERÍSTICAS DO CANAL														
Seções	,														
bca =	30	28.8	27.6	26.4	25.2	24	23.04	22.08	21.12	20.16	19.2				
bLe =	20	19.2	18.4	17.6	16.8	16	15.36	14.72	14.08	13.44	12.8				
bLd =	25	24	23	22	21	20	19.2	18.4	17.6	16.8	16				
L =	0	100	200	300	400	500	600	700	800	900	1000				
nca =	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03				
nLe =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1				
nLd =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1				
Z fundo =	0	0.1	0.2	0.3	0.4	0.5	0.58	0.66	0.74	0.82	0.9				
l1 =	0.001	0.001	0.001	0.001	0.001	0.001	0.0008	0.0008	0.0008	0.0008	0.0008				
ZL1 =	4	4	4	4	4	4	4	4	4	4	4				
ZL2 =	8	8	8	8	8	8	8	8	8	8	8				
ZL3 =															

b) Resultados da planilha eletrônica

A profundidade crítica encontrada foi tomada abaixo da divisa entre o leito principal e os marginais. Os resultados obtidos para os outros parâmetros hidráulicos são encontrados na Tabela 20.

Tabela 20 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s (Solução no leito principal).

Q3 =	500
	Se yc ≤ 4
yc =	3.047961643
Bc =	30
Ac =	91.43884928
F(yc) =	
Pmc =	36.09592329
Ic =	0.007792753
vc =	5.468135305
Ec =	4.571942464

Quanto à profundidade normal, a mesma foi localizada acima do leito principal, como mostrado na Tabela 21.

Tabela 21 - Resultados obtidos para profundidade normal para vazão de 500 m³/s (Solução acima do leito principal).

Q3 = 500												
Q:	3 =	500)									
	Se 4 < yn ≤ 8											
y1 =	5.561	QLe =	12.630									
b12 =	30.000	QLd =	15.941									
Bca =	30.000	Qtotal =	500.000									
BLe =	20.000	vca =	2.826									
BLd =	25.000	vLd =	0.409									
B1 =	75.000	vLe =	0.405									
Aca =	166.815	v_media =	2.109									
ALd =	39.013	Alfa =	1.695									
ALe =	31.210	Eci =	0.384									
A =	237.038	E1 =	5.945									
Pmca =	38.000	yhca =	5.561									
PmLd =	26.561	yhLe =	1.561									
PmLe =	21.561	yhLd =	1.561									
Pm =	86.121	tca =	43.065									
F(y1) =	0.000	tLe =	14.201									
Qca =	471.429	tLd =	14.409									

A partir desta simulação, o parâmetro mais importante a determinar é a profundidade em cada seção. A Tabela 22 a seguir mostra os valores obtidos de profundidade para as duas ferramentas.

Tabela 22 - Profundidade Normal obtida pelo planilha eletrônica e HEC-RAS.

Seção	Yn ão (planilha Yn (HEC-RAS) eletrônica)		Difer	Diferença		
	(m)	(m)	(m)	%		
0	5.5605	5.5595	-0.001	-0.02%		
100	5.5404	5.5395	-0.0009	-0.02%		
200	5.5299	5.5291	-0.0008	-0.01%		
300	5.5301	5.5295	-0.0007	-0.01%		
400	5.5419	5.5414	-0.0005	-0.01%		
500	5.5663	5.5659	-0.0004	-0.01%		
600	5.6364	5.6364	0	0.00%		
700	5.7135	5.7137	0.0001	0.00%		
800	5.7981	5.798	0	0.00%		
900	5.8903	5.8904	0.0001	0.00%		
1000	5.9907	5.9906	0	0.00%		

Para todas demais seções de montante, os parâmetros foram calculados adotando a mesma metodologia mencionada anteriormente, ou seja, a partir desta primeira com o uso do seguinte processo iterativo já mencionado anteriormente. Os valores obtidos para os demais parâmetros de cada seção serão mostrados no Apêndice E.

4.5.2 Solução no HEC-RAS

a) Definição das seções

A expansão das seções no HEC-RAS foi feita na inserção das seções. Até a seção 2, seguiu-se aumentando a largura em 2,4 m, depois 3 m, de montante a jusante. Da mesma forma ocorre a variação da declividade, sendo 0,0008 m/m até a seção 2 (Seções à montante) e 0,001 da seção 2 em diante (Seções à jusante). As figuras a seguir mostram a seção anterior à seção 2, a seção 2 e a seção posterior a ela. Nelas é possível observar esta mudança da largura e declividade do canal.

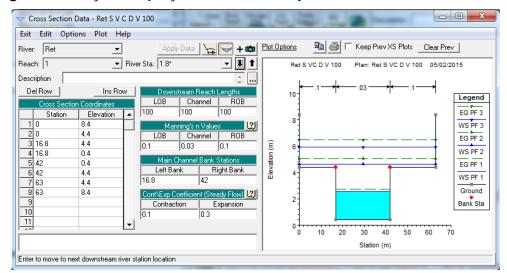


Figura 31 - Seção 1.8 (Seção Variável de Expansão e Declividade Variável)

Figura 32 - Seção 2 (Seção Variável de Expansão e Declividade Variável)

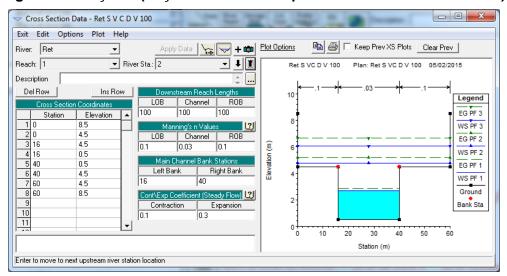
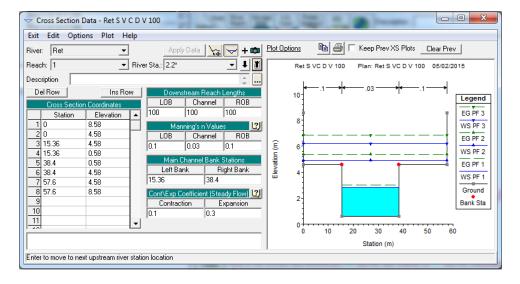



Figura 33 - Seção 2.2 (Seção Variável de Expansão e Declividade Variável)

b) Resultados do HEC-RAS

Também não há diferença entre este exemplo e o primeiro quanto às vazões e condições de contorno. Após rodar o programa o perfil resultado é mostrado na Figura 34.

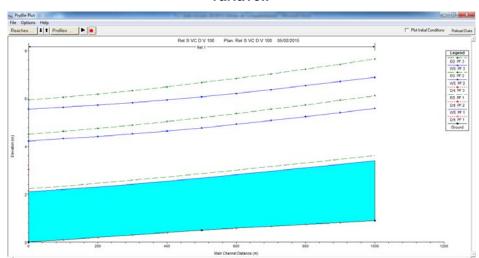
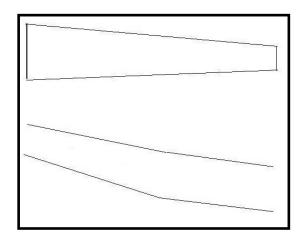


Figura 34 - Perfil longitudinal do canal com seção variável de expansãoe declividade variável.


4.6 CANAL RETANGULAR COM SEÇÃO VARIÁVEL DE CONTRAÇÃO E DECLIVIDADE VARIÁVEL (REDUÇÃO DE DECLIVIDADE)

Neste exemplo a variação será de contração, ou seja, a largura das seções irá diminuindo de montante a jusante. Desta vez a declividade será variável. A Figura 35 ilustra esta situação.

Do ponto mais a montante até o meio do canal, a largurasuperficial diminui em 3,6 m a cada 100 m e a declividade varia de 0,08 m/100m, do meio do canal em diante a largura diminui em 3 m a cada 100 m e a declividade passa a ser de 0,08 m/100m. O leito esquerdo diminui 0,96 m a cada 100 m à montante do meio do canal, e 0,8 m a cada 100 m à jusante do meio do canal. O leito direito diminui em 1,2 m a cada 100 m à montante do meio do canal, e 1 m a cada 100 m à jusante do meio do canal. O leito principal diminui em 1,44 m a cada 100m à montante do meio do canal, e 1,2 m a cada 100 m à jusante do meio do canal.

Como já foi dito anteriormente, a metodologia para todos os exemplos é bastante similar, não sendo necessário repetir toda a explicação. Portanto, apenas serão mostrado nessa seção alguns pontos importantes e diferentes e os resultados obtidos.

Figura 35 - Canal Retangular com Seção variável de contração e declividade variável.

4.6.1 Solução em planilha eletrônica

a) Definição das seções

Os valores das características do canal são encontrados na Tabela 23.

Tabela 23 - Características do canal com seção variável de contração e declividade variável.

	CARACTERÍSTICAS DO CANAL													
Seções	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3			
bca =	30	31.2	32.4	33.6	34.8	36	37.44	38.88	40.32	41.76	43.2			
bLe =	20	20.8	21.6	22.4	23.2	24	24.96	25.92	26.88	27.84	28.8			
bLd =	25	26	27	28	29	30	31.2	32.4	33.6	34.8	36			
L =	0	100	200	300	400	500	600	700	800	900	1000			
nca =	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03			
nLe =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
nLd =	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
Z fundo =	0	0.1	0.2	0.3	0.4	0.5	0.58	0.66	0.74	0.82	0.9			
l1 =	0.001	0.001	0.001	0.001	0.001	0.001	0.0008	0.0008	0.0008	0.0008	8000.0			
ZL1 =	4	4	4	4	4	4	4	4	4	4	4			
ZL2 =	8	8	8	8	8	8	8	8	8	8	8			
ZL3 =														

b) Resultados da planilha eletrônica

A profundidade crítica encontrada foi tomada abaixo da divisa entre o leito principal e os marginais. Os resultados obtidos para os outros parâmetros hidráulicos são encontrados na Tabela 24.

Tabela 24 - Resultados obtidos para profundidade crítica com vazão de 500 m³/s (Solução no leito principal).

Q3 =	500
	Se yc ≤ 4
yc =	3.047961643
Bc =	30
Ac =	91.43884928
F(yc) =	
Pmc =	36.09592329
Ic =	0.007792753
vc =	5.468135305
Ec =	4.571942464

Quanto à profundidade normal, a mesma foi localizada acima do leito principal, como mostrado na

Q	3 =	500	0
		yn ≤ 8	
y1 =	5.561	QLe =	12.630
b12 =	30.000	QLd =	15.941
Bca =	30.000	Qtotal =	500.000
BLe =	20.000	vca =	2.826
BLd =	25.000	vLd =	0.409
B1 =	75.000	vLe =	0.405
Aca =	166.815	v_media =	2.109
ALd =	39.013	Alfa =	1.695
ALe =	31.210	Eci =	0.384
A =	237.038	E1 =	5.945
Pmca =	38.000	yhca =	5.561
PmLd =	26.561	yhLe =	1.561
PmLe =	21.561	yhLd =	1.561
Pm =	86.121	tca =	43.065
F(y1) =	0.000	tLe =	14.201
Qca =	471.429	tLd =	14.409

.

