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ABSTRACT

Despite theoretical achievements and encouraging practical results, deep learning still
presents limitations in many areas, such as reasoning, causal inference, interpretability, and
explainability. From an application point of view, one of the most impactful restrictions is
related to the robustness of these systems. Indeed, current deep learning solutions are well
known for not informing whether they can reliably classify an example during inference. Modern
neural networks are usually overconfident, even when they are wrong. Therefore, building
robust deep learning applications is currently a cutting-edge research topic in computer vision,
natural language processing, and many other areas. One of the most effective ways to build
more reliable deep learning solutions is to improve their performance in the so-called out-
of-distribution detection task, which essentially consists of “know that you do not know” or
“know the unknown”. In other words, out-of-distribution detection capable systems may reject
performing a nonsense classification when submitted to instances of classes on which the neural
network was not trained. This thesis tackles the defiant out-of-distribution detection task by
proposing novel loss functions and detection scores. Uncertainty estimation is also a crucial
auxiliary task in building more robust deep learning systems. Therefore, we also deal with
this robustness-related task, which evaluates how realistic the probabilities presented by the
deep neural network are. To demonstrate the effectiveness of our approach, in addition to a
substantial set of experiments, which includes state-of-the-art results, we use arguments based
on the principle of maximum entropy to establish the theoretical foundation of the proposed
approaches. Unlike most current methods, our losses and scores are seamless and principled
solutions that produce accurate predictions in addition to fast and efficient inference. Moreover,
our approaches can be incorporated into current and future projects simply by replacing the loss
used to train the deep neural network and computing a rapid score for detection.

Keywords: deep learning robustness; out-of-distribution detection; uncertainty estimation;
isotropy maximization loss; enhanced isotropy maximization loss; distinction maximization
loss.



RESUMO

Apesar das conquistas teóricas e resultados práticos encorajadores, o aprendizado pro-
fundo ainda apresenta limitações em muitas áreas, como raciocínio, inferência causal, inter-
pretabilidade e explicabilidade. Do ponto de vista da aplicação, uma das restrições mais impac-
tantes está relacionada à robustez desses sistemas. De fato, as soluções atuais de aprendizado
profundo são bem conhecidas por não informar se podem classificar um exemplo de maneira
confiável durante a inferência. As redes neurais modernas geralmente são superconfiantes,
mesmo quando estão erradas. Portanto, construir aplicativos robustos de aprendizado profundo
é atualmente um tópico de pesquisa de ponta em visão computacional, processamento de lin-
guagem natural e muitas outras áreas. Uma das maneiras mais eficazes de construir soluções de
aprendizado profundo mais confiáveis é melhorar seu desempenho na chamada tarefa de detecção
fora de distribuição, que consiste essencialmente em “saber que você não sabe” ou “conhecer o
desconhecido”. Em outras palavras, sistemas com capacidade de detecção fora de distribuição
podem rejeitar a realização de uma classificação sem sentido quando submetidos a instâncias de
classes nas quais a rede neural não foi treinada. Esta tese aborda a desafiadora tarefa de detecção
fora da distribuição, propondo novas funções de perda e pontuações de detecção. A estimativa
de incerteza também é uma tarefa auxiliar crucial na construção de sistemas de aprendizado pro-
fundo mais robustos. Portanto, tratamos também dessa tarefa relacionada à robustez, que avalia
quão realistas são as probabilidades apresentadas pela rede neural profunda. Para demonstrar
a eficácia de nossa abordagem, além de um conjunto substancial de experimentos, que incluí
resultados estado-da-arte, utilizamos argumentos baseados no princípio da máxima entropia para
estabelecer a fundamentação teórica das abordagens propostas. Ao contrário da maioria dos
métodos atuais, além de apresentarem inferência rápida e eficiente, nossas perdas e pontuações
são soluções baseadas em princípios e não produzem efeitos colaterais indesejados. Além
disso, nossas abordagens podem ser incorporadas em projetos atuais e futuros simplesmente
substituindo a perda usada para treinar a rede neural profunda e computando uma pontuação
rápida para detecção.

Palavras-chave: aprendizado profundo robusto; detecção de fora da distribuição; estimação de
incerteza; perda de maximização de isotropia; perda de maximização de isotropia melhorada;
perda de maximização de distinção.
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1 INTRODUCTION

“All models are wrong, but some are useful.”

–George Box

“All models are wrong, but some that know when they are wrong are useful.”

–Balaji Lakshminarayanan (NeurIPS 2020)

“One of the greatest challenges in this world is knowing enough a subject to

think you are right, but not enough to know you are wrong!”

–Neil deGrasse Tyson

“Modern deep neural networks are just like humans.

They are usually overconfident, even when they are entirely wrong!”

–David Macêdo

In this introductory chapter, we explain the context, motivation, and objective of this
work. Then we describe the concept of Out-of-Distribution (OOD) detection, our specific prob-
lem of interest in the sub-area of deep learning robustness. Next, we define the objectives of this
study. Among them is the design of high-performance solutions for OOD detection. Moreover,
we present the peer review publications we authored in this and related research fields. Finally,
we present an outline of the subject of the following chapters.
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1.1 CONTEXT: WHY DEEP LEARNING?

AI is a field in computer science. Nowadays, it is hard to present an unique definition
on which everybody could agree on. We understand AI as the study of systems capable of
solving problems that are not handled well by using algorithm-based programming paradigms. It
usually involves tasks for which a standard algorithmic solution is hard or impractical to design,
implement, or even conceive. Otherwise, we could simply use a straightforward conventional
so-called algorithmic-based programming approach to tackle the mentioned task.

This AI concept is strongly based on the phase “field of study that gives computers the
ability to learn without being explicitly programmed” commonly attributed to Arthur Samuel.
Although he probably never explicitly wrote or said the mentioned quotation, it works as a good
abstract of thoughts he expressed in his seminal papers (Samuel, 1959, 1967).

Machine learning is the field of AI in which the system learns from exploring the
available data rather than relying on humans to algorithmize them. Machine learning established
a significant advance by allowing AI systems to acquire their knowledge directly from data.

Nevertheless, the conventional machine learning approach to AI has its limitations.
Indeed, in this context, the curse of dimensionality (Bellman & Karush, 1964; Bellman &
Collection, 1961; Hughes, 1968; Bengio et al., 2005) may be understood as the empirical
tendency to a dramatic training examples density rarefaction as the data dimensionality grows
(Fig. 1). In such cases, at least apparently, it is reasonable to expect that the extremely low
training example density could make generalization very difficult, as the test examples would be
extremely distant from the examples used for training. Hence, at first sight, it appears that the
number of training examples should grow exponentially faster than the data dimensionality to
allow generalization.

To mitigate the curse of dimensionality, machine learning methods generally rely on hand-
designed high-level features, which allow such systems to sometimes produce high performance
and scale appropriately (Goodfellow et al., 2016, pg. 3). These engineered features are presented
to the learning algorithm as low-dimensional vectors that, in some sense, bring the problem back
to a treatable dimension, somehow avoiding extreme example density rarefaction.

Indeed, Table 1 presents datasets and their more relevant characteristics. We can see that
the example density is reasonably high in datasets with few features (three first lines). Therefore,
we may tackle these problems practically without relying on feature extraction or selection. How-
ever, for datasets with a high number of features (three last lines), we usually use feature engineer-
ing to tackle them to obtain high performance. In simple terms, the use of features brings the prob-
lem back to a dimensional that classical machine learning approaches can handle appropriately.

However, relying on hand-designed high-level features brings significant drawbacks to
systems based on traditional shallow machine learning. In fact, it is undesirable for many reasons.
First, as a specific feature engineering is usually needed for each particular task, the overall
solution becomes much less general-purpose than it could otherwise be.
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Figure 1 - The Curse of Dimensionality

Source: Bengio (2015). The curse of dimensionality: As the dimension grows, we need exponentially more training examples
to avoid example density rarefaction in the feature space.
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Figure 2 - The Fundamental Shallow Machine Learning Limitation

Source: Adapted from https://www.nltk.org/book/ch06.html. The shallow machine learning limitation: Numer-
ous relevant real-world problems are high-dimensional. In such cases, the hand-designed feature engineering usually required
by classical machine learning approaches presents drawbacks.

Figure 3 - Self-Supervised Learning

Source: https://www.youtube.com/watch?v=7I0Qt7GALVk. Self-supervision allows training deep neural net-
works without labels using a pretext task. Given a portion of the data, the model is trained to predict what is missing.

https://www.nltk.org/book/ch06.html
https://www.youtube.com/watch?v=7I0Qt7GALVk
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Table 1 - Example Density of Traditional Datasets

Dataset Examples Features Volumes
(2Features)

Example Density
(Examples/Volumes)

Iris 150 4 16 9.375
Tic-Tac-Toe 958 9 512 1.871
Adult 48,842 14 16,384 2.981

MNIST 60,000 784 (28x28) 1.017×10236 5.897×10−232

SVHN 600,000 3,072 (3x32x32) 5.809×10924 1.032×10−919

ImageNet 1,200,000 196,608 (3x256x256) 2.003×1019728 5.991×10−19723

Source: The Author (2022). In this table, the first three lines present examples of datasets in which classical machine learning
works properly without relying on feature engineering. The last three lines give examples of datasets in which deep learning
works appropriately.

Second, feature engineering is commonly a costly and time-consuming process that re-
quires human knowledge much more specialized than labeling data. Finally, for many real-world
relevant tasks, it is challenging (if not impossible) to design high-quality features manually.

Recently, theoretical studies have shown that increasing the depth of AI models is
an extremely effective way to deal with the curse of dimensionality (Bengio & Lecun, 2007;
Delalleau & Bengio, 2011; Pascanu et al., 2014; Montúfar et al., 2014). Indeed, some research
results suggest that growing the depth of a learning model is exponentially more efficient than
increasing the width of traditional shallow machine learning solutions (Bengio et al., 2013, 2005;
Bengio, 2009; Montúfar & Morton, 2015; Montúfar et al., 2014).

Therefore, the recognition that deep architectures are exponentially efficient in tackling
the curse of dimensionality made deep neural networks extremely successful, as they virtually
altogether avoid time-consuming, specific purpose, and expensive feature engineering (Fig. 2).
Moreover, modern self-supervised1 techniques are making even labeling data unnecessary (Le-
Khac et al., 2020; Jaiswal et al., 2020; Jing & Tian, 2021; Liu et al., 2020c) (Fig. 3).

Table 1 presents datasets on which shallow machine learning (first three lines) and
deep learning (last three lines) are usually applied without relying on feature engineering. The
difference in the density of examples in each case is staggering. The fact that deep learning
allows satisfactory generalization in datasets with such small example density as ImageNet
(Deng et al., 2009) without using feature engineering is extraordinary. Indeed, it was something
unthinkable years ago.

1https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence

https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence
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Figure 4 - Transformer Architecture

Source: http://www.ai2news.com/blog/42747/. The Transformer understands everything as a mapping from an
input set (or sequence) of tokens to an output set (or sequence) of tokens. All input need to be converted to tokens to be
processed by the Transformer-based architectures (Vaswani et al., 2017). It was highly inspired by the seminal Sequence-To-
Sequence paper (Sutskever et al., 2014).

After the breakthroughs in speech recognition (Hinton et al., 2012) and computer vision
(Krizhevsky et al., 2012), other important advances followed in natural language processing
(Sutskever et al., 2014; Bahdanau et al., 2015), speech processing (Alam et al., 2020), and even in
structured data such as tabular data (Borisov et al., 2021) and time series (Lim & Zohren, 2020).

Currently, deep learning is applied to solve tasks in a broad area of applications such
as mathematics, physics, chemistry, engineering, biology, health care, finance, agriculture, and
many others (Goodfellow et al., 2016, pg. 9) (Lemos et al., 2022). The advances in the use of
deep learning for scientific discoveries2 (Deiana et al., 2021) are so profound that some argue
that we are witnessing a new scientific revolution3.

Transforms4,5 (Vaswani et al., 2017) allowed us to use a single universal architecture
to construct image, text, video, audio, and multimodal models (Fig. 4). After BERT (Devlin
et al., 2019) and GPT (Brown et al., 2020) successfully applied the groundbreaking Transformer
architecture for text, the so-called Vision Transformers (ViT) (Dosovitskiy et al., 2021) (Fig. 5)
effectively applied this template architecture for images.

2https://www.youtube.com/watch?v=XtJVLOe4cfs
3https://thegradient.pub/ai-scientific-revolution/
4https://jalammar.github.io/illustrated-transformer/
5https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

http://www.ai2news.com/blog/42747/
https://www.youtube.com/watch?v=XtJVLOe4cfs
https://thegradient.pub/ai-scientific-revolution/
https://jalammar.github.io/illustrated-transformer/
https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Figure 5 - Vision Transformer (ViT)

Source: Dosovitskiy et al. (2021). The Vision Transformer (ViT) creates tokens by splitting the images into patches, which
then feed the Transformer architecture as proposed in Vaswani et al. (2017). The classification token is inspired by the BERT
paper (Devlin et al., 2019).

Figure 6 - Contrastive Learning

Source: Chen et al. (2020a). Contrastive learning allows supervised or unsupervised training of deep neural networks. Positive
examples (i.e., examples we desire to approximate in the feature space) may be constructed using only data augmentation
without any supervision.
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Figure 7 - CLIP Architecture

Source: Radford et al. (2021). OpenAI CLIP uses supervised contrastive learning to approximate embeddings of images and
related texts in a joint embedding space. Zero-shot classification is allowed during inference.

Figure 8 - Masked Autoencoder (MAE)

Source: He et al. (2021). In the Masked Autoencoder (MAE), about 75% of the image patches are hidden from the decoder
during the self-supervised pretraining. The decoder is trained with patches produced by the encoder and mask tokens and needs
to reconstruct the original image.
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Figure 9 - Generalist Agent (Gato)

Source: Reed et al. (2022). DeepMind Generalist Agent (Gato) can simultaneously handle many media and tasks using a unified
Transformer-based architecture.

Contrastive learning6 essential idea consists of maximizing similarity (i.e. minimizing
the distance) between the (high-level) representation of input data that we desire or know to
be similar, while doing the opposite when we desire the input data to be semantically different
(Chen et al., 2020a; Albelwi, 2022) (Fig. 6).

Notice that contrastive learning can be used in conjunction with data augmentation to
create input data that we want to produce similar representations, which allows unsupervised
training. Therefore, contrastive learning can be used in both supervised and unsupervised settings.
Self-supervised learning may or not be used in combination with contrastive learning.

CLIP (Radford et al., 2021) from OpenAI leverage supervised contrastive learning to
build a vision-language model that constructs a joint embedding space in which representations
of images are near to representations of related texts. CLIP7 allows zero-shot classification
during inference and is a relevant example of supervised contrastive learning (Fig. 7).

Self-supervision using masking and autoregressive techniques are making possible
pretraining without labels large models that subsequently can be downloaded and fine-tuned with
few examples of supervised data. Sometimes, they may even be used in zero-shot or few-shot
settings. Currently, self-supervision is largely used regardless of media type (image, speech, text,
etc.). For example, while BERT and MAE (He et al., 2021) (Fig. 8) used a masking pretext, the
GPT used an autoregressive pretext task. Currently, some researches are exploring single models
(Reed et al., 2022) that are both multimodal and multitask8 (Fig. 9).

6https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
7https://openai.com/blog/clip/
8https://www.deepmind.com/publications/a-generalist-agent

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
https://openai.com/blog/clip/
https://www.deepmind.com/publications/a-generalist-agent
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Figure 10 - Imagen: Photorealistic Examples

Source: Saharia et al. (2022). Google Imagen: Examples of photorealistic 1024x1024 high-resolution images produced condi-
tioned on texts. It is also possible to generate artistic content.
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Figure 11 - DALL-E 2: Photorealistic Examples

Source: Ramesh et al. (2022). OpenAI DALL-E 2: Examples of 1024x1024 high-resolution images generated conditioned on
the texts shown below each image.
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Figure 12 - CLRS Algorithmic Reasoning Benchmark

Source: Veličković et al. (2022). Examples of classical algorithms that neural networks are being shown to be able to learn.
The CLRS Algorithmic Reasoning Benchmark provides datasets for these tasks. CLRS stands for “Cormen, Leiserson, Rivest,
and Stein” in homage to the authors of the “Introduction to Algorithms” classical textbook (Cormen et al., 2009).

Figure 13 - Math Word Problems

Source: Cobbe et al. (2021). Large language models are being adapted to tackle grade school math problems. Considering that
humans think using natural language, it is reasonable to tackle reasoning-based tasks using improved language models.
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The advances are not restricted to discriminative tasks such as classification, object
detection, and semantic segmentation. Instead, they are present in generative tasks as well. In
fact, diffusion-based models such as Imagen9 from Google (Saharia et al., 2022) (Fig. 10) and
DALL-E 210 from OpenAI (Fig. 11) are producing promising results (Ramesh et al., 2022).

We have recently seen advances in areas that we may have believed that neural networks
could never reach. For example, some works show that it is possible to learn reasoning to perform
classical algorithmic tasks such as sorting, searching, dynamic programming, graph algorithms,
string algorithms, and geometric algorithms (Fig. 12) (Veličković et al., 2022).

Related to approaches that use deep learning for reasoning-related tasks, we have seen
that large language models may be adapted to solve math11,12 (Cobbe et al., 2021) (Fig. 13),
arithmetic, logical, and symbolic reason-based problems expressed in natural language. One
possible idea is to ask the model to tackle the problem by prompting the model. Similarly to
humans, “thinking” step by step helps to solve logical statements13 (Wei et al., 2022; Kojima
et al., 2022) (Fig. 14). Some recent works are using language models for robotics14.

Nowadays, we have much more resources efficient models (Tan & Le, 2019; Mehta &
Rastegari, 2021) and also techniques such as quantization (Gholami et al., 2021), pruning (Liang
et al., 2021), and distillation (Gou et al., 2021) that allow us to deploy deep neural networks into
constrained embedded systems and devices. Finally, we have expectations15 that these models
will consume much less energy in the near future (Patterson et al., 2022; Wright et al., 2022).

9https://imagen.research.google/
10https://openai.com/dall-e-2/
11https://openai.com/blog/formal-math/
12https://openai.com/blog/grade-school-math/
13https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html
14https://say-can.github.io/
15https://spectrum.ieee.org/analog-ai

https://imagen.research.google/
https://openai.com/dall-e-2/
https://openai.com/blog/formal-math/
https://openai.com/blog/grade-school-math/
https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html
https://say-can.github.io/
https://spectrum.ieee.org/analog-ai
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Figure 14 - Prompt Engineering: Chain of Thought (CoT)

(a)

(b)

Sources: Wei et al. (2022) and Kojima et al. (2022). Chain of Thought (CoT) Prompt Engineering Approaches: a) A CoT
approach using a single inference (Wei et al., 2022). b) The Zero-shot-CoT pipeline requires two prompted inferences. The
first inference prompts the model to “think step by step” to obtain a complete reasoning path from the large pretrained language
model. We ask for a synthetic conclusion in the second inference that prompts the model with “Therefore, the answer is:”.
These simple prompt engineering procedures significantly increase the model performance in the analyzed reasoning task
(Kojima et al., 2022).
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Figure 15 - The Supervised Learning Paradigm and Unknown Distributions

Source: The Author (2022). The Supervised Learning Paradigm and the Unknown Distributions: The machine learning
paradigm is based on using data to understand the world and generalize to novel situations. However, to acquire this capability,
the model is presented with data that necessarily represent a limited portion of the real-world complexity. In classification prob-
lems, during training, the model is trained with examples of known classes. During inference, the system usually satisfactorily
generalizes whether unseen examples of these known classes have been presented. However, if a sample that does not represent
an instance of a known class is shown to the system, how may it know that it does not know? Therefore, one of the significant
challenges to current deep learning (and, in general, machine learning) systems is realizing when it cannot reliably perform the
task it was trained to and behave appropriately.

1.2 PROBLEM: DEEP LEARNING ROBUSTNESS

Despite recent advances in self-supervision (Chen et al., 2020b; Grill et al., 2020), it
is indisputable that the vast majority of success cases of deep learning practical applications
are based on pure supervised learning or fine-tuning of pretrained models. In supervised deep
learning, the classification task is the cornerstone of building more specialized tasks in computer
vision (object detection (Redmon et al., 2016), semantic segmentation (Chen et al., 2018),
instance segmentation (Ren et al., 2017; He et al., 2017), etc.) and natural language processing
(text classification (Minaee et al., 2021), named entity recognition (Li et al., 2022), etc.).

However, deep learning classifiers present a significant drawback in their current form.
We usually expect to present that an instance of a known class is presented to the neural network
for inference. If this holds, neural networks commonly show satisfactory performance. However,
in real-world applications, which are becoming even more common after the deep learning
advent, this assumption may not be fulfilled.
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Figure 16 - Unknown Distributions Examples

Source: Hendrycks et al. (2019b). Images from ImageNet-O dataset, which was created for the OOD detection task. These
examples do not belong to ImageNet classes. For each image, the black text represents the correct ImageNet-O class not
presented in ImageNet. The red text is the confidence of the ResNet-50 prediction that the image belongs to an ImageNet class.
Images of unknown distributions are wrongly assigned highly confident predictions by the model trained on ImageNet.

Indeed, it is unrealistic to expect training examples to thoroughly consider the complexity
to which the system will be submitted when in the field. We emphasize that this is not a problem
exclusively for deep learning, but rather for machine learning classification systems in general.
The possibility of being presented during test an instance that does not belong to any training
class is a limitation of the learning paradigm itself in its current form (Fig. 15). The relevance of
this problem incentivizes researchers to propose alternatives to the principle of Empirical Risk
Minimization (ERM) (Vapnik, 1991). For example, Krueger et al. (2020) propose the principle
of Risk Extrapolation (REx) that incorporates the unknown distribution aspect of the problem
into the learning theory.

The ability to detect whether an input applied to a neural network does not represent
an example of trained classes is essential to building robust applications in medicine, finance,
agriculture, engineering, fraud detection, and many others. In such situations, it is better to have
a system that can recognize that the sample should not be classified. Instead, current systems
classify unknown class instances and usually present very high confidence for them (Fig. 16).

Indeed, the rapid adoption of neural networks in modern real-world applications makes
the development of systems that can detect when dealing with examples that belong to unknown
distributions a primary necessity from a practical point of view. Besides interpretability, casual
inference, reasoning, common sense, privacy, fairness, security, and other robustness aspects,
this constitutes one of the primary challenges to construct more reliable deep learning systems.
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Figure 17 - Out-of-Distribution Detection Problem Statement

Source: The Author (2022). Out-of-distribution detection: Deep models are trained on a limited set of a priori known classes,
learning a combined in-distribution (left). During the inference, if an instance of a trained class (an example sampled from the
in-distribution) is presented to the considered system, the performance is usually satisfactory (middle). However, in real-world
applications, the system is commonly subjected to examples of unknown classes (instances sampled from unknown distribu-
tions, collectively called out-distributions). In such situations, current models usually provide high-confidence predictions. It
is a problem that affects any classification machine learning system, rather than only deep learning models. Out-of-distribution
detection is the ability to detect such situations and consequently avoid nonsense classification.

This problem has been studied under many similar or related nomenclatures, such as
spurious patterns (Vasconcelos et al., 1995), open set recognition (Vareto et al., 2017; Scheirer
et al., 2014) and open-world recognition (Bendale & Boult, 2015; Rudd et al., 2018). Recently, to
quantify the advance in our ability to construct a more reliable deep learning, Hendrycks & Gim-
pel (2017) defined out-of-distribution (OOD) detection as the task of evaluating whether a sample
does not come from the In-Distribution (ID) on which a neural network was trained (Fig. 17).

OOD detection is closely related to anomaly and novelty detection (Pang et al., 2021).
However, in OOD detection, we have multiple (usually many more than two) classes. From
an anomaly detection perspective, examples that belong to any of these classes are considered
“normal”. Additionally, we have labels that individually identify examples from each of these
“normal” classes, which collectively represent what we call the in-distribution. There are no
training examples of the “abnormal” class, which are called out-of-distribution examples in the
context of OOD detection. We have to decide whether we have an in-distribution (“normal”)
example or an out-of-distribution (“abnormal”) example during inference. In the first case, we
also have to predict the correct class.
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Figure 18 - Reliability Diagrams and Expected Calibration Errors

Source: Guo et al. (2017). Reliability diagrams and Expected Calibration Error (ECE) for CIFAR-100: Before calibration (far
left), the ECE is higher than after using calibration techniques (middle left, middle right, far right).

The relevance of building deep learning systems that support out-of-distribution detection
can not be overestimated. Indeed, in his Turing Award Lecture16 and in the invited talk at NeurIPS
201917, Yoshua Bengio stated that out-of-distribution detection is currently one of the major
challenges to move AI forward.

There are many real-world cases in which OOD detection support is important for the
solution to work properly. For example, Andrej Karpathy, the AI Tesla Director, explains how a
self-driving car system trained on a set of standard stop signs usually has a hard time identifying
“weird” stop signs18. In bacteria detection approaches, it is crucial to know when a new bacterium
may exist19.

Out-of-distribution capabilities are particularly important in many medical applications
(Zadorozhny et al., 2021). For example, it is critical when dealing with applications dealing with
Electronic Health Records. Food classifiers should be able to reject other kind of images (Yang
et al., 2021). Therefore, in OOD detection capable approaches, the system presents an auxiliary
task that evaluates whether it is indeed able to perform the primary classification task reliably.

Hendrycks & Gimpel (2017) introduced benchmark datasets and metrics for OOD
detection. Additionally, they established the baseline performance by proposing an OOD
detection approach that uses the maximum predicted probability as the score to easily detect
OOD examples. Despite being a fundamental task to build reliable AI systems, most current
OOD detection approaches are based on ad hoc techniques that produce unwanted side effects
and add troublesome requirements to the solution.

16https://www.youtube.com/watch?v=llGG62fNN64
17https://slideslive.com/38922304/from-system-1-deep-learning-to-system-2-deep-learning
18https://www.youtube.com/watch?v=hx7BXih7zx8
19https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

https://www.youtube.com/watch?v=llGG62fNN64
https://slideslive.com/38922304/from-system-1-deep-learning-to-system-2-deep-learning
https://www.youtube.com/watch?v=hx7BXih7zx8
https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html
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In addition to OOD detection, uncertain estimation is relevant to producing more robust
deep learning systems. Indeed, Guo et al. (2017) showed that neural networks are usually
uncalibrated because their predicting probabilities are not representative of the actual correctness
likelihood, which may be a significant drawback in many applications. It is reasonable to want
the predicted probability to represent somehow the chance of the classification to be correct.

Besides showing that deep networks are usually uncalibrated (Fig. 18), Guo et al. (2017)
used the Expected Calibration Error (ECE) to measure this. Finally, they also proposed many
approaches to calibrate them.

On the one hand, OOD detection deals with rejecting examples that should not even
be classified because they are not instances of trained classes. On the other hand, uncertainty
estimation tackles the problem of assigning realistic probabilities to in-distribution samples. We
have observed in the literature that this two tasks are usually study simultaneously20.

20https://sites.google.com/view/udlworkshop2021/home

https://sites.google.com/view/udlworkshop2021/home
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1.3 MOTIVATION

The explanations above show the potential of deep learning to be used even more
broadly in practice. It certainly has the potential to improve the quality of our lives. Since the
groundbreaking results obtained in 2012 with the ImageNet competition, we have noticed that
deep learning has been expanding fast in the last ten years.

Indeed, from a technology used mainly in computer vision a decade ago, deep learning has
currently been delivering remarkable state-of-the-art results also in natural language processing,
speech, and audio processing. The adoption of deep learning approaches is not restricted to
unstructured data, as methods for tabular data and time series have been proposed. We have also
witnessed promising approaches to tackle robotics using pretrained language models.

We have recently seen deep learning approaches being used to promote relevant scientific
discoveries and even to tackle reasoning-like tasks using large pretrained language models. It is
somewhat surprising that neural networks, historically associated with perception-like tasks, are
being used successfully for reasoning tasks.

Novel technologies are making it possible to train and use deep learning models with
a significantly reduced amount of labeled data (few-shot and one-shot approaches) or even no
labeled data at all (self-supervision and contrastive learning). Recent techniques are allowing
deploying deep models into resource-constrained embedded devices. Novel promising technolo-
gies show that it is possible to dramatically reduce the carbon footprint and energy consumption
to train and perform inferences with such systems.

However, for some applications, it is crucial to reject no-sense predictions or mismatch
something known with something unknown (e.g., self-driving cars). In other cases, it is critical
to produce predictions with probabilities that reflect the real chance that the system is correct in
its predictions. For example, for cancer diagnoses, the system must inform a probability that
reflects accurate chances that it is indeed correct.

Therefore, contributing to the incorporation of those capabilities into AI-based systems is
the primary motivation of this work. We believe constructing more robust deep learning systems
is essential to improving people’s lives.
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Figure 19 - Current Approaches vs. Desired Solutions

(a)

(b)

Source: The Author (2022). (a) Current approaches typically use a combination of conventional ad hoc techniques, such as input
preprocessing, temperature calibration, adversarial training, and metric learning. However, these techniques add troublesome
requirements and undesired side effects to the overall solution. Unrealistic access to OOD examples in design time is a common
undesired requirement. Slow and inefficient inferences compared to those performed by neural networks trained using standard
procedures) and Classification Accuracy (ACC) drop are usually unwanted side effects. (b) Unlike current approaches, in this
work, our goal is to design solutions that completely avoid conventional ad hoc techniques and associated side effects and
requirements. Consequently, models trained using our loss should produce accurate predictions (no classification accuracy
drop) and fast and efficient inferences. Unlike many current OOD detection methods, feature extraction and metric learning
after neural network training should also be avoided. The solutions have to be based on theoretical motivations. In this figure,
desired solutions represent the characteristics of the solutions we aim to achieve.
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1.4 OBJECTIVE

The main objective of this work is to design an OOD detection approach that, unlike
current ones, allows out-of-distribution detection without relying on ad hoc techniques that add
extra requirements or unwanted side effects to the overall solution (Fig. 19a).

Throughout this work, we argue that the unsatisfactory OOD detection performance of
modern neural networks is mainly due to the drawbacks of the currently used loss rather than
architecture limitations. Indeed, the SoftMax loss21 (i.e., the combination of the output linear
layer, the SoftMax activation, and the cross-entropy loss) anisotropy caused by the linear layer
does not induce the concentration of high-level representations in the feature space (Wen et al.,
2016; Hein et al., 2019), which makes OOD detection difficult (Hein et al., 2019). Further-
more, the SoftMax loss generates extremely low entropy (high confidence) posterior probability
distributions (Guo et al., 2017) in conflict with the fundamental principle of maximum entropy.

Therefore, we aim to contemplate novel losses that are able to work as drop-in replace-
ments to the one currently used to train neural networks, therefore avoiding the need to change
the model. No changes to the training procedure should be required. Hence, to enforce isotropy,
we aim to design an exclusively distance-based loss able to train deep neural networks end-to-end
in a straightforward way. Furthermore, to perform inference time OOD detection, we intend to
design novel scores22 that need to be fast and computationally efficient23 (Fig. 19b).

To construct the desired solutions, our scores need to be defined a priori rather than be
trainable. In addition, we aim to base the proposed approaches on solid theoretical foundations,
most likely based on the fundamentals of information theory. For all these reasons, we call the
overall solutions to be designed seamless and principled OOD detection methods.

To achieve these objectives, we investigate the following fundamental research questions:

RQ1. Is it possible to perform OOD by changing only the losses? How should we calculate
the score in such cases?

RQ2. Is there any theoretic motivation (e.g., a fundamental principle) that sustains such
OOD detection methods?

RQ3. Which characteristics would such solutions present?

In summary, we intend to study whether it is possible to design OOD detection approaches
competitive to (or that outperform) current practices, avoiding their troublesome requirements
and unwanted side effects. To answer RQ1, RQ2, and RQ3, we intend to investigate current
approaches limitations and propose novel OOD detection solutions by focusing exclusively on
neural networks and information theory foundations.

21We follow the “SoftMax loss” expression as defined in Liu et al. (2016).
22A score is a scalar that measures the likelihood of an instance belonging to the in or the out-distribution.
23In this work, we consider that an approach does not present classification accuracy drop if it never presents a classification accuracy more than one percent

lower than the correspondent SoftMax loss trained model.
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High-Performance Out-of-Distribution Detection Simply Replacing the Soft-
Max Loss. arXiv preprint arXiv:2105.14399 (paper under review).

� D Macêdo, C Zanchettin, T Ludermir. Distinction Maximization Loss: Effi-
ciently Improving Classification Accuracy, Uncertainty Estimation, and Out-
of-Distribution Detection Simply Replacing the Loss and Calibrating. arXiv

preprint arXiv:2205.05874 (paper under review).

24For an updated version, please visit: https://scholar.google.com/citations?user=hypWII4AAAAJ&hl=en
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2 BACKGROUND

“Truth is the daughter of time, not of authority.”

–Francis Bacon

“If I have seen further, it is by standing on the shoulders of giants.”

–Isaac Newton

“I swear to tell the truth, the whole truth, and nothing but the truth.”

–Witness (Sworn testimony)

“If I swear to him, then all that I am is dead already.”

–William Wallace (Braveheart)

Magistrate: “The prisoner wishes to say a word.”

William Wallace: “Freeeedommm!”

–Last Scene (Braveheart)

In this chapter, considering one of our aims is to build isotropic (exclusively distance-
based) losses designed to be applied to OOD detection, we discuss both current OOD detection
approaches and distance-based losses. Moreover, we also introduce the maximum entropy
principle that will have a fundamental role in our solutions.
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2.1 CURRENT APPROACHES

The relevance of the out-of-distribution detection auxiliary task is demonstrated in Fig. 20
while Table 2 presents the limitations of major current approaches. In the following paragraphs,
we explain in more detail their drawbacks.

Out-of-DIstribution Detector for Neural networks (ODIN) was proposed in Liang et al.

(2018) by combining input preprocessing with temperature calibration. Although it significantly
outperforms the baseline, the input preprocessing introduced in ODIN considerably increases
the inference time by requiring an initial forward pass, a backpropagation, and finally a second
forward pass to perform an inference that can be used for OOD detection.

Considering that backpropagation is typically slower than a forward pass, input prepro-
cessing makes ODIN inferences at least three times slower than normal. Additionally, input
preprocessing multiplies the inference power consumption and computational cost by at least
three. Those are severe limitations from an economic and environmental perspective (Schwartz
et al., 2019). Several subsequent OOD detection proposals incorporated input preprocessing and
its drawbacks (Liang et al., 2018; Lee et al., 2018; Hsu et al., 2020; DeVries & Taylor, 2018).

Temperature calibration consists of changing the scale of the logits of a pretrained model.
Both input preprocessing and temperature calibration require hyperparameter tuning. When
proposing novel approaches, we should prefer the ones with the smallest possible number of
hyperparameters to make the solution easier to use. It is essential in deep learning because we
may require increased computational resources to perform extensive hyperparameter validation.

Moreover, ODIN requires unrealistic access to OOD samples to validate hyperparameters.
Even if the supposed OOD samples are available during design-time, using these examples to tune
hyperparameters makes the solution overfit to detect this particular type of out-of-distribution.

In real-world applications, the system will likely operate under different/novel/unknown
out-of-distributions, and the estimated OOD detection performance could degrade significantly.
Therefore, using OOD samples to validate hyperparameters may produce over-optimistic OOD
detection performance estimations (Shafaei et al., 2019).

The Mahalanobis distance-based method1 (Lee et al., 2018) overcomes the need for
access to OOD samples by validating hyperparameters using adversarial examples, producing
more realistic OOD detection performance estimates. However, the use of adversarial examples
has the disadvantage of adding a cumbersome procedure to the solution. Even worse, the genera-
tion of adversarial samples itself requires hyperparameters, such as the maximum perturbations.
Although adequate hyperparameters may be known for research datasets, they may be difficult to
find for novel real-world data.

Moreover, as the Mahalanobis approach also requires input preprocessing, the previously
mentioned drawbacks associated with this technique are still present in the Mahalanobis solution.
Hence, both ODIN (Liang et al., 2018) and the Mahalanobis distance-based method (Lee et al.,

1For the rest of this work, the expression “the Mahalanobis distance-based method” is replaced by “the Mahalanobis method”.
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Figure 20 - Out-of-Distribution Detection Relevance

Source: The Author (2022). Out-of-Distribution Detection Relevance: In the real world, the deep neural network is subject to
out-of-distribution (OOD) examples. Ideally, the system should be able to recognize such situations.

Table 2 - OOD Detection Approaches: Special Requirements and Side Effects

Approach
Special Requirement Side Effect

Hyperparameter Additional Inefficient Inference Classification
Tuning Data or OOD Detection Accuracy Drop

ODIN1 Required Not Required Present Not Present

Mahalanobis2 Required Not Required Present Not Present

ACET3 Required Not Required Not Present Present

Outlier Exposure4 Not Required Required Not Present Not Present

GODIN5 Required Not Required Present Present

Gram Matrices6 Not Required Not Required Present Not Present

Scaled Cosine7 Not Required Not Required Not Present Present

Energy-based8 Required Required Not Present Not Present

Deep Ensemble9 Not Required Not Required Present Not Present

DUQ10 Required Not Required Present Not Present

SNGP11 Required Not Required Present Not Present

Source: The Author (2022). 1Liang et al. (2018), 2Lee et al. (2018), 3Hein et al. (2019), 4Hendrycks et al. (2019a), 5Hsu et al.
(2020), 6Sastry & Oore (2019), 7Techapanurak & Okatani (2019), 8Liu et al. (2020b), 9Lakshminarayanan et al. (2017), 10van
Amersfoort et al. (2020), 11Liu et al. (2020a).
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2018) use input preprocessing, which produces remarkably slow and energy-inefficient infer-
ences, which is undesired because it is important to make deep learning more computationally
efficient (Schwartz et al., 2019).

Furthermore, feature ensemble introduced in the Mahalanobis approach also presents
limitations. In fact, feature ensembles require training of ad hoc classification and regression
models on features extracted from many network layers. Finally, the Mahalanobis method
involves feature extraction and metric learning. Similar to the Mahalanobis distance-based
approach, Vareto et al. (2017); Scheirer et al. (2014); Bendale & Boult (2015); Rudd et al. (2018)
require metric learning on features extracted from pretrained models.

Hyperparameter tuning is also a drawback to methods based on adversarial training, such
as Adversarial Confidence Enhancing Training (ACET) (Hein et al., 2019), as we need to define
the appropriated adversarial perturbations. Adversarial training is known for increasing training
time (Wong et al., 2020), reducing classification accuracy (Raghunathan et al., 2019), and present-
ing limited scalability when dealing with large-size images (Shafahi et al., 2019). Furthermore,
adversarial training can cause a drop in classification accuracy (Raghunathan et al., 2019).

In some cases, OOD detection proposals require architecture modifications (Yu & Aizawa,
2019) or ensemble methods (Vyas et al., 2018; Lakshminarayanan et al., 2017). Despite
significantly improving the OOD detection performance, loss enhancement (regularization)
techniques, such as outlier exposure (Hendrycks et al., 2019a; Papadopoulos et al., 2019),
background methods (Dhamija et al., 2018), and the energy-based fine-tuning (Liu et al., 2020b)
require the addition of carefully chosen extra/outlier/background data and expand memory usage.
Moreover, they usually add hyperparameters to the solution.

Solutions based on uncertainty (or confidence) estimation (or calibration) (Kendall &
Gal, 2017; Leibig et al., 2017; Malinin & Gales, 2018; Kuleshov et al., 2018; Subramanya et al.,
2017) usually present additional complexity, slow and energy-inefficient inferences (Schwartz
et al., 2019), and OOD detection performance typically worse than ODIN (Shafaei et al., 2019;
Hsu et al., 2020).

The Entropic Open-Set loss and the Objectosphere loss were proposed in Dhamija et al.

(2018). These two losses used background samples to improve the performance of detecting un-
known inputs. The Entropic Open-Set loss works like the usual SoftMax loss in the in-distribution
training data, producing a low entropy for these samples. However, it forces maximum entropy
in the background samples. The Objectosphere loss is the Entropic Open-Set loss with an added
regularization factor that forces the feature magnitude of in-distribution samples to be near a
predefined value ξ while minimizing the feature magnitude of background samples.

Methods that use data-augmentation have been proposed. Tack et al. (2020) improve
OOD detection in a self-supervised setting. Sastry & Oore (2019) analyzed statistics of the
activations of the pretrained model on training and validation data to detect OOD examples.
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In 2019, on the one hand, IsoMax (Macêdo et al., 2019) proposed a non-squared

Euclidean distance last layer to address out-of-distribution detection in an end-to-end trainable

way (i.e., no feature extraction). On the other hand, Scaled Cosine (SC) (Techapanurak &
Okatani, 2019) proposed using a cosine distance. Although the scale factor in IsoMax is a
constant scalar called the entropy scale, Scaled Cosine requires the addition of a block of layers

to learn the scale factor. This is made up of an exponential function, batch normalization, and
a linear layer that has the feature layer as input. Moreover, to present high performance, it is
necessary to avoid applying weight decay to this extra learning block. We believe that this
additional learning block, which adds an ad hoc linear layer in the final of the neural network,
may make the solution prone to overfitting and explain the classification accuracy drop mentioned
by the authors.

In 2020, Generalized Out-of-DIstribution Detector for Neural networks (GODIN) (Hsu
et al., 2020) cited and was heavily inspired by Scaled Cosine. GODIN kept the extra learning

block to learn the scale factor and also avoided applying weight decay to it. In addition to
the usual affine transformation and cosine distance from Scaled Cosine, it presents a variant
that uses a Euclidean distance-based last layer, similar to IsoMax. The major contribution of
GODIN was to allow using the input preprocessing introduced in ODIN without the need for
out-of-distribution data. However, input preprocessing increases the inference latency (i.e.,
reduces the inference efficiency) approximately four times (Macêdo et al., 2022).

We emphasize that both Techapanurak & Okatani (2019); Hsu et al. (2020) presents classi-

fication accuracy drop of significantly more than one percent in some situations, which is a harm-
ful side effect, as classification is commonly the primary aim of the system (Carlini et al., 2019).

Moreover, Spectral-Normalized Neural Gaussian Process (SNGP) (Liu et al., 2020a)
cited, followed, and improved the idea introduced by IsoMax in 2019: A distance-based output

layer for OOD detection. In a similar direction, Deterministic Uncertainty Quantification (DUQ)
(van Amersfoort et al., 2020) also proposed a modified distance-based loss to address OOD

detection. However, unlike IsoMax variants (e.g., IsoMax, IsoMax+, and DisMax), SNGP and
DUQ produce inferences not as efficient as those produced by a deterministic neural network
(Liu et al., 2020a). In 2021, the IsoMax+ loss (Macêdo & Ludermir, 2021) introduced the
isometric distance. Considering that OOD and uncertainty estimation are related and relevant
auxiliary tasks, modern approaches such as SNGP simultaneously tackle both.
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2.2 DISTANCE-BASED LOSSES

Recently, neural network distance-based losses have been proposed in the context of
face recognition. For example, the contrastive (Sun et al., 2014) and triplet (Schroff et al.,
2015) losses use the high-level feature (embeddings) pairwise distances. In both cases, the
SoftMax function2 is not present, and the squared Euclidean distance is used. One of the main
drawbacks is the need for using Siamese neural networks, which adds complexity to the solution
and expands memory requirements during training (Wen et al., 2016).

Additionally, the triplet sampling and pairwise training, which implicate the recombi-
nation of the training samples with dramatic data expansion, slow convergence and produce
instability (Wen et al., 2016). Finally, no prototypes are learned during training. The challenge
of training networks using purely distance-based losses while avoiding triplet sampling and
pairwise training was discussed in Wen et al. (2016), which proposed a squared Euclidean
distance-based regularization procedure.

The center loss (Wen et al., 2016) has two parameters α and λ . We call a loss isotropic
when its dependency on the high-level features (embeddings) is performed exclusively through
distances, which are usually calculated to the class prototypes. Any metric may be used for such
purpose. Any valid3 distance may be used to construct an isometric loss. In this sense, the center
loss is not isotropic, as it presents affine transformation in its SoftMax classification term. Thus,
the center loss inherits the drawbacks of the SoftMax loss affine transformation (See Chapter 3).

In Snell et al. (2017), the authors proposed a solution based on squared Euclidean
distance to address few-shot learning. However, this approach does not work as a SoftMax loss
drop-in replacement, as it does not simultaneously learn high-level features (embeddings) and

prototypes using exclusively stochastic gradient descent (SGD) and end-to-end backpropagation.
Indeed, despite learning embeddings using regular SGD and backpropagation, additional offline

procedures are required to calculate the class prototypes.

2We follow the “SoftMax function” expression as defined in Liu et al. (2016).
3https://en.wikipedia.org/wiki/Metric_(mathematics)

https://en.wikipedia.org/wiki/Metric_(mathematics)
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Figure 21 - The Principle of Maximum Entropy

Source: The Author (2022). The Principle of Maximum Entropy: From a set of probability distributions that satisfactorily
describe the prior knowledge available, the distribution that presents the maximal information entropy (i.e., the least informative
option) represents the best possible choice. The maximum entropy principle produces the least biased possible probability
distribution (no extra assumptions not presented in data).

2.3 MAXIMUM ENTROPY PRINCIPLE

The principle of maximum entropy, formulated by E. T. Jaynes to unify the statistical
mechanics and information theory entropy concepts (Jaynes, 1957a,b), states that when esti-
mating probability distributions, we should choose the one that produces the maximum entropy
consistent with the given constraints (Cover & Thomas, 2006). Following this principle, we
avoid introducing additional assumptions or bias4 not presented in the data.

From a set of trial probability distributions that satisfactorily describe the available
prior knowledge, the distribution that presents the maximal information entropy, which is the
least informative option, represents the best possible choice. In other words, we must produce
posterior probability distributions as under-confident as possible as long as they match the correct
predictions for accurate classification.

4https://mtlsites.mit.edu/Courses/6.050/2003/notes

https://mtlsites.mit.edu/Courses/6.050/2003/notes
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Figure 22 - Data Augmentation Approaches

Source: Yun et al. (2019). Some recent data augmentation approaches are capable of increasing the OOD detection performance
in some cases.

2.4 DATA AUGMENTATION

Some recent studies have shown that data augmentation may enhance OOD detection.
For example, Yun et al. (2019) showed that composing two images improves out-of-distribution
detection performance (Fig. 22). In Mixup (Zhang et al., 2018), two images are added pixel by
pixel using some weighted proportion. Cutout (Devries & Taylor, 2017) removed some portion
of an image. CutMix replaces a piece of an image with a frame taken from another.

Building novel data augmentation methods to improve robustness is an interesting pro-
posal because they do not impact the inference delay. However, we need to be careful to avoid
increasing the training time. It is also important to avoid adding too many hyperparameters to
the solution when designing novel data augmentation strategies.
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3 ENTROPIC LOSSES

“More things should not be used than are necessary.”

–William of Ockham

“Things should be made as simple as possible, but not simpler.”

–Albert Einstein

“The prize is in the pleasure of finding the thing out, the kick in the discovery,

the observation that other people use it [my work] – those are the real things,

the honors are unreal to me.”

