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ABSTRACT

This thesis is dedicated to the study of some multi-objective control problems for partial

di�erential equations. Usually, problems containing many objectives are not well-posed,

since one objective may completely determine the control, turning the others objectives

impossible to reach. For this reason, concepts of equilibrium (or e�ciency) are normally

applied to �nd controls which are acceptable, in the sense they make the best decision

possible according to some prescribed goals. By applying the so called Stackelberg-Nash

strategy, we consider a hierarchy, in the sense that we have one control which we call the

leader, and other controls which we call the followers. Once the leader policy is �xed,

the followers intend to be in equilibrium according to their targets, this is what we call

Stackelberg's Method. Once this hierarchy is established, we determine the followers in

such a way they accomplish their objectives in a optimal way, and to do that a concept

of equilibrium is applied. In this work, we apply the concept of Nash Equilibrium, which

correspond to a non-cooperative strategy. By combining the Stackelberg's Method and

the concept of Nash Equilibrium is what we call Stackelberg-Nash strategy. This thesis is

divided into two chapters. In each of them, we solve a multi-objective control problems by

following the Stackelberg-Nash strategy. In the �rst chapter, we consider a linear system of

parabolic equations and prove that the Stackelberg-Nash strategy can be applied under

some suitable conditions for the coupling coe�cients. In the second one, we consider

the nonlinear Korteweg-de Vries (KdV) equation, which has a very di�erent nature of

parabolic equations, and the same method is applied.

Keywords:null controllability; Stackelberg-Nash strategy; Carleman estimates; observ-

ability estimates; parabolic systems; KdV equation.



RESUMO

Esta tese é dedicada ao estudo de alguns problemas de controle multiobjetivos para

equações diferenciais parciais. Normalmente, problemas desta natureza não são bem

colocados, uma vez que um objetivo pode determinar completamente o controle, tornando

impossível o alcance dos demais. Por esta razão, conceitos de equilíbrio (ou e�ciência)

são normalmente aplicados para encontrar controles que são aceitáveis, no sentido em

que tomam a melhor decisão possível de acordo com alguns objetivos prescritos. Ao

aplicar a chamada estratégia de Stackelberg-Nash, nós consideramos uma hierarquia, no

sentido de que temos um controle que chamamos de líder e outros controles que chamamos

de seguidores. Um vez que a escolha do líder é �xada, os seguidores pretendem estar em

equilíbrio de acordo com seus objetivos, isto é o que chamamos de Método de Stackelberg.

Uma vez que essa hierarquia é estabelecida, nós determinamos os seguidores de modo que

eles cumpram seus objetivos de maneira ideal, e para isso um conceito de equilíbrio é

aplicado. Neste trabalho, nós aplicamos o conceito de Equilíbrio de Nash, que corresponde

a uma estratégia não-cooperativa. Combinando o método de Stackelberg e o conceito

do equilíbrio de Nash, temos o que chamamos de estratégia de Stackelberg-Nash. Esta

tese é dividida em dois capítulos. Em cada um deles, nós resolvemos um problema de

controle multiobjetivo seguindo a estratégia Stackelberg-Nash. No primerio capítulo, nós

consideramos um sistema linear de equações parabólicas e provamos que a estratégia

Stackelberg-Nash pode ser aplicada sob algumas condições adequadas para os coe�cientes

de acoplamento. No segundo capítulo, nós consideramos a equação de Korteweg-de Vries

(KdV) não linear, que tem uma natureza muito diferente de equações parabólicas, e o

mesmo método é aplicado.

Palavras-chave: controlabilidade nula; estratégia Stackelberg-Nash; estimativas de Car-

leman; estimativas de observabilidade; sistemas parabólicos; equação de KdV.
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1 INTRODUCTION

Over the last decades, the society we live in is being shaped by the search for e�ciency.

Our actions are planned with the aim of reducing time or minimizing costs and waste in

the execution of speci�c objectives. As the objectives grow in number, the necessity to

�nd methods that make them possible in a satisfactory way grows as well. The challenge

of this is that e�ciency does not always imply lower costs, a low cost does not imply

quality, and e�ciency cannot demand lesser time. All of these things are associated to

the action of controlling, supervising, directing, having something under your domain.

We are constantly invited to control situations and this encompasses giving good/optimal

destinies to all the variables involved in the situations with which we are faced.

In the history of humanity, many mechanisms have been created with the intention

of facilitating people's lives and bringing more e�ciency to actions. In ancient Rome (3

BCE), aqueducts began being build with the objective of transporting water from the

rivers, supplying cities where water was not as abundant. These structures possessed

regulating valves with the objective of maintaining the level of water constant.

In the XVII and XVIII centuries, the measurement of time was relevant to navigation,

because determining longitude was directly associated to reliable methods of measuring

time intervals. The swaying of vessels altered the oscillation ranges of the used pendula,

consequently altering the ships' locations during navigation. That is when the mathema-

tician, physicist and astronomer Christiaan Huygen (1629 - 1695), who dedicated 40 years

of his life attempting to develop and improve the marine chronometers, invented what is

known as the isochronous pendulum. This pendulum allows for the precise measurement

of time and, as a result, of the real location of ships during navigation.

Years later, the works of Huygens were adapted to create a speed regulation mechanism

for windmills, whose main objective was to maintain the rotation speed approximately

constant. James Watt (1736 - 1819), mathematician and engineer, adapted this model

to the steam machine in order to maintain their speed constant, making an important

breakthrough in the industrial revolution.

All of these inventions (and many others) are seen today as control mechanisms and

are part of the history of their classical theories. Only in the middle of the XX century

more modern theories got stronger. In this period, we could highlight as protagonists: the

Hungarian mathematician and engineer, naturalized North American Rudolf Emil Kal-

man, co-inventor of �ltering and algebraic approximation techniques for linear systems

[34]; the American mathematician Richard Ernest Bellman for the invention of Dyna-
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mic Programming [11]; and also the Russian mathematician Lev Semenovich Pontryagin,

famous for the Principle of the Maximum for Nonlinear Optimal Control Problems [49].

It is notorious that Mathematics has increasingly shown itself to be a powerful tool

to help answer certain problems of e�ciency and control. With the advent of Di�erential

Calculus, several phenomena could be described mathematically through the Di�erential

Equations and, naturally, techniques with the intention of controlling such phenomena

began being developed. The Ordinary Di�erential Equations (ODE) and the Partial Dif-

ferential Equations (PDE) come in as strong tools that make the modelling of di�erent

natural phenomena and even phenomena resulted from technological advancements pos-

sible.

Let us be more speci�c about how a control problem can be formulated through the

mathematical point of view. A control system is an evolution equation (ODE or PDE)

which we can describe in the following general way

yt = f(t, y, v). (1.1)

In this context, the parameter T > 0 is a real �xed number, commonly called �nal

time and t ∈ [0, T ] represents the time instant which the variables are submitted to. The

variable y : [0, T ] −→ H is the so-called state function and yt represents the derivative

of y in relation to time. The function v : [0, T ] −→ U is an external force called control

and, �nally, the sets H,U are adequate function spaces, chosen essentially in a way that

guarantees that the problem (1.1) has a solution.

It is clear that di�erent choices for the v control result in alterations in the dynamic

of the function y. The control problem therefore aims to �nd a control v so that the state

function y assumes a desired behavior through time. This problematic gives room for a

series of controllability concepts that we are going to de�ne next.

Exact controllability: We say that the system (1.1) is exactly controllable if for each

y0, y1 ∈ H, there is a control v : [0, T ] −→ U such that{
yt = f(t, y, v), t ∈ [0, T ],

y(0) = y0, y(T ) = y1.

That is, from any initial con�guration y0, we can conduct the solution y to the �nal state

y1 under the action of the v control.

Approximate controllability: We say that a system (1.1) is approximately controllable

when for all ε > 0 given and for each y0, y1 ∈ H, we are able to �nd v : [0, T ] −→ U such

that {
yt = f(t, y, v), t ∈ [0, T ],

y(0) = y0, ||y(T )− y1||H < ϵ.
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Observe that the exact controllability implies in the approximate controllability, though,

in general, reciprocity is not true. In the �rst one we ask for the state function to be exac-

tly y1 in T , while in the second we ask for the state to be arbitrarily approximate to

y1.

Null controllability: We say that a system (1.1) is null controllable if, for each y0 ∈ H,

there exists v : [0, T ] −→ U such that{
yt = f(t, y, v), t ∈ [0, T ],

y(0) = y0, y(T ) = 0.

Exact controllability to trajectories: We say that the system is exactly controllable

to trajectories if, for each ȳ trajectory (any solution of (1.1) with control v̄ : [0, T ] −→ U),

there exists a control v : [0, T ] −→ U such that{
yt = f(t, y, v), t ∈ [0, T ]

y(0) = y0, y(T ) = y(T ).

The concepts of null controllability and exact controllability to trajectories are appli-

cable to systems nonreversible in time or in systems with regularizing e�ects. In these

cases, exact controllability is not expected.

The aforementioned control problems are related to a single �nal objective, that is,

we wish to determine a control v so that the solution of (1.1) reaches a single target. The

works contained in this thesis are related to problems where more than one objective is

required. This problematic, in the context of control problems for di�erential equations

was introduced by J.L. Lions (see [38]) and has many applications. For example, we could

be interested in controlling the distribution of temperature in an environment at the same

time that we want temperatures of certain regions to be in "reasonable"levels, according

to pre-established parameters. Or, we could be interested in controlling the dynamic of

a �uid keeping adequate levels of energy in speci�c regions, which motivates us to de�ne

the following category of control problems.

Multi-objective problems: In this class of problems, there are many objectives that

must be achieved simultaneously, and controls that strive for this purpose must be built.

Here, it is usual that the controls adopt strategies that make the achievement of the

objectives possible. These strategies can be cooperative, that is, there is cooperation

between controls in a way that all objectives are reached, or noncooperative, where each

control is not concerned with whether its action is hindering the achievement of the other

controls objectives.

Many theories have been developed for working with multi-objective problems, from

which we can highlight three scientists that gave signi�cant contributions in the scope of
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the problems here described. The �rst of them was Heinrich Freiherr von Stackelberg who

was born in Germany in October 31st, 1946. As an economist, he contributed to the theory

of games and oligopolies (from the greek words oligos - few, polens - to sell). The theory

of the oligopolies is characterized by the existence of a reduced number of salespeople,

where each one must consider the behavior of their competitors in the face of making a

decision. In this structure, the goods produced can be made in a homogeneous way and

normally competition is had through services such as quality, post-sales, satisfaction or

customer retention.

In 1934, Stackelberg published his main work entitled Marktform und Gleichgewicht

(Market Structure and Equilibrium [57]) which describes the behavior of a duopoly (a

speci�c case of oligopoly with only 2 producers / companies / salespeople dominating the

market). Normally, the duopoly is studied as if it was an oligopoly due to its concep-

tual simplicity. A current example of the execution of the oligopoly theory are the Solar

Energy companies. The services, in general, are o�ered along with the purchase of equip-

ment included in the billing. Because the equipment has a very high price, the pro�t for

installation depends on the competition's price, because if a company increases its pro�t

too much in relation to the others it can get no service requests. The dispute for clients

happens in marketing, environmental conscientization (since it is a clean energy), infor-

mation about maintenance, duration of equipment, calculations of investment and the

time of its return, supply of di�erent consumption units under the same system, among

others.

Our second highlighted scientist is the North American mathematician John Forbes

Nash, who was born in June 13th 1928 and died in May 23rd 2015 in a car accident. John

Nash, as he is popularly known, contributed very much for the game theory, di�erential

geometry and partial di�erential equations. He was the winner of some awards such as

the John von Neumann Theory Prize, in 1978, for developing a theory that, in a game

involving one or more players, no player can bene�t from carrying out their strategy

unilaterally. This situation is known as Nash equilibrium. Another award destined to

John Nash was the Prize in Economic Sciences in Memory of Alfred Nobel, in 1994, for

his basic analysis of equilibrium in the theory of noncooperative games (see [46]).

The third scientist that we can highlight is the French mathematician Jaques Louis

Lions. He was born in May 3rd 1928 and died in May 17th 2001, and was an important

codi�er for the works of Heinrich Stackelberg and John Nash, establishing the connection

with the theory of PDEs (see [20, 42, 43]), having created the entire formalization of multi-

objective problems for partial di�erential equations. More importantly, it is important

to stress the great contributions of Lions to the general theory of PDEs and Numeric
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Analysis.

Let us be more precise about how the strategies of multi-objective optimization can

be applied to control problems in PDEs. Suppose that the control v acting in (1.1) has

some of the objectives previously mentioned (exact controllability, approximate, null or to

trajectories). Suppose also that, for a �xed N ∈ N, certain functionals Ji := Ji(T, y0, y, v)

(i = 1, . . . , N) have the function of measuring the state y. In multi-objective problems,

we are also interested in knowing if the control v can be determined in such a way that

the functionals Ji assume satisfactory values. Notice that the problem above contains

N + 1 objectives.

It is worth pointing out that multi-objective problems are, in general, not well-posed.

The reason for that is that one of the objectives can completely determine the control,

making the others impractical. For this reason, the Stackelberg method becomes entirely

viable and consists in representing the control v as a sum of N + 1 controls, that is,

v = v0 + v1 + · · ·+ vN ,

where each control will be responsible for its objective. Furthermore, the objective of the

type of controllability is to be understood as the main one, being the control responsible

for it called leader, while other objectives (related to the functionals Ji) are named fol-

lowers. The objective of the leader is mandatory and the followers must be adapted in

order to achieve its objectives given these circumstances. Notice that here we establish

a hierarchy between the controls and for this reason we denominate this as a problem

of Hierarchical Control. The scientist and economist Von Stackelberg was the one who

introduced this method in an economy context in a completely di�erent way (see [57]) and

the mathematician J. L. Lions adapted it for the case of PDEs control (see [42, 43]). Once

the Stackelberg method is implemented, we can choose an optimization strategy that the

follower controls must adopt. In this sense, we can talk about cooperative strategies, that

is, which the controls cooperate in order to reach their objectives or about noncooperative

strategies, where each follower is interested in achieving their objective without worrying

about how much this can hinder the objective of the other controls. The cooperative

strategies are commonly called Pareto Strategy while noncooperative ones are called Nash

Strategies, these names are due to the fact that the economist Vilfredo Pareto and the

mathematician John Nash were the ones who proposed these concepts for e�ciency pro-

blems in economy. When we unite the Stackelberg method with strategies of the Pareto

type, we obtain what is called the Stackelberg-Patero Method and when we unite it with

strategies of the Nash type, we obtain the Stackelberg-Nash Method.

Our study is guided by multi-objective control problems, initiated by J. L. Lions in [42]

and directed to Parabolic Equation systems, as well as to the Korteweg-de Vries equation
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(KdV), which is of the dispersive kind. Next, we are going to talk in detail about the

speci�c objectives to be addressed in this thesis.

Speci�c Objectives

Now, let us consider a general system in order to speci�cally understand the mathema-

tical structure of the strategy to which we report. We are going to see how the Stackelberg-

Nash strategy can be applied to the control problems of Partial Di�erential Equations.

For simplicity, we will only consider three controls.

Being N a positive natural number, Ω ⊂ RN an open set and T a real number, de�ne

Q = Ω× (0, T ) e Σ = ∂Ω× (0, T ), where ∂Ω represents the boundary of Ω. Also consider

the evolution equation{
yt + Ay + F (y) = f1O + v11O1 + v21O2 in Q,

y(·, 0) = y0 in Ω,
(1.2)

where A is a linear unbounded operator and the function F : R → R is, possibly, nonlinear.

In the equation (1.2), the function f is the leader control while v1, v2 are the follower

controls. The functions 1O and 1Oi
(i = 1, 2) are characteristic functions in the regions O,

O1 and O2 respectively. Here, the leader chooses the type of controllability of the system

(1.2) (exact, approximate, null etc.) and later the followers (v1, v2) must meet a certain

equilibrium condition in relation to the functionals

Ji(f, v1, v2) :=
αi
2

∫∫
Oi,d×(0,T )

|y − yi,d|2 dxdt+
µi
2

∫∫
Oi×(0,T )

|vi|2 dxdt, i = 1, 2, (1.3)

where αi, µi > 0 are constants and yi,d = yi,d(x, t) are given functions.

In the problems here addressed, we are going to assign as the leader's objective the null

controllability, that is, the leader control f must be such that the solution y of (1.3) sa-

tis�es y(·, T ) = 0, while the followers must minimize the functionals (1.3) simultaneously,

in the sense that having assigned f and its objective, we are going to look for controls

vi ∈ L2(Oi × (0, T )), i = 1, 2, that satisfy

J1(f, v
1, v2) = min

v̂1
J1(f, v̂

1, v2), J2(f, v
1, v2) = min

v̂2
J1(f, v

1, v̂2). (1.4)

We can understand this problem in the following manner: each follower v1 and v2 is in-

terested in having the y state reach the objectives y1,d and y2,d respectively. However,

because of the equation's structure or even because of the quantity of simultaneous ob-

jectives of interest, it can be impossible to reach these targets directly. Thus, �nding

controls that satisfy (1.4) establishes the best condition we can get given the circumstan-

ces. It is important to notice that each follower is interested in minimizing their functional



14

without worrying about worsening each other's objective, this characterizes a noncoope-

rative problem (a control that does not have access to the actions of another) and, in this

manner, the pair (v1, v2) is called Nash Equilibrium. By adopting this hierarchy between

the controls and, furthermore, requiring that the followers are in Nash Equilibrium, we

are adopting the Stackelberg-Nash method for the system (1.2).

It is important to note that if the functionals Ji(i = 1, 2) are convex, then (v1, v2) ∈
L2(O1 × (0, T ))× L2(O2 × (0, T )) is a Nash Equilibrium if, and only if,

J
′

1(f, v
1, v2)(v̂1, 0) = 0, ∀v̂1 ∈ L2(O1 × (0, T ));

J
′
2(f, v

1, v2)(0, v̂2) = 0, ∀v̂2 ∈ L2(O2 × (0, T )).
(1.5)

In addition, we reinforce that (1.4) and (1.5) are not necessarily equivalent. In fact, if the

function F in (1.2) is nonlinear, the functionals Ji cannot be convex and therefore the

equivalence is not immediate.

Given what has been exposed, if functionals Ji are convex, we are able to use the

condition (1.5) (see [43] for more details) and we will �nd that the Nash equilibrium can

be characterized by the following condition of optimality

vi = − 1

µi
φi1Oi

, i = 1, 2, (1.6)

where φi is the solution for the system{
−φit − A∗φi + F ′(y)ϕi = αi(y − yi,d)1Oi,d

in Q,

φi(x, T ) = 0 in Ω.
(1.7)

Once the Nash equilibrium has been determined for a �xed f , the following step is

to determine a leader control f̂ ∈ L2(O × (0, T )) such that the solution of (1.2) is the

value that we desire for the �nal time. In the cases seen here the objective of the leader

is to conduct the system to zero, that is, we want the component y of the coupled system

(1.2), (1.6) and (1.7) to satisfy

y(·, T ) = 0 em Ω.

This thesis is divided in two chapters, such that the results are presented in the

format of scienti�c articles. In each of them, we will solve a multi-objective problem for

a determined evolution equation, using the Stackelberg-Nash method, whose objective of

the leader is to conduct the system to the null state. Next, we will make a more speci�c

description of the addressed problems and the obtained results.

Chapter 1 - Null Controllability and Stackelberg-Nash Strategy

for a 2× 2 Systems of Parabolic Equations
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The �rst presented problem consists of a system of parabolic equations, with zero-order

couplings of the structure:
y1t −∆y1 =

∑2
p=1A1 py

p + F 1 in Q,

y2t −∆y2 =
∑2

p=1A2 py
p + F 2 in Q,

y1 = y2 = 0 in Σ,

y1(0) = y10, y
2(0) = y20 in Ω,

(1.8)

where (y1, y2) represents the state, (F 1, F 2) are controls and {Ai,j}i,j=1,2 are uniformly

bounded functions and represent the coupling matrix of the system. Each F i control has

three objectives for the state (y1, y2) that are to be described below.

Through the Stackelberg Method, we write

F i = f i1O + vi 11Oi 1
+ vi 21Oi 2

, i = 1, 2, (1.9)

where the sets O, Oi 1 and Oi 2 are open and disjoint. The {f i}2i=1 controls will be the

leaders, being responsible for the objectives of the controllability type, while {vi j}2i,j=1

are called followers and are engaged in the minimization of the cost functionals that will

be de�ned next.

For k, l = 1, 2, being yk ld regular functions de�ned under regions Ok l
d × (0, T ) and

{µk l}2k l=1 real parameters. In these terms, we de�ne the functionals

Jk l({vi j}2i,j=1) =
1

2

∫∫
Ok l

d ×(0,T )

|yl − yk ld |2 dxdt+ µk l
2

∫∫
Ok l×(0,T )

|vk l|2 dxdt, k, l = 1, 2.

(1.10)

Our interest is to assign the objective of the (f 1, f 2) leaders to be the property of

null controllability for the variable (y1, y2), while the {vi k} followers must be a Nash

equilibrium (see (1.5)) for the functionals (1.10). In this type of problem, we are also

interested in the case where less controls are considered, that is, F i = 0 for some i ∈ {1, 2}
and we will see that this situation results in some additional technical di�culties.

The situations where the objective of the leader control is only the system control-

lability, which is characterized as a mono-objective problem, are already found in the

literature. Indeed, when we only consider a heat equation instead of the system (1.8)

and when the objective of the leader is unique and of the controllability type, we can

quote the classical references [23, 31, 32, 37]. In the case of parabolic equation systems

where we have only a single objective per control, positive and negative controllability

results are known, and for more details see [3, 2, 21, 22]. In the context of multi-objective

problems, we can mention the works [5, 6] for the case of a single heat equation and the

leader's objective being conducting the system to zero, while in [29] the Stokes system
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and the objective of the leader were considered as being the approximate controllability.

In the case of multi-objective control problem for systems of parabolic equations, in which

the leader objective is to conduct the system to the null state, we can cite [30], where

a problem similar to the one we propose is formulated, though the news here is that we

proved a control result that stays true under the more general conditions not considered

in [30].

Considering what has been said, in this chapter we are interested in solving two types

of problem:

Problem 1: Consider (y10, y
2
0) and {Aj p}, respectively, to be the initial data and the coupling

coe�cients for (1.8). Utilizing the Stackelberg-Nash method and writing the controls in

hierarchy in the structure (1.9), there are {f i} leader controls such that the solution of

(1.8) satis�es

yi(·, T ) = 0, for, i = 1, 2,

where the followers {vi j} are in Nash equilibrium for the functionals (1.10).

In a second result, we considered a system with one missing control, such as F 2 = 0
y1t −∆y1 =

∑2
p=1A1 py

p + F 1 in Q,

y2t −∆y2 =
∑2

p=1A2 py
p in Q,

y1 = y2 = 0 in Σ,

y1(0) = y10, y
2(0) = y20 in Ω.

(1.11)

Again, through the Stackelberg method, we put down the controls in a hierarchy

F 1 = f 11O + v1 11Oi 1
+ v1 21Oi 2

, i = 1, 2, (1.12)

and considered the functionals

Jk({vj}2j=1) =
1

2

∫∫
Ok

d×(0,T )

|yk − y kd |2 dxdt+
µk
2

∫∫
Ok×(0,T )

|vk|2 dxdt, k = 1, 2. (1.13)

Next, we wish to solve the problem

Problem 2: Consider (y10, y
2
0) and {Aj p}, respectively, to be the initial data and the coupling

coe�cients for (1.11). Utilizing the Stackelberg-Nash method and writing the controls in

hierarchy in the structure (1.12), there is a leader control f 1 such that the solution of

(1.11) satis�es

yi(·, T ) = 0, for, i = 1, 2,

where the followers {v1 j} are in Nash equilibrium for the functionals (1.13).

It is important to stress that, in the reference [30], the authors dedicated themselves

to the study of a situation similar to the Problem 2 above. One di�erence is that they
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considered functionals of the structure:

J̃k({vj}2j=1) =
1

2

∫∫
Od×(0,T )

(
|y1 − y1 kd |2 + |y2 − y2 kd |2

)
dxdt+

µk
2

∫∫
Ok×(0,T )

|vk|2 dxdt,

k = 1, 2, (1.14)

where Od is an open of Ω, while here we considered the functionals of the structure of the

(1.10). The fact that they have considered in each functional the terms y1 and y2 is not a

complicating factor, that is, we can solve Problem 2 by replacing the functional (2.9) by

Jk({vj}2j=1) =
1

2

∫∫
Ok

d×(0,T )

(
|y1 − y1 kd |2 + |y2 − y2 kd |2

)
dxdt+

µk
2

∫∫
Ok×(0,T )

|vk|2 dxdt,

k = 1, 2. (1.15)

Our reason for choosing functional (1.10) is for merely simplifying some notations adopted

throughout the text. On the other hand, note that in (1.14) in both functionals the region

Od is the same. This hypothesis brings great simpli�cations from the technical point of

view. We emphasize that here we consider the cases in the setsOk
d , for k = 1, 2, as distinct,

this being the main contribution we presented in this chapter. Moreover, observe that

in Problem 1 we can solve the situation in which two controls are considered. Although

intuitively it seems as if Problem 2 is of higher di�culty than Problem 1, since there

are less controls to achieve the objective, this is not necessarily true in the problems we

have considered here. The reason for this is that, in Problem 1, we have associated six

objectives to the controls, while in Problem 2 we have associated three. In other words,

we have decreased the control quantity but also the objective quantity, that is to say, the

problem with two controls is also relevant for taking into account.