Tabela 25 - Resultados obtidos para profundidade normal para vazão de 500 m³/s (Solução acima do leito principal).

Q	3 =	500)
	Se 4 <	yn ≤ 8	
y1 =	5.561	QLe =	12.630
b12 =	30.000	QLd =	15.941
Bca =	30.000	Qtotal =	500.000
BLe =	20.000	vca =	2.826
BLd =	25.000	vLd =	0.409
B1 =	75.000	vLe =	0.405
Aca =	166.815	v_media =	2.109
ALd =	39.013	Alfa =	1.695
ALe =	31.210	Eci =	0.384
A =	237.038	E1 =	5.945
Pmca =	38.000	yhca =	5.561
PmLd =	26.561	yhLe =	1.561
PmLe =	21.561	yhLd =	1.561
Pm =	86.121	tca =	43.065
F(y1) =	0.000	tLe =	14.201
Qca =	471.429	tLd =	14.409

A partir desta simulação, o parâmetro mais importante a determinar é a profundidade em cada seção. A Tabela 26 a seguir mostra os valores obtidos de profundidade para as duas ferramentas.

Tabela 26 - Profundidade Normal obtida pela planilha eletrônica e HEC-RAS.

Seção	Yn (planilha eletrônica)	Yn (HEC-RAS)	Difer	ença
	(m)	(m)	(m)	%
0	5.5605	5.5595	-0.001	-0.02%
100	5.5927	5.5919	-0.0009	-0.02%
200	5.6085	5.6077	-0.0008	-0.01%
300	5.6116	5.6105	-0.0012	-0.02%
400	5.6048	5.6041	-0.0007	-0.01%
500	5.59	5.5893	-0.0007	-0.01%
600	5.5944	5.5934	-0.001	-0.02%
700	5.5903	5.5896	-0.0007	-0.01%
800	5.5792	5.5784	-0.0008	-0.01%
900	5.5624	5.5617	-0.0006	-0.01%
1000	5.5407	5.54	-0.0008	-0.01%

Para todas demais seções de montante, os parâmetros foram calculados adotando a mesma metodologia mencionada anteriormente, ou seja, a partir desta primeira com o uso do seguinte processo iterativo já mencionado anteriormente. Os valores obtidos para os demais parâmetros de cada seção serão mostrados no Apêndice F.

4.6.2 Solução no HEC-RAS

a) Definição das seções

A contração das seções no HEC-RAS foi feita na inserção das seções. Até a seção 2, seguiu-sediminuindo a largura em 3,6 m, depois 3 m, de montante a jusante. Da mesma forma ocorre a variação da declividade, sendo 0,001 m/m até a seção 2 e 0,0008 da seção 2 em diante. As figuras a seguir mostram a seção anterior à seção 2, a seção 2 e a seção posterior a ela. Nelas é possível observar esta mudança da largura e declividade do canal.

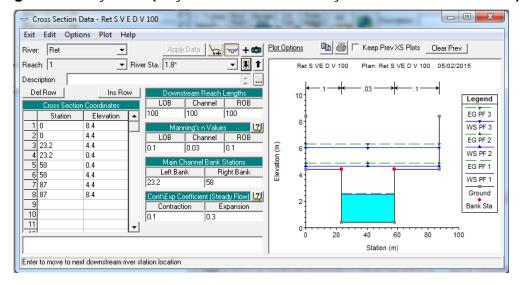


Figura 36 - Seção 1.8 (Seção Variável de Contração e Declividade Variável)

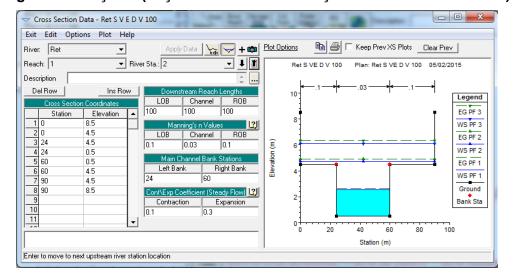
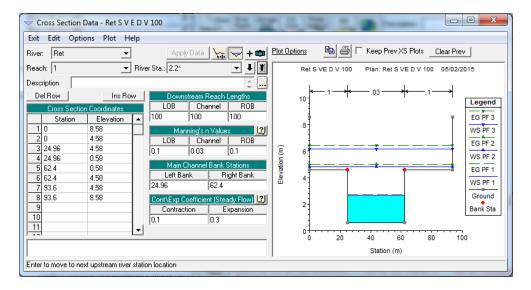



Figura 37 - Seção 2 (Seção Variável de Contração e Declividade Variável)

Figura 38 - Seção 2.2 (Seção Variável de Contração e Declividade Variável)

b) Resultados do HEC-RAS

Também não há diferença entre este exemplo e o outro quanto às vazões e condições de contorno. Após rodar o programa o perfil resultado é mostrado na Figura 39.

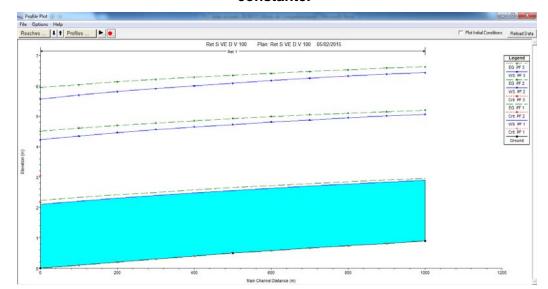


Figura 39 - Perfil longitudinal do canal com seção variável de contração e declividade constante.

5 RESULTADOS DA COMPARAÇÃO ENTRE AS SIMULAÇÕES

Depois de feitos todos os cálculos pode-se fazer a comparação entre os resultados obtidos através do HEC-RAS e de planilha eletrônica. Para efeitos de comparação não há necessidade de avaliar todos os parâmetros hidráulicos calculados para o canal nos dois métodos, apenas a profundidade normal, velocidade total, perda de carga, fator de condução e tensão de cisalhamento, visto que todos os outros dependem destes.

As tabelas a seguir mostram a comparação numérica entre as duas ferramentas utilizadas para os seis exemplos. Pode-se observar que a diferença é mínima, variando apenas na ordem das terceiras e quartas casas decimais, que normalmente é a precisão adotada pelo HEC-RAS.

O coeficiente de condução apresenta uma variação maior, porém mínima quando comparada à ordem de grandeza do valor.

Tabela 27 - COMPARAÇÃO ENTRE RESULTADOS (Canal com seção constante e declividade constante)

COMPARAÇÃO ENTRE RESULTADOS (RESULTADOS DA PLANILHA ELETRÔNICA							Declividade		•
Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento
	(m)		(m/s)	(N/m²)		(m)		(m/s)	(N/m²)
0	5.5605	15811.39	2.1094		0	5.5595	15806.10	2.1100	
100	5.5605	15811.39	2.1094	26.9734	100	5.5596	15806.64	2.1099	27.0008
200	5.5605	15811.39	2.1094	26.9734	200	5.5597	15806.65	2.1100	26.9999
300	5.5605	15811.39	2.1094	26.9734	300	5.5598	15807.18	2.1099	26.9989
400	5.5605	15811.39	2.1094	26.9734	400	5.5599	15807.69	2.1099	26.9979
500	5.5605	15811.39	2.1094	26.9734	500	5.5600	15808.15	2.1098	26.9970
600	5.5605	15811.39	2.1094	26.9734	600	5.5598	15807.41	2.1098	26.9993
700	5.5605	15811.39	2.1094	26.9734	700	5.5598	15807.88	2.1098	26.9984
800	5.5605	15811.39	2.1094	26.9734	800	5.5599	15808.33	2.1097	26.9975
900	5.5605	15811.39	2.1094	26.9734	900	5.5600	15808.74	2.1097	26.9967
1000	5.5605	15811.39	2.1094	26.9734	1000	5.5601	15809.11	2.1096	26.9960
		DIFEREN	IÇAS				DIFEREN	IÇAS	
Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento
	(m)		(m/s)	(N/m²)		%	%	%	%
0	0.0010	5.29	-0.0006		0	0.02%	0.03%	-0.03%	
100	0.0009	4.74	-0.0006	-0.0274	100	0.02%	0.03%	-0.03%	-0.10%
200	8000.0	4.74	-0.0006	-0.0265	200	0.01%	0.03%	-0.03%	-0.10%
300	0.0007	4.21	-0.0006	-0.0255	300	0.01%	0.03%	-0.03%	-0.09%
400	0.0006	3.70	-0.0005	-0.0245	400	0.01%	0.02%	-0.02%	-0.09%
500	0.0005	3.24	-0.0004	-0.0236	500	0.01%	0.02%	-0.02%	-0.09%
600	0.0008	3.98	-0.0005	-0.0259	600	0.01%	0.03%	-0.02%	-0.10%
700	0.0007	3.51	-0.0004	-0.0250	700	0.01%	0.02%	-0.02%	-0.09%
800	0.0006	3.06	-0.0004	-0.0241	800	0.01%	0.02%	-0.02%	-0.09%
900	0.0005	2.65	-0.0003	-0.0233	900	0.01%	0.02%	-0.01%	-0.09%
1000	0.0004	2.27	-0.0003	-0.0226	1000	0.01%	0.01%	-0.01%	-0.08%

Tabela 28 - COMPARAÇÃO ENTRE RESULTADOS (Canal com seção constante e declividade variável)