–Richard Feynman

In this chapter, we present our solutions to the out-of-distribution and uncertainty estima-
tion problems. We initially propose to use our isotropic distance-based loss IsoMax combined
with the entropic score. Then, we evolve IsoMax to IsoMax+ by changing the initialization and
performing what we call the isometrization of the distances used in IsoMax. We also propose the
minimum distance score for out-of-distribution detection. Moreover, starting from IsoMax+, we
add some modifications to present the state-of-the-art DisMax loss. Even more, we propose a
novel score called the max-mean logit entropy score. Finally, we also built a fast way to achieve
state-of-the-art uncertainty estimation by calibrating the temperature of DisMax trained models.
We collectively call all proposed losses entropic losses because all of them are based on the
principle of maximum entropy.
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Figure 23 - Seamless Approach: Loss and Score

Source: The Author (2022). The OOD detection solution is composed of two parts: the IsoMax loss and the Entropic Score.

3.1 ISOTROPY MAXIMIZATION LOSS

The first component of our seamless and principled approach is the Isotropy Maximiza-
tion Loss (IsoMax) loss. The second is the rapid entropy score used for OOD detection. The
entropic score is defined as the negative entropy of the neural network output probabilities. We
chose the entropic score also based on the maximum entropy principle (Fig. 23).

As will be explained in detail in the next section, the IsoMax loss uses exclusively

distance-based logits to fix the SoftMax loss anisotropy caused by its affine transformation.
Moreover, we introduce the entropic scale, a constant scalar multiplicative factor applied to the
logits throughout training that is, nevertheless, removed before inference to achieve high entropy
posterior probability distributions in agreement with the maximum entropy principle.

The entropic scale is equivalent to the β of the SoftMax function. However, training
with a predefined constant entropic scale and then removing it before inference is completely
different from temperature calibration. On the one hand, in ODIN and similar methods based on
temperature calibration, the temperature of a pretrained model is validated after training, which
nevertheless was performed with a temperature equal to one. This validation usually requires
unrealistic access to OOD or adversarial examples. Furthermore, over-optimistic performance
estimation is commonly produced (Shafaei et al., 2019). On the other hand, our approach
requires neither hyperparameter validation nor access to OOD or adversarial data.

The intuitions that associate the unsatisfactory OOD detection performance of current
neural networks with the SoftMax loss anisotropy and disagreement with the maximum entropy
principle. The IsoMax loss trained models present accurate predictions and fast inferences that
are energy- and computation-efficient. It does not require additional data. When using the
entropy, rather than just one output, all network outputs are considered. In applications where
the requirements and side effects of current OOD techniques are not a concern, future work may
combine current approaches with our loss to achieve even higher OOD detection performance.
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Figure 24 - Structural Blocks: SoftMax Loss vs. IsoMax Loss

(a)

(b)

Source: The Author (2022). Loss structural blocks: (a) SoftMax loss. Adapted from Liu et al. (2016). (b) IsoMax loss (ours).
In contrast to the SoftMax loss affine transformation, the IsoMax loss nonlinear isotropic layer incentivizes the concentration of
high-level representations around learnable prototypes, facilitating OOD detection while avoiding the need for feature extraction
and metric learning post-processing phases. Moreover, the exclusively distance-based nonlinearity increases the neural network
representation power. During training, the isotropic layer is multiplied by a constant value called the entropic scale. For
inference, the entropic scale is removed to produce high entropy posterior probability distributions, as recommended by the
maximum entropy principle. Finally, the OOD detection uses the entropic score, which is defined as the negative entropy of
neural network output probabilities.

The swap of the SoftMax loss with the IsoMax loss requires changes in neither the
model’s architecture1 nor training procedures or parameters. Fig. 24 synthesizes the differences
between the SoftMax loss and the IsoMax loss.

3.1.1 Initial Considerations

Let xxx represent the input applied to a neural network and fff θθθ (xxx) represent the high-level
feature vector produced by it. For this work, the underlying structure of the network does not
matter. Considering k to be the correct class for a particular training example xxx, we can write the
SoftMax loss associated with this specific training sample as:

LS(ŷ(k)|xxx) =− log




exp(www>k fff θθθ (xxx)+bk)

∑
j

exp(www>j fff θθθ (xxx)+b j)




�
 �	3.1

In Equation
�
 �	3.1 , www j and b j represent the weights and biases associated with class j,

respectively. From a geometric perspective, the term www>j fff θθθ (xxx)+b j represents a hyperplane
in the high-level feature space. It divides the feature space into two subspaces called positive

1Following a modern encoder-decoder and self-supervision terminology, we do not consider the last layer part of the architecture.
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Figure 25 - Separable Features vs. Discriminative Features

Source: Adapted from Wen et al. (2016). SoftMax loss produces separable features (Wen et al., 2016). Post-processing metric
learning on features extracted from SoftMax loss trained networks may convert from the situation on the left to the situation on
the right (Lee et al., 2018; Mensink et al., 2013; Vareto et al., 2017; Scheirer et al., 2014; Bendale & Boult, 2015; Rudd et al.,
2018). The IsoMax loss, which is an exclusively distance-based (isotropic) loss, tends to generate more discriminative features
(Wen et al., 2016). No feature extraction and subsequent metric learning are required when the IsoMax loss is used for training.

and negative subspaces. The deeper inside the positive subspace the feature vector fff θθθ (xxx) of an
example is located, the more likely the example is believed to belong to the considered class.

Therefore, training neural networks using SoftMax loss does not lead to agglomeration
of representations of examples associated with a particular class into a limited region of the
hyperspace, as it produces separable features rather than discriminative features (Wen et al.,
2016) (Fig. 25, left).

The immediate consequence is the propensity of neural networks trained with SoftMax
loss to make high confidence predictions on examples that stay in regions far away from the
training examples, which explains their unsatisfactory OOD detection performance (Hein et al.,
2019). Indeed, the SoftMax loss is based on affine transformations, which are essentially
internal products. Consequently, the last layer representations of such networks tend to align
in the direction of the weight vector, producing locally preferential directions in space and
subsequently anisotropy.

The SoftMax loss anisotropy is usually corrected by using metric learning on neural
network pretrained features (Lee et al., 2018; Mensink et al., 2013; Vareto et al., 2017; Scheirer
et al., 2014; Bendale & Boult, 2015; Rudd et al., 2018). For example, the high OOD detection
performance of the Mahalanobis approach (Lee et al., 2018) indicates that deploying locally
isotropic spaces around class prototypes improves the OOD detection performance. In such
solutions, a mapping from the extracted features to a novel embedding space is constructed and
class prototypes are produced. The distance may be predefined (e.g., Euclidean distance) or
learned (e.g., Mahalanobis distance).
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However, approaches based on feature extraction and metric learning present drawbacks
(Musgrave et al., 2020). First, ad hoc procedures are required after neural network training.
Additionally, they usually present hyperparameters to tune, usually requiring unrealistic access
to design-time OOD or adversarial samples.

Therefore, a possible option to build a seamless approach to the OOD detection is
to design an isotropic (exclusively distance-based) loss that works as a SoftMax loss drop-in
replacement. Hence, we obtain prototypes based classification while avoiding metric learning
post-processing (Fig. 25, right).

3.1.2 Seamless Isotropic Loss

Let fff θθθ (xxx) represent the high-level feature (embedding) associated with xxx, ppp j
φφφ

represent
the prototype associated with the class j, and d() represent a distance function. To construct an
isotropic loss, we need to avoid direct dependency on fff θθθ (xxx) or ppp j

φφφ
. Therefore, the loss has to be

a function that exclusively depends on the embedding-prototype distances given by d( fff θθθ (xxx), ppp j
φφφ
).

Therefore, we can write:

LI =g(d( fff θθθ (xxx), ppp j
φφφ
))

�
 �	3.2

In the previous equation, g() represents a scalar function. The expression d( fff θθθ (xxx), ppp j
φφφ
)

represents the isotropic layer, where its weights are given by the learnable prototypes ppp j
φφφ

. We
decided to normalize the embedding-prototype distances using the SoftMax function to allow
interpretation in terms of probabilities. Therefore, the embedding-prototype distances represent
the logits of the SoftMax function and correspond to the output of the isotropic layer. We also
decided to use the cross-entropy for efficient optimization. Therefore, we can write the following:

LI(ŷ(k)|xxx) =− log




exp(−d( fff θθθ (xxx), pppk
φφφ
))

∑
j

exp(−d( fff θθθ (xxx), ppp j
φφφ
))




�
 �	3.3

In the above equation, k represents the correct class, while the negative logarithm
represents the cross-entropy. The negative terms before the distances are necessary to indicate the
negative correlation between distances and probabilities. The expression between the outermost
parentheses applied to the term −d( fff θθθ (xxx), ppp j

φφφ
) represents the SoftMax function.

We need to choose a distance that allows IsoMax to work as a SoftMax drop-in replace-
ment. Hence, the loss needs to learn both high-level features and prototypes using exclusively

SGD and end-to-end backpropagation, as, based on the goal we defined for this work, no ad-

ditional offline procedures are allowed. We emphasize that the prototypes are learned using
backpropagation just like other weights. We also require the training using IsoMax loss to be as
consistent and stable as the typical SoftMax loss neural network training.
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Figure 26 - SoftMax Loss Drawbacks and IsoMax Loss Advantages

(a)

(b)

Source: The Author (2022). SoftMax loss produces separable features (above), while distance-based losses tend to generate dis-
criminative features (below). Out-of-distribution examples are more discernible when in-distribution examples are concentrated
around prototypes.
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The covariance matrix makes it hard to use the Mahalanobis distance to train a neural
network directly, as it contains components that are not differentiable. Therefore, we decide
to use Euclidean distance. We have reasons to prefer the nonsquared Euclidean distance
rather than the squared Euclidean distance. First, the nonsquared Euclidean distance is a real
metric that obeys the Cauchy–Schwarz inequality while the squared Euclidean distance is not.
Using a metric that follows the Cauchy–Schwarz inequality is essential because of our previous
geometric considerations such as features separability and isotropy. Additionally, using the
squared Euclidean distance is actually equivalent to using a linear model with a particular
parameterization (Snell et al., 2017; Mensink et al., 2013), which we prefer to avoid increasing
the representative power of the proposed loss.

Moreover, we experimentally observed that training neural networks using exclusively
SGD and end-to-end backpropagation is more stable and consistent when using nonsquared
Euclidean distance rather than squared Euclidean distance. Indeed, squared Euclidean distance-
based logits are harder to seamlessly train than nonsquared Euclidean distance-based logits
because numeric calculus instabilities are much more likely to occur when performing calcula-
tions and derivations with values of the order of O(e−d2

) than O(e−d).
Finally, even in the cases in which we were eventually able to seamlessly train neural

networks using the squared Euclidean distance, we observed lower OOD detection performance
than using the nonsquared Euclidean distance-based alternative. Therefore, we choose the
nonsquared Euclidean distance.

Unlike metric learning-based OOD detection approaches, rather than learning a metric
from a preexisting feature space (metric learning on features extracted from a pretrained model),
when using the IsoMax loss, we learn a feature space that is, from the start, consistent with the
chosen metric. Indeed, the minimization of Equation

�
 �	3.3 is achieved by making the expression
inside the outer parentheses go to one. It is only possible by reducing the distances between
the high-level features (embeddings) and the associated class prototypes, while simultaneously
keeping high distances among class prototypes. Hence, the main aim of metric learning, which
is to reduce intraclass distances while increasing interclass distances, is performed naturally
during the neural network training, avoiding the need for feature extraction and metric learning
post-processing phases (Fig. 26).

3.1.3 Principle of Maximum Entropy and Entropic Scale

Isotropy increases OOD detection performance (See Chapter 4). However, for further
gains, we need to circumvent the cross-entropy extreme propensity to produce significantly low
entropy posterior probability distributions. Additionally, as established in our goal, we need to
achieve this without losing IsoMax seamlessness.
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Figure 27 - The Entropic Maximization Trick

(a)

(b)

Source: The Author (2022). High entropy distributions (IsoMax Loss) may produce the same predictions and, consequently,
classification accuracies of low entropy distributions (SoftMax Loss). However, the former provide a much higher OOD de-
tection performance than the latter, regardless of using maximum probability or entropy as the score. SoftMax loss trained
neural networks produce overconfident low-entropy probability distributions in disagreement with the maximum entropy prin-
ciple. Our entropy maximization trick, which consists in training using logits multiplied by a constant factor called the entropic
scale that is nevertheless removed before inference, enables IsoMax to generate underconfident high-entropy (almost maximum
entropy) probability distributions in agreement with the principle of maximum entropy.
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The principle of maximum entropy has been studied as a regularization factor (Dubey
et al., 2018; Pereyra et al., 2017). In some cases, it has also been used as a direct optimization
procedure without connection to cross-entropy minimization or backpropagation. For example,
in Miller et al. (1995); Berger et al. (1996); Shawe-Taylor & Hardoon (2009), the maximization
of the entropy subject to a constraint on the expected classification error was shown to be
equivalent to solving an unconstrained Lagrangian. Although theoretically well grounded (Pearl,
1989; Williamson, 2005, 2009, 2013), direct entropy maximization presents high computational
complexity (Pearl, 1989; Williamson, 2009).

Alternatively, modern neural networks are trained using computationally efficient cross-
entropy. However, this procedure does not prioritize high entropy (low confident) posterior
probability distributions. Actually, the opposite is true. Indeed, the minimization of cross-entropy
has the undesired side effect of producing low entropy (overconfident) posterior probability
distributions (Guo et al., 2017). Unlike the previously mentioned works, we use the principle
of maximum entropy neither to motivate the construction of regularization mechanisms, such
as label smoothing or the confidence penalty (Dubey et al., 2018; Pereyra et al., 2017), nor
to perform direct maximum entropy optimization (Miller et al., 1995; Berger et al., 1996;
Shawe-Taylor & Hardoon, 2009). Indeed, the entropy is not even calculated during training.

In the opposite direction, we use the principle of maximum entropy as motivation to
construct high-entropy (low-confident) posterior probabilities, still relying on computationally
efficient cross-entropy minimization. Since our approach does not directly maximize the entropy,
we cannot state that IsoMax produces the maximum entropy posterior probability distribution.
However, the entropies of the probability distributions produced by IsoMax are high enough to
improve the OOD detection performance significantly.

LSoftMax=− log


 exp(Lk)

∑
j

exp(L j)


→ 0

�
 �	3.4

=⇒ P(y|xxx)→ 1
�
 �	3.5

=⇒ HSoftMax→ 0
�
 �	3.6

Equation
�
 �	3.4 describes the behavior of cross-entropy and entropy for the SoftMax loss.

L j represents the logits associated with class j, and Lk represents the logits associated with the
correct class k. When minimizing the loss (Equation

�
 �	3.4 ), high probabilities are generated
(Equation

�
 �	3.5 ). Consequently, significantly low entropy posterior probability distributions are
produced (Equation

�
 �	3.6 ). Hence, the usual cross-entropy minimization tends to generate unre-
alistic overconfident (low entropy) probability distributions. Therefore, we have an opposition
between cross-entropy minimization and the principle of maximum entropy.
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LIsoMax=− log


 exp(−Es×Dk)

∑
j

exp(−Es×D j)


→ 0

�
 �	3.7

6=⇒ P(y|xxx)→ 1
�
 �	3.8

6=⇒ HIsoMax→ 0
�
 �	3.9

The IsoMax loss conciliates these contradictory objectives (loss minimization and entropy
maximization) by multiplying the logits by a constant positive scalar Es, which is presented
during training but removed before inference. Equation

�
 �	3.7 demonstrates how the entropic
scale (presented at training time but removed at inference time) allows the production of high
entropy posterior distributions despite using cross-entropy minimization. D j represents the
distances associated with class j, and Dk represents the distances associated with the correct
class k. The Es present during training allows the term −Es×Dk to become high enough (less
negative compared to −Es×D j) to produce a low loss (Equation

�
 �	3.7 ) without producing high
probabilities for the correct classes, as they are calculated with the Es removed (Equation

�
 �	3.8 ).
Thus, it is possible to build posterior probability distributions with high entropy (Equation

�
 �	3.9 )
in agreement with the fundamental principle of maximum entropy despite using cross-entropy to
minimize the loss (Fig. 27).

Therefore, returning to Equation
�
 �	3.3 , multiplying the embedding-prototype distances

by Es, and making d() equal to the nonsquared Euclidean distance, we can write the definitive
IsoMax loss as:

LI(ŷ(k)|xxx) =− log†




exp(−Es

∥∥∥ fff θθθ (xxx)−pppk
φφφ

∥∥∥)

∑
j

exp(−Es

∥∥∥ fff θθθ (xxx)−ppp j
φφφ

∥∥∥)




=− log†




exp(−Es

√
( fff θθθ (xxx)−pppk

φφφ
)·( fff θθθ (xxx)−pppk

φφφ
))

∑
j

exp(−Es

√
( fff θθθ (xxx)−ppp j

φφφ
)·( fff θθθ (xxx)−ppp j

φφφ
))




�
 �	3.10

†The probability (i.e., the expression between the outermost parentheses) and logarithm operations are computed sequentially and separately for higher OOD
detection performance (see the source code).
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We emphasize that removing the entropic scale after the training does not affect the
ability of the solution to represent the prior knowledge available, as it does not change the
predictions. Therefore, the expression for the probabilities with the entropic scale removed is
preferable, as it remarkably increases the entropy of the posterior distributions in agreement
with the principle of maximum entropy. Hence, inference probabilities for the IsoMax loss are
defined as follows:

pI(y(i)|xxx) =
exp(−

∥∥∥ fff θθθ (xxx)−pppi
φφφ

∥∥∥)

∑
j

exp(−
∥∥∥ fff θθθ (xxx)−ppp j

φφφ

∥∥∥)

=
exp(−

√
( fff θθθ (xxx)−pppk

φφφ
)·( fff θθθ (xxx)−pppk

φφφ
))

∑
j

exp(−
√

( fff θθθ (xxx)−ppp j
φφφ
)·( fff θθθ (xxx)−ppp j

φφφ
))

�
 �	3.11

3.1.4 Initialization and Implementation Details

We experimentally observed that using the common Xavier (Glorot & Bengio, 2010) and
Kaiming (He et al., 2015) initializations for prototypes makes the OOD detection performance
oscillate. Sometimes it improves, sometimes it decreases. Hence, we decided to always initialize
all prototypes to zero vector. It indeed makes sense, as this is the most natural value for untrained
embeddings. Weight decay is applied to prototypes, as they are regular trainable parameters
in our solution.

To calculate losses based on cross-entropy, deep learning libraries usually combine the
logarithm and probability calculations into a single computation. However, we experimentally
observed that sequentially computing these calculations as stand-alone operations improves
IsoMax performance because it is more effective in keeping the initial output entropy high.

The class prototypes have the same dimension as the neural network last layer represen-
tations. Naturally, the number of prototypes is equal to the number of classes. Therefore, the
IsoMax loss has fewer parameters than the SoftMax loss, as it has no bias to be learned. We
remember that the prototypes are updated during the regular backpropagation procedure, just
like any other parameters.

Finally, we verified classification accuracy drop and low or oscillating OOD detection
performance when trying to integrate Es with cosine similarity (Liu et al., 2016; Wang et al.,
2018; Deng et al., 2019) or the affine transformations used in SoftMax loss. The above trick (i.e.,
to initialize prototypes to zero vector) cannot be performed in cosine similarity and SoftMax
loss cases. Therefore, our only option is to confirm that we need to use distance. Moreover, the
nonsquared Euclidean distance as the best option to build the IsoMax loss.
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3.1.5 Entropic Score

Out-of-distribution detection approaches typically define a score to be used after inference
to evaluate whether an example should be considered OOD. In a seminal work, Shannon (1948a,b)
demonstrated that entropy represents the optimum measure of the randomness of a source of
symbols. More broadly, we currently understand entropy as a measure of the uncertainty.
Therefore, considering that the uncertainty in classifying a specific sample should be an optimum
metric to evaluate whether a particular example is OOD, we define our score to perform OOD
detection, called the entropic score, as the negative entropy of the output probabilities:

E S =−
N

∑
i=1

p(y(i)|xxx) log p(y(i)|xxx)
�
 �	3.12

Using the negative entropy as a score to evaluate whether a particular sample is OOD,
we consider the information provided by all available network outputs rather than just one. For
instance, ODIN and ACET only use the maximum probability, while the Mahalanobis method
only uses the distance to the nearest prototype.

During IsoMax training, the embedding-prototype distances are affected. On the one
hand, the distances from embeddings to the correct class prototype are reduced to increase
classification accuracy. On the other hand, the distances from embeddings to the wrong class
prototypes are increased. Consequently, based on the Equation

�
 �	3.11 , the probabilities of
in-distribution examples increase. Therefore, it is reasonable to expect that samples with
lower entropy more likely belong to the in-distribution. Additionally, using this predefined
mathematical expression as score avoids the need to train an ad hoc additional regression model
to detect OOD samples that is otherwise required, for example, in the Mahalanobis approach.

Even more important, since no regression model needs to be trained, there is no need
for unrealistic access to OOD or adversarial samples for hyperparameter validation2. Since
the entropic score is a predefined mathematical expression rather than a trainable model, it is
available as soon as the neural network training finishes, avoiding additional training of ad hoc
models in a post-processing phase.

In practice, we may set the threshold in two ways. First, we may collect random out-of-
distribution samples and also use the train or validation set to define the threshold. This way, we
may have an estimation of the performance we may expect in the field.

The second option is only using the train or validation set without access to a random
out-of-distribution. In this case, we may set a threshold by making, for example, 95% of your
in-distribution data to be considered in-distribution using the chosen threshold. In this case,
however, we will not have an estimation of the expected performance. In this work, we followed
the literature and often used threshold independent detection metrics to ensure the robustness of
the score used.

2We call hyperparameter validation (or tuning) the procedure of selecting the model for test evaluation (i.e., model section) based on the performance achieved
on the validation partition of a set of models trained with different hyperparameters.
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3.2 ENHANCED ISOTROPY MAXIMIZATION LOSS

In this section, we present the enhanced IsoMax for training and the minimum distance
score for inference. By combining those methods, we develop a seamless, scalable, and high-
performance out-of-distribution detection approach.

We started from the IsoMax loss. First, we normalize both the prototypes and the features.
Second, we change the initialization of the prototypes. Third, we add the distance scale, which
is a learnable scalar parameter that multiplies the feature-prototype distances. We call the
combination of these three modifications the isometrization of the feature-prototype distances.
We call the proposed modified version of IsoMax the Enhanced Isotropy Maximization Loss
(IsoMax+). Finally, we use the minimum feature-prototype distance as a score to perform OOD
detection. Considering that the minimum feature-prototype distance is calculated to perform the
classification, the OOD detection task presents essentially zero computational cost because we
simply reuse this value as a score to perform OOD detection.

IsoMax+ keeps the solution seamless (i.e., avoids the previously mentioned special
requirements and side effects) while significantly increasing the OOD detection performance.
Similar to IsoMax loss, IsoMax+ works as a SoftMax loss drop-in replacement because no
procedures other than regular neural network training are required.
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Figure 28 - Isometric Distances

(a)

IsoMax n-dimensional Euclidean space
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(b)

(n-1)-sphere of radius one in the
IsoMax+ n-dimensional Euclidean space
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Source: The Authors (2022). The illustration presents the advent of the isometric distances in IsoMax+. P1, P2, and P3 represent
prototypes of classes 1, 2, and 3, respectively. F denotes the feature associated with a given image. IsoMax does not restrict
prototypes and features to the (n-1)-sphere. In contrast, IsoMax+ does precisely this by rescaling prototypes and features.

3.2.1 Isometric Distance

We consider an input xxx applied to a neural network that performs a parametrized trans-
formation fff θθθ (xxx). We also consider ppp j

φφφ
to be the learnable prototype associated with class

j. Additionally, let the expression
∥∥∥ fff θθθ (xxx)−ppp j

φφφ

∥∥∥ represent the nonsquared Euclidean distance

between fff θθθ (xxx) and ppp j
φφφ

. Finally, we consider pppk
φφφ

as the learnable prototype associated with the
correct class for the input xxx. Thus, we can rewrite for convenience the IsoMax loss (equation�
 �	3.10 ) using the equation below:

LIsoMax =− log†




exp(−Es

∥∥∥ fff θθθ (xxx)−pppk
φφφ

∥∥∥)

∑
j

exp(−Es

∥∥∥ fff θθθ (xxx)−ppp j
φφφ

∥∥∥)




�
 �	3.13

In the above equation, Es represents the entropic scale. From Equation
�
 �	3.13 , we observe

that the distances from IsoMax loss are given by the expression D =
∥∥∥ fff θθθ (xxx)−ppp j

φφφ

∥∥∥. During
inference, probabilities calculated based on these distances are used to produce the negative
entropy, which serves as a score to perform OOD detection. However, because the features fff θθθ (xxx)

are not normalized, examples with low norms are unjustifiably favored to be considered OOD
examples because they tend to produce high entropy. Additionally, because the weights ppp j

φφφ
are

not normalized, examples from classes that present prototypes with low norms are unjustifiably
favored to be considered OOD examples for the same reason. Thus, we propose replacing

†The probability (i.e., the expression between the outermost parentheses) and logarithm operations are computed sequentially and separately for higher OOD
detection performance (see the source code).
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fff θθθ (xxx) with its normalized version given by f̂ff θθθ (xxx)= fff θθθ (xxx)/
∥∥ fff θθθ (xxx)

∥∥. Additionally, we propose

replacing ppp j
φφφ

with its normalized version given by p̂pp j
φφφ
= ppp j

φφφ
/
∥∥∥ppp j

φφφ

∥∥∥. The expression‖vvv‖ represents
the 2-norm of a given vector vvv.

However, while the distances in the original IsoMax loss may vary from zero to infinity,
the distance between two normalized vectors is always equal to or lower than two. To avoid this
unjustifiable and unreasonable restriction, we introduce the distance scale ds, which is a scalar

learnable parameter. Naturally, we require the distance scale to always be positive by taking its
absolute value |ds|.

Feature normalization makes the solution isometric regardless of the norm of the features
produced by the examples. The distance scale is class independent because it is a single scalar
value learnable during training. The weight normalization and the class independence of the
distance scale make the solution isometric regarding all classes. The final distance is isometric
because it produces an isometric treatment of all features, prototypes, and classes. Therefore,

we can write the isometric distances used by the IsoMax+ loss as DI = |ds|
∥∥∥∥ f̂ff θθθ (xxx)− p̂pp j

φφφ

∥∥∥∥.

Returning to Equation
�
 �	3.13 , we can finally write the expression for the IsoMax+ loss as follows

(see Algorithm 1 and Fig. 28):

LIsoMax+ =− log††




exp(−Es |ds|
∥∥∥∥ f̂ff θθθ (xxx)− p̂ppk

φφφ

∥∥∥∥)

∑
j

exp(−Es |ds|
∥∥∥∥ f̂ff θθθ (xxx)− p̂pp j

φφφ

∥∥∥∥)




�
 �	3.14

Applying the entropy maximization trick (i.e., the removal of the entropic scale Es for
inference) (Macêdo et al., 2021), we can write the expression for the IsoMax+ loss probabilities
used during inference for performing OOD detection when using the maximum probability score
or the entropic score (Macêdo et al., 2021):

PIsoMax+(y(i)|xxx) =
exp(−|ds|

∥∥∥∥ f̂ff θθθ (xxx)− p̂ppi
φφφ

∥∥∥∥)

∑
j

exp(−|ds|
∥∥∥∥ f̂ff θθθ (xxx)− p̂pp j

φφφ

∥∥∥∥)

�
 �	3.15

Different from IsoMax loss, where the prototypes are initialized to a zero vector, we
initialized all prototypes using a normal distribution with a mean of zero and a standard deviation
of one. This approach is necessary because we normalize the prototypes when using IsoMax+
loss. The distance scale is initialized to one, and we added no hyperparameters to the solution.

††The probability (i.e., the expression between the outermost parentheses) and logarithm operations are computed sequentially and separately for higher OOD
detection performance (see Algorithm 1 and the source code).
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Algorithm 1: PyTorch for the Enhanced IsoMax Loss.

class IsoMaxPlusLossFirstPart(nn.Module):
"""This part replaces the model classifier output layer nn.Linear()"""
def __init__(self, num_features, num_classes):

super(IsoMaxPlusLossFirstPart, self).__init__()
self.num_features = num_features
self.num_classes = num_classes
self.prototypes = nn.Parameter(torch.Tensor(num_classes, num_features))
nn.init.normal_(self.prototypes, mean=0.0, std=1.0)
self.distance_scale = nn.Parameter(torch.Tensor(1))
nn.init.constant_(self.distance_scale, 1.0)

def forward(self, features):
distances = torch.abs(self.distance_scale) * torch.cdist(

F.normalize(features), F.normalize(self.prototypes),
p=2.0, compute_mode="donot_use_mm_for_euclid_dist")

logits = -distances
return logits

class IsoMaxPlusLossSecondPart(nn.Module):
"""This part replaces the nn.CrossEntropyLoss()"""
def __init__(self, entropic_scale = 10.0):

super(IsoMaxPlusLossSecondPart, self).__init__()
self.entropic_scale = entropic_scale

def forward(self, logits, targets):
"""Probabilities and logarithms are calculated
separately and sequentially"""
"""Therefore, nn.CrossEntropyLoss() must not be
used to calculate the loss"""
distances = -logits
probabilities_for_training = nn.Softmax(dim=1)
(-self.entropic_scale * distances)
probabilities_at_targets =
probabilities_for_training[range(distances.size(0)), targets]
loss = -torch.log(probabilities_at_targets).mean()
return loss

3.2.2 Minimum Distance Score

Motivated by the desired characteristics of the isometric distances used in IsoMax+, we
use the minimum distance as score for performing OOD detection. Naturally, the Minimum
Distance Score (MDS) for IsoMax+ is given by:

MDS=min
j

(∥∥∥∥ f̂ff θθθ (xxx)− p̂pp j
φφφ

∥∥∥∥

) �
 �	3.16

In this equation, |ds| was removed because, after training, it is a scale factor that does not
affect the detection decision. Considering that the minimum distance is computed to perform the
classification because the predicted class is the one that presents the lowest feature-prototype

distance, when using the minimum distance score, the OOD detection exhibits essentially zero

latency and computational cost because we simply reuse the minimum distance that was already
calculated for classification purpose.
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Figure 29 - IsoMax+ Loss PyTorch Code Usage

(a)

(b)

Source: The Author (2022). IsoMax+ Loss PyTorch Code Usage: a) Replace the last linear layer by the IsoMax+ loss code first
part. Replace the cross-entropy loss with the IsoMax+ loss code second part. b) Detect using the minimum distance score.
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Figure 30 - All-Distances-Aware Logits, Enhanced Logits, or Logits+

(a)

(n-1)-sphere of radius one in the
IsoMax+ n-dimensional Euclidean space
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(n-1)-sphere of radius one in the
DisMax n-dimensional Euclidean space
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Source: The Author (2022). The illustration presents the difference between IsoMax+ (Macêdo & Ludermir, 2021) and DisMax
with respect to logit formation. P1, P2, and P3 represent prototypes of classes 1, 2, and 3, respectively. F denotes the feature
associated with a given image. Like all current losses, IsoMax+ constructs each logit associated with F considering its distance
from a single prototype (olive dashed line). In contrast, DisMax loss builds each logit associated with F considering its distance
from all prototypes (purple dashed lines). We use the terms all-distances-aware logits, enhanced logits, or logits+ indistinctly.

3.3 DISTINCTION MAXIMIZATION LOSS

We started from IsoMax+ loss (Macêdo & Ludermir, 2021) to construct the Distinction
Maximization Loss (DisMax). First, we create the enhanced logits (logits+) by using all feature-
prototype distances, rather than just the feature-prototype distance to the correct class. Second, we
introduce the Fractional Probability Regularization (FPR) by minimizing the Kullback–Leibler
(KL) divergence between the output probability distribution associated with a compound image
and a target probability distribution containing fractional probabilities. The motivation of training
on fractional probabilities is to force the neural network present outputs with higher entropies.

We call DisMax dagger (DisMax†) the variant of our loss when using FPR. Otherwise, we
simply call it DisMax. Third, we construct a composite score for OOD detection that combines
three components: the maximum logit+, the mean logit+, and the entropy of the network output.
Fourth, we present a simple and fast temperature-scaling procedure that allows DisMax trained
models to produce a high-performance uncertainty estimation. Like IsoMax+, DisMax works as
a drop-in replacement for SoftMax loss. The trained models keep deterministic neural network
inference efficiency.

3.3.1 All-Distances-Aware Logits

In IsoMax loss variants (e.g., IsoMax and IsoMax+), logits are formed from distances
and are commonly used to calculate the score to perform OOD detection. Hence, it is essential
to build logits that contain semantic information relevant to separating in-distribution (ID) from
OOD during inference. IsoMax+ uses isometric distances (Macêdo & Ludermir, 2021).
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In IsoMax+, the logits are simply the negatives of the isometric distances. We have
two motivations to add the mean isometric distance considering all prototypes to the isometric
distance associated with each class to construct what we call all-distances-aware logits, enhanced

logits, or logits+.
First, considering that IsoMax+ is an isotropic loss, the pairwise distances between

the prototypes and ID examples are forced to become increasingly smaller. Therefore, after
training, it is reasonable to believe that ID feature-prototype distances are, on average, smaller
than the distances from the prototypes to OOD samples, which were not forced to be closer
to the prototypes. Hence, adding the mean distance to the logits used in IsoMax+ can help
distinguish between ID and OOD more effectively. Second, taking all feature-prototype distances
to compose the logits makes them a more stable information for OOD detection (Fig. 30).

L j
+ =−


 D j

I + 1
N

N
∑

n=1
Dn

I




�� ��3.17

all-distances-aware logit
for the j-th class

isometric distance to
the j-th class prototype

mean isometric distance
to all prototypes

PDisMax(y(i)|xxx) =
exp(Es Li

+ /T )

N
∑

j=1
exp(Es L j

+ /T )

�� ��3.18

predicted probability
distribution

all-distances-aware logit
for the j-th class

all-distances-aware logit
for the i-th class

Therefore, we consider an input xxx and a network that performs a transformation fff θθθ (xxx).
We also consider ppp j

φφφ
to be the learnable prototype associated with class j. Moreover, considering

that‖vvv‖ represents the 2-norm of a vector vvv, and v̂vv represents the 2-norm normalization of vvv, we

can write the isometric distance relative to class j as D j
I =|ds|

∥∥∥∥ f̂ff θθθ (xxx)− p̂pp j
φφφ

∥∥∥∥, where |ds| represents

the absolute value of the learnable scalar called distance scale (Macêdo & Ludermir, 2021).
Finally, we can write the proposed enhanced logit for class j using the equation

�
 �	3.17 . N is the
number of classes. Probabilities are given by equation

�
 �	3.18 , where T is the temperature. Es is the
entropic scale, which is removed after training (Macêdo et al., 2021, 2022; Macêdo & Ludermir,
2021), but before calibration. For the rest of this section, distance means isometric distance.
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3.3.2 Fractional Probability Regularization

We often train neural networks using unitary probabilities. Indeed, the usual cross-
entropy loss forces a probability equal to one on a given training example. Consequently, we
commonly train neural networks by providing a tiny proportion of points in the learning manifold.
Hence, we propose what we call fractional probability regularization (FPR). The idea is to force
the network to learn more diverse points in the learning manifold. Consequently, we confront
target and predicted probability distributions also on fractional probability values rather than
only unitary probability manifold points.

QTarget(y(i)|x̃xx) = 1
4

4
∑

m=1
δ [y(i)− y( jm)]

�� ��3.19

desired probability distribution
for the compound image

sum one quarter to the
probability of each class
in the compound image

LDisMax =− log∗




exp(Es Lk
+ )

∑
j

exp(Es L j
+ )


+α · DKL(PDisMax(y|x̃xx) ||QTarget(y|x̃xx))

�� ��3.20

enhanced logit
for the correct class k

enhanced logit
for the j-th class

fractional probability
regularization

loss
function

Therefore, our batch is divided into two halves. In the first half, we use the regular
unitary probability training. For the second batch, we construct images specifically composed
of patches of four others (Fig. 31). We construct our target probability distribution Q for those
images by adding a quarter probability for each class corresponding to a patch of the compound
image. Finally, we minimize the KL divergence regularization between our predicted and target
probability distributions in the second half. These procedures do not increase training memory
size requirements. Considering δ the Kronecker delta function3, equation

�
 �	3.19 represents the
FPR in math terms. By combining the enhanced logits and the FPR, equation

�
 �	3.20 presents
the mathematical expression of the DisMax loss. Considering OOD is related to the uncertainty
estimation, we validate α without requiring access to OOD data by choosing the pretrained
model that produces the lower expected calibration error (ECE) after the temperature calibration.

*The probability (i.e., the expression between the outermost parentheses) and logarithm operations are computed sequentially and separately for optimal OOD
detection performance.

3https://en.wikipedia.org/wiki/Kronecker_delta

https://en.wikipedia.org/wiki/Kronecker_delta
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Figure 31 - Fractional Probability Regularization

Source: The Author (2022). We use images composed of patches of four randomly selected training examples. The KL
divergence regularization term forces the network to predict fractional probabilities on compound images.

We recognize a similarity between CutMix (Yun et al., 2019) and FPR: both are based
on the combination of images to create compound data. However, we identify many differences.
CutMix combines two images, while FPR combines four images. Moreover, the combination
procedure is entirely different. In CutMix, a portion of an image is replaced by a patch of
variable size, format, and position that comes from another image. In FPR, patches of the same

size, format, and predefined positions from four different images are combined into a single
one. This simplification introduced by FPR allowed us to combine four images instead of only
two. Indeed, trying to extend CutMix by replacing portions of an image with patches from
three others while allowing random sizes, shapes, and positions produces patch superpositions,
making the calculation of the pairwise ratio of the areas of the superposed patches extremely

hard. Therefore, this simplification made it possible to simultaneously combine four rather than
only two images, in addition to avoiding the beta distribution and the α hyperparameter. In FPR,
fractional probabilities, rather than losses, are proportional to areas.

While CutMix is applied randomly to some batches with probability p, FPR is applied
to half of each batch, avoiding loss or gradient oscillations. CutMix neither creates a target
distribution containing fractional probabilities nor forces the predicted probabilities to follow it
by minimizing the KL divergence between them. Indeed, CutMix does not use the KL divergence
at all. CutMix calculates the regular cross-entropy loss of the compound image considering the
labels of the original images and takes a linear interpolation between the resulting loss values
weighted by the ratio of the areas of the patch and the remaining image. While CutMix operates
on losses, FPR operates directly on probabilities before calculating loss values. The concept of
fractional probabilities is not even present in CutMix. Unlike CutMix, the mentioned procedure
can be easily expanded to combine even more than four images. Finally, CutMix increases the

training time and presents hyperparameters (Yun et al., 2019).
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Figure 32 - Max-Mean Logit Entropy Score

(a)

ID

From the point of view of an ID example,
prototypes are likely in the near blue area

(b)

OOD

From the point of view of an OOD example,
prototypes are likely in the far red area

Source: The Author (2022). In addition to the maximum logit and the negative entropy, the MMLES incorporates the mean
logit+. We observed that the prototypes are generally closer to ID samples than OOD samples, which is true regardless
of whether the ID sample belongs to the class of the considered prototype. Hence, incorporating this all-distances-aware
information increases the OOD detection performance (see Chapter 4).

Even if we consider adapting the mosaic augmentation from the objection detection task
(Bochkovskiy et al., 2020) to classification and add to it a CutMix-like regularization, most of
the previously mentioned differences between FPR and CutMix still holds to differentiate FPR
from this CutMix-like classification-ported mosaic augmentation.

3.3.3 Max-Mean Logit Entropy Score

For OOD detection, we propose a score composed of three parts. The first part is the
maximum logit+. The second part is the mean logit+. Incorporating the mean value of the logits
into the score is an independent procedure relative to the logit formation. It can be applied
regardless of the type of logit (e.g., usual or enhanced) used during training. Finally, we subtract
the entropy calculated considering the probabilities of the neural network output. We call this
composite score Maximum-Mean Logit Entropy Score (MMLES). It is given by equation

�
 �	3.21 .
We call MMLES a composite score because it is formed by the sum of many other scores.

SMMLES = max j(L
j
+) + 1

N

N
∑

n=1
Ln
+ − H (PDisMax)

�� ��3.21

max-mean logit
entropy score

mean logit+

entropy

maximum logit+
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The motivation for the MMLES score is presented in Fig. 32. The experiments presented
in Chapter 4 show that, as explained in the mentioned figure, prototypes are usually closer to the
in-distrbutions than to out-of-distributions.

3.3.4 Temperature Calibration

Unlike the usual SoftMax loss, the IsoMax loss variants produce underestimated prob-
abilities to obey the Maximum Entropy Principle (Macêdo et al., 2021; Macêdo et al., 2019;
Macêdo et al., 2022; Macêdo & Ludermir, 2021). Therefore, we need to perform a temperature

calibration after training to improve the uncertainty estimation. To find an optimal temperature,
which was kept equal to one during training, we used the L-BFGS-B algorithm with approximate
gradients and bounds equal to 0.001 and 100 (Byrd et al., 1995; Zhu et al., 1997; Morales &
Nocedal, 2011) for ECE minimization on the validation set. This calibration takes only a few
seconds in our experiments.

Therefore, we introduced the temperature and calibrated it to improve our proposed
solutions’ uncertainty estimation. We choose to tackle the uncertainty estimation problem using
temperature calibration because Guo et al. (2017) showed that this is a simple and effective ap-
proach. Our experiments showed that mixing our modified technique for temperature calibration
with our entropic losses produced state-of-the-art results.
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4 EXPERIMENTS

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart

you are. If it doesn’t agree with experiment, it’s wrong.”

–Richard Feynman

“Whatever you do, love it like you loved that projection booth of the Paradiso

when you were little...”

–Alfredo (Cinema Paradiso)

“Similar to humans, deep neural networks also suffer from the

Dunning–Kruger effect.”

–David Macêdo

“Everything I know about fighting, I know from you. What do we fight for?

I ask myself, what were you fighting for? And was it worth it?”

–Arminius (Barbarians from Netflix)

In this chapter, we compare our entropic losses with the main state-of-the-art approaches.
The experiments are presented in an evolutionary way. We start with IsoMax experiments. Then,
we present IsoMax+ experiments. Finally, we present the DisMax experiments. The code to
reproduce all experiments of this work is available online1,2.

1https://github.com/dlmacedo/entropic-out-of-distribution-detection
2https://github.com/dlmacedo/distinction-maximization-loss

https://github.com/dlmacedo/entropic-out-of-distribution-detection
https://github.com/dlmacedo/distinction-maximization-loss
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4.1 ISOTROPY MAXIMIZATION LOSS

We trained from scratch 100-layer DenseNetBCs (growth rate k= 12) (Huang et al.,
2017), 34-layer ResNets (He et al., 2016), and 28-layer WideResNets (widening factor k=10)
(Zagoruyko & Komodakis, 2016). We trained on CIFAR10 (Krizhevsky, 2009), CIFAR100
(Krizhevsky, 2009), SVHN (Netzer & Wang, 2011), and TinyImageNet (Deng et al., 2009) using
SoftMax and IsoMax losses.

We used SGD with the Nesterov moment equal to 0.9 with a batch size of 64 for CI-
FAR10, CIFAR100, and TinyImageNet. We used an initial learning rate of 0.1. The weight
decay was 0.0001, and we did not use dropout. We trained during 300 epochs for CIFAR10 and
CIFAR100; and during 90 epochs for TinyImageNet. We used a learning rate decay rate equal to
ten applied in epoch numbers 150, 200, and 250 for CIFAR10 and CIFAR100; and 30 and 60 for
TinyImageNet. These values are commonly used in papers in general that train these models in
these datasets. They were used in OOD detection papers (Liang et al., 2018; Lee et al., 2018).

We used resized images from the TinyImageNet (Deng et al., 2009)3 and the Large-
scale Scene UNderstanding (LSUN) (Yu et al., 2015)3 as OOD data. Finally, we separately
added these OOD data to the ID validation sets to construct the respective OOD detection test
sets. For example, the OOD detection test set for ID CIFAR10 and OOD TinyImageNet is
composed by combing the CIFAR validation set and the TinyImageNet OOD data. In some
cases, CIFAR10 and SVHN work as OOD and the respective validation set is used to construct
the OOD detection test set. We emphasize that our solution does not require validation sets
for training or validation. In the following subsection, we provide extensive justifications for
why validating the entropic scale does not produce significantly different performance. Thus,
validation sets are used exclusively for building OOD detection test sets.

For text data experiments, we followed the experimental setting presented in Hendrycks
et al. (2019a). Therefore, we used the 20 Newsgroups as in-distribution data. The 20 Newsgroups
is a text classification dataset of newsgroup documents. It has 20 classes and approximately
20,000 examples that are split evenly among the classes. We used the standard 60/40 train/test
split. We used the IMDB, Multi30K, and Yelp Reviews datasets as out-distribution. IMDB is a
dataset of movie review sentiment classification. Multi30K is a dataset of English-German image
descriptions, of which we use the English descriptions. Yelp Reviews is a dataset of restaurant
reviews. We trained 2-layer GRUs (Cho et al., 2014) using SoftMax and IsoMax losses.

3https://github.com/facebookresearch/odin

https://github.com/facebookresearch/odin
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We evaluated the performance using three detection metrics. First, we calculated the
True Negative Rate at 95% True Positive Rate (TNR@TPR95) using the adequate threshold.
In addition, we evaluated the Area Under the Receiver Operating Characteristic Curve (AU-
ROC) and the Detection Accuracy (DTACC), which corresponds to the maximum classification
probability over all possible thresholds δ :

1−min
δ

{
Pin
(
o(x)≤ δ

)
P(x is from Pin)

+Pout
(
o(x)> δ

)
P(x is from Pout)

}
,

�
 �	4.1

where o(x) is a given OOD detection score. It is assumed that both positive and negative samples
have equal probability. This is the way this metric is defined and used in the literature. AUROC
and DTACC are threshold independent.

4.1.1 Entropic Scale, High Entropy, and Out-of-Distribution Detection

To experimentally show that higher entropic scales lead to higher entropy posterior
probability distributions and improved OOD detection performance, we trained DenseNets on
SVHN using the SoftMax loss and IsoMax loss with distinct entropic scale values. We used the
entropic score and the TNR@TPR95 to evaluate OOD detection performance (Fig. 33).

As expected, Fig. 33a shows that the SoftMax loss generates posterior distributions
with extremely low entropy. Fig. 33b illustrates that the unitary entropic scale (Es=1) does
not increase the posterior distribution mean entropy. In other words, isotropy alone is not
enough to circumvent the cross-entropy propensity to produce low entropy posterior probability
distributions and the entropic scale is indeed necessary. Nevertheless, the replacement of
anisotropic affine-based logits by isotropic distance-based logits is enough to produce initial
OOD detection performance gains regardless of the out-distribution (Fig. 33e).

