
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

Lucas Gabriel Bezerra de Souza

Discrete Calculus: Applications in Stochastic Processes

Recife
2021



Lucas Gabriel Bezerra de Souza

Discrete Calculus: Applications in Stochastic Processes

Dissertation presented to the graduation program of
the Department of Physics of the Federal University
of Pernambuco as part of the requirements to obtain
the degree of Master of Science in Physics.

Concentration area: Theoretical and Computa-
tional Physics

Supervisor: Antônio Murilo Santos Macêdo

Recife
2021



Catalogação na fonte
Bibliotecária Nataly Soares Leite Moro, CRB4-1722

S729d Souza, Lucas Gabriel Bezerra de
Discrete calculus: applications in stochastic processes / Lucas Gabriel

Bezerra de Souza. – 2021.
132 f.: il., fig., tab.

Orientador: Antônio Murilo Santos Macêdo.
Dissertação (Mestrado) – Universidade Federal de Pernambuco. CCEN,

Física, Recife, 2021.
Inclui referências e apêndice.

1. Física teórica e computacional. 2. Cálculo discreto. 3. Equações de
diferença finita. 4. Processos estocásticos. 5. Teoria H. I. Macêdo, Antônio
Murilo Santos (orientador). II. Título.

530.1 CDD (23. ed.) UFPE- CCEN 2022 - 81



LUCAS GABRIEL BEZERRA DE SOUZA

DISCRETE CALCULUS: 

APPLICATIONS IN STOCHASTIC PROCESSES

Dissertação  apresentada  ao  Programa  de
Pós-Graduação em Física da Universidade
Federal  de  Pernambuco,  como  requisito
parcial para a obtenção do título de Mestre
em Física. 

Aprovada em: 29/11/2021.

BANCA EXAMINADORA

________________________________________
Prof. Antônio Murilo Santos Macêdo 

Orientador 
Universidade Federal de Pernambuco

_________________________________________
Prof. Ernesto Carneiro Pessoa Raposo 

Examinador Interno 
Universidade Federal de Pernambuco

_________________________________________
Prof. Jorge Gabriel Gomes de Souza Ramos 

Examinador Externo 
Universidade Federal da Paraíba



This dissertation is dedicated to all the victims of the COVID-19 pandemic around the world,
especially in Brazil.
Esta dissertação é dedicada a todas as vítimas da pandemia de COVID-19 no mundo, em
especial no Brasil.



ACKNOWLEDGEMENTS

Sou imensamente grato a tudo e todos que me ajudaram a chegar até aqui.
Antes de tudo, agradeço ao CNPq que sem o suporte provido eu não poderia ter nem ao

menos iniciado esta fase da minha vida.
Agradeço imensamente à Isabela, que me deu apoio, me suportou, me motivou e não

permitiu que eu sucumbisse a tantas dificuldades que surgiram ao longo desse trabalho, tanto
no âmbito profissional quanto pessoal.

Agradeço ao meu orientador Antônio pela sua paciência ao responder minhas dúvidas, por
motivar com suas ideias e me mostrar o tipo de profissional que desejo ser.

Agradeço ao professor Leonardo Cabral por ter ministrado o curso de Métodos Matemáticos
para Física, a qual influenciou diretamente este trabalho e teve valor especial para mim como
profissional, além de todas as conversas para além da academia.

Agradeço aos meus amigos que me auxiliaram nessa trajetória: Naudson, Alyson, Nicolas,
Érica, Álvaro, Matheus Martins, Diego e, em especial, o grupo dos Coaches Quânticos 1:
Ricardo, Matheus, Marcos e Hugo, por todo o apoio, conversas, cafezinhos, cervejinhas e
discussões sobre a física e sobre a vida.

Agradeço aos meus colegas do grupo de pesquisa Eriton, Arthur e Nathan por todas as
discussões que ajudaram esse trabalho a prosseguir.

Agradeço à psicóloga Márcia, que mesmo não estando dentro das suas responsabilidades,
continuou me acompanhando e me auxiliando a me compreender e me desenvolver como
indivíduo.

Agradeço também à minha avó Irene, aos meus pais Zuleide e Ezequiel, e à minha tia
Laedja que, apesar de tudo, me deram suporte material para me manter na universidade.

1 Vale ressaltar que este nome tem caráter lúdico. A "profissão" de coaches quânticos é um desserviço para
a ciência e para a sociedade por não apresentar nenhum respaldo científico para as suas ações.



”[...] o cosmos é uma gigantesca massa de informação em potencial à espera de um

observador inteligente o suficiente para extrair desse universo conhecimento e, em um mesmo

sopro de intuição, conferir algum significado a toda essa vastidão cósmica." (NICOLELIS, 2020,
p. 16).



ABSTRACT

In this dissertation we explore the relationship between the infinitesimal and discrete
descriptions of Nature and how these descriptions are connected in a systematic way via an
integral transform called mimetic map, which we propose. We start presenting a brief review
of sequences and difference equations, detailing some solving methods. In particular, we see
that solving techniques of differential equations of infinitesimal calculus can be transferred to a
calculus used to describe and solve finite difference equations, known as discrete calculus, been
such techniques widely applied in the research field of difference equations. Then we show how
the whole structure of infinitesimal calculus can be transferred to the discrete calculus via the
mimetic map, generalizing and systematizing the already known discrete calculus of sequences,
using the discrete functions, and interpreting the difference equations as discrete versions of
differential equations. Also via the mimetic map we extend the notion of generating functions
of sequences to discrete functions, where such extensions depend on a parameter ℎ, returning
the sequence case when ℎ “ 1. With the mimetic map as well we obtain discrete versions of
integral transforms, such as the discrete Laplace and Mellin transforms, relating the former
with the Z transform. We also present a complex mimetic map used to construct a complex
discrete calculus starting from the calculus on the complex plane. As applications in physics,
we present a review of discrete and continuous stochastic processes and show how the mimetic
transform and the corresponding discrete calculus are capable to map the descriptions of these
processes into one another continuous processes one onto the other. In particular, we obtain
a discrete version of the H theory for the background variables using the mimetic map and
for the observable variable using the tools of stochastic processes. And lastly we present how
the formulations of epidemic models, given as continuous and discrete stochastic processes,
which is connected by construction in the literature, now could be connected via the discrete
calculus and the mimetic map.

Keywords: discrete calculus; finite difference equations; stochastic processes; H theory; epi-
demic models.



RESUMO

Nesta dissertação exploramos a relação entre as descrições infinitesimal e discreta da na-
tureza e como essas descrições estão conectadas de modo sistemático por uma transformação
integral denominada mapa mimético, a qual propomos. Iniciamos apresentando uma breve
revisão de sequências e equações de diferença, detalhando alguns métodos de resolução. Em
particular nós vemos que técnicas de resolução de equações diferenciais do cálculo infinitesimal
podem ser transferidas para um cálculo utilizado para descrever e solucionar equações de di-
ferença finita, conhecido como cálculo discreto, sendo estas técnicas amplamente empregadas
na área de equações de diferença. Em seguida mostramos como toda a estrutura do cálculo
infinitesimal pode ser transferida para o cálculo discreto através do mapa mimético, genera-
lizando e sistematizando o já conhecido cálculo discreto de sequências, utilizando as funções
discretas, e interpretando as equações de diferença como versões discretas das equações di-
ferenciais. Também através do mapa mimético estendemos a noção de funções geradoras de
sequências para as funções discretas, onde tais extensões dependem de um parâmetro ℎ, re-
tornando o caso de sequências quando ℎ “ 1. Com o mapa também obtemos versões discretas
de transformadas integrais, como as transformadas de Laplace e Mellin discretas, relacionando
a primeira com a transformada Z. Nós também apresentamos um mapa mimético complexo
usado para construir um cálculo discreto complexo partindo do cálculo no plano complexo.
Como aplicações na física, nós apresentamos uma revisão de processos estocásticos discretos
e contínuos e mostramos como o mapa mimético e seu respectivo cálculo discreto são capazes
de mapear as descrições destes processos uma na outra. Em particular, nós obtemos uma
versão discreta da teoria H para as variáveis de background utilizando o mapa mimético e
para a variável observável utilizando as ferramentas de processos estocásticos. E por último
mostramos como as abordagens de processos epidêmicos, dadas como processos estocásticos
contínuos e discretos, que eram conectadas por construção na literatura, agora poderiam ser
conectadas através do cálculo discreto e do mapa mimético.

Palavras-chave: cálculo discreto; equações de diferença finita; processos estocásticos; teoria
H; modelos epidêmicos.
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1 INTRODUCTION

To comprehend a theory it is necessary to have an interconnection between a mathematical
model, its predictions and experimental observations, made to accept or refuse the predictions,
been such predictions analytical or numerical. However, in most cases are observed distinctions
between the experiments and numerical simulations, and the mathematical model with respect
to its mathematical domains.

The mathematical models in most of the theories assume that all physical quantities (time,
space and so on) are infinitesimal, been described in a continuum space-time. In fluid mechanics
it is known as the Continuum Assumption (KESSLER; GREENKORN, 1999). As a counterpoint,
the numerical methods are always dependent on discrete step parameters, discretizing all quan-
tities involved in the mathematical model, e.g., finite difference methods. Also, experiments
are always performed using equipments that work using finite units of increment, e.g., radia-
tion intensity measurements of a laser obtained in time intervals of 100𝑚𝑠 (GONZáLEZ I. R. R.,
2018), presenting the values of the observable as a discrete time series. Thus, the mathemat-
ical substratum in terms of which the observables are described distinguish from the model
and experimental/numerical approach, been a continuum and discrete respectively.

Furthermore, some mathematical models already involve in its constructions a discrete
substratum. For example, lattice gauge theories (KOGUT, 1983), like lattice chromodynamics,
and other lattice models, like Ising and Hubbard models, are described in terms of a finite
lattice parameter. The regularization procedure, found in quantum field theories (KLAUBER,
2013), depends on a finite cutoff. And also, from a more fundamental level, some quantum
gravity theories suggest that, at Planck scale, space-time itself could be discretized (HOOFT,
1979).

Those and other arguments are mentioned to justify the necessity of a construction of
a discrete substratum to describe nature. However the attempts made to construct such a
discrete substratum did not resemble a continuous substratum in terms of its properties (BAL-

ACHANDRAN et al., 1995), which provided a diminishiment of precision of numerical calculations
and of predictions of lattice models (BALACHANDRAN et al., 1994). All that changed with the
work of Sorkin (SORKIN, 1991), which provided a discrete topological space which converges
to a continuous one as it becomes described by a larger number of sets.

Thus, to reconcile the experimental/numerical and mathematical model approach it is
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reasonable to expect that a discrete substratum can be used to construct mathematical models
of nature, providing discrete objects like discrete vectors and discrete derivative operators or,
in general, a discrete differential calculus can be used to rewrite the laws of physics. Indeed,
such approach is already used to, starting from a discrete calculus, obtain physical models,
such as in (MERCAT, 2001), where a description of the Ising model is obtained from a complex
discrete calculus, and as in (MARSDEN; WEST, 2001) and (DESBRUN et al., 2005), where a
discrete variational mechanics is formulated.

In particular, such a discrete construction can be made via the Discrete Exterior Cal-

culus (DEC) (GILLETTE, 2009), which is a discrete version of the exterior calculus (BASSALO;

CATTANI, 2009) that preserves all the properties associated with the latter. The DEC consists
of a reformulation of differential geometry where instead of a smooth manifold, we have a
discrete manifold described by a graph, where the fundamental units of such a graph are sets
of ordered vertices, called simplexes. In such a construction the derivative operator is defined
as a matrix representation of the connection between vertices of such graph. With that, it is
possible, for instance, to obtain a discrete version of the Stokes theorem and find many appli-
cations in physics, computational science and mathematics, such as circuit theory and image
processing (GRADY; POLIMENI, 2010). Here we will limit ourselves to the one-dimensional case,
relating the usual infinitesimal calculus with the discrete calculus.

Due to this mimicking of the properties of exterior calculus by DEC, we should have a
discrete calculus which mimics the properties of the infinitesimal calculus. As a matter of fact,
this is done in the literature by trial and error (IZADI, 2018), setting equations called difference
equations, satisfied by sequences, which resemble the differential equations. In these cases,
educated guesses of sequences that can be seen as discrete versions of functions are made,
aiming to satisfy such difference equations. For instance, observe the figure 1 bellow. We
see that the behavior of the Fibonacci sequence (blue) and the solution of some differential
equation (red) have a similar evolution. Indeed, as will become clear along chapter 2, the
difference equation satisfied by the Fibonacci sequence can be expressed in a similar manner,
using operations defined in the discrete calculus that resembles such differential equation.

Thus, what we propose in this dissertation is a systematic way to obtain a discrete calculus
starting from the infinitesimal calculus via an integral transform approach, called mimetic map,
which essentially maps functions onto a generalization of sequences, called discrete functions
(KHAN; NAJMI, 1999). Such a map is capable to provide not only all the structure of the known
one-dimensional discrete calculus presented in literature (IZADI, 2018), but also generalize
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Figure 1 – Fibonacci sequence (dotted blue curve) and the solution (red curve) of a differential
equation related via the Fibonacci sequence via discrete calculus.

Source: the author (2021).

and systematizes it to until now unknown discrete versions of some special functions and its
respective differential equations. In some cases such discrete functions are given in terms of
transcendental functions.

Beyond that, as physical applications, we tried to provide via the mimetic map and the
structure of the discrete calculus, a way to connect discrete and continuous stochastic processes
in the context of H Theory and Stochastic Epidemic Models, in a similar manner as the random
walk can be seen as the discrete version of the Brownian motion.

The H theory consists of a stochastic approach used to model multiscale hierarchical
complex systems associating a system of coupled stochastic differential equations to it, which
unveil the intermittency and energy cascade features observed in turbulent systems. On the
other hand, stochastic epidemic models consist of compartmental models used to describe
epidemics which take into account the inherent fluctuating feature of the number of infected
individuals in a population contaminated by some transmissive disease.

The dissertation is divided as follows:
In chapter 2 we start presenting the definition of sequences and difference equations,

giving some methods to solve these, including the generating function and the Z transform,
presenting the existing parallel between discrete and infinitesimal calculus. The chapter ends
with a construction of the discrete h-calculus, which will serves as base for the discrete mimetic
calculus obtained by the mimetic map.

In chapter 3 we define the mimetic map, presenting its consequences, such as the con-
nection between differential and difference equations and functions and discrete functions. As
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well, we show how is possible to translate some mathematical objects like the integral trans-
forms of the infinitesimal calculus to the space of discrete functions and how to generalize
the generating functions, used for sequences, to discrete functions. In the end of this chap-
ter, we present a two-dimensional version of the mimetic map, which is capable to map the
infinitesimal calculus on a complex plane to a complex discrete calculus, discretizing real and
imaginary axes.

In chapter 4 we make a review of probability theory, essential for the foundation of stochas-
tic processes which we present right after. After that, we define the Master and the Fokker-
Planck equations, which are used to describe the dynamics of the probability distributions of
discrete and continuous stochastic processes. We finish the chapter presenting the stochastic
differential equations, the tools of Ito’s calculus and how the Fokker-Planck equations can be
obtained with those.

Along chapter 5 we explain the basic concepts of H theory, presenting some applications
in the description of turbulent fluids and in the description of turbulence features in random
fibre lasers. As an application of the mimetic map, we show how a discrete H theory can
be constructed for the background variables of the theory, providing new relations between
continuous and discrete stochastic processes. Then we show how a discrete H theory, in the
central limit theorem sense, can be constructed for the observable variable using the tools of
stochastic processes only.

We conclude with chapter 6, where we start discussing the theory of a deterministic com-
partmental epidemic model, called SIR model, in terms of a system of coupled differential
equations called Kernack-McKendrick equations. Here we present how the solutions behave
in the stationary condition, leading to endemic or disease-free equilibrium, and how analytic
parametric solutions of the system of equations can be obtained. We end the chapter present-
ing the stochastic epidemic SIR model from three approaches which distinguishes from each
other according to the discrete or continuous description of time and random variables, which
we try to motivate the connection between those via the discrete calculus and the mimetic
map.
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2 DIFFERENCE EQUATIONS AND DISCRETE CALCULUS

In this chapter we explore the relation between the discrete and infinitesimal substratum of
a mathematical description of nature. It is done by a review of difference equations, studying
how sequences and difference equations are related with functions and differential equations.
In section 2.1 we define the notion of sequence and difference equations, given the former
as solution of the latter. Then we discuss some methods to solve difference equations, giving
proper mention to the generating function and Z transform methods. In section 2.2 we show
how the difference equations can be described from the point of view of discrete calculus,
constructing it from polytopic numbers and extending it for the discrete h-calculus.

2.1 DIFFERENCE EQUATIONS AND SOLVING METHODS

Consider the ordered set of real numbers t0, 1, 1, 2, 3, 5, 8, 13, . . .u. Such set presents a
pattern: the third number is the sum of the first and the second, the fourth is the sum of the
second and the third, and so on. So, if we associate a number n, for each element of this set,
which will be denoted by a variable 𝑓𝑛, say

𝑛 “ 0 1 2 3 4 5 6 7 ...

𝑓𝑛 P t 0 1, 1, 2, 3, 5, 8, 13, ... u

we have a map 𝑓 : N0 Ñ R, which takes natural numbers into real numbers. We might express
such pattern on the elements of the set by the relation

𝑓𝑛`2 “ 𝑓𝑛`1 ` 𝑓𝑛, for 𝑛 ě 0.

This relation, which is a recurrence relation, defines the term 𝑓𝑛 of the mathematical object
called sequence, which we denote by p𝑓𝑛q𝑛PN0 . Such set is widely found in nature, and is known
as the Fibonacci sequence.

In general, given the ordered set 𝐹 “ t𝑓0, 𝑓1, . . . , 𝑓𝑛, . . .u, we define a Sequence p𝑓𝑛q𝑛PN0

as the application of the set N0 “ N Y t0u to 𝐹 . The number 𝑓𝑛 is called the 𝑛th term of

the sequence. Sometimes we denote a sequence by just p𝑓𝑛q. A sequence can be classified
as (IZADI, 2018)

(i) Finite sequence. A sequence p𝑓𝑛q is said finite if the independent index n is defined in
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a finite subset of natural numbers:

p𝑓𝑛q :“ t𝑓𝑛 P R | 𝑛 P t0, 1, . . . ,𝑚u, 𝑚 ă 8u (2.1)

(ii) Infinite sequence. A sequence p𝑓𝑛q is said infinite if the independent index n can
assume any natural value:

p𝑓𝑛q :“ t𝑓𝑛 P R | 𝑛 P N0u (2.2)

(iii) n-periodic sequence. A sequence p𝑓𝑗q is said n-periodic if its elements satisfy

𝑓𝑗`𝑛 “ 𝑓𝑗. (2.3)

(iv) Non-periodic sequence. A sequence p𝑓𝑛q is said non-periodic if it is not periodic.

In many cases the terms of a sequence does not satisfy a recurrence relation, such as the
prime numbers t2, 3, 5, 7, 13, 17, 19, . . .u. However when we do have a recurrence relation, we
have what is called as a difference equation. If someone is capable to find out what is the
expression of the 𝑛th term 𝑓𝑛 “ 𝑓p𝑛q which satisfies the difference equation, we can define
the image set completely. Wherefore, we will present some features of the difference equations
and how to solve it in certain cases.