RE		MPARAÇÃO OS DA PLAN		RESULTADOS ETRÔNICA	(Seção (e Declividad		•
Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento
-	(m)		(m/s)	(N/m²)		(m)		(m/s)	(N/m²)
0	5.5605	15811.39	2.1094		0	5.5595	15806.10	2.1100	27.0019
100	5.5605	15811.39	2.1094	26.9734	100	5.5596	15806.60	2.1099	27.0009
200	5.5605	15811.39	2.1094	26.9734	200	5.5597	15806.61	2.1100	27.0000
300	5.5605	15811.39	2.1094	26.9734	300	5.5598	15807.15	2.1099	26.9989
400	5.5605	15811.39	2.1094	26.9734	400	5.5599	15807.66	2.1099	26.9979
500	5.5605	15811.39	2.1094	26.9734	500	5.5600	15808.12	2.1098	26.9970
600	5.5846	15941.87	2.0934	26.9576	600	5.5836	15936.80	2.0940	26.7486
700	5.6066	16061.82	2.0790	26.8166	700	5.6054	16054.89	2.0799	26.5221
800	5.6269	16172.31	2.0660	26.5782	800	5.6252	16163.08	2.0670	26.3188
900	5.6455	16274.26	2.0541	26.3618	900	5.6437	16263.92	2.0554	26.1299
1000	5.6627	16368.48	2.0433	26.1647	1000	5.6605	16356.50	2.0447	25.9600
		DIFEREN	IÇAS		DIFERENÇAS				
Seção	Prof.	Fator de	Vel.	Tensão de	Seção	Prof.	Fator de	Vel.	Tensão de
Jeçao	Normal	Condução	Total	Cisalhamento	Jeçao	Normal	Condução	Total	Cisalhamento
	(m)		(m/s)	(N/m²)		%	%	%	%
0	0.0010	5.29	-0.0006		0	0.02%	0.03%	-0.03%	
100	0.0009	4.79	-0.0006	-0.0275	100	0.02%	0.03%	-0.03%	-0.10%
200	0.0008	4.78	-0.0006	-0.0266	200	0.01%	0.03%	-0.03%	-0.10%
300	0.0007	4.24	-0.0006	-0.0255	300	0.01%	0.03%	-0.03%	-0.09%
400	0.0006	3.73	-0.0005	-0.0245	400	0.01%	0.02%	-0.02%	-0.09%
500	0.0005	3.27	-0.0004	-0.0236	500	0.01%	0.02%	-0.02%	-0.09%
600	0.0010	5.06	-0.0006	0.2090	600	0.02%	0.03%	-0.03%	0.78%
700	0.0012	6.93	-0.0009	0.2945	700	0.02%	0.04%	-0.04%	1.10%
					1		0.000/	0.0=0/	0.000/
800	0.0017	9.23	-0.0011	0.2594	800	0.03%	0.06%	-0.05%	0.98%
800 900	0.0017 0.0018	9.23 10.34	-0.0011 -0.0012	0.2594 0.2319	800 900	0.03% 0.03%	0.06% 0.06%	-0.05% -0.06%	0.98% 0.88%

Tabela 29 - COMPARAÇÃO ENTRE RESULTADOS (Canal com seção variável de expansão e declividade constante)

	COMPARAÇÃO ENTRE RESULTADOS (Seçã RESULTADOS DA PLANILHA ELETRÔNICA				io Variável Expansão Declividade Constante) RESULTADOS DO HEC-RAS				
Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	
(m)		(m/s)	(N/m²)		(m)		(m/s)	(N/m²)	
5.5605	15811.39	2.1094		0	5.5595	15806.10	2.1100		
5.5404	14990.36	2.2114	27.5494	100	5.5395	14986.02	2.2119	27.0019	
5.5299	14228.30	2.3152	29.5477	200	5.5291	14224.40	2.3158	29.7023	
5.5301	13522.36	2.4203	32.5475	300	5.5295	13519.00	2.4209	32.6768	
5.5419	12869.18	2.5260	35.8588	400	5.5414	12866.51	2.5265	35.9533	
5.5663	12264.80	2.6319	39.5134	500	5.5659	12262.93	2.6323	39.5605	
5.6127	11882.92	2.7019	43.3018	600	5.6120	11880.25	2.7025	43.5346	
5.6692	11524.93	2.7707	46.8381	700	5.6687	11523.02	2.7711	46.6952	
5.7360	11186.60	2.8386	50.2756	800	5.7356	11185.34	2.8389	50.0699	
5.8133	10863.65	2.9065	53.9696	900	5.8130	10862.72	2.9067	53.6979	
5.9013	10551.82	2.9751	57.9585	1000	5.9011	10551.16	2.9752	57.6203	
DIFERENÇAS				DIFERENÇAS					
Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	
	,					,	0/	%	
	5 20		(14/111-)	0				/0	
			0.5475					1.99%	
								-0.52%	
								-0.40%	
								-0.26%	
								-0.12%	
								-0.54%	
								0.30%	
								0.41%	
								0.50%	
0.0002								0.58%	
	5.5605 5.5404 5.5299 5.5301 5.5419 5.5663 5.6127 5.6692 5.7360 5.8133 5.9013 Prof. Normal (m) 0.0010 0.0009 0.0008 0.0007 0.0005 0.0004 0.0007 0.0005 0.0004 0.0003	5.5605 15811.39 5.5404 14990.36 5.5299 14228.30 5.5301 13522.36 5.5419 12869.18 5.5663 12264.80 5.6127 11882.92 5.6692 11524.93 5.7360 11186.60 5.8133 10863.65 5.9013 10551.82 DIFEREN Prof. Fator de Condução (m) 0.0010 5.29 0.0009 4.35 0.0008 3.90 0.0007 3.36 0.0005 2.67 0.0004 1.87 0.0007 2.67 0.0005 1.92 0.0004 1.26 0.0003 0.93	5.5605 15811.39 2.1094 5.5404 14990.36 2.2114 5.5299 14228.30 2.3152 5.5301 13522.36 2.4203 5.5419 12869.18 2.5260 5.5663 12264.80 2.6319 5.6127 11882.92 2.7019 5.6692 11524.93 2.7707 5.7360 11186.60 2.8386 5.8133 10863.65 2.9065 5.9013 10551.82 2.9751 DIFERENÇAS Prof. Fator de Condução Vel. Total (m) (m/s) 0.0010 5.29 -0.0006 0.0009 4.35 -0.0006 0.0009 4.35 -0.0006 0.0007 3.36 -0.0006 0.0007 3.36 -0.0006 0.0007 2.67 -0.0005 0.0004 1.87 -0.0004 0.0007 2.67 -0.0005 0.0004 1.92 -0.0004 0.0004 1.26 -0.0003 0.0003 0.93 -0.0002	5.5605 15811.39 2.1094 5.5404 14990.36 2.2114 27.5494 5.5299 14228.30 2.3152 29.5477 5.5301 13522.36 2.4203 32.5475 5.5419 12869.18 2.5260 35.8588 5.5663 12264.80 2.6319 39.5134 5.6127 11882.92 2.7019 43.3018 5.6692 11524.93 2.7707 46.8381 5.7360 11186.60 2.8386 50.2756 5.8133 10863.65 2.9065 53.9696 5.9013 10551.82 2.9751 57.9585 DIFERENÇAS Prof. Fator de Normal Condução Vel. Total Cisalhamento (m) (m/s) (N/m²) 0.00010 5.29 -0.0006 0.0009 4.35 -0.0006 0.5475 0.0008 3.90 -0.0006 -0.1546 0.0007 3.36 -0.0006 -0.1292 0.0005 2.67 -0.0005 -0.0945 0.0004 1.87 -0.0004 -0.0470 0.0007 2.67 -0.0005 -0.2328 0.0005 1.92 -0.0004 0.1428 0.0004 1.26 -0.0003 0.2057 0.0003 0.93 -0.0002 0.2717	5.5605 15811.39 2.1094 0 5.5404 14990.36 2.2114 27.5494 100 5.5299 14228.30 2.3152 29.5477 200 5.5301 13522.36 2.4203 32.5475 300 5.5419 12869.18 2.5260 35.8588 400 5.5663 12264.80 2.6319 39.5134 500 5.6127 11882.92 2.7019 43.3018 600 5.6692 11524.93 2.7707 46.8381 700 5.7360 11186.60 2.8386 50.2756 800 5.8133 10863.65 2.9065 53.9696 900 5.9013 10551.82 2.9751 57.9585 1000 DIFERENÇAS Tensão de Cisalhamento No.0001 5.29 -0.0006 0.5475 100 0.0003 3.90 -0.0006 -0.1546 200 0.0004 1.87 -0.0006 -0.1292 300	5.5605 15811.39 2.1094 0 5.5595 5.5404 14990.36 2.2114 27.5494 100 5.5395 5.5299 14228.30 2.3152 29.5477 200 5.5291 5.5301 13522.36 2.4203 32.5475 300 5.5295 5.5419 12869.18 2.5260 35.8588 400 5.5414 5.5663 12264.80 2.6319 39.5134 500 5.5659 5.6127 11882.92 2.7019 43.3018 600 5.6120 5.6692 11524.93 2.7707 46.8381 700 5.6687 5.7360 11186.60 2.8386 50.2756 800 5.7356 5.8133 10863.65 2.9065 53.9696 900 5.8130 5.9013 10551.82 2.9751 Tensão de Cisalhamento Prof. Normal 0.0004 4.35 -0.0006 0.5475 100 0.02% 0.0009 4.35 -0.0006 -0.1546 200	15.5605 15811.39 2.1094 0 5.5595 15806.10	Display	

Tabela 30 - COMPARAÇÃO ENTRE RESULTADOS (Canal com seção variável de contração e declividade constante)

	СОМРА	RAÇÃO ENT	RE RESU	JLTADOS (Seçã	o Variáv	el Contra	ação Declivi	dade Coı	nstante)
RE	SULTAD	OS DA PLAN	NILHA EL	ETRÔNICA		RES	SULTADOS D	O HEC-F	RAS
Seção	Prof. Normal	Fator de Condução	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	
	(m)		(m/s)	(N/m²)		(m)		(m/s)	(N/m²)
0	5.5605	15811.39	2.1094		0	5.5595	15806.10	2.1100	
100	5.5927	16712.32	2.0078	26.4302	100	5.5919	16707.60	2.0083	27.0019
200	5.6085	17533.04	1.9239	24.7178	200	5.6077	17527.80	1.9245	24.5181
300	5.6116	18284.57	1.8534	22.5997	300	5.6105	18277.01	1.8541	22.4829
400	5.6048	18974.53	1.7933	20.8428	400	5.6041	18969.56	1.7938	20.7845
500	5.5900	19608.58	1.7416	19.3603	500	5.5893	19603.69	1.7420	19.3374
600	5.5720	20359.69	1.6841	18.0338	600	5.5710	20353.22	1.6845	18.0972
700	5.5468	21049.54	1.6347	16.7641	700	5.5459	21043.45	1.6351	16.7707
800	5.5157	21682.13	1.5920	15.6051	800	5.5149	21676.21	1.5924	15.6331
900	5.4797	22260.76	1.5551	14.6062	900	5.4789	22255.02	1.5555	14.6500
1000	5.4396	22788.24	1.5231	13.7374	1000	5.4389	22782.89	1.5234	13.7930
		DIFEREN	IÇAS				DIFEREN	IÇAS	
	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento
	(m)		(m/s)	(N/m²)		%	%	%	%
0	0.0010	5.29	-0.0006		0	0.02%	0.03%	-0.03%	
100	0.0009	4.72	-0.0005	-0.5717	100	0.02%	0.03%	-0.03%	-2.16%
200	0.0008	5.24	-0.0006	0.1996	200	0.01%	0.03%	-0.03%	0.81%
300	0.0012	7.56	-0.0007	0.1168	300	0.02%	0.04%	-0.04%	0.52%
400	0.0007	4.97	-0.0005	0.0583	400	0.01%	0.03%	-0.03%	0.28%
500	0.0007	4.89	-0.0004	0.0229	500	0.01%	0.02%	-0.02%	0.12%
600	0.0009	6.47	-0.0005	-0.0634	600	0.02%	0.03%	-0.03%	-0.35%
700	0.0009	6.10	-0.0004	-0.0067	700	0.02%	0.03%	-0.03%	-0.04%
800	0.0008	5.93	-0.0004	-0.0280	800	0.01%	0.03%	-0.02%	-0.18%
900	0.0008	5.74	-0.0004	-0.0438	900	0.01%	0.03%	-0.02%	-0.30%
1000	0.0007	5.35	-0.0003	-0.0556	1000	0.01%	0.02%	-0.02%	-0.40%