Fig. 33c shows that an intermediate entropic scale (Es=3) provides medium entropy
probability distributions with corresponding additional OOD detection performance gains for all
out-distributions (Fig. 33e). Fig. 33d illustrates that a high entropic scale (Es=10) produces even
higher entropy probability distributions and the highest OOD detection performance regardless of
the out-distribution considered (Fig. 33e). Despite the entropy scale value used, the cross-entropy
is minimized and the classification accuracies produced by SoftMax and IsoMax losses are
extremely similar.

Hence, for a high entropic scale, the IsoMax loss can indeed minimize the cross-entropy
while producing high entropy posterior probability distributions as recommended by the principle
of maximum entropy. More importantly, higher entropy posterior probability distributions
directly correlate with increased OOD detection performances despite the OOD data. An
entropic scale Es=10 is enough to produce significantly high entropy probability distributions.
Additionally, we experimentally observed no further gains for entropic scales higher than ten.
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Figure 33 - IsoMax Loss Effects

(a) (b) (c) (d)

(e)

Source: The Author (2022). (a) SoftMax loss simultaneously minimizes both the cross-entropy and the entropy of the posterior
probabilities. (b) IsoMax loss produces low entropy posterior probabilities for a low entropic scale (Es=1). (c) IsoMax loss
produces medium mean entropy for an intermediate entropic scale (Es=3). (d) IsoMax loss minimizes the cross-entropy while
producing high mean entropies for the high entropic scale (Es=10). “The entropy maximization trick” is the fundamental
mechanism that allows us to migrate from low entropy posterior probability distributions (a,b) to high entropy posterior prob-
ability distributions (d). Higher entropic scale values correlate to higher mean entropies as recommended by the principle of
maximum entropy. Regardless of training with a high entropic scale, if we do not remove it for inference (“the entropy maxi-
mization trick”), the IsoMax loss always produces posterior probability distributions with entropies as low as those generated
by the SoftMax loss. An entropic scale equal to ten is sufficient to virtually produce the maximum possible entropy posterior
probability distribution, as the highest possible value of the entropy is log(N), where N is the number of classes. (e) The left side
of the dashed vertical red line presents classification accuracies. The dashed vertical red line right side shows OOD detection
performance using the entropic score and the TNR@TPR95 metric. Higher mean entropies produce increased OOD detection
performance regardless of the out-distribution. We emphasize that OOD examples were never used during training and no vali-
dation was required to tune hyperparameters. Additionally, isotropy enables IsoMax loss to produce higher OOD performance
than SoftMax loss, even for the unitary value of the entropic scale. Training using Es=1 and then making the temperature
T=0.1 or T=10 during inference produces lower OOD detection performance than training using Es=10 and removing it for
inference, which consists in our proposal. Finally, IsoMax loss presents similar classification accuracy compared with SoftMax
regardless of the entropic scale. The entropic score, which is the negative entropy of the network output probabilities, was used
as the score.
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Figure 34 - Accuracy and Out-of-Distribution Detection Study

Source: The Author (2022). Study of classification accuracy and OOD detection performance dependence on the entropic
scale. AUROC represents the mean AUROC considering all out-of-distribution data. The classification accuracy and the mean
OOD detection performance are approximately stable for Es=10 or higher regardless of the dataset and model. It also does
not depend on the number of training classes N, which is probably explained by the fact that the entropic scale is inside an
exponential function while the entropy increases only with the logarithm of the number of classes. Making Es learnable did not
considerably improve or decrease the OOD detection results.

Fig. 34 shows that regardless of the combination of dataset and model, the classification
accuracy and the mean OOD detection performance are stable for Es=10 or higher, as the
entropic scale is already high enough to ensure near-maximal entropy. We speculate that Es=10
worked satisfactorily regardless of the number of training classes because it is used inside an ex-
ponential function, while the entropy increases only with the logarithm of the number of training
classes. Hence, an eventual validation of Es would produce an insignificant performance increase.
Actually, this is not possible because we consider access to OOD or outlier samples forbidden.
Moreover, making Es learnable did not significantly affect the OOD detection performance.

Considering that the entropic scale Es is present in Equation
�
 �	3.10 , we are initially led

to think that it needs to be tuned to achieve the highest possible OOD detection performance.
However, we emphasize that the experiments showed that the dependence of the OOD detection
performance on the entropic scale is remarkably well-behaved. Essentially, the OOD detection
performance monotonically increases with the entropic scale until it reaches a saturation point
near Es=10 regardless of the dataset or the number of training classes (Fig. 34). It may be
explained by the fact that the entropic scale is inside an exponential function and that we exper-
imentally observed that exp(−10×d) is enough to produce almost maximum entropy regardless
of the dataset, model or number of training classes under consideration.

Finally, even if we consider that validating for entropic scales higher than ten would
allow some minor OOD detection performance improvement, we usually cannot do this because
we do not often have access to out-distribution data. Hence, the well-behaved dependence of
the OOD detection performance on the entropic scale allowed us to define the Es as a constant

scalar equals to 10 rather than a hyperparameter that needs to be tuned for each novel dataset and
model. It is the reason our approach may be used without requiring access to OOD/outlier data.
Therefore, we kept the entropic scale as a constant (global value) equal to ten for all subsequent
experiments.Hence, no validation of the entropic score was need for different models, datasets,
or number of classes.
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The entropic scale is constant regardless of the data and model considered. Hence, our
approach does not require hyperparameter tuning or extra validation data. We have experimental
evidence and theoretical insights to explain why this generalizes well. This constant value is
used regardless of the model, in-distribution, and out-of-distribution.

The entropic scale is inside an exponential function, so the value of ten is enough to
obtain almost the maximum entropy possible. Moreover, increasing this value further does not
help, as the maximum possible entropy is already achieved. Therefore, we observe that gains in
OOD detection performance increase fast in the beginning and saturate after some point. For
example, consider the d as a distance. Hence, e−1d and e−3d are not as small as e−10d . However,
e−10d and e−20d are too small numbers to make any difference. This behavior is monotonic in
relation to the entropic scale because we deal with a monotonic function: the exponential. A
substantial amount of experiments was performed to confirm this experimentally. This behavior
is the same regardless of the dataset and model.

In machine learning and deep learning, we have many examples of constant global values
(i.e., they do not need to be tuned) regardless of the data and model used. For example, in the
ADAM (Kingma & Ba, 2015) optimizer, we all use β1 equals 0.9, and β2 equals 0.99. When
using SGD with momentum, we commonly use the moment equals 0.9. These are experimentally
recognized as values that work well across essentially all circumstances. Like those values, many
experiments have demonstrated that the entropic scale equals ten works well.

Consequently, we do not need extra validation data for tuning it, as the same constant
value is used regardless of the data and models used for training. Besides the experimental
evidence, this value is inside an exponential function gives theoretical insights to justify this fact.
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Table 3 - Implementation Detail: Separating Logarithms from Probabilities.

Data Loss Value Mean Maximum Probability Mean Normalized Entropy Classification Accuracy (%)
Partition LogProb / Log+Prob LogProb / Log+Prob LogProb / Log+Prob LogProb / Log+Prob

Train 1.697978 / 1.448191 0.308275 / 0.144888 0.796333 / 0.987172 36.25 / 48.34
Test 1.379901 / 1.487199 0.479694 / 0.167632 0.628158 / 0.979525 49.06 / 53.30

Source: The Author (2022). IsoMax results for DenseNet trained one epoch on CIFAR10. Normalized entropy means the
entropy divided by the maximum entropy. LogProb means using logarithms and probabilities combined into a single operation.
Log+Prob means using logarithms and probabilities as separated and sequential operations, which is the option adopted in all
entropic losses. We made the code deterministic for these experiments; therefore, many executions of the same experiment
produce the same results. We kept everything else the same in both LogProb and Log+Prob cases.

4.1.2 Implementation Detail: Separating Logarithms from Probabilities

Table 3 shows that computing logarithms separated from probabilities is much more
efficient in preserving the maximum normalized entropy present at the beginning of the training.
Therefore, the implementations of all entropic losses calculate logarithms and probabilities as
two separated and sequential operations.

4.1.3 Classification Accuracy

Table 4 shows that IsoMax loss consistently produces classification accuracy similar
to SoftMax loss, regardless of being used as a baseline approach or combined with additional
techniques to improve OOD detection performance. Fig. 35 shows that this is also true even for
a varying number of training examples per class.
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Figure 35 - Classification Accuracy: SoftMax vs. IsoMax

(a)

(b)

Source: The Author (2022). IsoMax loss presents test accuracy similar to SoftMax loss (no classification accuracy drop) for
different numbers of training examples per class on several datasets and models. Simultaneously, IsoMax usually produces
much higher OOD detection performance (Fig. 36).
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4.1.4 Out-of-Distribution Detection

The IsoMax loss enhanced versions almost always outperform the OOD detection perfor-
mance of the corresponding SoftMax loss enhanced version when both are using the same add-on
technique. The major drawback of adding label smoothing or center loss regularization is the
need to tune the hyperparameters presented by these add-on techniques. Additionally, different
hyperparameters values need to be validated for each pair of in-distribution and out-distribution.
As mentioned before, it is highly optimistic to assume access to OOD data, as we usually do not
know what OOD data the solution we will face in the field.

Even considering this best-case scenario, SoftMax loss combined with label smoothing
or center loss regularization always presented significantly lower OOD detection performance
than IsoMax loss without using them and, consequently, avoiding unrealistically optimist access
to OOD data and the mentioned validations. Enhancing SoftMax loss or IsoMax loss with ODIN
presents the same problems from a practical perspective. In CIFAR100, SoftMax loss with outlier
exposure produces lower performance than IsoMax loss without it for both DenseNet and ResNet.

4.1.4.1 Fair Scenario

Table 5 shows that models trained with the SoftMax loss using the maximum probability
as the score (SoftMax+MPS) almost always present the worst OOD detection performance. In
the case of models trained with SoftMax loss, replacing the maximum probability score by
the entropic score (SoftMax+ES) produces small OOD detection performance gains. However,
the combination of models trained using IsoMax loss with the entropic score (IsoMax+ES),
which is the proposed solution, significantly improves, usually by several percentage points, the
OOD detection performance across almost all datasets, models, out-distributions, and metrics.
We emphasize that the entropic score only produces high OOD detection performance when
the probability distributions present high entropy (IsoMax+ES). For low entropy probability
distributions (SoftMax+ES), the performance increase is minimal.

The IsoMax loss is well-positioned to replace SoftMax loss as a novel baseline OOD
detection approach for neural networks OOD detection, as the former does not present an accuracy
drop in relation to the latter and simultaneously improves the OOD detection performance.
Additional techniques (e.g., input preprocessing, adversarial training, and outlier exposure) may
be added to improve OOD detection performance gains further.

Table 6 shows that the results generalize to higher resolution images. Table 7 presents
results for text data. As expected, the results show that our approach is domain-agnostic and
therefore may be applied to data other than images.
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Table 4 - IsoMax: Classification Accuracy and Enhanced Versions

Model In-Data
(training)

OOD Detection
Approach

Enhanced Versions of SoftMax loss and IsoMax loss.
Add-on Techniques produce different Side Effects and Requirements.

Class. Accuracy (%) [↑] TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMax / IsoMax SoftMax / IsoMax SoftMax / IsoMax

DenseNet

CIFAR10

Baseline 95.4±0.3 / 95.2±0.3 53.3±0.4 / 84.1±0.3 91.9±0.4 / 97.3±0.3
+ Label Smoothing 95.2±0.4 / 95.0±0.3 70.7±0.4 / 60.3±0.3 94.9±0.3 / 80.8±0.3
+ Center Loss Regularization 95.3±0.3 / 95.1±0.4 54.7±0.6 / 87.1±0.3 92.8±0.3 / 97.6±0.3
+ ODIN 95.4±0.3 / 95.2±0.3 91.9±0.3 / 95.3±0.4 98.2±0.3 / 98.4±0.4
+ Outlier Exposure 95.3±0.4 / 95.6±0.4 93.8±0.3 / 94.7±0.3 98.5±0.3 / 98.8±0.4

CIFAR100

Baseline 77.5±0.6 / 77.5±0.4 22.3±0.7 / 45.1±0.6 77.4±0.8 / 91.9±0.6
+ Label Smoothing 77.0±0.4 / 77.2±0.6 31.5±0.6 / 33.0±0.6 82.0±0.6 / 88.3±0.7
+ Center Loss Regularization 77.2±0.7 / 77.0±0.6 30.3±0.7 / 43.7±0.6 79.5±0.8 / 92.2±0.6
+ ODIN 77.5±0.6 / 77.5±0.4 64.4±0.7 / 83.1±0.8 92.5±0.6 / 96.9±0.7
+ Outlier Exposure 77.8±0.6 / 77.5±0.7 23.0±0.7 / 36.4±0.8 80.5±0.8 / 89.6±0.6

SVHN

Baseline 96.6±0.2 / 96.6±0.2 90.1±0.2 / 95.9±0.1 98.2±0.2 / 98.9±0.2
+ Label Smoothing 96.6±0.2 / 96.7±0.3 87.5±0.2 / 93.5±0.2 97.0±0.2 / 97.8±0.3
+ Center Loss Regularization 96.7±0.3 / 96.6±0.2 88.0±0.3 / 95.9±0.2 97.9±0.2 / 98.9±0.1
+ ODIN 96.6±0.2 / 96.6±0.2 95.5±0.2 / 96.7±0.2 98.8±0.1 / 99.1±0.1
+ Outlier Exposure 96.6±0.3 / 96.7±0.3 99.9±0.1 / 99.9±0.1 99.9±0.1 / 99.9±0.1

ResNet

CIFAR10

Baseline 95.4±0.3 / 95.6±0.4 50.8±0.4 / 78.6±0.3 91.2±0.3 / 96.1±0.4
+ Label Smoothing 95.5±0.4 / 95.4±0.3 54.0±0.4 / 63.5±0.3 78.9±0.4 / 84.5±0.3
+ Center Loss Regularization 95.6±0.3 / 95.4±0.4 53.5±0.4 / 80.6±0.3 90.5±0.3 / 96.6±0.2
+ ODIN 95.4±0.3 / 95.6±0.4 73.7±0.3 / 85.6±0.3 93.4±0.2 / 97.2±0.3
+ Outlier Exposure 95.5±0.3 / 95.6±0.3 91.1±0.3 / 94.2±0.4 97.7±0.2 / 98.6±0.3

CIFAR100

Baseline 77.3±0.6 / 77.4±0.7 22.4±0.6 / 41.8±0.7 80.5±0.6 / 90.1±0.7
+ Label Smoothing 77.7±0.5 / 77.3±0.5 21.0±0.7 / 33.4±0.6 81.6±0.6 / 85.9±0.6
+ Center Loss Regularization 77.9±0.5 / 77.4±0.5 29.5±0.9 / 48.2±0.7 80.3±0.6 / 90.6±0.6
+ ODIN 77.3±0.6 / 77.4±0.7 64.0±0.6 / 77.9±0.6 92.7±0.7 / 95.8±0.6
+ Outlier Exposure 77.3±0.5 / 77.0±0.5 37.8±0.9 / 41.7±0.8 86.6±0.6 / 88.6±0.7

SVHN

Baseline 96.8±0.2 / 96.7±0.2 71.7±0.3 / 92.4±0.2 94.7±0.3 / 98.0±0.2
+ Label Smoothing 96.9±0.2 / 96.9±0.3 86.3±0.2 / 86.4±0.2 97.2±0.3 / 94.9±0.2
+ Center Loss Regularization 96.9±0.2 / 96.7±0.2 77.2±0.2 / 82.2±0.2 94.5±0.2 / 96.1±0.3
+ ODIN 96.8±0.2 / 96.7±0.2 79.9±0.3 / 93.5±0.3 95.1±0.2 / 98.2±0.3
+ Outlier Exposure 96.9±0.3 / 96.8±0.2 99.9±0.1 / 99.9±0.1 99.9±0.1 / 99.9±0.1

Source: The Author (2022). Comparison of Enhanced Versions of SoftMax Loss and IsoMax Loss: Adding label smoothing,
center loss regularization, ODIN, and outlier exposure to SoftMax loss and IsoMax loss. The side effects and requirements
added to the solution depend on the add-on technique. Regardless of using SoftMax loss or IsoMax loss, adding label smoothing
(LS) requires validation of the hyperparameter ε (Szegedy et al., 2016). The values searched for ε were 0.1 (Szegedy et al.,
2016; Lee & Cheon, 2020) and 0.01 (Lee & Cheon, 2020). Adding center loss regularization (CLR) to SoftMax loss or IsoMax
loss requires validation of the hyperparameter λ (Wen et al., 2016). The values searched for λ were 0.01 and 0.003 (Wen et al.,
2016). We emphasize that the center loss is not used as a stand-alone loss, but rather combined as a regularization term with
a preexisting baseline loss. In the case of the original paper, the baseline loss was the SoftMax loss. In this paper, we added
the mentioned regularization term (Wen et al., 2016, Equation (5)) also to IsoMax loss to construct the center loss enhanced
version of our loss. Regardless of using SoftMax loss or IsoMax loss, adding ODIN (Liang et al., 2018) requires validation of
the hyperparameters ε and T . The values searched for these hyperparameters were the same used in the original paper (Liang
et al., 2018). Adding ODIN implies using input preprocessing, which makes inferences much slower, and energy- and cost-
inefficient. We used OOD data to validate the LS, CLR, and ODIN hyperparameters. Adding outlier exposure (OE) (Hendrycks
et al., 2019a) to SoftMax loss or IsoMax loss requires collecting outlier data. We used the same outlier data used in Hendrycks
et al. (2019a). The add-on techniques were not applied to the SoftMax and IsoMax losses combined, but rather individually.
The values of the performance metrics TNR@TPR95 and AUROC were averaged over all out-of-distribution data. All results
used the entropic score, as it always overcame the maximum probability score. The results represent the mean and standard
deviation of five executions. The best values are bold when they overcome the competing approach value outside the margin of
error given by the standard deviations. For OOD detection, the variants of SoftMax and IsoMax losses that presented the best
performance for each combination of architecture and dataset are blue.
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Table 5 - IsoMax: OOD Detection Performance

Model In-Data
(training)

Out-Data
(unseen)

Baseline Out-of-Distribution Detection Approaches Comparison.
Fast and Energy-Efficient Inferences. No outlier data used.

TNR@TPR95 (%) [↑] AUROC (%) [↑] DTACC (%) [↑]
SoftMax+MPS / SoftMax+ES / IsoMax+ES (ours)

DenseNet
CIFAR10

SVHN 32.1±0.3 / 33.1±0.4 / 77.1±0.3 86.5±0.4 / 86.8±0.3 / 96.7±0.4 79.8±0.3 / 79.8±0.3 / 91.8±0.3
TinyImageNet 55.7±0.3 / 59.7±0.4 / 88.1±0.4 93.5±0.4 / 94.1±0.4 / 97.9±0.3 87.5±0.2 / 87.9±0.3 / 93.3±0.3
LSUN 64.8±0.4 / 69.6±0.3 / 94.6±0.2 95.1±0.3 / 95.8±0.2 / 98.9±0.3 89.8±0.3 / 90.1±0.3 / 95.0±0.4

CIFAR100
SVHN 20.5±0.6 / 24.8±0.8 / 23.6±0.9 80.1±0.7 / 81.8±0.7 / 88.8±0.6 73.8±0.6 / 74.4±0.7 / 83.9±0.6
TinyImageNet 19.3±0.9 / 23.8±0.8 / 49.0±0.6 77.1±0.6 / 78.7±0.7 / 92.8±0.6 70.5±0.6 / 71.3±0.7 / 86.5±0.6
LSUN 18.7±0.6 / 24.3±0.8 / 63.1±0.6 75.8±0.7 / 77.8±0.6 / 94.8±0.6 69.4±0.8 / 70.3±0.9 / 89.2±0.6

SVHN
CIFAR10 81.5±0.2 / 83.7±0.3 / 94.1±0.2 96.5±0.3 / 96.9±0.2 / 98.5±0.2 91.9±0.3 / 92.1±0.2 / 95.0±0.2
TinyImageNet 88.3±0.2 / 90.1±0.2 / 97.2±0.3 97.7±0.3 / 98.1±0.2 / 99.1±0.2 93.4±0.4 / 93.8±0.2 / 96.3±0.3
LSUN 86.4±0.2 / 88.4±0.4 / 96.8±0.2 97.3±0.2 / 97.8±0.3 / 99.1±0.2 92.8±0.2 / 93.0±0.4 / 96.0±0.2

ResNet
CIFAR10

SVHN 43.2±0.4 / 44.5±0.3 / 83.6±0.4 91.6±0.3 / 92.0±0.3 / 97.1±0.4 86.5±0.2 / 86.4±0.4 / 91.9±0.3
TinyImageNet 46.4±0.4 / 48.0±0.3 / 70.3±0.3 89.8±0.4 / 90.1±0.2 / 94.6±0.4 84.0±0.4 / 84.2±0.3 / 88.3±0.4
LSUN 51.2±0.4 / 53.3±0.2 / 82.3±0.3 92.2±0.4 / 92.6±0.4 / 96.9±0.3 86.5±0.2 / 86.6±0.4 / 91.5±0.3

CIFAR100
SVHN 15.9±0.8 / 18.0±0.7 / 20.2±0.6 71.3±0.6 / 72.7±0.7 / 85.3±0.6 66.1±0.6 / 66.3±0.7 / 79.7±0.6
TinyImageNet 18.5±0.8 / 22.4±0.6 / 50.6±0.7 74.7±0.6 / 76.3±0.7 / 92.0±0.7 68.8±0.6 / 69.1±0.6 / 85.6±0.7
LSUN 18.3±0.8 / 22.4±0.5 / 54.9±0.6 74.7±0.6 / 76.5±0.7 / 93.3±0.6 69.1±0.5 / 69.4±0.7 / 87.6±0.8

SVHN
CIFAR10 67.3±0.2 / 67.7±0.3 / 92.3±0.2 89.8±0.2 / 89.7±0.3 / 98.0±0.2 87.0±0.3 / 86.9±0.3 / 94.1±0.2
TinyImageNet 66.8±0.3 / 67.3±0.2 / 94.6±0.2 89.0±0.3 / 89.0±0.2 / 98.3±0.2 86.8±0.2 / 86.6±0.4 / 94.8±0.4
LSUN 62.1±0.2 / 62.5±0.3 / 90.9±0.4 86.0±0.2 / 85.8±0.2 / 97.8±0.2 84.2±0.2 / 84.1±0.3 / 93.6±0.4

Source: The Author (2022). OOD Detection: Fast and Energy-Efficient Inferences. No extra/outlier/background data used. The
approaches do not require outlier/background/extra data. No additional procedures other than typical straightforward neural
network training is required, and no classification accuracy drop is observed. All approaches present fast and energy-efficient
inferences. Neither adversarial training, input preprocessing, temperature calibration, feature ensemble, nor metric learning is
used. Since there is no need to tune hyperparameters, no access to OOD or adversarial examples is required. SoftMax+MPS
means training with SoftMax loss and performing OOD detection using the maximum probability score, which is the approach
defined in Hendrycks & Gimpel (2017). SoftMax+ES means training with SoftMax loss and performing OOD detection using
the entropic score. IsoMax+ES means training with IsoMax loss and performing OOD detection using the entropic score.
The results represent the mean and standard deviation of five executions. The best values are bold when they overcome the
competing approach value outside the margin of error given by the standard deviations.

Table 6 - IsoMax: OOD Detection on TinyImageNet

Model Accuracy (%) [↑]
SoftMax / IsoMax

Out-Data
(unseen)

Baseline Out-of-Distribution Detection Approaches Comparison.
Fast and Energy-Efficient Inferences. No outlier data used.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMax+MPS / IsoMax+ES (ours)

DenseNetBC100
(small size) 61.1±0.2 / 61.6±0.3

CIFAR10 24.3±3.3 / 38.9±3.7 81.1±1.3 / 88.5±2.2
CIFAR100 23.8±2.4 / 36.3±3.1 79.6±0.9 / 84.2±1.2
SVHN 40.3±3.5 / 64.4±2.7 84.9±2.0 / 94.3±1.4

ResNet34
(medium size) 65.6±0.3 / 65.4±0.3

CIFAR10 18.2±2.6 / 51.9±4.9 78.3±1.2 / 90.9±1.0
CIFAR100 16.7±2.4 / 50.5±4.7 76.3±1.4 / 88.2±1.2
SVHN 19.3±5.2 / 89.1±5.4 73.8±1.7 / 98.0±0.8

WideResNet2810
(big size) 67.0±0.2 / 67.5±0.2

CIFAR10 30.9±5.8 / 56.0±4.3 84.1±2.4 / 91.4±1.9
CIFAR100 31.5±1.8 / 54.1±3.8 83.3±1.3 / 88.2±0.9
SVHN 59.7±2.3 / 89.0±4.4 90.0±2.0 / 98.0±1.4

The Author (2022). SoftMax+MPS means training with SoftMax loss and performing OOD detection using the maximum
probability score (Hendrycks & Gimpel, 2017). IsoMax+ES means training with IsoMax loss and performing OOD detection
using the entropic score. The results represent the mean and standard deviation of five executions. The best values are bold
when they overcome the competing approach value outside the margin of error given by the standard deviations.
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Table 7 - IsoMax: OOD Detection on Text Data

Model In-Data
(training)

Out-Data
(unseen)

Baseline Out-of-Distribution Detection Approaches Comparison.
Fast and Energy-Efficient Inferences. No outlier data used.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMax+MPS / IsoMax+ES (ours)

GRU2L
20 Newsgroups

IMDB 31.9±6.9 / 58.0±12.6 86.8±2.0 / 92.2±2.0
Multi30K 29.7±3.1 / 47.9±13.3 82.4±1.8 / 85.7±2.8
Yelp Reviews 26.7±3.8 / 46.6±5.7 84.0±1.5 / 88.7±0.9

TREC
IMDB 35.8±8.4 / 54.3±5.3 88.9±1.8 / 93.2±1.2
Multi30K 15.4±5.4 / 37.4±4.1 74.8±3.8 / 82.0±2.3
Yelp Reviews 34.4±5.3 / 52.3±6.2 82.5±0.4 / 90.2±1.2

Source: The Author (2022). SoftMax+MPS means training with SoftMax loss and performing OOD detection using the
maximum probability score (Hendrycks & Gimpel, 2017). IsoMax+ES means training with IsoMax loss and performing OOD
detection using the entropic score. The results represent the mean and standard deviation of five executions. The best values
are bold when they overcome the competing approach value outside the margin of error given by the standard deviations.

Table 8 - IsoMax: Comparison with No Seamless Solutions

Model In-Data
(training)

Out-Data
(unseen)

ODIN, ACET, and Mahalanobis present troublesome requirements.
ODIN, ACET, and Mahalanobis produce undesired side effects.

AUROC (%) [↑] DTACC (%) [↑]
ODIN / ACET / IsoMax+ES (ours) / Mahalanobis

DenseNet
CIFAR10

SVHN 92.7±0.4 / NA / 96.7±0.4 / 97.5±0.6 86.4±0.4 / NA / 91.8±0.4 / 92.4±0.5
TinyImageNet 97.3±0.4 / NA / 97.9±0.4 / 98.5±0.6 92.1±0.4 / NA / 93.5±0.4 / 94.3±0.6
LSUN 98.4±0.4 / NA / 98.9±0.4 / 99.1±0.6 94.3±0.3 / NA / 95.1±0.4 / 95.9±0.4

CIFAR100
SVHN 88.1±0.6 / NA / 88.7±0.7 / 91.7±0.6 80.8±0.6 / NA / 83.9±0.6 / 84.3±0.7
TinyImageNet 85.2±0.6 / NA / 92.8±0.5 / 96.9±0.7 77.1±0.6 / NA / 86.7±0.5 / 91.7±0.6
LSUN 85.8±0.6 / NA / 94.6±0.4 / 97.7±0.6 77.3±0.6 / NA / 89.2±0.7 / 93.5±0.5

SVHN
CIFAR10 91.8±0.2 / NA / 98.6±0.2 / 98.7±0.3 86.7±0.2 / NA / 95.7±0.3 / 96.1±0.3
TinyImageNet 94.8±0.2 / NA / 99.3±0.2 / 99.7±0.3 90.2±0.2 / NA / 96.2±0.2 / 98.8±0.3
LSUN 94.0±0.2 / NA / 99.5±0.2 / 99.8±0.3 89.1±0.2 / NA / 96.1±0.2 / 99.0±0.1

ResNet
CIFAR10

SVHN 86.4±0.4 / 97.7±0.4 / 97.4±0.4 / 95.5±0.6 77.7±0.4 / NA / 91.8±0.4 / 89.0±0.5
TinyImageNet 93.9±0.3 / 85.7±0.4 / 94.7±0.3 / 99.1±0.5 86.1±0.3 / NA / 88.5±0.3 / 95.4±0.5
LSUN 93.4±0.4 / 85.9±0.4 / 96.8±0.3 / 99.5±0.3 85.7±0.4 / NA / 91.3±0.3 / 97.3±0.4

CIFAR100
SVHN 72.1±0.6 / 91.1±0.6 / 85.2±0.6 / 84.3±0.5 67.8±0.4 / NA / 79.9±0.6 / 76.4±0.7
TinyImageNet 83.7±0.6 / 75.3±0.5 / 92.4±0.5 / 87.7±0.6 75.7±0.5 / NA / 85.8±0.5 / 84.3±0.5
LSUN 81.8±0.6 / 69.7±0.5 / 93.3±0.6 / 82.2±0.7 74.7±0.6 / NA / 87.6±0.5 / 79.6±0.6

SVHN
CIFAR10 92.1±0.2 / 97.3±0.3 / 98.2±0.2 / 97.3±0.2 89.3±0.3 / NA / 94.3±0.2 / 94.5±0.3
TinyImageNet 92.8±0.2 / 97.6±0.2 / 98.8±0.1 / 99.0±0.3 90.0±0.2 / NA / 94.6±0.3 / 98.7±0.2
LSUN 90.6±0.2 / 99.7±0.3 / 97.9±0.2 / 99.8±0.2 88.3±0.2 / NA / 93.7±0.3 / 99.4±0.2

Source: The Author (2022). OOD Detection: Unfair comparison of approaches with different requirements and side effects.
ODIN (Liang et al., 2018) uses input preprocessing, temperature calibration, and adversarial validation (hyperparameter tuning
using adversarial examples). The Mahalanobis (Lee et al., 2018) solution uses input preprocessing, adversarial validation, fea-
ture extraction, feature ensemble, and metric learning. Input preprocessing makes the inferences of ODIN and the Mahalanobis
method at least three times slower and at least three times less energy/computationally efficient than SoftMax or IsoMax in-
ferences. Feature ensembles may limit the Mahalanobis method scalability to deal with large-size images used in real-world
applications. ACET (Hein et al., 2019) uses adversarial training, which results in slower training, possibly reduced scala-
bility for large-size images, and eventually, classification accuracy drop. The ODIN, the Mahalanobis approach, and ACET
present hyperparameters that need to be validated for each combination of datasets and models presented in the table. Fur-
thermore, considering that adversarial hyperparameters (e.g., the adversarial perturbation) used in ODIN/Mahalanobis/ACET
were validated using the SVHN/CIFAR10/CIFAR100 validation sets and that these sets were reused as OOD detection test
set, we conclude that the OOD detection performance reported by those papers, which we are reproducing in this table, may
be overestimated. ODIN/Mahalanobis/ACET results were obtained using SoftMax loss rather than IsoMax loss as baseline.
No outlier/extra/background data is used. IsoMax+ES means training with IsoMax loss and performing OOD detection using
the entropic score. IsoMax+ES does not use these techniques and does not have such requirements, side effects, and hyper-
parameters to tune (as IsoMax+ES works as a baseline OOD detection approach, those techniques may be incorporated in
future research). The results represent the mean and standard deviation of five executions. The best values are bold when they
overcome the competing approach value outside the margin of error given by the standard deviations.
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4.1.4.2 Unfair Scenario

Table 8 presents a perspective on how our proposed baseline OOD detection approach
compares with no seamless solutions. Hence, we need to analyze the mentioned table considering
that it shows an unfair comparison of approaches that present different requirements and side
effects. ODIN and the Mahalanobis solution use input preprocessing4. Consequently, they
present solutions with much slower and less energy-efficient inferences than models trained with
IsoMax loss, which are as fast and computation-efficient as the models trained with common
SoftMax loss. Moreover, they also require validation using adversarial samples.

Additionally, ODIN requires temperature calibration, while the Mahalanobis approach
uses feature ensemble and metric learning, which may be implicated in limited scalability for
large-size images. ACET requires adversarial training, which may also prevent its use in large-
size images. ODIN, the Mahalanobis approach, and ACET have hyperparameters tuned for each
combination of in-data and models in the table. ODIN, the Mahalanobis method, and ACET used
SoftMax loss rather than IsoMax loss. IsoMax+ES exhibits neither the mentioned unfortunate
requirements nor undesired side effects. Additionally, taking into consideration that ODIN,
Mahalanobis, and ACET used adversarial hyperparameters (e.g., the adversarial perturbation)
that were validated using the validation sets of SVHN/CIFAR10/CIFAR100 and noticing that
these sets composed the OOD detection test sets, we conclude that some overestimation may be
present in the OOD detection performance reported by these papers.

Regardless of the previous considerations, Table 8 shows that IsoMax+ES considerably
outperforms ODIN in all evaluated scenarios. Therefore, in addition to avoiding hyperparameter
tuning and access to OOD or adversarial samples, the results show that removing the entropic
scale is much more effective in increasing the OOD detection performance than performing
temperature calibration. Furthermore, IsoMax+ES usually outperforms ACET by a large margin.
Moreover, in most cases, even operating under much more favorable conditions, the Mahalanobis
method surpasses IsoMax+ES by less than 2%. In some scenarios, the latter overcomes the
former despite avoiding hyperparameter validation, being seamless and producing much faster
and more computation-efficient inferences, as no input preprocessing technique is required.

4.1.5 Training Examples per Class Variation Study

Fig. 36 presents the OOD detection performance of SoftMax and IsoMax losses in many
models (DenseNet and ResNet), and datasets (SVHN, CIFAR10, and CIFAR100) for a range of
training samples per class. For each in-distribution, the AUROC and TNR@TPR95 results were
averaged over all possible combinations of OOD detection test set, except noise and fooling ones.
The entropic score was used in all cases. It shows that IsoMax loss consistently and notably
overcomes the OOD detection performance of SoftMax loss for virtually all combinations of
evaluated datasets, training examples per class, metrics, and models.

4To allow OOD detection, each inference requires a first neural network forward pass, a backpropagation, and a second forward pass.
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Figure 36 - Training Examples per Class Variation Study: SoftMax vs. IsoMax

(a)

(b)

(c)

(d)

Source: The Author (2022). Training Examples per Class Variation Study: IsoMax loss consistently presents higher OOD
detection performance than does SoftMax loss for different numbers of training examples per class on several datasets, models,
and metrics. The entropic score was used for both SoftMax and IsoMax losses. For each in-distribution, we calculated the mean
AUROC and TNR@TPR95 considering all possible OOD detection test sets. The vertical scales are automatically adjusted to
better focus on the intervals the curves indeed variate.
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4.1.6 Logits, Probabilities, Entropies, and Training

Fig. 37 illustrates that training metrics are remarkably similar for SoftMax and IsoMax
losses. Fig. 38 shows that the in-distribution interclass logits are more distinguishable from
out-distribution logits when using IsoMax loss, which explains its increased OOD detection
performance compared with the SoftMax loss because there are far more interclass logits than
intraclass logits. Distances are calculated from class prototypes.

Fig. 39 shows that networks trained with SoftMax loss exhibit extremely high maximum
probabilities. Sometimes this is true even for OOD samples. For networks trained with IsoMax
loss, OOD samples usually present lower maximum probabilities compared with in-distribution
samples. Furthermore, it also shows that the networks trained with SoftMax loss are extremely
overconfident. It can be observed that the entropy works as a high-quality score to distinguish
the in-distribution from the out-distribution in neural networks trained with IsoMax loss.
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Figure 37 - Training Metrics: SoftMax vs. IsoMax

(a)

(b)

(c)

(d)

Source: The Authors (2022). Training metrics: (a) Training loss values and (b) test accuracies for a range of models, datasets,
and losses. SoftMax loss and IsoMax loss present remarkably similar metrics throughout training, which confirms that IsoMax
loss training is consistent and stable.
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Figure 38 - Logits: SoftMax vs. IsoMax

(a)

(b)

(c)

(d)

Source: The Authors (2022). Logits: (a,c) In SoftMax loss, out-distribution logits mimic in-distribution interclass logits. (b,d)
In IsoMax loss, out-distribution logits mimic in-distribution intraclass logits, which facilitates OOD detection, as there are
many more interclass logits than intraclass logits, and the entropic score takes into consideration the information provided by
all network outputs rather than just one. Distances are calculated from class prototypes.
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Figure 39 - Probabilities and Entropies: SoftMax vs. IsoMax

(a)

(b)

(c)

(d)

Source: The Author (2022). Probabilities and entropies: (a) SoftMax loss produces extremely high confident predictions for in-
distribution samples. SoftMax loss usually provides extremely high maximum probabilities, even for OOD samples. (b) IsoMax
loss produces less confident predictions for in-distribution samples than SoftMax loss. IsoMax loss commonly produces an even
lower maximum probability for OOD samples. (c) SoftMax loss provides extremely low entropy (high confidence) for almost
all in-distribution samples and even usually for OOD samples. (d) IsoMax loss produces high entropy for out-distributions.
More precise separation between the in-distribution and out-distributions is obtained.
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Table 9 - Inference Delays, Computational Cost and Energy Consumption

Model In-Data
(training)

Hardware
(inference)

Out-of-Distribution Detection:
Inference Delays / Presumed Computational Cost and Energy Consumption Rates.

SoftMax Loss (current baseline) IsoMax Loss (ours)
(proposed baseline)

Input Preprocessing:
ODIN, Mahalanobis,
Generalized ODIN

MPS (ms) [↓] / ES (ms) [↓] MPS (ms) [↓] / ES (ms) [↓] (ms) [↓]

DenseNet

CIFAR10 CPU 18.1 / 19.4 18.0 / 19.2 242.4 (≈ 10x slower)
GPU 11.6 / 13.0 11.6 / 11.5 39.2 (≈ 4x slower)

CIFAR100 CPU 18.4 / 19.8 18.4 / 19.3 261.0 (≈ 10x slower)
GPU 12.9 / 11.4 11.8 / 11.5 39.6 (≈ 4x slower)

SVHN CPU 18.1 / 18.6 18.3 / 18.6 241.5 (≈ 10x slower)
GPU 11.6 / 11.9 11.7 / 11.6 39.6 (≈ 4x slower)

ResNet

CIFAR10 CPU 22.3 / 23.2 23.0 / 23.5 250.4 (≈ 10x slower)
GPU 4.5 / 3.8 4.2 / 4.1 15.4 (≈ 4x slower)

CIFAR100 CPU 23.3 / 23.1 23.3 / 23.8 252.6 (≈ 10x slower)
GPU 4.3 / 3.9 4.3 / 4.2 14.8 (≈ 4x slower)

SVHN CPU 23.1 / 23.4 23.4 / 23.3 263.8 (≈ 10x slower)
GPU 4.2 / 4.0 4.0 / 4.0 15.7 (≈ 4x slower)

Source: The Author (2022). MPS means maximum probability score (Hendrycks & Gimpel, 2017). ODIN is from Liang
et al. (2018). Mahalanobis is from Lee et al. (2018). Generalized ODIN is from Hsu et al. (2020). ES means entropic
score. For SoftMax and IsoMax losses (baseline OOD detection approaches), the inference delays combine both classification
and detection computation. For the methods based on input preprocessing, the inference delays represent only the input
preprocessing phase. All values are in milliseconds. In addition to presenting similar classification accuracy and much better
OOD detection performance, IsoMax loss trained networks produce inferences as fast as SoftMax trained networks. Moreover,
the entropic score is as fast as the maximum probability score. Using CPU (Intel i7-4790K, 4.00GHz, x64, octa-core) for
inference (the case more relevant from a cost point of view), methods based on input preprocessing are about ten times slower
than the baseline approaches. Using GPU (Nvidia GTX 1080 Ti) for inference, our approach is about four times faster than
the methods based on input preprocessing. The inference delay rates presumably reflect similar computational cost and energy
consumption rates. The inference delays presented are the mean value of the inference delay of each image calculated (batch
size equals one) over the entire dataset. The standard deviation was below 0.3 for all cases.

4.1.7 Inference Efficiency

Table 9 presents the inference delays for SoftMax loss, IsoMax loss, and competing
methods using CPU and GPU. We observe that neural networks trained using IsoMax loss
produce inferences equally fast as the ones produced by networks trained using SoftMax loss,
regardless of using CPU or GPU for inference. Additionally, the entropic score is as fast as
the usual maximum probability score. Moreover, methods based on input preprocessing were
more than ten times slower on CPU and about four times slower on GPU. Finally, those rates
presumably apply to the computational cost and energy consumption as well.

At first sight, inference methods (i.e., methods that can be applied to pre-trained models)
may be seen as “low cost” compared with training methods like our IsoMax loss, as we avoid
training or fine-tuning the neural network. However, this conclusion may be misleading, as
we have to keep in mind that inference methods (e.g., ODIN (Liang et al., 2018) and Maha-
lanobis (Lee et al., 2018)) produce inferences that are much more energy, computation, and time
inefficient (Table 9).

For example, consider initially the rare practical situation where a pretrained model
is available, and no fine-tuning to a custom dataset is required. In such cases, an inference
method may indeed be applied without requiring any loss function. However, despite avoiding
training or fine-tuning a neural network once or a few times, all the subsequent inferences,
which are usually performed thousands or millions of times on the field (sometimes even by
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constrained devices), will be about 6 to 10 times more computational, energy, environment, and
time inefficient (Table 9).

Alternatively, consider the case where a pretrained model is not available or fine-tuning
to a custom dataset is needed. In this situation, which is much more likely in practice, we cannot
avoid training or fine-tuning the neural network, and a training method like ours will be required
anyway. In these cases, it would be recommended to train or fine-tune using IsoMax rather than
SoftMax loss, as our experiments showed that both training times are the same and IsoMax loss
produces considerably higher OOD detection performance.

Hence, inference methods are more inference inefficient because they coexist with a
model that was trained with a loss not designed from the start with OOD detection in mind. The
drawback is to produce an enormous amount of inefficient inferences on the field that usually
uses constrained computational resource devices such as embedded systems.

Nevertheless, suppose the increased inference time, computation, environment damage,
and energy consumption required to use an inference method is not a concern from a practical
point of view. In that case, the model pretrained or fine-tuned using a training method may be
subsequently subjected to the desired inference approach to increase overall OOD detection
performance further. In other words, we do not claim that inference methods such as ODIN
and Mahalanobis do not increase the OOD detection performance compared with Maximum
Score Probability or even the Entropic Score. However, we point out that producing more energy
inefficient inferences is one drawback of adopting such inference methods.

In summary, rather than concurrent, the training and inference methods are orthogonal
and complementary. Moreover, we see no reason not to train the models with a loss designed to
support OOD, regardless of subsequently applying an OOD inference method.

4.1.8 Qualitative Study

Fig. 40 presents examples of out-of-distribution detection performed by a ResNet34
trained on TinyImageNet using IsoMax. Resized examples from ImageNet-O (Hendrycks et al.,
2019b) were used as OOD examples. Examples in Fig 40a are from ID and were correctly
detected as such. Moreover, examples from Fig. 40b are from OOD and were correctly detected
as such. Examples in Fig. 40c were wrongly detected as OOD. It may be possibly explained by
the fact they visually appear composed of more than one class or no class at all. are not very
well-defined as belonging to a particular class. Fig. 40d present examples that were wrongly
detected as ID. It may have happened because they present images with shapes and textures very
different from those used in the training data.
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Figure 40 - Out-of-Distribution Detection Qualitative Study

(a)

(b)

(c)

(d)

Source: The Authors (2022). Out-of-Distribution Detection Qualitative Study: a) In-distribution examples correctly detected as
in-distribution. b) Out-of-distribution examples correctly detected as out-of-distribution. c) In-distribution examples wrongly
detected as out-of-distribution. d) Out-of-distribution examples wrongly detected as in-distribution.
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4.2 ENHANCED ISOTROPY MAXIMIZATION LOSS

To allow standardized comparison, we used the datasets, training procedures, and metrics
that were established in Hendrycks & Gimpel (2017) and used in many subsequent OOD
detection papers (Liang et al., 2018; Lee et al., 2018; Hein et al., 2019). We trained many
100-layer DenseNetBCs with growth rate k=12 (i.e., 0.8M parameters) Huang et al. (2017),
110-layer ResNets (correct size proper implementation) (He et al., 2016)5, and 34-layer ResNets
(overparametrized commonly used implementation) (He et al., 2016)6 on CIFAR10 (Krizhevsky,
2009), CIFAR100 (Krizhevsky, 2009), SVHN (Netzer & Wang, 2011), and TinyImageNet (Deng
et al., 2009) datasets with SoftMax, IsoMax, and IsoMax+ losses using the same procedures
(e.g., initial learning rate, learning rate schedule, weight decay).

We used SGD with the Nesterov moment equal to 0.9 with a batch size of 64 and an
initial learning rate of 0.1. The weight decay was 0.0001, and we did not use dropout. We trained
during 300 epochs for CIFAR10, CIFAR100, and SVHN. We used a learning rate decay rate
equal to ten applied in epoch numbers 150, 200, and 250 for CIFAR10, CIFAR100, and SVHN.

We used resized images from the TinyImageNet (Deng et al., 2009), the Large-scale
Scene UNderstanding dataset (LSUN) (Yu et al., 2015), CIFAR10, and SVHN (Netzer & Wang,
2011) to create out-of-distribution samples. We added these out-of-distribution images to the
validation sets of in-distribution data to form the test sets and evaluate the OOD detection
performance. We evaluated the OOD detection performance using the true negative rate at
95% true positive rate (TNR@TPR95), the area under the receiver operating characteristic
curve (AUROC) and the detection accuracy (DTACC), which corresponds to the maximum
classification probability over all possible thresholds δ :

1−min
δ

{
Pin
(
o(x)≤ δ

)
P(x is from Pin)

+Pout
(
o(x)> δ

)
P(x is from Pout)

}
,

where o(x) is the OOD detection score. It is assumed that both positive and negative samples
have an equal probability of being in the test set, i.e., P(x is from Pin) = P(x is from Pout).
This is the way this metric is defined and used in the literature. All metrics follow the calculation
procedures specified in Lee et al. (2018).

In this section, we present the results and discussion. We initially show that the enhanced
IsoMax produces classification accuracies that are comparable to those of the SoftMax loss
function. We then show that the enhanced IsoMax produces much higher OOD detection
performance than the IsoMax Loss and the SoftMax Loss.