Most of the classification of the difference equations are quite similar to the classification
of the differential equations of infinitesimal calculus, and each one have particular properties,
which implies particular methods to solve it. In general, we have finite or infinite, linear or
non-linear, periodic or non-periodic, homogeneous or non-homogeneous, difference equations.
Thus, along this section, we will give some clues of how the theory of difference equations are
directly related with the differential equations.

In general, given a sequence p𝑓𝑛q with a recurrence relation, we define a Difference

Equation by such a recurrence relation associated with it. Namely,

𝐹 p𝑠, 𝑓𝑠, . . . , 𝑓𝑠`𝑛q “ 0; 𝑠 P N0. (2.4)

The particular case of linear difference equations can be simply written as
𝑛
ÿ

𝑗“0
𝛼𝑗p𝑠q𝑓𝑗`𝑠 “ 𝑔𝑠; 0 ď 𝑠 ă 𝑚, (2.5)

for a given sequence p𝑔𝑠q. We have a Finite Linear Non-homogeneous Difference Equa-

tion if 𝑛 is finite and a Infinite Linear Non-homogeneous Difference Equation if 𝑛 is
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infinite. As an example, in the Fibonacci sequence discussed above, it is obtained from (2.5)
if we set 𝑛 “ 2, 𝑔𝑠 “ 0 @𝑠, and 𝛼0 “ 𝛼1 “ ´𝛼2.

What we get from definition (2.5) is a linear system of equations with 𝑛`𝑚 variables and
𝑚 equations, where the variables to be found are the 𝑛`𝑚 elements of the sequence p𝑓𝑛q:

𝛼0𝑓0 ` 𝛼1𝑓1 ` ¨ ¨ ¨ ` 𝛼𝑛𝑓𝑛 “ 𝑔0,

𝛼0𝑓1 ` 𝛼1𝑓2 ` ¨ ¨ ¨ ` 𝛼𝑛𝑓𝑛`1 “ 𝑔1,

...

𝛼0𝑓𝑚´1 ` 𝛼1𝑓𝑚 ` ¨ ¨ ¨ ` 𝛼𝑛𝑓𝑛`𝑚´1 “ 𝑔𝑚´1.

(2.6)

By this representation we can use matrix methods to solve it.
As we know, a linear system of equations can be uniquely solved if and only if the number

of variables is the same as the number of equations. To ensure this for the system (2.6) we
need to constraint the values of n terms of p𝑓𝑛q, say t𝑓0, . . . , 𝑓𝑛´1u, in the first equation of
(2.6), specifying the term 𝑓𝑛 “ 𝑔0 ´

ř𝑛´1
𝑗“0 𝛼𝑗𝑓𝑗, which left a system of 𝑚 ´ 1 variables and

𝑚 ´ 1 equations. Those constraints are the Initial Conditions of the difference equation,
just like an ordinary differential equation of 𝑛th order needs 𝑛 ´ 1 initial conditions to be
completely specified. Thus the Fibonacci sequence can be completely specified if expressed as

$

’

&

’

%

𝑓𝑠`2 “ 𝑓𝑠`1 ` 𝑓𝑠, for 𝑠 P N0;

𝑓0 “ 0, 𝑓1 “ 1.
(2.7)

Such similarity between difference equations and differential equations will become more
and more evident along this chapter, culminating in the direct connection via the mimetic map
3.1, in chapter 3. For a fixed value of 𝑠, (2.5) is also called as an ordinary linear difference
equation of 𝑛th order. In what follows, we call as difference equations all linear difference
equations.

2.1.1 Solutions of Difference Equations

Bellow we describe some methods to solve difference equations. Here we emphasize the
similarity between difference and differential equations solving methods, which usually is not
mentioned in the literature (IZADI, 2018).

(i) Periodic finite sequence and non-homogeneous difference equations
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Consider a difference equation which have a n-periodic sequence as solution given by
𝑛
ÿ

𝑗“0
𝛼𝑗𝑓𝑗`𝑠 “ 𝑔𝑠; 𝑠 “ 0, . . . ,𝑚´ 1. (2.8)

Ordinary Differential Equations (ODE) satisfied by functions presenting some periodic
feature, can be solved using the Fourier series

𝑓p𝑥q “
8
ÿ

𝑗“´8

𝑓𝑗𝑒
´𝑖 2𝜋𝑗

𝐿
𝑥, (2.9)

with Fourier coefficients given by

𝑓𝑗 “
1
𝐿

ż 𝑏

𝑎

𝑒𝑖 2𝜋𝑗
𝐿

𝑥𝑓p𝑥q𝑑𝑥, (2.10)

for 𝐿 “ 𝑏´𝑎. Following the same reason, we use a discrete analogy of the Fourier series
to solve the difference equation above. The finite periodic sequence p𝐹𝑘q𝑘PN0 defined by
(IZADI, 2018)

𝐹𝑘 :“
𝑛´1
ÿ

𝑗“0
𝑓𝑗𝑒

´𝑖 2𝜋𝑗
𝑛

𝑘, (2.11)

where 𝑘 “ 0, 1, . . . , 𝑛´ 1. (2.11) is called the Discrete Transform of p𝑓𝑗q𝑗PN0 , with 𝑓𝑗

given by

𝑓𝑗 “
1
𝑛

𝑛´1
ÿ

𝑘“0
𝐹𝑘𝑒

𝑖 2𝜋𝑗
𝑛

𝑘. (2.12)

Clearly there is a resemblance to the Fourier series and the discrete transform. From the
Fourier series, consider 𝑥 “ 𝑎` 𝑘Δ𝑥 and rewrite (2.10) as a Riemann sum:

1
𝐿

ż 𝑏

𝑎

𝑒𝑖 2𝜋𝑛
𝐿

𝑥𝑓p𝑥q𝑑𝑥 “ lim
Δ𝑥Ñ0

𝑛´1
ÿ

𝑘“0

Δ𝑥
𝐿
𝑓p𝑎` 𝑘Δ𝑥q𝑒𝑖 2𝜋𝑎𝑗

𝐿 𝑒𝑖2𝜋𝑗 Δ𝑥
𝐿

𝑘. (2.13)

If lim
Δ𝑥Ñ1

Δ𝑥
𝐿
“ 1

𝑛
, we have

𝑓𝑗 « 𝑒𝑖 2𝜋𝑎𝑗
𝐿

1
𝑛

𝑛´1
ÿ

𝑘“0
𝑓p𝑎` 𝑘q𝑒𝑖 2𝜋𝑗

𝑛
𝑘
“ 𝑒𝑖 2𝜋𝑎𝑗

𝐿 𝑓𝑗. (2.14)

From (2.9), restricting 𝑗 P Z to 𝑗 P t0, 1, . . . , 𝑛´ 1u, we see that

𝑓p𝑎` 𝑘q “
𝑛´1
ÿ

𝑗“0
𝑓𝑗𝑒

´𝑖 2𝜋𝑎𝑗
𝐿 𝑒´𝑖 2𝜋𝑗

𝑛
𝑘
” 𝐹𝑘, (2.15)

if 𝑓𝑗 “ 𝑓𝑗𝑒
´𝑖 2𝜋𝑎𝑗

𝐿 . That connection is a glimpse of a construction of a discrete calculus,
which will be systematically constructed in section 2.2.
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With that well established, we can use definition (2.11) to solve the difference equation
(2.8). Multiplying (2.8) by 𝑒´𝑖 2𝜋𝑠

𝑚
𝑘 and summing in 𝑠, we have

𝑚´1
ÿ

𝑠“0
𝑒´𝑖 2𝜋𝑠

𝑚
𝑘

𝑛
ÿ

𝑗“0
𝛼𝑗𝑓𝑗`𝑠 “

𝑚´1
ÿ

𝑠“0
𝑒´𝑖 2𝜋𝑠

𝑚
𝑘𝑔𝑠 ” 𝐺𝑘. (2.16)

Rewriting the sum and using that p𝑓𝑗q is m-periodic, 𝑒´𝑖 2𝜋𝑠
𝑚

𝑘𝑓𝑠 “ 𝑒´𝑖
2𝜋p𝑠`𝑚q

𝑚
𝑘𝑓𝑠`𝑚, we

have
𝑚´1
ÿ

𝑠“0
𝑒´𝑖 2𝜋𝑠

𝑚
𝑘𝑓𝑗`𝑠 “ 𝑒𝑖 2𝜋𝑗

𝑚
𝑘

˜

𝑚´1
ÿ

𝑠“𝑗

𝑒´𝑖 2𝜋𝑠
𝑚

𝑘𝑓𝑠 `

𝑚`𝑗´1
ÿ

𝑠“𝑚

𝑒´𝑖
2𝜋p𝑠`𝑚q

𝑚
𝑘𝑓𝑠`𝑚

¸

“ 𝑒𝑖 2𝜋𝑗
𝑚

𝑘𝐹𝑘,

(2.17)
Finding the relation

𝐹𝑘 “
𝐺𝑘

𝐴𝑘

, (2.18)

where 𝐴𝑘 “
ř𝑛

𝑗“0 𝛼𝑗𝑒
𝑖 2𝜋𝑗

𝑛
𝑘 ‰ 0.

Substituting 𝐹𝑘 into (2.12) we obtain the solution of (2.8) as

𝑓𝑗 “

𝑚´1
ÿ

𝑠“0
𝑔𝑠

𝑚´1
ÿ

𝑘“0

1
𝑚

𝑒𝑖
2𝜋p𝑗´𝑠q

𝑚
𝑘

𝐴𝑘

”

𝑚´1
ÿ

𝑠“0
𝑔𝑠Φp𝑗 ´ 𝑠q, (2.19)

for 0 ď 𝑗 ă 𝑚 and

Φp𝑗 ´ 𝑠q ”
𝑚´1
ÿ

𝑘“0

1
𝑚

𝑒𝑖
2𝜋p𝑗´𝑠q

𝑚
𝑘

𝐴𝑘

. (2.20)

Again, we see here a great similarity with the infinitesimal calculus, where (2.19) seems
as the discrete version of a solution of a ODE expressed in term of a Green function
Φp𝑗 ´ 𝑠q. As a matter of fact (DENNERY; KRZYWICKI, 1996), an ODE

𝐿𝑥𝑓p𝑥q “ 𝑔p𝑥q, 𝑎 ď 𝑥 ď 𝑏;

where 𝐿𝑥 is an Hermitian differential operator, have a particular solution

𝑓p𝑥q “

ż 𝑏

𝑎

𝐺p𝑥, 𝑥1q𝑔p𝑥1q𝑑𝑥1.

for the Green function 𝐺p𝑥, 𝑥1q given by

𝐺p𝑥, 𝑥1q “
8
ÿ

𝑛“0

𝜓˚𝑛p𝑥
1q𝜓𝑛p𝑥q

𝜆𝑛

,

with 𝜓𝑛p𝑥q and 𝜆𝑛 been the eigenfunctions and eigenvalues of the differential operator
𝐿𝑥, i.e., 𝐿𝑥𝜓𝑛p𝑥q “ 𝜆𝑛𝜓𝑛p𝑥q. Comparing with (2.19), we see that what makes the role
of the eigenvalue 𝜆𝑛 is the term 𝐴𝑘 and of the eigenfunction 𝜓𝑛p𝑥q is 𝑒𝑖

2𝜋𝑗
𝑚 𝑘
?

𝑚
.
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(ii) Non-periodic finite sequences and non-homogeneous difference equations

Consider again the difference equation
𝑛
ÿ

𝑗“0
𝛼𝑗𝑓𝑗`𝑠 “ 𝑔𝑠; 𝑠 “ 0, . . . ,𝑚´ 1; (2.21)

but now with the solution p𝑓𝑛q been a non-periodic finite sequence. We can reuse the
solution obtained in the previous method imposing the periodic property for p𝑓𝑛q.

Assuming the terms t𝑓0, . . . , 𝑓𝑛´1u are known, only remains to find t𝑓𝑛, . . . , 𝑓𝑛`𝑚´1u.
And extending the values 𝑠 “ 0, . . . ,𝑚 ´ 1 to 𝑠 “ 0, . . . ,𝑚 ´ 1,𝑚, . . . , 𝑛 ` 𝑚 ´ 1,
the terms of the sequence satisfy a square linear system. Then, p𝑓𝑛q became a (n+m)-
periodic sequence, i.e.,

𝑓𝑗`𝑛`𝑚 “ 𝑓𝑗, for 0 ď 𝑗 ă 𝑛. (2.22)

Under such construction we have the difference equation
𝑛
ÿ

𝑗“0
𝛼𝑗𝑓𝑗`𝑠 “ 𝑔𝑠; 𝑠 “ 0, . . . , 𝑛`𝑚´ 1; (2.23)

with the periodic condition (2.22) imposed, which is a system of 2𝑛`𝑚 variables and
𝑛`𝑚 equations, with n variables already known. Hence, we have a 𝑛`𝑚 square linear
system. Therefore, we can solve the equation (2.21) using

𝑓𝑗 “

𝑛`𝑚´1
ÿ

𝑠“0
𝑔𝑠Φp𝑗 ´ 𝑠q, (2.24)

for 0 ď 𝑗 ă 𝑛`𝑚,

Φp𝑗 ´ 𝑠q ”
𝑛`𝑚´1
ÿ

𝑘“0

1
p𝑛`𝑚q

𝑒𝑖
2𝜋p𝑗´𝑠q

𝑛`𝑚
𝑘

𝐴𝑘

. (2.25)

However, another problem appears: the terms t𝑔𝑚, . . . , 𝑔𝑛`𝑚´1u are unknown. Those
can be found noting that (2.24) can be rewritten as

𝑛`𝑚´1
ÿ

𝑠“𝑚

Φp𝑗 ´ 𝑠q𝑔𝑠 “ 𝑓𝑗 ´

𝑚´1
ÿ

𝑠“0
Φp𝑗 ´ 𝑠q𝑔𝑠, for 0 ď 𝑗 ă 𝑛, (2.26)

where the right-hand side is completely known from our initial problem. The equation
(2.26) can be expressed in matrix form as

Φ 𝑔⃗ “ 𝑓0 ´ Φ0 𝑔0, (2.27)

with the matrices

pΦq𝑗,𝑠 “ Φp𝑗 ´ 𝑠q, with 𝑗 “ 0, . . . , 𝑛´ 1, 𝑠 “ 𝑚, . . . , 𝑛`𝑚´ 1;
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and
pΦ0 q𝑗,𝑠 “ Φ0p𝑗 ´ 𝑠q; with 𝑗 “ 0, . . . , 𝑛´ 1, 𝑠 “ 0, . . . ,𝑚´ 1.

The other symbols are the vectors

𝑔⃗ “ p𝑔𝑚, . . . , 𝑔𝑛`𝑚´1q
𝑇 , 𝑔0 “ p𝑔0, . . . , 𝑔𝑚´1q

𝑇 and 𝑓0 “ p𝑓0, . . . , 𝑓𝑛´1q
𝑇 .

Supposing that the determinant of Φ is non-null, we find the terms t𝑔𝑚, . . . , 𝑔𝑛`𝑚´1u

by
𝑔⃗ “ Φ´1 𝑓0 ´ 𝑔0, (2.28)

where Φ´1 is the inverse matrix of Φ. With that, the solution of (2.21), given by (2.24),
is completely determined.

(iii) Infinite sequence and homogeneous difference equations

Consider the finite difference equation given by
𝑛
ÿ

𝑗“0
𝛼𝑗𝑓𝑗`𝑠 “ 0; 𝑠 P N0; (2.29)

with the 𝑛 initial conditions 𝑓0, . . . , 𝑓𝑛´1 known. Just like linear ODEs with constant
coefficients can be solved by a solution proportional to the exponential function, we
make a similar assumption for (2.29).

Assume that the particular solution of the difference equation (2.29) is of the form

𝑓𝑠 “ 𝐶𝜆𝑠, 𝜆 P C. (2.30)

Substituting this in (2.29), we get the Characteristic Equation of a difference equa-

tion, given by
𝑛
ÿ

𝑗“0
𝛼𝑗𝜆

𝑗
“ 0, (2.31)

with 𝑛 roots denoted by t𝜆𝑘u
𝑛
𝑘“1.

If we assume that all roots of such equation are non-null and distinct, we obtain the
general solution of the difference equation (2.29) given by

𝑓𝑠 “

𝑛
ÿ

𝑘“1
𝐶𝑘𝜆

𝑠
𝑘, (2.32)

where each root gives a particular solution 𝐶𝑘𝜆
𝑠
𝑘.
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However, if there is at least two roots equal to each other, we need to assure that the
particular solutions are linearly independent. Consider for example that all roots are the
same, i.e., t𝜆𝑘 “ 𝜆0u

𝑛
𝑘“1. To assure the linear independence of the particular solutions

𝐶𝑘𝜆
𝑠
0, 𝑘 “ 1, . . . , 𝑛, we multiply each solution by a factor 𝑠𝑘, giving the general solution

𝑓𝑠 “ 𝜆𝑠
0

𝑛´1
ÿ

𝑘“0
𝐶𝑘𝑠

𝑘. (2.33)

As a matter of fact, substituting (2.33) in the difference equation (2.29) and manipu-
lating the sums, we have

𝑛
ÿ

𝑗“0
𝛼𝑗𝑓𝑗`𝑠 “ 𝜆𝑠

0

𝑛´1
ÿ

𝑘“0
𝐶𝑘

𝑘
ÿ

𝑙“0

ˆ

𝑘

𝑙

˙

𝑠𝑙

ˆ

𝜆0
𝑑

𝑑𝜆0

˙𝑘´𝑙 𝑛
ÿ

𝑗“0
𝛼𝑗𝜆

𝑗
0 “ 0, (2.34)

as it should be.

The solutions are completely determined in any of those cases imposing the initial condi-
tions of the problem.

2.1.2 Solving Difference Equations Using the Generating Functions and the Z

Transform

2.1.2.1 Generating Functions

A practical way to solve a difference equation is transform it in an ODE via a discrete
transform of the difference equation, called generating function. We define the Generating

Function of a sequence p𝑓𝑛q through the quantity

𝐺p𝑧q :“
8
ÿ

𝑛“0
𝑓𝑛𝑧

𝑛. (2.35a)

From which the sequence p𝑓𝑛q is obtained using the formula

𝑓𝑛 “
1
𝑛!

B𝑛

B𝑧𝑛
𝐺p𝑧q

⃒⃒⃒⃒
⃒
𝑧“0

. (2.35b)

Equivalently, we can define the Exponential Generating Function given by

𝐺p𝑧q :“
8
ÿ

𝑛“0
𝑓𝑛
𝑧𝑛

𝑛! , (2.36a)
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with
𝑓𝑛 “

B𝑛

B𝑧𝑛
𝐺p𝑧q

⃒⃒⃒⃒
⃒
𝑧“0

. (2.36b)

Later we will see that the same quantity come out in the context of probability theory
(subsection 4.2.1). In addition, see the following examples.

Example 2.1 (Fibonacci sequence). Consider the difference equation
$

’

&

’

%

𝑓𝑛`2 “ 𝑓𝑛`1 ` 𝑓𝑛;

𝑓0 “ 0, 𝑓1 “ 1.
(2.37)

Multiplying both sides by 𝑧𝑛

𝑛! , summing from 0 to 8, and noting that

8
ÿ

𝑛“0
𝑓𝑛`𝑚

𝑧𝑛

𝑛! “
𝑑𝑚𝐺p𝑧q

𝑑𝑧𝑚
,

we get
𝐺2p𝑧q ´𝐺1p𝑧q ´𝐺p𝑧q “ 0.