Tabela 31 - COMPARAÇÃO ENTRE RESULTADOS (Canal com seção variável de expansão e declividade variável)

COMPARAÇÃO ENTRE RESULTADOS (Seção Variável Expansão Declividade Variável)

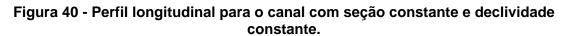

	COMP	ARAÇAO EN	ITRE RES	SULTADOS (Seç	ão Variá	ivel Expa	nsão Decliv	idade Va	riável)
RE	SULTAD	OS DA PLAN	NILHA EL	ETRÔNICA		RES	ULTADOS D	O HEC-F	RAS
Seção	Normai	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento
	(m)	1501100	(m/s)	(N/m²)		(m)	45000 40	(m/s)	(N/m²)
0	5.5605	15811.39	2.1094		0	5.5595	15806.10	2.1100	
100	5.5404	14990.36	2.2114	27.5494	100	5.5395	14985.99	2.2119	27.0019
200	5.5299	14228.30	2.3152	29.5477	200	5.5291	14224.38	2.3158	29.7023
300	5.5301	13522.36	2.4203	32.5475	300	5.5295	13518.97	2.4209	32.6768
400	5.5419	12869.18	2.5260	35.8588	400	5.5414	12866.49	2.5265	35.9534
500	5.5663	12264.80	2.6319	39.5134	500	5.5659	12262.92	2.6323	39.5606
600	5.6364	11978.58	2.6822	43.2665	600	5.6364	11978.52	2.6822	43.5346
700	5.7135	11697.30	2.7336	46.5496	700	5.7137	11697.63	2.7336	46.2472
800	5.7981	11418.47	2.7868	49.5320	800	5.7980	11418.63	2.7867	49.1857
900	5.8903	11139.60	2.8424	52.7742	900	5.8904	11139.89	2.8423	52.3888
1000	5.9907	10858.25	2.9010	56.3186	1000	5.9906	10858.20	2.9010	55.8894
		DIFEREN	IÇAS				DIFEREN	IÇAS	
Seção	Prof.	Fator de	Vel.	Tensão de	Seção	Prof.	Fator de	Vel.	Tensão de
ocçao	Normal	Condução	Total	Cisalhamento	Ocçao	Normal	Condução	Total	Cisalhamento
-	(m)		(m/s)	(N/m²)		%	%	%	%
0	0.0010	5.29	-0.0006	0.0000	0	0.02%	0.03%	-0.03%	
100	0.0009	4.37	-0.0006	0.5475	100	0.02%	0.03%	-0.03%	1.99%
200	0.0008	3.91	-0.0006	-0.1546	200	0.01%	0.03%	-0.03%	-0.52%
300	0.0007	3.39	-0.0006	-0.1293	300	0.01%	0.03%	-0.03%	-0.40%
400	0.0005	2.70	0.000E	0.0040	400	0.040/	0.020/	0.000/	-0.26%
500		2.70	-0.0005	-0.0946	400	0.01%	0.02%	-0.02%	-0.20 /0
	0.0004	1.88	-0.0005	-0.0946 -0.0471	500	0.01%	0.02%	-0.02%	-0.12%
600	0.0004 0.0000								
600 700		1.88	-0.0004	-0.0471	500	0.01%	0.02%	-0.02%	-0.12%
	0.0000	1.88 0.06	-0.0004 0.0000	-0.0471 -0.2681	500 600	0.01% 0.00%	0.02% 0.00%	-0.02% 0.00%	-0.12% -0.62%
700	0.0000 -0.0001	1.88 0.06 -0.33	-0.0004 0.0000 0.0000	-0.0471 -0.2681 0.3024	500 600 700	0.01% 0.00% 0.00%	0.02% 0.00% 0.00%	-0.02% 0.00% 0.00%	-0.12% -0.62% 0.65%

Tabela 32 - COMPARAÇÃO ENTRE RESULTADOS (Canal com seção variável de contração e declividade variável)

	COMPA	ARAÇÃO EN	TRE RES	ULTADOS (Seç	ão Variá	vel Cont	ração Decliv	ridade Va	riável)
RE	SULTAD	OS DA PLAN	NILHA EL	ETRÔNICA		RES	SULTADOS D	O HEC-F	RAS
Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento
	(m)		(m/s)	(N/m²)		(m)		(m/s)	(N/m²)
0	5.5605	15811.39	2.1094		0	5.5595	15806.10	2.1100	
100	5.5927	16712.32	2.0078	26.4302	100	5.5919	16707.60	2.0083	27.0019
200	5.6085	17533.04	1.9239	24.7178	200	5.6077	17527.80	1.9245	24.5181
300	5.6116	18284.57	1.8534	22.5997	300	5.6105	18277.01	1.8541	22.4829
400	5.6048	18974.53	1.7933	20.8428	400	5.6041	18969.56	1.7938	20.7845
500	5.5900	19608.58	1.7416	19.3603	500	5.5893	19603.69	1.7420	19.3374
600	5.5944	20515.60	1.6723	18.0270	600	5.5934	20508.81	1.6727	18.0972
700	5.5903	21364.08	1.6124	16.6791	700	5.5896	21358.99	1.6128	16.6267
800	5.5792	22158.53	1.5602	15.3980	800	5.5784	22152.66	1.5606	15.3722
900	5.5624	22902.47	1.5145	14.3004	900	5.5617	22897.07	1.5148	14.2965
1000	5.5407	23598.73	1.4741	13.3503	1000	5.5400	23592.69	1.4744	13.3608
		DIFEREN	IÇAS				DIFEREN	IÇAS	
Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento	Seção	Prof. Normal	Fator de Condução	Vel. Total	Tensão de Cisalhamento
	(m)		(m/s)	(N/m²)		%	%	%	%
0	0.0010	5.29	-0.0006		0	0.02%	0.03%	-0.03%	
100	0.0009	4.72	-0.0005	-0.5717	100	0.02%	0.03%	-0.03%	-2.16%
200	0.0008	5.24	-0.0006	0.1996	200	0.01%	0.03%	-0.03%	0.81%
300	0.0012	7.56	-0.0007	0.1168	300	0.02%	0.04%	-0.04%	0.52%
400	0.0007	4.97	-0.0005	0.0583	400	0.01%	0.03%	-0.03%	0.28%
500	0.0007	4.89	-0.0004	0.0229	500	0.01%	0.02%	-0.02%	0.12%
600	0.0010	6.79	-0.0005	-0.0702	600	0.02%	0.03%	-0.03%	-0.39%
700	0.0007	5.09	-0.0004	0.0524	700	0.01%	0.02%	-0.02%	0.31%
800	0.0008	5.87	-0.0004	0.0258	800	0.01%	0.03%	-0.02%	0.17%
900	0.0006	5.40	-0.0004	0.0039	900	0.01%	0.02%	-0.02%	0.03%
1000	0.0008	6.04	-0.0003	-0.0105	1000	0.01%	0.03%	-0.02%	-0.08%

A seguir têm-se as figuras 40 a 45 representando o perfil longitudinal dos seis exemplos para as duas ferramentas. Pode-se observar que as curvas da planilha eletrônica e HEC-RAS praticamente se sobrepõem.

Em nível de informação, é mostrado nas Figuras 46 e 47 o perfil longitudinal com a variação da velocidade e tensão de cisalhamento ao longo do canal. Comprovando a equivalência entre as duas ferramentas.

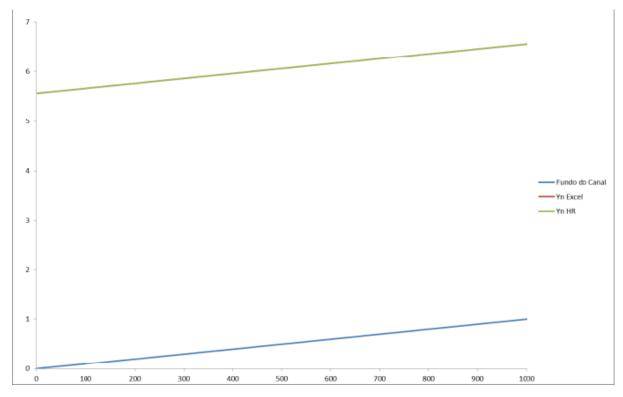
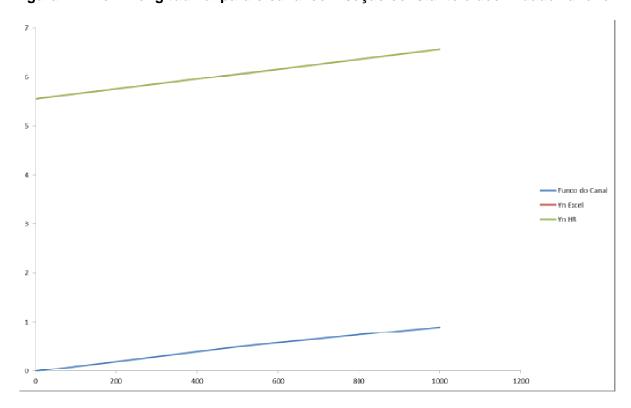
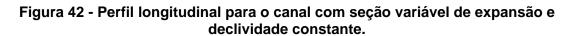




Figura 41 - Perfil longitudinal para o canal com seção constante e declividade variável.

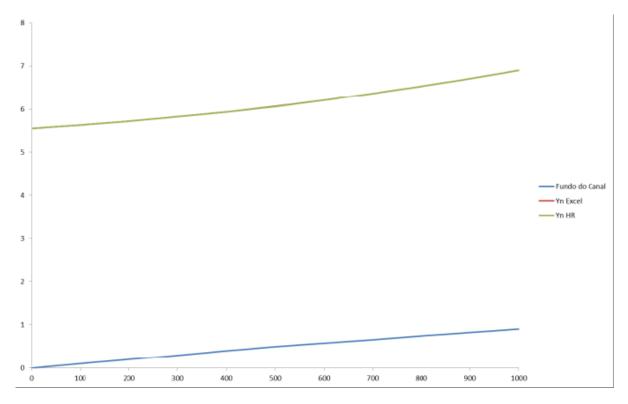
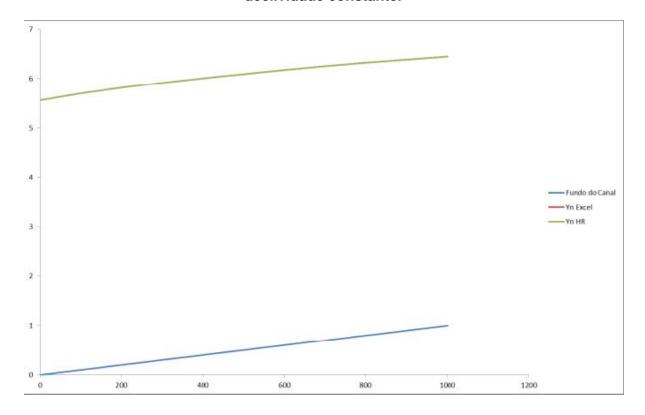
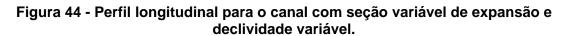




Figura 43 - Perfil longitudinal para o canal com seção variável de contração e declividade constante.