5https://github.com/akamaster/pytorch_resnet_cifar10
6https://github.com/pokaxpoka/deep_Mahalanobis_detector

https://github.com/akamaster/pytorch_resnet_cifar10
https://github.com/pokaxpoka/deep_Mahalanobis_detector
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Table 10 - Classification accuracies using SoftMax, IsoMax, and IsoMax+ losses

Model Data Train Accuracy (%) [↑] Test Accuracy (%) [↑]
SoftMax Loss / IsoMax Loss / IsoMax+ Loss

DenseNet100
CIFAR10 99.9±0.1 / 99.9±0.1 / 99.9±0.1 95.3±0.2 / 95.2±0.3 / 95.3±0.1
CIFAR100 99.9±0.1 / 99.0±0.1 / 99.9±0.1 77.2±0.3 / 77.3±0.4 / 77.0±0.3
SVHN 97.0±0.2 / 97.8±0.2 / 97.0±0.3 96.5±0.2 / 96.6±0.3 / 96.5±0.2

ResNet110
CIFAR10 99.9±0.1 / 99.9±0.1 / 99.9±0.1 94.4±0.3 / 94.5±0.3 / 94.6±0.2
CIFAR100 99.5±0.1 / 99.9±0.1 / 99.8±0.1 72.7±0.2 / 74.1±0.4 / 73.9±0.3
SVHN 99.8±0.1 / 99.9±0.1 / 99.5±0.1 96.6±0.3 / 96.8±0.2 / 96.9±0.3

Source: The Authors (2022). Besides preserving classification accuracy compared with SoftMax loss- and IsoMax loss-trained
networks, IsoMax+ loss-trained models show higher OOD detection performance. Results are shown as means and standard
deviations of five different iterations (see Table 11).

4.2.1 Classification Accuracy

Table 10 shows classification accuracies. We see that IsoMax+ loss never exhibits
classification accuracy drop compared to SoftMax loss or IsoMax loss regardless of the dataset
and model. The IsoMax loss variants achieve more than one percent better accuracy than the
SoftMax loss when using ResNet110 on the CIFAR100 dataset.

4.2.2 Out-of-Distribution Detection

Table 11 summarizes the results of the fair OOD detection comparison. We report the
results using the entropic score for SoftMax loss (SoftMaxES) and IsoMax loss (IsoMaxES)
because this score always overcame the maximum probability score in these cases. For IsoMax+,
we report the values using the minimum distance score (IsoMax+MDS) because this method
overcame the maximum probability and the entropic score in this situation.

All approaches are accurate (i.e., exhibit no classification accuracy drop); fast and
power-efficient (i.e., inferences are performed without input preprocessing); and no hyperpa-
rameter tuning was performed. Additionally, no additional/outlier/background data are required.
IsoMax+MDS always overcomes IsoMaxES performance, regardless of the model, dataset, and
out-of-distribution data.

The minimum distance score produces high OOD detection performance when combined
with IsoMax+, which shows that the isometrization of the distances works appropriately in this
case. However, the same minimum distance score produced low OOD detection performance
when combined with the original IsoMax loss. Fig. 41, and Table 14 provide an explanation for
this important fact.

Table 12 summarizes the results of an unfair OOD detection comparison because the
methods have different requirements and produce distinct side effects. ODIN (Liang et al., 2018)
and the Mahalanobis7 (Lee et al., 2018) approaches require adversarial samples to be generated to
validate hyperparameters for each combination of dataset and model. These approaches also use
input preprocessing, which makes inferences at least four times slower and less energy-efficient

7Considering that the proposed approach easily outperforms the vanilla Mahalanobis method when applied to SoftMax loss trained models (i.e., training a
Mahalanobis distance-based classifier using features extracted from the neural network and using the Mahalanobis distance as score), we use the term Mahalanobis
approach to refer to the full Mahalanobis approach.
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(Macêdo et al., 2021, 2022). Validation using adversarial examples may be cumbersome when
performed from scratch on novel datasets because hyperparameters such as optimal adversarial
perturbations may be unknown in such cases. IsoMax+MDS does not have these requirements,
and does not produce the side effects.

Additionally, IsoMax+MDS achieves higher performance than ODIN by a large margin. In
addition to the differences between the entropy maximization trick and temperature calibrations
present in Macêdo et al. (2021, 2022), we emphasize that training with an entropic scale affects
the learning of all weights, while changing the temperature during inference affects only the last
layer. Thus, the fact that the proposed solution overcomes ODIN by a safe margin is evidence
that the entropy maximization trick produces much higher OOD detection performance than

temperature calibration, even when the latter is combined with input preprocessing. Moreover,
the entropy maximization trick does not require access to validation data to tune the temperature.

In addition to being seamless and avoiding the drawbacks of the Mahalanobis approach,
IsoMax+MDS typically overcomes it in terms of AUROC and produces similar performance when
considering the DTACC.

Table 13 unfairly compares the performance of the proposed approach with the outlier
exposure solution. Similar to IsoMax variants, the outlier exposure approach does not require
hyperparameter tuning and produces efficient inferences. However, it does require collecting
outlier data, while our approach does not. We emphasize that outlier exposure may also be
combined with IsoMax loss variants to further increase the OOD detection performance (Macêdo
et al., 2022). In the table, we present the IsoMax loss variants without outlier exposure to show
that the outlier exposure-enhanced SoftMax loss typically achieves worse OOD detection than
IsoMax+MDS even without using outlier exposure.

The minimum distance score produces high OOD detection performance when combined
with IsoMax+, which shows that the isometrization of the distances works appropriately in this
case. However, the same minimum distance score produced low OOD detection performance
when combined with the original IsoMax loss. Fig. 41, and Table 14 provide explanations.
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Table 11 - IsoMax+: OOD Detection Performance

Model Data
(training)

OOD
(unseen)

Out-of-Distribution Detection:
Seamless Approaches.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMaxES / IsoMaxES / IsoMax+MDS (ours)

DenseNet100

CIFAR10
SVHN 40.4±5.3 / 78.6±9.0 / 97.0±0.7 89.1±2.2 / 96.2±1.0 / 99.4±0.1
TinyImageNet 58.0±3.7 / 83.9±3.6 / 92.6±2.4 94.0±0.6 / 97.1±0.4 / 98.5±0.3
LSUN 64.6±1.7 / 90.3±1.4 / 94.3±1.4 95.2±0.4 / 98.0±0.3 / 99.1±0.2

CIFAR100
SVHN 21.9±2.8 / 29.6±3.7 / 78.2±4.1 78.4±3.3 / 88.8±2.8 / 96.3±1.3
TinyImageNet 24.0±3.0 / 49.3±4.9 / 85.5±2.8 75.5±2.1 / 90.8±2.1 / 97.5±0.8
LSUN 24.9±2.9 / 60.6±6.6 / 78.3±3.9 77.2±3.2 / 93.0±1.4 / 97.2±1.3

SVHN
CIFAR10 85.2±3.3 / 93.4±1.1 / 95.1±0.4 97.3±0.3 / 98.4±0.2 / 99.1±0.1
TinyImageNet 90.8±0.6 / 96.2±0.9 / 98.1±0.3 98.3±0.2 / 99.0±0.2 / 99.6±0.1
LSUN 87.9±0.8 / 94.3±1.7 / 97.7±1.1 97.8±0.3 / 98.7±0.2 / 99.6±0.2

ResNet110

CIFAR10
SVHN 35.6±5.0 / 68.7±5.5 / 85.3±3.9 88.9±0.9 / 94.8±1.5 / 98.1±0.9
TinyImageNet 39.0±4.1 / 65.4±5.6 / 76.2±2.7 88.2±2.1 / 94.3±0.4 / 96.1±0.5
LSUN 46.9±5.7 / 80.7±2.2 / 86.9±2.5 91.2±1.7 / 96.5±0.3 / 97.9±0.7

CIFAR100
SVHN 16.6±1.5 / 20.8±5.9 / 41.0±6.4 73.6±3.7 / 85.3±1.3 / 88.9±1.2
TinyImageNet 15.6±2.1 / 22.8±1.9 / 44.7±5.9 71.5±1.7 / 81.3±2.3 / 88.0±2.9
LSUN 16.5±3.3 / 22.9±3.5 / 46.1±4.3 72.6±4.2 / 83.3±2.0 / 89.1±2.4

SVHN
CIFAR10 80.9±3.5 / 84.3±1.3 / 88.4±2.3 95.1±0.3 / 96.5±0.2 / 97.4±0.3
TinyImageNet 84.0±3.2 / 87.4±2.2 / 93.4±1.8 96.6±0.7 / 96.7±0.6 / 98.5±0.7
LSUN 81.4±2.3 / 84.7±2.1 / 90.2±2.2 96.1±0.3 / 95.8±0.4 / 97.8±0.3

Source: The Authors (2022). Fair comparison of seamless out-of-distribution detection approaches: No hyperparameter tuning,
no additional/outlier/background data, no classification accuracy drop, and no slow inferences. SoftMaxES means training
using SoftMax loss and performing OOD detection using the entropic score (ES). IsoMaxES means training using IsoMax loss
and performing OOD detection using the entropic score (ES). IsoMax+MDS means training using IsoMax+ loss and performing
OOD detection using minimum distance score (MDS). Results are shown as the mean and standard deviation of five iterations.
The best results are shown in bold. See Table 10.

Table 12 - IsoMax+: Unfair Comparison with No Seamless Approaches

Model Data
(training)

OOD
(unseen)

Comparison with approaches that use
input preprocessing and adversarial validation.

AUROC (%) [↑] DTACC (%) [↑]
ODIN / Mahalanobis / IsoMax+MDS (ours)

DenseNet100
CIFAR10

SVHN 92.1±0.2 / 97.2±0.3 / 99.4±0.1 86.1±0.3 / 91.9±0.3 / 96.3±0.4
TinyImageNet 97.2±0.3 / 97.7±0.2 / 98.5±0.3 91.9±0.3 / 94.3±0.5 / 93.9±0.6
LSUN 98.5±0.3 / 98.6±0.2 / 99.1±0.2 94.3±0.3 / 95.7±0.4 / 95.3±0.5

CIFAR100
SVHN 88.0±0.5 / 91.3±0.4 / 96.3±1.3 80.0±0.6 / 84.3±0.4 / 90.3±0.5
TinyImageNet 85.6±0.5 / 96.7±0.3 / 97.5±0.8 77.6±0.5 / 91.0±0.4 / 91.3±0.3
LSUN 85.7±0.6 / 97.1±1.9 / 97.2±1.3 77.5±0.4 / 92.5±0.8 / 91.7±0.7

ResNet34
CIFAR10

SVHN 86.0±0.3 / 95.0±0.3 / 98.0±0.4 77.1±0.4 / 88.7±0.3 / 93.5±0.4
TinyImageNet 92.6±0.3 / 98.3±0.4 / 95.3±0.3 86.5±0.5 / 94.8±0.3 / 90.0±0.4
LSUN 93.0±0.4 / 98.8±0.3 / 96.3±0.4 86.3±0.4 / 96.8±0.4 / 92.1±0.5

CIFAR100
SVHN 71.0±0.4 / 84.0±0.6 / 88.0±0.7 68.0±0.5 / 77.3±0.7 / 82.1±0.4
TinyImageNet 83.1±0.3 / 87.3±0.5 / 90.5±0.4 76.2±0.4 / 84.0±0.4 / 84.2±0.5
LSUN 81.0±0.3 / 82.0±0.5 / 88.6±0.6 75.2±0.3 / 79.3±0.5 / 82.5±0.4

Source: The Authors (2022). Unfair comparison with approaches that use input preprocessing and produce slow/inefficient in-
ferences in addition to requiring validation using adversarial examples. ODIN and Mahalanobis were applied to models trained
using SoftMax loss. These approaches compute at least four times slower and less power efficient inferences Macêdo et al.
(2021) because they use input preprocessing. Their hyperparameters were validated using adversarial examples. Additionally,
Mahalanobis requires feature extraction for training ad-hoc models to perform OOD detection. Finally, feature ensemble was
also used. IsoMax+MDS (ours) means training using IsoMax+ loss and performing OOD detection using minimum distance
score (MDS). No hyperparameter tuning is required when using IsoMax+ loss for training and the MDS for OOD detection.
The IsoMax+ loss OOD detection performance shown in this table may be increased further without relying on input prepro-
cessing or hyperparameter tuning by replacing the minimum distance score with the Mahalanobis Lee et al. (2018) or the energy
score Liu et al. (2020b). Results are the mean and standard deviation of five runs. The best results are shown in bold.
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Table 13 - IsoMax+: Unfair Comparison with Outlier Exposure

Model
Data

(training)

Comparison of IsoMax loss variants without using additional data
with outlier exposure-enhanced SoftMax loss.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMaxOE

ES / IsoMaxES / IsoMax+MDS (ours)

DenseNet100
CIFAR10 94.4±1.4 / 84.2±4.6 / 94.6±1.5 98.0±0.3 / 97.1±0.5 / 99.0±0.2
CIFAR100 36.4±9.4 / 46.5±5.0 / 80.6±3.6 83.8±5.6 / 90.8±2.1 / 97.0±1.1

ResNet110
CIFAR10 82.4±2.1 / 71.6±4.4 / 82.8±3.0 96.8±0.7 / 95.2±0.7 / 97.3±0.7
CIFAR100 29.1±4.5 / 22.1±3.7 / 43.9±5.5 80.5±2.8 / 83.3±1.8 / 88.6±2.1

Source: The Author (2022). Unfair comparison of outlier exposure-enhanced SoftMax loss with IsoMax loss and IsoMax+ loss
without using additional data. SoftMaxOE

ES means training using SoftMax loss enhanced during training using outlier exposure
(Hendrycks et al., 2019a), which requires the collection of outlier data, and performing OOD detection using the entropic score.
We used the same outlier data used in Hendrycks et al. (2019a). We collected the same amount of outlier data as the number of
training examples present in the training set used to train SoftMaxOE. Despite being possible (Macêdo et al., 2022), the IsoMax
loss and IsoMax+ loss were not enhanced by outlier exposure to keep the solution seamless. IsoMaxES means training using
IsoMax loss and performing OOD detection using the entropic score. IsoMax+MDS (ours) means training using IsoMax+ loss
and performing OOD detection using minimum distance score (MDS). The values of the performance metrics TNR@TPR95
and AUROC were averaged over all out-of-distribution (SVHN, TinyImageNet, and LSUN). Results are shown as the mean
and standard deviation of five iterations. The best results are shown in bold.

Table 14 - IsoMax Variants using Different Scores

Model Data
(training)

Comparison of IsoMax loss variants
using different scores.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
IsoMaxES / IsoMaxMDS / IsoMax+ES / IsoMax+MDS (ours)

DenseNet100 CIFAR10 84.2±4.6 / 0.9±0.5 / 89.3±2.3 / 94.6±1.5 97.1±0.5 / 65.5±6.0 / 97.9±0.3 / 99.0±0.2
CIFAR100 46.5±5.0 / 6.2±6.1 / 63.7±8.0 / 80.6±3.6 90.8±2.1 / 50.1±7.4 / 94.0±1.3 / 97.0±1.1

ResNet110 CIFAR10 71.6±4.4 / 0.1±0.1 / 74.8±3.5 / 82.8±3.0 95.2±0.7 / 83.7±4.1 / 95.2±0.6 / 97.3±0.7
CIFAR100 22.1±3.7 / 1.6±2.0 / 22.3±5.3 / 43.9±5.5 83.3±1.8 / 61.9±7.2 / 84.4±0.8 / 88.6±2.1

Source: The Author (2022). Comparison of IsoMax variants using different scores. IsoMaxES means training using IsoMax loss
and performing OOD detection using the entropic score (ES). IsoMaxMDS means training using IsoMax loss and performing
OOD detection using the minimum distance score (MDS). IsoMax+ES means training using IsoMax+ loss and performing OOD
detection using entropic score (ES). IsoMax+MDS (ours) means training using IsoMax+ loss and performing OOD detection
using minimum distance score (MDS). The values of the performance metrics TNR@TPR95 and AUROC were averaged
over all out-of-distribution (SVHN, TinyImageNet, and LSUN). Results are shown as the mean and standard deviation of five
iterations. The best results are shown in bold. See Fig. 41.
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Figure 41 - Minimum Distance Score Analyses

(a)

(b)

(c)

(d)

Source: The Authors (2022). In agreement with other studies (Liu et al., 2020a), (a) IsoMax (b) and IsoMax+ produce higher
entropy/uncertainty on out-of-distributions than in-distribution. Therefore, the entropic score produces high OOD detection per-
formance in both cases. (c) However, IsoMax does not make the in-distribution closer to the prototypes than out-of-distributions.
(d) Concurrently, by introducing distance isometrization, IsoMax+ gets in-distribution closer to the prototypes while pushing
out-of-distribution data far away, which is what we expect based on the findings of other recent studies (Liu et al., 2020a). This
result also explains why the minimum distance score produces high performance when using IsoMax+, while producing low
performance when using IsoMax. See also Table 14.
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4.3 DISTINCTION MAXIMIZATION LOSS

To allow standardized comparison, we used the datasets, training procedures, and metrics
that were established in Hendrycks & Gimpel (2017) and used in many subsequent papers (Liang
et al., 2018; Lee et al., 2018; Hein et al., 2019). We trained many 100-layer DenseNetBCs
with growth rate k=12 (i.e., 0.8M parameters) (Huang et al., 2017), 34-layer ResNets He et al.

(2016), and 28-layer WideResNets (widening factor k=10) (Zagoruyko & Komodakis, 2016)
on the CIFAR10 (Krizhevsky, 2009) and CIFAR100 (Krizhevsky, 2009) datasets with SoftMax,
IsoMax+, and DisMax losses using the same procedures (e.g., initial learning rate, learning rate
schedule, weight decay). We used DisMax for DenseNetBC100 trained on CIFAR10 because
this is a very small model and the mentioned dataset has too many examples per class; therefore,
no augmentation is needed. We used DisMax† with α =1 for all cases.

We used stochastic gradient descent (SGD) with the Nesterov moment equal to 0.9 with
a batch size of 64 and an initial learning rate of 0.1. The weight decay was 0.0001, and we did
not use dropout. We trained during 300 epochs. We used a learning rate decay rate equal to ten
applied in epoch numbers 150, 200, and 250. We used resized images from TinyImageNet (Deng
et al., 2009), the Large-scale Scene UNderstanding dataset (LSUN) (Yu et al., 2015), CIFAR10
(Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), and SVHN (Netzer & Wang, 2011) to create
out-of-distribution samples.

We added these out-of-distribution images to the validation sets of the ID data to form
the test sets and evaluate the OOD detection performance. We evaluated the accuracy (ACC)
to assess classification performance. We evaluated the OOD detection performance using the
AUROC, the Area Under the Precision-Recall Curve (AUPR), and the true negative rate at a
95% true positive rate (TNR@TPR95). We used the Expected Calibration Error (ECE) (Naeini
et al., 2015; Guo et al., 2017; Minderer et al., 2021) for uncertainty estimation performance.
The results are the mean and standard deviation of five runs. Two methods are considered to
produce the same performance if their mean performance difference is less than the sum of the
error margins.

4.3.1 Ablation Study

Table 15 shows that logits+ and FPR often improve the accuracy and OOD detection per-
formance compared to IsoMax+ even when using MDS. It also shows that replacing MDS with
the composite score MMLES often increases OOD detection. These conclusions are essentially
true regardless of the model, in-distribution, and (near, far, and very far) out-of-distribution.

Finally, we performed experiments combining IsoMax+ with CutMix. However, adding
CutMix to IsoMax+ did not significantly increase the OOD detection performance. Often, the
performance actually decreased. Therefore, DisMax easily outperformed IsoMax+ even when
the latter was combined with CutMix.
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Table 15 - DisMax: Ablation Study

CIFAR10

Model Method
Score

Out-of-Distribution Detection

Near Far Very Far

CIFAR100 TinyImageNet LSUN SVHN

MPS,MDS TNR@95TPR TNR@95TPR TNR@95TPR TNR@95TPR
MPS/MMLES (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) MPS 39.5±2.1 53.1±7.8 62.1±6.2 41.2±3.6
IsoMax+ MDS 57.3±1.1 86.9±0.4 91.4±0.3 96.4±0.6
IsoMax+ with CutMix MDS 41.4±0.8 73.8±8.5 87.4±3.2 59.7±9.3

DisMax (ours) MDS 56.2±0.5 88.0±0.3 92.2±0.3 97.5±0.3
MPS/MMLES 54.2±1.0 89.0±1.0 92.4±1.1 98.3±0.3

ResNet34
(medium size)

SoftMax (baseline) MPS 40.0±1.6 46.4±4.9 53.6±4.7 44.1±9.3
IsoMax+ MDS 55.1±1.3 71.0±6.4 81.5±4.4 82.4±8.8
IsoMax+ with CutMix MDS 40.2±8.0 62.4±4.3 77.4±4.5 78.6±7.2

DisMax† (ours) MDS 60.4±0.7 92.0±1.5 97.2±0.4 91.1±2.9
MPS/MMLES 60.0±0.5 93.3±1.1 98.0±0.3 91.2±2.7

WideResNet2810
(big size)

SoftMax (baseline) MPS 44.9±0.7 53.4±3.3 59.2±3.6 50.1±5.2
IsoMax+ MDS 61.5±0.4 80.2±4.2 87.4±3.0 96.3±1.4
IsoMax+ with CutMix MDS 37.4±8.0 76.3±8.2 85.8±6.3 60.0±9.8

DisMax† (ours) MDS 60.2±1.3 98.4±0.4 99.4±0.1 93.8±1.7
MPS/MMLES 62.9±0.5 98.6±0.2 99.5±0.1 92.8±2.0

CIFAR100

Model Method
Score

Out-of-Distribution Detection

Near Far Very Far

CIFAR10 TinyImageNet LSUN SVHN

MPS,MDS TNR@95TPR TNR@95TPR TNR@95TPR TNR@95TPR
MPS/MMLES (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) MPS 17.6±1.1 18.1±1.7 18.7±2.0 19.8±2.9
IsoMax+ MDS 17.2±0.7 71.6±6.5 66.8±9.4 67.1±3.0
IsoMax+ with CutMix MDS 19.8±2.1 60.8±9.9 57.6±9.8 57.9±3.5

DisMax† (ours) MDS 16.6±0.6 97.7±0.3 98.5±0.4 57.9±3.6
MPS/MMLES 22.1±1.1 99.0±0.5 99.4±0.3 66.6±2.6

ResNet34
(medium size)

SoftMax (baseline) MPS 19.4±0.5 20.6±2.4 21.3±3.4 17.1±5.0
IsoMax+ MDS 18.0±0.7 43.3±4.3 41.5±5.7 43.6±3.5
IsoMax+ with CutMix MDS 18.9±1.7 46.3±9.6 46.5±9.0 35.6±3.9

DisMax† (ours) MDS 20.8±0.4 79.9±1.5 81.5±1.4 43.7±1.6
MPS/MMLES 22.0±0.5 85.4±1.7 86.4±1.3 48.5±2.0

WideResNet2810
(big size)

SoftMax (baseline) MPS 21.8±0.7 26.7±5.9 28.7±6.7 15.8±5.5
IsoMax+ MDS 19.0±0.7 66.9±3.9 67.9±3.3 61.8±1.9
IsoMax+ with CutMix MDS 21.5±1.9 52.5±9.4 52.0±9.1 33.3±9.2

DisMax† (ours) MDS 22.4±0.2 92.3±1.3 95.2±0.4 56.8±1.8
MPS/MMLES 24.6±0.3 96.3±1.2 97.8±0.9 65.6±1.2

Source: The Author (2022). MPS (Hendrycks & Gimpel, 2017) means Maximum Probability Score (i.e., the standard for
SoftMax loss). MDS indicates Minimum Distance Score (i.e., the standard for IsoMax+ loss (Macêdo & Ludermir, 2021)).
MMLES means Max-Mean Logit Entropy Score (i.e., the standard for DisMax loss for (very) far OOD detection). CutMix
is from Yun et al. (2019). We used MPS for near OOD detection for DisMax, as this score provided the best results in this
particular case. We emphasize that the MPS for DisMax is based on logits+ rather than usual logits. The best performances
are bold. All results can be reproduced using the provided code.
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Table 16 - DisMax: Classification, Efficiency, Uncertainty, and OOD Detection

CIFAR10

Model Method
Classification Inference Uncertainty

Estimation
Out-of-Distribution Detection

Near Far Very Far

CIFAR100 TinyImageNet LSUN SVHN

ACC Efficiency ECE AUPR AUROC AUROC AUPR
(%) [↑] (%) [↑] [↓] (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) 95.2±0.1 100.0 0.0043±0.0008 86.2±0.5 92.9±1.6 94.7±0.9 93.7±3.3
Scaled Cosine 94.9±0.1 100.0 - - 98.8±0.3 99.2±0.2 -
GODIN with preprocessing 95.0±0.1 26.0 - - 99.1±0.1 99.4±0.1 -
IsoMax+ 95.1±0.1 100.0 0.0043±0.0012 90.4±0.3 97.6±0.9 98.3±0.5 99.7±0.1
DisMax (ours) 95.1±0.1 100.0 0.0045±0.0021 90.0±0.2 98.0±0.5 98.4±0.3 99.9±0.1

ResNet34
(medium size)

SoftMax (baseline) 95.6±0.1 100.0 0.0060±0.0013 85.3±0.4 89.7±2.8 92.4±1.6 94.9±1.0
GODIN 95.1±0.1 100.0 - - 95.6±0.5 97.6±0.2 -
IsoMax+ 95.5±0.1 100.0 0.0133±0.0177 90.1±0.3 95.1±1.0 96.9±0.6 98.7±0.6
DisMax† (ours) 96.7±0.2 100.0 0.0058±0.0008 90.3±0.2 98.3±0.3 99.5±0.1 99.1±0.3

WideResNet2810
(big size)

SoftMax (baseline) 96.2±0.1 100.0 0.0038±0.0005 87.5±0.3 92.6±0.9 94.0±0.7 95.3±0.9
Deep Ensemble 96.6±0.1 10.3 0.0100±0.0010 88.8±1.0 - - 96.4±1.0
DUQ 94.7±0.1 45.0 0.0340±0.0020 85.4±1.0 - - 97.3±1.0
SNGP 95.9±0.1 62.5 0.0180±0.0010 90.5±1.0 - - 99.0±1.0
Scaled Cosine 95.7±0.1 100.0 - - 97.7±0.7 98.6±0.3 -
IsoMax+ 96.0±0.1 100.0 0.0107±0.0166 91.8±0.1 96.6±0.6 97.7±0.4 99.7±0.3
DisMax† (ours) 97.0±0.1 100.0 0.0043±0.0008 90.1±0.3 99.7±0.1 99.9±0.1 99.3±0.3

CIFAR100

Model Method
Classification Inference Uncertainty

Estimation
Out-of-Distribution Detection

Near Far Very Far

CIFAR10 TinyImageNet LSUN SVHN

ACC Efficiency ECE AUPR AUROC AUROC AUPR
(%) [↑] (%) [↑] [↓] (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) 77.3±0.4 100.0 0.0155±0.0026 71.3±0.8 71.8±2.2 73.1±2.4 87.5±1.5
Scaled Cosine 75.7±0.1 100.0 - - 97.8±0.5 97.6±0.8 -
GODIN with preprocessing 75.9±0.1 24.0 - - 98.6±0.2 98.7±0.0 -
IsoMax+ 76.9±0.3 100.0 0.0108±0.0017 71.3±0.4 95.1±1.1 94.2±1.7 97.4±0.6
DisMax† (ours) 79.4±0.2 100.0 0.0154±0.0006 74.4±0.2 99.8±0.1 99.9±0.1 96.4±0.8

ResNet34
(medium size)

SoftMax (baseline) 77.7±0.3 100.0 0.0268±0.0015 73.3±0.1 79.0±2.1 79.6±1.7 86.3±3.3
GODIN 75.8±0.2 100.0 - - 91.8±1.1 92.0±0.7 -
GODIN with dropout 77.2±0.1 100.0 - - 87.0±1.1 87.0±2.2 -
IsoMax+ 76.5±0.3 100.0 0.0190±0.0025 72.1±0.4 89.7±1.0 89.8±1.3 94.5±0.6
DisMax† (ours) 80.6±0.3 100.0 0.0116±0.0014 74.2±0.6 97.6±0.5 97.7±0.6 94.8±1.0

WideResNet2810
(big size)

SoftMax (baseline) 79.9±0.2 100.0 0.0272±0.0032 75.4±0.5 81.7±2.3 82.7±2.2 86.0±2.6
Deep Ensemble 80.2±0.1 12.3 0.0210±0.0040 78.0±1.0 - - 88.8±1.0
DUQ 78.5±0.1 79.9 0.1190±0.0010 73.2±1.0 - - 87.8±1.0
SNGP 79.9±0.1 74.9 0.0250±0.0120 80.1±1.0 - - 92.3±1.0
Scaled Cosine 78.5±0.3 100.0 - - 95.8±0.7 95.2±0.8 -
IsoMax+ 79.5±0.1 100.0 0.0188±0.0016 73.0±0.8 94.2±2.1 94.6±2.0 96.7±1.7
DisMax† (ours) 83.0±0.1 100.0 0.0143±0.0027 76.0±1.0 99.4±0.2 99.6±0.1 97.0±1.5

Source: The Author (2022). In this table, efficiency represents the inference speed (i.e., the inverse of the inference delay)
calculated as a percentage of the performance of a single deterministic neural network trivially trained. For a fair comparison,
we also calibrated the temperature of the SoftMax loss and IsoMax+ loss approaches using the same procedure that we defined
for DisMax loss. Considering that input preprocessing can be applied indistinctly to improve the OOD detection performance of
all methods compared (Hsu et al., 2020) (at the cost of making their inferences approximately four times less efficient (Macêdo
et al., 2022)), unless explicitly mentioned otherwise, all results are presented without using input preprocessing. The results
worse than the baseline or most of the other approaches are shown in red. The methods that present the best performances are
bold. SoftMax (baseline) was proposed in Hendrycks & Gimpel (2017) and IsoMax+ in Macêdo & Ludermir (2021). Results
for Scaled Cosine are from Scaled Cosine paper (Techapanurak & Okatani, 2019). Results for GODIN are from GODIN paper
(Hsu et al., 2020). Results for Deep Ensemble (Lakshminarayanan et al., 2017), DUQ (van Amersfoort et al., 2020), and SNGP
are from SNGP paper (Liu et al., 2020a).
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Figure 42 - Max-Mean Logit Entropy Score Analyses

Source: The Author (2022). In the feature space, the mean distance from an in-distribution image to all prototypes is usually
smaller than the mean distance from an out-of-distribution image to all prototypes. For example, consider a given class present
in CIFAR10. This figure shows that even prototypes associated with classes other than the selected class are usually closer to
images of the assumed class (in-distribution in blue) than images that do not belong to CIFAR10 at all (out-of-distributions in
orange). This explains why the mean value of logits+ considering all prototypes contributes to the OOD detection performance.
Therefore, not only the distance to the nearest prototype is used in the mentioned task.

4.3.2 Classification, Efficiency, Uncertainty, and OOD Detection Results

Table 16 compares DisMax with major approaches such as Scaled Cosine (Techapanurak
& Okatani, 2019), GODIN (Hsu et al., 2020), Deep Ensemble (Lakshminarayanan et al., 2017),
DUQ (van Amersfoort et al., 2020), and SNGP (Liu et al., 2020a) regarding classification
accuracy, inference efficiency, uncertainty estimation, and (near, far, and very far) out-of-
distribution detection. Unlike other approaches, DisMax is as inference efficient as a trivially
trained neural network using the usual SoftMax loss. Furthermore, DisMax often outperforms
other approaches simultaneously in all evaluated metrics.

4.3.3 Max-Mean Logit Entropy Score Analyses

Fig. 41 shows the distribution of mean logits+ under some scenarios. We see that
prototypes are, on average, usually closer to in-distribution examples than out-of-distribution
examples, which explains why the mean enhanced logit improves OOD detection performance
when combined with the maximum logit+ and the negative entropy to compose the MMLES.
In other words, even prototypes that are not associated with the class of a given in-distribution

example are usually closer to it than they are to out-of-distribution examples.



102102102

Figure 43 - Loss Surface Study
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Source: The Author (2022). 3D loss surfaces and 2D loss contours as proposed in Li et al. (2018). Loss landscapes for
ResNet34 trained on CIFAR10. (a, d) SoftMax; (b, e) IsoMax+; and (c, f) DisMax†. Considering that IsoMax+ outperforms
SoftMax and DisMax† outperforms IsoMax+, a less steep 3D inclination (i.e. a lower 2D contour concentration) provides
increased robustness.

4.3.4 Loss Landscape Study

Fig. 43 presents the 3D loss surfaces and 2D loss contours as studied in Li et al. (2018).
Considering that IsoMax+ overcomes SoftMax and that DisMax† outperforms IsoMax+, we
conclude that improved robustness is obtained by less steep 3D inclination (i.e. a lower 2D
contour concentration).

The above-mentioned conclusion may be somewhat unexpected, as we always were
conducted to believe that losses with high inclinations are “better”. It is the case probably because
we were not used to thinking that we need losses that produce robust models rather than only
losses that build accurate ones.
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5 CONCLUSION

“There can be no triumph without loss.

No victory without suffering. No freedom without sacrifice.”

–The Lord of the Rings: The Return of the King (Official Trailer)

“Become who you are!”

–Friedrich Nietzsche

“Seize the present, trust tomorrow e’en as little as you may.”

–Horace (Odes)

In this work, we mentioned that AI is the subfield of computer science that handles
problems not well-fitted for the classical algorithmic programming paradigm. We also showed
the relevance and limitations of machine learning. We presented the revolution that deep learning
represents for the machine learning community. Finally, we showed the deep learning strengths
and current major limitations such as reasoning, causal inference, interpretability, and robustness.

Regarding robustness, we exemplified how current deep networks present extremely
confident predictions even when they are wrong. We also gave examples of how hard it is to ap-
prehend when the system cannot reliably predict. Subsequently, we presented the OOD detection
task, which is one of the challenges that best outlines the issue of reliability in deep learning.

Finally, after identifying the SoftMax loss limitations, we present our proposals to tackle
the OOD detection problem. We started from deep learning foundations such as loss function
design and the principle of maximum entropy to develop solutions that do not rely on ad hoc
techniques currently used to attack this problem. By doing this, we were able to achieve state-of-
the-art OOD detection performance, avoiding drawbacks of previously proposed methods.
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5.1 CONTRIBUTIONS

5.1.1 Isotropy Maximization Loss

Initially, we proposed IsoMax, a loss that is isotropic (exclusively distance-based) and
produces high entropy posterior probability distributions in agreement with the maximum entropy
principle. We additionally proposed the entropic score, which is a fast and efficient way to
perform OOD detection using the information provided by all neural network output probabilities
rather than just one, usually the case in current OOD detection approaches.

The proposed approach avoids the techniques, requirements, and side effects used by
current methods. Networks trained using IsoMax loss produce accurate predictions, as no
classification accuracy drop is observed compared to networks trained with SoftMax loss.
Additionally, the models trained using IsoMax loss provide inferences that are fast and have
energy and computational efficiency equivalent to models trained with SoftMax loss, making our
solution viable from an economical and environmental point of view (Schwartz et al., 2019).

Moreover, our approach does not require hyperparameter tuning, which means it does
not require validation using unrealistic design-time access to OOD samples or the generation of
adversarial examples. Regarding this point, we remember that all experiments performed in this
work always used the same constant value for the Entropic Scale.

Indeed, no hyperparameter tuning is required because the entropic scale is a global
constant that is kept equal to ten for all combinations of datasets and models. Even if we call the
entropic scale hyperparameter, the IsoMax loss does not involve hyperparameter tuning because
the same constant value of entropic scale is used in all cases. This result is possible because
it was shown in Macêdo et al. (2021, 2022) that the OOD detection performance exhibits a
well-behaved dependence on the entropic scale regardless of the dataset and model.

Furthermore, our solution does not require feature extraction, metric learning, or hyper-
parameter tuning. In other words, no extra procedures other than typical neural network training
are required. Considering our approach avoids ad hoc techniques and associated troublesome
requirements and undesired side effects, we say that IsoMax loss works as a SoftMax loss drop-in

replacement and that the overall solution is seamless.
We provide theoretical foundations based on the maximum entropy principle to explain

why our seamless and principled approach works. Substantial experimental evidence confirms
our theoretical assumptions and shows that our solution presents competitive OOD detection
performance in addition to avoiding limitations of current methods.

Additionally, considering that the replacement of the SoftMax loss by the IsoMax loss
significantly improves OOD detection performance, we conclude that the general low OOD
detection performance of current neural networks is due to SoftMax loss drawbacks rather than
limitations of the models.



105105105

Nevertheless, when the cited requirements and side effects are not a concern for a
particular real-world application, the mentioned (or other) techniques may be combined with
IsoMax loss to try to achieve even higher OOD detection performance.

For example, loss enhancement techniques, such as outlier exposure or background
samples, may be readily adapted to work with the IsoMax loss. Another promising approach
could be using recent data augmentation techniques (Thulasidasan et al., 2019; Yun et al., 2019)
or strategies based on pretrained models (Sastry & Oore, 2019).

5.1.2 Enhanced Isotropy Maximization Loss

We improved the IsoMax loss function by replacing its original distance with what we call
the isometric distance. Additionally, we proposed a zero computational cost minimum distance
score. Experiments showed that these modifications achieve higher OOD detection performance
while maintaining the desired benefits of IsoMax loss (i.e., absence of hyperparameters to tune,
no reliance on additional/outlier/background data, fast and power-efficient inference, and no
classification accuracy drop).

Similar to IsoMax loss, after training using the proposed IsoMax+ loss, we may apply
inference-based approaches (e.g., ODIN, Mahalanobis, Gram matrices, outlier exposure, energy-
based) to the pretrained model to eventually increase the overall OOD detection performance
even more. Thus, the IsoMax+ loss is a replacement for SoftMax loss but not for OOD methods
that may be applied to pretrained models, which may be used to improve even more the OOD
detection performance of IsoMax+ loss pretrained networks.

There is no drawback in training a model using IsoMax+ loss instead of SoftMax loss
or IsoMax loss, regardless of planning to subsequently use an inference-based OOD detection
approach to further increase OOD detection performance. Therefore, instead of competitors, the
OOD detection approaches that may be applied to pretrained models are actually complementary
to the proposed approach (Macêdo et al., 2021, 2022). IsoMax+ loss achieves a better baseline
performance than SoftMax loss or IsoMax loss to construct future OOD detection methods.

5.1.3 Distinction Maximization Loss

We proposed DisMax by improving the IsoMax+ with the enhanced logits and the
Fractional Probability Regularization. We also presented a novel composite score called MMLES
for OOD detection by combining the maximum logit+, the mean logit+, and the negative entropy
of the network output. We present a simple and fast temperature scaling procedure performed
after training that makes DisMax produce a high-performance uncertainty estimation. Our
experiments showed that the proposed method commonly outperforms the current approaches
simultaneously in classification accuracy, inference efficiency, uncertainty estimation, and out-
of-distribution detection.
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5.2 BENEFITS OF ENTROPIC LOSSES

Regarding the first research question, we showed that it is possible to perform state-of-
the-art OOD replacing just the loss, and we also provided many options for scores. Concerning
the second question, we showed that the maximum entropy principle offers solid theoretical
motivation for the proposed approaches. Finally, to answer the third question and to summarize
our achievements, here we present some features that are common to the proposed solutions (i.e.,
the entropic losses and the novel scores):

1. Entropic losses do not present classification accuracy drop: The experiments show
that training with entropic losses does not produce a classification accuracy drop.
Other training-based approaches like Generalized ODIN (G-ODIN) require losing
some training data for validation, consequently producing a classification accuracy
drop compared with training the SoftMax loss. Losing training data for validation is
particularly harmful in the critical low labeled data regime. Classification accuracy
drop is usually extremely undesired in many cases in practice.

2. Models trained using entropic losses do not produce slow and energy inefficient
inferences: Approaches such as ODIN, full Mahalanobis, and G-ODIN incorporate
input preprocessing, making the solution at least four times slower and energy
inefficient. We should prefer environment-friendly and low-energy consumption
solutions for real-world, large-scale adoption.

3. Entropic losses do not require additional data collection: Solutions like outlier
exposure require extra data collection, while the proposed approach does not. If
additional data is available, outlier exposure (or similar data-driven techniques) may
be used to enhance the performance of our method.

4. IsoMax, IsoMax+ and DisMax do not require hyperparameter tuning: It makes the
solution readily available to be fast adopted in practice and significantly increases the
overall baseline OOD performance in many areas and applications.

5. Scalability: considering the solution consists of a SoftMax loss drop-in replacement,
we have strong reasons to believe that the proposed approach scales well for large
image datasets.

6. Domain-Agnostic: Considering that IsoMax, IsoMax+, and DisMax work at loss
level and avoids data augmentation, it may potentially be applied to text.

7. Easy of use: considering that the proposed solutions work as seamless SoftMax loss
drop-in replacement, using it is as simple as replacing two lines of code.
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8. Compatibility with existing inference-based approaches: inference-based approaches
(e.g., ODIN, vanilla or full Mahalanobis, outlier exposure, Gram matrices) may
be applied to our losses pretrained model just like they are applied to SoftMax
loss pretrained models to achieve even higher OOD detection performance. Unlike
inference-based approaches that usually increase the computational cost of perform-
ing inferences or OOD detection, the proposed solutions produce inferences as fast
and computationally efficient as pure SoftMax loss-trained models.

9. Competitive state-of-the-art performance even operation under more restrictive con-
ditions and producing no side effects: Our results show that the proposed approaches
overcome ODIN despite avoiding inefficient inference. It also usually overcomes
full Mahalanobis, avoiding inefficient inferences and validations using adversarial
examples. Moreover, it is competitive or overcomes outlier exposure without relying
on extra data.

10. Simplicity: The simplicity and solid foundations (e.g., distance-based loss, the
principle of maximum entropy, isometric distances, minimum distance score) suggest
that the proposed solutions generalize well.

11. Compatibility with existing Bayesian, ensemble, and uncertainty estimation tech-
niques: As the entropic losses work as a SoftMax loss drop-in replacement, all
available Bayesian, ensemble, and uncertainty estimation techniques may be immedi-
ately combined with it to start from a much better baseline than SoftMax loss.

12. Considering that the minimum distance is computed during the classification phase
and that this value is reused as the score to perform OOD detection, we say that
this is a zero computational cost out-of-distribution detection. Hence, unlike other
approaches (e.g., Gram matrices), no extra computation is required.

13. Do not require feature extraction or training additional models: After the neural
network training, the solution is readily available. It is unnecessary to perform feature
extraction or additional train models on the extracted features.
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5.3 FUTURE WORKS

In future work, we intend to analyze the behavior of our solutions when dealing with
natural corruptions and perturbations. Some studies have shown that the performance of deep
neural networks deteriorates when submitted to corruptions and perturbations that may occur
naturally (Hendrycks & Dietterich, 2019). Therefore, in some applications, it is important to
design robust solutions in these cases. Robustness in the presence of distribution shifts1 is a
relevant case that we also intend to study.

Besides the natural corruptions and perturbations, we also plan to evaluate the perfor-
mance of our solutions when dealing with intentionally manipulated corruptions and perturba-
tions. In other words, we intend to analyze the behavior of our solutions when submitted to the
so-called adversarial attacks (Wang et al., 2021). Making the solutions robust against adversarial
examples may allow its usage in critical scenarios in which this is a real concern.

We also plan to study the behavior of the proposed losses when dealing with other types
of media (e.g., audio), structured data (tabular and temporal data), and tasks (e.g., object detection
(Zaidi et al., 2021)). We may broaden their practical applications by showing that the proposed
losses also present satisfactory behavior in such cases.

Finally, we intend to verify the performance of our approach using transformer-based
models, regardless of being pretrained or fine-tuned using the proposed losses and scores.
Considering that vision transformers are recently becoming a reality, evaluate the performance
of our proposals in such cases is becoming important.

1https://wilds.stanford.edu/

https://wilds.stanford.edu/
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Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Banino, A., Dashevskiy, M., Hadsell, R., &
Blundell, C. (2022). The CLRS algorithmic reasoning benchmark. arXiv, abs/2205.15659. 25,
26

Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., & Willke, T. L. (2018). Out-of-
distribution detection using an ensemble of self supervised leave-out classifiers. European
Conference on Computer Vision, 11212. 43

Wang, C., Wang, J., & Lin, Q. (2021). Adversarial attacks and defenses in deep learning: A
survey. Intelligent Computing Theories and Application. 108

Wang, F., Cheng, J., Liu, W., & Liu, H. (2018). Additive margin softmax for face verification.
IEEE Signal Process. Lett., 25(7):926–930. 58

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou,
D. (2022). Chain of thought prompting elicits reasoning in large language models. arXiv,
abs/2201.11903. 26, 27

Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016). A discriminative feature learning approach for
deep face recognition. European Conference on Computer Vision, 9911. 35, 45, 51, 80



118118118

Williamson, J. (2005). Objective bayesian nets. We Will Show Them! Essays in Honour of Dov
Gabbay, Volume Two, 713–730. 56

Williamson, J. (2009). Philosophies of probability. Handbook of the Philosophy of Mathematics,
4:493–533. 56

Williamson, J. (2013). In defence of objective bayesianism. Oxford University Press, 23(2):255–
258. 56

Wong, E., Rice, L., & Kolter, J. Z. (2020). Fast is better than free: Revisiting adversarial training.
International Conference on Learning Representations. 43

Wright, L. G., Onodera, T., Stein, M. M., Wang, T., Schachter, D. T., Hu, Z., & McMahon, P. L.
(2022). Deep physical neural networks trained with backpropagation. Nature, 601:549–555. 26

Yang, J., Zhou, K., Li, Y., & Liu, Z. (2021). Generalized out-of-distribution detection: A survey.
arXiv, abs/2110.11334. 31

Yu, F., Zhang, Y., Song, S., Seff, A., & Xiao, J. (2015). LSUN: construction of a large-scale
image dataset using deep learning with humans in the loop. arXiv, abs/1506.03365. 72, 92, 98

Yu, Q. & Aizawa, K. (2019). Unsupervised out-of-distribution detection by maximum classifier
discrepancy. International Conference on Computer Vision. 43

Yun, S., Han, D., Chun, S., Oh, S. J., Yoo, Y., & Choe, J. (2019). Cutmix: Regularization strategy
to train strong classifiers with localizable features. International Conference on Computer Vision.
47, 68, 99, 105

Zadorozhny, K., Thoral, P., Elbers, P. W. G., & Cinà, G. (2021). Out-of-distribution detection for
medical applications: Guidelines for practical evaluation. arXiv, abs/2109.14885. 31

Zagoruyko, S. & Komodakis, N. (2016). Wide residual networks. British Machine Vision
Conference. 72, 98

Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., Asghar, M. N., & Lee, B. (2021). A survey
of modern deep learning based object detection models. arXiv, abs/2104.11892. 108

Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). mixup: Beyond empirical risk
minimization. International Conference on Learning Representations. 47

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-BFGS-B: fortran
subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw., 23(4):550–
560. 70



119119119

APPENDIX A - ENTROPIC OUT-OF-DISTRIBUTION
DETECTION



Accepted for publication in The International Joint Conference on Neural Networks (IJCNN), 2021

Entropic Out-of-Distribution Detection
David Macêdo 1,2, Tsang Ing Ren 1, Cleber Zanchettin 1,3, Adriano L. I. Oliveira 1, and Teresa Ludermir 1

1Centro de Informática, Universidade Federal de Pernambuco, Recife, Brasil
2Montreal Institute for Learning Algorithms, University of Montreal, Quebec, Canada

3Department of Chemical and Biological Engineering, Northwestern University, Evanston, United States of America
Emails: {dlm, tir, cz, alio, tbl}@cin.ufpe.br

Abstract—Out-of-distribution (OOD) detection approaches
usually present special requirements (e.g., hyperparameter val-
idation, collection of outlier data) and produce side effects (e.g.,
classification accuracy drop, slower energy-inefficient inferences).
We argue that these issues are a consequence of the SoftMax
loss anisotropy and disagreement with the maximum entropy
principle. Thus, we propose the IsoMax loss and the entropic
score. The seamless drop-in replacement of the SoftMax loss
by IsoMax loss requires neither additional data collection nor
hyperparameter validation. The trained models do not exhibit
classification accuracy drop and produce fast energy-efficient
inferences. Moreover, our experiments show that training neural
networks with IsoMax loss significantly improves their OOD
detection performance. The IsoMax loss exhibits state-of-the-
art performance under the mentioned conditions (fast energy-
efficient inference, no classification accuracy drop, no collection
of outlier data, and no hyperparameter validation), which we call
the seamless OOD detection task. In future work, current OOD
detection methods may replace the SoftMax loss with the IsoMax
loss to improve their performance on the commonly studied non-
seamless OOD detection problem.