The conditions 𝑓0 “ 0 and 𝑓1 “ 1 gives the initial conditions 𝐺p0q “ 0 and 𝐺1p0q “ 1.
Therefore the generating function associated to the Fibonacci sequence satisfies

$

’

&

’

%

𝐺2p𝑧q ´𝐺1p𝑧q ´𝐺p𝑧q “ 0;

𝐺p0q “ 0, 𝐺1p0q “ 1.
(2.38)

Solving (2.38), we get

𝐺p𝑧q “
𝑒

1`
?

5
2 𝑧 ´ 𝑒

1´
?

5
2 𝑧

?
5

(2.39)

and so
𝑓𝑛 “

1
?

5

„ˆ

1`
?

5
2

˙𝑛

´

ˆ

1´
?

5
2

˙𝑛

, (2.40)

which reproduces completely the image of the sequence.

Example 2.2 (Hanoi Tower). Consider three stakes where the first is occupied with a pile of 𝑛
disks ordered by size from the bigger to the smaller (bottom to top) and the others two are
unoccupied. The Hanoi Tower problem consists in find the smallest number 𝑓𝑛 of moves to
transfer the 𝑛 disks from the first to the third stake, using the following rules:

• A move consists in take one disk from one stake to another;

• Only the uppermost disk can be moved;
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• The moved disk should be placed on a unoccupied stack or over a disk bigger than it.

Turns out that the number of moves satisfies the difference equation
$

’

&

’

%

𝑓𝑛`1 “ 2𝑓𝑛 ` 1;

𝑓0 “ 0.
(2.41)

Using the generating function. in a similar manner as in the previous example, we find the
differential equation for the generating function as

$

’

&

’

%

𝐺1p𝑧q ´ 2𝐺p𝑧q “ 𝑒𝑧;

𝐺p0q “ 0;
(2.42)

with solution
𝐺p𝑧q “ 𝑒2𝑧

´ 𝑒𝑧, (2.43)

giving
𝑓𝑛 “ 2𝑛

´ 1. (2.44)

It is easy to see that the number above gives the number of moves.

2.1.2.2 The Z Transform

Equivalently to the generating functions, the Z transform can be used to solve linear
difference equations.

Consider a sequence p𝑓𝑛q. The Z Transform 𝐹 p𝑧q of such sequence is defined by

𝐹 p𝑧q “ 𝒵t𝑓𝑛; 𝑧u :“
8
ÿ

𝑛“0

𝑓𝑛

𝑧𝑛
, (2.45)

for 𝑧 P C, which converges only if exists a positive number 𝑅 such that |𝑧| ą 𝑅 (KELLEY;

PETERSON, 2001). The inverse Z transform is given by

𝑓𝑛 “ 𝒵´1
t𝐹 p𝑧q;𝑛u “

¿

𝐶

𝑑𝑠

2𝜋𝑖𝐹 p𝑠q𝑠
𝑛´1, (2.46)

where 𝐶 is a closed curve which encloses the origin and is contained in the region of conver-
gence of 𝐹 p𝑧q. In the following example we can see how the Z transform can be applied.
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Example 2.3. Consider the difference equation
$

’

&

’

%

𝑓𝑛 “ 𝑎𝑓𝑛´1; 𝑎 P R

𝑓0 “ 1.

Clearly the solution is the sequence p𝑎𝑛q, but let us solve it using the Z transform. Multiplying
by 1

𝑧𝑛 and summing from 0 to 8, we get

𝐹 p𝑧q “
𝑧

𝑧 ´ 𝑎
“

8
ÿ

𝑛“0

𝑎𝑛

𝑧𝑛
,

which converges if |𝑧| ą |𝑎|. Also

𝑓𝑛 “

¿

𝐶

𝑑𝑧

2𝜋𝑖
𝑧𝑛

𝑧 ´ 𝑎
“ 𝑎𝑛,

confirming the validity of the inverse Z transform.

In the subsection 3.1.5 will be shown that such transform is in fact a particular case of the
discrete version of the Laplace transform.

2.2 DISCRETE CALCULUS

Once we have characterized the difference equations which resembles as discrete versions
of differential equations, one should expect that exists a formalism similar to the infinitesimal
calculus to manage difference equations. In fact, here we construct such a formalism, called
Discrete Calculus

2.2.1 Constructing the Discrete Calculus

The usual approach to present discrete calculus (KAC; CHEUNG, 2001)(IZADI, 2018) consists
in simply take the infinitesimal calculus definition of derivative,

𝑑𝑓p𝑥q

𝑑𝑥
:“ lim

ℎÑ0

𝑓p𝑥` ℎq ´ 𝑓p𝑥q

ℎ
,

and ignore the limit usually taken, which is a very intuitive approach although brings the
discrete calculus to the ground of a consequence of infinitesimal calculus.

However, as proposed by Oliver Knill (KNILL, 2014) the discrete calculus could be developed
independently, starting from the concept of function and using polytopic numbers (UFUOMA;
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IKHILE, 2019), which are numbers used to describe patterns of objects arranged in a polyhedron.
In this construction the infinitesimal calculus arise just as a idealized limit of the discrete
calculus. As an example, the polytopic number x𝑥𝑛

𝑛! can be set as a sequence given by

x𝑥𝑛

𝑛! ”
𝑥p𝑥´ 1q . . . p𝑥´ 𝑛` 1q

𝑛! “
𝑥!

p𝑥´ 𝑛q!𝑛! , (2.47)

for 𝑛 P N0 and 𝑥 ě 𝑛. The number x𝑥𝑛 have a remarkable property:

𝐷px𝑥𝑛q ” {p𝑥` 1q𝑛 ´x𝑥𝑛 “ 𝑛z𝑥𝑛´1. (2.48)

𝐷px𝑥𝑛q “ 𝑛z𝑥𝑛´1

That is, such polytopic number is a sequence p𝑓 r𝑛s𝑥 q, depending on a parameter 𝑛, that satisfies
the difference equation

𝑓
r𝑛s
𝑥`1 ´ 𝑓

r𝑛s
𝑥 “ 𝑛𝑓 r𝑛´1s

𝑥 , (2.49)

which mimics the differential equation

𝑑𝑥𝑛

𝑑𝑥
“ lim

ℎÑ0

p𝑥` ℎq𝑛 ´ 𝑥𝑛

ℎ
“ 𝑛𝑥𝑛´1, (2.50)

leading us to interpret x𝑥𝑛 as the discrete analogue of the power function 𝑥𝑛.
Other sequences satisfying difference equations who mimic differential equations can be

presented. For example,
y𝑥´𝑛 ”

1
p𝑥` 1qp𝑥` 2q . . . p𝑥` 𝑘q , (2.51)

satisfies
𝐷py𝑥´𝑛q “ {p𝑥` 1q´𝑛 ´y𝑥´𝑛 “ ´𝑛{𝑥´𝑛´1. (2.52)

The sequence
x𝑒𝑎𝑥 ” p1` 𝑎q𝑥; 𝑥 P N0, (2.53)

can be seen as the discrete analogue of the exponential function since it satisfies

𝐷px𝑒𝑎𝑥q “ 𝑎x𝑒𝑎𝑥. (2.54)

With such expression is possible to define discrete versions of the trigonometric functions

xsinp𝑥q “
x𝑒𝑖𝑥 ´ y𝑒´𝑖𝑥

2𝑖 (2.55)

and
xcosp𝑥q “

x𝑒𝑖𝑥 ` y𝑒´𝑖𝑥

2 , (2.56)
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such that
𝐷pxsinp𝑥qq “ xcosp𝑥q (2.57)

and
𝐷pxcosp𝑥qq “ ´xsinp𝑥q. (2.58)

Also there is a discrete logarithm function

plnp𝑥q “ 𝐻𝑥 “

𝑥
ÿ

𝑛“1

1
𝑛
, (2.59)

where 𝐻𝑥 is a harmonic number. It satisfies

𝐷pplnp𝑥qq “ 1
𝑥` 1 “

y𝑥´1. (2.60)

More general, for a sequence 𝑓𝑥 ”
p𝑓p𝑥q, 𝑥 P N0, define

𝐷 p𝑓p𝑥q ” p𝑓p𝑥` 1q ´ p𝑓p𝑥q (2.61)

as the Difference Operator. With it, we can obtain discrete analogues of the properties of
the derivative operator 𝑑

𝑑𝑥
of infinitesimal calculus:

(i) Additivity: Let p𝑓p𝑥q “ p𝑔p𝑥q ` pℎp𝑥q, then

𝐷p p𝑓p𝑥qq “ 𝐷pp𝑔p𝑥qq `𝐷ppℎp𝑥qq;

(ii) Linearity: Let p𝑓p𝑥q “ 𝑐p𝑔p𝑥q, then

𝐷p p𝑓p𝑥qq “ 𝑐𝐷pp𝑔p𝑥qq;

(iii) Difference of the product: Let p𝑓p𝑥q “ p𝑔p𝑥qpℎp𝑥q, then

𝐷p p𝑓p𝑥qq “ 𝐷pp𝑔p𝑥qqpℎp𝑥q ` p𝑔p𝑥q𝐷ppℎp𝑥qq `𝐷pp𝑔p𝑥qq𝐷ppℎp𝑥qq

(iv) Difference of the division: Let p𝑓p𝑥q “ p𝑔p𝑥q
pℎp𝑥q

, then

𝐷p p𝑓p𝑥qq “
𝐷pp𝑔p𝑥qqpℎp𝑥q ´ p𝑔p𝑥q𝐷ppℎp𝑥qq

pℎp𝑥qpℎp𝑥` 1q
.

Above, we observe the lack of the chain rule. It occurs because the proof of the chain rule
uses the concept of limit and continuous function as well, which are not taken into account
here once we are working with sequences.
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Equivalently we can define a Sum Operator 𝑆, given by

𝑆p p𝑓p𝑥qq “
𝑥´1
ÿ

𝑦“0

p𝑓p𝑦q; 𝑥 P N. (2.62)

Such operator also reproduces some properties of the integral operation of infinitesimal calcu-
lus:

(i) Additivity: Let p𝑓p𝑥q “ p𝑔p𝑥q ` pℎp𝑥q, then

𝑆p p𝑓p𝑥qq “ 𝑆pp𝑔p𝑥q ` 𝑆ppℎp𝑥qq;

(ii) Linearity: Let p𝑓p𝑥q “ 𝑐p𝑔p𝑥q, then

𝑆p p𝑓p𝑥qq “ 𝑐𝑆pp𝑔p𝑥qq;

(iii) Sum by parts: Let p𝑓p𝑥q “ 𝐷pp𝑔p𝑥qq𝐷ppℎp𝑥qq, then

𝑆p p𝑓p𝑥qq “ p𝑔p𝑦 ´ 1qpℎp𝑦 ´ 1q ´ p𝑔p0qpℎp0q ´ 𝑆p𝐷pp𝑔p𝑥qqpℎp𝑥qq ´ 𝑆pp𝑔p𝑥q𝐷ppℎp𝑥qq

We can see examples of applications of the sum operator bellow.

Example 2.4. Consider the sum
𝑥´1
ÿ

𝑦“0

p𝑦𝑛 “

𝑥´1
ÿ

𝑦“0
𝑦p𝑦 ´ 1q . . . p𝑦 ´ 𝑛` 1q.

With the fundamental theorem of discrete calculus above and the result (2.48), we can easily
calculate this sum obtaining

𝑆px𝑥𝑛q “
𝑥p𝑥´ 1q . . . p𝑥´ 𝑛q

𝑛` 1 “
z𝑥𝑛`1

𝑛` 1 .

Example 2.5. Consider the sum
8
ÿ

𝑛“0
2´𝑛𝑛p𝑛´ 1q . . . p𝑛´ 𝑘 ` 1q, 𝑘 ě 2.

Using that y𝑒´𝑛 “ 2´𝑛, x𝑛𝑘 “ 𝑛p𝑛´ 1q . . . p𝑛´ 𝑘 ` 1q, and the sum by parts property, we get
8
ÿ

𝑛“0
2´𝑛𝑛p𝑛´ 1q . . . p𝑛´ 𝑘 ` 1q “

8
ÿ

𝑛“0

y𝑒´𝑛x𝑛𝑘 “ 𝑘!.
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The result of example 2.5 is expected if we compare this sum with the definition of the
gamma function, Γp𝑧` 1q “

ş8

0 𝑒´𝑥𝑥𝑧𝑑𝑥. We can see the result above as the discrete version
of the gamma function. It points out that the discrete version of the gamma function is itself
if 𝑧 “ 𝑘 is a positive integer, which in fact will be shown in subsection 3.1.5 using the discrete
version of the Mellin transform.

With such operations is possible to construct a discrete analogue of the fundamental
theorem of calculus. Let p𝑓p𝑥q be a sequence, 𝐷 the difference operator and 𝑆 the sum
operator. Then,

𝑆p𝐷p p𝑓p𝑥qqq “ p𝑓p𝑥q ´ p𝑓p0q (2.63a)

and
𝐷p𝑆p p𝑓p𝑥qqq “ p𝑓p𝑥q (2.63b)

follow directly from the definitions of 𝐷 and 𝑆 above.
Here we see a remarkable connection between the infinitesimal and discrete calculus. Such

formalism gives us another method to solve difference equations, as can be seen in the example
bellow.

Example 2.6. Consider the difference equation of the arithmetic progression given in terms of
the difference operator

$

’

&

’

%

𝐷p p𝑓p𝑥qq “ 𝑑; 𝑥 P N;

p𝑓p1q “ 𝑓1 “ 𝑐𝑜𝑛𝑠𝑡.

Applying the sum operator in both sides, we get

p𝑓p𝑥q “ 𝑓1 ` 𝑑p𝑥´ 1q.

The operators above could have been defined in a similar manner by

𝐷p p𝑓p𝑥qq “ p𝑓p𝑥q ´ p𝑓p𝑥´ 1q (2.64)

and
𝑆p p𝑓p𝑥q “

𝑥
ÿ

𝑦“1

p𝑓p𝑦q, (2.65)

which would have lead to similar results. But since the definition p𝑓p𝑥 ` 1q ´ p𝑓p𝑥q is more
similar to the infinitesimal derivative operator, we used that.

Continuing the discrete analogues, we can also define a discrete Taylor series in terms of
the sequences x𝑥𝑛. We can define the Discrete Taylor Series of the sequence p𝑓p𝑥q near the
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point 𝑥0 P N0, as (IZADI, 2018)

p𝑓p𝑥q “
8
ÿ

𝑛“0
𝐷𝑛
p p𝑓p𝑥qq

⃒⃒⃒
𝑥“𝑥0

{p𝑥´ 𝑥0q𝑛

𝑛! , (2.66)

or just
p𝑓p𝑥q “

𝑥´𝑥0
ÿ

𝑛“0
𝐷𝑛
p p𝑓p𝑥qq

⃒⃒⃒
𝑥“𝑥0

{p𝑥´ 𝑥0q𝑛

𝑛! , (2.67)

due to the definition of x𝑥𝑛.
Apart of this parallel traced above and the usefulness of solve difference equations using

the operators 𝐷 and 𝑆, the discrete calculus is useful to solve summation analytically using
the discrete analogue of the fundamental theorem of calculus and the discrete Taylor series,
as can be seen in the example bellow.

Example 2.7. In principle, it is not trivial to see what is the closed form of
𝑥
ÿ

𝑛“0

x𝑥𝑛

𝑛! “
8
ÿ

𝑛“0

𝑥p𝑥´ 1q . . . p𝑥´ 𝑛` 1q
𝑛! .

However, it is possible with the assistance of the discrete Taylor series to get
𝑥
ÿ

𝑛“0

𝑥p𝑥´ 1q . . . p𝑥´ 𝑛` 1q
𝑛! “ p𝑒𝑥 “ 2𝑥.

2.2.2 Discrete h-Calculus

The discussion above can be extended for a general increment ℎ P R` instead of a unit.
Therefore, instead of the definition in terms of polytopic numbers, we can define the discrete
analogue of the power function 𝑥𝑛 as (KNILL, 2014)

x𝑥𝑛
ℎ ” 𝑥p𝑥´ ℎqp𝑥´ 2ℎq . . . r𝑥´ p𝑛´ 1qℎs, (2.68)

for 𝑥 P hZ such that 𝑥
ℎ
ě 𝑛. We recover the case x𝑥𝑛 when ℎ “ 1, which we denote by

x𝑥𝑛
ℎ“1 “x𝑥𝑛.
In this sense, we have a generalization of a sequence called Discrete Function (KHAN;

NAJMI, 1999), which is a function with discrete domain defined in terms of steps of size ℎ,
such that p𝑓ℎ : hZÑ R. Here we use the notation p𝑓ℎ to emphasize that the discrete function
now depends on the parameter ℎ. Thus, we can generalize the operators difference 𝐷 and sum
𝑆 defined previously by the Forward Difference Operator 𝐷Δ defined as

𝐷Δ𝑓ℎp𝑥q “
𝑓ℎp𝑥` ℎq ´ 𝑓ℎp𝑥q

ℎ
(2.69)
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and the Indefinite Forward Sum of p𝑓ℎ defined as

𝑆Δ𝑓ℎp𝑥q “ ℎ

r𝑥{ℎs´1
ÿ

𝑘“0
𝑓ℎp𝑘ℎq, (2.70)

where r𝑥{ℎs denotes the integer part of 𝑥
ℎ
.

Equivalently, we define the Backward Difference Operator 𝐷∇ as

𝐷∇𝑓ℎp𝜈q “
𝑓ℎp𝜈q ´ 𝑓ℎp𝜈 ´ ℎq

ℎ
(2.71)

and the Indefinite Backward Sum of p𝑓ℎ as

𝑆∇𝑓ℎp𝜈q “ ℎ

r𝜈{ℎs
ÿ

𝑘“1
𝑓ℎp𝑘ℎq. (2.72)

The definitions above satisfy the fundamental theorem of discrete calculus (GOODRICH,
2016):

Theorem 2.2.1 (Fundamental Theorem of Discrete Calculus). Let p𝑓ℎ : hZÑ R be a discrete
function. Then,

𝐷Δ
p𝑆Δ𝑓ℎp𝑥qq “ 𝑓ℎp𝑥q, 𝑆Δ

p𝐷Δ𝑓ℎp𝑥qq “ 𝑓ℎp𝑥q ´ 𝑓ℎp0q, (2.73)

𝐷∇
p𝑆∇𝑓ℎp𝜈qq “ 𝑓ℎp𝜈q, 𝑆∇

p𝐷∇𝑓ℎp𝜈qq “ 𝑓ℎp𝜈q ´ 𝑓ℎp0q. (2.74)

Also we can define the Forward Definite Sum of 𝑓ℎ by
ż 𝑥1

𝑥0

𝑓ℎp𝑥qΔ𝑥 ” ℎ

r𝑥1{ℎs´1
ÿ

𝑘“r𝑥0{ℎs

𝑓ℎpℎ𝑘q. (2.75)

From it we can get
ż 𝑥1

𝑥0

𝐷Δ𝑓ℎp𝑥qΔ𝑥 “ 𝑓ℎp𝑥1q ´ 𝑓ℎp𝑥0q, (2.76)

confirming the theorem above. Analogously we could have defined the Backward Definite

Sum. We observe that if we take the limit ℎ Ñ 0 we recover the definitions of derivative
and integral from infinitesimal calculus, making the infinitesimal calculus as a particular case
of a more possibly general calculus. With that we are capable to present the main object of
this dissertation, which a map connecting the infinitesimal calculus and the discrete h-calculus
which we described above.
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3 DISCRETE MIMETIC CALCULUS FROM AN INTEGRAL TRANSFORM AP-

PROACH

In this chapter we systematically relate the infinitesimal and discrete description of nature
connecting the infinitesimal and the discrete h-calculus via the integral transform mimetic
map. With that, a novel approach to the construction of a discrete calculus is presented in a
systematic way, mimicking all the properties present in the infinitesimal one. In section 3.1 we
present our approach, the mimetic map, involving an integral transform which maps continuous
functions into discrete functions as well as differential equations into difference equations. We
also present a generalization of the generating function in terms of discrete functions and
show how the discrete versions of the Laplace and Mellin transforms can be obtained via the
mimetic map, relating the former with the Z transform. In section 3.2 we briefly explore a
extension of the mimetic map, the complex mimetic map which can be used to construct the
complex mimetic calculus from complex infinitesimal calculus.