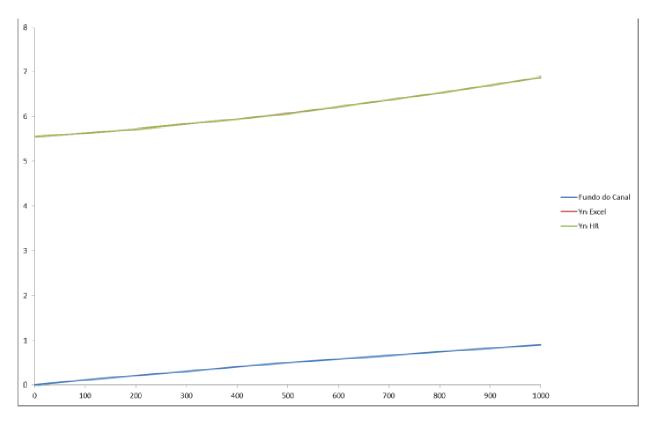


Figura 45 - Perfil longitudinal para o canal com seção variável de contração e declividade variável.

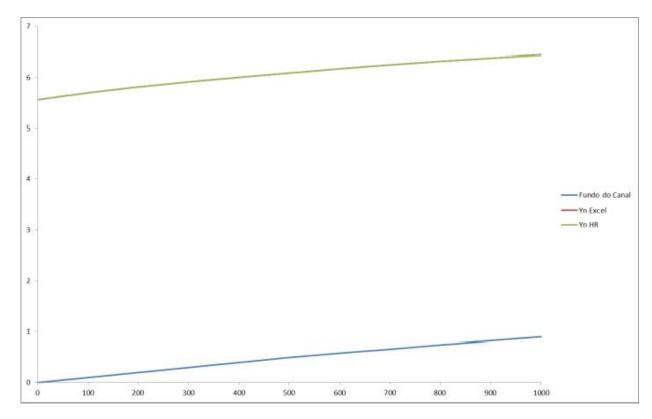


Figura 46 - Velocidade ao longo do canal (Seção Váriavel de Expansão com Declividade Váriavel)

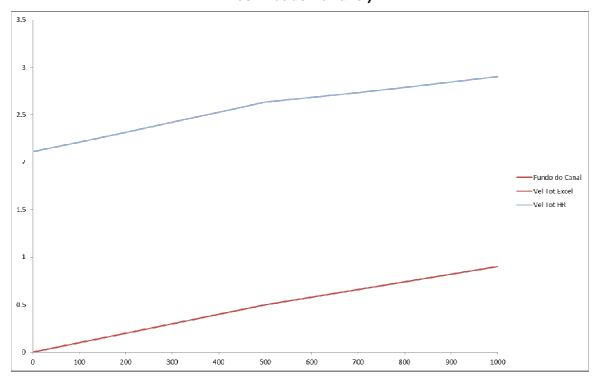
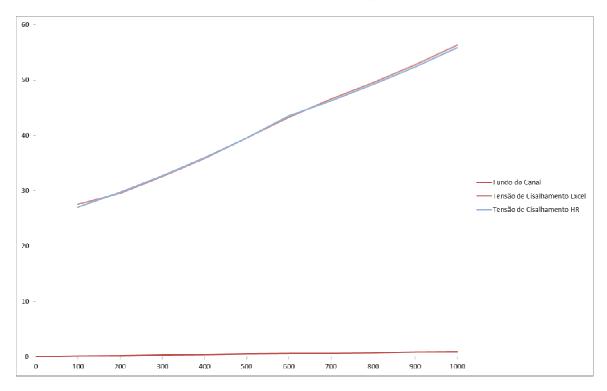



Figura 47 - Velocidade ao longo do canal (Seção Variável de Contração com Declividade Variável)

6 CONCLUSÕES

O HEC-RAS permite ao usuário desenvolver cálculos hidráulicos para escoamentos unidimensionais em regime permanente e não permanente (transitório). Os mesmos cálculos podem ser executados também em planilhas eletrônicas.

Através da comparação entre os resultados das seis simulações propostas ao longo desta pesquisa, foi verificado que não houve diferenças significativas entre as duas ferramentas, ambas se posicionaram adequadas quanto aos resultados esperados.

Sendo assim, torna-se recomendável para o usuário escolher o HEC-RAS para simulação real de canais, visto que o trabalho manual seria reduzido e o dispositivo ainda apresenta como dados de saídas diversos gráficos e planilhas que podem ser de interesse prático.

O uso conjunto das duas ferramentas no ensino da graduação na disciplina de Hidráulica é de fundamental importância, pois o aluno teria a oportunidade de tanto conhecer a metodologia e de utilizar todas as fórmulas necessárias quando do desenvolvimento da planilha eletrônica, como também toda a praticidade de uso do HEC-RAS e validação das duas ferramentas.

REFERÊNCIAS

AZEVEDO NETTO, J.M., ALVAREZ, G.A. **Manual de Hidráulica**. 8a .ed. São Paulo: Edgard Blücher Ltda, 2005.

BAPTISTA, M.B., COELHO, M.M.L.P., CIRILO, J.A., MASCARENHAS, F.C.B.. **Hidráulica Aplicada**. 2 ed. Porto Alegre. ABRH, 2011.

CHOW, V.T. **Open-Channel Hydraulics**, Nova Iorque, 1959. Editora McGraw-Hill.

Informativo do Ministério do Planejamento, 2014. Disponível em: http://www.pac.gov.br/noticia/66d2522f>. Acessado em: 19/07/2015.

PORTO, R.M. Hidráulica Básica. São Carlos: EESC/USP, 1998.

SILTESTRE, P. **Hidráulica Geral**. Rio de Janeiro: Livros Técnicos e Científicos Ltda, 1979.

U.S. ARMY CORPS OF ENGINEERS. HEC-RAS, River Analysis System: Hydraulic Reference Manual. Califórnia, 2010.

U.S. ARMY CORPS OF ENGINEERS. HEC-RAS, **River Analysis System: Applications Guide**. Califórnia, 2010.

U.S. ARMY CORPS OF ENGINEERS. HEC-RAS, River Analysis System: User's Manual. Califórnia, 2010.

USBR. Bureau of Reclamation. U.S. Geological Survey. USA.

APÊNDICES

APÊNDICE A

		DI	IMENSIONAMI	ENTO DE CAN	IAL COM SEC	ÃO CONSTAN	TE E DECLIVI	DADE CONST	ANTE		
	500	500	500	500	500	500	500	500	500	500	500
x	0	100	200	300	400	500	600	700	800	900	1000
yi	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513
Bica	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000	30.0000
BiLe1	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000
BiLe2											
BiLd1	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000	25.0000
BiLd2											
Bi	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000	75.0000
Aica	166.8153763								166.8153763		
AiLe1	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086
AiLe2											
AiLd1	39.0128	39.0128	39.0128	39.0128	39.0128	39.0128	39.0128	39.0128	39.0128	39.0128	39.0128
AiLd2	00= 0004	00=0004	007 0004	00= 0004	00= 0004	00= 0004	00= 0004	00= 0004	00= 0004	00= 0004	00= 000 /
Ai	237.0384	237.0384	237.0384	237.0384	237.0384	237.0384	237.0384	237.0384	237.0384	237.0384	237.0384
Pmica	38	38	38	38	38	38	38	38	38	38	38
PmAiLe1 PmAiLe2	21.56051254	21.56051254	21.56051254	21.56051254	21.56051254	21.56051254	21.30031234	21.56051254	21.56051254	21.50051254	21.50051254
PmiLd1	26 56051254	26 56051254	26 56051254	26.56051254	26 56051254	26 56051254	26 56051254	26 56051254	26 56051254	26 56051254	26 56051254
PmiLd1	20.50051254	20.50051254	20.50051254	20.50051254	20.50051254	20.50051254	20.50051254	20.50051254	20.50051254	20.30031234	20.50051254
Pmi	86.1210	86.1210	86.1210	86.1210	86.1210	86.1210	86.1210	86.1210	86.1210	86.1210	86.1210
Kica	14907.9003	14907.9003	14907.9003	14907.9003	14907.9003	14907.9003	14907.9003	14907.9003	14907.9003	14907.9003	14907.9003
KiLe1	399.3828	399.3828	399.3828	399.3828	399.3828	399.3828	399.3828	399.3828	399.3828	399.3828	399.3828
KiLe2	333.3323	333.332	333.332	000.00_0	000.00_0	333.3323	000.00=0	333.332	333.3323	000.00=0	000.0020
KiLd1	504.1052	504.1052	504.1052	504.1052	504.1052	504.1052	504.1052	504.1052	504.1052	504.1052	504.1052
KiLd2											
Ki	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883
а	1.6945331	1.6945331	1.6945331	1.6945331	1.6945331	1.6945331	1.6945331	1.6945331	1.6945331	1.6945331	1.6945331
Qi	500	500	500	500	500	500	500	500	500	500	500
vi	2.1093625	2.1093625	2.1093625	2.1093625	2.1093625	2.1093625	2.1093625	2.1093625	2.1093625	2.1093625	2.1093625
a.vi^2/2.g	0.384285	0.384285	0.384285	0.384285	0.384285	0.384285	0.384285	0.384285	0.384285	0.384285	0.384285
Sfmean	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Qica	471.4292	471.4292	471.4292	471.4292	471.4292	471.4292	471.4292	471.4292	471.4292	471.4292	471.4292
QiLe1	12.6296	12.6296	12.6296	12.6296	12.6296	12.6296	12.6296	12.6296	12.6296	12.6296	12.6296