I. INTRODUCTION

Out-of-distribution (OOD) detection approaches usually
use special requirements such as input preprocessing [8],
[9], feature extraction combined with metric learning [2],
adversarial training [10], hyperparameter validation [11], and
collection of additional data [12], [13], [14], [15]. Moreover,
current OOD methods commonly show side effects such
as classification accuracy drop [16], [9], and slow energy-
inefficient inferences [11], [2]. Solutions based on uncertainty
(or confidence) estimation (or calibration) present complexity
and lead to slow computationally inefficient inferences [17],
[18], [19], [20], [21].

We define the seamless OOD detection task, which consists
of performing OOD detection under the following restrictions.
First, no classification accuracy drop is allowed. Second, the
resulting models should produce inferences with the same
speed and energy efficiency as those produced by the regularly
trained neural networks. Third, no OOD/outlier/additional/extra
data may be used. Finally, no hyperparameter validation is
required. Improving the performance of neural networks in the
seamless OOD detection problem is important from a practical
perspective. Additionally, such approaches may be combined in
future work with current and novel OOD detection techniques
to further improve the performance on the non-seamless OOD
detection task.

We argue that the unsatisfactory OOD detection performance
of modern neural networks is mainly due to the drawbacks of
the SoftMax loss (we follow the “SoftMax loss” expression as
defined in [22]). First, the SoftMax loss anisotropy does not
incentivize the concentration of high-level representations in
the feature space [1], [10], making OOD detection difficult [10]
(Fig. 1a). Second, SoftMax loss produces overconfident low-
entropy posterior probability distributions [23], which is in
disagreement with the maximum entropy principle [24], [25],
[26] (Fig. 1b). Therefore, we propose the isotropy maximization
loss (IsoMax loss). To fix the SoftMax loss anisotropy, we
made IsoMax an isotropic, i.e., exclusively distance-based,
loss. To tackle the SoftMax loss overconfidence, we developed
the entropy maximization trick, which consists of training
with logits multiplied by a high constant that is removed for
inference. This technique allows IsoMax loss to produce high-
entropy (almost maximum) posterior probability distributions
in agreement with the principle of maximum entropy.

We propose to train neural networks replacing the SoftMax
loss with the IsoMax loss. The swap of the SoftMax loss with
the IsoMax loss requires changes in neither the architecture
of the model nor training procedures or parameters. For OOD
detection, we use the negative entropy of the neural network
output probabilities, which we call the entropic score (ES).
Since our solution presents neither special requirements nor
side effects, it qualifies as a seamless OOD detection approach
as previously defined.

Our contributions are the following. First, we associate the
unsatisfactory OOD detection performance of neural networks
with the SoftMax loss anisotropy and disagreement with the
maximum entropy principle. Second, we propose the IsoMax
loss that acts as a SoftMax loss drop-in replacement and may
be used as a baseline for building improved OOD detection
approaches in future work. We show that the ES produces high
performance combined with IsoMax loss. Third, we present the
theoretical insight that associates the improved OOD detection
performance of the networks trained with IsoMax loss with
the principle of maximum entropy. Fourth, we show that our
solution produces state-of-the-art performance for the seamless
(fast energy-efficient inferences, no classification accuracy drop,
no hyperparameter tuning, and no collection of outlier data)
OOD detection task. Fifth, despite being unfair since the
approaches present different special requirements and side
effects, we compare our seamless solution with non-seamless
OOD detection methods.
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(a) (b)

Fig. 1. SoftMax loss drawbacks and IsoMax loss benefits: (a) Adapted from [1, Fig. 1]. SoftMax loss produces separable features [1]. Postprocessing metric
learning on features extracted from SoftMax loss-trained networks may convert from the situation on the left to the situation on the right [2], [3], [4], [5], [6],
[7]. The IsoMax loss, which is an exclusively distance-based (isotropic) loss, tends to generate more discriminative features [1]. No feature extraction and
subsequent metric learning are required when the IsoMax loss is used for training. (b) SoftMax loss trained neural networks produce overconfident low-entropy
posterior probability distributions in disagreement with the maximum entropy principle. Our entropy maximization trick, which consists in training using logits
multiplied by a constant factor called the entropic scale that is nevertheless removed before inference, enables IsoMax to generate underconfident high-entropy
(almost maximum entropy) posterior probability distributions in agreement with the principle of maximum entropy.

II. RELATED WORKS

Liang et al. [11] proposed the Out-of-DIstribution detector
for Neural networks (ODIN) by combining input preprocessing
and temperature calibration. The authors used OOD examples
to validate the hyperparameters. Lee at al. [2] proposed
the Mahalanobis distance-based approach by adding feature
extraction, feature ensembles, and metric learning to input
preprocessing. The authors proposed using adversarial examples
rather than the OOD samples to tune hyperparameters. Since
this procedure produces more realistic estimations, in this work,
we only consider validation on adversarial samples for non-
seamless OOD detection methods. Hein at al. [10] proposed
adversarial confidence enhancing training (ACET), which uses
adversarial training.

Hsu et al. [9] proposed to use the in-distribution validation
set for hyperparameter tuning. The CIFAR10/100 validation
sets were used both for hyperparameter validation and for
constructing the OOD detection test sets, which may have pro-
duced overestimated results. We believe that the in-distribution
validation data used for defining hyperparameters should have
been removed from the training set, which would presumably
lead to an even stronger classification accuracy drop and,
consequently, a decrease in OOD detection performance. The
solution used input preprocessing and presented classification
accuracy drop of a few percentage points in some cases.

Techapanurak et al. [16] used cosine similarity and a learn-
able block composed of batch normalization, an exponential,
and a linear layer. The trained models presented classification
accuracy drop of a few percentage points in some cases. Thus,
the authors suggested using two models: one for classification
and the other for OOD detection.

Recent approaches [12], [13], [14], [15] increased the
OOD performance by training/fine-tuning using outlier data
and hyperparameter validation. Liu et al. [15] proposed
the energy score. Methods based on uncertainty/confidence
estimation/calibration [17], [19], [18], [20], [21] have been
proposed to tackle the OOD detection problem.

III. ENTROPIC OUT-OF-DISTRIBUTION DETECTION

A. Isotropy.

To fix the SoftMax loss anisotropy caused by its affine
transformation, we forced the logits of the IsoMax loss to
depend exclusively on the distances from the high-level features
to the class prototypes.

Let fθ(x) represent the high-level feature (embedding)
associated with x, pj

φ represent the learnable prototype
associated with class j, and d() represent the nonsquared
distance. Additionally, let ŷ(k) represent the label of the correct
class. Therefore, we construct an isotropic loss by writing:

LI(ŷ
(k)|x) = − log




exp(−d(fθ(x),p
k
φ))∑

j

exp(−d(fθ(x),p
j
φ))


 (1)

Unlike metric learning-based OOD detection approaches,
rather than learning a metric from a preexisting feature space,
in our solution, we learn a feature space that is from the start
consistent with the chosen metric, avoiding the need for feature
extraction and metric learning postprocessing phases after the
neural network training.

B. Entropy Maximization.

Isotropy improves the OOD detection performance. However,
for further performance gains, we need to circumvent the
SoftMax loss propensity to produce low-entropy posterior prob-
ability distributions. To achieve high-entropy (almost maximum
entropy) distributions in agreement with the maximum entropy
principle, we introduce the entropic scale, which consists of
a constant scalar factor applied to the logits throughout the
training that is nevertheless removed prior to inference. We
call this procedure the entropy maximization trick.

The entropic scale is equivalent to the inverse of the
temperature of the SoftMax function (we follow the SoftMax
function expression as defined in [22]). However, training with a
predefined constant entropic scale and then removing it before
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inference is different from temperature calibration. On the
one hand, the temperature of a pretrained model is validated
after training and requires access to the OOD or adversarial
examples. Furthermore, overoptimistic performance estimation
is commonly produced [27]. On the other hand, our approach
requires neither hyperparameter validation nor access to the
OOD or adversarial data. Rather than be applied to pretrained
models, our approach is used to train neural networks.

The presence of the entropic scale during training does not
prevent the loss from approaching zero as required. However,
when we remove it prior to the inference, the SoftMax function
naturally makes the entropy of the output probabilities increase
to almost the maximum value possible if we use a high enough
entropic score during training. Thus, returning to Equation (1),
multiplying the embedding-prototype distances by an entropic
scale Es, and representing the 2-norm of a vector by ‖.‖, we
write the definition of the IsoMax loss as:

LI(ŷ
(k)|x) = − log




exp(−Es‖fθ(x)−pk
φ‖)∑

j

exp(−Es‖fθ(x)−pj
φ‖)


 (2)

By applying the entropy maximization trick, the inference
probabilities for the IsoMax loss may be written as follows:

pI(y
(i)|x) =

exp(−‖fθ(x)−pi
φ‖)∑

j

exp(−‖fθ(x)−pj
φ‖) (3)

C. Prototype Initialization.

We observed that using the Xavier [28] or Kaiming [29]
initializations for the prototypes leads to oscillations in perfor-
mance. Hence, we decided to initialize all prototypes to the
zero vector. Weight decay is applied to the prototypes because
they are trainable parameters.

D. Entropic Score.

The entropy has been studied for OOD detection [30]. We
show that the output probabilities negative entropy, which we
call the entropic score, produces high-performance results when
combined with IsoMax loss. Indeed, in such cases, the solution
may consider the information provided by all network outputs
rather than merely one output. For instance, ODIN and ACET
only use the maximum probability.

E. Implementation Details.

To calculate the losses based on cross-entropy, deep learning
libraries usually combine the logarithm and probability into
a single computation. However, we experimentally observed
that sequentially computing these calculations as standalone
operations improves the IsoMax performance. The class
prototypes have the same dimension as the neural network
last-layer representations. The number of prototypes is equal to
the number of classes. The IsoMax loss has fewer parameters
than the SoftMax loss because it has no bias to learn.

TABLE I
CLASSIFICATION ACCURACY.

Model Data Test Accuracy (%) [↑]
SoftMax Loss IsoMax Loss

SVHN 96.6 96.6
DenseNet CIFAR10 95.4 95.2

CIFAR100 77.5 77.5

SVHN 96.8 96.8
ResNet CIFAR10 95.5 95.6

CIFAR100 77.4 77.3

In addition to avoiding classification accuracy drop compared with
the SoftMax loss trained networks, IsoMax loss trained models show
higher OOD detection performance (see Table II).

We observed classification accuracy drop and low/oscillating
performance when trying to integrate the entropic scale into the
SoftMax loss or with cosine similarity [22], [31], [32]. In such
cases, the above strategy, i.e., initialization of the loss weights
with the zero vector, cannot be performed. The Mahalanobis
distance cannot be used because the covariance matrix is not
differentiable. Hence, the nonsquared Euclidean distance is
the optimal choice for integration with the entropic scale.

IV. EXPERIMENTS

All datasets, models, and evaluation metrics used the baseline
established in [35] that was followed in the major OOD
detection papers [11], [2], [10]. We trained from the scratch 100-
layer DenseNet-BC [36] (growth rate k=12, 0.8M parameters)
and 34-layer ResNets [37] on CIFAR10 [38], CIFAR100 [38]
and SVHN [39] using the SoftMax and IsoMax losses.

For both the SoftMax loss and IsoMax loss, we used SGD
with the Nesterov moment equal to 0.9, 300 epochs with a
batch size of 64, and an initial learning rate of 0.1, with a
learning rate decay rate equal to ten applied in epochs 150,
200, and 250. We used a dropout of zero. The weight decay
was 0.0001.

We only compared approaches that did not present clas-
sification accuracy drop because this facilitates increasing
OOD detection performance [40]; moreover, it is particularly
undesired from a practical perspective [41]. It is well known that
using OOD/outlier/background/additional data improves the
OOD detection performance. Therefore, considering that data-
based regularization techniques may benefit both SoftMax loss
and IsoMax loss, we perform all experiments without outlier
exposure [13], [14], background samples [12], or energy-based
fine-tuning [15]. The source code is available online1.

V. RESULTS AND DISCUSSIONS

A. IsoMax Loss Properties, Ablation Study, and Entropic Scale
Value Definition.

To experimentally show that higher entropic scales lead to
higher mean entropy probability distributions and consequently

1https://github.com/dlmacedo/entropic-out-of-distribution-detection
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(a) (b) (c) (d)

(e)

Fig. 2. (a) SoftMax loss minimizes both the cross-entropy and the mean entropy of the posterior probabilities. (b) IsoMax loss produces low mean entropy
posterior probabilities for a low entropic scale (Es=1). (c) IsoMax loss produces medium mean entropy for an intermediate entropic scale (Es=3). (d)
IsoMax loss produces high mean entropy for a high entropic scale (Es=10). Therefore, higher entropic scale values are correlated with higher mean entropies
as recommended by the maximum entropy principle. Notice that the orange line is almost flat in (d), so the IsoMax loss almost retains the maximum entropy
present at the beginning of the training for a high entropic scale. Hence, an entropic scale equal to ten is enough to produce posterior probability distributions
with virtually the maximum possible mean entropy log(N), where N is the number of classes. Consequently, there is no need to increase Es further. Therefore,
we decided to use Es=10 for IsoMax loss (see also Fig. 3). (e) The left side of the dashed vertical red line presents the classification accuracies. The right
side of the dashed vertical red line shows the OOD detection performance using the entropic score and the TNR@TPR95 (true negative rate at 95% true
positive rate) metric. We observe that a higher mean entropy produces increased OOD detection performance regardless of the out-of-distribution (out-dist).
Isotropy by itself enables the IsoMax loss to exhibit higher performance than the SoftMax loss (Es=1). IsoMax loss trained models exhibit classification
accuracies similar to the classification accuracies presented by SoftMax loss trained networks regardless of the entropic scale.

Fig. 3. AUROC represents the mean AUROC considering all out-of-distribution data. The classification accuracy and the mean OOD detection performance
are approximately stable for Es=10 or higher regardless of the dataset and model. Es validation cannot significantly improve the OOD detection performance.
In fact, this is not even possible because access to the OOD or outlier samples is not allowed in seamless OOD detection. Making Es learnable did not
considerably improve or decrease the OOD detection results.

123123123



TABLE II
SEAMLESS OUT-OF-DISTRIBUTION DETECTION: NO HYPERPARAMETER TUNING. FAST AND ENERGY-EFFICIENT INFERENCES.

NO CLASSIFICATION ACCURACY DROP. NO OUTLIER/BACKGROUND DATA.

Model Data
(training)

OOD
(unseen)

Seamless OOD Detection: No Classification Accuracy Drop. No Outlier Data.
Fast and Energy-Efficient Inferences. No Hyperparameter Tuning.

TNR@TPR951 (%) [↑] AUROC2 (%) [↑] DTACC3 (%) [↑]
SoftMax+MPS4 / SoftMax+ES5 / IsoMax+MPS6 / IsoMax+ES7 (ours)

DenseNet

CIFAR10
SVHN 32.2 / 33.2 / 64.5 / 77.0 86.6 / 86.9 / 94.6 / 96.6 79.9 / 79.9 / 88.1 / 91.6
TinyImageNet [33] 55.8 / 59.8 / 81.1 / 88.0 93.5 / 94.2 / 96.8 / 97.8 87.6 / 87.8 / 90.8 / 93.2
LSUN [34] 64.9 / 69.5 / 88.5 / 94.5 95.2 / 95.9 / 97.9 / 98.8 89.9 / 90.0 / 93.1 / 94.9

CIFAR100
SVHN 20.6 / 24.9 / 27.5 / 23.4 80.1 / 81.9 / 86.3 / 88.6 73.9 / 74.3 / 79.9 / 83.7
TinyImageNet 19.4 / 23.7 / 42.4 / 49.1 77.0 / 78.8 / 90.2 / 92.6 70.6 / 71.1 / 83.6 / 86.6
LSUN 18.8 / 24.4 / 48.9 / 63.0 75.9 / 77.9 / 91.3 / 94.7 69.5 / 70.2 / 84.2 / 89.1

SVHN
CIFAR10 81.5 / 83.7 / 91.6 / 94.1 96.5 / 96.9 / 98.2 / 98.5 91.9 / 92.1 / 94.1 / 95.0
TinyImageNet 88.2 / 90.0 / 95.3 / 97.0 97.7 / 98.1 / 98.9 / 99.1 93.5 / 93.7 / 95.4 / 96.1
LSUN 86.4 / 88.4 / 94.7 / 96.8 97.3 / 97.8 / 98.7 / 99.1 92.8 / 93.0 / 95.0 / 95.9

ResNet

CIFAR10
SVHN 43.1 / 44.5 / 81.7 / 83.6 91.7 / 92.0 / 96.8 / 97.1 86.5 / 86.5 / 91.2 / 91.9
TinyImageNet 46.3 / 48.0 / 66.0 / 70.2 89.8 / 90.0 / 93.9 / 94.6 84.0 / 84.1 / 87.1 / 88.3
LSUN 51.2 / 53.3 / 76.6 / 82.3 92.2 / 92.6 / 96.2 / 96.9 86.5 / 86.6 / 90.1 / 91.5

CIFAR100
SVHN 15.9 / 18.0 / 22.5 / 20.2 71.3 / 72.7 / 83.9 / 85.3 66.1 / 66.3 / 77.8 / 79.7
TinyImageNet 18.5 / 22.4 / 38.9 / 50.6 74.7 / 76.3 / 89.2 / 92.0 68.8 / 69.1 / 82.2 / 85.6
LSUN 18.4 / 22.4 / 41.4 / 54.8 74.7 / 76.5 / 90.1 / 93.2 69.1 / 69.4 / 83.3 / 87.5

SVHN
CIFAR10 67.3 / 67.7 / 90.5 / 92.3 89.8 / 89.7 / 97.9 / 98.0 87.0 / 86.9 / 93.7 / 94.1
TinyImageNet 66.9 / 67.3 / 92.1 / 94.4 89.0 / 89.0 / 98.2 / 98.4 86.7 / 86.6 / 94.3 / 94.8
LSUN 62.2 / 62.5 / 88.6 / 90.8 86.0 / 85.8 / 97.6 / 97.8 84.2 / 84.1 / 93.4 / 93.6

1True negative rate at 95% true positive rate. 2Area under the receiver operating characteristic curve. 3Detection accuracy [2]. 4SoftMax+MPS
means training with SoftMax loss and performing OOD detection using the maximum probability score (MPS), which is the approach defined
in [35]. 5SoftMax+ES means training with SoftMax loss and performing OOD detection using the entropic score (ES). 6IsoMax+MPS means
training with IsoMax loss and performing OOD detection using the maximum probability score (MPS). 7IsoMax+ES means training with
IsoMax loss and performing OOD detection using the entropic score (ES) (our proposal). The best results are shown in bold. To the best of
our knowledge, our IsoMax+ES approach presents state-of-the-art performance under these severely restrictive assumptions.

improve the OOD detection performance, we trained DenseNets
on SVHN using the SoftMax loss and IsoMax loss with distinct
entropic scale values. We used the entropic score and the
TNR@TPR95 (true negative rate at 95% true positive rate) to
evaluate the OOD detection performance (Fig. 2).

Fig. 2a shows that the SoftMax loss generates posterior
distributions with low mean entropy. Fig. 2b illustrates that
the unitary entropic scale (Es=1) does not increase the mean
entropy of the probability distributions. In other words, isotropy
alone is not enough to produce low mean entropy probability
distributions, and the entropy maximization trick is necessary.
Nevertheless, Fig. 2e shows that the simple replacement
of anisotropic logits based on the affine transformation by
isotropic logits is enough to produce some OOD detection
performance gains for all out-of-distribution (out-dist) data,
even without the mentioned trick (Es=1). Fig. 2c shows
that an intermediate entropic scale (Es=3) provides medium
mean entropy probability distributions with the additional
OOD detection performance gains regardless of the out-of-
distribution data (Fig. 2e). Fig. 2d illustrates that a high entropic
scale (Es=10) produces even higher mean entropy probability
distributions and the highest OOD detection performance for
all out-of-distribution data considered (Fig. 2e). We emphasize
that regardless of training with the entropic scale, if it is not
removed for inference, the IsoMax loss produces outputs with

entropies as low as those produced by the SoftMax loss and
high OOD detection performances are no long observed.

Hence, the entropy maximization trick enables the migration
from low-entropy distributions (Fig. 2a,b) to high-entropy
distributions (Fig. 2d). For a high entropic scale, the IsoMax
loss minimizes the cross-entropy while producing high-entropy
probability distributions as recommended by the principle of
maximum entropy. More importantly, higher entropy posterior
probability distributions directly correlate with increased OOD
detection performances despite the out-of-distribution data.
Fig. 2d shows that an entropic scale Es=10 is enough to
produce essentially the maximum possible entropy. Therefore,
we defined the entropic scale as a constant equal to ten.

B. Classification Accuracy and OOD Detection Performance
Dependence on the Entropic Scale Value.

After defining Es=10 for the IsoMax loss based on the
previous experiments, we performed additional analyses. Fig. 3
shows that regardless of the combination of dataset and
model, the classification accuracy and the mean OOD detection
performance are essentially stable for Es=10 or higher, as
the entropic scale is already high enough to ensure near-
maximal entropy. Hence, validation of Es does not produce
a considerable performance increase. In fact, this is not even
possible because we consider access to OOD or outlier samples
to be forbidden. Making Es learnable did not significantly affect
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TABLE III
NON-SEAMLESS OUT-OF-DISTRIBUTION DETECTION: UNFAIR COMPARISON OF APPROACHES WITH DIFFERENT SPECIAL REQUIREMENTS

AND SIDE EFFECTS. NO CLASSIFICATION ACCURACY DROP. NO OUTLIER/BACKGROUND DATA.

Model Data
(training)

OOD
(unseen)

Non-seamless Out-of-Distribution Detection:
Approaches with Different Special Requirements and Side Effects.

AUROC (%) [↑] DTACC5 (%) [↑]
ODIN1 / ACET2 / IsoMax+ES3 (ours) / Mahalanobis4

DenseNet

CIFAR10
SVHN 92.8 / NA / 96.6 / 97.6 86.5 / NA / 91.6 / 92.6
TinyImageNet 97.2 / NA / 97.8 / 98.8 92.1 / NA / 93.2 / 95.0
LSUN 98.5 / NA / 98.8 / 99.2 94.3 / NA / 94.9 / 96.2

CIFAR100
SVHN 88.2 / NA / 88.6 / 91.8 80.7 / NA / 83.7 / 84.6
TinyImageNet 85.3 / NA / 92.6 / 97.0 77.2 / NA / 86.6 / 91.8
LSUN 85.7 / NA / 94.7 / 97.9 77.3 / NA / 89.1 / 93.8

SVHN
CIFAR10 91.9 / NA / 98.5 / 98.8 86.6 / NA / 95.0 / 96.3
TinyImageNet 94.8 / NA / 99.1 / 99.8 90.2 / NA / 96.1 / 98.9
LSUN 94.1 / NA / 99.1 / 99.9 89.1 / NA / 95.9 / 99.2

ResNet

CIFAR10
SVHN 86.5 / 98.1 / 97.1 / 95.5 77.8 / NA / 91.9 / 89.1
TinyImageNet 93.9 / 85.9 / 94.6 / 99.0 86.0 / NA / 88.3 / 95.4
LSUN 93.7 / 85.8 / 96.9 / 99.5 85.8 / NA / 91.5 / 97.2

CIFAR100
SVHN 72.0 / 91.2 / 85.3 / 84.4 67.7 / NA / 79.7 / 76.5
TinyImageNet 83.6 / 75.2 / 92.0 / 87.9 75.9 / NA / 85.6 / 84.6
LSUN 81.9 / 69.8 / 93.2 / 82.3 74.6 / NA / 87.5 / 79.7

SVHN
CIFAR10 92.1 / 97.3 / 98.0 / 97.6 89.4 / NA / 94.1 / 94.6
TinyImageNet 92.9 / 97.7 / 98.4 / 99.3 90.1 / NA / 94.8 / 98.8
LSUN 90.7 / 99.7 / 97.8 / 99.9 88.2 / NA / 93.6 / 99.5

ODIN, the Mahalanobis approach, and ACET present hyperparameters that must be validated for each combination of datasets and models.
They also require previously known optimal adversarial perturbation values for each combination of datasets and models. 1ODIN uses input
preprocessing, temperature calibration, and adversarial validation, i.e., hyperparameter tuning using adversarial examples [11]. 2ACET uses
adversarial training, resulting in slower training, possibly reduced scalability for large images, and eventually classification accuracy drop [10].
3IsoMax+ES means training with IsoMax loss and performing OOD detection using the entropic score (ES). Considering that validating Es

using adversarial examples cannot produce significant gains (Fig. 3), we prefer to keep Es=10 to maintain the simplicity of the solution. 4The
Mahalanobis solution uses input preprocessing, feature ensemble, feature extraction followed by metric learning, and adversarial validation [2].
5Detection accuracy [2]. The best results are shown in bold (2% tolerance).

TABLE IV
NON-SEAMLESS OOD DETECTION: INFERENCE DELAYS. PRESUMED COMPUTATIONAL COST AND ENERGY CONSUMPTION RATES.

Model Data
(training)

Hardware
(inference)

Non-seamless Out-of-Distribution Detection:
Inference Delays. Presumed Computational Cost and Energy Consumption Rates.

SoftMax Loss [35] IsoMax Loss (ours) ODIN [11], Mahalanobis [2],
Generalized ODIN [9]

MPS / ES (ms) [↓] MPS / ES (ms) [↓] (ms) [↓]

DenseNet
CIFAR10 CPU 18.1 / 19.4 18.0 / 19.2 242.4 (≈ 10x slower)

GPU 11.6 / 13.0 11.6 / 11.5 39.2 (≈ 4x slower)

CIFAR100 CPU 18.4 / 19.8 18.4 / 19.3 261.0 (≈ 10x slower)
GPU 12.9 / 11.4 11.8 / 11.5 39.6 (≈ 4x slower)

SVHN CPU 18.1 / 18.6 18.3 / 18.6 241.5 (≈ 10x slower)
GPU 11.6 / 11.9 11.7 / 11.6 39.6 (≈ 4x slower)

ResNet
CIFAR10 CPU 22.3 / 23.2 23.0 / 23.5 250.4 (≈ 10x slower)

GPU 4.5 / 3.8 4.2 / 4.1 15.4 (≈ 4x slower)

CIFAR100 CPU 23.3 / 23.1 23.3 / 23.8 252.6 (≈ 10x slower)
GPU 4.3 / 3.9 4.3 / 4.2 14.8 (≈ 4x slower)

SVHN CPU 23.1 / 23.4 23.4 / 23.3 263.8 (≈ 10x slower)
GPU 4.2 / 4.0 4.0 / 4.0 15.7 (≈ 4x slower)

MPS means maximum probability score. ES means entropic score. For SoftMax loss and IsoMax loss, the inference delays combine both
classification and detection computation. For the methods based on input preprocessing, the inference delays represent only the input
preprocessing phase. All values are in milliseconds. The inference delay rates presumably reflect similar computational cost and energy
consumption rates.
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the OOD detection performance. Table I shows that the IsoMax
loss trained models do not show classification accuracy drop.

C. Seamless Out-of-Distribution Detection.

To the best of our knowledge, the proposal presented in
[35] and our method are the only solutions that qualify as
seamless OOD detection approaches. Table II shows that the
models trained with the SoftMax loss using the maximum
probability as the score (SoftMax+MPS) always present the
worst performance results and that replacing the maximum
probability score by the entropic score (SoftMax+ES) produces
OOD detection performance gains.

The combination of the models trained using IsoMax loss
with the entropic score (IsoMax+ES), which is the proposed
solution, significantly improves, usually by several percentage
points, the OOD detection performance across almost all
datasets, models, out-of-distribution data, and metrics.

The entropic score produces high OOD detection per-
formance when the distributions present high entropy (Iso-
Max+ES). Indeed, both producing high-entropy distributions
and the entropic score contribute to improving the OOD
detection performance. However, the contribution of producing
high-entropy distributions is considerably more important.

The model does not affect the analyses presented. Indeed,
the comments shown above are valid for both DenseNet and
ResNet models.

D. Non-seamless Out-of-Distribution Detection.

To tackle non-seamless OOD detection, IsoMax should
work as a baseline to be combined with OOD techniques
(e.g., outlier exposure, adversarial training, input preprocessing,
energy score) rather than competing as a standalone solution.
Nevertheless, Table III provides a perspective for how our
baseline seamless (standalone) approach compares to non-
seamless (composed) solutions.

From a qualitative perspective, ODIN and Mahalanobis use
input preprocessing; i.e., to perform OOD detection, each
inference requires a first neural network forward pass, a
backpropagation, and a second forward pass. They produce
slower and less energy-efficient inferences than models trained
with IsoMax loss, which are as fast and computationally
efficient as the models trained with SoftMax loss. Input
preprocessing is indeed a limitation from an economic and
environmental perspective [42].

ODIN requires temperature calibration after neural network
training, while the Mahalanobis approach requires feature
ensemble and metric learning. Unlike pretraining-based solu-
tions, our approach requires no postprocessing after the neural
network training. ACET requires adversarial training, which
produces slower training and may limit the application of ACET
to large images [43].

From a quantitative point of view, Table III shows that
IsoMax+ES considerably outperforms ODIN in all evaluated
scenarios. Therefore, in addition to avoiding hyperparameter
tuning and access to the OOD or adversarial samples, the
results show that the entropy maximization trick is much more

effective in improving the OOD detection performance than
temperature calibration, even when the latter is combined
with input preprocessing. Furthermore, IsoMax+ES usually
outperforms ACET, in some cases by a large margin. Moreover,
in most cases, the Mahalanobis method surpasses IsoMax+ES
by less than 2%. In some scenarios, IsoMax+ES outperforms
the Mahalanobis method.

Table IV presents the inference delays for the SoftMax loss,
IsoMax loss, and competing methods using a CPU and GPU.
We observe that neural networks trained using the IsoMax
loss produce inferences equally as fast as those produced by
networks trained using the SoftMax loss, regardless of whether
a CPU or GPU is used for inference.

Additionally, the entropic score is as fast as the usual
maximum probability score. Moreover, the methods based
on input preprocessing were more than ten times slower on
the CPU and approximately four times slower on the GPU.
These ratios also presumably apply to the computational cost
and energy consumption.

To agree with the maximum entropy principle and achieve
high performance, rather than generating calibrated maximum
probabilities, IsoMax must produce the lowest possible maxi-
mum probabilities.

VI. CONCLUSION

We proposed a seamless OOD detection approach based
on logit isotropy and the maximum entropy principle. The
proposed IsoMax loss acts as a SoftMax loss drop-in replace-
ment that produces accurate predictions in addition to fast
energy- and computation-efficient inferences. No hyperparam-
eter tuning is needed. Hence, no additional procedure other
than straightforward neural network training is needed.

OOD detection is performed using the rapid entropic score.
Collection of outlier/background data is also not required. To
the best of our knowledge, the IsoMax loss does not present
any drawbacks compared to the SoftMax loss.

The direct replacement of the SoftMax loss by the IsoMax
loss significantly improves the baseline OOD detection perfor-
mance of neural networks. Therefore, rather than the limitations
of the models, the low OOD detection performance of deep
networks is due to the SoftMax loss drawbacks, i.e., anisotropy
and overconfidence.

In future work, the research community may combine the
IsoMax loss with data-based loss regularization techniques
[12], [13], [14] to improve the performance. Approaches based
on pretrained models [11], [2], [44] or energy-based fine-
tuning/score [15] may be applied on IsoMax loss pretrained
networks rather than on SoftMax pretrained models.

Thus, rather than competitors, these approaches are actually
complementary to IsoMax loss, as they may be combined
to achieve even higher overall OOD detection performance.
IsoMax loss may replace SoftMax loss as a higher performance
baseline for constructing OOD detection solutions.
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Another option is to use recent data augmentation techniques
[45], [46]. We believe that the simplicity of our solution makes
it scalable to large images. Hence, we intend to apply this
approach to ImageNet [33]. Finally, since our approach consists
of only loss replacement and is based on the general principles
of isotropy and maximum entropy, it may be extended to other
machine learning methods beyond neural networks.
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Abstract—In this paper, we argue that the unsatisfactory out-
of-distribution (OOD) detection performance of neural networks
is mainly due to the SoftMax loss anisotropy and propensity
to produce low entropy probability distributions in disagree-
ment with the principle of maximum entropy. Current out-of-
distribution (OOD) detection approaches usually do not directly
fix the SoftMax loss drawbacks, but rather build techniques to
circumvent it. Unfortunately, those methods usually produce un-
desired side effects (e.g., classification accuracy drop, additional
hyperparameters, slower inferences, and collecting extra data). In
the opposite direction, we propose replacing SoftMax loss with
a novel loss function that does not suffer from the mentioned
weaknesses. The proposed IsoMax loss is isotropic (exclusively
distance-based) and provides high entropy posterior probability
distributions. Replacing the SoftMax loss by IsoMax loss requires
no model or training changes. Additionally, the models trained
with IsoMax loss produce as fast and energy-efficient inferences
as those trained using SoftMax loss. Moreover, no classification
accuracy drop is observed. The proposed method does not rely
on outlier/background data, hyperparameter tuning, temperature
calibration, feature extraction, metric learning, adversarial train-
ing, ensemble procedures, or generative models. Our experiments
showed that IsoMax loss works as a seamless SoftMax loss drop-
in replacement that significantly improves neural networks’ OOD
detection performance. Hence, it may be used as a baseline OOD
detection approach to be combined with current or future OOD
detection techniques to achieve even higher results.

Index Terms—Out-of-Distribution Detection, Isotropy Maxi-
mization Loss, Maximum Entropy Principle, Entropic Score

I. INTRODUCTION

NEURAL networks have been used as classifiers in a wide
range of applications. Their design usually considers that

the model receives an instance of one of the trained classes
at inference. If this holds, neural networks commonly present
satisfactory performance. However, in real-world applications,
this assumption may not be fulfilled.

The ability to detect whether an input applied to a neural
network does not represent an example of the trained classes
is essential to applications in medicine, finance, agriculture,
business, marketing, and engineering. In such situations, it
is better to have a system able to acknowledge that the
sample should not be classified. The rapid adoption of neural
networks in modern applications makes the development of
such capability a primary necessity from a practical point
of view. This problem has been studied under many similar
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and Teresa Ludermir are with the Centro de Informática, Universidade Federal
de Pernambuco, Brazil. E-mail: dlm@cin.ufpe.br.
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Fig. 1. Adapted from [10, Fig. 1]. SoftMax loss produces separable features.
Metric learning on features extracted from SoftMax loss trained networks may
convert from the situation on the left to the situation on the right. Exclusively
distance-based (isotropic) losses tend to generate more discriminative fea-
tures. Out-of-distribution examples are more discernible when in-distribution
examples are concentrated around prototypes.

nomenclatures, such as open set recognition [4], [5] and open-
world recognition [6], [7].

Recently, Hendrycks and Gimpel [8] defined out-of-
distribution (OOD) detection as the task of evaluating whether
a sample comes from the in-distribution on which a neural
network was trained. They also introduced benchmark datasets
and metrics for this task. Additionally, Hendrycks and Gimpel
established the baseline performance by proposing an OOD
detection approach that uses the maximum predicted proba-
bility (MPS) as the score to detect OOD examples.

OOD detection is closely related to anomaly and novelty
detection [9]. However, in OOD detection, we have multiple
(usually many more than two) classes. From an anomaly
detection perspective, examples that belong to any of these
classes are considered “normal”. Additionally, we have labels
that individually identify examples from each of these “nor-
mal” classes, which collectively represent what we call the in-
distribution. There are no training examples of the “abnormal”
class, which are called out-of-distribution examples in the
context of OOD detection. We have to decide whether we have
an in-distribution (“normal”) example or an out-of-distribution
(“abnormal”) example during inference. In the first case, we
additionally have to predict the correct class.

We argue that the unsatisfactory OOD detection perfor-
mance of modern neural networks is mainly due to the
drawbacks of the currently used loss functions rather than
model limitations. The SoftMax loss1 anisotropy does not
incentivize the concentration of high-level representations in
the feature space [3], [10], which makes OOD detection

1We follow the “SoftMax loss” expression as defined in [11].
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TABLE I
OUT-OF-DISTRIBUTION DETECTION: APPROACHES, TECHNIQUES, AND SIDE EFFECTS.

Techniques and Side Effects SoftMax Loss
(current baseline) ODIN [1] Mahalanobis [2] ACET [3] IsoMax Loss

(proposed baseline)

Inference input preprocessing:
Multiple forward passes and backpropagation. Not Required Required Required Not Required Not Required
At least three times slower inference. (Fast) (Slow) (Slow) (Fast) (Fast)
Slow inferences.
Inference input preprocessing:
At least three times higher energy consumption. Not Required Required Required Not Required Not Required
At least three times higher computational cost. (Efficient) (Not Efficient) (Not Efficient) (Efficient) (Efficient)
Energy-inefficient inferences.
Adversarial training:
Previously known adversarial hyperparameters. Not Required Not Required Not Required Required Not Required
Slower and more hyperparametrized training. (Scalable) (Scalable) (Scalable) (Not Scalable) (Scalable)
Limited scalability.
Adversarial validation:
Previously known adversarial hyperparameters. Not Required Required Required Not Required Not Required
Adversarial examples generation. (Turnkey) (Not Turnkey) (Not Turnkey) (Turnkey) (Turnkey)
Hyperparameters tuning.

IsoMax loss has no drawbacks compared with SoftMax loss while presenting higher OOD detection performance (Table II). ODIN, the Mahalanobis method,
and ACET present weaknesses from a practical use perspective. However, if these limitations are not a concern for an application, they may be combined
with IsoMax loss to improve overall OOD detection performance. The strengths of the competing approaches are in blue, while weaknesses are in red.

difficult [3]. Indeed, its affine transformation produces sep-
arable rather than discriminative features, which would limit
OOD detection (Fig. 1). Additionally, SoftMax loss produces
overconfident predictions [12], equivalent to low mean entropy
probability distributions, which is in frontal disagreement with
the maximum entropy principle [13]–[15].

Rather than directly fixing the above-mentioned critical
SoftMax loss drawbacks, current OOD detection approaches
improve OOD detection performance by adding novel tech-
niques to circumvent its weakness. However, this strategy
usually produces undesired side effects and adds problematic
requirements to the solution (Table I). For example, Out-of-
DIstribution detector for Neural networks (ODIN) [1] and the
Mahalanobis distance-based method [2] use input preprocess-
ing, which produces remarkably slow and energy-inefficient
inferences [16]. Additionally, to tune hyperparameters, these
solutions need unrealistic access to OOD samples or adversar-
ial examples, which require a cumbersome process to generate.

In other situations, similar to the Mahalanobis distance-
based approach, [4]–[7] require metric learning on features
extracted from pretrained models. Another drawback usually
present in OOD detection approaches is the classification ac-
curacy drop [17], [18], which is a harmful side effect because
classification is commonly the primary aim of the system [19].
Methods based on adversarial training, such as Adversarial
Confidence Enhancing Training (ACET) [3], often increase
training times [20] and present limited scalability when dealing
with large-size images [21]. Furthermore, adversarial training
may produce classification accuracy drop [22].

In some cases, OOD detection proposals require architecture
modifications [23] or ensemble methods [24], [25]. Despite
significantly improving the OOD detection performance, loss
enhancement (regularization) techniques, such as outlier ex-
posure [26], [27], background methods [28], and the energy-
based fine-tuning [29] require the addition of carefully cho-
sen extra/outlier/background data and expand memory usage.
Moreover, they usually add hyperparameters to the solution.

Solutions based on uncertainty (or confidence) estimation
(or calibration) [30]–[34] usually present additional complex-
ity, slow and energy-inefficient inferences [16], and OOD
detection performance worse than ODIN [18], [35].

In this paper, rather than circumvent SoftMax loss limita-
tions, we follow a different strategy: we propose replacing it
altogether with a novel loss that does not present the SoftMax
loss mentioned drawbacks. Additionally, we used entropy for
OOD detection. By doing so, we were able to improve the
neural networks’ OOD detection baseline performance signif-
icantly. Using this novel baseline OOD detection approach,
previously mentioned or future techniques may improve the
neural networks’ OOD detection performance even further.
Therefore, we propose IsoMax, a loss that is isotropic (ex-
clusively distance-based) and produces high entropy posterior
probability distributions in agreement with the maximum
entropy principle. We also propose using the entropy of the
output probabilities as a score to perform OOD detection.

As we aim to increase the neural networks’ baseline OOD
detection performance, we do not rely on collecting addi-
tional/outlier/background data and validating the appropriated
hyperparameters to improve the OOD detection results [26]–
[29]. As mentioned before, these (and other) current OOD
techniques may be used in future works to improve our
baseline OOD detection performance. Furthermore, with the
sole aim to perform OOD detection, we emphasize that,
unlike uncertainty/confidence estimation/calibration methods,
our intention is not to produce calibrated probabilities. In the
opposite direction, we plan to force the network to provide
a posterior probability distribution with the highest possible
entropies (as stated by the maximum entropy principle), which
correspond to low maximum probabilities.

Networks trained using IsoMax loss produce accurate pre-
dictions, as no classification accuracy drop is observed com-
pared to networks trained with SoftMax loss. Additionally,
the models trained using IsoMax loss provide inferences
that are fast and have energy and computational efficiency
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equivalent to models trained with SoftMax loss, making our
solution viable from an economical and environmental point of
view [36]. Moreover, our approach does not require validation
using unrealistic access to OOD samples or the generation
of adversarial examples. Furthermore, our solution is turnkey
since it does not require additional/outlier data, feature ex-
traction, metric learning, or hyperparameter tuning. No extra
procedures other than typical network training are required.

We provide insights based on the maximum entropy princi-
ple to explain why our approach works. Experimental evidence
confirms our theoretical assumptions and shows that our
straightforward OOD detection solution significantly outper-
forms the SoftMax loss performance and is even competitive
with OOD detection methods without requiring their supple-
mentary techniques and associated side effects (Table I).

Indeed, despite being proposed as a baseline OOD detection
solution that avoids current approaches drawbacks (e.g., classi-
fication accuracy drop, slow and energy-inefficient inferences,
hyperparameter tuning, feature extraction, metric learning, and
additional data), our approach provides high OOD detection
performance. Naturally, additional performance gains may
be obtained in the future by adapting OOD methods to use
IsoMax loss rather than SoftMax loss.

In summary, the major contributions of this article are:

1) The intuitions that associate the unsatisfactory OOD
detection performance of current neural networks with
the SoftMax loss anisotropy and disagreement with the
maximum entropy principle.

2) The IsoMax loss, which is isotropic, in agreement with
the maximum entropy principle, and works as a seamless
SoftMax loss drop-in replacement. The IsoMax loss
trained models present accurate predictions (no classifi-
cation accuracy drop) and fast inferences that are energy-
and computation-efficient. Besides, it does not require
additional/outlier/background data. Under these severe
restrictions, our solution provides state-of-the-art OOD
detection performance.

3) The experimental demonstration that entropy, which
is a fast and energy-efficient computation, provides
high OOD detection performance when the posterior
probability distribution follows the maximum entropy
principle, i.e., it presents high mean entropy. When using
the entropy, rather than just one output, all network
outputs are considered.

4) Our approach improves deep neural networks’ baseline
OOD detection performance. In applications where the
previously mentioned requirements and side effects of
current OOD techniques are not a concern, future works
may combine them with our loss to achieve even higher
OOD detection performance.

In Section II, we emphasize the technical aspects of modern
OOD detection approaches. In Section III, we present our
proposal for a novel baseline OOD detection method. We
present the experiments, results, and discussions in Section IV.
In Section V, we conclude and present future works. This
paper is an expanded version of [37].

II. BACKGROUND

A. Distance-based Losses

Recently, neural network distance-based losses have been
proposed in the context of face recognition. For example,
the contrastive [38] and triplet [39] losses use high-level
feature (embeddings) pairwise distances. In both cases, the
SoftMax function2 is not present, and the squared Euclidean
distance is used. One of the main drawbacks is the need
for using Siamese neural networks, which adds complexity
to the solution and expands memory requirements during
training [10]. Additionally, the triplet sampling and pairwise
training, which implicate the recombination of the training
samples with dramatic data expansion, slow convergence and
instability [10]. Finally, no prototypes are learned during
training. The challenge to train networks using purely distance-
based losses while avoiding triplet sampling and pairwise
training was discussed in [10], which proposed a squared
Euclidean distance-based regularization method.

The center loss [10] has two parameters α and λ. We call
a loss isotropic when its dependency on the high-level fea-
tures (embeddings) is performed exclusively through distances,
which are usually calculated from the class prototypes. In this
sense, the center loss is not isotropic, as it presents an affine
transformation in its SoftMax classification term. Therefore,
the center loss inherits the previously mentioned drawbacks
of the SoftMax loss affine transformation.

In [40], the authors proposed a solution based on squared
Euclidean distance to address few-shot learning. However,
this approach does not work as a SoftMax loss drop-in
replacement, as it does not simultaneously learn high-level fea-
tures (embeddings) and prototypes using exclusively stochas-
tic gradient descent (SGD) and end-to-end backpropagation.
Indeed, despite learning embeddings using regular SGD and
backpropagation, additional offline procedures are required to
calculate the class prototypes in the mentioned approach.

B. Out-of-Distribution Detection

ODIN was proposed in [1] by combining input preprocess-
ing with temperature calibration, which consists of changing
the scale of the logits of a pretrained model. Despite signifi-
cantly outperforming the SoftMax loss, the input preprocessing
introduced in ODIN considerably increases the inference time
by requiring an initial forward pass, a backpropagation, and
finally a second forward pass to perform an inference that can
be used for OOD detection. Considering that backpropagation
is typically slower than a forward pass, input preprocessing
makes ODIN inferences at least three times slower than nor-
mal. Additionally, input preprocessing multiplies the inference
power consumption and computational cost by a factor of at
least three. Those are severe limitations from an economic
and environmental perspective [36]3. Several subsequent OOD
detection proposals incorporated input preprocessing and its
drawbacks [1], [2], [18], [41]. Both input preprocessing and
temperature calibration require hyperparameter tuning.