The null controllability in the cases cited above is obtained through the Hilbert Uni-

queness Method (HUM) ([39], [40], [41]), which establishes the connection between the

controllability property and a quantitative property known as observability inequality.

Chapter 2 - On the Stackelberg-Nash Exact Controllability for

KdV Equation

In chapter 2, we have considered the nonlinear Korteweg-de Vries equation (KdV) and

have also applied the Stackelberg-Nash method combined with a zero control objective

for the leader:
yt + (1 + y)yx + yxxx = f1O + v1XO1 + v2XO2 in Q,

y (0, ·) = y (L, ·) = yx (L, ·) = 0 in (0, T ) ,

y (x, ·) = y0 in (0, 1) ,

(1.16)
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where y = y(x, t) is the state and y0 is initial datum. In (1.16), the set O ⊂ (0, 1) is

the leader control's domain f while O1,O2 ⊂ (0, 1) are the follower control's domains v1

and v2 (all of which are very small and disjoint suppositions). With 1O we denoted the

characteristic function in O while XOi
are positive functions in C∞

0 (Oi), i = 1, 2.

Let us �x an uncontrolled trajectory, which is a su�ciently regular solution of the

system 
yt + (1 + y)yx + yxxx = 0 in Q,

y (0, ·) = y (L, ·) = yx (L, ·) = 0 in (0, T ) ,

y(·, 0) = y0 in (0, 1) .

(1.17)

Here, we establish as objective of the leader control f the one of taking the system exactly

to the trajectory in the �nal time T , that is

y(·, T ) = y(·, T ) in (0, 1). (1.18)

It is critical to note that, de�ning a new variable z = y − y, we can reduce the exact

controllability condition above to a null controllability property for z, that is

z(x, T ) = 0 in (0, 1). (1.19)

Let us note that z satis�es the equation
zt + (1 + z)zx + zxxx + (yz)x = f 1O + v1XO1 + v2XO2 in Q,

z (0, ·) = z (L, ·) = zx (L, ·) = 0 in (0, T ) ,

z(·, 0) = z0 in (0, 1) .

(1.20)

Once the leader's requirement is assigned, the followers must be in Nash equilibrium

(see (1.4)) for the cost functionals

Jk({vj}2j=1) =
1

2

∫∫
Ok

d×(0,T )

|z − z kd |2 dxdt+
µk
2

∫∫
Ok×(0,T )

|vk|2 dxdt, k = 1, 2. (1.21)

We are able to �nd several results of mono-objective control for the KdV equation in

the literature. Let us start citing the pioneering works of Russel and Zhang [56], where

periodic boundary conditions are considered and, since then, several controllability and

stability results have been considered [15, 16, 18, 27, 26, 52, 54, 60]. In the subject of

multi-objective problems, particularly in the application of the Stackelberg-Nash method

allied to controllability objectives for the leader, several results are available for parabolic

problems (see [5, 6]) and also for fourth-order equations such as the Kuramoto-Sivashinsky

equation (see [13]), however, little is currently known for the dispersive equations such

as the KdV equation. Because of its completely di�erent structure, compared to the

parabolic equations considered in Chapter 1, the arguments must be adapted to this
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situation. Furthermore, the equation is considered nonlinear, raising the di�culty level of

the problem's resolution even more. In fact, we need to assume here that the problem's

data are su�ciently small.

Thus, in this chapter we are interested in working with the following problematic:

Problem 3: Being z0 the initial datum for (3.9). There is a leader control f such that the

solution of (3.9) satis�es

z(·, T ) = 0,

where the followers {vj} are in Nash equilibrium for the functionals (1.21).

Let us note that the problem considered above is nonlinear. This makes it so that the

currently known methods cannot be applied directly to the system (3.9). Thus, we have

considered a linear version of (3.9) and applied the Hilbert Uniqueness Method to arrive to

an equivalence between the linear system's controllability and an associated observability

inequality. Next, we are going to apply a local inversion theorem in order to retrieve the

result for the nonlinear system.
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2 NULL CONTROLLABILITY AND STACKELBERG-NASH STRATEGY FOR

A 2× 2 SYSTEM OF PARABOLIC EQUATIONS

Maurício C. Santos 1 and Islanita C. A. Albuquerque

Abstract

This chapter is dedicated to solve a multi-objective control problem for

a 2 × 2 system of parabolic equations. Here, we have many objectives,

possibly con�ictive, and a concept of hierarchy must be adopted. We

have the leader controls, responsible for objectives of controllability type,

and the follower controls which intend to be in Nash-equilibrium with

respect to some given cost functionals. The novelty in here is that we

formulate this problem for systems of parabolic equations, meaning that

we have much more variables and naturally much more objectives to

accomplish.

Keywords: Nash Equilibrium, Stackelberg's Method, Null Controllability, Carleman

Estimates.

2.1 Introduction

In a standard controllability problem, we have an evolution equation describing a speci�c

phenomenon, and we look for controls such that the solutions of this system behaves the

way we want in a given �nite time. In real life, control problems can be much more

complex, specially when many objectives are required at the same time. It is not di�cult

to realize that many objectives may be in con�ict, in the sense that solving one of them

turns the solvability of the others di�cult or even impossible, and that is why concepts

of equilibrium are usually considered.

There are several concepts of equilibrium for multi-objective control problems, with

origin in game theory and mainly motivated by problems of economy, each of them deter-

mines a strategy. Thus, we mention the non-cooperative optimization strategy proposed

by J. Nash in [47], the Pareto cooperative strategy in [48], and the Stackelberg hierarchic-

cooperative strategy in [57].

Concerning multi-objective control problems for PDEs, a relevant question that can

be formulated is whether one is able to exactly (or approximately) control the system to a
1 Federal University of Paraíba
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desired state when many other objectives are also being considered at the same time. We

refer to the classical works of J. L. Lions in [38, 43] where some results concerning Pareto

and Nash strategies are applied for control problems in PDEs, and we also refer the book

of I. Diaz and J. Lions in [20] as a complement. We remark that the approaches in [38, 43]

are based on the fact that the leader wants to control the state approximately, a more

di�cult question is whether a similar problem can be solved in the exact controllability

level, in this case we can refer the works of Araruna et al. in [5] and [6] for some positive

exact controllability results.

Concerning multi-objective control problems for systems of parabolic equations, very

few is known. We can cite the work of Hernandez-Santamaria et al. in [30], where a 2× 2

system of parabolic equations is considered, and the authors have assumed restrictions

over the objectives very similar to the ones in [5]. However, it is proved in [6] that, for

the case of one single equation, more general conditions for the objectives can be assumed

compared to the ones in [5]. In this way, it natural to ask if the results in [6] can be

adapted for the cases of systems of parabolic equations. This will be the main goal of this

paper.

2.2 Statement of the Problem

In this section, we will be more precise on the problem under view. Let Ω ⊂ Rn, n ≥ 1

be a bounded connected open set whose boundary ∂Ω is regular enough. Let T > 0,

Q = Ω×]0, T [ and Σ = ∂Ω×]0, T [. We consider systems of the form

y1t −∆y1 =
2∑
p=1

A1 py
p + F 1 in Q,

y2t −∆y2 =
2∑
p=1

A2 py
p + F 2 in Q,

y1 = y2 = 0 in Σ,

y1(0) = y10, y
2(0) = y20 in Ω,

(2.1)

where (y1, y2) represents the state, (F 1, F 2) are the controls and {Ai,j}i,j=1,2 is the coupling

matrix, where Ai,j ∈ L∞(Q) for every i, j = 1, 2. Each control F i wants the state (y1, y2)

to accomplish three objectives, one of controllability type and other two of optimal control

type.

The problem of �nding one control solving more than one objective is in general ill

posed, that is why we adopt the Stackelberg's strategy, which consists in divide each

control F i into three controls, each one responsible for its own objective. So we write

F i = f i1O + vi 11Oi 1
+ vi 21Oi 2

, i = 1, 2, (2.2)
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where for each i = 1, 2 the sets O, Oi 1 and Oi 2 are open sets, pairwise disjoint. The

controls {f i}2i=1 are called the leaders, having the objectives of controllability type, in

the sense they want to drive the state to a exact value, while {vi j}2i,j=1 are called the

followers, with optimal control type objectives, in the sense they must be optimal with

respect some speci�c functionals.

For k, l = 1, 2, let yk ld be regular functions de�ned on a region Ok l
d × (0, T ) and

{µk l}2k l=1 real positive parameters nonzero. We de�ne the functionals

Jk l
(
{vi j}2i,j=1

)
=

1

2

∫∫
Ok l

d ×(0,T )

|yl − yk ld |2 dxdt+ µk l
2

∫∫
Ok l×(0,T )

|vk l|2 dxdt, k, l = 1, 2.

(2.3)

For each f := {f i}2i=1 �xed, the followers intend to be a Nash equilibrium for the functi-

onals {Jk l}2k,l=1, meaning that {vi j}2i,j=1 must satisfy

J1 1({vi j}2i,j=1) = min
v̂1 1∈L2(O1 1×(0,T ))

J1 1(v̂1 1, v1 2, v2 1, v2 2),

J1 2({vi j}2i,j=1) = min
v̂1 2∈L2(O1 2×(0,T ))

J1 2(v1 1, v̂1 2, v2 1, v2 2),

J2 1({vi j}2i,j=1) = min
v̂2 1∈L2(O2 1×(0,T ))

J2 1(v1 1, v1 2, v̂2 1, v2 2),

J2 2({vi j}2i,j=1) = min
v̂2 2∈L2(O2 2×(0,T ))

J2 2(v1 1, v1 2, v2 1, v̂2 2).

(2.4)

This is a non cooperative optimization problem. For each k, l = 1, 2, the follower vk l

wants to minimize the objective Jk l even if this represents the worst scenario for the

other objectives.

Since the equations are linear and the functionals are convex in each direction, it is

clear that the conditions in (2.4) are completely equivalent to �nd {vi j}2i,j=1 satisfying

∂Jk l

∂v̂k l
(
{vi j}2i,j=1

)
= 0 for every k, l = 1, 2. (2.5)

Then, it is standard (see Section 2.1.2 of [5]) that the Nash equilibrium is characterized

by formula

vk l = − 1

µk l
φl, k l1Ok l

, k, l = 1, 2, (2.6)

where the function φj, k l satis�es the following optimality system
−φl, k lt −∆φl, k l =

∑2
p=1Ap lφ

p, k l + (yl − yk ld )1Ok l
d
, in Q,

−φj, k lt −∆φj, k l =
∑2

p=1Ap jφ
p, k l, j ̸= l, in Q,

φj, k l = 0, over Σ,

φj, k l(·, T ) = 0, in Ω,

(2.7)

for j, k, l = 1, 2.
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Once the Nash equilibrium is determined, according formula (2.6), we search for leader

controls which drives the state (y1, y2) to zero. In this way, we are led to prove a null

controllability result for the following system,
yjt −∆yj =

∑2
p=1Aj py

p + f j1O −
∑2

p=1
1
µjp
φp, j p1Ojp

, in Q,

yj = 0, in Σ,

yj(0) = yj0, in Ω,

(2.8)

for j = 1, 2. In this way, the �rst result we are interested to solve is the following:

Theorem 2.1. Given (y10, y
2
0) ∈ L2(Q)2 and {vi j}2i,j=1 a Nash equilibrium for the functi-

onal (2.3), there exists controls (f 1, f 2) ∈ L2(O× (0, T ))2, such that the solution of (2.1)

with {F i}2i=1 given by (2.2) satis�es (y1(T ), y2(T )) = (0, 0).

The main di�culty to prove Theorem 2.1 is that, once the Nash equilibrium is cha-

racterized, we are led to prove a partial null controllability result for a system of several

equations (ten precisely) acting only over two equations. We remark that, for the case

of one single equation (see [5, 6]) the optimality system is composed by three equations

only.

Another interesting question which arises is the case where less controls are considered.

Indeed, let us consider in (2.1) the control F 2 = 0 and let us follow a similar strategy.

Now, for k = 1, 2 we consider ykd regular functions, de�ned over a region Ok
d × (0, T ) and

{µk}2k=1 are real parameters. Here we de�ne the functionals

Jk
(
{vj}2j=1

)
=

1

2

∫∫
Ok

d×(0,T )

|yk − y kd |2 dxdt+
µk
2

∫∫
Ok×(0,T )

|vk|2 dxdt, k = 1, 2, (2.9)

and we search for followers satisfying

J1({vj}) = min
v̂1∈L2(O1×(0,T ))

J1(v̂1, v2),

J2({vj}) = min
v̂2∈L2(O2×(0,T ))

J1(v1, v̂2).
(2.10)

In this case, we �nd that

vj = − 1

µj
φj, j1Oj

, j = 1, 2, (2.11)

where, for i, j = 1, 2
−φj, jt −∆φj, j =

∑2
p=1Ap jφ

p, j + (yj − yjd)1Oj
d
, in Q,

−φi, jt −∆φi, j =
∑2

p=1Ap iφ
p, j, i ̸= j in Q,

φi, j = 0, over Σ,

φi, j(·, T ) = 0, in Ω.

(2.12)

In this context, the second problem we want to solve is the following:
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Theorem 2.2. Given (y10, y
2
0) ∈ L2(Q)2 and {vj}2j=1 a Nash equilibrium for the functional

(2.9), there exist a control f 1 ∈ L2(O × (0, T ))2 such that the solution of (2.1) with F 1

given by (2.2) and F 2 = 0 satis�es (y1(T ), y2(T )) = (0, 0).

In Theorem 2.2, we have to partially control a system of several equations (six preci-

sely) acting over one single equation. So, in one hand we have less equations, but in other

had we are taking only one leader to exactly control the system. This means that proving

Theorem 2.1 can not be seen as a natural step to follow in order to prove Theorem 2.2.

Indeed, for problem 1 we have the optimality system with ten equations and two leaders

while for problem 2 the optimality system has six equation for only one leader. In this

way, it is not clear that Theorem 2.2 is more di�cult to prove then Theorem 2.1.

It is well know, by the Hilbert Uniqueness Method, that the controllability of linear

systems of PDEs is equivalent to a suitable observability inequality for adjoint states. In

order to prove such inequalities we will make use of some suitable Carleman estimates.

2.3 Carleman Estimates

This section is dedicated to prove some Carleman estimates for a suitable adjoint state.

We will start this section by introducing some assumptions over the sets {Ok l
d }2k,l=1 and

{Ok
d}2k=1.

To deal with Theorem 2.1, we start assuming that

Ok l
d ∩ O ≠ ∅, for every k, l ∈ {1, 2}. (2.13)

Under assumption (2.13), there exists open subsets satisfying

ωk l ⊂⊂ ω̂k l ⊂⊂ ω̃k l ⊂⊂ Ok l
d ∩ O, for every k, l ∈ {1, 2}. (2.14)

We also assume that, for each l = 1, 2, one of the two conditions

O1 l
d = O2 l

d (2.15)

or

O1 l
d ∩ O ≠ O2 l

d ∩ O (2.16)

hold. Assumptions similar to (2.15) or (2.16) are already used in [5, 6] for the case of one

single equation to be controlled.

Notice that, if assumption (2.16) hold for some l ∈ {1, 2}, two di�erent situations may

occur. Or we have that

Ok l
d ∩ O ⊂ Ok̃ l

d ∩ O and Ok̃ l
d ∩ O \ Ok l

d ∩ O ≠ ∅, for some (k, k̃) ∈ {(1, 2), (2, 1)}
(2.17)
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or that

Ok l
d ∩O\Ok̃ l

d ∩O ≠ ∅ and Ok̃ l
d ∩O\Ok l

d ∩O ≠ ∅, for some (k, k̃) ∈ {(1, 2), (2, 1)}.
(2.18)

We remark that, for di�erent values of l ∈ {1, 2}, we may have combinations of properties

(2.15), (2.17) or (2.18). This represents an additional di�culty when dealing with systems

of equations. It is not di�cult to see that, if (2.17) hold, then the open sets satisfying

(2.14) can be assumed in such a way that

ω̃k̃ l ∩ Ok l
d = ∅. (2.19)

In a similar way, if (2.18) hold besides (2.19), we can assume that the open sets satisfying

(2.14) satis�es (2.19) and

ω̃k l ∩ Ok̃ l
d = ∅. (2.20)

These conditions will be important in forthcoming computations.

Concerning the coupling coe�cients, we will assume that there exists a constant C0 > 0

such that

Al p ≥ C0 in ω̃1 l ∪ ω̃2 l × [0, T ], for all (p, l) ∈ {(1, 2), (2, 1)}. (2.21)

To deal with Theorem 2.2, some slightly di�erent conditions are needed. Precisely, in

order to prove a controllability result with less controls we have to assume some additional

conditions on the coupling coe�cients. To start, we assume that

Oi
d ∩ O ≠ ∅, for every i = 1, 2. (2.22)

As in the previous case, some conditions over the sets {Oi
d}i are needed. Here, we will

assume that

(Oi
d ∩ O) \ suppAj, i ∩ O ≠ ∅, and Int(suppAj, i ∩ O) \ (Oi

d ∩ O) ̸= ∅, (2.23)

for some i, j = 1, 2, i ̸= j. Moreover, under assumption (2.22), we assume the existence

of open subsets

ωi ⊂⊂ ω̂i ⊂⊂ ω̃i ⊂⊂ Oi
d ∩ O, for every i = 1, 2, (2.24)

such that for the pair (i, j) where (2.23) is valid we have that

ω̃i ⊂ (Oi
d ∩ O) \ suppAj, i ∩ O, and ω̃j ⊂ suppAj, i ∩ O \ (Oi

d ∩ O) (2.25)

and there exists C0 > 0 such that

Ai,j ≥ C0 in ω̃i × (0, T ), (2.26)
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for every i, j = 1, 2, i ̸= j. Notice that, for the case of one single leader, more assumptions

over the coupling coe�cients are needed.

It is well know, by the Hilbert Uniqueness Method, that controllability of linear sys-

tems of PDEs is equivalent to a suitable observability inequality for an adjoint variable.

In this way, the resolution of Theorems 2.1 or 2.2 presented here are completely equivalent

to the following theorem, which is the main result of this paper.

Theorem 2.3.

i) For j, k, l = 1, 2 let (ψj, γj, k l) the solution of the following adjoint system

−ψjt −∆ψj =
∑2

p=1Ap jψ
p +

∑2
p=1 γ

j, p j1Op j
d

in Q,

γj, k lt −∆γj, k l =
∑2

p=1Aj pγ
p, k l, j ̸= l in Q,

γl, k lt −∆γl, k l =
∑2

p=1Al pγ
p, k l − 1

µk l
ψk1Ok l

in Q,

ψj = γj, k l = 0, in Σ,

ψj(T ) = ψT , γj, k l(0) = 0, in Ω,

(2.27)

and assume that, for each l = 1, 2 the sets Ok l
d satis�es one of the conditions (2.15) or

(2.16) and in case it satis�es (2.16), one of the conditions (2.17) or (2.18) holds. Then,

there exist C∗ > 0 and a weight function ρ(t) with limt→T ρ(t) = 0, such that the following

observability inequality holds

2∑
k=1

∫
Ω

|ψk(0)|2 dx+
2∑

k,l=1

∫∫
Ok l

d ×(0,T )

ρ2(t)|γl, k l|2 dxdt ≤ C∗

2∑
k=1

∫∫
O×(0,T )

|ψk|2 dxdt.

(2.28)

ii) For i, j = 1, 2, let (ψj, γj i) the solution of

−ψit −∆ψi =
∑2

p=1Ap iψ
p + γi i1Oi

d
in Q,

γi it −∆γi i =
∑2

p=1Ai pγ
p i − 1

µi
ψi1Oi

in Q,

γj it −∆γj i =
∑2

p=1Aj pγ
p i, j ̸= i in Q,

ψi = γi i = γj i = 0 in Σ,

ψi(T ) = ψTi , γ
i i(0) = γj i(0) = 0 in Ω.

(2.29)

Assume that the sets {Ok
d}k and the coupling coe�cients {Ak l}k,l satis�es (2.22), (2.23)

and (2.26). Then, there exist C > 0 and a weight function ρ̂(t) where limt→T ρ̂(t) = 0,

such that the following observability inequalities holds

2∑
k=1

∫
Ω

|ψk(0)|2 dx+
∫∫

Ok
d×(0,T )

ρ2(t)|γk k|2 dxdt ≤ C

∫∫
O×(0,T )

|ψ1|2 dxdt. (2.30)

As we have mentioned, if we prove observability inequality (2.28) then we are solving

Theorem 2.1, while if we prove (2.30), then we are solving Theorem 2.2.
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We remark that, controllability results for systems of parabolic equations is a huge

research area in control theory and by now, positive and negative results are known. We

refer to [3] for a survey and [2] where, for some speci�c coupling property, the authors

have proved the existence of a minimal time of controllability. More recently, Duprez, M.

and Lissy, P. in [21] and [22] have found some su�cient conditions for the controllability

of systems with less controls by applying algebraic methods.

We have the following Lemma which is already used in [6] for the case of one single

equation. Here we have to adapt it for a more general case.

Lemma 2.4. Let Λ a �nite set and {qm}m∈Λ a family of disjoint open subsets of O. Let

Õ ⊂⊂ O be such that qm ⊂ Õ for every m ∈ Λ. There exists a family of functions

{ηm}m∈Λ in C2(Ω̄), such that{
ηm > 0 in Ω, ηm = 0 on ∂Ω,

∥∇ηm∥ > C in Ω \ qm, ηn = ηm in Ω \ Õ when n ̸= m.
(2.31)

Demonstração. This result is already proved in [6] for the case Λ = {1, 2}. To generalize

it to more sets, we assume that Λ = {1, . . . , N0}, for some N0. The general case can be

obtained by a simple identi�cation argument. It is well known that (see [24]) there exists

a function η1 satisfying {
η1 > 0 in Ω, η1 = 0 on ∂Ω,

∥∇η1∥ > C in Ω \ q1.

Using Lemma 5 of [6], we get that, for each m ̸= 1, we can take Õm ⊂ Õ, such that

q1 ∪ qm ⊂ Õm, and a weight function nm such that{
ηm > 0 in Ω, ηm = 0 on ∂Ω,

∥∇ηm∥ > C in Ω \ qm, ηm = η1 in Ω \ Õm.

It is clear that the family {ηm}N0
m=1 satis�es (2.31) and the lemma is proved.

Now, for any �nite set Λ, let {ηm}m∈Λ be a family given by Lemma 2.4. We de�ne the

following weight functions, very common when dealing with Carleman estimates.

σm(x, t) :=
e4λ∥ηm∥∞ − eλ(2∥ηm∥∞+ηm(x))

t(T − t)
, ξm(x, t) :=

eλ(2∥ηm||∞+ηm(x))

t(T − t)
, m ∈ Λ, (2.32)

and for n ∈ N we introduce the notations

Imn (ψ) := sn−4λn−3

∫∫
Q

e−2sσm(ξm)
n−4(|ψt|2 + |∆ψ|2)dxdt+ Lmn (ψ),



28

where

Lmn (ψ) := sn−2λn−1

∫∫
Q

e−2sσm(ξm)
n−2|∇ψ|2dxdt+ snλn+1

∫∫
Q

e−2sσm(ξm)
n|ψ|2dxdt.

For uT ∈ L2(Ω) and f, f1, ..., fl ∈ L2(Q), let u be the solution of the following equation
−ut −∆u = f +

l∑
k=1

∂kfk on
∑
,

u = 0 on
∑
,

u(·, T ) = uT in Ω.

(2.33)

Then, the following Carleman estimates holds

Proposition 2.5. Let Λ a �nite set, n ∈ N, and {qm}m∈Λ a family of open subsets of Ω.

Let {ηm}m∈Λ the functions given by Lemma 2.4. For each m ∈ Λ, there exists a constant

C(Ω, qm) > 0 such that, for every s ≥ sm = C(Ω, qm)(T + T 2) and every λ ≥ C, the

solution u of (2.33) for uT ∈ L2(Ω), f ∈ L2(Q) and fk = 0, k = 1, . . . ,m, satis�es

Imn (u) ≤ C

(
snλn+1

∫∫
qm×(0,T )

e−2sσm(ξm)
n|u|2dxdt+ sn−3λn−3

∫∫
Q

e−2sσm(ξm)
n−3|f |2dxdt

)
.