		DI	IMENSIONAMI	ENTO DE CAN	AL COM SEÇ	ÃO CONSTAN	TE E DECLIVI	DADE CONST	ANTE		
QiLe2											
QiLd1	15.9412	15.9412	15.9412	15.9412	15.9412	15.9412	15.9412	15.9412	15.9412	15.9412	15.9412
QiLd2											
Qi	500.0000	500.0000	500.0000	500.0000	500.0000	500.0000	500.0000	500.0000	500.0000	500.0000	500.0000
vica	2.8261	2.8261	2.8261	2.8261	2.8261	2.8261	2.8261	2.8261	2.8261	2.8261	2.8261
viLe1	0.4047	0.4047	0.4047	0.4047	0.4047	0.4047	0.4047	0.4047	0.4047	0.4047	0.4047
viLe2											
viLd1	0.4086	0.4086	0.4086	0.4086	0.4086	0.4086	0.4086	0.4086	0.4086	0.4086	0.4086
viLd2											
hf		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
hce		0	0	0	0	0	0	0	0	0	0
he		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
Zi	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
yi	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513	5.560513
Dif		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
WSE	5.5605	5.6605	5.7605	5.8605	5.9605	6.0605	6.1605	6.2605	6.3605	6.4605	6.5605
ESE	5.9448	6.0448	6.1448	6.2448	6.3448	6.4448	6.5448	6.6448	6.7448	6.8448	6.9448
Е	5.9448	5.9448	5.9448	5.9448	5.9448	5.9448	5.9448	5.9448	5.9448	5.9448	5.9448
EGElev	6.3448	6.0448	6.1448	6.2448	6.3448	6.4448	6.5448	6.6448	6.7448	6.8448	6.9448
Tau		26.97339838	26.97339838	26.97339838	26.97339838	26.97339838	26.97339838	26.97339838	26.97339838	26.97339838	26.97339838

APÊNDICE B

			DIMENSIONAN	IENTO DE CA	NAL COM SE	ÇAO CONSTA	NTE E DECLIV	IDADE VARIA	VEL		
	500	500	500	500	500	500	500	500	500	500	500
Х	0	100	200	300	400	500	600	700	800	900	1000
yi	5.560512543	5.560512543	5.560512543	5.560512543	5.560512543	5.560512543	5.584589765	5.606641288	5.626883391	5.645502027	5.662658246
Bica	30	30	30	30	30	30	30	30	30	30	30
BiLe1	20	20	20	20	20	20	20	20	20	20	20
BiLe2											
BiLd1	25	25	25	25	25	25	25	25	25	25	25
BiLd2											
Bi	75	75	75	75	75	75	75	75	75	75	75
Aica	166.8153763	166.8153763	166.8153763	166.8153763	166.8153763	166.8153763	167.537693	168.1992386	168.8065017	169.3650608	169.8797474
AiLe1	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086	31.21025086	31.6917953	32.13282575	32.53766782	32.91004055	33.25316493
AiLe2											
AiLd1	39.01281357	39.01281357	39.01281357	39.01281357	39.01281357	39.01281357	39.61474413	40.16603219	40.67208478	41.13755069	41.56645616
AiLd2											
Ai	237.0384407	237.0384407	237.0384407	237.0384407	237.0384407	237.0384407	238.8442324	240.4980966	242.0162543	243.4126521	244.6993685
Pmica	38	38	38	38	38	38	38	38	38	38	38
PmAiLe1	21.56051254	21.56051254	21.56051254	21.56051254	21.56051254	21.56051254	21.58458977	21.60664129	21.62688339	21.64550203	21.66265825
PmAiLe2											
PmiLd1	26.56051254	26.56051254	26.56051254	26.56051254	26.56051254	26.56051254	26.58458977	26.60664129	26.62688339	26.64550203	26.66265825
PmiLd2											
Pmi	86.12102509	86.12102509	86.12102509	86.12102509	86.12102509	86.12102509	86.16917953	86.21328258	86.25376678	86.29100405	86.32531649
Kica	14907.90031	14907.90031	14907.90031	14907.90031	14907.90031	14907.90031	15015.64177	15114.59067	15205.6491	15289.59746	15367.1156
KiLe1	399.3828193	399.3828193	399.3828193	399.3828193	399.3828193	399.3828193	409.4009734	418.6553933	427.2165575	435.1465925	442.5005468
KiLe2											
KiLd1	504.1051717	504.1051717	504.1051717	504.1051717	504.1051717	504.1051717	516.8225445	528.572848	539.4449924	549.5173966	558.8595819
KiLd2											
Ki	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883	15811.3883	15941.86529	16061.81891	16172.31065	16274.26145	16368.47573
а	1.694533082	1.694533082	1.694533082	1.694533082	1.694533082	1.694533082	1.700517514	1.705919144	1.710811975	1.715257867	1.719308991
Qi	500	500	500	500	500	500	500	500	500	500	500

		[DIMENSIONAN	IENTO DE CA	NAL COM SE	ÇÃO CONSTA	NTE E DECLIV	IDADE VARIÁ	VEL		
vi	2.109362509	2.109362509	2.109362509	2.109362509	2.109362509	2.109362509	2.093414587	2.079018533	2.065976938	2.054124943	2.043323622
a.vi^2/2.g	0.384285054	0.384285054	0.384285054	0.384285054	0.384285054	0.384285054	0.379832916	0.375816775	0.372181016	0.368879168	0.365872058
Sfmean	0.001	0.001	0.001	0.001	0.001	0.001	0.000991799	0.000976338	0.000962428	0.000949866	0.000938484
Qica	471.4292011	471.4292011	471.4292011	471.4292011	471.4292011	471.4292011	472.8851401	472.2765846	471.7251344	471.2238142	470.7667595
QiLe1	12.62959367	12.62959367	12.62959367	12.62959367	12.62959367	12.62959367	12.89319761	13.08147495	13.2535472	13.41117303	13.55586525
QiLe2											
QiLd1	15.94120523	15.94120523	15.94120523	15.94120523	15.94120523	15.94120523	16.27620751	16.51599999	16.73521202	16.93606939	17.12048774
QiLd2											
Qi	500	500	500	500	500	500	502.0545452	501.8740595	501.7138936	501.5710566	501.4431125
vica	2.826053638	2.826053638	2.826053638	2.826053638	2.826053638	2.826053638	2.822559698	2.807840205	2.794472544	2.78229649	2.771176475
viLe1	0.404661716	0.404661716	0.404661716	0.404661716	0.404661716	0.404661716	0.406830774	0.407106274	0.407329353	0.407510073	0.407656393
viLe2											
viLd1	0.4086146	0.4086146	0.4086146	0.4086146	0.4086146	0.4086146	0.410862366	0.411193217	0.411466786	0.411693674	0.411882304
viLd2											
hf		0.1	0.1	0.1	0.1	0.1	0.09917987	0.097633767	0.096242768	0.094986603	0.093848398
hce		0	0	0	0	0	0.000445214	0.000401614	0.000363576	0.000330185	0.000300711
he		0.1	0.1	0.1	0.1	0.1	0.099625084	0.098035381	0.096606344	0.095316788	0.094149109
Zi	0	0.1	0.2	0.3	0.4	0.5	0.58	0.66	0.74	0.82	0.9
yi	5.560512543	5.560512543	5.560512543	5.560512543	5.560512543	5.560512543	5.584589765	5.606641288	5.626883391	5.645502027	5.662658246
Dif		0	0	0	0	0	0	0	0	0	0
WSE	5.560512543	5.660512543	5.760512543	5.860512543	5.960512543	6.060512543	6.164589765	6.266641288	6.366883391	6.465502027	6.562658246
ESE	5.944797597	6.044797597	6.144797597	6.244797597	6.344797597	6.444797597	6.544422681	6.642458063	6.739064407	6.834381195	6.928530304
E	5.944797597	5.944797597	5.944797597	5.944797597	5.944797597	5.944797597	5.964422681	5.982458063	5.999064407	6.014381195	6.028530304
EGElev	6.344797597	6.044797597	6.144797597	6.244797597	6.344797597	6.444797597	6.544422681	6.642458063	6.739064407	6.834381195	6.928530304
Tau		26.97339838	26.97339838	26.97339838	26.97339838	26.97339838	26.95757555	26.81661585	26.57819183	26.36176654	26.16472793

APÊNDICE C

	500	500	500	500	500	500	500	500	500	500	500
Х	0	100	200	300	400	500	600	700	800	900	1000
yi	5.560512543	5.540355968	5.529913619	5.530127246	5.541945457	5.566307595	5.612715823	5.669218426	5.736005441	5.813288144	5.90132909
Bica	30	28.8	27.6	26.4	25.2	24	23.04	22.08	21.12	20.16	19.2
BiLe1	20	19.2	18.4	17.6	16.8	16	15.36	14.72	14.08	13.44	12.8
BiLe2											
BiLd1	25	24	23	22	21	20	19.2	18.4	17.6	16.8	16
BiLd2											
Bi	75	72	69	66	63	60	57.6	55.2	52.8	50.4	48
Aica	166.8153763	159.5622519	152.6256159	145.9953593	139.6570255	133.5913823	129.3169726	125.1763428	121.1444349	117.195889	113.305518
AiLe1	31.21025086	29.57483458	28.15041059	26.93023953	25.90468368	25.06092152	24.77131504	24.57089523	24.44295661	24.37059266	24.3370124
AiLe2											
AiLd1	39.01281357	36.96854323	35.18801323	33.66279942	32.3808546	31.32615189	30.9641438	30.71361904	30.55369577	30.46324083	30.4212655
AiLd2											
Ai	237.0384407	226.1056297	215.9640397	206.5883982	197.9425638	189.9784557	185.0524314	180.4608571	176.1410873	172.0297225	168.063796
Pmica	38	36.8	35.6	34.4	33.2	32	31.04	30.08	29.12	28.16	27.2
PmAiLe1	21.56051254	20.74035597	19.92991362	19.13012725	18.34194546	17.56630759	16.97271582	16.38921843	15.81600544	15.25328814	14.701329°
PmAiLe2											
PmiLd1	26.56051254	25.54035597	24.52991362	23.53012725	22.54194546	21.56630759	20.81271582	20.06921843	19.33600544	18.61328814	17.901329
PmiLd2											
Pmi	86.12102509	83.08071194	80.05982724	77.06025449	74.08389091	71.13261519	68.82543165	66.53843685	64.27201088	62.02657629	59.8026581
Kica			13426.34479			11545.41369			10445.36481	10107.51221	9778.02735
KiLe1	399.3828193	374.6793313	354.3814209	338.2634868	326.0870541	317.5957912	318.7235921	321.8568857	326.7320149	333.0692213	340.571033
KiLe2											
KiLd1	504.1051717	473.0451543	447.5695841	427.3996856	412.2426435	401.7857709	403.5332173	407.8790027	414.5036986	423.0692293	433.216787
KiLd2											
Ki	15811.3883	14990.36365		13522.35906		12264.79525					
а	1.694533082	1.688320158		1.683200396	1.684751233			1.71074516	1.72402423	1.738671832	
Qi	500	500	500	500	500	500	500	500	500	500	500
vi			2.315200256						2.83863355	2.906474491	2.97506072
J	0.384285054					0.596377254					0.7914652
Sfmean	0.001	0.001054021	0.00117133			0.001582988					
Qica	471.4292011	459.150479			459.6492714					458.3853547	
QiLe1	12.62959367	12.16422143	12.12859959	12.18938755	12.35574104	12.63611328	13.19891087	13.74995038	14.38617072	15.10500804	15.903041