3.1 DISCRETE MIMETIC CALCULUS

Among such parallels between discrete and infinitesimal calculus presented up to this point,
a problem remains. There is no systematic method to obtain discrete functions, e.g., x𝑥𝑛

ℎ, apart
from educated guesses aiming to satisfy the difference equations which mimics the differential
equations. To circumvent it, in this section we present an integral transform, called mimetic
map, which maps functions onto discrete functions. Further, with it we can reproduce the
entire discrete calculus mimicking the infinitesimal calculus properties, allowing for instance
associate differential equations to difference equations by a general procedure.

3.1.1 The Mimetic Map

Consider the function 𝑓 : R Ñ R and its discrete counterpart p𝑓ℎ : hZ Ñ R. Then we
define the Mimetic Map of 𝑓p𝑥q by the integral transform

𝑓ℎp𝜈q :“
ż 8

0
𝑑𝜆𝜈{ℎp𝑡q𝑓p´ℎ𝑡q, (3.1)

where
𝑑𝜆𝛼p𝑡q ”

𝑡𝛼´1𝑒´𝑡

Γp𝛼q 𝑑𝑡 (3.2)
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is the Euler measure and Γp𝛼q is the gamma function, which can be seen as a deformed
Mellin-Laplace transform. It provides the properties presented in section 2.2 using the backward
operators (2.71) and (2.72). Taking the limit 𝜈 Ñ ´𝑥 we get the discrete function p𝑓ℎp𝑥q,

p𝑓ℎp𝑥q “ lim
𝜈Ñ´𝑥

𝑓ℎp𝜈q, (3.3)

providing the properties of the forward operators (2.69) and (2.70), as will be shown bellow.
Furthermore, this map is one-to-one since we can recover the function 𝑓p𝑥q by the Con-

tinuum Limit

𝑓p𝑥q “ lim
ℎÑ0

p𝑓ℎp𝑥q. (3.4)

So, not only we have a simple way to obtain discrete functions related to functions, but also
we can recover the initial function from the discrete function. As we will see along the current
chapter, such features will provide us with new methods to extend the set of discrete functions
presented in the literature and the parallel between discrete and continuous mathematics.

3.1.1.1 The Mimetic Difference and Mimetic Sum

Let 𝑓ℎp𝜈q be the mimetic image of 𝑓p𝑥q defined by (3.1), then we define the Mimetic

Difference as
𝐷̂𝑓ℎp𝜈q :“ ´

ż 8

0
𝑑𝜆𝜈{ℎp𝑡q𝑓

1
p´ℎ𝑡q (3.5)

and the Mimetic Indefinite Sum

𝑆𝑓ℎp𝜈q :“ ℎ

Γp𝜈{ℎq

ż 8

0
𝑑𝑡 Γp𝜈{ℎ, 𝑡q𝑓p´ℎ𝑡q, (3.6)

with
Γp𝛼, 𝑥q “

ż 8

𝑥

𝑡𝛼´1𝑒´𝑡𝑑𝑡

been the upper incomplete gamma function.
Those operators can be represented in terms of the already defined, and more familiar,

backward difference and sum operators, 𝐷∇ and 𝑆∇. Integrating by parts the definition (3.5),
we have

𝐷̂𝑓ℎp𝜈q “ ´
1
ℎ

ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝑓p´ℎ𝑡q
𝑑

𝑑𝑡

`

𝑡𝜈{ℎ´1𝑒´𝑡
˘

“
𝑓ℎp𝜈q ´ 𝑓ℎp𝜈 ´ ℎq

ℎ
(3.7)

or just
𝐷̂𝑓ℎp𝜈q “ 𝐷∇𝑓ℎp𝜈q. (3.8)
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From definition (3.6), we use the identity (ABRAMOWITZ, 1974)

Γp𝑛, 𝑥q
Γp𝑛q “ 𝑒´𝑥

𝑛´1
ÿ

𝑘“0

𝑥𝑘

𝑘! , (3.9)

to rewrite it as

𝑆𝑓ℎp𝜈q “ ℎ

ż 8

0

˜

r𝜈{ℎs
ÿ

𝑘“1

𝑡𝑘´1

p𝑘 ´ 1q!

¸

𝑒´𝑡𝑓p´ℎ𝑡q𝑑𝑡 “ ℎ

r𝜈{ℎs
ÿ

𝑘“1
𝑓ℎp𝑘ℎq, (3.10)

giving
𝑆𝑓ℎp𝜈q “ 𝑆∇𝑓ℎp𝜈q. (3.11)

Even more, from the limit (3.3) we can obtain

𝐷Δ𝑓ℎp𝑥q “ ´ lim
𝜈Ñ´𝑥

𝐷̂𝑓ℎp𝜈q (3.12)

and
𝑆Δ𝑓ℎp𝑥q “ lim

𝜈Ñ´𝑥
𝑆𝑓ℎp𝜈q. (3.13)

3.1.1.2 Formulation Using Meijer G-Function Transform

Since the goal of the mimetic map is to generalize the procedure of discretization of
functions, it is reasonable that we try to represent such transform in a general way to include
a larger class of discrete functions. One way to do this is describing the mimetic map in
terms of the Meijer G-function (see appendix A), which is a generalization of the generalized
hypergeometric function.

First of all, the Euler measure can be rewritten as

𝑑𝜆𝛼p𝑡q ”
𝑡𝛼´1𝑒´𝑡

Γp𝛼q 𝑑𝑡 “
𝑑𝑡

Γp𝛼q𝐺
1,0
0,1

“

´´´
𝛼´1 | 𝑡

‰

, (3.14)

giving the mimetic map

𝑓ℎp𝜈q “

ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝐺
1,0
0,1

”

´´´
𝜈
ℎ
´1 | 𝑡

ı

𝑓p´ℎ𝑡q. (3.15)

Thus, by definition, the mimetic derivative will be

𝐷̂𝑓ℎp𝜈q “ ´
1
ℎ

ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝑓p´ℎ𝑡q
𝑑

𝑑𝑡
𝐺1,0

0,1

”

´´´
𝜈
ℎ
´1 | 𝑡

ı

. (3.16)

Consider the Mellin transform defined as

𝑓p𝑠q “ ℳt𝑓p𝑡q; 𝑠u :“
ż 8

0
𝑑𝑡𝑡𝑠´1𝑓p𝑡q, (3.17)
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with inverse
𝑓p𝑡q “ ℳ´1

t𝑓p𝑠q; 𝑡u “
ż 𝑐`𝑖8

𝑐´𝑖8

𝑑𝑠

2𝜋𝑖𝑡
´𝑠𝑓p𝑠q; 𝑐 P R. (3.18)

With that we find
ℳt𝐺1,0

0,1
“

´´´
𝛼´1 | 𝑡

‰

; 𝑠u “ Γp𝑠` 𝛼 ´ 1q (3.19)

and using the property
ℳt𝑓 1p𝑡q; 𝑠u “ ´p𝑠´ 1q𝑓p𝑠´ 1q (3.20)

we have
ℳ

"

𝑑

𝑑𝑡
𝐺1,0

0,1

”

´´´
𝜈
ℎ
´1 | 𝑡

ı

; 𝑠
*

“ ´p𝑠´ 1qΓp𝑠` 𝛼 ´ 2q. (3.21)

Now let
𝑔p𝑡q “

1
Γp𝛼q

𝑑

𝑑𝑡
𝐺1,0

0,1

”

´´´
𝜈
ℎ
´1 | 𝑡

ı

, (3.22)

giving
𝑔p𝑠q “

Γp2´ 𝑠qΓp𝑠` 𝛼 ´ 1q
Γp1´ 𝑠qΓp𝛼q . (3.23)

From the inverse Mellin transform we find

𝑔p𝑡q “
1

Γp𝛼q𝐺
1,1
1,2

“1
0,𝛼´1 | 𝑡

‰

, (3.24)

resulting in
𝐷̂𝑓ℎp𝜈q “ ´

1
ℎ

ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝐺
1,1
1,2

”

1
0, 𝜈

ℎ
´1 | 𝑡

ı

𝑓p´ℎ𝑡q. (3.25)

For the mimetic integral, we use the representation

Γp𝛼, 𝑡q “ 𝐺2,0
1,2

“1
0,𝛼 | 𝑡

‰

(3.26)

to rewrite (3.6) as
𝑆𝑓ℎp𝜈q “ ℎ

ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝐺
2,0
1,2

”

1
0, 𝜈

ℎ
| 𝑡
ı

𝑓p´ℎ𝑡q. (3.27)

Therefore, from (3.15), (3.25) and (3.27) we have a general mimetic map, allowing us
to obtain discrete functions of a large set of functions represented in terms of the Meijer
G-function, just using the identities found in literature (ERDéLYI, 1953).

3.1.2 Discrete Versions of Functions

In this section we present the first and direct application of our mimetic map (3.1) in some
functions commonly used. We show that the discrete functions presented in 2.2 are recovered
by the map, and also some new discrete counterparts of special functions can be obtained.
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(i) Power function:

Let 𝑓p𝑥q “ 𝑥𝑛, then from (3.1) we have

𝑓ℎp𝜈q “

ż 8

0

𝑑𝑡

Γp 𝜈
ℎ
q
𝑒´𝑡𝑡

𝜈
ℎ
´1
p´ℎ𝑡q𝑛 “ p´ℎq𝑛

Γp𝜈{ℎ` 𝑛q
Γp𝜈{ℎq . (3.28)

Writing the above expression in a convenient way and taking the limit 𝜈 Ñ ´𝑥 we get

x𝑥𝑛
ℎ ” ℎ𝑛 Γp𝑥

ℎ
` 1q

Γp𝑥
ℎ
` 1´ 𝑛q “ 𝑥p𝑥´ ℎq ¨ ¨ ¨ r𝑥´ p𝑛´ 1qℎs, (3.29)

which is the discrete power function.

Using the forward difference operator (3.5) we have

𝐷Δ
x𝑥𝑛

ℎ “ ℎ𝑛´1𝑛
Γp𝑥

ℎ
` 1q

Γp𝑥
ℎ
` 1´ p𝑛´ 1qq , (3.30)

or
𝐷Δ

x𝑥𝑛
ℎ “ 𝑛z𝑥𝑛´1

ℎ. (3.31)

Therefore, the mimetic map reproduces the property observed in 2.2.1, mimicking the
infinitesimal calculus. However, the backward difference operator 𝐷∇ does not plays the
same role as 𝐷Δ here. If we try to obtain a difference equation like the one above, we
get

𝐷∇
x𝑥𝑛

ℎ “

ˆ

1` 𝑥
ℎ
´ 𝑛

𝑥
ℎ

˙

𝑛z𝑥𝑛´1
ℎ ‰ 𝑛z𝑥𝑛´1

ℎ. (3.32)

In fact, applying the mimetic map in 𝑑𝑥𝑛

𝑑𝑥
“ 𝑛𝑥𝑛´1, we obtain (3.31).

(ii) Exponential function:

Consider the function 𝑓p𝑥q “ 𝑒𝑎𝑥, then from (3.1) we get

𝑓ℎp𝜈q “

ż 8

0

𝑑𝑡

Γp 𝜈
ℎ
q
𝑒´𝑡𝑡

𝜈
ℎ
´1𝑒´ℎ𝑎𝑡

“ p1` 𝑎ℎq´𝜈{ℎ, (3.33)

resulting in
x𝑒𝑎𝑥

ℎ ” p1` 𝑎ℎq𝑥{ℎ, (3.34)

which is the discrete exponential function.

Again, we can reproduce the properties of infinitesimal calculus:

𝐷Δ
x𝑒𝑎𝑥

ℎ “
1
ℎ
rp1` 𝑎ℎq𝑥{ℎ`1

´ p1` 𝑎ℎq𝑥{ℎs “ 𝑎p1` 𝑎ℎq𝑥{ℎ (3.35)

or
𝐷Δ

x𝑒𝑎𝑥
ℎ “ 𝑎x𝑒𝑎𝑥

ℎ, (3.36)
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as expected. As before, we observe that the difference operator 𝐷∇ does not mimics
the properties of infinitesimal calculus:

𝐷∇
x𝑒𝑎𝑥

ℎ “
1
ℎ
rp1` 𝑎ℎq𝑥{ℎ ´ p1` 𝑎ℎq𝑥{ℎ´1

s “ 𝑎{𝑒𝑎p𝑥´ℎq
ℎ, (3.37)

that is
𝐷∇

x𝑒𝑎𝑥
ℎ ‰ 𝑎x𝑒𝑎𝑥

ℎ. (3.38)

(iii) Logarithm function:

Let 𝑓p𝑥q “ ln 𝑥, then we have

𝑓ℎp𝜈q “ lnp´ℎq ` 𝜓
´𝜈

ℎ

¯

, (3.39)

where 𝜓p𝑧q “ Γ1p𝑧q
Γp𝑧q is the digamma function. From (ERDéLYI, 1953), we have

𝜓p𝑛q “ ´𝛾 `𝐻𝑛´1, (3.40)

𝜓p𝑧q ´ 𝜓p´𝑧q “ ´
1
𝑧
` 𝛾 ` 𝜋 cotp𝜋𝑧q and (3.41)

𝜓p𝑧q “ lnp𝑧q ´
8
ÿ

𝑘“0

„

1
𝑘 ` 𝑧

´ 𝑙𝑛

ˆ

1` 1
𝑘 ` 𝑧

˙

, (3.42)

where 𝐻𝑛 “
ř𝑛

𝑘“1
1
𝑘

is a harmonic number and 𝛾 “ 0.5772 is the Euler-Mascheroni
constant. These identities gives

plnℎp𝑥q ” lnp´ℎq ´ 𝛾 ` 𝜋 cot
´

𝜋
𝑥

ℎ

¯

`𝐻 𝑥
ℎ

(3.43)

or
plnℎp𝑥q “ ln 𝑥´

8
ÿ

𝑘“0

„

1
𝑘 ´ 𝑥

ℎ

´ ln
ˆ

1` 1
𝑘 ´ 𝑥

ℎ

˙

. (3.44)

From (3.43) and (3.44), respectively we find

𝐷Δ𝑓ℎp𝑥q “
1

𝑥` ℎ
“y𝑥´1

ℎ, (3.45)

and
lim
ℎÑ0

plnℎp𝑥q “ ln 𝑥, (3.46)

as expected.
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(iv) Trigonometric functions:

Consider 𝑓p𝑥q “ sin 𝑥. From (3.1), we have

𝑓ℎp𝜈q “

ż 8

0

𝑑𝑡

Γp 𝜈
ℎ
q
𝑒´𝑡𝑡

𝜈
ℎ
´1 sin p´ℎ𝑡q. (3.47)

Although such integral seems to be complicated, it becomes easy to solve using not the
Meijer G-function but a generalization of it, the Fox H-function (appendix A). Using the
identity

sinp𝑧q “
?
𝜋𝐻1,0

0,2

„

´´´´´´

p 1
2 ,1q,p0,1q |

𝑧2

4



, (3.48)

we have
𝑓ℎp𝜈q “

ż 8

0
𝑡𝜈{ℎ´1𝑒´𝑡𝐻1,0

0,2

„

´´´´´´

p 1
2 ,1q,p0,1q |

ℎ2𝑡2

4



𝑑𝑧. (3.49)

And with
ż 8

0
𝑧𝜌´1𝑒´𝜆𝑧𝐻𝑚,𝑛

𝑝,𝑞

”

tp𝑎𝑝,𝐴𝑝qu

tp𝑏𝑞 ,𝐵𝑞qu
| 𝛼𝑧𝜎

ı

𝑑𝑧 “ 𝜆´𝜌𝐻𝑚,𝑛`1
𝑝`1,𝑞

”

p1´𝜌,𝜎q,tp𝑎𝑝,𝐴𝑝qu

tp𝑏𝑞 ,𝐵𝑞qu
|
𝛼

𝜆𝜎

ı

, (3.50)

we get
𝑓ℎp𝜈q “

?
𝜋

Γp 𝜈
ℎ
q
𝐻1,1

1,2

„

p1´ 𝜈
ℎ

,2q
p 1

2 ,1q,p0,1q |
ℎ2

4



, (3.51)

or
xsinℎp𝑥q ”

?
𝜋Γ

´

1` 𝑥

ℎ

¯

𝐻1,0
1,2

„

p1` 𝑥
ℎ

,2q
p 1

2 ,1q,p0,1q |
ℎ2

4



. (3.52)

By the same procedure above, but using

cosp𝑧q “
?
𝜋𝐻1,0

0,2

„

´´´´´´

p0,1q,p 1
2 ,1q |

𝑧2

4



, (3.53)

we obtain
xcosℎp𝑥q ”

?
𝜋Γ

´

1` 𝑥

ℎ

¯

𝐻1,0
1,2

„

p1` 𝑥
ℎ

,2q
p0,1q,p 1

2 ,1q
|
ℎ2

4



. (3.54)

Of course, is trivial to see that using (3.34), sin 𝑥 “ 𝑒𝑖𝑥´𝑒´𝑖𝑥

2𝑖
and cos𝑥 “ 𝑒𝑖𝑥`𝑒´𝑖𝑥

2 , we
obtain

xsinℎp𝑥q “
x𝑒𝑖𝑥

ℎ ´
y𝑒´𝑖𝑥

ℎ

2𝑖 (3.55)

and
xcosℎp𝑥q “

x𝑒𝑖𝑥
ℎ `

y𝑒´𝑖𝑥
ℎ

2 . (3.56)

Again the properties of infinitesimal calculus should be satisfied, so we expect a similar
relation to the differential relation psin 𝑥q1 “ ´ cos𝑥 holds. Using (3.55) and (3.56) we
get

𝐷Δ
{sinℎp𝑥q “ ´ {cosℎp𝑥q. (3.57)
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(v) Incomplete gamma function:

Let 𝑓p𝑥q “ 𝑥𝑧´1𝑒´𝑥, then

𝑓ℎp𝜈q “

ż 8

0

𝑑𝑡

Γp 𝜈
ℎ
q
𝑒´𝑡𝑡

𝜈
ℎ
´1
p´ℎ𝑡q𝑧´1𝑒ℎ𝑡

“ p´ℎq𝑧´1 Γp𝜈{ℎ` 𝑧 ´ 1q
Γp𝜈{ℎqp1´ ℎq𝜈{ℎ`𝑧´1 , (3.58)

which gives

𝑓ℎp𝑥q “
y𝑥𝑧´1

ℎ
y𝑒´𝑥

ℎ

p1´ ℎq𝑧´1 . (3.59)

The discrete incomplete gamma function can be defined as

𝛾ℎp𝑧, 𝑥q “ 𝑆Δ𝑓ℎp𝑥q. (3.60)

Using the limit (3.13) we obtain

𝛾ℎp𝑧, 𝑥q “
p𝑥𝑧

ℎ
y𝑒´𝑥

ℎ

𝑧p1´ ℎq𝑧 2𝐹1

ˆ

1, 𝑧 ´ 𝑥

ℎ
; 1` 𝑧,´ ℎ

1´ ℎ

˙

, (3.61)

where 2𝐹1p𝛼, 𝛽, 𝛾; 𝑡q is the Gauss hypergeometric function.