If the functions fk are not necessarily zero, the following holds:

Proposition 2.6. Let Λ a �nite set and {qm}m∈Λ a family of open subsets of Ω. Let

{ηm}m∈Λ the functions given by Lemma 2.4. For each m ∈ Λ, there exists a constant

C(Ω, qm) > 0 such that, for every s ≥ sm = C(Ω, qm)(T + T 2) and every λ ≥ C, the

solution u of (2.33) for uT ∈ L2(Ω), f ∈ L2(Q) and fk ∈ L2(Q), k = 1, . . . ,m, satis�es

Lmn (u) ≤ C

(
snλn+1

∫∫
qm×(0,T )

e−2sσm(ξm)
n|u|2dxdt

+sn−3λn−3

∫∫
Q

e−2sσm(ξm)
n−3|f |2dxdt+ sn−1λn−1

l∑
k=1

∫∫
Q

e−2sσm(ξm)
n−1|fk|2dxdt

)
.

The estimates given in Propositions 2.5 and 2.6 are classical in control theory and are

well known nowadays, for a proof see references [24] and [33].

In next section, we prove new Carleman estimates for the solutions of (2.27) and

(2.29), these estimates will be the main tool to prove observability inequalities (2.28) and

(2.30), respectively.

2.4 New Carleman Estimates

This section is dedicated to prove the following Carleman type estimates
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Proposition 2.7.

i) Assume that, for each l = 1, 2, the sets {Ok l
d } satis�es (2.13) and one of the conditions

(2.15) or (2.16), in case it satis�es (2.16), assume that condition (2.17) or (2.18) holds.

Let us also assume that the coupling coe�cients {Ai j}i,j satis�es (2.21). Then, there

exists C > 0 such that the following estimate holds

2∑
j,k,l=1

Ik ln (γj, k l) + sn+3λn+4

2∑
j=1

∫∫
Q

e−2sσjj(ξjj)
n+3|ψj|2dxdt ≤

Csn+8λn+9

2∑
p,j=1

∫∫
O×(0,T )

e−2sσp jξn+8
p j |ψp|2 dxdt, (2.34)

for every {ψj, γj, lk}j,k,l solution of (2.27).

ii) Assume that the sets {Ok
d}k and the coupling coe�cients {Ak l}k,l satis�es (2.22) and

(2.23) and there exists {ωi}i satisfying (2.24), (2.25) and (2.26). Then, there exist C > 0

such that

snλn+1

∫∫
Q

e−2sσ1(ξ1)
n|ψ1|2dxdt+ I2n−3(ψ

2) +
2∑

i,j=1

I in−3i(γ
j i)

≤ Csn+9λn+10

∫∫
O×(0,T )

(e−2sσ1(ξ1)
n+9 + e−2sσ2(ξ2)

n+3)|ψ1|2 dxdt, (2.35)

for every {ψj, γji}j,i solution of (2.29).

Demonstração. For the proof of i), three distinct situations are possible depending on the

geometry of the sets {Ok l
d }2k,l=1:

A) Condition (2.15) holds for all l = 1, 2;

B) Condition (2.15) holds for one value of l, and for the other l̃ di�erent from l we have

(2.16);

C) Condition (2.16) holds for all l = 1, 2.

Condition C) is the most di�cult to handle, that is why we are going to concentrate on

it, in Remark 2.8 we make some comments concerning the other possibilities. We remind

that, if (2.16) holds for some l ∈ {1, 2}, the cases (2.17) or (2.18) are possible and they

have to be treated separately, therefore we have divided the proof of i) into two cases, Case

1 where (2.18) hold for ever l ∈ {1, 2} and Case 2 where (2.18) hold for some l ∈ {1, 2}
and for the other l̃ ∈ {1, 2} di�erent from l we have (2.17).

Proof of i)
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Case 1: Assume that (2.16) and (2.18) hold and consider ωk l ⊂⊂ ω̃k l satisfying (2.14),

(2.19) and (2.20), for every l = 1, 2.

From now on, we are going to make use of the weight functions (2.31) and (2.32) for

Λ = {1, 2} × {1, 2}, m = (k, l) and {qm} = {ωk l}.
For all j, k, l ∈ {1, 2}, j ̸= l, we apply Proposition 2.5 for u = γj, k l (see (2.27)) and

qm = ωk l and we sum the resulting estimates to obtain:

2∑
j=1

Ik ln (γj, k l) ≤ C
2∑
j=1

(
snλn+1

∫∫
ωk l×(0,T )

e−2sσk l(ξk l)
n|γj, k l|2dxdt+

sn−3λn−3

∫∫
Q

e−2sσk l(ξk l)
n−3

2∑
p=1

∥Aj p∥2∞|γp, k l|2dxdt

)

+ sn−3λn−3

∫∫
Ok l×(0,T )

e−2sσk l(ξk l)
n−3|ψl|2dxdt, k, l = 1, 2, (2.36)

for every λ ≥ C and s ≥ sk l = C(Ω, ωk l)(T + T 2). Given a small ϵ > 0, we use the fact

that T 6ξk l ≥ C and we get that

sn−3λn−3

∫∫
Q

e−2sσk l(ξk l)
n−3

2∑
p=1

∥Aj p∥2∞|γp, k l|2dxdt

≤ CT 6∥Aj p∥2∞sn−3λn−3

∫∫
Q

e−2sσk l(ξk l)
n

m∑
p=1

|γp, k l|2dxdt ≤ ϵIk ln (γj, k l), k, l = 1, 2,

(2.37)

for λ ≥ C and s ≥ max{sk l, CT 2∥Ajp∥
2
3}. Combining (2.36) and (2.37) we have

2∑
j=1

Ik ln (γj, k l) ≤ Csnλn+1

2∑
p=1

∫∫
ωk l×(0,T )

e−2sσk l(ξk l)
n|γp, k l|2dxdt+

+ sn−3λn−3

∫∫
Ok l×(0,T )

e−2sσk l(ξk l)
n−3|ψk|2dxdt, (2.38)

for all k, l = 1, 2.

Since we are assuming (2.13), (2.14) and (2.21), we take the open subsets ω̂k l and
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functions θ̂k l ∈ C2
0(ω̂

k l) such that θ̂k l = 1 in ωk l, an ϵ su�ciently small, and we show that

snλn+1

∫∫
ωk l×(0,T )

e−2sσk l(ξk l)
n|γp, k l|2 dxdt

≤ Csnλn+1

∫∫
ω̂k l×(0,T )

θ̂k le−2sσk l(ξk l)
nAl p|γp, k l|2 dxdt

= snλn+1

∫∫
ω̂k l×(0,T )

θ̂k le−2sσk l(ξk l)
n(γl, k lt −∆γl, k l − Al lγ

l, k l +
1

µk l
ψk1Ok l

)γp, k l dxdt

≤ ϵIk ln (γp, k l) + Csn+4λn+5

∫∫
ω̂k l×(0,T )

e−2sσk lξn+4
k l |γl, k l|2 dxdt

+ Csnλn+1

∫∫
(Ok l∩ω̂k l)×(0,T )

e−2sσk lξnk l|ψk|2 dxdt, (2.39)

for all p, k, l = 1, 2 with p ̸= l.

Then, we combine (2.34) and (2.39), we use the fact that Ok l∩ ω̂k l = ∅, and we obtain

2∑
j=1

Ik ln (γj, k l) ≤ Csn+2λn+3

∫∫
ω̂k l×(0,T )

e−2sσk l(ξk l)
n|γl, k l|2 dxdt, k, l = 1, 2, (2.40)

for λ ≥ C and s ≥ max{sk l, CT 2∥Aj p∥
2
3}.

Let Õ be given in Lemma 2.4 and let θ ∈ C2(Ω̄) be such that{
θ(x) = 0 for x ∈ Õ,
θ(x) = 1 for x ∈ Ω \ O.

(2.41)

For i = 1, 2, we have that θψj satis�es the equation
−(θψj)t −∆(θψj) = θ(

∑2
p=1Ap jψ

p +
∑2

p=1 γ
j, p j1Op j

d
)− 2∇ · (∇θ · ψj) + 2∆θψj in Q,

θψj = 0 on Σ,

(θψj)(·, T ) = θψjT in Q.

We apply Proposition 2.6 replacing n for n+3, m = (j, j), u = θψj and {qm} = {ωj j} to

obtain

Lj jn+3(θψ
j) ≤ C

(
sn+3λn+4

∫∫
ωj j×(0,T )

e−2sσjj(ξjj)
n+3|θψj|2dxdt

+snλn
2∑
p=1

∫∫
Q

e−2sσjj(ξjj)
n|θ|2|γj, p j1Op j

d
|2dxdt+

snλn
2∑
p=1

∥Ap, j∥2∞
∫∫

Q

e−2sσjj(ξjj)
n+2|θ|2|ψp|2dxdt+ sn+2λn+2

∫ T

0

∫
O
e−2sσjj(ξjj)

n+2|ψj|2dxdt

)
,

for all j = 1, 2.
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Using the de�nition of θ (see (2.41)), taking λ ≥ C and s ≥ maxp,j{sjj, CT 2, CT 2∥Ap j∥
2
3}

we obtain

sn+3λn+4

2∑
j=1

∫∫
Q

e−2sσjj(ξjj)
n+3|ψj|2dxdt

≤ C

2∑
j=1

(
sn+3λn+4

∫∫
O×(0,T )

e−2sσjj(ξjj)
n+3|ψj|2dxdt

+snλn
2∑
p=1

∫∫
Q

e−2sσjj(ξjj)
n|θ|2|γj, p j1Op j

d
|2dxdt

)
, j = 1, 2.

By summing this last estimate with (2.40) and using the fact that all the weights coincide

in the support of θ (see (2.31)), we absorb the terms of γj, p j and get

2∑
j,k,l=1

Ik ln (γj, k l) + sn+3λn+4

2∑
j=1

∫∫
Q

e−2sσjj(ξjj)
n+3|ψj|2dxdt

≤ C
2∑
j=1

(
sn+3λn+4

∫∫
O×(0,T )

e−2sσjj(ξjj)
−3|ψj|2dxdt

+
2∑
p=1

sn+2λn+3

∫∫
ω̂p j×(0,T )

e−2sσp j(ξp j)
n+2|γj, p j|2 dxdt

)
, (2.42)

for λ ≥ C and s ≥ maxk,l,p,j{sk l, CT 2, CT 2∥Ap j∥
2
3} su�ciently large. The next calculati-

ons are dedicated to estimate the local terms of γj, p j in the right hand side of (2.42).

Now, we use the fact that ω̃k l can be taken satisfying (2.14), (2.19) and (2.20). Then,

it is easy to see that

−ψjt −∆ψj =
2∑
p=1

Ap jψ
p + γj, p j1Op j

d
in ω̃p j × (0, T ).

Let θ̃p j ∈ C2
0(ω̃

p j) such that θ̃p j = 1 in ω̂p j. Then we have

sn+2λn+3

∫∫
ω̂p j×(0,T )

e−2sσp j(ξp j)
n+2|γj, p j|2 dxdt =

sn+2λn+3

∫∫
ω̃p j×(0,T )

θ̃p j(ξp j)
n+2e−2sσp jγj, p j(−ψjt −∆ψj −

2∑
p=1

Ap jψ
p) dxdt

≤ ϵIp jn (γj, p j) + Csn+8λn+9

2∑
p=1

∫∫
ω̃p j×(0,T )

e−2sσp jξn+8
p j |ψp|2 dxdt, (2.43)

for ϵ > 0 su�ciently small. Finally, we combine (2.42) and (2.43), we obtain (2.34).
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In what follows, we prove prove Carleman estimate (2.35), we assume that (2.17) holds

for a given value of l and that (2.18) for l̃ ̸= l.

Case 2: For simplicity, we will assume that (2.17) holds for l = 1 and (k, k̃) = (2, 1) and

that (2.18) holds for l = 2 and (k, k̃) = (1, 2), similar arguments can be used for di�erent

values l, k and k̃. Then, we are assuming that

O1 1
d ∩ O ⊂ O2 1

d ∩ O and O2 1
d ∩ O \ O1 1

d ∩ O ≠ ∅, (2.44)

and

O2 2
d ∩ O \ O1 2

d ∩ O ≠ ∅, and O1 2
d ∩ O \ O2 2

d ∩ O ≠ ∅. (2.45)

We start considering the open sets satisfying (2.14), and since we have (2.44), we can

assume that

ω̃1 1 ⊂ O2 1
d ∩ O and ω̃2 1 ∩ O1 1

d = ∅. (2.46)

De�ning hj = γj,1 1 + γj,2 1 for j = 1, 2, the adjoint system (2.27) becomes

−ψ1
t −∆ψ1 =

∑2
p=1Ap 1ψ

p + h11O11
d
− γ1,2 1(1O1 1

d
− 1O2 1

d
), in Q,

−ψ2
t −∆ψ2 =

∑2
p=1Ap 2ψ

p +
∑2

p=1 γ
2, p 21Op 2

d
, in Q,

h1t −∆h1 =
∑2

p=1A1 ph
p −

∑2
p=1

1
µp 1

ψp1Op 1 , in Q,

h2t −∆h2 =
∑2

k=1A2 ph
p, in Q,

γl, k lt −∆γl, k l =
∑2

p=1Al pγ
p, k l − 1

µk l
ψk1Ok l

, (k, l) ̸= (1, 1) in Q,

γj, k lt −∆γj, k l =
∑2

p=1Aj pγ
p, k l, (k, l) ̸= (1, 1) in Q,

ψj = hj = γj, k l = 0, for j, k, l = 1, 2 in Σ,

ψj(T ) = ψT , hj(0) = 0, γj, k l(0) = 0, for j, k, l = 1, 2 in Ω.

(2.47)

By using Proposition 2.5 for {(γ1,k 2, γ2,k 2)}2k=1 for (γ
1,2 1, γ2,2 1) and for (h1, h2), we obtain

2∑
j=1


2∑

k, l = 1

(k, l) ̸= (1, 1)

Ik ln (γj, k l) + I11n (hj)

 ≤ C

2∑
j=1

snλn+1

2∑
k, l = 1

(k, l) ̸= (1, 1)

∫∫
ωk l×(0,T )

e−2sσk l(ξk l)
n|γj, k l|2dxdt

+ snλn+1

2∑
j=1

∫∫
ω11×(0,T )

e−2sσ11(ξ11)
n|hj|2dxdt

)

+ sn−3λn−3

2∑
p,k=1

∫∫
Op k×(0,T )

e−2sσp k(ξp k)
n−3|ψp|2dxdt, (2.48)

for λ ≥ C and s ≥ max{sk l, CT 2∥Ajp∥
2
3}k,l,j,p.
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Using the equation of h1 in (2.47), that is

A1 2h
2 = h1t −∆h1 − A1 1h

1 +
2∑
p=1

1

µp 1
ψp1Op 1 ,

and from assumption (2.21), we prove that

snλn+1

∫∫
ω11×(0,T )

e−2sσ11(ξ11)
n|h2|2 dxdt ≤ ϵI11n (h2)

+ Csn+4λn+5

∫∫
ω̂11×(0,T )

e−2sσ11ξn+4
11 |h1|2 dxdt

+ Csnλn+1

2∑
p=1

∫∫
(Op 1∩ω̂11)×(0,T )

e−2sσ11ξn11|ψp|2 dxdt, (2.49)

for ϵ > 0 su�ciently small.

In a very similar way, we use (2.21) again, obtaining

snλn+1

∫∫
ωk l×(0,T )

e−2sσk l(ξk l)
n|γj, k l|2 dxdt

≤ ϵIk ln (γj, k l) + Csn+4λn+5

∫∫
ω̂k l×(0,T )

e−2sσk lξn+4
k l |γl, k l|2 dxdt

+ Csnλn+1

∫∫
(Ok l∩ω̂k l)×(0,T )

e−2sσk lξnk l|ψk|2 dxdt, (2.50)

for λ ≥ C and s ≥ CT 2∥Aj j∥
2
3 , for j, k, l = 1, 2 where j ̸= l and (k, l) ̸= (1, 1).

Now, applying Carleman inequalities for θψj where θ is given in (2.41), summing to

(2.48) and using (2.49) and (2.50), we get

2∑
j=1


2∑

k, l = 1

(k, l) ̸= (1, 1)

Ik ln (γj, k l) + I11n (hj)

+ sn+3λn+4

2∑
j=1

∫∫
Q

e−2sσjj(ξjj)
n+3|ψj|2dxdt

≤ C

(
sn+3λn+4

2∑
j=1

∫∫
Õ×(0,T )

e−2sσjj(ξjj)
n+3|ψj|2dxdt

+sn+2λn+3

2∑
k, l = 1

(k, l) ̸= (1, 1)

∫∫
ω̂k l×(0,T )

e−2sσk l(ξk l)
n+2|γl, k l|2 dxdt

+ Csn+4λn+5

∫∫
ω̂11×(0,T )

e−2sσ11ξn+4
11 |h1|2 dxdt

)
. (2.51)
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for λ ≥ C and s ≥ max{sk l, CT 2∥Aj p∥
2
3}k,l,j,p. To absorb the local terms of γl,k l and h1,

we proceed in a similar way as in (2.43). Indeed, that we can use the equation of ψ1 in

(2.27) since we have that

−ψ1
t −∆ψ1 =

2∑
p=1

Ap 1ψ
p + h1 in ω1 1 × (0, T ), (2.52)

and using (2.44), (2.45) and (2.46) we have

−ψlt −∆ψl =
2∑
p=1

Ap,lψ
p + γl, k l in ωk l × (0, T ), for every k, l = 1, 2, (k, l) ̸= (1, 1).

(2.53)

Using (2.52) and (2.53), and proceeding in a similar way as in (2.43) we have

2∑
j=1


2∑

k, l = 1

(k, l) ̸= (1, 1)

Ik ln (γj, k l) + I11n (hj)

+ sn+3λn+4

2∑
j=1

∫∫
Q

e−2sσjj(ξjj)
n+3|ψj|2dxdt

≤ Csn+3λn+4

2∑
j=1

∫∫
Õ×(0,T )

e−2sσjj(ξjj)
n+3|ψj|2dxdt. (2.54)

Since we have hj and γj, 2,j on the left hand side of (2.51), if we write γj,1 j = hj − γj,2 j,

we can add the global terms of γj,1 j in the left hand side of (2.56), obtaining (2.34).

Remark 2.8. For the proof of i) of Proposition 2.7, we have assumed only the case C),

which correspond to the case where (2.16) holds for every l = 1, 2. It is not di�cult to

see that the other possibilities can be threated by adapting the arguments presented here.

Indeed, if in the proof of Case 2 we have assumed (2.44) and that

O2 2
d ∩ O ⊂ O1 2

d ∩ O and O1 2
d ∩ O \ O2 2

d ∩ O ≠ ∅, (2.55)

then equation (2.53) does not hold for (k, l) = (2, 2), then we could not absorb the local

term of γ2,2 2 in the right hand (2.51). To avoid this, we de�ne the function gj = γj,1 2 +

γj, 2 2, use a similar equation as (2.52) and we bound the local terms of gj in a similar way

as we have bounded the local terms of hj.

Now, if (2.15) holds for some l ∈ {1, 2}, the analysis is much more simpler. Indeed,

to �x the ideas, let us assume that

O1 1
d = O2 1

d .
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In this case we can de�ne the same functions hj = γj,1 1 + γj,2 2 and we see that the

equation satis�ed by {ψj, hj, γj, k l}2j,k,l=1 is similar to (2.47) with the only di�erence that

the equation of ψ1 would be

−ψ1
t −∆ψ1 =

2∑
p=1

Ap,1ψ
p + h11O11

d
, in Q,

which turns the system (2.47) simpler and gives directly expression (2.52).

Let us now proceed with the proof of ii).

Proof of ii: Let {(ψi, γi i, γj i)}2i,j=1 a solution of (2.29), and let us assume that (2.22) is

valid. To �x the ideas, we will suppose that (2.23) holds for (i, j) = (1, 2). Moreover, we

take open sets satisfying (2.24), (2.25) and (2.26).

By using Proposition 2.5 for (γ1 1, γ2 1), we get

I1n−3(γ
11) + I1n−3(γ

21) ≤ C

(
sn−3λn−2

∫∫
ω1×(0,T )

e−2sσ1(ξ1)
n−3
(
|γ11|2 + |γ21|2

)
dxdt

+sn−6λn−6

∫∫
O1×(0,T )

e−2sσ1(ξ1)
n−6|ψ1|2dxdt

)
, (2.56)

for λ ≥ C and s ≥ C(T + T 2(1 + max{∥Ai p∥
2
3})). Let θ̂1 ∈ C2

0(ω̂
1) such that θ̂1 = 1 in

ω1, and using that A1,2 ≥ C0 > 0 in ω1 × (0, T ) (see (2.26)) we obtain that

sn−3λn−2

∫∫
ω1×(0,T )

e−2sσ1 |γ2 1|2dxdt

≤ Csn−3λn−2

∫∫
ω̂1×(0,T )

|θ̂1|2e−2sσ1γ2 1(−γ11t −∆γ1 1 − A1 1γ
1 1 +

1

µ1

ψ11O1)dxdt

≤ ϵI1n−3(γ
2 1) + Csn+1λn+2

∫∫
ω̂1×(0,T )

e−2sσ1(ξ1)
n+2|γ1 1|2dxdt

+ sn+1λn+2

∫∫
(ω̂1∩O1)×(0,T )

e−2sσ1(ξ1)
n+1|ψ1|2dxdt, (2.57)

for ϵ > 0 su�ciently small. Combining (2.56) and (2.57) and using that O ∩ O1 = ∅, we
get that

I1n−3(γ
11) + I1n−3(γ

21) ≤ C

(
sn+1λn+2

∫∫
ω̂1×(0,T )

e−2sσi(ξi)
n+1|γ11|2 dxdt

+sn−6λn−6

∫∫
O1×(0,T )

e−2sσ1(ξ1)
n−6|ψ1|2dxdt

)
, (2.58)

for λ ≥ C and s ≥ C(T + T 2(1+max{∥Ai p∥
2
3})). In a completely analogous way, we can

take θ̂2 ∈ C2
0(ω̂

2), such that θ̂2 = 1 in ω2, and using that A2,1 ≥ C0 > 0 in ω2× (0, T ) (see
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(2.26)), we can prove the following estimate

I2n−6(γ
22) + I2n−6(γ

12) ≤ C

(
sn−6λn−5

∫∫
ω̂2×(0,T )

e−2sσ2(ξ2)
n−6|γ22|2 dxdt

+sn−6λn−6

∫∫
O2×(0,T )

e−2sσ2(ξ2)
n−6|ψ2|2dxdt

)
, (2.59)

for λ ≥ C and s ≥ C(T + T 2(1 + max{∥Ai p∥
2
3})). Summing (2.58) and (2.59) we obtain

2∑
i,j=1

I in−3i(γ
ji) ≤ C

(
sn+1λn+2

∫∫
ω̂1×(0,T )

e−2sσ1(ξ1)
n+1|γ11|2 dxdt

+sn−6λn−5

∫∫
ω̂2×(0,T )

e−2sσ2(ξ2)
n−6|γ22|2 dxdt+ sn−3λn−3

∫∫
O1×(0,T )

e−2sσ1(ξ1)
n−3|ψ1|2dxdt

+sn−6λn−6

∫∫
O2×(0,T )

e−2sσ2(ξ2)
n−6|ψ2|2dxdt

)
. (2.60)

Let θ ∈ C2(Ω̄) be given such that{
θ(x) = 0 for x ∈ Õ,
θ(x) = 1 for x ∈ Ω \ O.

(2.61)

From the �rst equation of system (2.29), we �nd that


−(θψ1)t −∆(θψ1) = θ(

∑2
p=1Ap,1ψ

p + γ111O1
d
) + ψ1∆θ − 2∇(ψ1∇θ) in Q,

θψ1 = 0 on Σ,

(θψ1)(·, T ) = θψ1
T in Q.