2We follow the “SoftMax function” expression as defined in [11].
3https://www.youtube.com/watch?v=KnOpWgUCtaM
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Consequently, ODIN requires unrealistic access to OOD
samples to validate hyperparameters. Even if the supposed
OOD samples are available during design-time, using these
examples to tune hyperparameters makes the solution overfit to
detect this particular type of out-distribution4. The system will
likely operate under unknown out-distributions in real-world
applications, and the estimated OOD detection performance
could degrade significantly. Therefore, using OOD samples to
validate hyperparameters may produce over-optimistic OOD
detection performance estimations [35].

A method to avoid using OOD samples was proposed in
[18]. The mentioned method uses only in-distribution valida-
tion data for tuning the required hyperparameters. However,
the proposed loss produced a significant classification accu-
racy drop in some situations. Moreover, the in-distribution
CIFAR10/100 validation sets were used for both hyperpa-
rameter tuning and OOD detection evaluation. Therefore, the
classification accuracy drop reported in [18] is probably under-
estimated. In practice, the necessary in-distribution validation
data for hyperparameter tuning will have to be removed
from the training data, which will presumably decrease even
further the classification accuracy and, consequently, also the
OOD detection performance. Additionally, [18] also uses input
preprocessing, making inferences considerably inefficient from
an environment, economic, and energy perspective.

The Mahalanobis distance-based method5 [2] overcomes the
need for access to OOD samples by validating hyperparame-
ters using adversarial examples and producing more realistic
OOD detection performance estimates. However, using adver-
sarial examples has the disadvantage of adding a cumbersome
procedure to the solution. Even worse, the generation of ad-
versarial samples itself requires hyperparameter tuning such as
the maximum perturbations. While adequate hyperparameters
may be known for research datasets, they may be challenging
to find for novel real-world data.

Moreover, as the Mahalanobis approach also requires input
preprocessing, the previously mentioned drawbacks associ-
ated with this technique are still present in the Mahalanobis
solution. Feature ensemble introduced in this approach also
presents limitations. Indeed, feature ensembles require training
of extra classification and regression models on features ex-
tracted from many network layers. For applications using real-
world large-size images, these shallow models may present
scalability problems, as they would be required to work
in spaces of tens of thousands of dimensions. Finally, the
Mahalanobis method is not turnkey, as it involves feature
extraction and metric learning post-processing.

Hyperparameter tuning is also a drawback to methods
based on adversarial training (e.g., ACET [3]), as we need
adequate adversarial perturbations. Additionally, adversarial
training is known for increasing training time [20] and reduc-
ing classification accuracy [22]. Furthermore, solutions based
on adversarial training may not scale to applications dealing

4In this paper, the expression “out-distribution” refers to any distribution
that generates OOD samples.

5For the rest of this paper, the expression “the Mahalanobis distance-
based method” is replaced by “the Mahalanobis method”.

with real-world large-sized images [21], which may also be the
case of approaches with high computational cost inferences.

The Entropic Open-Set loss and the Objectosphere loss were
proposed in [28]. These two losses used background samples
to improve the performance of detecting unknown inputs. The
Entropic Open-Set loss works like the usual SoftMax loss in
the in-distribution training data, producing low entropy for
these samples. However, it forces maximum entropy in the
background samples. The Objectosphere loss is the Entropic
Open-Set loss with an added regularization factor that forces
the feature magnitude of in-distribution samples to be near a
predefined value ξ while minimizing the feature magnitude of
background samples.

Domain-specialized methods have also been proposed. Tack
et al. [42] used data augmentation for image data to improve
OOD detection in a self-supervised setting. Sastry et al. [43]
analyzed statistics of the activations of the pretrained model on
training and validation data to detect OOD examples. Hence,
we believe one of the main advantages of our approach is that
it is domain-agnostic, as it can be applied to any domain.

III. ENTROPIC OUT-OF-DISTRIBUTION DETECTION

A. Isotropy Maximization Loss

To mitigate the SoftMax loss drawbacks (i.e., anisotropy and
low entropy posterior probability distributions), we design the
IsoMax loss by imposing isotropy combined with high (almost
maximum) entropy posterior probability distributions, which is
obtained using what we call “the entropy maximization trick”.

1) Isotropy: To fix the SoftMax loss anisotropy caused by
its affine transformation, we propose the IsoMax loss, which
is isotropic in the sense that its logits depend exclusively on
distances from high-level features to class prototypes. For
more information regarding the SoftMax loss anisotropy, how
it harms the OOD detection performance, and the advantages
of circumventing this problem using an isotropic loss, please
see Supplementary Material A.

We designed the IsoMax loss to work as a SoftMax loss
drop-in replacement. Therefore, the swap of the SoftMax loss
with the IsoMax loss requires changes in neither the model’s
architecture nor training procedures or parameters.

Let fθ(x) represent the high-level feature (embedding)
associated with x, pjφ represent the prototype associated with
the class j, and d() represent a distance. To construct a
isotropic loss, we need to avoid direct dependency on fθ(x)
or pjφ. Therefore, the loss has to be a function that exclu-
sively depends on the embedding-prototype distances given
by d(fθ(x),p

j
φ). Therefore, we can write:

LI=g(d(fθ(x),p
j
φ)) (1)

In the previous equation, g() represents a scalar function.
The expression d(fθ(x),p

j
φ) represents the isotropic layer,

where its weights are given by the learnable prototypes pjφ.
We decided to normalize the embedding-prototype distances

using the SoftMax function to allow interpretation in terms
of probabilities. Therefore, the embedding-prototype distances
represent the logits of the SoftMax function and correspond
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to the output of the isotropic layer. We also decided to use
cross-entropy for efficient optimization. Hence, we can write
the following equation:

LI(ŷ(k)|x) = − log




exp(−d(fθ(x),p
k
φ))∑

j

exp(−d(fθ(x),p
j
φ))


 (2)

In the above equation, ŷ(k) represents the label of the
correct class, while the negative logarithm represents the cross-
entropy. The negative terms before the distances are necessary
to indicate the negative correlation between distances and
probabilities. The expression between the outermost parenthe-
ses applied to the term −d(fθ(x),p

j
φ) represents the SoftMax

function. We use the non-squared Euclidean distance for d(.,.),
and justify its use in Supplementary Material B.

Unlike usual metric learning-based OOD detection ap-
proaches, rather than learning a metric from a preexisting
feature space (metric learning on features extracted from a
pretrained model), when using the IsoMax loss, we learn
a feature space that is, from the start, consistent with the
chosen metric. Indeed, the minimization of Equation (2) is
achieved by making the expression inside the outer paren-
theses goes to one. This is only possible by reducing the
distances between the high-level features (embeddings) and
the associated class prototypes while simultaneously keeping
high distances among class prototypes. Hence, the main aim of
metric learning, which is to reduce intraclass distances while
increasing interclass distances, is performed naturally during
the neural network training, avoiding feature extraction and
metric learning post-processing phases.

2) Entropy Maximization: Isotropy increases OOD de-
tection performance. However, we need to circumvent the
SoftMax loss propensity to produce significantly low entropy
posterior probability distributions for further gains. To achieve
high entropy probability distributions in agreement with the
maximum entropy principle, we introduce the entropic scale,
a constant scalar multiplicative factor applied to the logits
throughout training that is, nevertheless, removed before infer-
ence. We call this procedure “the entropy maximization trick”.

Our experiments show that the proposed strategy forces
the neural networks to produce outputs with significantly
high entropy probability distributions (as recommended by the
maximum entropy principle) rather than the usual low entropy
(overconfident) posterior probability distributions.

The entropic scale is related to the inverse of the temperature
of the SoftMax function. However, training with a predefined
constant entropic scale and then removing it before inference
is completely different from temperature calibration. On the
one hand, in ODIN and similar methods based on temperature
calibration, the temperature of a pretrained model is vali-
dated after training, which nevertheless was performed with
a temperature equal to one. This validation usually requires
unrealistic access to OOD or adversarial examples, which ad-
ditionally make them not turnkey. Additionally, over-optimistic
performance estimation is commonly produced [35]. On the
other hand, our approach requires neither hyperparameter
validation nor access to OOD or adversarial data.

The principle of maximum entropy, formulated by E. T.
Jaynes to unify the statistical mechanics and information
theory entropy concepts [13], [14], states that when esti-
mating probability distributions, we should choose the one
that produces the maximum entropy consistent with the given
constraints [15]. Following this principle, we avoid introducing
additional assumptions or bias not presented in the data.

Hence, from a set of trial probability distributions that
satisfactorily describe the prior knowledge available, the distri-
bution that presents the maximal information entropy (i.e., the
least informative option) represents the best possible choice.
In other words, we must produce posterior probability distri-
butions as underconfident as possible as long as they match
the correct predictions.

The principle of maximum entropy has been studied as a
regularization factor [44], [45]. In some cases, it has also been
used as a direct optimization procedure without connection to
cross-entropy minimization or backpropagation. For example,
in [46]–[48], the maximization of the entropy subject to a
constraint on the expected classification error was shown to
be equivalent to solving an unconstrained Lagrangian.

The relation between the principle of maximum entropy
and Bayesian methods has been studied in [49]. Despite being
theoretical well-grounded [50]–[53], direct entropy maximiza-
tion presents high computational complexity, as it is an NP-
complete problem [50], [52]. Alternatively, modern neural
networks are trained using computationally efficient cross-
entropy. However, this procedure does not prioritize high
entropy (low confidence) posterior probability distributions.
Actually, the opposite is true. Indeed, the minimization of
cross-entropy has the undesired side effect of producing low
entropy (overconfident) posterior probability distributions [12].

Unlike the previously mentioned works, we use the principle
of maximum entropy neither to motivate the construction of
regularization mechanisms, such as label smoothing or the
confidence penalty [44], [45], nor to perform direct maximum
entropy optimization [46]–[48]. The entropy is not even calcu-
lated during IsoMax loss training. In the opposite direction, we
use the principle of maximum entropy as a theoretical motiva-
tion for constructing high entropy (low confidence) posterior
probabilities, still relying on computationally efficient cross-
entropy minimization. Since our approach does not directly
maximize the entropy, we cannot state that IsoMax produces
the maximum entropy posterior probability distribution. How-
ever, the entropies produced by IsoMax loss are high enough
to improve the OOD detection performance significantly.

LSoftMax=− log


 exp(Lk)∑

j

exp(Lj)


→ 0 (3)

=⇒ P(y|x)→ 1 (4)
=⇒ HSoftMax → 0 (5)

Equation (3) describes the behavior of the cross-entropy
and entropy for the SoftMax loss. Lj represents the logits
associated with class j, and Lk represents the logits asso-
ciated with the correct class k. When minimizing the loss
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(Equation (3)), high probabilities are generated (Equation (4)).
Consequently, significantly low entropy posterior probability
distributions are produced (Equation (5)). Hence, the usual
cross-entropy minimization tends to generate unrealistic over-
confident (low entropy) probability distributions. Therefore,
we have an opposition between cross-entropy minimization
and the principle of maximum entropy.

LIsoMax=− log


 exp(−Es×Dk)∑

j

exp(−Es×Dj)


→ 0 (6)

6=⇒ P(y|x)→ 1 (7)
6=⇒ HIsoMax → 0 (8)

The IsoMax loss conciliates these contradictory objectives
(loss minimization and entropy maximization) by multiplying
the logits by a constant positive scalar Es, which is presented
during training but removed before inference. Equation (6)
demonstrates how the entropic scale (presented at training
time but removed at inference time) allows the production
of high entropy posterior distributions despite using cross-
entropy minimization. Dj represents the distances associated
with class j, and Dk represents the distances associated with
the correct class k. The Es present during training allows
the term −Es×Dk to become high enough (less negative
compared to −Es×Dj) to produce low loss (Equation (6))
without producing high probabilities for the correct classes, as
they are calculated with the Es removed (Equation (7)). Thus,
it is possible to build posterior probability distributions with
high entropy (Equation (8)) in agreement with the fundamental
principle of maximum entropy despite using cross-entropy to
minimize the loss.

We emphasize that, regardless of training with the entropic
scale, if we do not remove it before performing inference, the
IsoMax loss produces outputs with entropies as low as those
produced by the SoftMax loss, the OOD detection performance
does not further increase. Hence, returning to Equation (2),
multiplying the embedding-prototype distances by Es, and
making d() equal to the nonsquared Euclidean distance, we
write the definitive IsoMax loss as:

LI(ŷ(k)|x) = − log†




exp(−Es‖fθ(x)−pkφ‖)∑
j

exp(−Es‖fθ(x)−pjφ‖)




= − log†




exp(−Es
√

(fθ(x)−pkφ)·(fθ(x)−pkφ))
∑
j

exp(−Es
√

(fθ(x)−pjφ)·(fθ(x)−pjφ))




(9)

We emphasize that removing the entropic scale after the
training does not affect the solution’s ability to represent the

†The probability (i.e., the expression between the outermost parenteses)
and logarithm operations are computed sequentially and separately for higher
OOD detection performance (please, see the source code).

prior knowledge available, as it does not change the predic-
tions. Therefore, the expression for the probabilities with the
entropic scale removed is preferable, as it increases the entropy
of the posterior distribution in agreement with the principle of
maximum entropy. Hence, the inference probabilities for the
IsoMax loss are defined as follows:

pI(y
(i)|x) =

exp(−‖fθ(x)−piφ‖)∑
j

exp(−‖fθ(x)−pjφ‖)

=
exp(−

√
(fθ(x)−pkφ)·(fθ(x)−pkφ))

∑
j

exp(−
√

(fθ(x)−pjφ)·(fθ(x)−pjφ))

(10)

Please, notice that the entropic scale Es was intentionally
removed from the loss Equation 9 to build the inference
Equation 10 to perform “the entropy maximization trick”.

3) Initialization and Implementation Details: We exper-
imentally observed that using the Xavier [54] or Kaiming
[55] initializations for prototypes makes the OOD detection
performance oscillate. Sometimes it improves, sometimes it
decreases. Hence, we decided to initialize all prototypes to
zero vector, as this is the most natural value for untrained
embeddings. Weight decay is applied to the prototypes, as they
are regular trainable parameters.

To calculate losses based on cross-entropy, deep learning
libraries usually combine the probability and logarithm calcu-
lations into a single computation. However, we experimentally
observed that sequentially computing these calculations as
stand-alone operations improves IsoMax performance.

The class prototypes have the same dimension as the neural
network last layer representations. Naturally, the number of
prototypes is equal to the number of classes. Therefore, the
IsoMax loss has fewer parameters than the SoftMax loss, as
it has no bias to be learned.

Finally, we verified classification accuracy drop and low
or oscillating OOD detection performance when trying to
integrate Es with cosine similarity [11], [56], [57] or the
affine transformations used in SoftMax loss. In such cases,
the above trick to initialize the prototypes to zero vector
cannot be performed. Moreover, the Mahalanobis distance
cannot be used directly during the neural network training
because the covariance matrix is not differentiable. Therefore,
we confirmed nonsquared Euclidean distance as the best
option to build the IsoMax loss.

B. Entropic Score

We define our score to perform OOD detection, called the
entropic score, as the output probabilities negative entropy:

ES=−
N∑

i=1

p(y(i)|x) log p(y(i)|x) (11)

Using the negative entropy as a score to evaluate whether
a particular sample is OOD, we consider the information
provided by all available network outputs rather than just
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(a) (b) (c) (d)

(e)

(f)

Fig. 2. IsoMax loss effects: (a) SoftMax loss simultaneously minimizes both the cross-entropy and the entropy of the posterior probabilities. (b) IsoMax
loss produces low entropy posterior probabilities for a low entropic scale (Es=1). (c) IsoMax loss produces medium mean entropy for an intermediate
entropic scale (Es=3). (d) IsoMax loss minimizes the cross-entropy while producing high mean entropies for the high entropic scale (Es=10). “The entropy
maximization trick” is the fundamental mechanism that allows us to migrate from low entropy posterior probability distributions (a,b) to high entropy posterior
probability distributions (d). Higher entropic scale values correlate to higher mean entropies as recommended by the principle of maximum entropy. Regardless
of training with a high entropic scale, if we do not remove it for inference (“the entropy maximization trick”), the IsoMax loss always produces posterior
probability distributions with entropies as low as those generated by the SoftMax loss. An entropic scale equal to ten is sufficient to virtually produce the
maximum possible entropy posterior probability distribution, as the highest possible value of the entropy is log(N), where N is the number of classes. (e)
The left side of the dashed vertical red line presents classification accuracies. The dashed vertical red line’s right side shows OOD detection performance
using the entropic score and the TNR@TPR95 metric. Higher mean entropies produce increased OOD detection performance regardless of the out-distribution.
We emphasize that OOD examples were never used during training and no validation was required to tune hyperparameters. Additionally, isotropy enables
IsoMax loss to produce higher OOD performance than SoftMax loss, even for the unitary value of the entropic scale. Training using Es=1 and then making
the temperature T=0.1 or T=10 during inference produces lower OOD detection performance than training using Es=10 and removing it for inference,
which consists in our proposal. Finally, IsoMax loss presents similar classification accuracy compared with SoftMax regardless of the entropic scale. The
entropic score, which is the negative entropy of the network output probabilities, was used as the score. (f) Study of classification accuracy and OOD detection
performance dependence on the entropic scale. AUROC represents the mean AUROC considering all out-of-distribution data. The classification accuracy
and the mean OOD detection performance are approximately stable for Es=10 or higher regardless of the dataset and model. It also does not depend on the
number of training classes N, which is probably explained by the fact that the entropic scale is inside an exponential function while the entropy increases
only with the logarithm of the number of classes. Making Es learnable did not considerably improve or decrease the OOD detection results.

135135135



ENTROPIC OUT-OF-DISTRIBUTION DETECTION: SEAMLESS DETECTION OF UNKNOWN EXAMPLES

one. For instance, ODIN and ACET only use the maximum
probability, while the Mahalanobis method only uses the
distance to the nearest prototype. The entropy has been studied
before for anomaly detection [58].

Regarding the use of entropy as an OOD score, one of the
most relevant contributions of this paper is to experimentally
show that it does not significantly overcome the maximum
probability score when dealing with the usual low entropy
(overconfident) neural networks’ posterior probability distri-
butions. However, the entropic score significantly improves
the OOD detection performance when used with the high
entropy (underconfident) neural networks’ posterior probabil-
ity distributions produced by the IsoMax loss in agreement
with the principle of maximum entropy. For more information
regarding the use of entropy as a score to perform OOD, please
see Supplementary Material C. For a detailed differentiation
between our approach and the proposed in [17], please see
Supplementary Material D.

IV. EXPERIMENTAL ANALYSES

All datasets, models, training procedures, and evaluation
metrics followed the baseline established in [8] and were
subsequently used in major OOD detection papers [1]–[3],
[26]. We only compared approaches that did not present
classification accuracy drop in the experiments presented in
the work in which they were proposed. The code is available6.

We trained from scratch 100-layer DenseNet-BC [61]
(growth rate k= 12, 0.8M parameters) and 34-layer ResNets
[62] on CIFAR10 [63], CIFAR100 [63] and SVHN [64] using
SoftMax and IsoMax losses. We used SGD with the Nesterov
moment equal to 0.9, 300 epochs with a batch size of 64,
and an initial learning rate of 0.1 with a learning rate decay
rate equal to ten applied in epochs 150, 200, and 250. We used
dropout equal to zero. The weight decay was 0.0001. We used
resized images from the TinyImageNet [65]7 and the Large-
scale Scene UNderstanding (LSUN) [66]7 datasets as OOD
data. Each set of OOD data presents ten thousand images.

Finally, we separately added these OOD data to the CI-
FAR10, CIFAR100, and SVHN validation sets to construct
the respective OOD detection test sets. For example, the
OOD detection test set for in-distribution CIFAR10 and out-
distribution TinyImageNet is composed by combing the CI-
FAR validation set and the TinyImageNet OOD data. In some
cases, CIFAR10 and SVHN work as out-distribution and the
respective validation set is used to construct the OOD detection
test set. We emphasize that our solution does not use validation
sets for training or validation. Therefore, validation sets are
used exclusively for building OOD detection test sets.

For text data experiments, we followed the experimental set-
ting presented in [26]. Therefore, we used the 20 Newsgroups
as in-distribution data. The 20 Newsgroups is a text classifi-
cation dataset of newsgroup documents. It has 20 classes and
approximately 20,000 examples that are split evenly among
the classes. We used the standard 60/40 train/test split. We

6https://github.com/dlmacedo/entropic-out-of-distribution-detection
7https://github.com/facebookresearch/odin

used the IMDB, Multi30K, and Yelp Reviews datasets as out-
distribution. IMDB is a dataset of movie review sentiment
classification. Multi30K is a dataset of English-German image
descriptions, of which we use the English descriptions. Yelp
Reviews is a dataset of restaurant reviews. Finally, we trained
from scratch 2-layer GRUs (GRU2L) [67] using SoftMax and
IsoMax losses.

We evaluated the performance using three detection metrics.
First, we calculated the true negative rate at the 95% true
positive rate (TNR@TPR95) and the false positive rate at
the 90% true positive rate (FPR@TPR90) using the adequate
thresholds. In addition, we evaluated the area under the re-
ceiver operating characteristic curve (AUROC)and the detec-
tion accuracy (DTACC), which corresponds to the maximum
classification probability over all possible thresholds δ:

1−min
δ

{
Pin (o (x) ≤ δ)P (x is from Pin)

+Pout (o (x) > δ)P (x is from Pout)
}
,

(12)

where o(x) is a given OOD detection score. It is assumed that
both positive and negative samples have equal probability. In
other words, the DTACC represents the probability that we
can correctly classify whether a sample belongs to the in-
distribution or the out-distribution considering the best case
scenario, i.e., using the ideal value for δ. AUROC and DTACC
are threshold independent.

A. Entropic Scale, High Entropy, and OOD Detection
To experimentally show that higher entropic scales lead

to higher entropy probability distributions and consequently
improved OOD detection performance, we trained DenseNets
on SVHN using the SoftMax loss and IsoMax loss with
distinct entropic scale values. We used the entropic score and
the TNR@TPR95 to evaluate OOD detection performance
(please, see Fig. 2).

As expected, Fig. 2a shows that the SoftMax loss generates
posterior distributions with low entropy. Fig. 2b illustrates that
the unitary entropic scale (Es=1) only slightly increases the
distribution mean entropy. In other words, isotropy alone is not
enough to circumvent the cross-entropy propensity to produce
low entropy probability distributions and the entropic scale is
indeed necessary. Nevertheless, the replacement of anisotropic
logits based on affine transformation by isotropic logits is
enough to produce initial OOD detection performance gains
regardless of the out-distribution (Fig. 2e).

Training using Es=1 and then making during inference
the temperature T=0.1, which is equivalent to make Es=10,
produces different results from training using Es=10 and
removing it for inference. Indeed, in the first case we only
change the last layer, while in the second case, we learn
different weights for the entire neural network in comparison
with training with Es=1 (Fig. 2e).

Fig. 2c shows that an intermediate entropic scale (Es=3)
provides medium entropy probability distributions with cor-
responding additional OOD detection performance gains for
all out-distributions (Fig. 2e). Fig. 2d illustrates that a high
entropic scale (Es=10) produces even higher entropy proba-
bility distributions and the highest OOD detection performance
regardless of the out-distribution considered (Fig. 2e).

136136136



ENTROPIC OUT-OF-DISTRIBUTION DETECTION: SEAMLESS DETECTION OF UNKNOWN EXAMPLES

TABLE II
CURRENT AND PROPOSED BASELINE OUT-OF-DISTRIBUTION DETECTION APPROACHES COMPARISON.

FAST AND ENERGY-EFFICIENT INFERENCES. TURNKEY APPROACHES. NO EXTRA/OUTLIER/BACKGROUND DATA USED.

Model In-Data
(training)

Out-Data
(unseen)

Baseline Out-of-Distribution Detection Approaches Comparison.
Fast and Energy-Efficient Inferences. Turnkey Approaches. No outlier data used.

TNR@TPR95 (%) [↑] AUROC (%) [↑] DTACC (%) [↑]
SoftMax+MPS [8] / SoftMax+ES / IsoMax+ES (ours)

DenseNet

CIFAR10
SVHN 32.1±0.3 / 33.1±0.4 / 77.1±0.3 86.5±0.4 / 86.8±0.3 / 96.7±0.4 79.8±0.3 / 79.8±0.3 / 91.8±0.3
TinyImageNet 55.7±0.3 / 59.7±0.4 / 88.1±0.4 93.5±0.4 / 94.1±0.4 / 97.9±0.3 87.5±0.2 / 87.9±0.3 / 93.3±0.3
LSUN 64.8±0.4 / 69.6±0.3 / 94.6±0.2 95.1±0.3 / 95.8±0.2 / 98.9±0.3 89.8±0.3 / 90.1±0.3 / 95.0±0.4

CIFAR100
SVHN 20.5±0.6 / 24.8±0.8 / 23.6±0.9 80.1±0.7 / 81.8±0.7 / 88.8±0.6 73.8±0.6 / 74.4±0.7 / 83.9±0.6
TinyImageNet 19.3±0.9 / 23.8±0.8 / 49.0±0.6 77.1±0.6 / 78.7±0.7 / 92.8±0.6 70.5±0.6 / 71.3±0.7 / 86.5±0.6
LSUN 18.7±0.6 / 24.3±0.8 / 63.1±0.6 75.8±0.7 / 77.8±0.6 / 94.8±0.6 69.4±0.8 / 70.3±0.9 / 89.2±0.6

SVHN
CIFAR10 81.5±0.2 / 83.7±0.3 / 94.1±0.2 96.5±0.3 / 96.9±0.2 / 98.5±0.2 91.9±0.3 / 92.1±0.2 / 95.0±0.2
TinyImageNet 88.3±0.2 / 90.1±0.2 / 97.2±0.3 97.7±0.3 / 98.1±0.2 / 99.1±0.2 93.4±0.4 / 93.8±0.2 / 96.3±0.3
LSUN 86.4±0.2 / 88.4±0.4 / 96.8±0.2 97.3±0.2 / 97.8±0.3 / 99.1±0.2 92.8±0.2 / 93.0±0.4 / 96.0±0.2

ResNet

CIFAR10
SVHN 43.2±0.4 / 44.5±0.3 / 83.6±0.4 91.6±0.3 / 92.0±0.3 / 97.1±0.4 86.5±0.2 / 86.4±0.4 / 91.9±0.3
TinyImageNet 46.4±0.4 / 48.0±0.3 / 70.3±0.3 89.8±0.4 / 90.1±0.2 / 94.6±0.4 84.0±0.4 / 84.2±0.3 / 88.3±0.4
LSUN 51.2±0.4 / 53.3±0.2 / 82.3±0.3 92.2±0.4 / 92.6±0.4 / 96.9±0.3 86.5±0.2 / 86.6±0.4 / 91.5±0.3

CIFAR100
SVHN 15.9±0.8 / 18.0±0.7 / 20.2±0.6 71.3±0.6 / 72.7±0.7 / 85.3±0.6 66.1±0.6 / 66.3±0.7 / 79.7±0.6
TinyImageNet 18.5±0.8 / 22.4±0.6 / 50.6±0.7 74.7±0.6 / 76.3±0.7 / 92.0±0.7 68.8±0.6 / 69.1±0.6 / 85.6±0.7
LSUN 18.3±0.8 / 22.4±0.5 / 54.9±0.6 74.7±0.6 / 76.5±0.7 / 93.3±0.6 69.1±0.5 / 69.4±0.7 / 87.6±0.8

SVHN
CIFAR10 67.3±0.2 / 67.7±0.3 / 92.3±0.2 89.8±0.2 / 89.7±0.3 / 98.0±0.2 87.0±0.3 / 86.9±0.3 / 94.1±0.2
TinyImageNet 66.8±0.3 / 67.3±0.2 / 94.6±0.2 89.0±0.3 / 89.0±0.2 / 98.3±0.2 86.8±0.2 / 86.6±0.4 / 94.8±0.4
LSUN 62.1±0.2 / 62.5±0.3 / 90.9±0.4 86.0±0.2 / 85.8±0.2 / 97.8±0.2 84.2±0.2 / 84.1±0.3 / 93.6±0.4

The baseline OOD detection approaches are turnkey (no outlier/background/extra data required, no additional procedures other than typical straightforward
neural network training are required), produce no classification accuracy drop, and present fast and energy-efficient inferences. Neither adversarial training,
input preprocessing, temperature calibration, feature ensemble, nor metric learning is used. Since there is no need to tune hyperparameters, no access to OOD
or adversarial examples is required. SoftMax+MPS means training with SoftMax loss and performing OOD detection using the maximum probability score,
which is the approach defined in [8]. SoftMax+ES means training with SoftMax loss and performing OOD detection using the entropic score. IsoMax+ES
means training with IsoMax loss and performing OOD detection using the entropic score. The OOD detection test sets are composed of images from both
in-data and out-data (see Section IV for additional details). The results represent the mean and standard deviation of five executions. The best values are bold
when they overcome the competing approach value outside of the margin of error given by the standard deviations. To the best of our knowledge, IsoMax+ES
presents the state-or-the-art under these restrictive assumptions.

Despite the entropy scale value used, the cross-entropy
is minimized and the classification accuracies produced by
SoftMax and IsoMax losses are similar. For a high entropic
scale, the IsoMax loss minimizes the cross-entropy while
producing high entropy posterior probability distributions as
recommended by the principle of maximum entropy.

More importantly, higher entropy posterior probability dis-
tributions directly correlate with increased OOD detection
performances despite the OOD data. Fig. 2d shows that
an entropic scale Es=10 is enough to produce probability
distributions with essentially the maximum possible entropies.
Hence, no additional gains may be obtained by increasing
the entropic scale even further. Indeed, we experimentally
observed no further gains for entropic scales higher than ten.

Fig. 2f shows that regardless of the combination of dataset
and model, the classification accuracy and the mean OOD
detection performance are stable for Es=10 or higher, as the
entropic scale is already high enough to ensure near-maximal
entropy. We speculate that Es=10 worked satisfactorily re-
gardless of the number of training classes because it is used
inside an exponential function while the entropy increases only
with the logarithm of the number of training classes. Hence,
an eventual validation of Es would produce an insignificant
performance increase. Actually, this is not possible because
we consider access to OOD or outlier samples forbidden.
Moreover, making Es learnable did not significantly affect the
OOD detection performance.

In other words, considering that the entropic scale Es is
present in Equation (9), we are initially led to think that
it needs to be tuned to achieve the highest possible OOD
detection performance. However, we emphasize that the ex-
periments showed that the dependence of the OOD detection
performance on the entropic scale is remarkably well-behaved.
Essentially, the OOD detection performance monotonically
increases with the entropic scale until it reaches a saturation
point near Es=10 regardless of the dataset or the number of
training classes (Fig. 2f). It may be explained by the fact that
the entropic scale is inside an exponential function and that
we experimentally observed that exp (−10×d) is enough to
produce almost maximum entropy regardless of the dataset,
model or number of training classes under consideration.
Finally, even if we consider that validating for entropic scales
higher than ten would allow some minor OOD detection
performance improvement, we usually cannot do this because
we do not often have access to out-distribution data.

Hence, the well-behaved dependence of the OOD detection
performance on the entropic scale allowed us to define the Es
as a constant scalar equals to 10 rather than a hyperparameter
that needs to be tuned for each novel dataset and model. It is
the reason our approach may be used without requiring access
to OOD/outlier data. Therefore, we kept the entropic scale
as a constant (global value) equal to ten for all subsequent
experiments. Hence, no validation of the entropic score was
performed for different models, datasets, or number of classes.
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TABLE III
COMPARISON OF ENHANCED VERSIONS OF SOFTMAX LOSS AND ISOMAX LOSS:

ADDING LABEL SMOOTHING, CENTER LOSS REGULARIZATION, ODIN, AND OUTLIER EXPOSURE TO SOFTMAX LOSS AND ISOMAX LOSS.
THE SIDE EFFECTS AND REQUIREMENTS ADDED TO THE SOLUTION DEPEND ON THE ADD-ON TECHNIQUE.

Model In-Data
(training)

OOD Detection
Approach

Enhanced Versions of SoftMax loss and IsoMax loss.
Add-on Techniques produce different Side Effects and Requirements.

Class. Accuracy (%) [↑] TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMax / IsoMax SoftMax / IsoMax SoftMax / IsoMax

DenseNet

CIFAR10

Baseline 95.4±0.3 / 95.2±0.3 53.3±0.4 / 84.1±0.3 91.9±0.4 / 97.3±0.3
+ Label Smoothing 95.2±0.4 / 95.0±0.3 70.7±0.4 / 60.3±0.3 94.9±0.3 / 80.8±0.3
+ Center Loss Regularization 95.3±0.3 / 95.1±0.4 54.7±0.6 / 87.1±0.3 92.8±0.3 / 97.6±0.3
+ ODIN 95.4±0.3 / 95.2±0.3 91.9±0.3 / 95.3±0.4 98.2±0.3 / 98.4±0.4
+ Outlier Exposure 95.3±0.4 / 95.6±0.4 93.8±0.3 / 94.7±0.3 98.5±0.3 / 98.8±0.4

CIFAR100

Baseline 77.5±0.6 / 77.5±0.4 22.3±0.7 / 45.1±0.6 77.4±0.8 / 91.9±0.6
+ Label Smoothing 77.0±0.4 / 77.2±0.6 31.5±0.6 / 33.0±0.6 82.0±0.6 / 88.3±0.7
+ Center Loss Regularization 77.2±0.7 / 77.0±0.6 30.3±0.7 / 43.7±0.6 79.5±0.8 / 92.2±0.6
+ ODIN 77.5±0.6 / 77.5±0.4 64.4±0.7 / 83.1±0.8 92.5±0.6 / 96.9±0.7
+ Outlier Exposure 77.8±0.6 / 77.5±0.7 23.0±0.7 / 36.4±0.8 80.5±0.8 / 89.6±0.6

SVHN

Baseline 96.6±0.2 / 96.6±0.2 90.1±0.2 / 95.9±0.1 98.2±0.2 / 98.9±0.2
+ Label Smoothing 96.6±0.2 / 96.7±0.3 87.5±0.2 / 93.5±0.2 97.0±0.2 / 97.8±0.3
+ Center Loss Regularization 96.7±0.3 / 96.6±0.2 88.0±0.3 / 95.9±0.2 97.9±0.2 / 98.9±0.1
+ ODIN 96.6±0.2 / 96.6±0.2 95.5±0.2 / 96.7±0.2 98.8±0.1 / 99.1±0.1
+ Outlier Exposure 96.6±0.3 / 96.7±0.3 99.9±0.1 / 99.9±0.1 99.9±0.1 / 99.9±0.1

ResNet

CIFAR10

Baseline 95.4±0.3 / 95.6±0.4 50.8±0.4 / 78.6±0.3 91.2±0.3 / 96.1±0.4
+ Label Smoothing 95.5±0.4 / 95.4±0.3 54.0±0.4 / 63.5±0.3 78.9±0.4 / 84.5±0.3
+ Center Loss Regularization 95.6±0.3 / 95.4±0.4 53.5±0.4 / 80.6±0.3 90.5±0.3 / 96.6±0.2
+ ODIN 95.4±0.3 / 95.6±0.4 73.7±0.3 / 85.6±0.3 93.4±0.2 / 97.2±0.3
+ Outlier Exposure 95.5±0.3 / 95.6±0.3 91.1±0.3 / 94.2±0.4 97.7±0.2 / 98.6±0.3

CIFAR100

Baseline 77.3±0.6 / 77.4±0.7 22.4±0.6 / 41.8±0.7 80.5±0.6 / 90.1±0.7
+ Label Smoothing 77.7±0.5 / 77.3±0.5 21.0±0.7 / 33.4±0.6 81.6±0.6 / 85.9±0.6
+ Center Loss Regularization 77.9±0.5 / 77.4±0.5 29.5±0.9 / 48.2±0.7 80.3±0.6 / 90.6±0.6
+ ODIN 77.3±0.6 / 77.4±0.7 64.0±0.6 / 77.9±0.6 92.7±0.7 / 95.8±0.6
+ Outlier Exposure 77.3±0.5 / 77.0±0.5 37.8±0.9 / 41.7±0.8 86.6±0.6 / 88.6±0.7

SVHN

Baseline 96.8±0.2 / 96.7±0.2 71.7±0.3 / 92.4±0.2 94.7±0.3 / 98.0±0.2
+ Label Smoothing 96.9±0.2 / 96.9±0.3 86.3±0.2 / 86.4±0.2 97.2±0.3 / 94.9±0.2
+ Center Loss Regularization 96.9±0.2 / 96.7±0.2 77.2±0.2 / 82.2±0.2 94.5±0.2 / 96.1±0.3
+ ODIN 96.8±0.2 / 96.7±0.2 79.9±0.3 / 93.5±0.3 95.1±0.2 / 98.2±0.3
+ Outlier Exposure 96.9±0.3 / 96.8±0.2 99.9±0.1 / 99.9±0.1 99.9±0.1 / 99.9±0.1

Regardless of using SoftMax loss or IsoMax loss, adding label smoothing (LS) requires validation of the hyperparameter ε [59]. The values searched for
ε were 0.1 [59], [60] and 0.01 [60]. Adding center loss regularization (CLR) to SoftMax loss or IsoMax loss requires validation of the hyperparameter λ
[10]. The values searched for λ were 0.01 and 0.003 [10]. We emphasize that the center loss is not used as a stand-alone loss but rather combined as a
regularization term with a preexisting baseline loss. In the case of the original paper, the baseline loss was the SoftMax loss. In this paper, we added the
mentioned regularization term [10, Equation (5)] also to IsoMax loss to construct the center loss enhanced version of our loss. Regardless of using SoftMax
loss or IsoMax loss, adding ODIN [1] requires validation of the hyperparameters ε and T . The values searched for these hyperparameters were the same
used in the original paper [1]. Adding ODIN implies using input preprocessing, which makes inferences much slower, and energy- and cost-inefficient. We
used OOD data to validate the LS, CLR, and ODIN hyperparameters. Adding outlier exposure (OE) [26] to SoftMax loss or IsoMax loss requires collecting
outlier data. We used the same outlier data used in [26]. The add-on techniques were not applied to the SoftMax and IsoMax losses combined, but rather
individually. The values of the performance metrics TNR@TPR95 and AUROC were averaged over all out-of-distribution data. All results used the entropic
score, as it always overcame the maximum probability score. The results represent the mean and standard deviation of five executions. The best values are
bold when they overcome the competing approach value outside of the margin of error given by the standard deviations. For OOD detection, the variants of
SoftMax and IsoMax losses that presented the best performance for each combination of architecture and dataset are blue. The baseline results are in blue.

TABLE IV
BASELINE OUT-OF-DISTRIBUTION DETECTION APPROACHES COMPARISON: TEXT DATA

Model In-Data
(training)

Out-Data
(unseen)

Baseline Out-of-Distribution Detection Approaches Comparison.
Fast and Energy-Efficient Inferences. Turnkey Approaches. No outlier data used.

FPR@TPR90 (%) [↓] AUROC (%) [↑]
SoftMax+MPS [8] / IsoMax+ES (ours)

GRU2L 20 Newsgroups
IMDB 34.9±0.3 / 22.7±0.4 85.4±0.3 / 90.0±0.2
Multi30K 47.2±0.4 / 44.5±0.3 80.9±0.4 / 82.7±0.4
Yelp Reviews 39.3±0.3 / 26.1±0.6 82.5±0.4 / 88.2±0.4

SoftMax+MPS means training with SoftMax loss and performing OOD detection using the maximum probability score. IsoMax+ES means training with
IsoMax loss and performing OOD detection using the entropic score. The results represent the mean and standard deviation of five executions. The best values
are bold when they overcome the competing approach value outside of the margin of error given by the standard deviations.
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TABLE V
COMPARISON OF THE PROPOSED BASELINE OUT-OF-DISTRIBUTION DETECTION APPROACH WITH NO SEAMLESS SOLUTIONS.

UNFAIR COMPARISON OF APPROACHES WITH DIFFERENT REQUIREMENTS AND SIDE EFFECTS. NO EXTRA/OUTLIER/BACKGROUND DATA USED.

Model In-Data
(training)

Out-Data
(unseen)

ODIN, ACET, and Mahalanobis present troublesome requirements.
ODIN, ACET, and Mahalanobis produce undesired side effects.

AUROC (%) [↑] DTACC (%) [↑]
ODIN [1] / ACET [3] / IsoMax+ES (ours) / Mahalanobis [2]

DenseNet

CIFAR10
SVHN 92.7±0.4 / NA / 96.7±0.4 / 97.5±0.6 86.4±0.4 / NA / 91.8±0.4 / 92.4±0.5
TinyImageNet 97.3±0.4 / NA / 97.9±0.4 / 98.5±0.6 92.1±0.4 / NA / 93.5±0.4 / 94.3±0.6
LSUN 98.4±0.4 / NA / 98.9±0.4 / 99.1±0.6 94.3±0.3 / NA / 95.1±0.4 / 95.9±0.4

CIFAR100
SVHN 88.1±0.6 / NA / 88.7±0.7 / 91.7±0.6 80.8±0.6 / NA / 83.9±0.6 / 84.3±0.7
TinyImageNet 85.2±0.6 / NA / 92.8±0.5 / 96.9±0.7 77.1±0.6 / NA / 86.7±0.5 / 91.7±0.6
LSUN 85.8±0.6 / NA / 94.6±0.4 / 97.7±0.6 77.3±0.6 / NA / 89.2±0.7 / 93.5±0.5

SVHN
CIFAR10 91.8±0.2 / NA / 98.6±0.2 / 98.7±0.3 86.7±0.2 / NA / 95.7±0.3 / 96.1±0.3
TinyImageNet 94.8±0.2 / NA / 99.3±0.2 / 99.7±0.3 90.2±0.2 / NA / 96.2±0.2 / 98.8±0.3
LSUN 94.0±0.2 / NA / 99.5±0.2 / 99.8±0.3 89.1±0.2 / NA / 96.1±0.2 / 99.0±0.1

ResNet

CIFAR10
SVHN 86.4±0.4 / 97.7±0.4 / 97.4±0.4 / 95.5±0.6 77.7±0.4 / NA / 91.8±0.4 / 89.0±0.5
TinyImageNet 93.9±0.3 / 85.7±0.4 / 94.7±0.3 / 99.1±0.5 86.1±0.3 / NA / 88.5±0.3 / 95.4±0.5
LSUN 93.4±0.4 / 85.9±0.4 / 96.8±0.3 / 99.5±0.3 85.7±0.4 / NA / 91.3±0.3 / 97.3±0.4

CIFAR100
SVHN 72.1±0.6 / 91.1±0.6 / 85.2±0.6 / 84.3±0.5 67.8±0.4 / NA / 79.9±0.6 / 76.4±0.7
TinyImageNet 83.7±0.6 / 75.3±0.5 / 92.4±0.5 / 87.7±0.6 75.7±0.5 / NA / 85.8±0.5 / 84.3±0.5
LSUN 81.8±0.6 / 69.7±0.5 / 93.3±0.6 / 82.2±0.7 74.7±0.6 / NA / 87.6±0.5 / 79.6±0.6

SVHN
CIFAR10 92.1±0.2 / 97.3±0.3 / 98.2±0.2 / 97.3±0.2 89.3±0.3 / NA / 94.3±0.2 / 94.5±0.3
TinyImageNet 92.8±0.2 / 97.6±0.2 / 98.8±0.1 / 99.0±0.3 90.0±0.2 / NA / 94.6±0.3 / 98.7±0.2
LSUN 90.6±0.2 / 99.7±0.3 / 97.9±0.2 / 99.8±0.2 88.3±0.2 / NA / 93.7±0.3 / 99.4±0.2

ODIN uses input preprocessing, temperature calibration, and adversarial validation (hyperparameter tuning using adversarial examples). The Mahalanobis
solution uses input preprocessing, adversarial validation, feature extraction, feature ensemble, and metric learning. Input preprocessing makes the inferences
of ODIN and the Mahalanobis method at least three times slower and at least three times less energy/computationally efficient than SoftMax or IsoMax
inferences. Feature ensembles may limit the Mahalanobis method scalability to deal with large-size images used in real-world applications. ACET uses
adversarial training, which results in slower training, possibly reduced scalability for large-size images, and eventually, classification accuracy drop. The
ODIN, the Mahalanobis approach, and ACET present hyperparameters that need to be validated for each combination of datasets and models presented in the
table. Furthermore, considering that adversarial hyperparameters (e.g., the adversarial perturbation) used in ODIN/Mahalanobis/ACET were validated using the
SVHN/CIFAR10/CIFAR100 validation sets and that these sets were reused as OOD detection test set, we conclude that the OOD detection performance reported
by those papers, which we are reproducing in this table, may be overestimated. ODIN/Mahalanobis/ACET results were obtained using SoftMax loss rather
than IsoMax loss as baseline. No outlier/extra/background data is used. IsoMax+ES means training with IsoMax loss and performing OOD detection using
the entropic score. IsoMax+ES does not use these techniques and does not have such requirements, side effects, and hyperparameters to tune (as IsoMax+ES
works as a baseline OOD detection approach, those techniques may be incorporated in future research). The OOD detection test sets are composed of images
from both in-data and out-data (see Section IV for further details). The results represent the mean and standard deviation of five executions. The best values
are bold when they overcome the competing approach value outside the margin of error given by the standard deviations.

TABLE VI
OUT-OF-DISTRIBUTION DETECTION: INFERENCE DELAYS / PRESUMED COMPUTATIONAL COST AND ENERGY CONSUMPTION RATES.

Model In-Data
(training)

Hardware
(inference)

Out-of-Distribution Detection:
Inference Delays / Presumed Computational Cost and Energy Consumption Rates.

SoftMax Loss [8]
(current baseline)

IsoMax Loss (ours)
(proposed baseline)

Input Preprocessing:
ODIN [1], Mahalanobis [2],

Generalized ODIN [18]
MPS (ms) [↓] / ES (ms) [↓] MPS (ms) [↓] / ES (ms) [↓] (ms) [↓]

DenseNet
CIFAR10 CPU 18.1 / 19.4 18.0 / 19.2 242.4 (≈ 10x slower)

GPU 11.6 / 13.0 11.6 / 11.5 39.2 (≈ 4x slower)

CIFAR100 CPU 18.4 / 19.8 18.4 / 19.3 261.0 (≈ 10x slower)
GPU 12.9 / 11.4 11.8 / 11.5 39.6 (≈ 4x slower)

SVHN CPU 18.1 / 18.6 18.3 / 18.6 241.5 (≈ 10x slower)
GPU 11.6 / 11.9 11.7 / 11.6 39.6 (≈ 4x slower)

ResNet
CIFAR10 CPU 22.3 / 23.2 23.0 / 23.5 250.4 (≈ 10x slower)

GPU 4.5 / 3.8 4.2 / 4.1 15.4 (≈ 4x slower)

CIFAR100 CPU 23.3 / 23.1 23.3 / 23.8 252.6 (≈ 10x slower)
GPU 4.3 / 3.9 4.3 / 4.2 14.8 (≈ 4x slower)

SVHN CPU 23.1 / 23.4 23.4 / 23.3 263.8 (≈ 10x slower)
GPU 4.2 / 4.0 4.0 / 4.0 15.7 (≈ 4x slower)

MPS means maximum probability score. ES means entropic score. For SoftMax and IsoMax losses (baseline OOD detection approaches), the inference
delays combine both classification and detection computation. For the methods based on input preprocessing, the inference delays represent only the input
preprocessing phase. All values are in milliseconds. In addition to presenting similar classification accuracy (Table III, Supplementary Material E) and much
better OOD detection performance (Table II), IsoMax loss trained networks produce inferences as fast as SoftMax trained networks. Moreover, the entropic
score is as fast as the maximum probability score. Using CPU (Intel i7-4790K, 4.00GHz, x64, octa-core) for inference (the case more relevant from a cost point
of view), methods based on input preprocessing are about ten times slower than the baseline approaches. Using GPU (Nvidia GTX 1080 Ti) for inference, our
approach is about four times faster than the methods based on input preprocessing. The inference delay rates presumably reflect in similar the computational
cost and energy consumption rates. The inference delays presented are the mean value of the inference delay of each image calculated (batch size equals one)
over the entire dataset. The standard deviation was below 0.3 for all cases.
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B. Fair Comparison: SoftMax versus IsoMax

Table II shows that models trained with the SoftMax loss
using the maximum probability as the score (SoftMax+MPS)
almost always present the worst OOD detection performance.