Summarizing, observe the table bellow.

Table 1 – Some functions and their respective discrete counterparts.

𝑓p𝑥q 𝑓ℎp𝑥q

𝑥𝑛
x𝑥𝑛

ℎ “ ℎ𝑛 Γp 𝑥
ℎ
`1q

Γp 𝑥
ℎ
`1´𝑛q

𝑒𝑎𝑥
x𝑒𝑎𝑥

ℎ “ p1` 𝑎ℎq𝑥{ℎ

ln 𝑥 plnℎp𝑥q “ lnp´ℎq ´ 𝛾 ` 𝜋 cot
`

𝜋 𝑥
ℎ

˘

`𝐻 𝑥
ℎ

sin 𝑥 xsinℎp𝑥q “
x𝑒𝑖𝑥

ℎ´
z𝑒´𝑖𝑥

ℎ

2𝑖
“
?
𝜋Γ

`

1` 𝑥
ℎ

˘

𝐻1,0
1,2

„

p1` 𝑥
ℎ

,2q
p 1

2 ,1q,p0,1q |
ℎ2

4



cos𝑥 xcosℎp𝑥q “
x𝑒𝑖𝑥

ℎ`
z𝑒´𝑖𝑥

ℎ

2 “
?
𝜋Γ

`

1` 𝑥
ℎ

˘

𝐻1,0
1,2

„

p1` 𝑥
ℎ

,2q
p0,1q,p 1

2 ,1q
| ℎ2

4



𝛾p𝑧, 𝑥q 𝛾ℎp𝑧, 𝑥q “
x𝑥𝑧

ℎ
y𝑒´𝑥

ℎ

𝑧p1´ℎq𝑧 2𝐹1
`

1, 𝑧 ´ 𝑥
ℎ
; 1` 𝑧,´ ℎ

1´ℎ

˘

Source: the author (2021).

We observe that the mimicking feature obtained via the mimetic map appears in a natural
way, but for a given specific combination of our discrete operators. It will become more clear
when we obtain the expressions for more general discrete operators while we aim to solve
differential equations using their respective difference equations, obtained by the mimetic
map.

Note that the validity of the continuum limit (3.4) can also be confirmed graphically. See
the figure bellow as a particular example.
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Figure 2 – The discrete power function p𝑥3
ℎ (blue) approaches to the power function 𝑥3 (red)

as ℎ tends to zero. The plot of 𝑥3 uses an increment of size 0.01.

Source: the author (2021).

3.1.3 Discrete Versions of Differential Equations: Difference Equations

As has been observed, there is a clear connection between differential equations and differ-
ence equations, and now we see that the mimetic map is able to map those onto each other.
That gives a new approach to solve differential equations as well as difference equations.

Let us illustrate the procedure with some classical differential equations. Here, let us refer
to the forward difference operator 𝐷Δ simply as 𝐷.

(i) Hermite polynomials:

The Hermite differential equation is given by

𝑦2 ´ 2𝑥𝑦1 ` 2𝑛𝑦 “ 0, (3.62)

with solution given by the Hermite polynomials

𝐻𝑛p𝑥q “ p´1q𝑛𝑒𝑥2 𝑑𝑛

𝑑𝑥𝑛
𝑒´𝑥2

. (3.63)
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From the map (3.1), definition (3.5) and (3.12), we trivially sees that 𝑑2

𝑑𝑥2 Ñ 𝐷2. Thus
we need only to find the map 𝑥 𝑑

𝑑𝑥
Ñ 𝐸. Consider the transformation

𝐸̂𝑓ℎp𝜈q “

ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝑡
𝜈{ℎ´1𝑒´𝑡

p´ℎ𝑡q𝑓 1p´ℎ𝑡q. (3.64)

Integrating by parts

𝐸̂𝑓ℎp𝜈q “ ´

ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝑓p´ℎ𝑡q
𝑑

𝑑𝑡
𝑡𝜈{ℎ𝑒´𝑡 (3.65)

gives

𝐸̂𝑓ℎp𝜈q “ 𝜈
𝑓ℎp𝜈 ` ℎq ´ 𝑓ℎp𝜈q

ℎ
“ 𝜈𝐷Δ

p𝑓ℎp𝜈qq (3.66)

And for the discrete function 𝑓ℎp𝑥q,

𝐸p𝑓ℎp𝑥qq “ 𝑥
𝑓ℎp𝑥q ´ 𝑓ℎp𝑥´ ℎq

ℎ
“ 𝑥𝐷∇

p𝑓ℎp𝑥qq, (3.67)

from (3.12). Therefore, the difference equation associated with (3.62) is the discrete
Hermite equation given by

𝐷2
p𝑓ℎp𝑥qq ´ 2𝐸p𝑓ℎp𝑥qq ` 2𝑛𝑓ℎp𝑥q “ 0, (3.68)

where
𝐷2
p𝑓ℎp𝑥qq “

𝑓ℎp𝑥` 2ℎq ` 𝑓ℎp𝑥q ´ 2𝑓ℎp𝑥` ℎq

ℎ2 . (3.69)

The solutions are the discrete Hermite polynomials

p𝐻𝑛p𝑥qℎ “ lim
𝜈Ñ´𝑥

ż 8

0
𝑑𝜆𝜈{ℎp𝑡q𝐻𝑛p´ℎ𝑡q. (3.70)

Given the definition of the Hermite polynomial, we obviously find p𝐻0p𝑥qℎ “ 1, p𝐻1p𝑥qℎ “

𝑥, p𝐻2p𝑥qℎ “ 4 p𝑥2
ℎ ´ 2, and so on.

(ii) Laguerre polynomials:

The Laguerre differential equation is

𝑥𝑦2 ` p1´ 𝑥q𝑦1 ` 𝑛𝑦 “ 0, (3.71)

with solution given by the Laguerre polynomials

𝐿𝑛p𝑥q “
𝑒𝑥

𝑛!
𝑑𝑛

𝑑𝑥𝑛

`

𝑒´𝑥𝑥𝑛
˘

“
1
𝑛!

ˆ

𝑑

𝑑𝑥
´ 1

˙𝑛

𝑥𝑛. (3.72)

The corresponding difference equation is

𝐻p𝑓ℎp𝑥qq ` p𝐷 ´ 𝐸qp𝑓ℎp𝑥qq ` 𝑛𝑓ℎp𝑥q “ 0, (3.73)
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where

𝐻p𝑓ℎp𝑥qq “ 𝑥
𝑓ℎp𝑥` ℎq ´ 2𝑓ℎp𝑥q ` 𝑓ℎp𝑥´ ℎq

ℎ2 “ 𝑥𝐷Δ
p𝐷∇

p𝑓ℎp𝑥qqq. (3.74)

The solution is the discrete Laguerre polynomials, defined by

p𝐿𝑛p𝑥qℎ “ lim
𝜈Ñ´𝑥

ż 8

0
𝑑𝜆𝜈{ℎp𝑡q𝐿𝑛p´ℎ𝑡q. (3.75)

By the definition of the Laguerre polynomial, we find p𝐿0p𝑥qℎ “ 1, p𝐿1p𝑥qℎ “ 1 ´ 𝑥,
p𝐿2p𝑥qℎ “ 2´ 4𝑥` p𝑥2

ℎ and so on.

(iii) Confluent hypergeometric function:

The confluent hypergeometric differential equation is given by

𝑥𝑦2 ` p𝑐´ 𝑥q𝑦1 ´ 𝑎𝑦 “ 0. (3.76)

The corresponding difference equation is

𝐻p𝑓ℎp𝑥qq ` p𝑐𝐷 ´ 𝐸qp𝑓ℎp𝑥qq ´ 𝑎𝑓ℎp𝑥q “ 0. (3.77)

The solution is the discrete confluent hypergeometric function defined by

p𝐹 p𝑎; 𝑐;𝑥qℎ “ lim
𝜈Ñ´𝑥

ż 8

0
𝑑𝜆𝜈{ℎp𝑡q𝐹 p𝑎; 𝑐;´ℎ𝑡q. (3.78)

With the power series solution given by

p𝐹ℎp𝑎; 𝑐;𝑥q “
8
ÿ

𝑛“0

p𝑎q𝑛
p𝑐q𝑛

x𝑥𝑛
ℎ

𝑛! , (3.79)

where p𝛼q𝑛 “ Γp𝛼`𝑛q
Γp𝛼q is the Pochhammer symbol. A closed form expression can be

obtained if we substitute the expression of x𝑥𝑛
ℎ, in (3.29). Then we find

p𝐹ℎp𝑎; 𝑐;𝑥q “ 2𝐹1

´

𝑎,´
𝑥

ℎ
; 𝑐;´ℎ

¯

. (3.80)

Using the definition of the confluent hypergeometric function,

𝐹 p𝑎; 𝑐; 𝑧q “ lim
𝑏Ñ8

2𝐹1

´

𝑎, 𝑏; 𝑐; 𝑧
𝑏

¯

, (3.81)

we can see that
𝐹 p𝑎, 𝑐;𝑥q “ lim

ℎÑ0
p𝐹 p𝑎, 𝑐;𝑥qℎ, (3.82)

as expected.

Besides, the expression (3.79) also validate the definition of the discrete Taylor series
(2.67), which can be obtained from the linearity of the mimetic map.
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(iv) Fibonacci sequence:

Observe that we can transform the difference equation of the Fibonacci sequence (2.37)
in a differential equation if we use 𝐷p p𝑓p𝑥qq “ p𝑓p𝑥` 1q ´ p𝑓p𝑥q, and visualize 𝐷 in the
context of the limit ℎÑ 0. Such differential equation is

$

’

&

’

%

𝑓2p𝑥q ` 𝑓 1p𝑥q ´ 𝑓p𝑥q “ 0;

𝑓p0q “ 0, 𝑓 1p0q “ 1;
(3.83a)

which have solution
𝑓p𝑥q “

𝑒
´1`

?
5

2 𝑥 ´ 𝑒
´1´

?
5

2 𝑥

?
5

. (3.83b)

Now, if we use the mimetic map in (3.83), we obtain

𝑓ℎp𝑥` 2ℎq “ p2´ ℎq𝑓ℎp𝑥` ℎq ` pℎ
2
` ℎ´ 1q𝑓ℎp𝑥q, (3.84a)

with solution given by the discrete function

𝑓ℎp𝑥q “
1
?

5

«

ˆ

1`
ˆ

´1`
?

5
2

˙

ℎ

˙𝑥{ℎ

´

ˆ

1`
ˆ

´1´
?

5
2

˙

ℎ

˙𝑥{ℎ
ff

. (3.84b)

We recover the Fibonacci sequence (2.40) when ℎ “ 1 and 𝑥 “ 𝑛ℎ.

(v) Hanoi tower:

Consider the difference equation of the Hanoi sequence (2.41). Using 𝐷p p𝑓p𝑥qq “ p𝑓p𝑥`

1q ´ p𝑓p𝑥q we associate to it the ODE,
$

’

&

’

%

𝑓 1p𝑥q ´ 𝑓p𝑥q “ 1;

𝑓p0q “ 0;
(3.85a)

which have as solution
𝑓p𝑥q “ 𝑒𝑥

´ 1. (3.85b)

Via mimetic map, we get

𝑓ℎp𝑛ℎ` ℎq “ p1` ℎq𝑓ℎp𝑛ℎq ` ℎ. (3.86a)

and
𝑓ℎp𝑥q “ p1` ℎq𝑥{ℎ ´ 1. (3.86b)

Setting ℎ “ 1 and 𝑥 “ 𝑛ℎ, we recover the Hanoi sequence

𝑓ℎp𝑥q “ 𝑓p𝑛q “ 𝑓𝑛 “ 2𝑛
´ 1. (3.87)
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So, every time there is a differential equation which have unknown solution, we can map it
in a difference equation and solve it using the methods in 2.1.1 or 2.1.2 (or 3.1.4, in general, as
will be shown soon). Equally well, we can try to rewrite a difference equation as a differential
equation which could be more easily solved (see figure 3 bellow). In this way, the mimetic map
can be seen as any other integral transform, e.g., Laplace transform, which can be used to
solve differential or difference equations.

Figure 3 – The mimetic map maps differential equations and its solutions onto difference
equations and its solutions, in a one-to-one way.

Source: the author (2021).

Moreover, the mimetic map provides the construction of a calculus which will depend of a
parameter ℎ that is adaptable to fit the data obtained from an experiment, which usually as-
sumes the continuum assumption. If an experiment gives some data related to some quantities,
we can fit these in terms of some value of ℎ and connect those via a difference equation.

For instance, consider the simple example of the movement of a particle with constant
velocity. One with a chronometer and a length measure tool can set instants of time separated
by a finite increment of time and measure the position of the particle with constant velocity,
finding similarly spaced values for it. Such data comes out to be represented by the kinematic
relation 𝑥𝑖`1 “ 𝑥𝑖 ` 𝑣Δ𝑡, which is known to describe the observed behavior if 𝑥𝑖 is the
position of the particle in the instant 𝑡𝑖 “ 𝑖Δ𝑡, 𝑣 is its velocity and Δ𝑡 is the time increment.
We clearly see it is a difference equation with Δ𝑡 representing the parameter ℎ, which is
directly connected with the differential equation 𝑑 𝑥

𝑑 𝑡
“ 𝑣. More elaborate situations, in many

areas of knowledge, can be explored where the discrete calculus formulation can be used to set
an analytical expression for a data„ but with the advantage of having a parameter to adjust
the data.

Further, once the mimetic map provides an exact discrete version of infinitesimal models
no information, such as the symmetries, will be lost when the system is discretized. But rather,
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more information could be obtained once we can look for all cases obtained from values of ℎ
instead of ℎÑ 0 only.

3.1.4 The h-Generating Function

As discussed in subsection 2.1.2, we can solve difference equations using generating func-
tions. What was discussed was the case of difference equations with step size ℎ “ 1, satisfied by
sequences. Here we generalize the definition of generating function for a h-generating function
which applies for difference equations satisfied by discrete functions.

Let p𝑓ℎp𝑛ℎq be a discrete function. We define the h-Generating Function associated to
it by

𝐺ℎp𝑧q :“
8
ÿ

𝑛“0

p𝑓ℎp𝑛ℎq
𝑧𝑛

𝑛! , (3.88a)

where
p𝑓ℎp𝑛ℎq “

B𝑛

B𝑧𝑛
𝐺ℎp𝑧q

⃒⃒⃒⃒
⃒
𝑧“0

. (3.88b)

For ℎ “ 1 we recover the discussion of subsection 2.1.2. See the examples bellow.

(i) Discrete power function:

Consider the discrete power function (3.29) given by

𝑃𝑛,𝑚pℎq “ {p𝑛ℎq𝑚ℎ “ ℎ𝑚 Γp𝑛` 1q
Γp𝑛` 1´𝑚q “ ℎ𝑚 𝑛!

p𝑛´𝑚q! , (3.89)

for 𝑛 ě 𝑚.

From the generating function (3.88a), we have

𝐺ℎp𝑚, 𝑧q “
8
ÿ

𝑛“0

„

ℎ𝑚 𝑛!
p𝑛´𝑚q!



𝑧𝑛

𝑛! “ pℎ𝑧q
𝑚𝑒𝑧. (3.90)

For particular values of 𝑚 (“ 1, 2, 3, . . . ă 𝑛) we can conclude that

𝑑𝑛

𝑑𝑧𝑛
p𝑧𝑚𝑒𝑧

q

⃒⃒⃒⃒
⃒
𝑧“0

“
𝑛!

p𝑛´𝑚q! , (3.91)

resulting in
𝑃𝑛,𝑚pℎq “ ℎ𝑚 𝑛!

p𝑛´𝑚q! , (3.92)

as should be.
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(ii) Discrete exponential function:

Consider the discrete exponential function 3.34) given by

𝑃𝑛pℎq “
z

𝑒
𝑎p𝑛ℎq
ℎ “ p1` 𝑎ℎq𝑛. (3.93)

Via (3.88a), we get
𝐺ℎp𝑧q “ 𝑒p1`𝑎ℎq𝑧. (3.94)

And, from (3.88b) we recover the expression above.

(iii) Discrete trigonometric function:

Consider the discrete sine function (3.52)

𝑃𝑛pℎq “
?
𝜋𝑛!𝐻1,0

1,2

„

p𝑛`1,2q
p 1

2 ,1q,p0,1q |
ℎ2

4



. (3.95)

Then, the generating function is

𝐺ℎp𝑧q “
?
𝜋

8
ÿ

𝑛“0
𝐻1,0

1,2

„

p𝑛`1,2q
p 1

2 ,1q,p0,1q |
ℎ2

4



𝑧𝑛. (3.96)

Or, using (3.55) and (3.94), we have

𝐺ℎp𝑧q “
𝑒p1`𝑖ℎq𝑧 ´ 𝑒p1´𝑖ℎq𝑧

2𝑖 . (3.97)

From both is trivial to see that (3.52) or (3.55) are recovered.

(iv) Fibonacci discrete function:

Consider the Fibonacci discrete function (3.84b) with 𝑥 “ 𝑛ℎ. From (3.88a) and (3.94),
we get

𝐺ℎp𝑧q “
exp

!´

1`
´

´1`
?

5
2

¯

ℎ
¯

𝑧
)

´ exp
!”

1`
´

´1´
?

5
2

¯

ℎ
ı

𝑧
)

?
5

, (3.98)

which returns (3.84b) via (3.88b). The same can be obtained applying (3.88a) directly
in the difference equation (3.84a).