By applying Proposition 2.6, we obtain that

snλn+1

∫∫
Q

e−2sσ1(ξ1)
n|ψ1|2dxdt ≤ C

(
snλn+1

∫∫
O×(0,T )

e−2sσ1(ξ1)
n|ψ1|2dxdt

+sn−3λn−3

2∑
p=1

∫∫
Q

e−2sσ1(ξ1)
n−3|θ|2|Ap,1ψp|2dxdt

+sn−3λn−3

∫∫
O1

d×(0,T )

e−2sσ1(ξ1)
n−3|θ|2|γ11|2dxdt

)
(2.62)

for λ ≥ C and s ≥ s1. Now, using Proposition 2.5 for ψ2, we get

I2n−3(ψ
2) ≤ C

(
sn−3λn−2

∫∫
ω2×(0,T )

(ξ2)
n−3e−2sσ2|ψ2|2dxdt

+sn−6λn−6

2∑
p=1

∫∫
Q

e−2sσ2(ξ2)
n−6|Ap,2ψp|2dxdt

+ sn−6λn−6

∫∫
O2

d×(0,T )

e−2sσ2(ξ2)
n−6|γ22|2dxdt

)
, (2.63)
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for λ ≥ C and s ≥ s2. Summing (2.62) and (2.63) and absorbing the global terms of ψ1

and ψ2 for λ ≥ C and s ≥ maxi,j{sj, CT 2∥Ai,j∥2∞} large enough, we get

snλn+1

∫∫
Q

e−2sσ1(ξ1)
n|ψ1|2dxdt+ I2n−3(ψ

2)

≤ C

(
snλn+1

∫∫
O×(0,T )

e−2sσ1(ξ1)
n|ψ1|2 dxdt+ sn−3λn−2

∫∫
ω2×(0,T )

e−2sσ2(ξ2)
n−3|ψ2|2 dxdt

+sn−3λn−3

∫∫
O1

d×(0,T )

e−2sσ1(ξ1)
n|γ11|2 dxdt+ sn−6λn−6

∫∫
O2

d×(0,T )

e−2sσ2(ξ2)
n−6|γ22|2 dxdt

)
.

(2.64)

Summing (2.60) and (2.64) and absorbing the global terms of ψi and γii we get

snλn+1

∫∫
Q

e−2sσ1(ξ1)
n|ψ1|2dxdt+ I2n−3(ψ

2) +
2∑

i,j=1

I in−3i(γ
ji)

≤ C

(
snλn+1

∫∫
O×(0,T )

e−2sσ1(ξ1)
n|ψ1|2 dxdt+ sn−3λn−2

∫∫
ω2×(0,T )

e−2sσ2(ξ2)
n−3|ψ2|2 dxdt

+sn+1λn+2

∫∫
ω̂1×(0,T )

e−2sσ1(ξ1)
n+1|γ11|2 dxdt+ sn−6λn−5

∫∫
ω̂2×(0,T )

e−2sσ2(ξ2)
n−6|γ22|2 dxdt

)
,

(2.65)

λ ≥ C and s ≥ maxi,j{sj, CT 2(1 + ∥Ai,j∥2∞)} large enough.

In order to absorb the local terms of γi i in the right hand side of (2.65), we are going to

use the equation of ψi in (2.29), and the fact that ω̂i satisfy (2.25). Indeed, let θ̃i ∈ C2
0(ω̃

i)

a cut-o� function such that θ̃i = 1 in ω̂i. Then, we have that

sn+1λn+2

∫∫
ω̂1×(0,T )

e−2sσ1(ξ1)
n+1|θ̃1|2|γ11|2 dxdt

= sn+1λn+2

2∑
p=1

∫∫
ω̃1×(0,T )

e−2sσ1(ξ1)
n+1|θ̃1|2γ11(−ψ1

t −∆ψ1 − A1 1ψ
1) dxdt

≤ ϵI1n−3(γ
11) + sn+9λn+10

∫∫
ω̃1×(0,T )

e−2sσ1(ξ1)
n+9|ψ1|2 dxdt, (2.66)

and

sn−6λn−5

∫∫
ω̂2×(0,T )

e−2sσ2(ξ2)
n+1|θ̃2|2|γ2 2|2 dxdt

≤ sn−6λn−5

2∑
p=1

∫∫
ω̂2×(0,T )

e−2sσ2(ξ2)
n−6|θ̃2|2γ22(−ψ2

t −∆ψ2 − A2 2ψ
2) dxdt

≤ ϵI2n−6(γ
22) + sn−2λn−1

∫∫
ω̃2×(0,T )

e−2sσ2(ξ2)
n−2|ψ2|2 dxdt, (2.67)



39

for ϵ > 0 su�ciently small. Combining (2.65), (2.66) and (2.67), we get that

snλn+1

∫∫
Q

e−2sσ1(ξ1)
n|ψ1|2dxdt+ I2n−3(ψ

2) +
2∑

i,j=1

I in−3i(γ
j i)

≤ C

(
sn+9λn+10

∫∫
O×(0,T )

e−2sσ1(ξ1)
n+9|ψ1|2 dxdt

+sn−2λn−1

∫∫
ω̃2×(0,T )

e−2sσ2(ξ2)
n−2|ψ2|2 dxdt

)
. (2.68)

Since we are assuming (2.25), we can take an open set ω2
∗, such that

ω̃2 ⊂ ω2
∗ ⊂ suppA2, 1 ∩ O \ (O1

d ∩ O),

and a cut-o� function θ2∗ ∈ C2
0(ω

2
∗) such that θ2∗ = 1 in ω̃2. We use again property (2.26),

and we obtain

sn−2λn−1

∫∫
ω̃2×(0,T )

e−2sσ2(ξ2)
n−2|θ∗|2|ψ2|2 dxdt

= sn−2λn−1

∫∫
ω̃2×(0,T )

e−2sσ2(ξ2)
n−2|θ2∗|2ψ2(−ψ1

t −∆ψ1 − A1, 1ψ
1) dxdt

≤ ϵI2n−3(ψ
2) + sn+3λn+4

∫∫
ω2
∗×(0,T )

e−2sσ2(ξ2)
n+3|ψ1|2 dxdt (2.69)

Combining (2.68) and (2.69) we �nally obtain (2.35), for λ ≥ C and s ≥ maxi,j{sj, CT 2∥Ai,j∥2∞}.

In next section, we prove the observability inequalities given in Theorem 3.17.

2.5 Observability Inequalities

In this section we are going to use Proposition 2.7 to prove Theorem 2.3. Here, we will

concentrate on the proof of (2.28), and we will omit the proof of (2.30) since it follows

in a completely analogous way. In order to do this, we will combine Carleman estimate

(2.34) with suitable energy estimates for the solutions of (2.27).

Let {ψj, γj, k l} a solution of (2.27). By energy estimates, we have that

2∑
p=1

∥γp, k l(·, t)∥22 ≤
C

µk l

∫ t

0

∥ψk(·, s)∥22 ds, k, l = 1, 2, t ∈ [0, T ] (2.70)
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and

2∑
p=1

∥ψp(·, t)∥22 ≤ C

2∑
p=1

∥ψp(·, t′)∥22 + (1 + max
i,j

{∥Ai, j∥2∞})
∫ t′

t

2∑
p=1

∥ψp(·, s)∥2 ds

+ C

∫ t′

t

2∑
j,p=1

∥γj, p j(·, s)∥2 ds. (2.71)

Combining (2.70) and (2.71) we have

2∑
p=1

∥ψp(·, t)∥22 ≤ C

2∑
p=1

∥ψp(·, t′)∥22 + (1 + max
i,j

{∥Ai, j∥2∞})
∫ t′

t

2∑
p=1

∥ψp(·, s)∥2 ds

+ C
2∑

p,j=1

T

µp j

∫ t′

0

∥ψj(·, s)∥22 ds, k, l = 1, 2, (2.72)

for every 0 ≤ t < t′ ≤ T . By Gronwall Lemma, we have that

2∑
p=1

∥ψp(·, t)∥22 ≤ Ce(1+maxi j{∥Ai, j∥2∞})(t′−t)
2∑
p=1

(
∥ψp(·, t′)∥22 +

2∑
j=1

T

µp j

∫ t′

0

∥ψj(·, s)∥22 ds

)
.

(2.73)

Integrating over [0, t′] and taking µp j large enough

2∑
p=1

∫ t′

0

∥ψp(·, s)∥22 ds ≤ Ce(1+maxi j{∥Ai, j∥2∞})(t′−t)
2∑
p=1

∥ψp(·, t′)∥22. (2.74)

Combining (2.70), (2.73) and (2.74), we get that

2∑
p=1

(
∥ψp(·, t)∥22 +

2∑
k,l=1

∥γp, k l(·, t)∥22

)
≤ Ce(1+maxi j{∥Ai, j∥2∞})(t′−t)

2∑
p=1

∥ψp(·, t′)∥22, (2.75)

for every 0 ≤ t < t′ ≤ T . Let υ : [0, T ] → R be such that υ = 1 in [0, T/4] and

υ = 0 in [3T/4, T ]. If we apply a similar argument to prove (2.75) for the functions

{υγj, υγj, k l}j,k,l, and taking t′ = T we �nd that

2∑
p=1

(
∥υ(t)ψp(·, t)∥22 +

2∑
k,l=1

∥υ(t)γp, k l(·, t)∥22

)

≤ Ce(1+maxi j{∥Ai, j∥2∞})(T−t)
∫ T

0

2∑
p=1

(
∥υt(t)ψp(·, s)∥22 +

2∑
k,l=1

∥υt(s)γp, k l(·, s)∥22

)
ds,

(2.76)
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for t ∈ [0, T ]. In particular, we have that

2∑
p=1

(
∥ψp∥2L∞(0,T/2;L2(Ω)) +

2∑
k,l=1

∥γp, k l∥2L∞(0,T/2;L2(Ω))

)

≤ Ce(1+maxi j{∥Ai, j∥2∞})(T−t)
2∑
p=1

(
∥ψp∥2L2(T/2,3T/4;L2(Ω)) +

2∑
k,l=1

∥γp, k l∥2L2(T/2,3T/4;L2(Ω))

)
.

(2.77)

Now, we de�ne the following new weight functions

l(t) =

{
T 2/4 in [0, T/2],

t(T − t) in [T/2, T ],
(2.78)

and for a family of sets {ηm}m∈Λ given by Lemma 2.4, we de�ne

σ̃m(x, t) :=
e4λ∥ηm∥∞ − eλ(2∥ηm∥∞+ηm(x))

l(t)
, ξ̃m(x, t) :=

eλ(2∥ηm||∞+ηm(x))

l(t)
, m ∈ Λ. (2.79)

Then, we have that

min{e−2sσk lξqk l, e
−2sσ̃k l ξ̃qk l} ≥ e−Cmaxs/T 2 1

T 2q
in Ω× (

T

4
,
3T

4
), k, l = 1, 2, (2.80)

and

max{e−2sσk lξqk l, e
−2sσ̃k l ξ̃qk l} ≤ e−Cmins/T

2 1

T 2q
in Q, k, l = 1, 2, (2.81)

for

Cmax = e4λ∥ηm∥∞ − e2λ∥ηm∥∞ and Cmin = e4λ∥ηm∥∞ − e3λ∥ηm∥∞ .

In this way, using (2.77), we have that

2∑
p=1

(∫
Ω

|ψp(0)|2 dx+
2∑

k,l=1

∫
Ω

∫ T/2

0

e−2sσ̃k l ξ̃nk l|γp, k l|2 dxdt

)

≤ C

T 2n
e−Cmins/T

2

e(1+maxi j{∥Ai, j∥2∞})T
2∑
p=1

(
∥ψp∥2L2(T/2,3T/4;L2(Ω)) +

2∑
k,l=1

∥γp, k l∥2L2(T/2,3T/4;L2(Ω))

)

≤ Ce(Cmax−Cmin)s/T
2

e(1+maxi j{∥Ai, j∥2∞})T

(
2∑

j,k,l=1

Ik ln (γj, k l) +
2∑
j=1

∫∫
Q

e−2sσjj(ξjj)
n+3|ψj|2dxdt

)
,

(2.82)
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λ ≥ C and s ≥ max{sk l, CT 2∥Ajp∥
2
3}k,l,j,p. Combining (2.82) and (2.34) we get that

2∑
p=1

(∫
Ω

|ψp(0)|2 dx+
2∑

k,l=1

∫
Ω

∫ T/2

0

e−2sσ̃k l ξ̃nk l|γp, k l|2 dxdt

)

≤ Ce(1+maxi j{∥Ai, j∥2∞})T eCs/T
2

2∑
p=1

∫∫
O×(0,T )

e−2sσp jξn+8
p j |ψp|2 dxdt

≤ CeC(1+ 1
T
+T+max ∥Ai,j∥

2
3+T maxi j ∥Ai, j∥∞)

2∑
p=1

∫∫
O×(0,T )

|ψp|2 dxdt. (2.83)

To complete the proof, we just use the fact that the weights coincide in (T/2, T ) and we

obtain
2∑

k,l=1

∫
Ω

∫ T

T/2

e−2sσ̃k lξnk l|γp, k l|2 dxdt ≤ Ik ln (γj, k l) ≤ C

2∑
p=1

∫∫
O×(0,T )

|ψp|2 dxdt. (2.84)

Hence, we have proved (2.28) with C∗ = CeC(1+ 1
T
+T+max ∥Ai,j∥

2
3+T maxi j ∥Ai, j∥∞) and ρ(t) =

minx∈Ω e
−2sσ̃k lξnk l.

2.6 Comments and open questions

On the conditions over Ok l
d and Ok

d

In order to solve controllability problems for systems of parabolic equations for every

time T , it is usual to assume that the support of the couping coe�cients intersects the

control domain in a suitable way. In this chapter, we have assumed some similar conditions

to the ones in [5, 6], these conditions are given essentially in (2.15), (2.16) or (2.23).

Concerning these conditions, some open questions arises naturally. The �rst one is the

case that Ok,l
d coincides only inside O and di�er outside O, we remark that, even for the

case of one single equation, similar open problem arises (see [6]). The second one is the

case that

Oi
d ∩ O ⊂ suppAj, i ∩ O ≠ ∅ or suppAj, i ∩ O ⊂ Oi

d ∩ O,

for some (i, j) ∈ {(1, 2), (2, 1)}. The di�culty here is related to the fact that the variables

ψj are backward in time, while γi j are forward in time, turning di�cult to follow a similar

strategy as in the proof of Case 2 of Proposition 2.7.

On the functionals (2.3) or (2.9)

If we look to the recent results in [30], the authors have solved Theorem 2.2 for the

speci�c case where

J i({vj}) = αi

∫∫
Oi

d×(0,T )

|y − y1d|2 + |y − y2d|2 dxdt+ µi

∫∫
Oi×(0,T )

|vi| dxdt, (2.85)
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and

O1
d = O2

d.

The reason why we have de�ned the functionals (2.9) instead of (2.85) is that it seems

more natural to assign to each follower the variable it has to control. In any case, by

applying similar arguments as the ones contained here, one can solve the problem of [30],

even when O1
d ̸= O2

d. For this, we have to assume that

O1
d ∩ O \ O2

d ∩ O ≠ ∅ or O2
d ∩ O \ O1

d ∩ O ≠ ∅,

and moreover

Oj
d ∩ O \ suppAj,i ̸= ∅ and Int(suppAj,i) \ Oj

d ∩ O ≠ ∅, for every i ̸= j.

These are some kind of mixed conditions between the ones used to solve Theorems 2.1

and 2.2.

On the quantity of equations considered

A natural open question which arises is the possibility of proving similar results, when

we have m equation, where m > 2. The di�culty for this case, is the proof of estimate

(2.39), in the case of Theorem 2.1 and (2.66), (2.67) for Theorem 2.2. For each (k, l) �xed,

the variables {γj,k l}mj=1 are the solutions of a system of m equation, and for each j ̸= l

we must estimate the local terms of γj,k,l by local terms of γl,k l. This problem can be

compared to the one of controlling a general system of m equation with one single control,

which is a completely open problem. Even if the coupling coe�cients are in cascade we

do not know how we can estimate the local terms of γj,k,l by local terms of γl,k l for evey

l = 1, . . . ,m.
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3 ON THE STACKELBERG-NASH EXACT CONTROLLABILITY FOR KDV

EQUATION

Islanita C. A. Albuquerque, Fágner Dias Araruna 1 and Maurício C. Santos 2

Abstract

This paper deals with a hierarchical control problem for the

Korteweg-de Vries (KdV) equation with distributed controls following

a Stackelberg-Nash strategy. Here, we have a control problem where

many objectives have to be achieved at once and, in order to do that,

many controls are needed. We assume that there is a main control called

the leader, and two secondary controls called the followers, each of them

has it own objective. Once the leader policy is �xed, the followers must

act in order to accomplish their goals. The leader objective is to drive the

solutions of the KdV equation to a given trajectory, while the followers

must be a Nash equilibrium for their targets. Problems of this kind are

already solved for many parabolic and hyperbolic equations, and here is

the �rst time it is considered for dispersive equations such as the KdV

equation.

Keywords: Nash equilibrium, Stackelberg's method, null controllability, Carleman

estimates, KdV equation.

3.1 Introduction

The Korteweg-de Vries (KdV) equation is a third order partial di�erential equation

which models the propagation of water waves on shallow water surfaces. It was �rst

derived by Boussineq (see [8]) and Korteweg-de Vries (see [36]). In the last few years,

this equation was extensively studied in many point of views like well posedness, stability

of solitary waves, integrability and long time behavior, see for instance [35, 45]. In the

control point of view a lot has been done. For the boundary controllability, we can refer

the papers [26, 52, 53, 60] for linear and [15, 16, 18] for nonlinear cases. We can also

refer [27] where an uniform null controllability result is adressed in the case of zero-

dispersion limit. For the controllability with distributed controls, we can cite [12] where

using Carleman estimates, some controllability results for linear KdV equation are proved.
1 Federal University of Paraíba
2 Federal University of Paraíba
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It is also important to mention reference [4] where an internal controllability result for a

coupled system of Schrödinger and KdV system is considered.

All the references cited previously are dedicated to single objective control problems.

In this paper, we consider a control problem for the KdV equation in which many ob-

jectives have to be accomplished, that is what we call a multi-objective control problem.

Here, we want to know if it is possible to control the equation to a desired state when

many other objectives are also being considered at the same time. It is not di�cult to

realize that many objectives may be in con�ict in the sense that solving one of them turns

the others di�cult or even impossible to solve. To overcome this, we apply the concept

of Stackelberg's Optimization where a hierarchy for the controls is assumed. We consider

one control called the leader and other controls called the followers (in some sense subor-

dinated to the leader). Once the leader policy is �xed, the followers must accomplish its

objectives in a optimal way. To determine the followers, we make use of a equilibrium

concept due to John Nash (see [47]) usually applied to noncooperative game problems.

Multiobjective control problems have been considered in many papers in the past few

years. The concept of hierarchic controls applied for PDEs was introduced and popularized

by Jacques L. Lions in [38, 43], since then, many related papers appeared and nowadays

we can �nd many results for parabolic and hyperbolic equations. For instance, in [19,

20, 29, 50, 51] the authors studied multiobjective control problems in which the leader

objective is of approximate controllability type. Results in the exact controllability level

are quite recent being [5, 6] the pioneer works for the heat equation. In this context, we

can also cite [13] where the arguments of [5, 6] were adapted for the case of a fourth order

evolution equation. Up to our knowledge, no results are known for dispersive equations

such as the KdV equation.

3.2 Statement of the Problem

Let (0, 1) ⊂ R be the unitary open interval and T > 0 a real number. We consider

internal controls supported on a nonempty open subset ω ⊂ (0, 1) and homogeneous

boundary conditions. We de�ne Q = (0, 1) × (0, T ) and for any open subset ω ⊂ (0, 1)

we de�ne Qω = ω × (0, T ).

Consider the nonlinear KdV equation
yt + yx + yxxx + yyx = f1O + v1χO1 + v2χO2 in Q,

y (0, ·) = y (L, ·) = yx (L, ·) = 0 on (0, T ) ,

y (x, ·) = y0 in (0, 1) ,

(3.1)

where y = y(x, t) is the state, y0 is prescribed. In (3.1), the set O ⊂ (0, 1) is the main
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control domain and (all them are supposed to be small and disjoint). The controls are f ,

v1 and v2, where f is called the leader and v1 and v2 are the followers, each of them will

have it own objective. The function 1O represents the characteristic function in O while

χOi
are non negative functions in C∞

0 (Oi), i = 1, 2. This way of disposing the controls,

in some kind of hierarchy, is called Stackelberg's optimization strategy and is commonly

used in multi-objective control problems.

Let us be more precise about the problem under view. Let O1,d, O2,d ⊂ (0, 1) be open

sets and consider the functionals

Ji(f, v
1, v2) =

αi
2

∫∫
Oi,d×(0,T )

|y − yi d|2 dxdt+
µi
2

∫∫
Q

χOi
|vi|2 dxdt, i = 1, 2, (3.2)

where the αi > 0, µi > 0 are constants and the yi,d = yi,d(x, t) are given functions.

The Stackelberg-Nash exact controllability for the KdV equation can be described by the

following steps:

1. For each f , the followers v1 and v2 intend to be a Nash equilibrium for the costs Ji
(i = 1, 2). In other words, once f has been �xed, we look for a couple (v1, v2), with

vi ∈ L2(Oi × (0, T )), satisfying

J1(f ; v
1, v2) = min

v̂1
J1(f ; v̂

1, v2), J2
(
f ; v1, v2

)
= min

v̂2
J2(f ; v

1, v̂2). (3.3)

Note that, if the functionals Ji (i = 1, 2) are convex, then (v1, v2) is a Nash equili-

brium if and only if

J ′
1(f ; v

1, v2)(v̂1, 0) = 0, ∀v̂1 ∈ L2 (O1 × (0, T )) , v1 ∈ L2(O1 × (0, T )), (3.4)

and

J ′
2(f ; v

1, v2)(0, v̂2) = 0, ∀v̂2 ∈ L2 (O2 × (0, T )) , v2 ∈ L2(O2 × (0, T )). (3.5)

Since system (3.1) is nonlinear, functionals (3.2) are not necessarily convex. Howe-

ver, we will see further that the convexity of Ji will follow for µi su�ciently large.

2. Let us �x an uncontrolled trajectory, that is, a su�ciently regular solution to the

system 
yt + yx + yxxx + y yx = 0 in Q,

y (0, ·) = y (L, ·) = yx (L, ·) = 0 on (0, T ) ,

y(·, 0) = y0 in (0, 1) .

(3.6)

Once the Nash equilibrium has been identi�ed and �xed for each f , we look for a

control f̂ ∈ L2(O × (0, T )) such that

y(·, T ) = y(·, T ) in (0, 1). (3.7)
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De�ning the new variables z = y − y and zi,d = yi,d − ȳ it is clear that property (3.7)

is equivalent to the null controllability property for z, that is,

z(x, T ) = 0 in (0, 1), (3.8)

where z is the solution of the equation
zt + zx + zxxx + zzx + (yz)x = f 1O + v1χO1 + v2χO2 in Q,

z (0, ·) = z (L, ·) = zx (L, ·) = 0 on (0, T ) ,

z(·, 0) = z0 in (0, 1) .

(3.9)

On the other hand, the functionals Ji can be rewritten as

Ji(f, v
1, v2) =

αi
2

∫∫
Oi,d×(0,T )

|z − zi d|2 dxdt+
µi
2

∫∫
Q

χOi
|vi|2 dxdt, i = 1, 2, (3.10)

where zi d := yi d − ȳ. If the functionals Ji of (3.10) are convex, it follows from conditions

(3.4) and (3.5), and for µi (i = 1, 2) su�ciently large, that

vi = − 1

µi
ϕiχOi

, i = 1, 2, (3.11)

where (z, ϕ1, ϕ2) is solution of the following optimality system:

zt + zx + zxxx + zzx + (yz)x = f 1O −
∑2

i=1
1
µi
ϕiχOi

in Q,

−ϕit − ϕix − ϕixxx − (z + y)ϕix = αi(z − zi,d)χOi,d
, i = 1, 2 in Q,

z (0, ·) = z (L, ·) = zx (L, ·) = 0 on (0, T ) ,

ϕi (0, ·) = ϕi (L, ·) = ϕix (0, ·) = 0 on (0, T ) ,

z(·, 0) = z0, ϕi(·, T ) = 0 in (0, 1) .

(3.12)

The proof to that is standard, see for instance [5, 38]. It is also standard that for µi
(i = 1, 2) su�ciently large the functionals Ji are indeed convex (the proof is made in the

next section) and hence characterization (3.11) may be used.

Finally, once the followers are characterized by (3.11) and (3.12), what remains to do

is to �nd f such that the solutions of (3.12) satisfy (3.8). This motivates the main result

of this thesis

Theorem 3.1. For i = 1, 2, suppose that

Oi,d ∩ O ≠ ∅ (3.13)

and that µi are su�ciently large. Also, assume that one of the two conditions holds:

O1,d = O2,d (3.14)
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or

O1,d ∩ O ≠ O2,d ∩ O. (3.15)

Then, there exist a positive function ρ̂ = ρ̂(t) blowing up at t = T and δ > 0 such that if

∥z0∥2H1
0 (0,1)

+
2∑
i=1

∫∫
Oi,d×(0,T )

ρ̂2|zi,d|2 dx dt < δ, (3.16)

there exist controls f ∈ L2(O × (0, T )) and associated Nash equilibria (v1, v2) such that

the corresponding solutions to (3.1) satis�es (3.7).