In the case of models trained with SoftMax loss, replacing
the maximum probability score by the entropic score (Soft-
Max+ES) produces small OOD detection performance gains.
However, the combination of models trained using IsoMax loss
with the entropic score (IsoMax+ES), which is the proposed
solution, significantly improves, usually by several percentage
points, the OOD detection performance across almost all
datasets, models, out-distributions, and metrics. We emphasize
that the entropic score only produces high OOD detection
performance when the probability distributions present high
entropy (IsoMax+ES). For low entropy probability distribu-
tions (SoftMax+ES), the performance increase is minimal. For
a study showing that the IsoMax loss superiority in relation to
SoftMax is robust for a different number of training examples
per class, see Supplementary Material E.

The IsoMax loss is well-positioned to replace SoftMax
loss as a novel baseline OOD detection approach for neural
networks OOD detection, as the former does not present an
accuracy drop in relation to the latter and simultaneously
improves the OOD detection performance. Additional tech-
niques (e.g., input preprocessing, adversarial training, and
outlier exposure) may be added to improve OOD detection
performance gains further.

Table III shows that IsoMax loss consistently produces
classification accuracy similar to SoftMax loss, regardless
of being used as baseline approach or combined with ad-
ditional techniques to improve OOD detection performance.
The Supplementary Material E presents further evidence that
IsoMax loss does not present classification accuracy drop in
comparison with SoftMax loss.

The IsoMax loss enhanced versions almost always outper-
form the OOD detection performance of the corresponding
SoftMax loss enhanced version when both are using the
same add-on technique. The major drawback of adding label
smoothing or center loss regularization is the need to tune
the hyperparameters presented by these add-on techniques.
Additionally, different hyperparameters values need to be
validated for each pair of in-distribution and out-distribution.
As mentioned before, it is highly optimistic to assume access
to OOD data, as we usually do not know what OOD data the
solution we will face in the field. Even considering this best-
case scenario, SoftMax loss combined with label smoothing
or center loss regularization always presented significantly
lower OOD detection performance than IsoMax loss without
using them and, consequently, avoiding unrealistically optimist
access to OOD data and the mentioned validations. Enhancing
SoftMax loss or IsoMax loss with ODIN presents the same
problems from a practical perspective. In CIFAR100, SoftMax
loss with outlier exposure produces lower performance than
IsoMax loss without it for both DenseNet and ResNet.

The Table IV presents results for text data. As expected,
the results show that our approach is domain-agnostic and
therefore may be applied to data other than images.

C. Unfair Comparison: SoftMax versus No Seamless Solutions

Table V presents a perspective about how our proposed
baseline OOD detection approach compares with no seamless
solutions. Hence, we need to analyze the mentioned table
considering that it shows an unfair comparison of approaches
that present different requirements and side effects. ODIN and
the Mahalanobis solution use input preprocessing8.

Consequently, they present solutions with much slower
and less energy-efficient inferences than models trained with
IsoMax loss, which are as fast and computation-efficient as the
models trained with common SoftMax loss. Moreover, they
also require validation using adversarial samples.

Additionally, ODIN requires temperature calibration, while
the Mahalanobis approach uses feature ensemble and metric
learning, which may be implicated in limited scalability for
large-size images. ACET requires adversarial training, which
may also prevent its use in large-size images. ODIN, the Maha-
lanobis approach, and ACET have hyperparameters tuned for
each combination of in-data and models in the table. ODIN,
the Mahalanobis method, and ACET used SoftMax loss rather
than IsoMax loss. IsoMax+ES exhibits neither the mentioned
unfortunate requirements nor undesired side effects.

Additionally, taking into consideration that ODIN, Maha-
lanobis, and ACET used adversarial hyperparameters (e.g.,
the adversarial perturbation) that were validated using the
validation sets of SVHN/CIFAR10/CIFAR100 and noticing
that these sets composed the OOD detection test sets, we
conclude that some overestimation may be present in the OOD
detection performance reported by these papers.

Regardless of the previous considerations, Table V shows
that IsoMax+ES considerably outperforms ODIN in all eval-
uated scenarios. Therefore, in addition to avoiding hyperpa-
rameter tuning and access to OOD or adversarial samples, the
results show that removing the entropic scale is much more
effective in increasing the OOD detection performance than
performing temperature calibration.

Furthermore, IsoMax+ES usually outperforms ACET by a
large margin. Moreover, in most cases, even operating under
much more favorable conditions, the Mahalanobis method
surpasses IsoMax+ES by less than 2%. In some scenarios, the
latter overcomes the former despite avoiding hyperparameter
validation, being seamless and producing much faster and
more computation-efficient inferences, as no input preprocess-
ing technique is required.

D. Inference Efficiency

Table VI presents the inference delays for SoftMax loss,
IsoMax loss, and competing methods using CPU and GPU.
We observe that neural networks trained using IsoMax loss
produce inferences equally fast as the ones produced by
networks trained using SoftMax loss, regardless of using CPU
or GPU for inference. Additionally, the entropic score is as fast
as the usual maximum probability score. Moreover, methods
based on input preprocessing were more than ten times slower
on CPU and about four times slower on GPU. Finally, those

8To allow OOD detection, each inference requires a first neural network
forward pass, a backpropagation, and a second forward pass.
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rates presumably apply to the computational cost and energy
consumption as well.

At first sight, inference methods (i.e., methods that can be
applied to pre-trained models) may be seen as “low cost”
compared with training methods like our IsoMax loss, as we
avoid training or fine-tuning the neural network. However, this
conclusion may be misleading, as we have to keep in mind that
inference methods (e.g., ODIN [1] and Mahalanobis [2]) pro-
duce inferences that are much more energy, computation, and
time inefficient (Table VI). For example, consider initially the
rare practical situation where a pretrained model is available,
and no fine-tuning to a custom dataset is required. In such
cases, an inference method may indeed be applied without
requiring any loss function. However, despite avoiding training
or fine-tuning a neural network once or a few times, all the sub-
sequent inferences, which are usually performed thousands or
millions of times on the field (sometimes even by constrained
devices), will be about 6 to 10 times more computational,
energy, environment, and time inefficient (Table VI).

Alternatively, consider the case where a pretrained model
is not available or fine-tuning to a custom dataset is needed.
In this situation, which is much more likely in practice, we
cannot avoid training or fine-tuning the neural network, and
a training method like ours will be required anyway. In these
cases, it would be recommended to train or fine-tune using
IsoMax rather than SoftMax loss, as our experiments showed
that both training times are the same and IsoMax loss produces
considerably higher OOD detection performance.

Hence, inference methods are more inference inefficient
because they coexist with a model that was trained with
a loss not designed from the start with OOD detection in
mind. The drawback is to produce an enormous amount of
inefficient inferences on the field that usually uses constrained
computational resource devices such as embedded systems.

Nevertheless, suppose the increased inference time, compu-
tation, environment damage, and energy consumption required
to use an inference method is not a concern from a practical
point of view. In that case, the model pretrained or fine-tuned
using a training method may be subsequently subjected to the
desired inference approach to increase overall OOD detection
performance further. In other words, we do not claim that
inference methods such as ODIN and Mahalanobis do not
increase the OOD detection performance compared with Max-
imum Score Probability or even the Entropic Score. However,
we point out that producing more energy inefficient inferences
is one drawback of adopting such inference methods.

In summary, rather than concurrent, the training and infer-
ence methods are orthogonal and complementary. Moreover,
we see no reason not to train the models with a loss designed
to support OOD, regardless of subsequently applying an OOD
inference method.

E. Additional Studies

For additional analyses regarding logits, probabilities, and
entropies, please see Supplementary Material F. For informa-
tion regarding the similarity of the SoftMax loss and the Iso-
Max loss training metrics, see the Supplementary Material G.

V. CONCLUSION

We proposed a baseline OOD detection approach based
on the maximum entropy principle. The proposed IsoMax
loss works as a SoftMax loss drop-in replacement that pro-
duces accurate predictions in addition to inferences that are
fast and energy- and computation-efficient. OOD detection
is performed using the rapid entropic score. Furthermore,
it is also turnkey, as no additional procedures other than a
straightforward neural network training is required, and no
hyperparameters are tuned. Neither is required collection of
extra/outlier data.

The direct replacement of the SoftMax loss by the IsoMax
loss significantly improves the baseline neural networks’ OOD
detection performance. Hence, we conclude that the general
low OOD detection performance of current deep networks is
due to SoftMax loss drawbacks, i.e., anisotropy and overcon-
fidence, rather than the models’ limitations.

Our OOD detection approach produces high OOD detection
performance without relying on extra techniques (e.g., input
preprocessing, adversarial training, hyperparameter validation,
feature ensemble, additional/outlier/background data, and oth-
ers) that, unfortunately, present inconvenient requirements and
undesired side effects. Nevertheless, when the cited require-
ments and side effects are not a concern for a particular real-
world application, the mentioned (or novel) techniques may
be combined with IsoMax loss to possibly achieve higher
OOD detection performance. This combined solution may
be particularly needed for more challenging large-size image
datasets such as ImageNet.

Summarily, the three most original and relevant contribu-
tions of this paper are the following: First, the theoretical
arguments, intuitions, and insights that motivate neural net-
work design with high entropy outputs. Second, “the entropy
maximization trick” that allows it. Third, the experimental
demonstration that the entropy of neural networks with high
entropy posterior probability distributions represents a high-
performance OOD detection score.

We intend to apply our OOD detection approach to mod-
els using large-size images used in large-scale real-world
applications in future works, as we believe our approach
scales to these cases as well. As the principle of maxi-
mum entropy is a general concept, we also plan to adapt
our approach to machine learning areas other than deep
learning. Another promising approach could be using recent
data augmentation techniques [68], [69] or strategies based
on pretrained models [43]. Additionally, despite requiring
auxiliary/outlier/background data, to further increase the OOD
detection performance of our solution, we plan to incorporate
loss enhancement (regularization) techniques such as outlier
exposure [26], [27], background samples [28] and energy-
based training and score techniques [29].
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Supplementary Material

APPENDIX A
SOFTMAX LOSS ANISOTROPY

Let x represent the input applied to a neural network and
fθ(x) represent the high-level feature vector produced by it.
For this work, the underlying structure of the network does not
matter. Considering k to be the correct class for a particular
training example x, we can write the SoftMax loss associated
with this specific training sample as:

LS(ŷ(k)|x) = − log


 exp(w>k fθ(x)+bk)∑

j

exp(w>j fθ(x)+bj)


 (13)

In Equation (13), wj and bj represent the weights and
biases associated with class j, respectively. The sum has N
terms, where N is the number of classes. From a geometric
perspective, the term w>j fθ(x)+bj represents a hyperplane in
the high-level feature space. It divides the feature space into
two subspaces that we call positive and negative subspaces.
The deeper inside the positive subspace the feature vector
fθ(x) of a particular example is located, the more likely the
example is believed to belong to the considered class.

Therefore, training neural networks using SoftMax loss
does not incentivize the agglomeration of representations of
examples associated with a particular class into a limited
region of the hyperspace, as it produces separable features
rather than discriminative features [10, Fig. 1]. The immediate
consequence is the propensity of neural networks trained with
SoftMax loss to make high confidence predictions on examples
that stay in regions far away from the training examples, which
explains their unsatisfactory OOD detection performance [3].
Indeed, the SoftMax loss is based on affine transformations,
which are essentially internal products. Consequently, the last
layer representations of such networks tend to align in the
direction of the weight vector, producing locally preferential
directions in space and subsequently anisotropy.

The SoftMax loss anisotropy is usually corrected by using
metric learning on neural network pretrained features [2], [4]–
[7], [70]. For example, the high OOD detection performance
of the Mahalanobis approach [2] indicates that deploying
locally isotropic spaces around class prototypes improves the
OOD detection performance. In such solutions, a mapping
from the extracted features to a novel embedding space is
constructed, and class prototypes are produced. The distance
may be predefined (e.g., Euclidean distance) or learned (e.g.,
Mahalanobis distance).

However, approaches based on feature extraction and metric
learning present drawbacks [71]. First, they are not turnkey,
as additional procedures are required after neural network
training. Additionally, they usually present hyperparameters to
tune, typically requiring unrealistic access to design-time OOD
or adversarial samples. Therefore, a possible option to build a
seamless approach to OOD detection is to design an isotropic
(exclusively distance-based) loss that works as a SoftMax loss
drop-in replacement.

APPENDIX B
NONSQUARED EUCLIDEAN DISTANCE

We need to choose a distance that allows IsoMax to work
as a SoftMax drop-in replacement. Hence, the loss needs to
learn both high-level features and prototypes using exclusively
SGD and end-to-end backpropagation, as no additional offline
procedures are allowed. We also require the training using
IsoMax loss to be as consistent and stable as the typical
SoftMax loss neural network training.

The covariance matrix makes it hard to use the Mahalanobis
distance to train a neural network directly. Therefore, we
decide to use Euclidean distance. We have reasons to prefer
the nonsquared Euclidean distance rather than the squared
Euclidean distance. First, the nonsquared Euclidean distance is
a real metric that obeys the Cauchy–Schwarz inequality while
the nonsquared Euclidean distance is not. Using a metric that
follows the Cauchy–Schwarz inequality is essential because
of our previous geometric considerations. Additionally, using
the squared Euclidean distance is actually equivalent to using
a linear model with a particular parameterization [40], [70],
which we prefer to avoid to increase the representative power
of the proposed loss.

Moreover, we experimentally observed that training neural
networks using exclusively SGD and end-to-end backpropa-
gation is more stable and consistent when using nonsquared
Euclidean distance rather than squared Euclidean distance.
Indeed, squared Euclidean distance-based logits are harder
to seamlessly train than nonsquared Euclidean distance-based
logits because numeric calculus instabilities are much more
likely to occur when performing calculations and derivations
with values of the order ofO(e−d2) thanO(e−d). Finally, even
in the cases in which we were eventually able to seamlessly
train neural networks using the squared Euclidean distance,
we observed lower OOD detection performance than using the
nonsquared Euclidean distance-based alternative. Therefore,
we choose the nonsquared Euclidean distance.

APPENDIX C
ENTROPIC SCORE DISCUSSION

Out-of-distribution detection approaches typically define
a score to be used after inference to evaluate whether an
example should be considered OOD. In a seminal work, [72]
demonstrated that the entropy presents the optimum measure
of the randomness of a source of symbols. More broadly, we
understand entropy as a measure of the uncertainty we have
about a random variable. Considering that the uncertainty in
classifying a specific sample should be an optimum metric to
evaluate whether a particular example is OOD.

During IsoMax training, the embedding-prototype distances
are affected. On the one hand, the distances from embed-
dings to the correct class prototype are reduced to increase
classification accuracy. On the other hand, the distances from
embeddings to the wrong class prototypes are increased.
Consequently, based on the Equation (10), the probabilities of
in-distribution examples increase. Therefore, it is reasonable
to expect that samples with lower entropy more likely belong
to the in-distribution.
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(a)

(b)

Fig. 3. IsoMax loss presents test accuracy similar to SoftMax loss (no classification accuracy drop) for different numbers of training examples per class on
several datasets and models. Simultaneously, IsoMax usually produces a much higher OOD detection performance (Table II).

From a practical perspective, using this predefined math-
ematical expression as score avoids the need to train an
additional regression model to detect OOD samples that is
otherwise required, for example, in the Mahalanobis approach.

Even more important, since no regression model needs to
be trained, there is no need for unrealistic access to OOD or
adversarial samples for hyperparameter validation. Since the
entropic score is a predefined mathematical expression rather
than a trainable model, it is available as soon as the neural
network training finishes, avoiding additional training of extra
models in a post-processing phase.

APPENDIX D
DIFFERENTIATION FROM THE SCALED COSINE APPROACH

An approach based on cosine similarity is proposed in [17].
However, different from IsoMax loss, this solution presents
significant classification accuracy drop (the authors even sug-
gest using two models, one for classification and the other for
OOD detection) and increases the total number of parameters
by requiring an additional layer.

Additionally, it is not an isotropic loss, as the cosine
similarity is used rather than a distance. Moreover, the authors
explicitly say that they do not have an explanation of why their
solution works. Finally, it does not work as a SoftMax loss
drop-in replacement, as we need to change the optimizer to
avoid applying weight decay to the last layer.

APPENDIX E
ROBUSTNESS STUDY

Fig. 3 shows that the classification accuracy of models
trained with the IsoMax loss is similar to the models trained
with the SoftMax loss regardless of the dataset or architecture.
This is also true for a varying number of training examples
per class.

Fig. 4 presents the OOD detection performance of SoftMax
and IsoMax losses in many models (DenseNet and ResNet),
and datasets (SVHN, CIFAR10, and CIFAR100) for a range
of training samples per class. For each in-distribution, the
AUROC and TNR@TPR95 results were averaged over all
possible combinations of OOD detection test sets. The entropic
score was used in all cases. It shows that IsoMax loss consis-
tently and notably overcomes the OOD detection performance
of SoftMax loss for virtually all combinations of datasets,
training examples per class, metrics, and models.

APPENDIX F
ADDITIONAL ANALYSES

Fig. 5 shows that the in-distribution interclass logits are
more distinguishable from out-distribution logits when using
IsoMax loss, which explains its increased OOD detection
performance compared with the SoftMax loss since there are
far more interclass logits than intraclass logits. Distances are
calculated from class prototypes.

The unimodal nature of the out-distribution can also help to
explain how IsoMax can distinguish between in-distributions
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ENTROPIC OUT-OF-DISTRIBUTION DETECTION: SEAMLESS DETECTION OF UNKNOWN EXAMPLES

(a)

(b)

(c)

(d)

Fig. 4. Robustness study: IsoMax loss consistently presents higher OOD detection performance than does SoftMax loss for different numbers of training
examples per class on several datasets, models, and metrics. The entropic score was used for both SoftMax and IsoMax losses. For each in-distribution, we
calculated the mean AUROC and TNR@TPR95 considering all possible OOD detection test sets for extra details).
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ENTROPIC OUT-OF-DISTRIBUTION DETECTION: SEAMLESS DETECTION OF UNKNOWN EXAMPLES

(a)

(b)
Fig. 5. Logits: (a) In SoftMax loss, out-distribution logits mimic in-distribution interclass logits. (b) In IsoMax loss, out-distribution logits mimic in-distribution
intraclass logits, which facilitates OOD detection, as there are many more interclass logits than intraclass logits, and the entropic score takes into consideration
the information provided by all network outputs rather than just one. Distances are calculated from class prototypes.

and out-distributions. Indeed, for out-distributions examples,
we do not distinguish between intraclass and interclass logits,
as there is no such thing that we can call the correct class
in such cases. Therefore, on the one hand, we can see
that the out-distributions logits are all very closed clustered
(green distributions), producing even higher entropies than in-
distributions examples. On the other hand, intraclass logits
(blue distributions) are apart from interclass logits (orange
distributions), generating high but slightly smaller entropies.

SoftMax intraclass and interclass logits are much farther
apart than the IsoMax intraclass and interclass logits. Conse-
quently, in disagreement with the maximum entropy principle,
the former produces much lower entropies than the latter for
in-distribution data.

Fig. 6 shows that networks trained with SoftMax loss exhibit
high maximum probabilities. Sometimes this is true even for
OOD samples. For networks trained with IsoMax loss, OOD
samples usually present lower maximum probabilities com-
pared with in-distribution samples. Furthermore, it also shows
that the networks trained with SoftMax loss are overconfident.

We reemphasize that this work aims to perform OOD
detection. Unlike uncertainty/calibration estimation/calibration
approaches, we do not claim or intend that the probabili-
ties produced are calibrated. To agree with the principle of
maximum entropy, rather than “plausible probabilities”, we
need to produce the lowest possible probabilities that are,

nevertheless, capable of providing the highest classification
accuracy possible. We may even question the meaning of
calibrated probabilities in an open set environment such as
OOD tasks, where we do not even know how often the system
will deal with OOD examples.

Additionally, Fig. 6 shows that the entropy works as a high-
quality score to distinguish the in-distribution from the out-
distribution in neural networks trained with IsoMax loss.

APPENDIX G
TRAINING METRICS

Fig. 7 shows that the training metrics are remarkably similar
for SoftMax and IsoMax losses. Regardless of the dataset and
model used, the loss values produced are similar. The same is
true for the validation accuracy along the network training.

APPENDIX H
SOURCE CODE

The code to reproduce the experiments of this paper, as well
as future updates, is available online9.

9https://github.com/dlmacedo/entropic-out-of-distribution-detection
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(a)

(b)

(c)

(d)

Fig. 6. Probabilities and entropies: (a) SoftMax loss produces high confident predictions for in-distribution samples. SoftMax loss usually provides high
maximum probabilities even for OOD samples. (b) IsoMax loss produces less confident predictions for in-distribution samples than SoftMax loss. IsoMax loss
commonly produces even lower maximum probability for OOD samples. (c) SoftMax loss provides low entropy (high confidence) for almost all in-distribution
samples and even usually for OOD samples. (d) IsoMax loss produces high entropy for out-distributions. More precise separation between the in-distribution and
out-distributions is obtained. Following the principle of maximum entropy, rather than calibrated probabilities, we need to provide predictions as underconfident
(high entropy) as possible as long as they fit the data appropriately, i.e., produce no classification accuracy drop.
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(a)

(b)

(c)

(d)
Fig. 7. Training metrics: (a,b) Training loss values and (c,d) test accuracies for a range of models, datasets, and losses. SoftMax loss and IsoMax loss present
remarkably similar metrics throughout training, which confirms that IsoMax loss training is consistent and stable.
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Enhanced Isotropy Maximization Loss:
Seamless and High-Performance

Out-of-Distribution Detection
Simply Replacing the SoftMax Loss
David Macêdo, Member, IEEE, and Teresa Ludermir, Senior Member, IEEE

Abstract—Current out-of-distribution detection approaches usually present special requirements (e.g., collecting outlier data and
hyperparameter validation) and produce side effects (e.g., classification accuracy drop and slow/inefficient inferences). Recently,
entropic out-of-distribution detection has been proposed as a seamless approach (i.e., a solution that avoids all previously mentioned
drawbacks). The entropic out-of-distribution detection solution uses the IsoMax loss for training and the entropic score for
out-of-distribution detection. The IsoMax loss works as a drop-in replacement of the SoftMax loss (i.e., the combination of the output
linear layer, the SoftMax activation, and the cross-entropy loss) because swapping the SoftMax loss with the IsoMax loss requires no
changes in the model’s architecture or training procedures/hyperparameters. In this paper, we perform what we call an isometrization
of the distances used in the IsoMax loss. Additionally, we propose replacing the entropic score with the minimum distance score.
Experiments showed that these modifications significantly increase out-of-distribution detection performance while keeping the solution
seamless. Besides being competitive with or outperforming all major current approaches, the proposed solution avoids all their current
limitations, in addition to being much easier to use because only a simple loss replacement for training the neural network is required.

Index Terms—Out-of-Distribution Detection, Enhanced Isotropy Maximization Loss, Minimum Distance Score

F

1 INTRODUCTION

N EURAL networks have been used in classification tasks
in many real-world applications [1]. In such cases,

the system must typically identify whether a given input
belongs to any of the classes on which it was trained. [2]
called this capability out-of-distribution (OOD) detection
and proposed datasets and metrics to allow standardized
performance evaluation and comparison. However, current
OOD detection solutions still have limitations (e.g., special
requirements and side effects) that prevent more general
use of OOD detection capabilities in practical real-world
applications [3] (Table 1).

First, OOD detection solutions commonly present hy-
perparameters that usually presume access to out-of-
distribution samples to be defined [4], [5], [13], [14], [15].
A consequence of presuming access to OOD samples to val-
idate hyperparameters and using the same distribution to
evaluate OOD detection results is producing overestimated
performance estimations [16]. To avoid unrealistic access
to OOD samples and overestimated performance, [5] pro-
posed validating hyperparameters using adversarial sam-
ples. However, this requires the generation of adversarial
examples. This procedure also requires determining hyper-
parameters (e.g., maximum adversarial perturbation) that
are typically unknown when dealing with novel datasets.
Similar arguments hold for solutions based on adversarial

• David Macêdo and Teresa Ludermir are with the Centro de Informática,
Universidade Federal de Pernambuco, Brazil. E-mail: dlm@cin.ufpe.br.
David Macêdo was with Montreal Institute for Learning Algorithms
(MILA), Université de Montréal (UdeM), Quebec, Canada.

training [6], [14], [17], [18], [19], which also result in higher
training time. Approaches based on the generation of ad-
versarial examples or adversarial training may also have
limited scalability when dealing with large images (e.g.,
ImageNet [20]).

Many solutions make use of the so-called input prepro-
cessing technique introduced in ODIN [4]. However, the use
of the mentioned technique increases at least four times the
inference delay and power consumption [3], [12] because a com-
bination of a first forward pass, backpropagation operation,
and second forward pass is required [4], [5], [8], [15] for
a single useful inference. Actually, approaches that may be
applied directly to pretrained models and completely avoid
training or fine-tuning the model [4], [5], [9] typically pro-
duce inefficient inferences and/or additional computational
complexity to perform OOD detection [12, Section IV, D].
From a practical perspective, this is a drawback because
inferences may be performed thousands or millions of times
in the field. Thus, such approaches may be prohibitive (not
sustainable) from environmental [21] and real-world cost-
based perspectives.

Another harmful and common side effect is the so-called
classification accuracy drop [8], [10]. In such cases, higher
OOD detection performance is achieved at the expense of
a drop in the classification accuracy compared with models
trained using the usual SoftMax loss (i.e., the combination
of the output linear layer, the SoftMax activation, and the
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TABLE 1
Out-of-distribution detection approaches: special requirements and side effects.

Approach
Special Requirement Side Effect

Hyperparameter Additional Inefficient Inference Classification
Tuning Data or OOD Detection Accuracy Drop

ODIN [4] Required Not Required Present Not Present

Mahalanobis [5] Required Not Required Present Not Present

ACET [6] Required Not Required Not Present Present

Outlier Exposure [7] Not Required Required Not Present Not Present

Generalized ODIN [8] Required Not Required Present Present

Gram Matrices [9] Not Required Not Required Present Not Present

Scaled Cosine [10] Not Required Not Required Not Present Present

Energy-based [11] Required Required Not Present Not Present

Entropic (Seamless) [3], [12] Not Not Not Not
IsoMax + Entropic Score Required Required Present Present

Entropic (Seamless) [ours] Not Not Not Not
Enhanced IsoMax + Distance Score Required Required Present Present

cross-entropy loss [22])1. For example, in some situations,
the solution proposed in [10] produces a classification accu-
racy drop of more than two percent when compared with
SoftMax loss training of the same neural network. From a
practical perspective, this situation is not desirable because
the detection of out-of-distribution samples may be a rare
event, and classification is usually the primary aim of the
designed system [23]. The proposal also requires changing
the training of the last layer by removing its weight decay
to work properly. Therefore, this solution does not work as
a SoftMax loss drop-in replacement.

Generalized ODIN [8] uses the in-distribution validation
set to avoid the need to access OOD samples to determine
the hyperparameters required by the solution. However,
considering that CIFAR10 and CIFAR100 do not have sep-
arate sets for validation and testing, the results presented
in the paper may be overestimated because the validation
sets used to define the hyperparameters were reused for
OOD detection performance estimation. A more realistic
OOD detection performance estimation could have been
achieved by removing the in-distribution validation set from
in-distribution training data, which would probably pro-
duce an even higher classification accuracy drop. For example,
Generalized ODIN produces a nearly 3% classification accuracy
drop for ResNet34 trained on CIFAR100. Retraining the neu-
ral network using a very unusual fine-tuned regularization
(dropout with p=0.7), as suggested by the authors, does
not actually solve the problem because a classification accu-
racy drop of approximately 1% persists and the OOD detection
performance plunges approximately 10%.

The Generalized ODIN changes the architecture by
adding a fully connected layer to the end of the network.
We believe that this fact may explain the mentioned over-
fitting. We imagine that this problem may be even worse
in datasets with fewer training examples. Additionally, the

1In this paper, we consider that an approach does not present
classification accuracy drop if it never presents a classification accuracy
more than one percent lower than the correspondent softmax-loss-
trained model.

solution proposed in [8] is expensive and not environmen-
tally friendly because it uses input preprocessing and thus
produces slow and energy-inefficient inferences [3], [12].

Recently, many OOD detection approaches have used
additional/outlier/background data [7], [11], [24]. In ad-
dition to requiring collecting additional data, these ap-
proaches require double the GPU memory size for training.
The Gram matrices solution performs calculations on values
produced by the model during inference [9] to perform
OOD detection. This inference is efficient; however, the
OOD detection has a high computational cost.

In some cases, an ensemble of classifiers is used [25].
For deep ensembles, [17] proposed an ensemble of same-
architecture models trained with different random initial
weights. Some proposals required structural changes in the
model to perform OOD detection [26], and certain trials
used uncertainty or confidence estimation/calibration tech-
niques [27], [28], [29], [30], [31]. However, Bayesian neural
networks that are used in most of these are typically more
difficult to implement and require much more computa-
tional resources. Computational constraints also typically
require approximations that compromise the performance,
which is also affected by the prior distribution used [17].
For example, MC-dropout uses pretrained models with
dropout activated during the test time. An average of many
inferences is used to perform a single decision [32].

The entropic out-of-distribution detection approach,
which is composed of the IsoMax loss for training and
the entropic score for OOD detection, avoids all mentioned
special requirements and side effects [3], [12]. Indeed, no hy-
perparameter tuning is required because the entropic scale is
a global constant kept equal to ten for all combinations of datasets
and models. Even if we call the entropic scale hyperparame-
ter, the IsoMax loss does not involve hyperparameter tuning
because the same constant value of entropic scale is used
in all cases. This result is possible because Macêdo et al.
showed in [3, Fig. 3] and in [12, Section IV, A] that the
OOD detection performance exhibits a well-behaved dependence
on the entropic scale regardless of the dataset and model. No
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Algorithm 1 PyTorch pseudocode for the enhanced IsoMax loss: Implementation.

class IsoMaxPlusLossFirstPart(nn.Module):
"""This part replaces the model classifier output layer nn.Linear()"""
def __init__(self, num_features, num_classes):

super(IsoMaxPlusLossFirstPart, self).__init__()
self.num_features = num_features
self.num_classes = num_classes
self.prototypes = nn.Parameter(torch.Tensor(num_classes, num_features))
nn.init.normal_(self.prototypes, mean=0.0, std=1.0)
self.distance_scale = nn.Parameter(torch.Tensor(1))
nn.init.constant_(self.distance_scale, 1.0)

def forward(self, features):
distances = torch.abs(self.distance_scale) * torch.cdist(

F.normalize(features), F.normalize(self.prototypes),
p=2.0, compute_mode="donot_use_mm_for_euclid_dist")

logits = -distances
return logits

class IsoMaxPlusLossSecondPart(nn.Module):
"""This part replaces the nn.CrossEntropyLoss()"""
def __init__(self, entropic_scale = 10.0):

super(IsoMaxPlusLossSecondPart, self).__init__()
self.entropic_scale = entropic_scale

def forward(self, logits, targets):
"""Probabilities and logarithms are calculated separately and sequentially"""
"""Therefore, nn.CrossEntropyLoss() must not be used to calculate the loss"""
distances = -logits
probabilities_for_training = nn.Softmax(dim=1)(-self.entropic_scale * distances)
probabilities_at_targets = probabilities_for_training[range(distances.size(0)), targets]
loss = -torch.log(probabilities_at_targets).mean()
return loss

additional/outlier/background data are necessary. Models
trained using IsoMax loss produce inferences as fast and
energy-efficient as the inferences produced by softmax-loss-
trained networks. OOD detection requires only a speedy
entropy calculation. Finally, no classification accuracy drop
is observed.

For real-world large-scale applications, we require ef-
ficient inference and high-performance solutions. By ef-
ficient inference, we mean solutions that do not increase
the inference delay, computation, and energy consumption
when compared with current softmax-loss-trained neural
networks. By high performance, we mean solutions that
do not present a classification accuracy drop and simulta-
neously exhibit much higher out-of-distribution detection
when compared with usual SoftMax loss trained neural
networks. In this paper, we are only interested in studying
and comparing inference-efficient high-performance out-of-
distribution detection solutions.

Starting from the IsoMax loss, we added the following
contributions. First, we normalize both the prototypes and
the features. Second, we change the initialization of the pro-
totypes. Third, we add the distance scale, which is a learnable
scalar parameter that multiplies the feature-prototype distances.
We call the combination of these three modifications the
isometrization of the feature-prototype distances. We call the
proposed modified version of IsoMax the enhanced isotropy
maximization loss or the enhanced IsoMax loss (IsoMax+
loss). Fourth, we use the minimum feature-prototype distance
as a score to perform OOD detection. Considering that
the minimum feature-prototype distance is calculated to
perform the classification, the OOD detection task presents es-
sentially zero computational cost because we simply reuse this
value as a score to perform OOD detection. Fifth, in addition

to experimental evidence, we provide insights into why
a combination of training using IsoMax+ and performing
OOD detection using the minimum distance score produces a
substantial performance increase in OOD detection.

Our approach keeps the solution seamless (i.e., avoids
the previously mentioned special requirements and side
effects) while significantly increasing the OOD detection
performance. Similar to IsoMax loss, IsoMax+ works as a
SoftMax loss drop-in replacement because no procedures other
than regular neural network training are required.

2 BACKGROUND

Many approaches have been proposed to manage out-of-
distribution detection. We may roughly classify them into
three classes: training/fine-tuning methods and inference
methods. Training/fine-tuning methods are used to train
from scratch or to fine-tune pretrained models. Inference
methods are applied to pretrained models (i.e., no training
or fine-tuning is allowed), regardless of the training method
used. Thus, training/fine-tuning and inference methods are
complementary rather than competitors.

2.1 Training/Fine-tuning Methods
The first and most common training method is simply train-
ing with SoftMax loss and using the maximum probability
score (MPS) [2] for OOD detection. Despite not presenting
high OOD detection performance, this approach is seamless
(i.e., no hyperparameters to tune, no additional data are
necessary, efficient inference and OOD detection, no clas-
sification accuracy drop).

Techapanurak et al. proposed the Scaled Cosine ap-
proach [10] by adding a layer to the output of the neural
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Algorithm 2 PyTorch pseudocode for the enhanced IsoMax loss: Interface.

class Model(nn.Module):
def __init__(self):
(...)
#self.classifier = nn.Linear(num_features, num_classes)
self.classifier = losses.IsoMaxPlusLossFirstPart(num_features, num_classes)

model = Model()
#criterion = nn.CrossEntropyLoss()
criterion = losses.IsoMaxPlusLossSecondPart()

outputs = model(inputs)
# outputs are equal to logits, which in turn are equivalent to negative distances
score = outputs.max(dim=1)[0] # this is the minimum distance score for detection
# the minimum distance score is the best option for the IsoMax+ loss

network to learn a scale to be multiplied by the cosine
similarity that replaces the affine transformation in the
SoftMax loss. The solution requires changing the training
of the last layer by removing its weight decay to work
properly. Therefore, this method does not work as a SoftMax
loss drop-in replacement. Additionally, the solution is not
seamless because it produces a classification accuracy drop
higher than two percent in some cases.

Hsu et al. developed the Generalized ODIN solution [8].
Despite having hyperparameters, this solution exclusively
uses in-distribution validation data to fine-tune the hyperpa-
rameters, preventing access to out-of-distribution data that
is typically unavailable. Similar to ODIN, the solution uses
input preprocessing. The solution is not seamless because,
despite preventing access to out-of-distribution data, it re-
quires hyperparameter tuning. This solution also produces
inefficient inferences and decreases classification accuracy
in some cases.

Considering that we can train a model from scratch or
fine-tune pretrained models to the proposed custom data,
training methods are typically useful in practice. However,
except for the pure SoftMax loss and the IsoMax loss vari-
ants, other training methods (e.g., Scaled Cosine, General-
ized ODIN) decrease classification accuracy, probably due
to the fact that those approaches add a fully connected layer
to the end of the neural network, which makes it more
likely to overfit. Additionally, in some cases, even inefficient
inferences are produced [8]. To our knowledge, the pure
SoftMax and IsoMax loss variants are the only seamless
training methods currently available.

2.1.1 Additional-Data Techniques

Training/fine-tuning methods may be enhanced by
additional-data techniques. The additional data are from
an unlabeled third distribution different from both the in-
distribution and the out-of-distribution. This fact is impor-
tant because out-of-distribution data is often unknown in
practice. The additional data are usually called outlier data
or background samples in the literature [7], [11], [24].

2.2 Inference Methods

Liang et al. proposed ODIN [4], which is essentially a
combination of input preprocessing and temperature calibration.
Input preprocessing consists of increasing the SoftMax score

of any given input in a procedure that is inspired by adver-
sarial attacks. Additionally, input preprocessing uses out-of-
distribution samples to perform temperature calibration.

Lee at al. proposed the Mahalanobis approach [5], which
consists of training an ad hoc generative classifier on the
features extracted from intermediate layers of a pretrained
model. OOD detection uses a regression model based on
the Mahalanobis distances that are calculated using many
layer activations (feature ensemble). Additionally, this ap-
proach uses input preprocessing to maximize performance.
To avoid overestimating the OOD detection performance,
this approach uses adversarial examples rather than out-of-
distribution samples to validate hyperparameters because
in real-world applications, we typically do not know out-of-
distribution data.

Sastry et al. developed the Gram matrices method [9],
which identifies inconsistencies between activity patterns
and predicted classes. This method characterizes activity
patterns by Gram matrices and may be used to perform
OOD detection.

First, we may believe that inference methods should be
preferred due to avoiding training or fine-tuning models.
However, in the real world, we typically have custom data
that require us to train from scratch or at least fine-tune the
proposed model. In such cases, we have no good reason
not to train/fine-tune the model with a seamless training
method to start from a better baseline, regardless of planning
to subsequently using an inference method. We emphasize
that training and inference methods are complementary rather
than competitors.

Additionally, all known inference methods produce
inference or require expensive additional computation
to perform OOD detection. Thus, not using a training
method yields higher computational costs and more energy-
inefficient inferences during the thousands or millions of
times the system will operate in the field. Regardless, infer-
ence methods may be applied after a training method to im-
prove performance if the previously mentioned drawback is
not an issue in a particular application.

3 ENHANCED ISOMAX AND THE DISTANCE SCORE

In this section, we present the enhanced IsoMax for training
and the minimum distance score for inference. By combin-
ing those methods, we develop a seamless, scalable, and
high-performance out-of-distribution detection approach.
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3.1 Enhanced Isotropy Maximization Loss

We consider an input x applied to a neural network that
performs a parametrized transformation fθ(x). We also
consider pjφ to be the learnable prototype associated with class
j. Additionally, let the expression ‖fθ(x)−pjφ‖ represent the
nonsquared Euclidean distance between fθ(x) and pjφ. Finally,
we consider pkφ as the learnable prototype associated with
the correct class for the input x. Thus, we write the IsoMax
loss [3] using the equation below:

LIsoMax = − log†




exp(−Es‖fθ(x)−pkφ‖)∑
j
exp(−Es‖fθ(x)−pjφ‖)


 (1)

In the above equation, Es represents the entropic scale.
From Equation (1), we observe that the distances from
IsoMax loss are given by the expression D= ‖fθ(x)−pjφ‖.
During inference, probabilities calculated based on these
distances are used to produce the negative entropy, which
serves as a score to perform OOD detection. However, be-
cause the features fθ(x) are not normalized, examples with
low norms are unjustifiably favored to be considered OOD
examples because they tend to produce high entropy. Addi-
tionally, because the weights pjφ are not normalized, exam-
ples from classes that present prototypes with low norms
are unjustifiably favored to be considered OOD examples
for the same reason. Thus, we propose replacing fθ(x) with
its normalized version given by f̂θ(x) = fθ(x)/‖fθ(x)‖.
Additionally, we propose replacing pjφ with its normalized

version given by p̂jφ=pjφ/‖pjφ‖. The expression ‖v‖ repre-
sents the 2-norm of a given vector v.

However, while the distances in the original IsoMax loss
may vary from zero to infinity, the distance between two
normalized vectors is always equal to or lower than two.
To avoid this unjustifiable and unreasonable restriction, we
introduce the distance scale ds, which is a scalar learnable
parameter. Naturally, we require the distance scale to always
be positive by taking its absolute value |ds|.

Feature normalization makes the solution isometric re-
gardless of the norm of the features produced by the exam-
ples. The distance scale is class independent because it is
a single scalar value learnable during training. The weight
normalization and the class independence of the distance
scale make the solution isometric regarding all classes. The
final distance is isometric because it produces an isometric
treatment of all features, prototypes, and classes. Therefore,
we can write the isometric distances used by the IsoMax+ loss

asDI = |ds|‖f̂θ(x)−p̂jφ‖. Returning to Equation (1), we can
finally write the expression for the IsoMax+ loss as follows
(see Algorithm 1):

†The probability (i.e., the expression between the outermost parentheses)
and logarithm operations are computed sequentially and separately for higher
OOD detection performance [3] (see the source code).

LIsoMax+ =

− log††




exp(−Es |ds| ‖f̂θ(x)−p̂kφ‖)
∑
j
exp(−Es |ds| ‖f̂θ(x)−p̂jφ‖)




(2)

Applying the entropy maximization trick (i.e., the re-
moval of the entropic scale Es for inference) [3], we can
write the expression for the IsoMax+ loss probabilities used
during inference for performing OOD detection when using
the maximum probability score or the entropic score [3]:

PIsoMax+(y
(i)|x) =

exp(− |ds| ‖f̂θ(x)−p̂iφ‖)
∑
j
exp(− |ds| ‖f̂θ(x)−p̂jφ‖)

(3)

Different from IsoMax loss, where the prototypes are
initialized to a zero vector, we initialized all prototypes
using a normal distribution with a mean of zero and a
standard deviation of one. This approach is necessary be-
cause we normalize the prototypes when using IsoMax+
loss. The distance scale is initialized to one, and we added
no hyperparameters to the solution.

3.2 Minimum Distance Score

Motivated by the desired characteristics of the isometric
distances used in IsoMax+, we use the minimum distance
as score for performing OOD detection. Naturally, the mini-
mum distance score for IsoMax+ is given by:

MDS=min
j

(
‖f̂θ(x)−p̂jφ‖

)
(4)

In this equation, |ds| was removed because, after train-
ing, it is a scale factor that does not affect the detection de-
cision. Considering that the minimum distance is computed
to perform the classification because the predicted class
is the one that presents the lowest feature-prototype distance,
when using the minimum distance score, the OOD detection
exhibits essentially zero latency and computational cost because
we simply reuse the minimum distance that was already
calculated for classification purpose.

4 EXPERIMENTS

To allow standardized comparison, we used the datasets,
training procedures, and metrics that were established in [2]
and used in many subsequent OOD detection papers [4], [5],
[6]. We trained many 100-layer DenseNetBCs with growth
rate k = 12 (i.e., 0.8M parameters) [34], 110-layer ResNets
(correct size proper implementation) [35]2, and 34-layer ResNets
(overparametrized commonly used implementation) [35]3 on CI-
FAR10 [36], CIFAR100 [36], SVHN [37], and TinyImageNet

††Similar to [3], the probability (i.e., the expression between the out-
ermost parentheses) and logarithm operations are computed sequentially and
separately for higher OOD detection performance (see Algorithm 1 and the
source code).

2https://github.com/akamaster/pytorch_resnet_cifar10
3https://github.com/pokaxpoka/deep_Mahalanobis_detector
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(a)

(b)

(c)

(d)

Fig. 1. In agreement with other studies [33], (a) IsoMax (b) and IsoMax+ produce higher entropy/uncertainty on out-of-distributions than in-
distribution. Therefore, the entropic score produces high OOD detection performance in both cases. (c) However, IsoMax does not make the
in-distribution closer to the prototypes than out-of-distributions. (d) Concurrently, by introducing distance isometrization, IsoMax+ gets in-distribution
closer to the prototypes while pushing out-of-distribution data far away, which is what we expect based on the findings of other recent studies [33].
This result also explains why the minimum distance score produces high performance when using IsoMax+, while producing low performance when
using IsoMax. See also Table 6.
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TABLE 2
Classification accuracy of models trained using SoftMax, IsoMax, and IsoMax+ losses.

Model Data Train Accuracy (%) [↑] Test Accuracy (%) [↑]
SoftMax Loss / IsoMax Loss / IsoMax+ Loss

DenseNet100

CIFAR10 99.9±0.1 / 99.9±0.1 / 99.9±0.1 95.3±0.2 / 95.2±0.3 / 95.3±0.1
CIFAR100 99.9±0.1 / 99.0±0.1 / 99.9±0.1 77.2±0.3 / 77.3±0.4 / 77.0±0.3
SVHN 97.0±0.2 / 97.8±0.2 / 97.0±0.3 96.5±0.2 / 96.6±0.3 / 96.5±0.2

ResNet110
CIFAR10 99.9±0.1 / 99.9±0.1 / 99.9±0.1 94.4±0.3 / 94.5±0.3 / 94.6±0.2
CIFAR100 99.5±0.1 / 99.9±0.1 / 99.8±0.1 72.7±0.2 / 74.1±0.4 / 73.9±0.3
SVHN 99.8±0.1 / 99.9±0.1 / 99.5±0.1 96.6±0.3 / 96.8±0.2 / 96.9±0.3

Besides preserving classification accuracy compared with SoftMax loss- and IsoMax loss-trained networks, IsoMax+ loss-trained models show
higher OOD detection performance. Results are shown as means and standard deviations of five different iterations (see Table 3).

TABLE 3
Fair comparison of seamless approaches: No hyperparameter tuning, no additional/outlier/background data,

no classification accuracy drop, and no slow/inefficient inferences.