(v) Hanoi tower:

Consider the Hanoi discrete function (3.86b) with 𝑥 “ 𝑛ℎ. Then, the h-generating
function will be

𝐺ℎp𝑧q “ 𝑒𝑧
p𝑒ℎ𝑧

´ 1q, (3.99)

which returns (3.86b). Again, it can be obtained also from (3.86a).
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(vi) Discrete inverse gamma function:

Consider the function 𝑓p𝑥q “ 1
Γp𝑥`𝑚q

, where (DENNERY; KRZYWICKI, 1996)

1
Γp𝑥`𝑚q “

ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔𝑥`𝑚
. (3.100)

Using the mimetic map we have

𝑓ℎp𝜈q “

ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔𝑚

ż 8

0

𝑑𝑡

Γp 𝜈
ℎ
q
𝑡

𝜈
ℎ
´1𝑒´p1´ℎ ln 𝜔q𝑡 (3.101)

which using the discrete exponential function becomes the discrete inverse gamma func-
tion

yΓ´1
ℎ

´𝑥

ℎ
`𝑚

¯

”

ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔𝑚
p1´ ℎ ln𝜔q𝑥{ℎ. (3.102)

Setting 𝑥 “ 𝑛ℎ, we have the h-generating function is given by

𝐺ℎp𝑚, 𝑧q “
8
ÿ

𝑛“0

ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔𝑚

rp1´ ℎ ln𝜔q𝑧s𝑛

𝑛! “ 𝑒𝑧

ż

𝐶

𝑑𝜔

2𝜋𝑟
𝑒𝜔

𝑤ℎ𝑧`𝑚
. (3.103)

or
𝐺ℎp𝑚, 𝑧q “

𝑒𝑧

Γpℎ𝑧 `𝑚q , 𝑚 P N. (3.104)

From it we recover the discrete function via

𝑃𝑛,𝑚pℎq “
𝑑𝑛

𝑑𝑧𝑛

ˆ

𝑒𝑧

Γpℎ𝑧 `𝑚q

˙
ˇ

ˇ

ˇ

ˇ

𝑧“0
“ yΓ´1

ℎ p𝑛`𝑚q . (3.105)

Due the complexity of the expression above, the validation of such approach can be
done case by case for some particular values of 𝑥 “ 𝑛ℎ and of 𝑚.

• 𝑥 “ 0, 𝑚 P N:

𝑃0,𝑚pℎq “
1

Γp𝑚q “
ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔𝑚
“ yΓ´1

ℎp𝑚q. (3.106)

• 𝑥 “ ℎ, 𝑚 “ 1: Expanding (3.105), we get

𝑃1,1pℎq “

„

𝑒𝑧p1´ ℎ𝜓pℎ𝑧 ` 1qq
Γpℎ𝑧 ` 1q


ˇ

ˇ

ˇ

ˇ

𝑧“0
“ 1´ ℎ𝜓p1q “ 1` ℎ𝛾. (3.107)

From (3.102) we observe that

yΓ´1
ℎp1` 1q “

ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔
p1´ ℎ ln𝜔q “ 1` ℎ𝛾. (3.108)

So 𝑃1,1pℎq “ yΓ´1
ℎp1` 1q.
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• 𝑥 “ ℎ, 𝑚 “ 2:

𝑃1,2pℎq “

„

𝑒𝑧p1´ ℎ𝜓pℎ𝑧 ` 2qq
Γpℎ𝑧 ` 2q

ˇ

ˇ

ˇ

ˇ

𝑧“0
“ 1´ ℎ𝜓p2q “ 1´ ℎp1´ 𝛾q. (3.109)

Again, from (3.102),

yΓ´1
ℎp1` 2q “

ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔2 p1´ ℎ ln𝜔q “ 1´ ℎp1´ 𝛾q. (3.110)

Then 𝑃1,2pℎq “ yΓ´1
ℎp1` 2q.

• 𝑥 “ 2ℎ, 𝑚 “ 1:

𝑃2,1pℎq “

„

𝑒𝑧r1´ 2ℎ𝜓pℎ𝑧 ` 1q ` ℎ2p𝜓pℎ𝑧 ` 1q2 ´ 𝜓p1qpℎ𝑧 ` 1qqs
Γpℎ𝑧 ` 1q

ˇ

ˇ

ˇ

ˇ

𝑧“0

“1` 2ℎ𝛾 ` ℎ2
p𝛾2

´
𝜋2

6 q.
(3.111)

And (3.102) gives

yΓ´1
ℎp2` 1q “1´ ℎ

ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔
lnp𝜔2

q ` ℎ2
ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔
pln𝜔q2

“1` 2ℎ𝛾 ` ℎ2
p𝛾2

´
𝜋2

6 q
(3.112)

Therefore, 𝑃2,1pℎq “ yΓ´1
ℎp2` 1q.

At these calculations, 𝜓p𝑛qp𝑧q is the Polygamma function defined by (ERDéLYI, 1953)

𝜓p𝑛qp𝑧q :“ 𝑑𝑛`1

𝑑𝑧𝑛`1 ln Γp𝑧q. (3.113)

In particular,

𝜓p𝑧q “ Γp𝑧q
ż

𝐶

𝑑𝜔

2𝜋𝑖
𝑒𝜔

𝜔𝑧
ln𝜔, 𝜓p1qp𝑧q “ 𝜓p𝑧q2 ´ Γp𝑧q

ż

𝐶

𝑑𝜔

2𝜋𝑖, (3.114a)

𝜓p1q “ ´𝛾 and 𝜓p1qp1q “ 𝜋2

6 , (3.114b)

where 𝛾 is the Euler-Mascheroni constant. Also, in the last equality of (3.109) was used

𝜓p𝑧 ` 1q “ 𝜓p𝑧q `
1
𝑧
. (3.115)

Henceforth, we conclude that 𝑃𝑛,𝑚pℎq “ yΓ´1
ℎp𝑛`𝑚q is true for 𝑛,𝑚 P N0.

We saw with the examples above that all the structure of sequences can be extended for the
discrete functions, with the definition agreeing reasonably well with the approach developed
using the mimetic map. In particular we will see in the next subsection that the result presented
for the discrete inverse gamma in the case 𝑥 “ 0 holds in general, the discrete gamma function
is the gamma function itself.
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3.1.5 Discrete Integrals Transforms

Once the mimetic map provides a direct connection of the whole structure of the infinites-
imal calculus with the one of the discrete calculus, one should expect that we can construct
discrete integral transforms involving only discrete functions, allowing the use of discrete ver-
sions of usual techniques used to solve differential equations to solve difference equations. In
fact, this is what occurs in the following examples, where we obtain discrete versions of the
Laplace and Mellin transforms.

(i) h-Laplace transform and the h-Z transform

We define the Laplace transform by

𝑔p𝑠q “ ℒt𝑓p𝑥q; 𝑠u :“
ż 8

0
𝑑𝑥𝑒´𝑠𝑥𝑓p𝑥q, (3.116a)

with the inverse Laplace transform

𝑓p𝑥q “ ℒ´1
t𝑔p𝑠q;𝑥u “

ż

𝛾

𝑑𝑠

2𝜋𝑖𝑒
𝑠𝑥𝑔p𝑠q, 𝛾 “ p𝑠0 ´ 𝑖8, 𝑠0 ` 𝑖8q. (3.116b)

Using the mimetic map in (3.116b) we have

𝑓ℎp𝑥q “

ż

𝛾

𝑑𝑠

2𝜋𝑖
x𝑒𝑠𝑥

ℎ𝑔p𝑠q “

ż

𝛾

𝑑𝑠

2𝜋𝑖p1` ℎ𝑠q
𝑥{ℎ𝑔p𝑠q, (3.117)

using the discrete exponential function (3.34). With that, we can construct a discrete
Laplace transform (BOHNER; GUSEINOV, 2010).

Consider the discrete version of the function 𝑔p𝑠q, denoted by 𝑔ℎp𝑠q, and deform the
curve 𝛾 to Γ “ t𝑧 P C | |𝑧 ´ ℎ˚| “ 𝐴u, where 𝐴 ą 𝑅

ℎ
, ℎ˚ “ ´ 1

ℎ
, and

𝑅 “ lim sup
𝑘Ñ8

𝑘

b

|𝑓ℎp𝑘ℎq|. (3.118)

Then, let 𝑓ℎp𝑘ℎq be the Inverse h-Laplace Transform defined by

𝑓ℎp𝑥q :“
ż

Γ

𝑑𝑠

2𝜋𝑖ℎ
𝑘
p𝑠´ ℎ˚q

𝑘 𝑔ℎp𝑠q (3.119)

and the h-Laplace Transform will be

𝑔ℎp𝑠q :“ 1
𝑠´ ℎ˚

8
ÿ

𝑘“0

𝑓ℎp𝑘ℎq

ℎ𝑘p𝑠´ ℎ˚q𝑘
, (3.120)

for 𝑠 P C, 𝑠 ‰ ℎ˚.
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We can confirm it substituting (3.120) in the right-hand side of (3.119),
ż

Γ

𝑑𝑠

2𝜋𝑖ℎ
𝑘
p𝑠´ ℎ˚q

𝑘𝑔ℎp𝑠q “
8
ÿ

𝑗“0
ℎ𝑘´𝑗𝑓ℎp𝑗ℎq

ż

Γ

𝑑𝑠

2𝜋𝑖
1

p𝑠´ ℎ˚q𝑗`1´𝑘
, (3.121)

and using the residue theorem,
ż

Γ

𝑑𝑠

2𝜋𝑖
1

p𝑠´ ℎ˚q𝑗`1´𝑘
“ 𝛿𝑗,𝑘, (3.122)

to obtain
ż

Γ

𝑑𝑠

2𝜋𝑖ℎ
𝑘
p𝑠´ ℎ˚q

𝑘𝑔ℎp𝑠q “ 𝑓ℎp𝑘ℎq. (3.123)

An interesting characteristic of such construction is that the h-Laplace transform is
independent of ℎ. That is

p𝑔ℎp𝑧q “ 𝑔p𝑧q, @ℎ P R`. (3.124)

This result follows directly from the construction of the Laplace transform in (BOHNER;

GUSEINOV, 2010), where the Laplace transform is the same, only changing the domain
of the inverse Laplace transform using 𝑥 P R or 𝑥 P ℎN0, thus changing the definition
from an integral to a sum. We verify it at the example bellow. The same result holds
for the construction of the discrete Mellin transform, as we will see.

Example 3.1. Consider 𝑓p𝑥q “ 𝑥𝑛. From (3.116a), its Laplace transform is

𝑔p𝑧q “

ż 8

0
𝑒´𝑧𝑥𝑥𝑛𝑑𝑥 “

𝑛!
𝑧𝑛`1 .

And using (3.120) we obtain the same result, i.e.,

𝑔ℎp𝑧q “
8
ÿ

𝑘“𝑛

ℎ𝑛`1

pℎ𝑧 ` 1q𝑘`1
𝑘!

p𝑘 ´ 𝑛q! “
8
ÿ

𝑙“0

ℎ𝑛`1

pℎ𝑧 ` 1q𝑙`𝑛`1
p𝑙 ` 𝑛q!

𝑙! “
𝑛!
𝑧𝑛`1 .

Now, consider that following the same reason that a sequence 𝑓𝑛 was generalized for
a discrete function p𝑓ℎp𝑛ℎq and the generating function 𝐺p𝑧q was generalized for the
h-generating function 𝐺ℎp𝑧q, we can generalize the Z transform 𝐹 p𝑧q, subsection 2.1.2,
for a h-Z transform defined by

𝐹ℎp𝑧q “ 𝒵t p𝑓ℎp𝑛ℎq; 𝑧u :“
8
ÿ

𝑛“0

p𝑓ℎp𝑛ℎq

𝑧𝑛
(3.125)

with inverse h-Z transform

p𝑓ℎp𝑛ℎq “ 𝒵´1
t𝐹ℎp𝑧q;𝑛u :“

¿

𝐶

𝑑𝑠

2𝜋𝑖𝐹ℎp𝑠q𝑠
𝑛´1. (3.126)
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Here the usual Z transform is recovered for the case ℎ “ 1.

It implies that the h-Z transform is intimately related with the h-Laplace transform by
the relation

𝐹ℎp𝑧q “ 𝑧p𝑔ℎp𝑧 ` ℎ˚q. (3.127)

Such relation is an extension of the case ℎ “ 1 presented in (BOHNER; GUSEINOV, 2010).

Thus, not only is possible to obtain a discrete version of the Laplace transform via
the mimetic map, but also it can be see as a generalization of the Z transform, the h-Z
transform, in such a manner that the h-Laplace becomes the standard Laplace transform
in the limit ℎÑ 0 and the Z transform when ℎ “ 1.

(ii) Mellin Transform

We define the Mellin transform of the function 𝑓 : R` Ñ R by

𝑓p𝑠q “ ℳt𝑓p𝑥q; 𝑠u “
ż 8

0
𝑥𝑠´1𝑓p𝑥q𝑑𝑥, (3.128)

with the inverse Mellin Transform given by

𝑓p𝑥q “ ℳ´1
t𝑓p𝑠q;𝑥u “

ż

𝛾

𝑑𝑠

2𝜋𝑖𝑥
´𝑠𝑓p𝑠q, (3.129)

where 𝛾 P p𝑠0 ´ 𝑖8, 𝑠0 ` 𝑖8q.

Using the mimetic map in the inverse Mellin transform (3.129), we have

𝑓ℎp𝑘ℎq “

ż

𝛾

𝑑𝑠

2𝜋𝑖
ℎ´𝑠𝑘!

Γp𝑘 ` 1` 𝑠q𝑓p𝑠q “
ż

𝛾

𝑑𝑠

2𝜋𝑖
y𝑥´𝑠

ℎ𝑓p𝑠q, (3.130)

for 𝑥 “ 𝑘ℎ.

Just as in the previous case, we deform 𝑓p𝑠q to its discrete version ^̃𝑓ℎp𝑠q. With that, we
can state the discrete version of the Mellin transform. Let 𝑓ℎ : ℎN0 Ñ R be a discrete
function. Then the h-Mellin Transform is defined by

^̃𝑓ℎp𝑠q :“
8
ÿ

𝑘“0

ℎ

{p𝑘ℎq1´𝑠
ℎ

𝑓ℎp𝑘ℎq “
8
ÿ

𝑘“0

ℎ𝑠Γp𝑠` 𝑘q
𝑘! 𝑓ℎp𝑘ℎq, (3.131)

with the Inverse h-Mellin Transform

𝑓ℎp𝑘ℎq :“
ż

𝛾

𝑑𝑠

2𝜋𝑖
{p𝑘ℎq´𝑠

ℎ
^̃𝑓ℎp𝑠q “ 𝑘!

ż

𝛾

𝑑𝑠

2𝜋𝑖 ¨
ℎ´𝑠𝑘!

Γp𝑠` 𝑘 ` 1q
^̃𝑓ℎp𝑠q, (3.132)

where 𝛾 P p𝑠0 ´ 𝑖8, 𝑠0 ` 𝑖8q.
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To confirm the validity of it, substituting (3.131) in (3.132), we have

𝑓ℎp𝑘ℎq “ 𝑘!
8
ÿ

𝑗“0

𝑓ℎp𝑗ℎq

𝑗!

ż

𝛾

𝑑𝑠

2𝜋𝑖
Γp𝑠` 𝑗q

Γp𝑠` 𝑘 ` 1q “ 𝑘!
8
ÿ

𝑗“0

𝑓ℎp𝑗ℎq

𝑗! 𝐼𝑘,𝑗. (3.133)

Here
ż

𝛾

𝑑𝑠

2𝜋𝑖
Γp𝑠` 𝑗q

Γp𝑠` 𝑘 ` 1q “
𝑘´𝑗
ÿ

𝑛“0

p´1q𝑛

𝑛!
1

Γp𝑘 ` 1´ 𝑗 ´ 𝑛q . (3.134)

Therefore,
𝑓ℎp𝑘𝑗q “ 𝑘!

8
ÿ

𝑗“0

𝑓ℎp𝑗ℎq

𝑗! 𝛿𝑗,𝑘, (3.135)

In the same way as the h-Laplace transform, the h-Mellin transform is ℎ independent:

^̃𝑓ℎp𝑧q “ 𝑓p𝑧q, @ℎ P R`. (3.136)

It can be seen from (3.131) and (3.130) giving

^̃𝑓ℎp𝑠q “
8
ÿ

𝑘“0

ℎ𝑠Γp𝑠` 𝑘q
𝑘! 𝑓ℎp𝑘ℎq “

ż

𝛾

𝑑𝑧

2𝜋𝑖𝑓p𝑧qℎ
𝑠´𝑧

8
ÿ

𝑘“0

Γp𝑠` 𝑘q
Γp𝑘 ` 1` 𝑧q . (3.137)

Which can be rewritten as

^̃𝑓ℎp𝑠q “

ż

𝛾

𝑑𝑧

2𝜋𝑖
ℎ𝑠´𝑧𝑓p𝑧q

p𝑧 ´ 𝑠q

Γp𝑠q
Γp𝑧q “ 𝑓p𝑠q. (3.138)

We can confirm it in the examples bellow.

Example 3.2. Let 𝑓p𝑥q “ 𝑒´𝑎𝑥, for 𝑎 ą 0. Its Mellin transform is

𝑓p𝑠q “

ż 8

0
𝑥𝑠´1𝑒´𝑎𝑥𝑑𝑥 “ 𝑎´𝑠Γp𝑠q.

Thus
𝑓ℎp𝑘ℎq “ 𝑘!

ż

𝛾

𝑑𝑠

2𝜋𝑖 ¨
Γp𝑠q

p𝑎ℎq𝑠 Γp𝑠` 𝑘 ` 1q .

And since
RestΓp𝑠q, 𝑠 “ ´𝑛u “ p´1q𝑛

𝑛! ,

we have
𝑓ℎp𝑘ℎq “

𝑘
ÿ

0

ˆ

𝑘

𝑛

˙

p´𝑎ℎq𝑛 “ p1´ 𝑎ℎq𝑘 “ y𝑒´𝑎𝑥
ℎ.

Example 3.3. For the particular case of 𝑓p𝑥q “ 𝑒´𝑥, with 𝑎 “ 1, we have 𝑓p𝑠q “ Γp𝑠q.
Thus if we take 𝑓ℎpℎ𝑘q “ p1´ ℎq𝑘, we have

Γ̂ℎp𝑧q “
8
ÿ

𝑘“0

ℎ𝑧Γp𝑧 ` 𝑘q
𝑘! p1´ ℎq𝑘 “ ℎ𝑧Γp𝑧q1𝐹0p𝑧; ; 1´ ℎq.
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But

1𝐹0p𝑎; ;𝑥q “ 1
p1´ 𝑥q𝑎 ,

which results in
Γ̂ℎp𝑧q “ Γp𝑧q.

Besides exhibit the characteristic that the discrete version of the gamma function is the
gamma function itself, this example validates the result (3.136).

Thus, the systematic procedure conceived by the mimetic map is not only capable to map
functions onto discrete functions, differential equations onto difference equations and extend
the definition of sequences and the tools applied to it, but also allows us to extend the notion
of integral transforms to discrete integral transforms. In such a situation, via the (Laplace or
Mellin) transform ((3.116a) or (3.128)) of the function 𝑓p𝑥q, or via the h-(Laplace or Mellin)
transform ((3.120) or (3.131)) of the discrete function p𝑓ℎp𝑥q, we get the same complex function
(𝑔p𝑧q or 𝑓p𝑧q). This is achieved only by discretizing the function 𝑓p𝑥q. That is, the discrete
transforms provide a new way to obtain the (Laplace or Mellin) transform of a function 𝑓p𝑥q
obtaining its discrete version p𝑓ℎp𝑥q.

3.2 COMPLEX DISCRETE MIMETIC CALCULUS

A possible generalization of our procedure is to present a complex mimetic map, which
maps complex functions onto discrete complex functions.

3.2.1 Discrete Calculus in the Discrete Complex Plane

Before we define the complex mimetic map, let us establish some necessary objects to
construct the discrete calculus over a complex discrete plane (IZADI, 2018).