In order to prove Theorem 3.1, we proceed as follows: we �rst prove a null controlla-

bility result for a linearized version of the optimality system (3.12). This linear system is

given by

zt + zx + zxxx + (ȳz)x = f 1O −
∑2

i=1
1
µi
ϕiχOi

+ f 0 in Q,

−ϕit − ϕix − ϕixxx − yϕix = αizχOi,d
+ f i, i = 1, 2 in Q,

z (0, ·) = z (L, ·) = zx (L, ·) = 0 on (0, T ) ,

ϕi (0, ·) = ϕi (L, ·) = ϕix (0, ·) = 0 on (0, T ) ,

z(·, 0) = z0, ϕi(·, T ) = 0 in (0, 1) ,

(3.17)

where (f 0, f 1, f 2) are given source terms. We prove that there exists a function f such that

the solution (z, ϕ1, ϕ2) of (3.17) is partially null controllable, in the sense it satis�es z(T ) =

0. The proof of this linear controllability result is based on dualiy arguments. From the

Hilbert Uniqueness Method (HUM), the null controllability for (3.18) is equivalent to a

suitable observability estimate for the solutions of an adjoint state. For any M , g0, g1

and g2 in a suitable functional spaces, and for any (ψ, γ1, γ2) solution of

−ψt −Mψx − ψxxx =
∑2

i=1 αiγ
iχOi,d

+ g0 in Q,

γit + (Mγi)x + γixxx = − 1
µi
ψχOi

+ gi, 1 = 1, 2 in Q,

ψ(0, ·) = ψ(L, ·) = ψx(0, ·) = 0 on (0, T ),

γi(0, ·) = γi(L, ·) = γix(L, ·) = 0 on (0, T ),

ψ(x, T ) = ψT (x), γi(·, 0) = 0 in (0, 1),

(3.18)

we prove the existence of a constant C > 0, and a weight function ρ, blowing up at t = 0,

such that the following observability estimate holds∫ 1

0

|ψ(0)|2 dx+
2∑
i=1

∫∫
Q

ρ−2|γi|2dxdt ≤ C

(∫∫
Qω

|ψ|2 dxdt+
∫∫

Q

(|g0|2 +
2∑
i=1

|gi|2) dxdt

)
.

(3.19)

In next sections, we prove that inequality (3.19) holds as a consequence of the so called

Carleman estimates.
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3.3 Well-posedness results and existence of a Nash equilibrium

The main goal of this section is to prove the existence of a Nash equilibrium. To do

this, we will �rst prove that system (3.12) possesses unique solutions, which from (3.11)

will guarantee the existence of a pair satisfying (3.4)-(3.5). After this, we will prove that

these controls indeed satisfy (3.3). In this step, the uniqueness of solutions plays a crucial

role.

Let us introduce some functional spaces which will be used along the paper:

X0 := L2(0, T ;H−2(0, 1)), X1 := L2(0, T ;H2
0 (0, 1)),

X̃0 := L1(0, T ;H−1(0, 1)), X̃1 := L1(0, T ;H3(0, 1) ∩H1
0 (0, 1)),

Y0 := L2(0, T ;L2(0, 1)) ∩ C([0, T ];H−1(0, 1)),

Y1 := L2(0, T ;H4(0, 1)) ∩ C([0, T ];H3(0, 1)).

In addition, we de�ne (see e.g. [7]), for each θ ∈ [0, 1], the interpolation spaces

Xθ := (X0, X1)[θ], X̃θ := (X̃0, X̃1)[θ], Yθ := (Y0, Y1)[θ].

The space

Y 1
4
= L2((0, T );H1(0, 1)) ∩ C([0, T ];L2(0, 1)).

will be needed in forthcoming computations.

For ζ and M to be given, consider the following linear KdV equation:
ζt +Mζx + ζxxx = g in Q,

ζ(0, t) = ζ(1, t) = ζx(0, t) = 0 on (0, T ),

ζ(x, 0) = ζ0(x) in (0, 1).

(3.20)

The �rst existence result is concerned to the case M ̸= 0.

Proposition 3.2. (See [27], Section 2.2.2) If ζ0 ∈ L2(0, 1), M ∈ Y1/4 and g ∈ G with G =

L2(0, T ;H−1(0, 1)) or G = L1(0, T ;L2(0, 1)), then system (3.20) has a unique solution

ζ ∈ Y 1
4
. Moreover, there exists a constant C > 0 such that

∥ζ∥2Y 1
4

≤ C
(
∥ζ0∥2L2(0,L) + ∥g∥2G

)
eC

∫ T
0 (1+∥Mx(s)∥22) ds. (3.21)

Remark 3.3. Proposition 3.2 is still valid if we replace equation (3.20) for
ζt + (Mζ)x + ζxxx = g in Q,

ζ(0, t) = ζ(1, t) = ζx(0, t) = 0 on (0, T ),

ζ(x, 0) = ζ0(x) in (0, 1).

(3.22)
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For the case M = 0, we have the following improved regularity results.

Proposition 3.4. (See [27], Section 2.3.1) Suppose that M = 0. If ζ0 ∈ H3(0, 1) is

such that ζ0(0) = ζ0(1) = (ζ0)x(0) = 0, and g ∈ G with G = L2(0, T ;H2
0 (0, 1)) or

G = L1(0, T ;H3(0, 1) ∩ H2
0 (0, 1)), then system (3.20) has a unique solution ζ ∈ Y1.

Moreover, there exists a constant C > 0 such that

∥ζ∥2Y1 ≤ C
(
∥g∥2G + ∥ζ0∥2H3(0,1)

)
. (3.23)

Proposition 3.5. (See [27], Section 2.3.2) Let θ ∈ [1
4
, 1] be given and suppose that M = 0

and ζ0 = 0. If g ∈ G with G = Xθ or G = X̃θ, then system (3.20) has a unique solution

ζ ∈ Yθ. Moreover, there exists a constant C > 0 such that

∥ζ∥2Yθ ≤ C∥g∥2G. (3.24)

Remark 3.6. In Proposition 3.5, we could assume that ζ0 belongs to the θ interpolation

space between L2(0, 1) and {ζ0 ∈ H3(0, 1); ζ0(0) = ζ0(1) = ζ0x(0) = 0} instead of ζ0 = 0.

In particular, for θ = 1/4, Proposition 3.5 is valid by taking ζ0 ∈ H1
0 (0, 1), see Theorem

2.6 of [44].

Remark 3.7. If ζ0 ∈ H1
0 (0, L), M ∈ Y1/2 and g ∈ G where G = X1/2 or G = X̃1/2,

then problem (3.20) posses a unique solution ζ ∈ Y1/2. Indeed, from Proposition 3.2, the

solution ζ belongs to Y1/4. Since M ∈ Y1/2, the term Mζx is in L2(Q). Thus, the results

follows by Proposition 3.5 and Remark 3.6. Moreover,

∥ζ∥2Y 1
2

≤ C(1 + ∥M∥2Y 1
2

)e
C(1+∥M∥2Y 1

4

) ds(
∥ζ0∥2H1

0 (0,L)
+ ∥g∥2G

)
. (3.25)

For the linear system (3.17), we have the following result:

Proposition 3.8. Let z0 ∈ L2(0, L), f ∈ L2(Q), (f 0, f 1, f 2) ∈ G × G × G, with G =

L2(0, T ;H−1(0, L)) or G = L1(0, T ;L2(0, L)), and y ∈ Y1/4. Then, problem (3.17) posses

a unique solution (z, ϕ1, ϕ2) ∈ Y1/4 × Y1/4 × Y1/4.

Demonstração. Let (ϕ
1
, ϕ

2
) ∈ G × G. From Remark 3.3, there exists a unique solution

z ∈ Y1/4 for the problem
zt + zx + zxxx + (y z)x = f 1O −

2∑
i=1

1

µi
ϕ
i
χOi

+ f 0 in Q,

z(0, ·) = z(L, ·) = zx(L, ·) = 0 in (0, T ),

z(·, 0) = z0 in (0, L).

(3.26)
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Moreover, we have that

∥z∥2Y 1
4

≤ C
( 2∑
i=1

1

µ2
i

∥∥∥ϕi∥∥∥2
L2(Q)

+ ∥z0∥2L2(0,L) + ∥f∥2L2(Q) +
∥∥f 0
∥∥2
G

)
eC

∫ T
0 (1+∥yx(s)∥22) ds, (3.27)

where C > 0 is independent on µi.

By Proposition 3.2, for each i = 1, 2, we can guarantee the existence of ϕ̂i ∈ Y1/4 which

solves the system
−ϕ̂it − ϕ̂ix − ϕ̂ixxx − yϕ̂ix = αizχOi,d

+ f i in Q,

ϕ̂(0, ·) = ϕ̂(L, ·) = ϕ̂x(0, ·) = 0 in (0, T ),

ϕ̂(·, T ) = 0 in (0, L),

(3.28)

and veri�es

∥ϕ̂i∥2Y 1
4

≤ C
(
∥f i∥2G + αi∥z∥2

)
eC

∫ T
0 (1+∥yx(s)∥22) ds. (3.29)

Combining (3.27) and (3.29), we obtain

∥ϕ̂i∥2Y 1
4

≤ C

(
2∑
i=1

1

µ2
i

∥∥∥ϕi∥∥∥2
L2(Q)

+ ∥f∥2L2(Q) +
∥∥f 0
∥∥2
G
+ ∥f i∥2G

)
eC

∫ T
0 (1+∥yx(s)∥22) ds, (3.30)

where C > 0 is independent on µi (i = 1, 2).

Now, we set Λ : G×G→ G×G by Λ(ϕ
1
, ϕ

2
) = (ϕ̂1, ϕ̂2). Using (3.30), it is not di�cult

to see that

∥Λ(ϕ1
, ϕ

2
)− Λ(ϕ1

∗, ϕ
2
∗)∥2G×G ≤ C

min{µ2
i }
eC

∫ T
0 (1+∥yx(s)∥22) ds∥(ϕ1

, ϕ
2
)− (ϕ1

∗, ϕ
2
∗)∥2G×G,

for all (ϕ
1
, ϕ

2
), (ϕ1

∗, ϕ
2
∗) ∈ G × G. Hence, for µi su�ciently large, the functional Λ is a

contraction, and from Banach �xed point Theorem it posses a unique �xed point which

we call (ϕ1, ϕ2). If z is the solution of (3.26) with (ϕ1, ϕ2) on the right-hand side instead

of (ϕ
1
, ϕ

2
), then (z, ϕ1, ϕ2) ∈ Y1/4 × Y1/4 × Y1/4 and by (3.27) and (3.30), we get, for µi

large enough, that

∥(z, ϕ1, ϕ2)∥2[Y1/4]3 ≤ C
(
∥z0∥2L2(0,L) + ∥f∥2L2(Q) +

∥∥(f 0, f 1, f 2)
∥∥2
[G]3

)
eC

∫ T
0 (1+∥yx(s)∥22) ds,

(3.31)

where C does not depend on µi. This completes the proof.

We are now ready to prove that (3.12) is well-posed. To do this, the following global

result for (3.1) is needed:

Proposition 3.9. (See [17], Theorem 9) For any T > 0, any f, v1, v2 ∈ L2(Q), and any

y0 ∈ L2(0, L), there is a unique solution y ∈ Y1/4 for (3.1) such that

∥y∥2Y1/4 ≤ C(∥y0∥2L2(0,L) + ∥f1O∥2L2(Q) + ∥v1χO1∥2L2(Q) + ∥v2χO2∥2L2(Q)).
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Now, we are able to prove the �rst main result of this section.

Theorem 3.10. Let z0 ∈ L2(0, L), f ∈ L2(Q) and (f 0, f 1, f 2) ∈ G × G × G, with

G = L2(0, T ;H−1(0, L)) or G = L1(0, T ;L2(0, L)), such that

∥z0∥L2(0,L) + ∥f∥L2(Q) +
2∑
i=0

∥f i∥G ≤ ϵ0, (3.32)

for some ϵ0 > 0 su�ciently small. Then, for µi > 0 su�ciently large, system (3.12)

possesses a unique solution (z, ϕ1, ϕ2) ∈ Y1/4 × Y1/4 × Y1/4 satisfying

∥(z, ϕ1, ϕ2)∥2[Y1/4]3 ≤ C(∥z0∥2L2(0,L) + ∥f∥2L2(Q) +
2∑
i=0

∥f i∥2G), (3.33)

where C > 0 does not depend on µi.

Demonstração. By �xing ẑ ∈ Y1/4, we have that ẑẑx ∈ L1(0, T ;L2(0, L)) (see [52], Prop.

4.1), and

∥ẑẑx − z̄z̄x∥L1(0,T ;L2(0,L)) ≤ C(∥ẑ∥L2(0,T ;H1
0 (0,L))

+ ∥z̄∥L2(0,T ;H1
0 (0,L))

)∥ẑ − z̄∥L2(0,T ;H1
0 (0,L))

,

(3.34)

for every ẑ, z̄ ∈ Y1/4.

From Proposition 3.8, system

zt + zx + zxxx + (yz)x = −ẑẑx + f 1O −
2∑
i=1

1

µi
ϕiχOi

+ f 0 in Q,

−ϕit − ϕix − ϕixxx − (ẑ + y)ϕix = αi(z − zi,d)χOi,d
+f i, i = 1, 2 in Q,

z (0, ·) = z (L, ·) = zx (L, ·) = 0 in (0, T ) ,

ϕi (0, ·) = ϕi (L, ·) = ϕix (0, ·) = 0 in (0, T ) ,

z(·, 0) = z0, ϕi(·, T ) = 0 in (0, L)

(3.35)

possesses a unique solution (z, ϕ1, ϕ2) ∈ Y1/4 × Y1/4 × Y1/4 satisfying

∥(z, ϕ1, ϕ2)∥2[Y1/4]3

≤ C
(
∥ẑ∥4L2(0,T ;H1

0 (0,L))
+ ∥z0∥2L2(0,L) + ∥f∥2L2(Q)

+
∥∥(f 0, f 1, f 2)

∥∥2
[G]3

)
e
C

∫ T
0 (1+∥ẑx(s)∥2

L2(0,L)
+∥yx(s)∥2L2(0,L)

) ds
, (3.36)

where C does not depend on µi.
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Now, if (z∗, ϕ1
∗, ϕ

2
∗) is the solution of (3.35) by replacing ẑ for z̄ in L2(0, T ;H1

0 (0, L)),

then

∥(z, ϕ1, ϕ2)− (z∗, ϕ
1
∗, ϕ

2
∗)∥2[Y1/4]3

≤ C∥ẑ − z̄∥2Y1/4
(
(∥ẑ∥2L2(0,T ;H1

0 (0,L))
+ ∥z̄∥2L2(0,T ;H1

0 (0,L))

+ ∥ϕix∥2L2(0,L)

)
e
C

∫ T
0 (1+∥z̄x(s)∥2

L2(0,L)
+∥yx(s)∥2L2(0,L)

) ds
. (3.37)

Combining (3.36) and (3.37),

∥(z, ϕ1, ϕ2)− (z∗, ϕ
1
∗, ϕ

2
∗)∥2[Y1/4]3 ≤ C∥ẑ − z̄∥2Y1/4

(
∥ẑ∥2L2(0,T ;H1

0 (0,L))
+ ∥ẑ∥2L2(0,T ;H1

0 (0,L))

+ ∥z̄∥2L2(0,T ;H1
0 (0,L))

+ ∥z0∥2L2(0,L) + ∥f∥2L2(Q)

+
∥∥(f 0, f 1, f 2)

∥∥2
[G]3

)
e
C

∫ T
0 (1+∥ẑx(s)∥2

L2(0,L)
+∥z̄x(s)∥2

L2(0,L)
+∥yx(s)∥2L2(0,L)

) ds
. (3.38)

Assuming that ẑ and z̄ belong to a ball B = {w ∈ Y1/4; ∥w∥Y1/4 ≤ R}, and that the

data satis�es (3.32), then

∥(z, ϕ1, ϕ2)−(z∗, ϕ
1
∗, ϕ

2
∗)∥2[Y1/4]3 ≤ C∥ẑ−z̄∥2Y1/4

(
R4 + 2R2 + ϵ20

)
e
C

∫ T
0 (1+2R2+∥yx(s)∥2L2(0,L)

) ds
.

(3.39)

Finally, taking R and ϵ su�ciently small, the map ẑ 7→ (z, ϕ1, ϕ2) is a contraction.

Hence, from Banach �xed point Theorem, it possesses a unique �xed point, which is a

solution of (3.12). Moreover, from (3.36), estimate (3.33) holds.

Now, we can still present another way we prove the existence of solutions to the

optimality system (3.17). In order to simplify some computations, we will prove the

existence of solutions to the reduced system

ut + uxxx + (Mu)x =
1
µ
υχO1 + F 0 in Q,

−υt − υxxx −Mυx = uχO2 + F 1 in Q,

u (0, ·) = u (L, ·) = ux (L, ·) = 0 in (0, T ) ,

υ (0, ·) = υ (L, ·) = υx (0, ·) = 0 in (0, T ) ,

u(·, 0) = u0, υ(·, T ) = 0 in (0, 1) ,

(3.40)

where O1 and O2 are open sets, µ > 0, and u0, F 0 and F 1 are in suitable functional

spaces. The proof of existence of solutions to (3.40) can be easily adapted to prove the

existence of solutions to (3.17) or (3.18). Before that, we de�ne the sense of solutions by

transposition of (3.40).
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De�nition 3.11. Given u0 ∈ L2(0, 1), (F 0, F 1) ∈ [L2(0, T ;H−1(0, 1))]2 and M ∈ Y1/4.

We say that (u, v) ∈ [L2(Q)]2 is a solution in the transposition sense for (3.40) if∫∫
Q

uG0 dxdt+

∫∫
Q

vG1 dxdt =

∫ 1

0

u0(x)p(x, 0) dx+

∫ T

0

⟨F 0, p⟩H−1H1
0
dt

+

∫∫
Q

⟨F 1, q⟩H−1H1
0
dt, (3.41)

for every (p, q) ∈ Y1/4 × Y1/4, solution of

−pt − pxxx −Mpx = qχO2 +G0 in Q,

qt + qxxx + (Mq)x =
1
µ
pχO1 +G1 in Q,

p (0, ·) = p (L, ·) = px (L, ·) = 0 in (0, T ) ,

q (0, ·) = q (L, ·) = qx (0, ·) = 0 in (0, T ) ,

p(·, T ) = 0, q(·, 0) = 0 in (0, 1) ,

(3.42)

where (G0, G1) ∈ [L2(Q)]2.

In the next result we prove the existence of solution for (3.42). After that, we can

apply Riesz Representation Theorem to guarantee the existence of solution for (3.40) in

the sense (3.41).

Proposition 3.12. Let (G0, G1) ∈ [L2(Q)]2 and M ∈ Y1/4. Then, problem (3.42) possess

a unique solution (p, q) ∈ Y1/4 × Y1/4.

Demonstração. Let p̄ ∈ L2(Q) and consider q̄ ∈ Y1/4 solution of
q̄t + (Mq̄)x + q̄xxx =

1
µ
p̄χO1 +G1 in Q,

q̄(0, ·) = q̄(L, ·) = q̄x(L, ·) = 0 in (0, T ),

q̄(·, 0) = 0 in (0, 1).

(3.43)

The existence of q̄ follows from Proposition 3.2 and Remark 3.3. Moreover, we have that

∥q̄∥Y 1
4

≤ C

∥∥∥∥ 1µp̄χO1

∥∥∥∥
L2(Q)

+
∥∥G1

∥∥
L2(Q)

. (3.44)

Now, let p̂ the solution of
−p̂t −Mp̂x − p̂xxx = q̄χO0 +G0 in Q,

p̂(0, ·) = p̂(L, ·) = p̂x(0, ·) = 0 in (0, T ),

p̂(·, T ) = 0 in (0, 1).

(3.45)



55

From Proposition 3.2 and estimate (3.44), we have that p̂ ∈ Y 1
4
and the following estimate

holds

∥p̂∥Y 1
4

≤ C
(
∥q̄1O0∥L2(Q) + ∥G0∥L2(Q)

)
≤ C

(
1

µ
∥p̄∥L2(Q) + ∥G0∥L2(Q) +

∥∥G1
∥∥
L2(Q)

)
.

(3.46)

Now, we set Λ : L2(Q) −→ L2(Q) by Λp̄ = p̂. Using (3.46), it is not di�cult to see

that

∥Λp̄− Λp̄∗∥L2(Q) ≤
C

µ
∥p̄− p̄∗∥, for all p̄, p̄∗ ∈ L2(Q).

Hence, for µ su�ciently large, the functional Λ is a contraction, and from Banach Fixed

point Theorem it possess a unique �xed point, which we will call p∗. If q∗ is the solution

of (3.43) with p∗ on the right-hand side instead of p̄, then from (3.44) and (3.46), we get

that (u∗, υ∗) ∈ Y1/4 × Y1/4 and

∥p∗∥Y1/4 + ∥q∗∥Y1/4 ≤ C
(
∥G0∥L2(Q) +

∥∥G1
∥∥
L2(Q)

)
, (3.47)

for µ su�ciently large.

Remark 3.13. If we assume thatM ≡ 0 and (G0, G1) ∈ G×G where G = Xθ or G ∈ X̃θ,

for θ ∈ [0, 1], then using similar arguments we have used to prove Proposition 3.12, we can

prove that problem (3.42) possesses a unique solution (p, q) ∈ Yθ × Yθ. Similar arguments

can be adapted to prove existence of solutions for (3.40) with M = 0 in Yθ × Yθ.

To prove the existence of solution for (3.40) in the sense (3.41), we proceed as follows.

De�ne the linear functional R : [L2((0, 1))]2 → R by

R(G0, G1) =

∫ 1

0

u0(x)p(x, 0) dx+

∫ T

0

⟨F 0, p⟩H−1H1
0
dt+

∫∫
Q

⟨F 1, q⟩H−1H1
0
dt,

where (p, q) is the solution of (3.42) with (G0, G1) on the right-hand side. It is easy to see

that functional R is linear and from estimate (3.47) is continuous. Then, the existence of

solutions for (3.40) in the sense (3.41) follows from the Riesz Representation Theorem.

On the existence of a Nash-Equilibrium

Due to the fact that functionals Ji are di�erentiable in the direction vi (i = 1, 2),

we have proved that if (v1, v2) is a Nash-equilibrium, then it satis�es (3.4) and (3.5).

Moreover, for µi is large enough, it is characterized by (3.11) and, from Theorem 3.10, it

is unique at least for small data. Now, we want to know if the converse is true, that is, we

want to prove that (v1, v2) given by (3.11) is actually a Nash equilibrium. The approach

we follow to prove this is new and much simpler compared to the ones in [5, 13]. There, it
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is applied a second derivative test to show that critical points are minimal, which requires

more regularity to the solutions than we have here.

The following result holds.

Theorem 3.14. For each v2 ∈ L2(O2 × (0, T )) (v1 ∈ L2(O1 × (0, T ))), the in�mum of

J1(·, v2) (J2(v1, ·)) is attained in some point v1 = v1(v2) in L2(O1 × (0, T )) (v2 = v2(v1)

in L2(O2 × (0, T ))).

Demonstração. It is su�cient to prove that J1(·, v2) is sequentially lower semicontinuous

(see [58], Theorem 2.D). Let v ∈ L2(O1×(0, T )) and vn ∈ L2(O1×(0, T )) be any sequence

converging weakly to v. We have to prove that

J1(v, v
2) ≤ lim inf J1(vn, v

2). (3.48)

Indeed, from Proposition 3.9, the solution yn of (3.1), with v1 = vn, is bounded in Y1/4. In

this way, using that (yn) solves (3.1), we obtain that (ynt ) is bounded in L
1(0, T ;H−2(0, L)),

and from Aubin-Lions compactness lemma, there is a subsequence (ynk) that converges

strongly to a function y in L2(Q). Combined with the fact that (ynk) converges weakly

(up to another subsequence) to y in L2(0, T ;H1
0 (0, L)), we get that ynkynk

x converges

weakly to yyx and hence y is a solution of (3.1) with v1 = v. Therefore, we have that

J1(v, v2) ≤ lim inf J1(vnk
, v2). To get (3.48), we take a subsequence (vnj

) of (vn) such

that lim J1(vnj
, v2) = lim inf J1(vn, v2) and we repeat the argument for (vnj

) instead of

(vn).

By using the previous Theorem, we have the following consequence:

Corollary 3.15. If (z0, f, f 1, f 2) satis�es (3.32) and µi is large enough, then the pair

(v1, v2) given by (3.11), where (z, ϕ1, ϕ2) is the unique solution of (3.12), is a Nash equi-

librium for the functional Ji given by (3.2).