Model Data
(training)

OOD
(unseen)

Out-of-Distribution Detection:
Seamless Approaches.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMaxES / IsoMaxES / IsoMax+MDS (ours)

DenseNet100

CIFAR10
SVHN 40.4±5.3 / 78.6±9.0 / 97.0±0.7 89.1±2.2 / 96.2±1.0 / 99.4±0.1
TinyImageNet 58.0±3.7 / 83.9±3.6 / 92.6±2.4 94.0±0.6 / 97.1±0.4 / 98.5±0.3
LSUN 64.6±1.7 / 90.3±1.4 / 94.3±1.4 95.2±0.4 / 98.0±0.3 / 99.1±0.2

CIFAR100
SVHN 21.9±2.8 / 29.6±3.7 / 78.2±4.1 78.4±3.3 / 88.8±2.8 / 96.3±1.3
TinyImageNet 24.0±3.0 / 49.3±4.9 / 85.5±2.8 75.5±2.1 / 90.8±2.1 / 97.5±0.8
LSUN 24.9±2.9 / 60.6±6.6 / 78.3±3.9 77.2±3.2 / 93.0±1.4 / 97.2±1.3

SVHN
CIFAR10 85.2±3.3 / 93.4±1.1 / 95.1±0.4 97.3±0.3 / 98.4±0.2 / 99.1±0.1
TinyImageNet 90.8±0.6 / 96.2±0.9 / 98.1±0.3 98.3±0.2 / 99.0±0.2 / 99.6±0.1
LSUN 87.9±0.8 / 94.3±1.7 / 97.7±1.1 97.8±0.3 / 98.7±0.2 / 99.6±0.2

ResNet110

CIFAR10
SVHN 35.6±5.0 / 68.7±5.5 / 85.3±3.9 88.9±0.9 / 94.8±1.5 / 98.1±0.9
TinyImageNet 39.0±4.1 / 65.4±5.6 / 76.2±2.7 88.2±2.1 / 94.3±0.4 / 96.1±0.5
LSUN 46.9±5.7 / 80.7±2.2 / 86.9±2.5 91.2±1.7 / 96.5±0.3 / 97.9±0.7

CIFAR100
SVHN 16.6±1.5 / 20.8±5.9 / 41.0±6.4 73.6±3.7 / 85.3±1.3 / 88.9±1.2
TinyImageNet 15.6±2.1 / 22.8±1.9 / 44.7±5.9 71.5±1.7 / 81.3±2.3 / 88.0±2.9
LSUN 16.5±3.3 / 22.9±3.5 / 46.1±4.3 72.6±4.2 / 83.3±2.0 / 89.1±2.4

SVHN
CIFAR10 80.9±3.5 / 84.3±1.3 / 88.4±2.3 95.1±0.3 / 96.5±0.2 / 97.4±0.3
TinyImageNet 84.0±3.2 / 87.4±2.2 / 93.4±1.8 96.6±0.7 / 96.7±0.6 / 98.5±0.7
LSUN 81.4±2.3 / 84.7±2.1 / 90.2±2.2 96.1±0.3 / 95.8±0.4 / 97.8±0.3

SoftMaxES means training using SoftMax loss and performing OOD detection using the entropic score (ES). IsoMaxES means training using IsoMax
loss and performing OOD detection using the entropic score (ES). IsoMax+MDS means training using IsoMax+ loss and performing OOD detection
using minimum distance score (MDS). Results are shown as the mean and standard deviation of five iterations. The best results are shown in
bold. See Table 2.

[20] datasets with SoftMax, IsoMax, and IsoMax+ losses us-
ing the same procedures (e.g., initial learning rate, learning
rate schedule, weight decay).

We used SGD with the Nesterov moment equal to 0.9
with a batch size of 64 and an initial learning rate of 0.1.
The weight decay was 0.0001, and we did not use dropout.
We trained during 300 epochs for CIFAR10, CIFAR100, and
SVHN; and during 90 epochs for TinyImageNet. We used a
learning rate decay rate equal to ten applied in epoch num-
bers 150, 200, and 250 for CIFAR10, CIFAR100, and SVHN;
and 30 and 60 for TinyImageNet. The code to reproduce the
results and replace the SoftMax loss by the IsoMax+ loss
is available at https://github.com/dlmacedo/entropic-out-
of-distribution-detection.

We used resized images from the TinyImageNet [20], the
Large-scale Scene UNderstanding dataset (LSUN) [38], CI-
FAR10, and SVHN [37] to create out-of-distribution samples.

We added these out-of-distribution images to the validation
sets of in-distribution data to form the test sets and evaluate
the OOD detection performance.

We evaluated the OOD detection performance using the
true negative rate at 95% true positive rate (TNR@TPR95),
the area under the receiver operating characteristic curve
(AUROC) and the detection accuracy (DTACC), which cor-
responds to the maximum classification probability over all
possible thresholds δ:

1−min
δ

{
Pin (o (x) ≤ δ)P (x is from Pin)

+Pout (o (x) > δ)P (x is from Pout)
}
,

where o(x) is the OOD detection score. It is assumed that
both positive and negative samples have an equal prob-
ability of being in the test set, i.e., P (x is from Pin) =
P (x is from Pout). All metrics follow the calculation pro-
cedures specified in [5].
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TABLE 4
Unfair comparison with approaches that use input preprocessing and produce slow/inefficient inferences

in addition to requiring validation using adversarial examples.

Model Data
(training)

OOD
(unseen)

Comparison with approaches that use
input preprocessing and adversarial validation.

AUROC (%) [↑] DTACC (%) [↑]
ODIN / Mahalanobis / IsoMax+MDS (ours)

DenseNet100

CIFAR10
SVHN 92.1±0.2 / 97.2±0.3 / 99.4±0.1 86.1±0.3 / 91.9±0.3 / 96.3±0.4
TinyImageNet 97.2±0.3 / 97.7±0.2 / 98.5±0.3 91.9±0.3 / 94.3±0.5 / 93.9±0.6
LSUN 98.5±0.3 / 98.6±0.2 / 99.1±0.2 94.3±0.3 / 95.7±0.4 / 95.3±0.5

CIFAR100
SVHN 88.0±0.5 / 91.3±0.4 / 96.3±1.3 80.0±0.6 / 84.3±0.4 / 90.3±0.5
TinyImageNet 85.6±0.5 / 96.7±0.3 / 97.5±0.8 77.6±0.5 / 91.0±0.4 / 91.3±0.3
LSUN 85.7±0.6 / 97.1±1.9 / 97.2±1.3 77.5±0.4 / 92.5±0.8 / 91.7±0.7

ResNet34

CIFAR10
SVHN 86.0±0.3 / 95.0±0.3 / 98.0±0.4 77.1±0.4 / 88.7±0.3 / 93.5±0.4
TinyImageNet 92.6±0.3 / 98.3±0.4 / 95.3±0.3 86.5±0.5 / 94.8±0.3 / 90.0±0.4
LSUN 93.0±0.4 / 98.8±0.3 / 96.3±0.4 86.3±0.4 / 96.8±0.4 / 92.1±0.5

CIFAR100
SVHN 71.0±0.4 / 84.0±0.6 / 88.0±0.7 68.0±0.5 / 77.3±0.7 / 82.1±0.4
TinyImageNet 83.1±0.3 / 87.3±0.5 / 90.5±0.4 76.2±0.4 / 84.0±0.4 / 84.2±0.5
LSUN 81.0±0.3 / 82.0±0.5 / 88.6±0.6 75.2±0.3 / 79.3±0.5 / 82.5±0.4

ODIN and Mahalanobis were applied to models trained using SoftMax loss. These approaches compute at least four times slower and less power
efficient inferences [3] because they use input preprocessing. Their hyperparameters were validated using adversarial examples. Additionally,
Mahalanobis requires feature extraction for training ad-hoc models to perform OOD detection. Finally, feature ensemble was also used.
IsoMax+MDS (ours) means training using IsoMax+ loss and performing OOD detection using minimum distance score (MDS). No hyperparameter
tuning is required when using IsoMax+ loss for training and the MDS for OOD detection. The IsoMax+ loss OOD detection performance shown
in this table may be increased further without relying on input preprocessing or hyperparameter tuning by replacing the minimum distance score
with the Mahalanobis [5] or the energy score [11]. Results are the mean and standard deviation of five runs. The best results are shown in bold.

TABLE 5
Unfair comparison of outlier exposure-enhanced SoftMax loss with IsoMax loss and IsoMax+ loss without using additional data.

Model
Data

(training)

Comparison of IsoMax loss variants without using additional data
with outlier exposure-enhanced SoftMax loss.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMaxOE

ES / IsoMaxES / IsoMax+MDS (ours)

DenseNet100
CIFAR10 94.4±1.4 / 84.2±4.6 / 94.6±1.5 98.0±0.3 / 97.1±0.5 / 99.0±0.2
CIFAR100 36.4±9.4 / 46.5±5.0 / 80.6±3.6 83.8±5.6 / 90.8±2.1 / 97.0±1.1

ResNet110
CIFAR10 82.4±2.1 / 71.6±4.4 / 82.8±3.0 96.8±0.7 / 95.2±0.7 / 97.3±0.7
CIFAR100 29.1±4.5 / 22.1±3.7 / 43.9±5.5 80.5±2.8 / 83.3±1.8 / 88.6±2.1

SoftMaxOE
ES means training using SoftMax loss enhanced during training using outlier exposure [7], which requires the collection of outlier data,

and performing OOD detection using the entropic score. We used the same outlier data used in [7]. We collected the same amount of outlier data as
the number of training examples present in the training set used to train SoftMaxOE. Despite being possible [12], the IsoMax loss and IsoMax+ loss
were not enhanced by outlier exposure to keep the solution seamless. IsoMaxES means training using IsoMax loss and performing OOD detection
using the entropic score. IsoMax+MDS (ours) means training using IsoMax+ loss and performing OOD detection using minimum distance score
(MDS). The values of the performance metrics TNR@TPR95 and AUROC were averaged over all out-of-distribution (SVHN, TinyImageNet, and
LSUN). Results are shown as the mean and standard deviation of five iterations. The best results are shown in bold.

TABLE 6
Comparison of IsoMax variants using different scores.

Model Data
(training)

Comparison of IsoMax loss variants
using diferent scores.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
IsoMaxES / IsoMaxMDS / IsoMax+ES / IsoMax+MDS (ours)

DenseNet100 CIFAR10 84.2±4.6 / 0.9±0.5 / 89.3±2.3 / 94.6±1.5 97.1±0.5 / 65.5±6.0 / 97.9±0.3 / 99.0±0.2
CIFAR100 46.5±5.0 / 6.2±6.1 / 63.7±8.0 / 80.6±3.6 90.8±2.1 / 50.1±7.4 / 94.0±1.3 / 97.0±1.1

ResNet110 CIFAR10 71.6±4.4 / 0.1±0.1 / 74.8±3.5 / 82.8±3.0 95.2±0.7 / 83.7±4.1 / 95.2±0.6 / 97.3±0.7
CIFAR100 22.1±3.7 / 1.6±2.0 / 22.3±5.3 / 43.9±5.5 83.3±1.8 / 61.9±7.2 / 84.4±0.8 / 88.6±2.1

IsoMaxES means training using IsoMax loss and performing OOD detection using the entropic score (ES). IsoMaxMDS means training using IsoMax
loss and performing OOD detection using the minimum distance score (MDS). IsoMax+ES means training using IsoMax+ loss and performing
OOD detection using entropic score (ES). IsoMax+MDS (ours) means training using IsoMax+ loss and performing OOD detection using minimum
distance score (MDS). The values of the performance metrics TNR@TPR95 and AUROC were averaged over all out-of-distribution (SVHN,
TinyImageNet, and LSUN). Results are shown as the mean and standard deviation of five iterations. The best results are shown in bold. See Fig. 1.
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In this paper, we did not directly present a comparison
with the approaches that produce classification accuracy drop
(e.g., [8], [10]) because this is a substantial limitation from
a practical perspective [23]. Regardless, it is easy to notice
that IsoMax+ presents a similar OOD detection performance
of Generalized ODIN (difference lower than the margin
of error alternatively in favor of one or another) while
simultaneously avoiding classification accuracy drop, hy-
perparameter tuning, and inefficient inferences. Moreover,
IsoMax+ is also much easier to implement and to use.

For example, on the one hand, when using Generalized
ODIN, we need to exclude some components of the solution
from receiving weight decay, which requires optimization
procedure modifications. On the other hand, just a loss
replacement is needed in our proposal. Additionally, Gen-
eralized ODIN has many flavors. Consequently, it is hard
to know a prior which one will perform best for a given
dataset and model without training all of them from scratch
using the same data and model.

5 RESULTS AND DISCUSSION

In this section, we present the results and discussion. We ini-
tially show that the enhanced IsoMax produces classification
accuracies that are comparable to those of the SoftMax loss
function. We then show that the enhanced IsoMax produces
much higher OOD detection performance than the IsoMax
Loss and the SoftMax Loss.

5.1 Classification Accuracy
Table 2 shows classification accuracies. We see that IsoMax+
loss never exhibits classification accuracy drop compared to
SoftMax loss or IsoMax loss regardless of the dataset and
model. The IsoMax loss variants achieve more than one
percent better accuracy than the SoftMax loss when using
ResNet110 on the CIFAR100 dataset.

5.2 Out-of-Distribution Detection
Table 3 summarizes the results of the fair OOD detection
comparison. We report the results using the entropic score
for SoftMax loss (SoftMaxES) and IsoMax loss (IsoMaxES)
because this score always overcame the maximum probabil-
ity score in these cases. For IsoMax+, we report the values
using the minimum distance score (IsoMax+MDS) because
this method overcame the maximum probability and the
entropic score in this situation.

All approaches are accurate (i.e., exhibit no classification
accuracy drop); fast and power-efficient (i.e., inferences are
performed without input preprocessing); and no hyperpa-
rameter tuning was performed. Additionally, no addition-
al/outlier/background data are required. IsoMax+MDS al-
ways overcomes IsoMaxES performance, regardless of the
model, dataset, and out-of-distribution data.

The minimum distance score produces high OOD de-
tection performance when combined with IsoMax+, which
shows that the isometrization of the distances works appro-
priately in this case. However, the same minimum distance
score produced low OOD detection performance when com-
bined with the original IsoMax loss. Fig. 1, and Table 6
provide an explanation for this fact.

Table 4 summarizes the results of an unfair OOD de-
tection comparison because the methods have different
requirements and produce distinct side effects. ODIN [4]
and the Mahalanobis4 [5] approaches require adversarial
samples to be generated to validate hyperparameters for
each combination of dataset and model. These approaches
also use input preprocessing, which makes inferences at least four
times slower and less energy-efficient [3], [12]. Validation using
adversarial examples may be cumbersome when performed
from scratch on novel datasets because hyperparameters
such as optimal adversarial perturbations may be unknown
in such cases. IsoMax+MDS does not have these require-
ments, and does not produce the side effects.

Additionally, IsoMax+MDS achieves higher performance
than ODIN by a large margin. In addition to the differences
between the entropy maximization trick and temperature
calibrations present in [3], [12], we emphasize that training
with entropic scale affects the learning of all weights, while
changing the temperature during inference affects only the
last layer. Thus, the fact that the proposed solution over-
comes ODIN by a safe margin is evidence that the entropy
maximization trick produces much higher OOD detection per-
formance than temperature calibration, even when the latter is
combined with input preprocessing. Moreover, the entropy
maximization trick does not require access to validation data
to tune the temperature.

In addition to being seamless and avoiding the draw-
backs of the Mahalanobis approach, IsoMax+MDS typically
overcomes it in terms of AUROC and produces similar per-
formance when considering the DTACC. We emphasize that
the IsoMax+ loss OOD detection performance presented
in Table 4 may increase further without requiring input
preprocessing or hyperparameter tuning by replacing the
minimum distance score with the Mahalanobis score [5].

Table 5 unfairly compares the performance of the pro-
posed approach with the outlier exposure solution. Similar
to IsoMax variants, the outlier exposure approach does
not require hyperparameter tuning and produces efficient
inferences. However, it does require collecting outlier data,
while our approach does not. We emphasize that outlier
exposure may also be combined with IsoMax loss variants
to further increase the OOD detection performance [12].
In the table, we present the IsoMax loss variants without
outlier exposure to show that the outlier exposure-enhanced
SoftMax loss typically achieves worse OOD detection than
IsoMax+MDS even without using outlier exposure.

5.3 Loss Landscapes

Fig. 2 shows the 3D surfaces and 2D contours of the losses.
Considering that IsoMax outperforms SoftMax and IsoMax
outperforms IsoMax, we concluded that less steep 3D incli-
nation provides increased out-of-distribution detection per-
formances. In other words, less concentration of 2D contours
produces improved OOD detection performance.

4Considering that the proposed approach easily outperforms the
vanilla Mahalanobis method when applied to SoftMax loss trained
models (i.e., training a Mahalanobis distance-based classifier using
features extracted from the neural network and using the Mahalanobis
distance as score), throughout this paper, we use the term Mahalanobis
approach to refer to the full Mahalanobis approach.
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Fig. 2. 3D loss surfaces and 2D loss contours as proposed in [39]. (a) SoftMax, (b) IsoMax, and (c) IsoMaxPlus.

6 CONCLUSION

In this paper, we improved the IsoMax loss function by
making many important modifications to it. Additionally,
we proposed the zero computational cost minimum distance
score. Experiments showed that these modifications achieve
higher OOD detection performance while maintaining the
desired benefits of IsoMax loss (i.e., absence of hyperparam-
eters to tune, no reliance on additional/outlier/background
data, fast and power-efficient inference, and no classification
accuracy drop).

Similar to IsoMax loss, after training using the proposed
IsoMax+ loss, we may apply inference-based approaches
(e.g., ODIN, Mahalanobis, Gram matrices, outlier exposure,
energy-based) to the pretrained model to eventually in-
crease the overall OOD detection performance even more.
Thus, the IsoMax+ loss is a replacement for SoftMax loss
but not for OOD methods that may be applied to pretrained
models, which may be used to improve even more the OOD
detection performance of IsoMax+ loss pretrained networks.

There is no drawback in training a model using IsoMax+
loss instead of SoftMax loss or IsoMax loss, regardless
of planning to subsequently use an inference-based OOD
detection approach to further increase OOD detection per-
formance. Therefore, instead of competitors, the OOD detec-
tion approaches that may be applied to pretrained models
are actually complementary to the proposed approach [3],
[12]. Hence, IsoMax+ loss constitutes a better baseline than
SoftMax loss or IsoMax loss to construct future OOD detec-
tion methods.

In future work, we plan to verify whether our approach
works satisfactorily when dealing with text and audio
datasets. We also intend to verify the performance of our
approach using transformer-based models [40], regardless
of being pretrained or fine-tuned using IsoMax+ loss.
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Abstract

Building robust deterministic neural networks remains a challenge. On the one
hand, some approaches improve out-of-distribution detection at the cost of reduc-
ing classification accuracy in some situations. On the other hand, some methods
simultaneously increase classification accuracy, uncertainty estimation, and out-
of-distribution detection at the expense of reducing the inference efficiency and
requiring training the same model many times to tune hyperparameters. In this
paper, we propose training deterministic neural networks using our DisMax loss,
which works as a drop-in replacement for the usual SoftMax loss (i.e., the com-
bination of the linear output layer, the SoftMax activation, and the cross-entropy
loss). Starting from the IsoMax+ loss, we create each logit based on the distances
to all prototypes rather than just the one associated with the correct class. We
also introduce a mechanism to combine images to construct what we call frac-
tional probability regularization. Moreover, we present a fast way to calibrate
the network after training. Finally, we propose a composite score to perform
out-of-distribution detection. Our experiments show that DisMax usually outper-
forms current approaches simultaneously in classification accuracy, uncertainty
estimation, and out-of-distribution detection while maintaining deterministic neural
network inference efficiency and avoiding training the same model repetitively for
hyperparameter tuning. The code to reproduce the results is available.1

1 Introduction

Deep neural networks have been used for classification in many applications. However, improving the
robustness of such systems remains a significant challenge. Classification accuracy, uncertainty esti-
mation, and out-of-distribution (OOD) detection comprise three essential points regarding measuring
the robustness of deep learning approaches.

On the one hand, some OOD detection approaches do not address uncertainty estimation or produce
diminished classification accuracy in some cases [24, 7]. These solutions also require changing
the training of the last layer by removing its weight decay to work correctly. Therefore, they do
not work as straightforward drop-in replacements for the SoftMax loss (i.e., the combination of
the linear output layer, the SoftMax activation, and the cross-entropy loss [15]). On the other
hand, some recent approaches that address both OOD detection and uncertainty estimation require
hyperparameter tuning and reduce the inference efficiency compared to pure deterministic neural

1https://github.com/dlmacedo/distinction-maximization-loss
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Figure 1: Loss Surface Study. 3D loss surfaces and 2D loss contours as proposed in [12]. Loss
landscapes for ResNet34 trained on CIFAR10. (a, d) SoftMax; (b, e) IsoMax+; and (c, f) DisMax.
Considering that IsoMax+ outperforms SoftMax and DisMax outperforms IsoMax+, a less steep 3D
inclination (i.e. a lower 2D contour concentration) provides increased robustness.

networks [10, 25, 14]. Therefore, simultaneously increasing classification accuracy, OOD detection,
and uncertainty estimation performances while maintaining inference efficiency poses a challenge,
mainly if we also desire to avoid training the same architecture many times to tune hyperparameters.

Recently, so-called IsoMax loss variants have been proposed [17, 16, 18]. They increase the OOD
detection performance without reducing the inference efficiency compared to pure deterministic deep
neural networks trained using the usual SoftMax loss. Moreover, they do not require repetitive training
of the same model for hyperparameter tuning. However, they increase neither the classification
accuracy nor uncertainty estimation.

Contributions In this paper, starting from IsoMax+ loss [18], we construct the Distinction Maxi-
mization (DisMax) loss. Our main contributions are the following. First, we create the enhanced
logits (logits+) by using all feature-prototype distances rather than just the feature-prototype distance
to the correct class. Second, we introduce the fractional probability regularization (FPR) by mini-
mizing the Kullback–Leibler (KL) divergence between the output probability distribution associated
with a compound image and a target probability distribution containing fractional rather than integer
probabilities. We call DisMax dagger (DisMax†) the variant of our loss without using the FPR. Third,
we construct a composite score for OOD detection that combines three components: the maximum
logit+, the mean logit+, and the entropy of the network output. Fourth, we present a simple and fast
temperature-scaling procedure that allows DisMax trained models to produce a high-performance
uncertainty estimation.

Like IsoMax+, DisMax works as a drop-in replacement for SoftMax loss. Moreover, only a single
neural network training is required to use the proposed solution, as it avoids hyperparameter tuning.
Furthermore, the trained models keep deterministic neural network inference efficiency. Finally, we
show experimentally that to obtain improved robustness, we need to construct losses with less steep
3D landscapes, as showed in Fig. 1.
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IsoMax+ n-dimensional Euclidean space

x

y

z

P1

P2

P3

F

(a)

(n-1)-sphere of radius one in the
DisMax n-dimensional Euclidean space

x

y

z

P1

P2

P3

F

(b)

Figure 2: All-Distances-Aware Logits, Enhanced Logits, or Logits+. The illustration presents
the difference between IsoMax+ [18] and DisMax with respect to logit formation. P1, P2, and P3

represent prototypes of classes 1, 2, and 3, respectively. F denotes the feature associated with a
given image. Like all current losses, IsoMax+ constructs each logit associated with F considering
its distance from a single prototype (olive dashed line). In contrast, DisMax loss builds each logit
associated with F considering its distance from all prototypes (purple dashed lines). In this paper, we
use the terms all-distances-aware logits, enhanced logits, or logits+ indistinctly.

2 Distinction Maximization Loss

All-Distances-Aware Logits In IsoMax loss variants (e.g., IsoMax and IsoMax+), logits are formed
from distances and are commonly used to calculate the score to perform OOD detection. Hence, it is
essential to build logits that contain semantic information relevant to separating in-distribution (ID)
from OOD during inference. IsoMax+ uses the isometric distances [18]. In IsoMax+, the logits are
simply the negatives of the isometric distances. We have two motivations to add the mean isometric
distance considering all prototypes to the isometric distance associated with each class to construct
what we call all-distances-aware logits, enhanced logits, or logits+.

First, considering that IsoMax+ is an isotropic loss, the pairwise distances between the prototypes
and ID examples are forced to become increasingly smaller. Therefore, after training, it is reasonable
to believe that ID feature-prototype distances are, on average, smaller than the distances from the
prototypes to OOD samples, which were not forced to be closer to the prototypes. Hence, adding
the mean distance to the logits used in IsoMax+ can help distinguish between ID and OOD more
effectively. Second, taking all feature-prototype distances to compose the logits makes them a more
stable source of information to perform OOD detection (Fig. 2).

Lj
+ = −

(
Dj

I + 1
N

N∑
n=1

Dn
I

)
(1)

all-distances-aware logit
for the j-th class

isometric distance to
the j-th class prototype

mean isometric distance
to all prototypes

PDisMax(y
(i)|x) =

exp( Li
+ /T )

N∑
j=1

exp( Lj
+ /T )

(2)

predicted probability
distribution

all-distances-aware logit
for the j-th class

all-distances-aware logit
for the i-th class
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Figure 3: Fractional Probability Regularization. We use images composed of patches of four
randomly selected training examples. The KL divergence regularization term forces the network to
predict fractional probabilities on compound images.

Therefore, we consider an input x and a network that performs a transformation fθ(x). We also
consider pj

φ to be the learnable prototype associated with class j. Moreover, considering that ‖v‖
represents the 2-norm of a vector v, and v̂ represents the 2-norm normalization of v, we can write the

isometric distance relative to class j as Dj
I = |ds| ‖f̂θ(x)−p̂j

φ‖, where |ds| represents the absolute
value of the learnable scalar called distance scale [18]. Finally, we can write the proposed enhanced
logit for class j using the equation (1). N is the number of classes. Probabilities are given by the
equation (2), where T is the temperature. For the rest of this paper, distance means isometric distance.

Fractional Probability Regularization We often train neural networks using unitary probabilities.
Indeed, the usual cross-entropy loss forces a probability equal to one on a given training example.
Consequently, we commonly train neural networks by providing a tiny proportion of points in the
learning manifold. Hence, we propose what we call the fractional probability regularization (FPR).
The idea is to force the network to learn more diverse points in the learning manifold. Consequently,
we confront target and predicted probability distributions also on fractional probability values rather
than only unitary probability manifold points.

QTarget(y
(i)|x̃) = 1

4

4∑
m=1

δ[y(i) − y(jm)] (3)

desired probability distribution
for the compound image

sum one quarter to the
probability of each class
in the compound image

LDisMax = − log∗




exp(Es L
k
+ )

∑
j

exp(Es L
j
+ )


+ DKL(PDisMax(y|x̃) || QTarget(y|x̃)) (4)

enhanced logit
for the correct class k

enhanced logit
for the j-th class

fractional probability
regularization

loss
function

*The probability (i.e., the expression between the outermost parentheses) and logarithm operations are
computed sequentially and separately for optimal OOD detection performance [17].
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Therefore, our batch is divided into two halves. In the first half, we use the regular unitary probability
training. For the second batch, we construct images specifically composed of patches of four others
(Fig. 3). We construct our target probability distribution Q for those images by adding a quarter
probability for each class corresponding to a patch of the compound image. Finally, we minimize
the KL divergence regularization between our predicted and target probability distributions in the
second half. These procedures do not increase training memory size requirements. Considering δ the
Kronecker delta function, equation (3) represents the FPR in math terms. By combining the enhanced
logits and the FPR, equation (4) presents the mathematical expression for the DisMax loss.

We recognize a similarity between CutMix [27] and FPR: both are based on the combination of
images to create compound data. However, we identify many differences. CutMix combines two
images, while FPR combines four images. Moreover, the combination procedure is entirely different.
In CutMix, a portion of an image is replaced by a patch of variable size, format, and position that
comes from another image. In FPR, patches of the same size, format, and predefined positions from
four different images are combined into a single one. This simplification introduced by FRP allowed
us to combine four images instead of only two. Indeed, trying to extend CutMix by replacing portions
of an image with patches from three others while allowing random sizes, shapes, and positions
produces patch superpositions, making the calculation of the pairwise ratio of the areas of the
superposed patches extremely hard. Therefore, the mentioned simplification made it possible to
simultaneously combine four rather than only two images in addition to avoiding the beta distribution
and the α hyperparameter.

While CutMix is applied randomly to some batches with probability p, FPR is applied to half of each
batch, avoiding loss or gradient oscillations. CutMix neither creates a target distribution containing
fractional probabilities nor forces the predicted probabilities to follow it by minimizing the KL
divergence between them. Indeed, CutMix does not use the KL divergence at all. CutMix calculates
the regular cross-entropy loss of the compound image considering the labels of the original images
and takes a linear interpolation between the resulting loss values weighted by the ratio of the areas
of the patch and the remaining image. While CutMix operates on losses, FPR operates directly on
probabilities before calculating loss values. The concept of fractional probabilities is not even present
in CutMix. Unlike CutMix, the mentioned procedure can be easily expanded to combine even more
than four images. Finally, CutMix increases the training time and presents hyperparameters [27]. As
FPR is an integral part of the DisMax loss, it is transparent for the user of the provided code.

Max-Mean Logit Entropy Score For OOD detection, we propose a score composed of three parts.
The first part is the maximum logit+. The second part is the mean logit+. Incorporating the mean
value of the logits into the score is an independent procedure relative to the logit formation. It can
be applied regardless of the type of logit (e.g., usual or enhanced) used during training. Finally, we
subtract the entropy calculated considering the probabilities of the neural network output. We call
this composite score Max-Mean Logit Entropy Score (MMLES). It is given by equation (5). We call
MMLES a composite score because it is formed by the sum of many other scores.

SMMLES = maxj(L
j
+) + 1

N

N∑
n=1

Ln
+ − H(PDisMax) (5)

max-mean logit
entropy score

mean logit+

entropy

maximum logit+

Temperature Calibration Unlike the usual SoftMax loss, the IsoMax loss variants produce under-
estimated probabilities to obey the Maximum Entropy Principle [17, 19, 16, 18]. Therefore, we need
to perform a temperature calibration after training to improve the uncertainty estimation. To find
an optimal temperature, we used the L-BFGS-B algorithm with approximate gradients and bounds
equal to 0.001 and 100 [1, 29, 21] for expected calibration error (ECE) minimization. The mentioned
calibration procedure takes only a few seconds using the provided code.
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ID

From the point of view of an ID example,
prototypes are likely in the near blue area

(a)

OOD

From the point of view of an OOD example,
prototypes are likely in the far red area

(b)

Figure 4: Max-Mean Logit Entropy Score (MMLES). In addition to the maximum logit and
the negative entropy, the MMLES incorporates the mean logit+. We empirically observed that
the prototypes are generally closer to ID samples than OOD samples, which is true regardless of
whether the ID sample belongs to the class of the considered prototype. Hence, incorporating this
all-distances-aware information increases the OOD detection performance (see Table 1 and Fig. 5).

3 Experiments

To allow standardized comparison, we used the datasets, training procedures, and metrics that were
established in [6] and used in many subsequent papers [13, 11, 5]. We trained many 100-layer
DenseNetBCs with growth rate k=12 (i.e., 0.8M parameters) [8], 34-layer ResNets [4], and 28-layer
WideResNets (widening factor k=10) [28] on the CIFAR10 [9] and CIFAR100 [9] datasets with
SoftMax, IsoMax+, and DisMax losses using the same procedures (e.g., initial learning rate, learning
rate schedule, weight decay). We used DisMax† for DenseNetBC100 trained on CIFAR10 because
this is a very small model, and the mentioned dataset has too many examples per class; therefore, no
augmentation is needed. For all other cases, we used DisMax.

We used stochastic gradient descent (SGD) with the Nesterov moment equal to 0.9 with a batch
size of 64 and an initial learning rate of 0.1. The weight decay was 0.0001, and we did not use
dropout. We trained during 300 epochs. We used a learning rate decay rate equal to ten applied in
epoch numbers 150, 200, and 250. We used resized images from TinyImageNet [2], the Large-scale
Scene UNderstanding dataset (LSUN) [26], CIFAR10, CIFAR100, and SVHN [23] to create out-
of-distribution samples. We added these out-of-distribution images to the validation sets of the ID
data to form the test sets and evaluate the OOD detection performance. We evaluated the accuracy
(ACC) to assess classification performance. Like IsoMax+, when using DisMax, we only train once,
as no hyperparameter tuning is required. We evaluated the OOD detection performance using the area
under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve
(AUPR), and the true negative rate at a 95% true positive rate (TNR@TPR95). We used the expected
calibration error (ECE) [22, 3, 20] for uncertainty estimation performance. The results are the mean
and standard deviation of five runs. Two methods are considered to produce the same performance if
their mean performance difference is less than the sum of the error margins.

Ablation Study Table 1 shows that logits+ and FPR often improve the accuracy and OOD detection
performance compared to IsoMax+ even when using MDS. Moreover, it also shows that replacing
MDS with the composite score MMLES often increases OOD detection. These conclusions are
essentially true regardless of the model, in-distribution, and (near, far, and very far) out-of-distribution.

Finally, we performed experiments combining IsoMax+ with CutMix by training ResNet34 models on
CIFAR10 and CIFAR100. However, adding CutMix to IsoMax+ did not increase the OOD detection
performance significantly. Sometimes, it even decreased. Therefore, DisMax easily outperformed
IsoMax+ even when the latter was combined with CutMix.
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Table 1: Ablation Study. MPS means Maximum Probability Score (i.e., the standard for SoftMax
loss). MDS indicates Minimum Distance Score (i.e., the standard for IsoMax+ loss). MMLES means
Max-Mean Logit Entropy Score (i.e., the standard for DisMax loss for (very) far OOD detection).
We used MPS for near OOD detection for DisMax, as this score provided the best results in this
particular case. We emphasize that the MPS for DisMax is based on logits+ rather than usual logits.
The best performances are bold. All results can be reproduced using the provided code.

CIFAR10

Model Method
Score

Out-of-Distribution Detection
Near Far Very Far

CIFAR100 TinyImageNet LSUN SVHN
MPS,MDS TNR@95TPR TNR@95TPR TNR@95TPR TNR@95TPR

MPS/MMLES (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) [6] MPS 39.5±2.1 53.1±7.8 62.1±6.2 41.2±3.6
IsoMax+ [18] MDS 57.3±1.1 86.9±0.4 91.4±0.3 96.4±0.6

DisMax† (ours) MDS 56.2±0.5 88.0±0.3 92.2±0.3 97.5±0.3
MPS/MMLES 54.2±1.0 89.0±1.0 92.4±1.1 98.3±0.3

ResNet34
(medium size)

SoftMax (baseline) [6] MPS 40.0±1.6 46.4±4.9 53.6±4.7 44.1±9.3
IsoMax+ [18] MDS 55.1±1.3 71.0±6.4 81.5±4.4 82.4±8.8

DisMax (ours) MDS 60.4±0.7 92.0±1.5 97.2±0.4 91.1±2.9
MPS/MMLES 60.0±0.5 93.3±1.1 98.0±0.3 91.2±2.7

WideResNet2810
(big size)

SoftMax (baseline) [6] MPS 44.9±0.7 53.4±3.3 59.2±3.6 50.1±5.2
IsoMax+ [18] MDS 61.5±0.4 80.2±4.2 87.4±3.0 96.3±1.4

DisMax (ours) MDS 60.2±1.3 98.4±0.4 99.4±0.1 93.8±1.7
MPS/MMLES 62.9±0.5 98.6±0.2 99.5±0.1 92.8±2.0

CIFAR100

Model Method
Score

Out-of-Distribution Detection
Near Far Very Far

CIFAR10 TinyImageNet LSUN SVHN
MPS,MDS TNR@95TPR TNR@95TPR TNR@95TPR TNR@95TPR

MPS/MMLES (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) [6] MPS 17.6±1.1 18.1±1.7 18.7±2.0 19.8±2.9
IsoMax+ [18] MDS 17.2±0.7 71.6±6.5 66.8±9.4 67.1±3.0

DisMax (ours) MDS 16.6±0.6 97.7±0.3 98.5±0.4 57.9±3.6
MPS/MMLES 22.1±1.1 99.0±0.5 99.4±0.3 66.6±2.6

ResNet34
(medium size)

SoftMax (baseline) [6] MPS 19.4±0.5 20.6±2.4 21.3±3.4 17.1±5.0
IsoMax+ [18] MDS 18.0±0.7 43.3±4.3 41.5±5.7 43.6±3.5

DisMax (ours) MDS 20.8±0.4 79.9±1.5 81.5±1.4 43.7±1.6
MPS/MMLES 22.0±0.5 85.4±1.7 86.4±1.3 48.5±2.0

WideResNet2810
(big size)

SoftMax (baseline) [6] MPS 21.8±0.7 26.7±5.9 28.7±6.7 15.8±5.5
IsoMax+ [18] MDS 19.0±0.7 66.9±3.9 67.9±3.3 61.8±1.9

DisMax (ours) MDS 22.4±0.2 92.3±1.3 95.2±0.4 56.8±1.8
MPS/MMLES 24.6±0.3 96.3±1.2 97.8±0.9 65.6±1.2

Classification, Efficiency, Uncertainty, and OOD Detection Results Table 2 compares DisMax
with major approaches such as Scaled Cosine [24], GODIN [7], Deep Ensemble [10], DUQ [25],
and SNGP [14] regarding classification accuracy, inference efficiency, uncertainty estimation, and
(near, far, and very far) out-of-distribution detection. Unlike other approaches, DisMax is as inference
efficient as a trivially trained neural network using the usual SoftMax loss. Moreover, using DisMax,
we only train once the neural network, as no hyperparameter tuning is needed. Furthermore, DisMax
often outperforms other approaches simultaneously in all evaluated metrics.

Additional Analyses Fig. 5 show the distribution of mean logits+ under some scenarios. We see
that prototypes are, on average, usually closer to in-distribution examples than out-of-distribution
examples, which explains why the mean enhanced logit improves OOD detection performance when
combined with the maximum logit+ and the negative entropy to compose the MMLES. In other
words, even prototypes that are not associated with the class of a given in-distribution example are
usually closer to it than they are to out-of-distribution examples.

7

169169169



Table 2: Classification, Efficiency, Uncertainty, and OOD Detection Results. In this table,
efficiency represents the inference speed (i.e., the inverse of the inference delay) calculated as
a percentage of the performance of a single deterministic neural network trivially trained. For a fair
comparison, we also calibrated the temperature of the SoftMax loss and IsoMax+ loss approaches
using the same procedure that we defined for DisMax loss. Considering that input preprocessing can
be applied indistinctly to improve the OOD detection performance of all methods compared [7] (at
the cost of making their inferences approximately four times less efficient [16]), unless explicitly
mentioned otherwise, all results are presented without using input preprocessing. The results worse
than the baseline or most of the other approaches are shown in red. The methods that present the best
performances are bold. Results for Scaled Cosine are from Scaled Cosine paper [24]. Results for
GODIN are from GODIN paper [7]. Results for Deep Ensemble, DUQ, and SNGP are from SNGP
paper [14]. All other results can be reproduced using the provided code.

CIFAR10

Model Method
Classification Inference

Uncertainty
Estimation

Out-of-Distribution Detection

Near Far Very Far

CIFAR100 TinyImageNet LSUN SVHN

ACC Efficiency ECE AUPR AUROC AUROC AUPR
(%) [↑] (%) [↑] [↓] (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) [6] 95.2±0.1 100.0 0.0043±0.0008 86.2±0.5 92.9±1.6 94.7±0.9 93.7±3.3
Scaled Cosine [24] 94.9±0.1 100.0 - - 98.8±0.3 99.2±0.2 -
GODIN with preprocessing1 [7] 95.0±0.1 26.0 - - 99.1±0.1 99.4±0.1 -
IsoMax+ [18] 95.1±0.1 100.0 0.0043±0.0012 90.4±0.3 97.6±0.9 98.3±0.5 99.7±0.1
DisMax† (ours) 95.1±0.1 100.0 0.0045±0.0021 90.0±0.2 98.0±0.5 98.4±0.3 99.9±0.1

ResNet34
(medium size)

SoftMax (baseline) [6] 95.6±0.1 100.0 0.0060±0.0013 85.3±0.4 89.7±2.8 92.4±1.6 94.9±1.0
GODIN [7] 95.1±0.1 100.0 - - 95.6±0.5 97.6±0.2 -
IsoMax+ [18] 95.5±0.1 100.0 0.0133±0.0177 90.1±0.3 95.1±1.0 96.9±0.6 98.7±0.6
DisMax (ours) 96.7±0.2 100.0 0.0058±0.0008 90.3±0.2 98.3±0.3 99.5±0.1 99.1±0.3

WideResNet2810
(big size)

SoftMax (baseline) [6] 96.2±0.1 100.0 0.0038±0.0005 87.5±0.3 92.6±0.9 94.0±0.7 95.3±0.9
Deep Ensemble [10] 96.6±0.1 10.3 0.0100±0.0010 88.8±1.0 - - 96.4±1.0
DUQ2 [25] 94.7±0.1 45.0 0.0340±0.0020 85.4±1.0 - - 97.3±1.0
SNGP2 [14] 95.9±0.1 62.5 0.0180±0.0010 90.5±1.0 - - 99.0±1.0
Scaled Cosine [24] 95.7±0.1 100.0 - - 97.7±0.7 98.6±0.3 -
IsoMax+ [18] 96.0±0.1 100.0 0.0107±0.0166 91.8±0.1 96.6±0.6 97.7±0.4 99.7±0.3
DisMax (ours) 97.0±0.1 100.0 0.0043±0.0008 90.1±0.3 99.7±0.1 99.9±0.1 99.3±0.3

CIFAR100

Model Method
Classification Inference

Uncertainty
Estimation

Out-of-Distribution Detection

Near Far Very Far

CIFAR10 TinyImageNet LSUN SVHN

ACC Efficiency ECE AUPR AUROC AUROC AUPR
(%) [↑] (%) [↑] [↓] (%) [↑] (%) [↑] (%) [↑] (%) [↑]

DenseNetBC100
(small size)

SoftMax (baseline) [6] 77.3±0.4 100.0 0.0155±0.0026 71.3±0.8 71.8±2.2 73.1±2.4 87.5±1.5
Scaled Cosine [24] 75.7±0.1 100.0 - - 97.8±0.5 97.6±0.8 -
GODIN with preprocessing1 [7] 75.9±0.1 24.0 - - 98.6±0.2 98.7±0.0 -
IsoMax+ [18] 76.9±0.3 100.0 0.0108±0.0017 71.3±0.4 95.1±1.1 94.2±1.7 97.4±0.6
DisMax (ours) 79.4±0.2 100.0 0.0154±0.0006 74.4±0.2 99.8±0.1 99.9±0.1 96.4±0.8

ResNet34
(medium size)

SoftMax (baseline) [6] 77.7±0.3 100.0 0.0268±0.0015 73.3±0.1 79.0±2.1 79.6±1.7 86.3±3.3
GODIN [7] 75.8±0.2 100.0 - - 91.8±1.1 92.0±0.7 -
GODIN with dropout2 [7] 77.2±0.1 100.0 - - 87.0±1.1 87.0±2.2 -
IsoMax+ [18] 76.5±0.3 100.0 0.0190±0.0025 72.1±0.4 89.7±1.0 89.8±1.3 94.5±0.6
DisMax (ours) 80.6±0.3 100.0 0.0116±0.0014 74.2±0.6 97.6±0.5 97.7±0.6 94.8±1.0

WideResNet2810
(big size)

SoftMax (baseline) [6] 79.9±0.2 100.0 0.0272±0.0032 75.4±0.5 81.7±2.3 82.7±2.2 86.0±2.6
Deep Ensemble [10] 80.2±0.1 12.3 0.0210±0.0040 78.0±1.0 - - 88.8±1.0
DUQ2 [25] 78.5±0.1 79.9 0.1190±0.0010 73.2±1.0 - - 87.8±1.0
SNGP2 [14] 79.9±0.1 74.9 0.0250±0.0120 80.1±1.0 - - 92.3±1.0
Scaled Cosine [24] 78.5±0.3 100.0 - - 95.8±0.7 95.2±0.8 -
IsoMax+ [18] 79.5±0.1 100.0 0.0188±0.0016 73.0±0.8 94.2±2.1 94.6±2.0 96.7±1.7
DisMax (ours) 83.0±0.1 100.0 0.0143±0.0027 76.0±1.0 99.4±0.2 99.6±0.1 97.0±1.5

1Requires reserving training data for validation and performing hyperparameter tuning.
2Requires training the same neural network many times for validating hyperparameters.
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Figure 5: Additional Analyses. In the feature space, the mean distance from an in-distribution image
to all prototypes is usually smaller than the mean distance from an out-of-distribution image to the
all prototypes. For example, consider a given class present in CIFAR10. This figure shows that
even prototypes associated with classes other than the selected class are usually closer to images of
the assumed class (in-distribution in blue) than images that do not belong to CIFAR10 at all (out-
of-distributions in orange). This explains why the mean value of logits+ considering all prototypes
contributes to the OOD detection performance. Therefore, not only the distance to the nearest
prototype is used in the mentioned task.

4 Related Works

In 2019, on the one hand, IsoMax [19] proposed a non-squared Euclidean distance last layer to
address out-of-distribution detection in an end-to-end trainable way (i.e. no feature extraction). On
the other hand, Scaled Cosine [24] proposed using a cosine distance. Although the scale factor in
IsoMax is a constant scalar called the entropy scale, Scaled Cosine requires the addition of a block
of layers to learn the scale factor. This is made up of an exponential function, batch normalization,
and a linear layer that has the feature layer as input. Moreover, to present high performance, it is
necessary to avoid applying weight decay to this extra learning block. We believe that this additional
learning block, which adds an ad hoc linear layer in the final of the neural network, may make the
solution prone to overfitting and explain the classification accuracy drop mentioned by the authors.

In 2020, GODIN [7] cited and was heavily inspired by Scaled Cosine. GODIN kept the extra learning
block to learn the scale factor and also avoided applying weight decay to it. In addition to the
usual affine transformation and cosine distance from Scaled Cosine, it presents a variant that uses a
Euclidean distance-based last layer, similar to IsoMax. The major contribution of GODIN was to
allow using the input preprocessing introduced in ODIN without the need for out-of-distribution data.
However, input preprocessing increases the inference latency (i.e., reduces the inference efficiency)
approximately four times [16].

Moreover, SNGP [14] cited, followed, and improved the idea introduced by IsoMax in 2019: A
distance-based output layer for OOD detection. In a similar direction, DUQ [25] also proposed a
modified distance-based loss to address OOD detection. However, unlike IsoMax variants (e.g.,
IsoMax, IsoMax+, and DisMax), SNGP and DUQ produce inferences not as efficient as those
produced by a deterministic neural network [14]. Moreover, they require training the neural network
many times for hyperparameter tuning.

5 Conclusion

In this work, we proposed DisMax by improving the IsoMax+ with the enhanced logits and the
Fractional Probability Regularization. We also presented a novel composite score called MMLES
for OOD detection by combining the maximum logit+, the mean logit+, and the negative entropy
of the network output. We present a simple and fast temperature scaling procedure performed after
training that makes DisMax produce a high-performance uncertainty estimation. Our experiments
showed that the proposed method commonly outperforms the current approaches simultaneously in
classification accuracy, inference efficiency, uncertainty estimation, and out-of-distribution detection.
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