For 𝑧 “ 𝑥 ` 𝑖𝑦, where 𝑥, 𝑦 P ℎZ, we define the Complex Discrete Functions p𝑓ℎ :

pℎZq2 Ñ C by

p𝑓ℎp𝑧q “ p𝑓ℎp𝑥, 𝑦q “ p𝑢ℎp𝑥, 𝑦q ` 𝑖p𝑣ℎp𝑥, 𝑦q, (3.139)

where

p𝑢ℎp𝑥, 𝑦q “ R𝑒p p𝑓ℎp𝑧qq 𝑎𝑛𝑑 p𝑣ℎp𝑥, 𝑦q “ I𝑚p p𝑓ℎp𝑧qq, (3.140)
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and pℎZq2 ” ℎZˆℎZ denotes the discrete complex plane. The discrete complex function can
be seen as a generalization of a double sequence p𝑓𝑛,𝑚qp𝑛,𝑚qPN2

0
which takes pairs of natural

numbers into complex numbers.
Then, in analogy with partial derivatives we define the Forward Partial Difference Op-

erators 𝐷Δ
𝑥 and 𝐷Δ

𝑦 by

𝐷Δ
𝑥
p𝑓ℎp𝑥, 𝑦q “

p𝑓ℎp𝑥` ℎ, 𝑦q ´ p𝑓ℎp𝑥, 𝑦q

ℎ
(3.141)

and

𝐷Δ
𝑦
p𝑓ℎp𝑥, 𝑦q “

p𝑓ℎp𝑥, 𝑦 ` ℎq ´ p𝑓ℎp𝑥, 𝑦q

ℎ
. (3.142)

And the Backward Difference Operators 𝐷∇
𝑥 and 𝐷∇

𝑦 by

𝐷∇
𝜈 𝑓ℎp𝜈, 𝜇q “

𝑓ℎp𝜈, 𝜇q ´ 𝑓ℎp𝜈 ´ ℎ, 𝜇q

ℎ
(3.143)

and

𝐷∇
𝜇 𝑓ℎp𝜈, 𝜇q “

𝑓ℎp𝜈, 𝜇q ´ 𝑓ℎp𝜈, 𝜇´ ℎq

ℎ
. (3.144)

If a function p𝑓ℎ : pℎZq2 Ñ C satisfies the Discrete Cauchy-Riemann Equations
$

’

&

’

%

𝐷Δ
𝑥 p𝑢ℎp𝑥, 𝑦q “ 𝐷Δ

𝑦 p𝑣ℎp𝑥, 𝑦q,

𝐷Δ
𝑦 p𝑢ℎp𝑥, 𝑦q “ ´𝐷

Δ
𝑥 p𝑣ℎp𝑥, 𝑦q,

(3.145)

it is called an Analytic Complex Discrete Function in the discrete variables 𝑥 and 𝑦.
The Distance 𝑑 between two points 𝐴𝑘 “ p𝑥𝑘, 𝑦𝑘q, 𝐴𝑙 “ p𝑥𝑙, 𝑦𝑙q P pℎZq2 is defined by

𝑑2 :“ |𝐴𝑘 ´ 𝐴𝑙| “ p𝑥𝑘 ´ 𝑥𝑙q
2
` p𝑦𝑘 ´ 𝑦𝑙q

2.

From the above definition and the construction of the discrete complex plane, we can define
the Directed Length ÝÝÝÝÝÑ𝐴𝑘´1𝐴𝑘 ” Δ𝑙𝑘 as the quantity connecting two subsequent points which
assumes the values `ℎ, ´ℎ, `𝑖ℎ or ´𝑖ℎ only. That is,

a

|𝐴𝑘 ´ 𝐴𝑘´1| “ ℎ is the smallest unit
of length in the discrete complex plane.

With that, a curve on pℎZq2 can be defined. Suppose that 𝑛` 1 points t𝐴𝑘u
𝑛
𝑘“0 in pℎZq2

are given such that two subsequent points gives a directed length ÝÝÝÝÝÑ𝐴𝑘´1𝐴𝑘, 1 ď 𝑘 ď 𝑛. This set
of points is called a Broken Curve in pℎZq2 and is denoted by 𝛾⃗. In particular, for some point
p𝑥, 𝑦q P pℎZq2, the five consecutive points rp𝑥, 𝑦q, p𝑥` ℎ, 𝑦q, p𝑥` ℎ, 𝑦` ℎq, p𝑥, 𝑦` ℎq, p𝑥, 𝑦qs
is called a Simple Closed Curve in pℎZq2, denoted by 𝛾p𝑥, 𝑦q.
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Just as in vectorial calculus, we can define integrals of functions over such curves. Let
p𝑓ℎ : pℎZq2 Ñ C be a discrete complex function and 𝛾⃗ “ t𝐴𝑘 “ p𝑥𝑘, 𝑦𝑘qu

𝑛
𝑘“0 a broken curve

in pℎZq2. Then the Integral of p𝑓ℎ over 𝛾⃗ is defined by

𝑆Δ
p𝑓ℎp𝑧q :“

𝑛´1
ÿ

𝑘“0

p𝑓ℎp𝑥𝑘 ` 𝑖𝑦𝑘qΔ𝑙𝑘 (3.146)

and the Integral of p𝑓ℎ over a simple closed curve 𝛾p𝑥, 𝑦q is defined by

𝑆Δ
p𝑓ℎp𝜉, 𝜂q :“ ℎr p𝑓ℎp𝑥, 𝑦q ´ p𝑓ℎp𝑥, 𝑦 ` ℎqs ` 𝑖ℎr p𝑓ℎp𝑥` ℎ, 𝑦q ´ p𝑓ℎp𝑥, 𝑦qs. (3.147)

Particularly for p𝑓ℎp𝑥, 𝑦q “ p𝑢ℎp𝑥, 𝑦q ` 𝑖p𝑣ℎp𝑥, 𝑦q we have

𝑆Δ
p𝑓ℎp𝜉, 𝜂q “ ℎ2 “

´𝐷Δ
𝑦 p𝑢ℎp𝑥, 𝑦q ´𝐷

Δ
𝑥 p𝑣ℎp𝑥, 𝑦q

‰

` 𝑖ℎ2 “
´𝐷Δ

𝑦 p𝑣ℎp𝑥, 𝑦q `𝐷
Δ
𝑥 p𝑢ℎp𝑥, 𝑦q

‰

.

(3.148)

Theorem 3.2.1. Let p𝑓ℎp𝑧q “ p𝑢ℎp𝑥, 𝑦q` 𝑖p𝑣ℎp𝑥, 𝑦q be a complex discrete function and 𝛾p𝑥, 𝑦q
be a simple closed curve. p𝑓ℎp𝑧q is an analytic function if and only if its integral over 𝛾p𝑥, 𝑦q
vanishes.

Proof. It follows from equations (3.145) and (3.148).

Theorem 3.2.2 (Discrete Cauchy theorem). Let p𝑓ℎ : pℎZq2 Ñ C be an analytic complex
discrete function at some region 𝑅 Ă pℎZq2 bounded by a closed broken curve 𝛾⃗. Then the
integral of p𝑓ℎ over 𝛾⃗ is

𝑆Δ
p𝑓ℎp𝜉, 𝜂q “ 0. (3.149)

Proof. Denote by 𝑆Δ
𝛾⃗
p𝑓ℎp𝜉, 𝜂q the integral of p𝑓ℎ over 𝛾⃗. Suppose we can decompose 𝛾⃗ in a

simple closed curve 𝛾p𝑥, 𝑦q, where p𝑥, 𝑦q P 𝑅, and 𝛾⃗1 “ 𝛾⃗{𝛾p𝑥, 𝑦q such that

𝑆Δ
𝛾⃗
p𝑓ℎp𝜉, 𝜂q “ 𝑆Δ

𝛾p𝑥,𝑦q
p𝑓ℎp𝜉, 𝜂q ` 𝑆

Δ
𝛾⃗1
p𝑓ℎp𝜉, 𝜂q. (3.150)

By induction, we have
𝑆Δ

𝛾⃗
p𝑓ℎp𝜉, 𝜂q “

ÿ

p𝑥,𝑦qP𝑅

𝑆Δ
𝛾p𝑥,𝑦q

p𝑓ℎp𝜉, 𝜂q,

because the edge terms on the integrals over the simple closed curves will cancel each other
(see Figure 4 for a particular case).

And from Theorem 3.2.1, 𝑆Δ
𝛾p𝑥,𝑦q

p𝑓ℎp𝜉, 𝜂q “ 0, @p𝑥, 𝑦q P 𝑅, resulting in

𝑆Δ
𝛾⃗
p𝑓ℎp𝜉, 𝜂q “ 0. (3.151)
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Figure 4 – In grey, the region R subdivided by the simple closed curves.

Source: the author (2021).

In what follows we present the complex mimetic map defined over the plane pℎZq2. As a
consequence, the results above can be recovered while presenting a new way to look towards
complex discrete analysis (MERCAT, 2001)(SMIRNOV, 2010).

3.2.2 Complex Mimetic Map

Similarly to what was done for functions defined over R, we can define a complex mimetic
map for functions with domain in C. Consider an analytic complex function 𝑓 : C Ñ C

and its respective complex discrete function p𝑓ℎ : pℎZq2 Ñ C. The Complex Mimetic Map

connecting 𝑓 to p𝑓ℎ is defined by the integral transform

𝑓ℎp𝜈 ` 𝑖𝜇q “

ż 8

0
𝑑𝜆𝜈{ℎp𝑡q

ż 8

0
𝑑𝜆𝜇{ℎp𝜏q𝑓p´ℎp𝑡` 𝑖𝜏qq. (3.152)

The complex discrete function is obtained from the limit

𝑓ℎp𝑥` 𝑖𝑦q “ lim
p𝜈Ñ´𝑥, 𝜇Ñ´𝑦q

𝑓ℎp𝜈 ` 𝑖𝜇q. (3.153)

And, as before, the analytic function is recovered from the continuum limit

𝑓p𝑥` 𝑖𝑦q “ lim
ℎÑ0

𝑓ℎp𝑥` 𝑖𝑦q. (3.154)
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3.2.3 Discrete Version of Complex Functions

Here we have some examples validating the complex mimetic map.

(i) Power function

Let 𝑓p𝑧q “ 𝑧𝑛 “ p𝑥` 𝑖𝑦q𝑛. Then from

p𝑥` 𝑖𝑦q𝑛 “
𝑛
ÿ

𝑘“0

ˆ

𝑛

𝑘

˙

𝑥𝑛´𝑘
p𝑖𝑦q𝑘 (3.155)

and (3.152) we get
p𝑧𝑛

ℎ ”

𝑛
ÿ

𝑘“0

ˆ

𝑛

𝑘

˙

z𝑥𝑛´𝑘
ℎ𝑖

𝑘
p𝑦𝑘

ℎ. (3.156)

(ii) Exponential function:

Let 𝑓p𝑧q “ 𝑒𝑎𝑧, then from the identity 𝑓p𝑥` 𝑖𝑦q “ 𝑒𝑎𝑥𝑒𝑖𝑎𝑦 and (3.152) we get

x𝑒𝑎𝑧
ℎ ” p1` 𝑎ℎq𝑥{ℎp1` 𝑖𝑎ℎq𝑦{ℎ. (3.157)

(iii) Power times exponential function:

Let 𝑓p𝑧q “ 𝑒𝑎𝑧𝑧𝑛, then from (3.155) we get

{p𝑒𝑎𝑧𝑧𝑛qℎ ” p1` ℎ𝑎q
𝑥{ℎ
p1` 𝑖ℎ𝑎q𝑦{ℎ

𝑛
ÿ

𝑘“0

ˆ

𝑛

𝑘

˙

z𝑥𝑛´𝑘
ℎ𝑖

𝑘
p𝑦𝑘

ℎ

p1` ℎ𝑎q𝑛´𝑘p1` 𝑖ℎ𝑎q𝑘 . (3.158)

(iv) Confluent hypergeometric function:

As an example of application in difference equations, let us find the discrete version of
the confluent hypergeometric differential equation and its solution on complex plane.
The differential equations is given by

𝑧𝑓2p𝑧q ` p𝑐´ 𝑧q𝑓 1p𝑧q ´ 𝑎𝑓p𝑧q “ 0. (3.159)

To transform in a difference equation we search for the maps 𝑑
𝑑𝑧
Ñ 𝐷̃, 𝑧 𝑑

𝑑𝑧
Ñ 𝐸̃ and

𝑧 𝑑2

𝑑𝑧2 Ñ 𝐻̃, such that

𝐻̃𝑓ℎp𝑧q ` p𝑐𝐷̃ ´ 𝐸̃q𝑓ℎp𝑧q ´ 𝑎𝑓ℎp𝑧q “ 0. (3.160)

Define

^̃𝐷𝑓ℎp𝜈 ` 𝑖𝜇q “

ż 8

0
𝑑𝜆𝜈{ℎp𝑡q

ż 8

0
𝑑𝜆𝜇{ℎp𝜏q

1
2

ˆ

B

Bp´ℎ𝑡q
´ 𝑖

B

Bp´ℎ𝜏q

˙

𝑓p´ℎp𝑡` 𝑖𝜏qq,

(3.161)
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^̃𝐸𝑓ℎp𝜈`𝑖𝜇q “

ż 8

0
𝑑𝜆𝜈{ℎp𝑡q

ż 8

0
𝑑𝜆𝜇{ℎp𝜏qp´ℎp𝑡`𝑖𝜏qq

1
2

ˆ

B

Bp´ℎ𝑡q
´

B

Bp´ℎ𝜏q

˙

𝑓p´ℎp𝑡`𝑖𝜏qq

(3.162)
and

^̃𝐻𝑓ℎp𝜈`𝑖𝜇q “

ż 8

0
𝑑𝜆𝜈{ℎp𝑡q

ż 8

0
𝑑𝜆𝜇{ℎp𝜏qr´ℎp𝑡`𝑖𝜏qs

„

1
2

ˆ

B

Bp´ℎ𝑡q
´

B

Bp´ℎ𝜏q

˙2

𝑓p´ℎp𝑡`𝑖𝜏qq.

(3.163)
Integrating by parts and taking the limit (3.153) we obtain

𝐷̃𝑓ℎp𝑥` 𝑖𝑦q “
1
2
`

𝐷Δ
𝑥 ´ 𝑖𝐷

Δ
𝑦

˘

𝑓ℎp𝑥` 𝑖𝑦q, (3.164)

𝐸̃𝑓ℎp𝑥` 𝑖𝑦q “
1
2
 

𝑥𝐷∇
𝑥 ` 𝑦𝐷

∇
𝑦 ` 𝑖

“

𝑦𝐷Δ
𝑥 ´ 𝑥𝐷

Δ
𝑦

‰(

𝑓ℎp𝑥` 𝑖𝑦q

´
ℎ

2 𝑖
“

𝑦𝐷Δ
𝑥 𝐷

∇
𝑦 ´ 𝑥𝐷

Δ
𝑦 𝐷

∇
𝑥

‰

𝑓ℎp𝑥` 𝑖𝑦q

(3.165)

and

𝐻̃𝑓ℎp𝑥` 𝑖𝑦q “
1
4
“

𝑥
`

𝐷2
𝑥 ´𝐷

2
𝑦

˘

` 2𝑦𝐷∇
𝑦 𝐷

Δ
𝑥

‰

𝑓ℎp𝑥` 𝑖𝑦q

`
𝑖

4
“

𝑦
`

𝐷2
𝑥 ´𝐷

2
𝑦

˘

´ 2𝑥𝐷∇
𝑥 𝐷

Δ
𝑦

‰

𝑓ℎp𝑥` 𝑖𝑦q

´
ℎ

4
“

𝑥
`

𝐷2
𝑥 ´𝐷

2
𝑦

˘

𝐷∇
𝑥 ` 𝑖𝑦

`

𝐷2
𝑥 ´𝐷

2
𝑦

˘

𝐷∇
𝑦

‰

𝑓ℎp𝑥` 𝑖𝑦q,

(3.166)

where 𝐷2
𝑥 “

`

𝐷Δ
𝑥

˘2. As before, the power series solution is given by

𝐹ℎp𝑎, 𝑐; 𝑧q “
8
ÿ

𝑛“0

p𝑎q𝑛
p𝑐q𝑛

p𝑧𝑛
ℎ

𝑛! , (3.167)

which is easily verified to satisfy (3.160) by numerical methods.

Although not showed explicitly, all complex discrete functions presented here satisfy the dis-
crete Cauchy-Riemann equations in (3.145) as should be, once their infinitesimal counterparts
satisfy the standard Cauchy-Riemann equations. Also, one can see from the construction of the
complex mimetic map that it can be easily extended for a multivariable function 𝑓p𝑥1, . . . , 𝑥𝑛q.
Further, one can also discretize just some of the variables.
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4 STOCHASTIC PROCESSES

Randomness is ubiquitous in Nature. The draw of a card from a deck well shuffled, the
result of throw an unaddicted die, some genetic feature observed in a individual of a population,
the stock price at a stock market, all of those results are seen as random. Such randomness
is well described via the Theory of Stochastic Processes, which have Probability Theory as its
cornerstone.

We start this chapter discussing the probability theory in section 4.1, where we construct the
concepts of probability space, probability distribution and discrete random variables, probability
density function and continuous random variables, and the consequences of these. Then we
present how the probability theory is used to construct the stochastic processes theory 4.2,
presenting the central limit theorem and the Markovian stochastic processes.

After that, we present the formalism to study stochastic processes. The first formalism,
used to describe the evolution of discrete stochastic processes, is the one in terms of the
Master equation 4.3. The second one is given in terms of the Fokker-Planck equation 4.5,
used to describe the evolution of continuous stochastic processes.

The bridge between sections 4.3 and 4.5 is made by section 4.4 presenting how the Master
equation and the Fokker-Planck equation formalism are intimately connected by a continuum
limit, exemplified with the relation between the random walk and the Brownian motion and
the relation, provided by the discrete calculus, relating the Pauli process master equation with
the gamma distribution Fokker-Planck equation.

Later, in subsection 4.6 we show the Fokker-Planck equation formalism can be established
in a more formal basis using the Stochastic Calculus, also known as Ito Calculus.

4.1 PROBABILITY THEORY

The main objects of Probability Theory are the Random Variables and the Probability
Distribution those random variables follows. These and other objects are defined along this
section.
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4.1.1 Foundations

In the usual sense we may define the probability of some event by the frequency of such
event occurs. For example, if we throw a fair coin many times, we expect that roughly half of
the total times we get head and the other half we get tails, in a way that we can define the
probability of get head or tail equals 1

2 , which is an excellent intuitive approximation. Performing
an experiment, such approach agrees very well. However to make it mathematically precise,
Andrey N. Kolmogorov axiomatized the concept of probability in his work "Foundation of the
Theory of Probability" (KOLMOGOROV, 1950). We define probability here in a different way,
although equally precise (APPLEBAUM, 2009).

Let Ω be the Set of All Possible Outcomes of an experiment and ℱ be a collection of
subsets of Ω, called Set of Events. We say ℱ is a 𝜎- algebra if

(i) Ω P ℱ ;

(ii) 𝐴 P ℱ ùñ 𝐴 “ ℱ{𝐴 P ℱ ;

(iii) If exists a sequence p𝐴𝑛q𝑛PN, 𝐴𝑛 P ℱ , such that Y8𝑛“1𝐴𝑛 P ℱ .