		DIMENSI	ONAMENTO D	E CANAL CO	M SEÇÃO VAI	RIÁVEL DE EX	(PANSÃO E D	ECLIVIDADE (CONSTANTE		
QiLe2											
QiLd1	15.94120523	15.35773534	15.31793698	15.40142702	15.62025626	15.98576132	16.71102831	17.42487515	18.25080096	19.18659456	20.22915545
QiLd2											
Qi	500	486.6724358	486.9592263	487.2807194	487.6252687	487.9766876	492.0930128	492.3532153	492.5515025	492.6769573	492.7193859
vica	2.826053638	2.877563294	3.010718005	3.148661074	3.291272098	3.438506325	3.574032584	3.684229617	3.796414842	3.911275034	4.029699478
viLe1	0.404661716	0.41130311	0.430849829	0.452628263	0.476969385	0.504215828	0.532830447	0.55960315	0.588560989	0.619804707	0.653450835
viLe2											
viLd1	0.4086146	0.415427117	0.435316904	0.457520684	0.482391723	0.51030083	0.539689662	0.567333831	0.597335298	0.629827754	0.664967584
viLd2											
hf		0.105402075	0.117133043	0.129853461	0.143572241	0.158298771	0.171493542	0.182505792	0.193868405	0.205670933	0.218044406
hce		0.010953707	0.011818025	0.012702786	0.01360887	0.014544272	0.010750849	0.011144224	0.01160631	0.012166384	0.012858623
he		0.116355782	0.128951069	0.142556246	0.157181111	0.172843043	0.18224439	0.193650016	0.205474715	0.217837317	0.230903029
Zi	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
yi	5.560512543	5.540355968	5.529913619	5.530127246	5.541945457	5.566307595	5.612715823	5.669218426	5.736005441	5.813288144	5.901329097
Dif		0	0	0	0	0	0	0	0	0	0
WSE	5.560512543	5.640355968	5.729913619	5.830127246	5.941945457	6.066307595	6.212715823	6.369218426	6.536005441	6.713288144	6.901329097
ESE	5.944797597	6.06115338	6.190104448	6.332660695	6.489841806	6.662684849	6.844929239	7.038579256	7.244053971	7.461891288	7.692794316
E	5.944797597	5.96115338	5.990104448	6.032660695	6.089841806	6.162684849	6.244929239	6.338579256	6.444053971	6.561891288	6.692794316
EGElev	5.944797597	6.06115338	6.190104448	6.332660695	6.489841806	6.662684849	6.844929239	7.038579256	7.244053971	7.461891288	7.692794316
Tau		27.54940339	29.54768516	32.54754365	35.85880838	39.51343819	43.30178238	46.83806429	50.27559246	53.96963626	57.95849594

APÊNDICE D

		DI	MENSIONAME	NTO DE CAN	AL COM SEÇÂ	ÃO CONTRAÇ	ÃO E DECLIVI	DADE CONST	ANTE		
	500	500	500	500	500	500	500	500	500	500	500
x	0	100	200	300	400	500	600	700	800	900	1000
yi	5.560512543	5.592739249	5.608485433	5.611617729	5.604807436	5.589984668	5.571993541	5.546792487	5.515686842	5.479684766	5.439581607
Bica	30	31.2	32.4	33.6	34.8	36	37.44	38.88	40.32	41.76	43.2
BiLe1	20	20.8	21.6	22.4	23.2	24	24.96	25.92	26.88	27.84	28.8
BiLe2											
BiLd1	25	26	27	28	29	30	31.2	32.4	33.6	34.8	36
BiLd2											
Bi	75	78	81	84	87	90	93.6	97.2	100.8	104.4	108
Aica		174.4934646	181.714928	188.5503557	195.0472988	201.239448		215.6592919		228.8316358	
AiLe1	31.21025086	33.12897638	34.74328535	36.10023714	37.23153252	38.15963203	39.23695878	40.09286126	40.74166231	41.19442388	41.45995029
AiLe2											
AiLd1	39.01281357	41.41122047	43.42910668	45.12529642	46.53941566	47.69954004	49.04619848	50.11607658	50.92707788	51.49302985	51.82493786
AiLd2											
Ai		249.0336614	259.88732	269.7758893	278.818247	287.0986201	296.8985954			321.5190895	
Pmica	38	39.2	40.4	41.6	42.8	44	45.44	46.88	48.32	49.76	51.2
PmAiLe1	21.56051254	22.39273925	23.20848543	24.01161773	24.80480744	25.58998467	26.53199354	27.46679249	28.39568684	29.31968477	30.23958161
PmAiLe2											
PmiLd1	26.56051254	27.59273925	28.60848543	29.61161773	30.60480744	31.58998467	32.77199354	33.94679249	35.11568684	36.27968477	37.43958161
PmiLd2											
Pmi	86.12102509	89.1854785		95.22323546				108.293585			118.8791632
Kica				17213.21995			19208.6689	19883.85717	20511.35424	21093.6599	21632.87182
KiLe1	399.3828193	430.1387283	454.6602003	4/3.//1/314	488.0836748	498.0737035	509.3062142	515.90902	518.2782566	516.7627388	511.678823
KiLe2		- 40 000-4-			0.1= 10.1001.1		044 = 400=0=	0.40 == 4.440=	.=	0=0 000010=	0.40.00000=
KiLd1	504.1051/1/	542.833747	5/3.6384445	597.5744541	615.4249644	627.8039471	641./122/25	649.7744195	652.4999529	650.3369165	643.690835
KiLd2	45044.0000	10710 01705	17500 04407	10004 50044	10071 5000	10000 50007	00050 00700	04040 54004	04000 40045	00000 75050	00700 04440
Ki	15811.3883		17533.04467		18974.5338				21682.13245		
a O:		1.703607717				1.706604661			1.690209587		1.67111516
Qi	500	500	500	500	500	500	500	500	500	500	500
Vİ			1.923910716		1.79328292		1.684076677		1.59204622	1.555117616	
-		0.350021319									0.19759332
Sfmean	0.001	0.000945366	0.0008527						0.000547646 480.0035377		
Qica		483.9345458									
QiLe1	12.02959367	13.22539125	13.27054834	13.22/34043	13.099/1/2/	12.90911083	12./42/0411	12.458/9349	12.12800750	11./598/094	11.35827235

		DI	MENSIONAME	NTO DE CAN	AL COM SEÇ	ÃO CONTRAÇ	ÃO E DECLIVI	DADE CONST	ANTE		
QiLe2											_
QiLd1	15.94120523	16.69040293	16.75083619	16.68381672	16.51744045	16.27146882	16.05554357	15.69153667	15.26970292	14.79959299	14.28868166
QiLd2											
Qi	500	513.85034	511.9830479	510.4909491	509.2590489	508.2166394	509.3962855	508.3297039	507.4019082	506.5838533	505.8545352
vica	2.826053638	2.773367742	2.652262358	2.54881403	2.459105531	2.380428213	2.303750777	2.226564733	2.158362138	2.097718646	2.043524123
viLe1	0.404661716	0.399209173	0.382132784	0.366405915	0.351844697	0.33829233	0.324764317	0.310748425	0.297696924	0.285472397	0.273957693
viLe2											
viLd1	0.4086146	0.403040595	0.38570529	0.369722042	0.354912932	0.341124229	0.327355515	0.313103853	0.299834657	0.287409637	0.275710541
viLd2											
hf		0.094536597	0.085270043	0.077948323	0.072033627	0.067174653	0.06259928	0.058318418	0.054764636	0.051787236	0.049275345
hce		0.003426374	0.002770558	0.002289452	0.00192328	0.001636598	0.001764508	0.00149823	0.00128452	0.001110063	0.000965591
he		0.09796297	0.088040602	0.080237775	0.073956907	0.068811251	0.064363788	0.059816648	0.056049156	0.052897298	0.050240935
Zi	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
yi	5.560512543	5.592739249	5.608485433	5.611617729	5.604807436	5.589984668	5.571993541	5.546792487	5.515686842	5.479684766	5.439581607
Dif		0	0	0	0	0	0	0	0	0	0
WSE	5.560512543	5.692739249	5.808485433	5.911617729	6.004807436	6.089984668	6.171993541	6.246792487	6.315686842	6.379684766	6.439581607
ESE	5.944797597	6.042760568	6.130801169	6.211038944	6.284995851	6.353807102	6.41817089	6.477987538	6.534036694	6.586933992	6.637174927
E	5.944797597	5.942760568	5.930801169	5.911038944	5.884995851	5.853807102	5.81817089	5.777987538	5.734036694	5.686933992	5.637174927
EGElev	6.284995851	6.042760568	6.130801169	6.211038944	6.284995851	6.353807102	6.41817089	6.477987538	6.534036694	6.586933992	6.637174927
tau		26.4301764	24.71775455	22.59967323	20.84279724	19.3602659	18.03380832	16.76405537	15.60510152	14.60619095	13.73737504

APÊNDICE E

		DI	MENSIONAMI	ENTO DE CAN	AL COM SEÇ	ÃO DE EXPAN	ISÃO E DECLI	VIDADE VARI	ÁVEL		
	500	500	500	500	500	500	500	500	500	500	500
X	0	100	200	300	400	500	600	700	800	900	1000
yi	5.560512543	5.540355968	5.529913619	5.530127246	5.541945457	5.566307595	5.636377548	5.713538409	5.798061751	5.89029099	5.990658934
Bica	30	28.8	27.6	26.4	25.2	24	23.04	22.08	21.12	20.16	19.2
BiLe1	20	19.2	18.4	17.6	16.8	16	15.36	14.72	14.08	13.44	12.8
BiLe2											
BiLd1	25	24	23	22	21	20	19.2	18.4	17.6	16.8	16
BiLd2											
Bi	75	72	69	66	63	60	57.6	55.2	52.8	50.4	48
Aica	166.8153763	159.5622519	152.6256159	145.9953593	139.6570255	133.5913823	129.8621387	126.1549281	122.4550642	118.7482664	115.0206515
AiLe1	31.21025086	29.57483458	28.15041059	26.93023953	25.90468368	25.06092152	25.13475913	25.22328538	25.31670946	25.4055109	25.48043436
AiLe2											
AiLd1	39.01281357	36.96854323	35.18801323	33.66279942	32.3808546	31.32615189	31.41844891	31.52910673	31.64588682	31.75688863	31.85054295
AiLd2											
Ai	237.0384407	226.1056297	215.9640397	206.5883982	197.9425638	189.9784557	186.4153467	182.9073202	179.4176605	175.9106659	172.3516289
Pmica	38	36.8	35.6	34.4	33.2	32	31.04	30.08	29.12	28.16	27.2
PmAiLe1	21.56051254	20.74035597	19.92991362	19.13012725	18.34194546	17.56630759	16.99637755	16.43353841	15.87806175	15.33029099	14.79065893
PmAiLe2											
PmiLd1	26.56051254	25.54035597	24.52991362	23.53012725	22.54194546	21.56630759	20.83637755	20.11353841	19.39806175	18.69029099	17.99065893
PmiLd2											
Pmi	86.12102509	83.08071194	80.05982724	77.06025449	74.08389091	71.13261519	68.8727551	66.62707682	64.3961235	62.18058198	59.98131787
Kica	14907.90031	14142.63916	13426.34479	12756.69589	12130.85289	11545.41369	11239.19454	10936.21966	10634.38589	10331.63627	10025.95724
KiLe1	399.3828193	374.6793313	354.3814209	338.2634868	326.0870541	317.5957912	326.2523383	335.6206699	345.5257657	355.7784368	366.1730382
KiLe2											
KiLd1	504.1051717	473.0451543	447.5695841	427.3996856	412.2426435	401.7857709	413.1360464	425.4616875	438.5541508	452.1881752	466.1188718
KiLd2											
Ki	15811.3883	14990.36365	14228.29579	13522.35906	12869.18259		11978.58293	11697.30201	11418.4658	11139.60288	10858.24915
а	1.694533082		1.684456652	1.683200396		1.689229945		1.72076316	1.737379558	1.754379824	
Qi	500	500	500	500	500	500	500	500	500	500	500
vi		2.211355819		2.420271439		2.631877379				2.842351813	
U		0.420797412						0.655390183			
Sfmean	0.001	0.001054021	0.00117133	0.001298535	0.001435722	0.001582988	0.001701429	0.00178397	0.001871472	0.001965152	0.002066519
Qica	471.4292011	459.150479	459.5126897	459.6899048	459.6492714	459.354813	463.5985323	461.9138708	460.0490008	458.0018092	455.7698282
QiLe1	12.62959367	12.16422143	12.12859959	12.18938755	12.35574104	12.63611328	13.45737941	14.17563359	14.94762227	15.77167096	16.64585422