Demonstração. From Proposition 3.9, functionals J1(·,− 1
µ2
ϕ2χO2) and J2(− 1

µ1
ϕ1χO1 , ·)

are well-de�ned. Now, using Theorem 3.14, the inf v̂1 J1(v̂1,− 1
µ2
ϕ2χO2) and inf v̂2 J2(− 1

µ1
ϕ1χO1 , v̂

2)

is attained at v1 ∗ and v2 ∗, respectively. In particular, we have that

J ′
1(v

1 ∗,− 1

µ2

ϕ2χO2)(v̂
1, 0) = 0 and J ′

2(−
1

µ1

ϕ1χO1 , v
2 ∗)(0, v̂2) = 0,

for all (v̂1, v̂2) ∈
∏2

i=1 L
2(Oi× (0, T )). By following a similiar procedure of proving (3.11),

we obtain that

vi ∗ = − 1

µi
ϕiχOi

, i = 1, 2,

and the result follows.
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Remark 3.16. In the proof Corollary 3.15, it is crucial that system (3.12) possesses

unique solutions, otherwise, when minimizing J1(·,− 1
µ2
ϕ2χO2) and J2(− 1

µ1
ϕ1χO1 , ·), it

can happen that vi∗ = − 1
µi
ϕ̂iχOi

, with ϕi ̸= ϕ̂i.

3.4 Carleman estimates

In order to prove the controllability result given in Theorem 3.1, we proceed by duality

arguments. We start proving a controllability result for the linear system (3.17) as a

consequence of an observability inequality such as (3.19). In order to do that, we are

going to make use of Carleman estimates.

When dealing with distributed Carleman estimates for the KdV equation (see [4] or

[12]), let us suppose that ω = (ã0, b̃0) ⊂ (0, 1), [a0, b0] ⊂ ω, c0 = (a0+b0)
2

and weight

functions having the following properties are essential,

η ∈ C∞([0, 1]) and η > 0,

−η′′(x) ≥ C > 0 and |η′(x)|2 ≥ C in [0, 1]\ω,

η′(0) < 0 and η′(1) > 0,

(3.49)

for any open subset ω ⊂⊂ (0, 1). (See �gure 1)

Figura 1 � Graphic

Source: Own authorship

For any function η satisfying (3.49), we de�ne the weight functions

ξ(t) =
1

t(T − t)
and Φ(x, t) = η(x)ξ(t), (3.50)

and consider the following notation

Φ̂(t) = max
x∈[0,1]

Φ(t, x) and Φ̌(t) = min
x∈[0,1]

Φ(t, x).
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It is not di�cult to see that we can choose functions satisfying (3.49), and such that

8Φ̌(t)− 7Φ̂(t) > 0 in [0, T ]. (3.51)

To do that, we �rst take a function η0 satisfying (3.49), and we de�ne ηϵ := ϵη0. Since

η0 ∈ C∞([0, 1]), then min η0 ≤ η0 ≤ max η0. In this way, for ε > 0, we have that

min ε < εη0 < max ε. Then, we de�ne ηε0 = εη0 and we have that min ηε0 < ηε0 < max ηε0.

Note that min ηε0 −max ηε0 → 0 when ε→ 0. In this way, we just have to �x ε su�ciently

small such that 8cε0 − 7cε1 > 0.

Now, for m ∈ Z, we introduce the notation

Im(v) := sm
∫∫

Q

e−2sΦξm|v|2dxdt+ sm−2

∫∫
Q

e−2sΦξm−2|vx|2dxdt

+ sm−4

∫∫
Q

e−2sΦξm−4|vxx|2dxdt+ sm−6

∫∫
Q

e−2sΦξm−6|vt + vxxx|2dxdt. (3.52)

The following Carleman estimate for the KdV equation holds, and we refer to [4] or

[12] for a proof of it.

Proposition 3.17. Let ω∗ ⊂⊂ (0, 1) and assume that M ∈ Y1/4 = L2(0, T ;H1(0, 1)) ∩
L∞(0, T ;L2(0, 1)). There exist C > 0 and s0 ⩾ 1 such that

Im(v) ≤ C
(
sm−5

∫∫
Q

e−2sΦξm−5|Lv|2dxdt+ sm
∫∫

Qω∗

e−2sΦξm|v|2dxdt

+ sm−4

∫∫
Qω∗

e−2sΦξm−4|vxx|2dxdt
)
, (3.53)

for all s > s0, and for every v ∈ L2(0, T ;H2 ∩ H1
0 (0, 1)) with vx(0, t) = 0 and Lv :=

(vt + vxxx +Mvx) ∈ L2(Q).

The next step is to use (3.53) and prove a new Carleman estimates for the adjoint

system (3.18), provided that assumptions of Theorem 3.1 hold. In order to do that, we

deal with conditions (3.14) and (3.15) separately.

3.4.1 The Case O1,d = O2,d

Assume that condition (3.14) holds. In this case, it is convenient to denote Od =

O1,d = O2,d and M = 1 + ȳ. Then, system (3.18) reads as

−ψt −Mψx − ψxxx = (α1γ
1 + α2γ

2)χOd
+ g0 in Q,

γit + (Mγi)x + γixxx = − 1
µi
ψχOi

+ gi, i = 1, 2 in Q,

ψ(0, ·) = ψ(L, ·) = ψx(0, ·) = 0 on (0, T ),

γi(0, ·) = γi(L, ·) = γix(L, ·) = 0 on (0, T ),

ψ(x, T ) = ψT (x), γi(·, 0) = 0 in (0, 1).

(3.54)
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If we take h := α1γ
1 + α2γ

2 and g = α1g
1 + α2g

2, we obtain from (3.54) system

−ψt −Mψx − ψxxx = hχOd
+ g0 in Q,

ht + (Mh)x + hxxx = −α1

µ1
ψχO1 − α2

µ2
ψχO2 + g in Q,

ψ(0, ·) = ψ(L, ·) = ψx(0, ·) = 0 on (0, T ),

h(0, ·) = h(L, ·) = hx(L, ·) = 0 on (0, T ),

ψ(x, T ) = ψT (x), h(·, 0) = 0 in (0, 1).

(3.55)

Therefore, we have the following Carleman estimate to the solutions of (3.55). In what

follows, we strongly use the theory of fractional Sobolev Spaces. (See [7])

Proposition 3.18. Assume that M ∈ Y1/2 = L2(0, T ;H2(0, 1)) ∩ L∞(0, T ;H1
0 (0, 1)) and

that

Od ∩ O ≠ ∅.

Let ω ⊂⊂ Od∩O be an open subset. Then, there exists a constant C := C(Od, {Oi}2i=1, {αi}2i=1, {µi}2i=1)

and s0 ≥ 1 such that

I5(ψ) + I5(h) ≤ C

(
s31
∫∫

O×(0,T )

e14sΦ̂−16sΦ̌ξ49|ψ|2dxdt

+s27
∫ T

0

e12sΦ̂−14sΦξ45
(
∥g0∥2H2/3(0,1) + ∥g∥2H2/3(0,1)

)
dt

)
, (3.56)

for all s > s0, and for every solution (ψ, h) of (3.55), with ψT ∈ L2(Q) and (g0, g) ∈
[L2(0, T ;H2/3(0, 1))]2.

Demonstração. Let ω̃ ⊂⊂ ω ⊂⊂ Od ∩ O. We use Carleman estimate (3.53) with ω∗ = ω̃

and m = 5 to the solutions of (3.55), to get

I5(ψ) + I5(h) ≤ C

(
s5
∫∫

Qω̃

e−2sΦξ5|ψ|2dxdt+ s

∫∫
Qω̃

e−2sΦξ|ψxx|2dxdt

+ s5
∫∫

Qω̃

e−2sΦξ5|h|2dxdt+ s

∫∫
Qω̃

e−2sΦξ|hxx|2dxdt

+

∫∫
Q

e−2sΦ|g0|2dxdt+
∫∫

Q

e−2sΦ|g|2dxdt

+

∫∫
Q

e−2sΦ|hχOd
|2dxdt+

∫∫
Q

e−2sΦ

∣∣∣∣∣
2∑
i=1

αi
µi
ψχOi

∣∣∣∣∣
2

dxdt

 . (3.57)
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Note that the last three terms on the right-hand side of (3.57) can be absorbed by left

hand side, by taking s su�ciently large. Therefore, we obtain that

I5(ψ) + I5(h) ≤ C

(
s5
∫∫

Qω̃

e−2sΦξ5|ψ|2dxdt+ s

∫∫
Qω̃

e−2sΦξ|ψxx|2dxdt

+s5
∫∫

Qω̃

e−2sΦξ5|h|2dxdt+ s

∫∫
Qω̃

e−2sΦξ|hxx|2dxdt

+

∫∫
Q

e−2sΦ|g0|2dxdt+
∫∫

Q

e−2sΦ|g|2dxdt
)
. (3.58)

In what follows, we prove that we can add a weighted L2(0, T ;H8/3(Ω)) norm of ψ

and h on the left hand side of (3.58). This will be important to absorb the second and

fourth terms on the right-hand side of (3.58).

Let σ1 = e−sΦ̂ξ
1
2 and de�ne (ψ1, h1) := (σ1ψ, σ1h). Then, we have that

−ψ1t − ψ1xxx = k1 in Q,

h1t + h1xxx = g1 in Q,

ψ1(0, ·) = ψ1(L, ·) = ψ1x(0, ·) = 0 on (0, T ),

h1(0, ·) = h1(L, ·) = h1x(L, ·) = 0 on (0, T ),

ψ1(x, T ) = 0, h1(·, 0) = 0 in (0, 1),

(3.59)

where
k1 = h1χOd

+Mψ1x + σ1g
0 − σ′

1ψ,

g1 = −
∑2

i=1
αi

µi
ψ1χOi

− (Mh1)x + σ1g + σ′
1h.

(3.60)

From the facts that M ∈ Y1/2 and that Y1/2 ↪→ Y1/4, we get that (ψ, h) ∈ Y1/4 × Y1/4,

and using that |σ′
1| ≤ Cse−sΦ̂ξ

5
2 , we get that (k1, g1) ∈ [L2(0, T ;L2(0, 1))]2, and the

following estimate holds

∥k1∥2L2(Q) + ∥g1∥2L2(Q) ≤ C
(
I5(ψ) + I5(h) + ∥σ1g0∥2L2(Q) + ∥σ1g∥2L2(Q)

)
. (3.61)

From Proposition 3.5, we get that (ψ1, h1) ∈ Y1/2×Y1/2, and since Y1/2 ↪→ L4(0, T ;H
3
2 (0, 1)),

we obtain that

∥ψ1∥2
L4(0,T ;H

3
2 (0,1))

+ ∥h1∥2
L4(0,T ;H

3
2 (0,1))

≤ C
(
∥k1∥2L2(Q) + ∥g1∥2L2(Q)

)
. (3.62)

Hence, combining (3.61) and (3.62)

∥ψ1∥2
L4(0,T ;H

3
2 (0,1))

+ ∥h1∥2
L4(0,T ;H

3
2 (0,1))

≤ C
(
I5(ψ) + I5(h) + ∥σ1g0||2L2(Q) + ∥σ1g||2L2(Q)

)
.

(3.63)
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Consider now σ2 = e−sΦ̂ξ−
3
2 and de�ne (ψ2, h2) = (σ2ψ, σ2h). It is clear that

−ψ2t − ψ2xxx = k2 in Q,

h2t + h2xxx = g2 in Q,

ψ2(0, ·) = ψ2(L, ·) = ψ2x(0, ·) = 0, on (0, T ),

h2(0, ·) = h2(L, ·) = h2x(L, ·) = 0 on (0, T ),

ψ2(x, T ) = 0, h2(·, 0) = 0 in (0, 1),

(3.64)

where
k2 = h2χOd

+Mψ2x + σ2g
0 − σ

′
2ψ

= σ2σ
−1
1 h1χOd

+Mσ2σ
−1
1 ψ1x + σ2g

0 − σ
′
2σ

−1
1 ψ1,

(3.65)

and
g2 = −

∑2
i=1

αi

µi
ψ2χOi

− (Mh2)x + σ2g + σ
′
2h

= −
∑2

i=1
αi

µi
σ2σ

−1
1 ψ1χOi

− σ2σ
−1
1 (Mh1)x + σ2g + σ

′
2σ

−1
1 h1.

(3.66)

Taking into account that the produt of two functions in H
1
2 (0, 1) belongs to H

1
3 (0, 1)

and using the fact that M,ψ1 and h1 belongs to L4(0, T ;H
3
2 (0, 1)), we get that Mψ1x

and (Mh1)x belongs to X 7
12

= L2(0, T ;H1/3(0, 1)). Moreover, since |σ2σ−1
1 | ≤ C and

|σ′
2σ

−1
1 | ≤ Cs, it follows that (k2, g2) ∈ [L2(0, T ;H

1
3 (0, 1))]2 and hence, from Proposition

3.5, we get that (ψ2, h2) ∈
[
Y7/12

]2
and we obtain the following estimate

∥ψ2∥2Y 7
12

+ ∥h2∥2Y 7
12

≤ C
(
∥k2∥2

L2(0,T ;H
1
3 (0,1))

+ ||g2||2
L2(0,T ;H

1
3 (0,1))

)
≤ Cs2

(
I5(ψ) + I5(h) + ∥σ1g0||2

L2(0,T ;H
1
3 (0,1))

+ ∥σ1g||2
L2(0,T ;H

1
3 (0,1))

)
, (3.67)

where

Y 7
12

= L2(0, T ;H
7
3 (0, 1)) ∩ L∞(0, T ;H

4
3 (0, 1)).

Finally, consider σ3 = e−sΦ̂ξ−
7
2 and de�ne (ψ3, h3) := (σ3ψ, σ3h). Then, we have the

following system 

−ψ3t − ψ3xxx = k3 in Q,

h3t + h3xxx = g3 in Q,

ψ3(0, ·) = ψ3(L, ·) = ψ3x(0, ·) = 0, on (0, T ),

h3(0, ·) = h3(L, ·) = h3x(L, ·) = 0 on (0, T ),

ψ3(x, T ) = 0, h3(·, 0) = 0 in (0, 1),

(3.68)

where

k3 = h3χOd
+Mψ3x + σ3g

0 − σ
′
3ψ

= σ3σ
−1
2 h2χOd

+Mσ3σ
−1
2 ψ2x + σ3g

0 − σ
′
3σ

−1
2 ψ2,

(3.69)
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and

g3 = −
∑2

i=1
αi

µi
ψ3χOi

− (Mh3)x + σ3g + σ
′
3h

= −
∑2

i=1
αi

µi
σ3σ

−1
2 ψ2χOi

− σ3σ
−1
2 (Mh2)x + σ3g + σ

′
3σ

−1
2 h2.

(3.70)

Using that the product of functions in H2/3(0, 1) belongs to H2/3(0, 1), that Mx ∈
L3(0, T ;H

2
3 (0, 1)) and (ψ2x, h2x) ∈ [L6(0, T ;H

2
3 (0, 1))]2, and using that |σ3σ−1

2 | ≤ C and

|σ′
3σ

−1
2 | ≤ Cs, we get that (k3, g3) ∈ [L2(0, T ;H

2
3 (0, 1))]2 and from Proposition 3.5, we

obtain

∥ψ3∥2Y 2
3

+ ∥h3∥2Y 2
3

≤ C
(
∥k3∥2X 2

3

+ ||g3||2X 2
3

)
≤ Cs4

(
I5(ψ) + I5(h) + ∥σ1g0||2

L2(0,T ;H
2
3 (0,1))

+ ∥σ1g||2
L2(0,T ;H

2
3 (0,1))

)
, (3.71)

where X 2
3
= L2(0, T ;H

2
3 (Ω)) and Y 2

3
= L2(0, T ;H

8
3 (0, 1)) ∩ L∞(0, T ;H

5
3 (0, 1)).

Now, combining (3.58) and (3.71), we have

s−4

∫ T

0

e−2sΦ̂ξ−7∥ψ∥2
H

8
3 (0,1)

dt+ s−4

∫ T

0

e−2sΦ̂ξ−7∥h∥2
H

8
3 (0,1)

dt+ I5(ψ) + I5(h)

≤ C

(
s5
∫∫

Qω̃

e−2sΦξ5|ψ|2dxdt+ s

∫∫
Qω̃

e−2sΦξ|ψxx|2dxdt

+s5
∫∫

Qω̃

e−2sΦξ5|h|2dxdt+ s

∫∫
Qω̃

e−2sΦξ|hxx|2dxdt

s4
∫ T

0

e−2sΦ̌ξ∥g0∥2H2/3(0,1) dt+ s4
∫ T

0

e−2sΦ̌ξ∥g∥2H2/3(0,1)dt

)
. (3.72)

Now, we are going to estimate the terms of second order derivative on the right hand

side of (3.72). Using interpolation estimates and Young's inequality, we have

s

∫∫
Qω̃

e−2sΦξ|ψxx|2dxdt+ s

∫∫
Qω̃

e−2sΦξ|hxx|2dxdt

≤ Cs

(∫ T

0

e−2sΦ̌ξ∥ψ∥
1
2

L2(ω̃)∥ψ∥
3
2

H
8
3 (ω̃)

dt+

∫ T

0

e−2sΦ̌ξ∥h∥
1
2

L2(ω̃)∥h∥
3
2

H
8
3 (ω̃)

dt

)
≤ C

∫ T

0

(
s4ξ25/4e

3
2
sΦ̂−2sΦ̌∥ψ∥

1
2

L2(ω̃)s
−3ξ−21/4e−

3
2
sΦ̂∥ψ∥

3
2

H
8
3 (ω̃)

)
dt

+ C

∫ T

0

(
s4ξ25/4e

3
2
sΦ̂−2sΦ̌∥h∥

1
2

L2(ω̃)s
−3ξ−21/4e−

3
2
sΦ̂∥h∥

3
2

H
8
3 (ω̃)

)
dt

≤ Cs16
∫ T

0

e6sΦ̂−8sΦ̌ξ25
(
∥ψ∥2L2(ω̃) + ∥h∥2L2(ω̃)

)
dt

+ εs−4

∫ T

0

e−2sΦ̂ξ−7
(
∥ψ∥2

H
8
3 (ω̃)

+ ∥h∥2
H

8
3 (ω̃)

)
dt. (3.73)
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In this way, we combine (3.72) and (3.73) to get that

s−4

∫ T

0

e−2sΦ̂ξ−7∥ψ∥2
H

8
3 (0,1)

dt+ s−4

∫ T

0

e−2sΦ̂ξ−7∥h∥2
H

8
3 (0,1)

dt+ I5(ψ) + I5(h)

≤ Cs16
∫ T

0

e6sΦ̂−8sΦ̌ξ25
(
∥ψ∥2L2(ω̃) + ∥h∥2L2(ω̃)

)
dt

+ Cs4
∫ T

0

e−2sΦ̌ξ
(
∥g0∥2H2/3(0,1) + ∥g∥2H2/3(0,1)

)
dt. (3.74)

Now, we are going to eliminate the local term of h in the right-hand side of (3.74). For

this, let ω be an open set satisfying ω̃ ⊂⊂ ω ⊂⊂ O and let θ0 ∈ C3
0(ω) be such that

θ0(x) = 1 for x ∈ ω̃ and 0 ≤ θ0 ≤ 1. Using the �rst equation of (3.55), we can see that

−ψt −Mψx − ψxxx − g0 = hχOd
in ω ∩ Od × (0, T ).

Therefore,

s16
∫∫

Qω̃

e6sΦ̂−8sΦ̌ξ25|h|2dxdt ≤ s16
∫∫

Qω

e6sΦ̂−8sΦ̌ξ25θ0h(−ψt −Mψx − ψxxx − g0)dxdt

≤ εI5(h) + Cεs
31

∫∫
Qω

e14sΦ̂−16sΦ̌ξ49|ψ|2dxdt

+ s16
∫∫

Qω

e6sΦ̂−8sΦ̌ξ25Mhψdxdt+ Cεs
27

∫∫
Q

e14sΦ̂−16sΦ̌ξ45(|g0|2 + |g|2) dxdt. (3.75)

In (3.75), we have used the fact that |∂t(e6sΦ̂−8sΦ̌ξn)| ≤ Cse6sΦ̂−8sΦ̌ξn+2 for n > 0. We

also have that

s16
∫∫

Qω

e6sΦ̂−8sΦ̌ξ25θ0h(Mψ)dxdt ≤ ε∥s
5
2 e−sΦ̂ξ

5
2h∥2L2(0,T ;L∞(Ω))∥M∥2L∞(0,T ;L2(Ω))

+ Cεs
27

∫∫
Qω

e14sΦ̂−16sΦ̌ξ45|ψ|2dxdt

≤ εI5(h) + Cεs
27

∫∫
Qω

e14sΦ̂−16sΦ̌ξ45|ψ|2dxdt. (3.76)

Then, combining (3.74), (3.75) and (3.76) we get Carleman estimate (3.56).

3.4.2 The Case O1,d ∩ O ≠ O2,d ∩ O

In this case, we have two possible assumptions to be distinguished:

A. Oi,d ∩ O is not contained in Oj,d ∩ O for every i, j ∈ {1, 2}, i ̸= j;

B. Oi,d ∩ O is contained in Oj,d ∩ O for some i, j ∈ {1, 2}, i ̸= j.
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Here, we will concentrate in the case where Assumption A holds. For Assumption B,

the proof follows from an argument that mix the proofs of Section 3.4.1 and the proof

of case A given below. We refer to [6] where case B is solved for Heat Equation and the

adequacy to the KdV equation considered here follows in an analogous way.

The main di�culties that the KdV equation case shows compared to the heat equation

case are two. First, the distributed Carleman estimate given in Proposition 3.17 possesses

second order derivative localized in a small open set ω∗ ⊂ (0, 1). Second, the weight

functions to be considered have to be constructed in a very special way, since the weight

functions applied for the heat equation case does not apply for the KdV case. In what

follows we construct the new weight functions.

Lemma 3.19. Let ω1 = (a1, b1) and ω2 = (a2, b2) be open subsets of [0, 1] such that

b1 < a2 and let O0 be an open interval such that ω1 ∪ ω2 ⊂ O0. There exist two non-

negative functions η1 and η2 in C∞(R), satisfying (3.49) for ω1 and ω2 respectively, such

that n1 = n2 in [0, 1] \ O0 and that ∥η1∥∞ = ∥η2∥∞.

Demonstração. Let δ > 0, and de�ne ω1 1 = (b1 − 2δ, b1 − δ) and ω2 1 = (a2 + δ, a2 + 2δ).

It is clear that we can take δ su�ciently small such that ω1 1 ⊂ ω1 and ω2 1 ⊂ ω2.

Now, let F1 ∈ C∞(R) such that

F1 > 0, −F ′′

1 > 0 and F ′
1 < 0,

and de�ne F2(x) = F1(−x+ 2c0), where c0 = (b1 + a2)/2. It is not di�cult to see that

F2 > 0, −F ′′

2 > 0 and F ′
2 > 0.

Moreover, the functions F1 and F2 are symmetric with respect the line {x = c0}, that is,
we have that F2(c0 + y) = F1(c0 − y) for every y ∈ R.

Consider the functions

λ1(x) =

{
1 if x ≤ b1 − 2δ,

0 if x ≥ b1 − δ,
and λ2(x) =

{
0 if x ≤ b1 − 2δ,

1 if x ≥ b1 − δ,
(3.77)

and de�ne

η1(x) = λ1(x)F1(x) + λ2(x)F2(x). (3.78)

Since η1 = F1 for x ≤ b1 − 2δ and η1 = F2 for x ≥ b1 − δ, we have that η1 and ω1 satis�es

(3.49). De�ning

η2(x) = η1(−x+ 2c0), (3.79)

it is not di�cult to see that η2 also satis�es (3.49), that η2 = η1 in (−∞, b1 − 2δ) ∪ (a2 +

2δ,+∞), and are symmetric in (b1 − 2δ, a2 + 2δ) with respect the line {x = c0}, which
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means that

max
x∈[0,1]

|η1(x)| = max
x∈[0,1]

|η2(x)| and min
x∈[0,1]

|η1(x)| = min
x∈[0,1]

|η2(x)|.

Now we turn to assumption (3.15). Since we are assuming case A, we can consider ω1

and ω2 to be two disjoint nonempty open subsets of (0, 1) such that

ω1 ⊂ O1,d ∩ O and ω2 ⊂ O2,d ∩ O. (3.80)

Now, let Õ0 and Õ be two nonempty open subsets of O such that Õ0 ⊂ Õ ⊂ O and

ω1 ∪ ω2 ⊂ Õ0. (3.81)

For i = 1, 2, let ηi given by Lemma 3.19, for these open sets ω1 and ω2 and O0 = Õ0,

and de�ne the weight functions

Φi(x, t) = ηi(x)ξ(t), ξ(t) =
1

t(T − t)
. (3.82)

Also, we denote

Φ̂(t) = max
x∈[0,1]

Φ1(t, x) = max
x∈[0,1]

Φ2(t, x) and Φ̌(t) = min
x∈[0,1]

Φ1(t, x) = min
x∈[0,1]

Φ2(t, x).

(3.83)

In a similar way as in (3.51), we can prove that the functions ηi can be taken in such a

way that

8Φ̌(t)− 7Φ̂(t) > 0. (3.84)

For each i = 1, 2, we de�ne

Imi (v) := Lmi (v) + sm−6

∫∫
Q

e−2sΦiξm−6|vt + vxxx|2dxdt, (3.85)

where

Lmi (v) := sm
∫∫

Q

e−2sΦiξm|v|2dxdt+ sm−2

∫∫
Q

e−2sΦiξm−2|vx|2dxdt

+ sm−4

∫∫
Q

e−2sΦiξm−4|vxx|2dxdt. (3.86)

Then, we will prove the following Carleman estimate.
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Proposition 3.20. Assume that M ∈ Y1/2 = L2(0, T ;H2(0, 1)) ∩ L∞(0, T ;H1
0 (0, 1)).

Also, assume that

Oi,d ∩ O ≠ ∅, for i = 1, 2,

and that Oi,d ∩O is not contained in Oj,d ∩O for every i, j ∈ {1, 2} , i ̸= j (Assumption

A). Assume also that (3.15) holds and let ω1, ω2 and Õ0 satisfying (3.80) and (3.81). If

η1 and η2 are weight functions constructed in Lemma 3.19 for ω1 and ω2 respectively, then

there exists C > 0 such that

L5
1(ψ) +

2∑
i=1

I1i (γ
i) ≤ C

(
s5
∫ T

0

e14sΦ̂−16sΦ̌ξ41
(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt

+s19
∫∫

O×(0,T )

e14sΦ̂−16sΦ̌ξ45|ψ|2 dxdt
)
. (3.87)

Demonstração. We start by considering a function θ ∈ C3([0, 1]) such that{
θ(x) = 0 for x ∈ Õ0,

θ(x) = 1 for x ∈ [0, 1] \ Õ.
(3.88)

It is straightforward to check that θψ satis�es
−(θψ)t −M(θψ)x − (θψ)xxx =

∑2
i=1 θαiγ

iχOi,d
+ θg0 +R(ψ) in Q,

(θψ)(0, ·) = (θψ)(L, ·) = (θψ)x(0, ·) = 0 in (0, T ),

(θψ)(x, T ) = (θψ)T (x), γi(·, 0) = 0 in (0, 1),

(3.89)

where

R(ψ) = −Mθxψ − θxxxψ − 3θxxψx − 3θxψxx.

For i = 1, 2, let ω̃i ⊂ ωi. Using Carleman estimate (3.53) for θψ, weight function η1,

m = 5 and ω∗ = ω̃1, we get

L5
1(θψ) ≤ C

∫∫
Q

e−2sΦ1

∣∣∣∣∣
2∑
i=1

θαiγiχOi,d
+ θg0 +R(ψ)

∣∣∣∣∣
2

dxdt

+ s5
∫∫

Qω̃1

e−2sΦ1ξ5|θψ|2dxdt+ s

∫∫
Qω̃1

e−2sΦ1ξ|(θψ)xx|2dxdt

)
. (3.90)

Using the fact that θ = 1 in [0, 1] \ Õ, we deduce that

L5
1(θψ) ≥ L5

1(ψ)− s

∫∫
Õ×(0,T )

e−2sΦ1ξ1(s4ξ4|ψ|2 + s2ξ2|ψx|2 + |ψxx|2)dxdt. (3.91)
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Hence, combining (3.90) and (3.91), we get

L5
1(ψ) ≤ C

(
2∑
i=1

∫∫
Q

e−2sΦ1|θγiχOi,d
|2 dxdt+

∫∫
Q

e−2sΦ1(|θg0|2 + |R(ψ)|2) dxdt

+s

∫∫
Õ×(0,T )

e−2sΦ1ξ(s4ξ4|ψ|2 + s2ξ2|ψx|2 + |ψxx|2)dxdt
)
. (3.92)

For given ϵ > 0 and small, we can take s su�ciently large such that∫∫
Q

e−2sΦ1|R(ψ)|2 dxdt ≤ ϵL5
1(ψ), (3.93)

and hence

L5
1(ψ) ≤ C

(
2∑
i=1

∫∫
Q

|θγiχOi,d
|2 dxdt+

∫∫
Q

e−2sΦ1|θg0|2 dxdt

+s

∫∫
Õ×(0,T )

e−2sΦ1ξ(s4ξ4|ψ|2 + s2ξ2|ψx|2 + |ψxx|2)dxdt
)
, (3.94)

for s > 0 su�ciently large.

Now, for i = 1, 2, we apply Theorem 3.17 to the functions γi, weight functions ηi,

assuming m = 1 and ω∗ = ω̃i, obtaining

I1i (γ
i) ≤ C

(
s−4

∫∫
Q

e−2sΦiξ−4

∣∣∣∣− 1

µi
ψχOi

∣∣∣∣2 dxdt+ s−4

∫∫
Q

e−2sΦiξ−4|gi|2dxdt

+ s

∫∫
Qω̃i

e−2sΦiξ|γi|2dxdt+ s−3

∫∫
Qω̃i

e−2sΦiξ−3|γixx|2dxdt

)
, (3.95)

for i = 1, 2.

Since, for i = 1, 2, we have that Oi ∩O = ∅, then η1 = η2 in O1 ∪O2. In this way, for

given small ϵ > 0, we can take s su�ciently large, such that

s−4

∫∫
Q

e−2sΦiξ−4

∣∣∣∣− 1

µi
ψχOi

∣∣∣∣2 dxdt ≤ εL5
1(ψ), for i = 1, 2. (3.96)

Now, we combine (3.94), (3.95) and (3.96), and we get that

L5
1(ψ) +

2∑
i=1

I1i (γ
i) ≤ C

(∫∫
Q

e−2sΦ1|g0|2 dxdt+ s5
∫∫

Õ×(0,T )

e−2sΦ1ξ5|ψ|2dxdt

+s3
∫∫

Õ×(0,T )

e−2sΦ1ξ3|ψx|2dxdt+ s

∫∫
Õ×(0,T )

e−2sΦ1ξ|ψxx|2dxdt

+ s−4

2∑
i=1

∫∫
Q

e−2sΦiξ−4|gi|2dxdt+ s
2∑
i=1

∫∫
Qω̃i

e−2sΦiξ|γi|2dxdt

+s−3

2∑
i=1

∫∫
Qω̃i

e−2sΦiξ−3|γixx|2dxdt

)
. (3.97)
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Let θ1 ∈ C∞
0 (O) a positive function such that θ1 = 1 in Õ. For ε > 0 and small, the

following estimate holds

s3
∫∫

Õ×(0,T )

e−2sΦ1ξ3|ψx|2dxdt ≤ s3
∫∫

O×(0,T )

e−2sΦ1ξ3θ1|ψx|2dxdt

≤ εI51 (ψ) + Cs5
∫∫

O×(0,T )

e−2sΦ1ξ5|ψ|2dxdt. (3.98)

Using (3.98) in (3.97), we obtain that

L5
1(ψ) +

2∑
i=1

I1i (γ
i) ≤ C

(∫∫
Q

e−2sΦ1|g0|2 dxdt+ s5
∫∫

O×(0,T )

e−2sΦ1ξ5|ψ|2dxdt

s

∫∫
Õ×(0,T )

e−2sΦ1ξ|ψxx|2dxdt+ s−4

2∑
i=1

∫∫
Q

e−2sΦiξ−4|gi|2dxdt

+s
2∑
i=1

∫∫
Qω̃i

e−2sΦiξ|γi|2dxdt+ s−3

2∑
i=1

∫∫
Qω̃i

e−2sΦiξ−3|γixx|2dxdt

)
. (3.99)

In a similar way as in the case O1,d = O2,d (see Section 3.4.1), we can add a weighted

H8/3 norm of (ψ, γ1, γ2) on the left hand side of (3.99) (see (3.72)). In what follows, we

provide a sketch on how we can do this, and in this case, the fact that ∥η1∥∞ = ∥η2∥∞
will be very important.

Let β1 = e−sΦ̂ξ−
3
2 and de�ne (ψ1, γ

1
1 , γ

2
1) := (β1ψ, β1γ

1, β1γ
2), where (ψ, γ1, γ2) is

solution of (3.55). Then, we have that

−ψ1t − (ψ1)xxx = l1 in Q,

(γ11)t + (γ11)xxx = g11 in Q,

(γ21)t + (γ21)xxx = g21 in Q,

ψ1(0, ·) = ψ1(L, ·) = ψ1x(0, ·) = 0, on (0, T ),

γi1(0, ·) = γi1(L, ·) = (γi1)x(L, ·) = 0 on (0, T ), for i = 1, 2,

ψ1(x, T ) = 0, γi1(·, 0) = 0 in (0, 1), for i = 1, 2,

(3.100)

where

l1 =
∑2

i=1 αiγ
i
1χOid

+M(ψ1)x + β1g
0 − β′

1ψ,

gi1 = −
∑2

i=1
αi

µi
ψ1χOi

− (Mγi1)x + β1g
i + β′

1γ
i
1, for i = 1, 2.

(3.101)

Now, we use the fact that |β′
1| ≤ Cse−sΦ̂ξ

1
2 together with (3.83), to get that l1 and gi1 are

in L2(Q), and the following estimate holds

∥l1∥2L2(Q)+
2∑
i=1

∥gi1∥2L2(Q) ≤ Cs
(
I51 (ψ)+

2∑
i=1

I1i (γ
i)+∥β1g0∥2L2(Q)+

2∑
i=1

∥β1gi∥2L2(Q)

)
. (3.102)
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We remark that, in (3.102), we have estimated the weight β′
1 for both weights of the form

e−sΦi , for i = 1, 2. In order to do this, we have used the fact that ∥η1∥∞ = ∥η2∥∞.
From (3.102) and Proposition 3.5, we obtain that

∥ψ1∥2
L4(0,T ;H

3
2 (0,1))

+
2∑
i=1

∥γi1∥2L4(0,T ;H
3
2 (0,1))

≤ C
(
∥l1∥2L2(Q) +

2∑
i=1

∥gi1∥2L2(Q)

)
≤ Cs

(
I51 (ψ) +

2∑
i=1

I1i (γ
i) + ∥β1g0∥2L2(Q) +

2∑
i=1

∥β1gi∥2L2(Q)

)
. (3.103)

Consider now β2 = e−sΦ̂ξ−
7
2 and de�ne (ψ2, γ

1
2 , γ

2
2) := (β2ψ, β2γ

1, β2γ
2). It is clear

that 

−ψ2t − ψ2xxx = l2 in Q,

(γ12)t + (γ12)xxx = g12 in Q,

(γ22)t + (γ22)xxx = g22 in Q,

ψ2(0, ·) = ψ2(L, ·) = ψ2x(0, ·) = 0, on (0, T ),

γi2(0, ·) = γi2(L, ·) = (γi2)x(L, ·) = 0 on (0, T ), for i = 1, 2,

ψ2(x, T ) = 0, γi2(·, 0) = 0 in (0, 1), for i = 1, 2,

(3.104)

where
l2 =

∑2
i=1 αiγ

i
2χOid

+M(ψ2)x + β2g
0 − β′

2ψ

= β2β
−1
1 γi1χOid

+Mβ2β
−1
1 (ψ1)x + β2g

0 − β
′
2β

−1
1 ψ1,

(3.105)

and

gi2 = −
∑2

i=1
αi

µi
ψ2χOi

− (Mγi2)x + β2g
i + β

′
2γ

i,

= −
∑2

i=1
αi

µi
β

′
2β

−1
1 ψ1χOi

− β
′
2β

−1
1 (Mγi1)x + β2g

i + β
′
2β

−1
1 γi1, for i = 1, 2.

(3.106)

Then, using that β′
2 ≤ Cse−sΦ̂ξ−

3
2 , and using similar arguments to prove (3.67), we obtain

that

∥ψ2∥2Y 7
12

+
2∑
i=1

∥γi2∥2Y 7
12

≤ C
(
∥l2∥2

L2(0,T ;H
1
3 (0,1))

+
2∑
i=1

∥gi2∥2L2(0,T ;H
1
3 (0,1))

)
≤ Cs3

(
I51 (ψ) +

2∑
i=1

I1i (γi) + ∥β1g0∥2
L2(0,T ;H

1
3 (0,1))

+
2∑
i=1

∥β1gi∥2
L2(0,T ;H

1
3 (0,1))

)
. (3.107)

Finally, consider β3 = e−sΦ̂ξ−
11
2 and de�ne (ψ3, γ

1
3 , γ

2
3) := (β3ψ, β3γ

1, β3γ
2). It is not
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di�cult to see that

−ψ3t − ψ3xxx = l3 in Q,

(γ13)t + (γ13)xxx = g13 in Q,

(γ23)t + (γ23)xxx = g23 in Q,

ψ3(0, ·) = ψ3(L, ·) = (ψ3)x(0, ·) = 0, on (0, T ),

γi3(0, ·) = γi3(L, ·) = (γi3)x(L, ·) = 0 on (0, T ), for i = 1, 2,

ψ2(x, T ) = 0, γi3(·, 0) = 0 in (0, 1), for i = 1, 2,

(3.108)

where
l3 =

∑2
i=1 αiγ

i
3χOid

+M(ψ3)x + β3g
0 − β′

2ψ

= β3β
−1
2 γi2χOid

+Mβ3β
−1
2 (ψ2)x + β3g

0 − β
′
3β

−1
2 ψ2,

(3.109)

and

gi3 = −
∑2

i=1
αi

µi
ψ3χOi

− (Mγi3)x + β3g
i + β

′
3γ

i,

= −
∑2

i=1
αi

µi
β

′
3β

−1
2 ψ2χOi

− β
′
3β

−1
2 (Mγi2)x + β3g

i + β
′
3β

−1
2 γi2, for i = 1, 2.

(3.110)

Therefore, we use the fact that β′
3 ≤ Cse−sΦ̂ξ−

7
2 , and proceed similarly as in (3.71), and

we �nd that

∥ψ3∥2Y 2
3

+
2∑
i=1

∥γi3∥2Y 2
3

≤ C
(
∥l3∥2X 2

3

+
2∑
i=1

∥gi3||2X 2
3

)
≤ Cs5

(
I51 (ψ) +

2∑
i=1

I1i (γ
i) + ∥β1g0∥2

L2(0,T ;H
2
3 (0,1))

+
2∑
i=1

∥β1gi∥2
L2(0,T ;H

2
3 (0,1))

)
. (3.111)

Now, combining (3.99) and (3.111), we obtain

s−5

∫ T

0

e−2sΦ̂ξ−11∥ψ∥2
H

8
3 (0,1)

dt+ s−5

2∑
i=1

∫ T

0

e−2sΦ̂ξ−11∥γi∥2
H

8
3 (0,1)

dt+ L5
1(ψ) +

2∑
i=1

I1i (γ
i)

≤ C

(
s5
∫∫

O×(0,T )

e−2sΦ1ξ5|ψ|2dxdt+ s

∫∫
Õ×(0,T )

e−2sΦ1ξ|ψxx|2dxdt

+s
2∑
i=1

∫∫
Qω̃i

e−2sΦiξ|γi|2dxdt+ s−3

2∑
i=1

∫∫
Qω̃i

e−2sΦiξ−3|γixx|2dxdt

+s5
∫ T

0

e−2sΦ̌
(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt

)
. (3.112)

The next computations are to eliminate the second order derivatives located on the

right-hand side of (3.112). We use again an interpolation argument (see (3.91)) and
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Young's inequality, to get that

s

∫∫
Õ×(0,T )

e−2sΦ1ξ|ψxx|2dxdt+ s−3

2∑
i=1

∫∫
ω̃i×(0,T )

e−2sΦiξ−3|γixx|2dxdt

≤ Cs19
∫ T

0

e6sΦ̂−8sΦ̌ξ37∥ψ∥2
L2(Õ)

dt+ εs−5

∫ T

0

e−2sΦ̂ξ−11∥ψ∥2
H

8
3 (Õ)

dt

+ Cs3
2∑
i=1

∫ T

0

e6sΦ̂−8sΦ̌ξ21∥γi∥2L2(ω̃i)
dt+ εs−5

2∑
i=1

∫ T

0

e−2sΦ̂ξ−11∥γi∥2
H

8
3 (ω̃i)

dt. (3.113)

Combining (3.112) and (3.113), we obtain that

s−5

∫ T

0

e−2sΦ̂ξ−11∥ψ∥2
H

8
3 (0,1)

dt+ s−5

2∑
i=1

∫ T

0

e−2sΦ̂ξ−11∥γi∥2
H

8
3 (0,1)

dt

+L5
1(ψ)+

2∑
i=1

I1i (γ
i) ≤ C

(
s19
∫ T

0

e6sΦ̂−8sΦ̌ξ37∥ψ∥2
L2(Õ)

dt+ s3
2∑
i=1

∫ T

0

e6sΦ̂−8sΦ̌ξ21∥γi∥2L2(ω̃i)
dt

+s5
∫ T

0

e−2sΦ̌∥g0∥2H2/3(0,1) dt+ s5
∫ T

0

e−2sΦ̌

2∑
i=1

∥gi∥2H2/3(0,1)dt

)
. (3.114)

Now, for i = 1, 2, we are going to estimate the local term of γi on the right hand

side of (3.114). For i = 1, 2, let ωi be open subset such that ω̃i ⊂⊂ ωi ⊂⊂ Oid ∩ Õ, and

ωi ∩ Ojd = ∅, i ̸= j. Let θ2 ∈ C3
0(ωi) be such that θ2(x) = 1 for x ∈ ω̃i and 0 ≤ θ2 ≤ 1.

From equation (3.18), we easily see that

−ψt −Mψx − ψxxx − g0 = αiγ
iχOi,d

in ωi × (0, T ), for i = 1, 2.

Proceeding in a similar way as in (3.75) and (3.76), we can prove that

s3
2∑
i=1

∫ T

0

e6sΦ̂−8sΦ̌ξ21∥γi∥2L2(ω̃i)
dt ≤ ε(I1i (γ

i)+L5
1(ψ))+Cs

5

2∑
i=1

∫∫
Qωi

e14sΦ̂−16sΦ̌ξ41|g0|2 dxdt

+ Cs
2∑
i=1

∫∫
Qωi

e14sΦ̂−16sΦ̌ξ41|gi|2 dxdt+ Cs9
2∑
i=1

∫∫
Qωi

e14sΦ̂−16sΦ̌ξ45|ψ|2 dxdt, (3.115)

for i = 1, 2.

Therefore, we combine (3.114) and (3.115) and we get (3.87).

3.5 The observability inequality

This section is dedicated to prove an observability inequality such as (3.19) to the

solutions of System (3.18). In order to do that, we use the following Lemma:
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Lemma 3.21. There exists C > 0 such that∫ 1

0

(
|ψ(t)|2 +

2∑
i=1

|γi(t)|2
)
dx+

∫ T
4

0

∫ 1

0

(
|ψx|2 +

2∑
i=1

|γix|
)
dxdt

≤ C

(∫ T
2

0

∫ 1

0

(
|g0|2 +

2∑
i=1

|gi|2
)
dxdt+

∫ T
2

T
4

∫ 1

0

(
|ψ|2 +

2∑
i=1

|γi|2
)
dxdt

)
, (3.116)

for all t ∈ [0, T/4] and for every (ψ, γ1, γ2) solution of (3.18) with (g0, g1, g2) ∈ [L2(Q)]3.

Demonstração. De�ne χ ∈ C2([0, T ]) such that

χ =

{
1, if t ∈ [0, T/4],

0, if t ∈ [T/2, T ].
(3.117)

If (ψ, γ1, γ2) is a solution of (3.54), it is not di�cult to see that (χψ, χγ1, χγ2) is a solution

of the system

−(χψ)t −M(χψ)x − (χψ)xxx =
∑2

i=1 αi(χγ
i)χOi,d

+ χg0 − χtψ in Q,

(χγi)t + (Mχγi)x + (χγi)xxx = − 1
µi
(χψ)χOi

+ χgi + χtγ
i i = 1, 2 in Q,

(χψ)(0, ·) = (χψ)(L, ·) = (χψ)x(0, ·) = 0 on (0, T ),

(χγi)(0, ·) = (χγi)(L, ·) = (χγi)x(L, ·) = 0 i = 1, 2 on (0, T ),

(χψ)(x, T ) = 0, (χγi)(·, 0) = 0 i = 1, 2 in (0, 1).

(3.118)

Now, we use Proposition 3.2 (see also Remark 3.3) and following the proof of Proposition

3.12 (see (3.47)), we obtain that

∥χψ∥Y 1
4

+
2∑
i=1

∥χγi∥Y 1
4

≤ C

(
∥χg0∥L2(Q) + ∥χtψ∥L2(Q) +

2∑
i=1

∥χgi∥L2(Q) +
2∑
i=1

∥χtγi∥L2(Q)

)
.

Then, using that χ = 1 in (0, T/4) and that χt = 0 in (0, T/4) ∪ (T/2, T ), we obtain

(3.116).

Now, we de�ne the new weight functions

Ψi(x, t) = ηi(x)β(t), (3.119)

where β(t) = 1
l(t)

and

l(t) =

{
T 2/4, if t ∈ [0, T/2],

t(T − t), if t ∈ [T/2, T ].
(3.120)

Also, we denote

Ψ̂(t) = max
x∈[0,1]

Ψ1(t, x) = max
x∈[0,1]

Ψ2(t, x) and Ψ̌(t) = min
x∈[0,1]

Ψ1(t, x) = min
x∈[0,1]

Ψ1(t, x).

(3.121)

Then, we have the following Carleman estimate with new weight functions.
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Proposition 3.22. There exists a constant C > 0 (depending on s), such that every

solution (ψ, γ1, γ2) of (3.18) with (g0, g1, g2) ∈ [L2(0, T ;H2/3(0, 1))]3, satis�es∫ 1

0

|ψ(x, 0)|2 dx+
∫∫

Q

e−2sΨ1β5|ψ|2dxdt+
∫∫

Q

e−2sΨ1β3|ψx|2dxdt

+
2∑
i=1

∫∫
Q

e−2sΨiβ|γi|2dxdt+
2∑
i=1

∫∫
Q

e−2sΨiβ−1|γix|2dxdt

≤ C

(∫ T

0

e14sΨ̂−16sΨ̌β41
(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt

+

∫∫
O×(0,T )

e14sΨ̂−16sΨ̌β45|ψ|2dxdt
)
. (3.122)

Demonstração. In one hand, since β = ξ for every t ∈ [T/2, T ], we get that∫ T

T/2

e14sΦ̂−16sΦ̌ξ41
(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt+

∫ T

T/2

∫
O
e14sΦ̂−16sΦ̌ξ45|ψ|2 dxdt

=

∫ T

T/2

e14sΨ̂−16sΨ̌β41
(
∥g0∥2H2/3(0,1)+

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt+

∫ T

T/2

∫
O
e14sΨ̂−16sΨ̌β45|ψ|2dxdt.