DIMENSIONAMENTO DE CANAL COM SEÇÃO DE EXPANSÃO E DECLIVIDADE VARIÁVEL											
QiLe2											
QiLd1	15.94120523	15.35773534	15.31793698	15.40142702	15.62025626	15.98576132	17.04119135	17.97025491	18.97207803	20.04551815	21.18929026
QiLd2											
Qi	500	486.6724358	486.9592263	487.2807194	487.6252687	487.9766876	494.097103	494.0597593	493.9687011	493.8189983	493.6049727
vica	2.826053638	2.877563294	3.010718005	3.148661074	3.291272098	3.438506325	3.569928364	3.661480989	3.756880157	3.856913648	3.962504317
viLe1	0.404661716	0.41130311	0.430849829	0.452628263	0.476969385	0.504215828	0.535409126	0.562005836	0.590425161	0.620797237	0.653279845
viLe2											
viLd1	0.4086146	0.415427117	0.435316904	0.457520684	0.482391723	0.51030083	0.542394419	0.569957629	0.599511657	0.63121795	0.665272498
viLd2											
hf		0.105402075	0.117133043	0.129853461	0.143572241	0.158298771	0.17014286	0.178397005	0.187147208	0.19651521	0.206651921
hce		0.010953707	0.011818025	0.012702786	0.01360887	0.014544272	0.008602674	0.009101204	0.009695943	0.010408274	0.011264561
he		0.116355782	0.128951069	0.142556246	0.157181111	0.172843043	0.178745534	0.187498209	0.196843151	0.206923484	0.217916482
Zi	0	0.1	0.2	0.3	0.4	0.5	0.58	0.66	0.74	0.82	0.9
yi	5.560512543	5.540355968	5.529913619	5.530127246	5.541945457	5.566307595	5.636377548	5.713538409	5.798061751	5.89029099	5.990658934
Dif		0	0	0	0	0	0	0	0	0	0
WSE	5.560512543	5.640355968	5.729913619	5.830127246	5.941945457	6.066307595	6.216377548	6.373538409	6.538061751	6.71029099	6.890658934
ESE	5.944797597	6.06115338	6.190104448	6.332660695	6.489841806	6.662684849	6.841430383	7.028928592	7.225771743	7.432695227	7.650611709
E	5.944797597	5.96115338	5.990104448	6.032660695	6.089841806	6.162684849	6.261430383	6.368928592	6.485771743	6.612695227	6.750611709
EGElev	6.489841806	6.06115338	6.190104448	6.332660695	6.489841806	6.662684849	6.841430383	7.028928592	7.225771743	7.432695227	7.650611709
Tau		27.54940339	29.54768516	32.54754365	35.85880838	39.51343819	43.26652836	46.5495776	49.53202318	52.7741665	56.31860358

APÊNDICE F

DIMENSIONAMENTO DE CANAL COM SEÇÃO VARIÁVEL DE CONTRAÇÃO E DECLIVIDADE VARIÁVEL											
	500	500	500	500	500	500	500	500	500	500	500
x	0	100	200	300	400	500	600	700	800	900	1000
yi	5.560513	5.592739	5.608485	5.611618	5.604807	5.589985	5.594417	5.590288	5.579201	5.562370	5.540734
Bica	30.0000	31.2000	32.4000	33.6000	34.8000	36.0000	37.4400	38.8800	40.3200	41.7600	43.2000
BiLe1	20.0000	20.8000	21.6000	22.4000	23.2000	24.0000	24.9600	25.9200	26.8800	27.8400	28.8000
BiLe2											
BiLd1	25.0000	26.0000	27.0000	28.0000	29.0000	30.0000	31.2000	32.4000	33.6000	34.8000	36.0000
BiLd2											
Bi	75.0000	78.0000	81.0000	84.0000	87.0000	90.0000	93.6000	97.2000	100.8000	104.4000	108.0000
Aica	166.8153763	174.4934646	181.714928	188.5503557	195.0472988	201.239448	209.4549874	217.3504	224.9533862	232.2845575	239.3597059
AiLe1	31.21025086	33.12897638	34.74328535	36.10023714	37.23153252	38.15963203	39.79665827	41.22026669	42.44892414	43.49637167	44.37313728
AiLe2											
AiLd1	39.0128	41.4112	43.4291	45.1253	46.5394	47.6995	49.7458	51.5253	53.0612	54.3705	55.4664
AiLd2											
Ai	237.0384	249.0337	259.8873	269.7759	278.8182	287.0986	298.9975	310.0960	320.4635	330.1514	339.1993
Pmica	38	39.2	40.4	41.6	42.8	44	45.44	46.88	48.32	49.76	51.2
PmAiLe1	21.56051254	22.39273925	23.20848543	24.01161773	24.80480744	25.58998467	26.5544174	27.51028807	28.45920105	29.40236967	30.34073393
PmAiLe2											
PmiLd1	26.56051254	27.59273925	28.60848543	29.61161773	30.60480744	31.58998467	32.7944174	33.99028807	35.17920105	36.36236967	37.54073393
PmiLd2											
Pmi	86.1210	89.1855	92.2170	95.2232	98.2096	101.1800	104.7888	108.3806	111.9584	115.5247	119.0815
Kica	14907.9003	15739.3446	16504.7460	17213.2200	17871.0252	18482.7032	19337.6802	20144.4037	20906.5170	21626.8065	22307.4798
KiLe1	399.3828	430.1387	454.6602	473.7717	488.0837	498.0737	521.1785	539.7441	554.1526	564.7204	571.7193
KiLe2											
KiLd1	504.1052	542.8337	573.6384	597.5745	615.4250	627.8039	656.7414	679.9309	697.8636	710.9466	719.5292
KiLd2											
Ki	15811.3883	16712.3171	17533.0447	18284.5661	18974.5338	19608.5809	20515.6001	21364.0787	22158.5331	22902.4735	23598.7283
а	1.6945331	1.7036077	1.7084831	1.7102036	1.7094309	1.7066047	1.7086410	1.7084855	1.7065191	1.7030109	1.6981550
Qi	500	500	500	500	500	500	500	500	500	500	500
Vİ	2.1093625	2.0077607	1.9239107	1.8533902	1.7932829	1.7415618	1.6722550	1.6124039	1.5602403	1.5144567	1.4740598
a.vi^2/2.g	0.384285	0.350021	0.322316	0.299421	0.280188	0.263822	0.243532	0.226391	0.211736	0.199082	0.188065
Sfmean	0.001	0.000945366	0.0008527		0.000720336				0.000527922		
Qica	471.4292	483.9345	481.9557	480.5798	479.6419	479.0361	481.9458	481.0066	480.3599	479.9450	479.7184
QiLe1	12.6296	13.2254	13.2765	13.2273	13.0997	12.9091	12.9891	12.8880	12.7325	12.5324	12.2947

DIMENSIONAMENTO DE CANAL COM SEÇÃO VARIÁVEL DE CONTRAÇÃO E DECLIVIDADE VARIÁVEL											
QiLe2											_
QiLd1	15.9412	16.6904	16.7508	16.6838	16.5174	16.2715	16.3677	16.2353	16.0345	15.7774	15.4733
QiLd2											
Qi	500.0000	513.8503	511.9830	510.4909	509.2590	508.2166	511.3027	510.1300	509.1269	508.2548	507.4864
vica	2.8261	2.7734	2.6523	2.5488	2.4591	2.3804	2.3010	2.2130	2.1354	2.0662	2.0042
viLe1	0.4047	0.3992	0.3821	0.3664	0.3518	0.3383	0.3264	0.3127	0.2999	0.2881	0.2771
viLe2											
viLd1	0.4086	0.4030	0.3857	0.3697	0.3549	0.3411	0.3290	0.3151	0.3022	0.2902	0.2790
viLd2											
hf		0.0945	0.0853	0.0779	0.0720	0.0672	0.0621	0.0570	0.0528	0.0492	0.0462
hce		0.003426374	0.002770558	0.002289452	0.00192328	0.001636598	0.002029	0.001714102	0.001465522	0.001265412	0.001101685
he		0.0980	0.0880	0.0802	0.0740	0.0688	0.0641	0.0587	0.0543	0.0505	0.0473
Zi	0	0.1	0.2	0.3	0.4	0.5	0.58	0.66	0.74	0.82	0.9
yi	5.560513	5.592739	5.608485	5.611618	5.604807	5.589985	5.594417	5.590288	5.579201	5.562370	5.540734
Dif		0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
WSE	5.5605	5.6927	5.8085	5.9116	6.0048	6.0900	6.1744	6.2503	6.3192	6.3824	6.4407
ESE	5.9448	6.0428	6.1308	6.2110	6.2850	6.3538	6.4179	6.4767	6.5309	6.5815	6.6288
Е	5.9448	5.9428	5.9308	5.9110	5.8850	5.8538	5.8379	5.8167	5.7909	5.7615	5.7288
FOFI	0.0050	0.0400	0.4000	0.0110	0.0050	0.0500	0.4470	0.4707	0.5000	0.5045	0.0000
EGElev	6.2850	6.0428	6.1308	6.2110	6.2850	6.3538	6.4179	6.4767	6.5309	6.5815	6.6288
TaU		26.4301764	24.71775455	22.59967323	20.84279724	19.3602659	18.02697986	16.67914053	15.39798714	14.30035971	13.35027156