(3.123)

In other hand, since l is constant in [0, T/2], we easily see that∫ T/2

0

e14sΦ̂−16sΦ̌ξ41
(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt+

∫ T/2

0

∫
O
e14sΦ̂−16sΦ̌ξ45|ψ|2 dxdt

≤ C

(∫ T/2

0

(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt+

∫ T/2

0

∫
O
|ψ|2 dxdt

)

≤ C

(∫ T/2

0

e14sΨ̂−16sΨ̌β41
(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt

+

∫ T/2

0

∫
O
e14sΨ̂−16sΨ̌β45|ψ|2 dxdt

)
. (3.124)

Hence, combining (3.123) and (3.124), we get∫ T

0

e14sΦ̂−16sΦ̌ξ41
(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt+

∫∫
O×(0,T )

e14sΦ̂−16sΦ̌ξ45|ψ|2 dxdt

≤ C

(∫ T

0

e14sΨ̂−16sΨ̌β41
(
∥g0∥2H2/3(0,1) +

2∑
i=1

∥gi∥2H2/3(0,1)

)
dt

+

∫∫
O×(0,T )

e14sΨ̂−16sΨ̌β45|ψ|2 dxdt
)
. (3.125)
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Now, we have that the weight coincides a in [T/2, T ] and then

∫ T

T/2

∫
Ω

e−2sΨ1β5|ψ|2dxdt+
∫ T

T/2

∫
Ω

e−2sΨ1β3|ψx|2dxdt+
2∑
i=1

∫ T

T/2

∫
Ω

e−2sΨiβ|γi|2dxdt

+
2∑
i=1

∫ T

T/2

∫
Ω

e−2sΨiβ−1|γix|2dxdt =
∫ T

T/2

∫
Ω

e−2sΦ1ξ5|ψ|2dxdt+
∫ T

T/2

∫
Ω

e−2sΦ1ξ3|ψx|2dxdt

+
2∑
i=1

∫ T

T/2

∫
Ω

e−2sΦiξ|γi|2dxdt+
2∑
i=1

∫ T

T/2

∫
Ω

e−2sΦiξ−1|γix|2dxdt. (3.126)

In the time interval [0, T/2], we use the fact that the weight functions are bounded from

above and we get that∫ 1

0

|ψ(x, 0)|2 dx+
∫ T/2

0

∫ 1

0

e−2sΨ1β5|ψ|2dxdt+
∫ T/2

0

∫ 1

0

e−2sΨ1β3|ψx|2dxdt

+
2∑
i=1

∫ T/2

0

∫ 1

0

e−2sΨiβ|γi|2dxdt+
2∑
i=1

∫ T/2

0

∫ 1

0

e−2sΨiβ−1|γix|2dxdt

≤ C

(∫ 1

0

|ψ(x, 0)|2 dx+
∫ T/2

0

∫ 1

0

|ψ|2dxdt+
∫ T/2

0

∫ 1

0

|ψx|2dxdt

+
2∑
i=1

∫ T/2

0

∫ 1

0

|γi|2dxdt+
2∑
i=1

∫ T/2

0

∫ 1

0

|γix|2dxdt

)
. (3.127)

Now, we use Lemma 3.21 and the fact that the weight functions are bounded from below

to obtain∫ 1

0

|ψ(x, 0)|2 dx+
∫ T/2

0

∫ 1

0

|ψ|2dxdt+
∫ T/2

0

∫ 1

0

|ψx|2dxdt

+
2∑
i=1

∫ T/2

0

∫ 1

0

|γi|2dxdt+
2∑
i=1

∫ T/2

0

∫ 1

0

|γix|2dxdt

≤ C

(∫ T
2

0

∫ 1

0

(
|g0|2 +

2∑
i=1

|gi|2
)
dxdt+

∫ T
2

T
4

∫ 1

0

(
|ψ|2 +

2∑
i=1

|γi|2
)
dxdt

)

≤ C

(∫ T
2

0

∫ 1

0

e14sΨ̂−16sΨ̌β41
(
|g0|2 +

2∑
i=1

|gi|2
)
dxdt

+

∫ T
2

T
4

∫ 1

0

(
e−2sΦ1ξ5|ψ|2 +

2∑
i=1

e−2sΦiξ|γi|2
)
dxdt

)
. (3.128)
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Combining (3.126), (3.127) and (3.128), we have∫ 1

0

|ψ(x, 0)|2 dx+
∫∫

Q

e−2sΨ1β5|ψ|2dxdt+
∫∫

Q

e−2sΨ1β3|ψx|2dxdt

+
2∑
i=1

∫∫
Q

e−2sΨiβ|γi|2dxdt+
2∑
i=1

∫∫
Q

e−2sΨiβ−1|γix|2dxdt

≤ C

(∫∫
Q

e14sΨ̂−16sΨ̌β41
(
|g0|2 +

2∑
i=1

|gi|2
)
dxdt+

∫∫
Q

e−2sΦ1ξ5|ψ|2dxdt

+

∫∫
Q

e−2sΦ1ξ3|ψx|2dxdt+
2∑
i=1

∫∫
Q

e−2sΦiξ|γi|2dxdt+
2∑
i=1

∫∫
Q

e−2sΦiξ−1|γix|2dxdt

)
.

(3.129)

To �nish, we combine (3.129) and (3.87), and then we use (3.125) to obtain (3.122).

3.6 Null Controllability of the Linear System

In this section, we prove that the linear system (3.17) is partially null controllable in

the sense that we can �nd a control f ∈ L2(O × (0, T )) such that z(·, T ) = 0.

To simplify the notation, let us denote by L the linear operator

Lu = ut + (Mu)x + uxxx

and by L∗ its formal adjoint

L∗u = −ut −Mux − uxxx,

in which M = 1 + ȳ and ȳ is a given trajectory. Also, we consider the functional space

B1 =
{
(z, ϕ1, ϕ2, f); esψ1β−5/2(Lz +

∑2
i=1

1
µi
ϕiχOi

− f1O) ∈ L2(Q),

esψiβ−1/2(L∗ϕi − αizχOi,d
) ∈ L2(Q) for i = 1, 2,

e8sψ̌−7sψ̂β−45/2z ∈ Y1/2, e
8sψ̌−7sψ̂β−45/2ϕi ∈ Y1/2 for i = 1, 2,

e8sψ̌−7sψ̂β−41/2z ∈ L2(0, T ;H−1(0, 1)),

e8sψ̌−7sψ̂β−41/2ϕi ∈ L2(0, T ;H−1(0, 1)) for i = 1, 2,

e8sψ̌−7sψ̂β−45/2f ∈ L2(Q), z(·, 0) ∈ H1
0 (0, 1)

}
.

We have the following result.

Proposition 3.23. Assume that z0 ∈ H1
0 (0, 1), that

esΨ1β− 5
2f 0 in L2(Q) and that esΨiβ− 1

2f i in L2(Q) for i = 1, 2. (3.130)

There exists (z, ϕ1, ϕ2, f) ∈ B1 solution of (3.17) with control f , initial data z0 and

(f 0, f 1, f 2) as source terms. In particular z(·, T ) = 0.
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Demonstração. To start, we de�ne

P0 =
{
(ψ, γ1, γ2) ∈ [C4([0, 1]× [0, T ])]3; ψ(0, t) = ψ(1, t) = ψx(1, t) = 0 ∀t ∈ (0, T );

γi(0, t) = γi(1, t) = γix(0, t) = 0 ∀t ∈ (0, T ), i = 1, 2;

L∗ψ(0, t) = L∗ψ(1, t) = 0 ∀t ∈ (0, T );

Lγi(0, t) = Lγi(1, t) = 0 ∀t ∈ (0, T ), i = 1, 2;

γi(x, 0) = 0 ∀x ∈ (0, 1), i = 1, 2
}
.

Let b : P0 × P0 −→ R the bilinear functional given by

b((ψ̂, γ̂1, γ̂2), (ψ, γ1, γ2)) =∫∫
Q

e14sΨ̂−16sΨ̌β41∇

(
L∗ψ̂ −

2∑
i=1

αiγ̂
iχOi,d

)
∇

(
L∗ψ −

2∑
i=1

αiγ
iχOi,d

)
dxdt

+
2∑
i=1

∫∫
Q

e14sΨ̂−16sΨ̌β41∇
(
Lγ̂i + 1

µi
ψ̂χOi

)
∇
(
Lγi + 1

µi
ψχOi

)
dxdt

+

∫∫
O×(0,T )

e14sΨ̂−16sΨ̌β45ψ̂ψdxdt, (3.131)

and the linear form l : P0 −→ R de�ned by

l(ψ, γ1, γ2) =

∫ T

0

z0(x)ψ(x, 0)dx+

∫∫
Q

f 0ψdxdt+
2∑
i=1

∫∫
Q

f iγidxdt. (3.132)

It is not di�cult to see that ∥(ψ, γ1, γ2)∥P = b((ψ, γ1, γ2), (ψ, γ1, γ2))
1
2 de�nes a norm

on P0. Indeed, if b((ψ, γ1, γ2), (ψ, γ1, γ2)) = 0, then we obtain from Proposition 3.22 that

ψ = ψx = 0 and that γi = γix = 0 in [0, 1]× [0 + δ, T − δ], for every δ > 0. Therefore, we

can consider the space P , the completion of P0 with the norm ∥ · ∥P and it is straight-

forward that b(·, ·) is continuous and coercive over P × P .

By combining Hölder's inequality and Proposition 3.22, we can estimate l as follows

|l(ψ, γ1, γ2)| ≤ C

(∫ 1

0

|z0|2dx+
∫∫

Q

e2sΨ1β−5|f 0|2dxdt+
2∑
i=1

∫∫
Q

e2sΨiβ−1|f i|2dxdt

+
2∑
i=1

∫∫
Q

e2sΨiβ−1|zi,d|2dxdt

) 1
2

×
(∫ 1

0

|ψ(x, 0)|2dx+
∫∫

Q

e−2sΨ1β5|ψ|2dxdt

+
2∑
i=1

∫∫
Q

e−2sΨiβ|γi|2dxdt

) 1
2

≤ C∥(ψ, γ1, γ2)∥P
(∫ 1

0

|z0|2dx+
∫∫

Q

e2sΨ1β−5|f 0|2dxdt

+
2∑
i=1

∫∫
Q

e2sΨiβ−1|f i|2dxdt

) 1
2

, (3.133)
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for every (ψ, γ1, γ2) ∈ P0. By applying the Hahn-Banach extension Theorem, the func-

tional l can be extended to a continuous functional over P . In this way, we apply the

Lax-Milgram Theorem and conclude that the variational problem

b((ψ̂, γ̂1, γ̂2), (ψ, γ1, γ2)) = l(ψ, γ1, γ2), ∀(ψ, γ1, γ2) ∈ P , (3.134)

possesses a unique solution (ψ̂, γ̂1, γ̂2) ∈ P .
De�ne (ẑ, ϕ̂1, ϕ̂2, f̂) by

ẑ = −e14sΨ̂−16sΨ̌β41∆
(
L∗ψ̂ −

∑2
i=1 αiγ̂

iχOi,d

)
in Q,

ϕ̂i = −e14sΨ̂−16sΨ̌β41∆
(
Lγ̂i + 1

µi
ψ̂χOi,d

)
in Q,

f̂ = −e14sΨ̂−16sΨ̌β45ψ̂ in Q.

(3.135)

Combining (3.134) and (3.135), we get that

−
∫ T

0

z0(x)ψ(x, 0)dx+

∫ T

0

⟨ẑ,L∗ψ −
2∑
i=1

αiγ
iχOi,d

⟩H−1H1
0
dt

+
2∑
i=1

∫ T

0

⟨ϕ̂i,Lγi + 1

µi
ψχOi

⟩H−1H1
0
dt

=

∫∫
Q

f 0ψdxdt+
2∑
i=1

∫∫
Q

f iγidxdt+

∫∫
O×(0,T )

f̂ψdxdt, (3.136)

for all (ψ, γ1, γ2) ∈ P0 ⊂ P .
Let us prove now that (ẑ, ϕ̂1, ϕ̂2, f̂) is solution in the transposition sense for (3.17) (see

(3.41)). For this, let (z∗, ϕ1∗, ϕ2∗, f ∗) be the transposition solution of (3.17) associated to

the control f ∗ = f̂ , then it satis�es

∫∫
Q

z∗g0 dxdt+
2∑
i=1

∫∫
Q

ϕi∗gi dxdt =

∫ 1

0

z0(x)ψ(x, 0) dx+

∫ T

0

⟨f 0, ψ⟩H−1H1
0
dt+

2∑
i=1

∫∫
Q

⟨f i, γi⟩H−1H1
0
dt+

∫∫
O×(0,T )

f̂ψdxdt, (3.137)

for every (g0, g1, g2), where (ψ, γ1, γ2) is solution of (3.42) with (g0, g1, g2) on the right-

hand side.

By taking a sequence of functions (ψn, γ1n, γ2n) ∈ [C∞
0 (Q)]3 ⊂ P0 converging to the

solution of (3.18) with (g0, g1, g2) ∈ [L2(0, T ;H1
0 (0, 1))]

3 on the right hand side and ψT =
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0, and using (3.136) we obtain that∫ T

0

⟨ẑ, g0⟩H−1H1
0
dxdt+

2∑
i=1

∫∫
Q

⟨ϕ̂i, gi⟩H−1H1
0
dxdt =

∫ 1

0

z0(x)ψ(x, 0) dx+

∫ T

0

⟨f 0, ψ⟩H−1H1
0
dt+

2∑
i=1

∫∫
Q

⟨f i, γi⟩H−1H1
0
dt, (3.138)

for all (g0, g1, g2) ∈ L2(0, T ;H1
0 (0, 1)), where (ψ, γ

1, γ2) is solution of (3.42) with (g0, g1, g2)

on the right-hand side. To conclude, we combine (3.137) and (3.138) and we get that

(ẑ, ϕ̂1, ϕ̂2) = (z∗, ϕ1∗, ϕ2∗), in particular (ẑ, ϕ̂1, ϕ̂2) ∈ [L2(Q)]3.

We remark that formula (3.135) implies that ẑ(·, T ) = 0. This is due to the fact that

the weight function e14sΨ̂−16sΨ̌β41 goes to zero when t tends to T .

Let us prove that (ẑ, ϕ̂1, ϕ̂2) is indeed more regular. We start using (3.135) to see that

∥e8sΨ̌−7sΨ̂β− 41
2 ẑ∥L2(0,T ;H−1(0,1))

=
(∫ T

0

e14sΨ̂−16sΨ̌β41
(

sup
∥ζ∥

H1
0(0,1)

=1

〈
−∆

(
L∗ψ̂ −

2∑
i=1

αiγ̂iχOi,d

)
, ζ
〉
H−1H1

0

)2
dt
)1/2

=
(∫ T

0

e14sΨ̂−16sΨ̌β41
(

sup
∥ζ∥

H1
0(0,1)

=1

∫ 1

0

∇
(
L∗ψ̂ −

2∑
i=1

αiγ̂iχOi,d

)
· ∇ζ dx

)2
dt
)1/2

≤
(∫∫

Q

e14sΨ̂−16sΨ̌β41
∣∣∣∇(L∗ψ̂ −

2∑
i=1

αiγ̂iχOi,d

)∣∣∣2dxdt)1/2. (3.139)

In a completely analogous way, we can prove that

∥e8sΨ̌−7sΨ̂β− 41
2 ϕ̂i∥L2(0,T ;H−1(0,1)) ≤

(∫∫
Q

e14sΨ̂−16sΨ̌β41
∣∣∣∇(Lγ̂i + 1

µi
ψ̂χOi,d

)∣∣∣2dxdt)1/2.
(3.140)

We also obtain the following estimate to the control

∥e8sΨ̌−7sΨ̂β−45/2f̂∥L2(Q) =
(∫∫

Q

e14sΨ̂−16sΨ̌β45|ψ̂|2dxdt
)1/2

. (3.141)

Hence, we have that∫ T

0

e16sΨ̌−14sΨ̂β−41∥ẑ∥2H−1(0,1)dt+

∫ T

0

e16sΨ̌−14sΨ̂β−41∥ϕ̂i∥2H−1(0,1)dt

+

∫∫
Q

e16sΨ̌−14sΨ̂β−45∥f̂∥2dxdt ≤ b((ψ̂, γ̂1, γ̂2), (ψ̂, γ̂1, γ̂2)) <∞. (3.142)

Now, we de�ne 
z∗ = e8sψ̌−7sψ̂β−45/2ẑ,

ϕi∗ = e8sψ̌−7sψ̂β−45/2ϕ̂i, i = 1, 2,

f 0∗ = e8sψ̌−7sψ̂β−45/2
(
f̂1O + f 0

)
,

f i∗ = e8sψ̌−7sψ̂β−45/2f i,

(3.143)
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and it is not di�cult to see that

Lz∗ = f 0∗ −
∑2

i=1
1
µi
(e8sψ̌−7sψ̂β−45/2)tϕ̂

iχOi
in Q,

L∗ϕi∗ = f i∗ + αi(e
8sψ̌−7sψ̂β−45/2)tẑχOi,d

, i = 1, 2 in Q,

z∗ (0, ·) = z∗ (L, ·) = z∗x (L, ·) = 0 in (0, T ) ,

γi∗ (0, ·) = γi∗ (L, ·) = γi∗x (0, ·) = 0 in (0, T ) ,

z∗(·, 0) = e8sψ̌−7sψ̂β−45/2
∣∣∣
t=0
z0, γi∗(·, T ) = 0 in (0, 1) .

(3.144)

An easy computation shows that (e8sψ̌−7sψ̂β−45/2)t ≤ Ce8sψ̌−7sψ̂β−41/2, in this way

f 0∗ −
2∑
i=1

1

µi
(e8sψ̌−7sψ̂β−45/2)tϕ̂

iχOi
∈ L2(0, T ;H−1(0, 1))

and

f i∗ + αi(e
8sψ̌−7sψ̂β−45/2)tẑχOi,d

∈ L2(0, T ;H−1(0, 1)).

Together with the fact that z0 ∈ H1
0 (0, 1), we �nally obtain that (z∗, ϕ1∗, ϕ2∗) ∈ [Y1/2]

3

(see Remark 3.6). Note that, we have also obtained that (ẑ, ϕ̂1, ϕ̂2, f̂) ∈ B1.

3.7 Null Controllability for the Nonlinear Case

To deal with the nonlinear case, we are going to use a local inversion mapping theorem

(see [1]).

Theorem 3.24 (Inverse Mapping Theorem). Let B1 and B2 be Banach spaces and let

A : B1 → B2 in C
1(B1, B2). Given b1 ∈ B1 and b2 = A(b1), suppose that A′(b1) : B1 → B2

is surjective. Then, there exists δ > 0 such that for all b′ ∈ B2 with ∥b′ − b2∥ ≤ δ, one

can �nd b ∈ B1 such that A(b) = b′.

We will also need the following lemma whose the proof is immediate:

Lemma 3.25. If v ∈ Y1/4 and w ∈ Y1/2, then vwx ∈ L2(Q) and

∥vwx∥L2(Q) ≤ C∥v∥Y1/4∥w∥Y1/2 .

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let

B2 = L2(esψ1β−5/2(0, T );L2(0, 1))×
2∏
i=1

L2(esψiβ−1/2(0, T );L2(0, 1))×H1
0 (0, 1).
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We de�ne A : B1 → B2 by

A(z, ϕ1, ϕ2, f) =
(
Lz+zzx+

2∑
i=1

1

µi
ϕiχOi

−f1O,L∗ϕ1−zϕ1
x−α1zχO1,d

,L∗ϕ2−zϕ2
x−α2zχO2,d

,

z(·, 0)
)
. (3.145)

Note that A(0, 0, 0, 0) = (0, 0, 0, 0) and the surjectivity for A′(0, 0, 0, 0) follows from Pro-

position 3.23. Let us prove that A ∈ C1(B1, B2). Indeed, using that

L2(e16sψ̌−14sψ̂β−45(0, T );L2(0, 1))

↪→ L2(esψ1β−5/2(0, T );L2(0, 1)) ∩ L2(esψiβ−1/2(0, T );L2(0, 1)), (3.146)

for i = 1, 2, we get

∥A(z, ϕ1, ϕ2, f)−A(z̃, ϕ̃1, ϕ̃2, f̃)∥2B2

≤
∫∫

Q

e2sψ1β−5
∣∣L(z − z̃) +

2∑
i=1

1

µi
(ϕi − ϕ̃i)χOi

− (f − f̃)
∣∣2 dxdt

∫∫
Q

e16sψ̌−14sψ̂β−45|zzx− z̃z̃x|2 dxdt+
2∑
i=1

∫∫
Q

e2sψiβ−1|L∗(ϕi− ϕ̃i)−αi(z− z̃)χOi,d
|2 dxdt

+
2∑
i=1

∫∫
Q

e16sψ̌−14sψ̂β−45|zϕix − z̃ϕ̃ix|2 dxdt+ ∥z(·, 0)− z̃(·, 0)∥2H1
0 (0,1)

. (3.147)

Note that the �rst, third an �fth terms on the right-hand side of (3.147) are exactly a

part of the norm of B1, then it is clear that

∫∫
Q

e2sψ1β−5
∣∣L(z − z̃) +

2∑
i=1

1

µi
(ϕi − ϕ̃i)χOi

− (f − f̃)
∣∣2 dxdt

+
2∑
i=1

∫∫
Q

e2sψiβ−1|L∗(ϕi − ϕ̃i)− αi(z − z̃)χOi,d
|2 dxdt+ ∥z(·, 0)− z̃(·, 0)∥2H1

0 (0,1)

≤ ∥(z, ϕ1, ϕ2, f)− (z̃, ϕ̃1, ϕ̃2, f̃)∥2B1
. (3.148)

To deal with the second and fourth terms, we use Lemma 3.25 and we obtain∫∫
Q

e16sψ̌−14sψ̂β−45|zzx − z̃z̃x|2 dxdt =
∫∫

Q

e16sψ̌−14sψ̂β−45|(z − z̃)zx − z̃(z̃x − zx)|2 dxdt

≤ C

∫∫
Q

e16sψ̌−14sψ̂β−45|(z − z̃)zx|2 dxdt+
∫∫

Q

e16sψ̌−14sψ̂β−45|z̃(z̃x − zx)|2 dxdt

≤ C∥e8sψ̌−7sψ̂β−45/2(z − z̃)∥2Y1/2
(
∥e8sψ̌−7sψ̂β−45/2z∥2Y1/2 + ∥e8sψ̌−7sψ̂β−45/2z̃∥2Y1/2

)
. (3.149)
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Analogously, we can prove that

2∑
i=1

∫∫
Q

e16sψ̌−14sψ̂β−45|zϕix − z̃ϕ̃ix|2 dxdt

≤ C∥e8sψ̌−7sψ̂β−45/2(z − z̃)∥Y1/2
2∑
i=1

∥e8sψ̌−7sψ̂β−45/2ϕi∥2Y1/2

+
2∑
i=1

∥e8sψ̌−7sψ̂β−45/2(ϕi − ϕ̃i)∥Y1/2∥
2e8sψ̌−7sψ̂β−45/2z̃∥Y1/2

)
. (3.150)

From (3.147)-(3.150) we have that A is continuous from B1 to B2. Now, it just remains

to prove that A′ : B1 7→ L(B1, B2) is also continuous. Notice that

A′(z, ϕ1, ϕ2, f)(z̃, ϕ̃1, ϕ̃2, f̃) =
(
Lz̃+ z̃zx+zz̃x+

2∑
i=1

1

µi
ϕ̃i− f̃ ,L∗ϕ̃1−zϕ̃1

x− z̃ϕ1
x−α1z̃χO1,d

,

L∗ϕ̃2 − zϕ̃2
x − z̃ϕ2

x − α2z̃χO2,d
, z̃(·, 0)

)
. (3.151)

In this way,

A′(z, ϕ1, ϕ2, f)(z̃, ϕ̃1, ϕ̃2, f̃)− A′(ẑ, ϕ̂1, ϕ̂2, f̂)(z̃, ϕ̃1, ϕ̃2, f̃) =(
z̃(zx − ẑx) + (z − ẑ)z̃x,−(z − ẑ)ϕ̃1

x − z̃(ϕ1
x − ϕ̂1

x),−(z − ẑ)ϕ̃2
x − z̃(ϕ2

x − ϕ̂2
x), 0

)
. (3.152)

Hence, proceeding in a very similar way as in (3.149) and (3.150), we can prove that

∥A′(z, ϕ1, ϕ2, f)(z̃, ϕ̃1, ϕ̃2, f̃)− A′(ẑ, ϕ̂1, ϕ̂2, f̂)(z̃, ϕ̃1, ϕ̃2, f̃)∥2B2

≤ C∥e8sψ̌−7sψ̂β−45/2(z − ẑ)∥2Y1/2∥e
8sψ̌−7sψ̂β−45/2z̃∥2Y1/2

+ C∥e8sψ̌−7sψ̂β−45/2(z − ẑ)∥2Y1/2
2∑
i=1

∥e8sψ̌−7sψ̂β−45/2ϕ̃i∥2Y1/2

+ C

2∑
i=1

∥e8sψ̌−7sψ̂β−45/2(ϕi − ϕ̂i)∥2Y1/2∥e
8sψ̌−7sψ̂β−45/2z̃∥2Y1/2

≤ C∥(z, ϕ1, ϕ2, f)− (ẑ, ϕ̂1, ϕ̂2, f̂)∥2B1
∥(z̃, ϕ̃1, ϕ̃2, f̃)∥2B1

(3.153)

Hence, the derivative A′ is also continuous and we can apply the Inverse Mapping Theorem

(Theorem 3.24) to the operator A. This completes the proof of Theorem 3.1.

3.8 Open questions

In this chapter, we have assumed some similar conditions to the ones in [5, 6], these

conditions are given essentially when we make the cases O1,d = O2,d and O1,d ∩ O ̸=
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O2,d ∩ O. Concerning these conditions, some open questions arises naturally. The �rst

one is the case that Ok,l
d coincides only inside O and di�er outside O, we remark that,

even for the case of one single equation, similar open problem arises (see [6]).

Other cases where we do not get results the respect is when the controls are on the

bondary, leader or followers. For example, in case that f is the leader, v1, v2 are followers

we don't know what happens when y(0, t) = f , y(L, t) = v1 or yx(L, t) = v2.
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