Associated to such a 𝜎-algebra we can define a quantity called Probability as a map 𝑃 :

ℱ Ñ r0, 1s which satisfies

(i) 𝑃 p𝐴q ě 𝑃 pHq “ 0, @𝐴 P ℱ ;

(ii) 𝑃 pY8𝑛“1𝐴𝑛q “
ř8

𝑛“1 𝑃 p𝐴𝑛q (𝑖 ‰ 𝑗), where 𝐴𝑖 X 𝐴𝑗 “ H, @𝑖, 𝑗 P N;

(iii) 𝑃 pΩq “ 1.

Here the space denoted by pΩ,ℱ , 𝑃 q is called the Probability Space.
As discussed in (GARDINER, 2004) and (KOLMOGOROV, 1950), what we have here is the

generalization of what was pointed out above for a coin toss. If we get 𝑛 outcomes 𝜔 P Ω at
random, and happen that 𝜔 P 𝐴 𝑚 times, we establish a number 𝑚

𝑛
which is very close to the

probability 𝑃 p𝐴q of the event 𝐴 occurs. In fact, for a large number 𝑛, 𝑃 p𝐴q “ 𝑚
𝑛

. Also, if the
probability 𝑃 p𝐴q is a number arbitrarily small, is almost certain that 𝜔 P 𝐴 will not occur if
𝜔 is got only once. This point of view is called Frequency Interpretation.

The assertions above implicitly assume the existence of quantities 𝑃 p𝐴q for the probability
space constructed. Such probabilities are known as a priori probabilities, which are assumed
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when we define the probability 𝑃 : ℱ Ñ r0, 1s. Such point becomes clearer with the example
bellow.

Example 4.1. (HASSLER, 2016) Consider the probability space generated by the outcome of a
fair die. Then Ω “ t1, 2, 3, 4, 5, 6u, where the probability of each outcome 𝜔 P Ω is 𝑃 p𝜔q “ 1

6

and the probability of an arbitrary event 𝐴 P ℱ is

𝑃 p𝐴q “
|𝐴|

|Ω| “
|𝐴|

6 ,

where |𝐴| is the number of elements of a given set 𝐴. If one want to know the probability to
get at least one odd number as outcome, we define the set of events as

ℱ “ tH, 𝐴,𝐴,Ωu,

for 𝐴 “ t1, 3, 5u and 𝐴 “ t2, 4, 6u. Therefore, the a priori probability of the event 𝐴 is

𝑃 p𝐴q “
1
2 “ 𝑃 p𝐴q.

Otherwise, if we are interested in any outcome,

ℱ “ tH, t1u, . . . , t6u, t1, 2u, t1, 3u, . . . , t5, 6u, . . . ,Ωu.

Then the a priori probabilities are

𝑃 pt1, 2uq “ 𝑃 pt1, 3uq “ ¨ ¨ ¨ “ 𝑃 pt5, 6uq “ 1
3 , etc.

Thus, for each set of events ℱ of interest, we have a specific probability space with specific a

priori probabilities.

The term "random" here seems to be arbitrary, since as humans we have biases which
compels us to make a apparently random choice not random as it should be. We can circumvent
this problem, at least in theoretical level, assuming that all outcomes of our experiment are
equally possible (see the example bellow). In particular, this notion is useful when we construct
the notion of random variables (REICHL; LUSCOMBE, 1998).

Example 4.2. (DURRETT, 2019) Consider a countable (finite or infinite) set of outcomes Ω,
with 𝜎-algebra ℱ constructed with all subsets of Ω. Then, the a priori probabilities 𝑃 p𝐴q,
𝐴 P ℱ , are

𝑃 p𝐴q “
ÿ

𝜔P𝐴

𝑃 p𝜔q.
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which gives
𝑃 pΩq “

ÿ

𝜔PΩ
𝑃 p𝜔q “ 1.

An educated guess can be 𝑃 p𝜔q “ 1
|Ω| , if Ω is a finite set.

Correspondingly of what was done for the set of events ℱ , we can define a 𝜎-algebra for
the set of real numbers. The Borel 𝜎-algebra of the set R, denoted by ℬpRq, is the smallest
𝜎-algebra constructed with all the open intervals of R. An element of a Borel 𝜎-algebra is
called a Borel set.

Sometimes we are not interested in events, but rather in values associated with these
events. For example, the number associated with the side face-up of a die, the position or
velocity of a Brownian particle (subsection 4.4.1.2), the quantity of persons which access
some particular website or the number of individuals of a population infected by a disease
(chapter 6). To describe those values is necessary to define a new statistical quantity called
random variable. Thus, let B be a Borel set. The map 𝑋 : Ω Ñ R is a Random Variable if

𝑋´1
p𝐵q “ t𝜔 P Ω | 𝑋p𝜔q P 𝐵u P ℱ . (4.1)

Such property is the ℱ-measurability of a probability space and 𝑋 is said a ℱ-measurable

map. Even more, any function 𝑓p𝑋q of a random variable 𝑋 is also a random variable (KOL-

MOGOROV, 1950). It means that the map 𝑋 takes elements 𝜔 P Ω into numbers contained
in subintervals of R, such that the image of the inverse map 𝑋´1 is contained in one of the
possible events of ℱ .

With the definition of a 𝜎-algebra over R, we can say that the random variable 𝑋 : Ω Ñ R

induces the probability 𝑃𝑋 : ℬpRq Ñ r0, 1s of the probability space pR,ℬpRq, 𝑃𝑋q, which is
known as the Probability Distribution of the random variable 𝑋, defined by

𝐹𝑋p𝑥q :“ 𝑃𝑋p𝑋 ď 𝑥q “ 𝑃 p𝑋´1
pp´8, 𝑥sqq, for 𝑥 P R. (4.2)

It means that we take a set 𝐵 P ℬpRq and maps it into 𝑋´1p𝐵q P ℱ , obtaining a value in
the interval r0, 1s with the probability 𝑃 .

We see from the definitions above that the random variable is actually a map between
probability spaces (HASSLER, 2016), i.e.,

𝑋 : pΩ,ℱ , 𝑃 q Ñ pR,ℬpRq, 𝑃𝑋q.
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Every time we have a set of 𝑛 random variables, we can extend the definition above to a
random vector 𝑋⃗ “ p𝑋1, . . . , 𝑋𝑛q in such a way that

𝐹𝑋⃗p𝑥1, . . . , 𝑥𝑛q “ 𝑃𝑋⃗p𝑋1 ď 𝑥1; . . . ;𝑋𝑛 ď 𝑥𝑛q, (4.3)

for p𝑥1, . . . , 𝑥𝑛q P R𝑛. In the following example, we see how a discrete random variable can be
used.

Example 4.3. Consider again the set of outcomes of a die, Ω “ t1, 2, 3, 4, 5, 6u. We define a
discrete random variable as 𝑋p𝜔q “ 𝜔, for 𝜔 “ 1, 2, 3, 4, 5, 6, which follows the multinomial
distribution given by

𝑃 p𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6q “ 𝑃 pt𝑛𝑖uq “
𝑛!

ś6
𝑖“1 𝑛𝑖!

6
ź

𝑖“1
𝑝𝑛𝑖

𝑖 ,

for 𝑛 “
ř6

𝑖“1 𝑛𝑖 and 𝑝𝑖 “ 1{6.
Such distribution gives the probability of obtain 𝑛1 times 𝑋 “ 1, 𝑛2 times 𝑋 “ 2, 𝑛3

times 𝑋 “ 3, 𝑛4 times 𝑋 “ 4, 𝑛5 times 𝑋 “ 5, 𝑛6 times 𝑋 “ 6 if we observe the value of
𝑋 𝑛 times.

In particular, if we have 𝑛3 “ 1 and 𝑛1 “ 𝑛2 “ 𝑛4 “ 𝑛5 “ 𝑛6 “ 0, we get a probability of
1
6 , as expected. The same occurs for the other cases 𝑛𝑖 “ 1.

The definition constructed above have a particular case where there is no need to define a
set of outcomes Ω and probability 𝑃 . If we assume that 𝐹𝑋p𝑥q is a differentiable function, we
can define it in terms of another function 𝒫𝑋p𝑥q, or simply 𝒫p𝑥q, known as the Probability

Density Function (PDF) of 𝑋, defined by

𝐹𝑋p𝑥q :“
ż 𝑥

´8

𝒫p𝑥1q𝑑𝑥1, (4.4a)

such that
𝒫p𝑥q ě 0 and

ż 8

´8

𝒫p𝑥q𝑑𝑥 “ 1. (4.4b)

The random variable which follows such probability distribution is a Continuous Random

Variable.
An example of continuous random variable are the stock price on the stock exchange or

the position or velocity of a Brownian particle. And as an example of PDF, the PDF used to
describe the Brownian motion is the Gaussian distribution defined by

𝒫p𝑥q “ 𝑒´
p𝑥´x𝑋yq2

2𝜎2
?

2𝜋𝜎2
. (4.5)
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A particular case is the Normal distribution, which occurs when x𝑥y “ 0 and 𝜎 “ 1 (subsection
4.1.1.2). Such a probability distribution is of great relevance once it is used to describe a wide
range of stochastic processes as will be shown in subsection 4.2.2.

Also, if we have a discrete random variable assuming values 𝑛 P Z, with probability 𝑃 p𝑋 ď

𝑛q ” 𝑝𝑛, we also can express this in terms of a PDF by

𝒫p𝑥q “
8
ÿ

𝑛“´8

𝑝𝑛𝛿p𝑥´ 𝑛q, (4.6)

where 𝛿p𝑥´ 𝑥0q is the Dirac delta function.

4.1.1.1 Joint and Conditional Probabilities

An important notion in probability theory, and particularly in stochastic processes, are the
joint and conditional probabilities. Consider two possible events 𝐴 and 𝐵 and assume that
there is some outcomes 𝜔 on both events, i.e., 𝜔 P 𝐴 X 𝐵. We say that exists a Joint

Probability given by
𝑃 p𝐴X𝐵q “ 𝑃𝑟𝑜𝑏t𝜔 P 𝐴 and 𝜔 P 𝐵u. (4.7)

In particular, if 𝜔 P 𝐵 does not affect the probability that event 𝐴 occurs, 𝑃 p𝐴q, and if
𝜔 P 𝐴 does not affect the probability that event 𝐵 occurs, 𝑃 p𝐵q, we say that those events
are independent from each other which is denoted by

𝑃 p𝐴X𝐵q “ 𝑃 p𝐴q𝑃 p𝐵q. (4.8)

Let us consider that given 𝜔 P 𝐵 exist a non-null probability that 𝜔 P 𝐴. In other words, we
have a non-null probability that 𝜔 P 𝐴 will occur given that 𝜔 P 𝐵 is known to had occurred.
It describe the Conditional Probability, defined by

𝑃 p𝐴 | 𝐵q :“ 𝑃 p𝐴X𝐵q

𝑃 p𝐵q
. (4.9)

That will be of great relevance in the formulation of stochastic processes formulation.
Another important probability relation is the law of total probability. Consider a collection

of disjoint events 𝐴𝑖, i.e., 𝐴𝑖 X 𝐴𝑗 “ H, @𝑖 ‰ 𝑗 such that Y𝑖𝐴𝑖 “ Ω. Then we define the
Law of Total Probability by

ÿ

𝑖

𝑃 p𝐴 | 𝐴𝑖q𝑃 p𝐴𝑖q “ 𝑃 p𝐴q. (4.10)
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For a random vector 𝑋⃗ “ p𝑋1, . . . , 𝑋𝑛q, 𝑋𝑖 : Ω Ñ R, the joint probability can be rewritten
as

𝑃 p𝑥1; . . . ;𝑥𝑛q ” 𝑃𝑟𝑜𝑏p𝑋1p𝜔1q ď 𝑥1, . . . , 𝑋𝑛p𝜔𝑛q ď 𝑥𝑛q, (4.11)

with independence between random variables defined by

𝑃 p𝑥1; . . . ;𝑥𝑛q “ 𝑃𝑟𝑜𝑏p𝑋1p𝜔1q ď 𝑥1q . . . 𝑃 𝑟𝑜𝑏p𝑋𝑛p𝜔𝑛q ď 𝑥𝑛q. (4.12)

And the conditional probability will be

𝑃 p𝑥𝑠`1; . . . ;𝑥𝑛 | 𝑥1; . . . ;𝑥𝑠q “
𝑃 p𝑥1; . . . ;𝑥𝑛q

𝑃 p𝑥1; . . . ;𝑥𝑠q
, (4.13)

for some 𝑠 ď 𝑛, which now gives the probability of 𝑋𝑠`1p𝜔𝑠`1q ď 𝑥𝑠`1, . . . , 𝑋𝑛p𝜔𝑛q ď 𝑥𝑛

occur given that 𝑋1p𝜔1q ď 𝑥1, . . . , 𝑋𝑠p𝜔𝑠q ď 𝑥𝑠 had occurred.

4.1.1.2 Mean Value and Moments of a Random Variable

Let 𝑓p𝑋q be a function of a random variable 𝑋 : Ω Ñ R defined over a countable space
of outcomes. Then we define the Mean Value x𝑓p𝑋qy by

x𝑓p𝑋qy “
ÿ

𝜔PΩ
𝑃 p𝜔q𝑓p𝑋p𝜔qq. (4.14)

In particular, we obtain the 𝑘th Moment of 𝑋 given by
@

𝑋𝑘
D

“
ÿ

𝜔PΩ
𝑃 p𝜔q𝑋p𝜔q𝑘. (4.15)

With the first two moments, x𝑋y and x𝑋2y, we can define a important quantity called
Variance given by

𝜎2
𝑋 :“

@

p𝑋 ´ x𝑋yq2
D

“
@

𝑋2D
´ x𝑋y2 , (4.16)

which measures the mean-square of the deviation of a random variable from its mean. 𝜎𝑋 is
known as the Mean-Square Root (or Standard Deviation) of the random variable 𝑋.

Of course, if we have a random vector 𝑋⃗ “ p𝑋1, . . . , 𝑋𝑛q, 𝑋𝑖 : Ω Ñ R, we can define the
𝑘th moments as

C

𝑛
ź

𝑖“1
𝑋𝑘𝑖

𝑖

G

“
ÿ

𝜔1PΩ
. . .

ÿ

𝜔𝑛PΩ
𝑃 p𝜔1; . . . ;𝜔𝑛q

𝑛
ź

𝑖“1
𝑋𝑖p𝜔𝑖q

𝑘𝑖 . (4.17)

As well, the variance can be generalized to a quantity called Covariance Matrix given by

x𝑋𝑖, 𝑋𝑗y :“ xp𝑋𝑖 ´ x𝑋𝑖yqp𝑋𝑗 ´ x𝑋𝑗yqy “ x𝑋𝑖𝑋𝑗y ´ x𝑋𝑖y x𝑋𝑗y , (4.18)
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where the diagonal elements x𝑋𝑖, 𝑋𝑖y “ 𝜎2
𝑋𝑖
” 𝜎2

𝑖 are the variance of each of the random
variable 𝑋𝑖 and the off diagonal elements are called the Covariance between 𝑋𝑖 and 𝑋𝑗. If
the random variables are independent the covariance vanishes.

More precisely, the covariance measures if 𝑋𝑖 and 𝑋𝑗 are linearly dependent to each other.
To make it more clear we define a quantity called Correlation coefficient as

𝐶𝑖,𝑗 :“ x𝑋𝑖, 𝑋𝑗y

𝜎𝑖𝜎𝑗

, (4.19)

which is independent of the units of the random variables. When two random variables are
independent 𝐶𝑖,𝑗 “ 0 they are said uncorrelated to each other. When the random variables
follow the same probability distribution or are linear to each other, the variables are completely
correlated and 𝐶𝑖,𝑗 “ 𝐶𝑖,𝑖 “ 1.

4.2 STOCHASTIC PROCESSES

We can precisely define a Stochastic Process as a family of random variables t𝑋𝑡p𝜔qu𝑡P𝑇 ,
where 𝑇 Ă R and 𝜔 P Ω. If 𝑇 “ Z, we have a stochastic process with discrete parameter.
If 𝑇 “ R, we have a stochastic process with continuous parameter. In almost all cases of
interest, the parameter 𝑡 represents time, thus we presume 𝑇 “ t0, 1, 2, . . .u for Discrete

Time Stochastic Processes and 𝑇 “ r0,8q for Continuous Time Stochastic Processes.
A stochastic process is classified according to the type of random variable and time, as

above. We say a stochastic process is discrete or continuous if it is defined with discrete or
continuous random variables.

As expressed above, a stochastic process is a map of two parameters, time and an outcome.
For a fixed outcome 𝜔, the quantity 𝑋𝑡 ” 𝑋𝑡p𝜔q denotes a Realization (or Trajectory) of
a stochastic process.

Considering a stochastic process defined in an interval r𝑡𝑖, 𝑡𝑓 s such that

𝑡𝑖 ” 𝑡1 ă 𝑡2 ă ¨ ¨ ¨ ă 𝑡𝑛 ” 𝑡𝑓 , (4.20)

a given trajectory t𝑋𝑡u𝑡Pr𝑡𝑖,𝑡𝑓 s with 𝑋𝑡𝑗
” 𝑋𝑗 “ 𝑥𝑗 means that the random variable 𝑋 gives

the value 𝑥𝑗 when measured at instant 𝑡𝑗. With that we can represent the joint probability of
this trajectory as

𝑃 p𝑋1 ď 𝑥1, . . . , 𝑋𝑛 ď 𝑥𝑛q “

ż 𝑥1

´8

𝑑𝑥11 ¨ ¨ ¨

ż 𝑥𝑛

´8

𝑑𝑥1𝑛𝒫p𝑥11, 𝑡1 ¨ ¨ ¨ ;𝑥1𝑛, 𝑡𝑛q, (4.21)
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where 𝒫p𝑥1, 𝑡1; ¨ ¨ ¨ ;𝑥𝑛, 𝑡𝑛q is the joint probability density function. In particular, if the values
𝑋𝑗 “ 𝑋𝑡𝑗

p𝜔q “ 𝑥𝑗 are independent

𝒫p𝑥1, 𝑡1; ¨ ¨ ¨ ;𝑥𝑛, 𝑡𝑛q “
𝑛
ź

𝑗“1
𝒫p𝑥𝑗, 𝑡𝑗q. (4.22)

For some 𝑠 ă 𝑛, we can define the Marginal Probability of the trajectory as

𝒫p𝑥1, 𝑡1; ¨ ¨ ¨ ;𝑥𝑠, 𝑡𝑠q “

ż 8

´8

𝑑𝑥𝑠`1 ¨ ¨ ¨

ż 8

´8

𝑑𝑥𝑛𝒫p𝑥1, 𝑡1;𝑥2, 𝑡2; ¨ ¨ ¨ ;𝑥𝑠, 𝑡𝑠;𝑥𝑠`1, 𝑡𝑠`1; . . . ;𝑥𝑛, 𝑡𝑛q.

(4.23)
In the same way, we represent the conditional probability density of the last 𝑛 ´ 𝑠 values

of the trajectory 𝑋𝑡 occur given that the first 𝑠 occurred by

𝒫p𝑥𝑠`1, 𝑡𝑠`1; ¨ ¨ ¨ 𝑥𝑛, 𝑡𝑛 | 𝑥1, 𝑡1; ¨ ¨ ¨ ;𝑥𝑠, 𝑡𝑠q “
𝒫p𝑥1, 𝑡1; ¨ ¨ ¨ 𝑥𝑛, 𝑡𝑛q

𝒫p𝑥1, 𝑡1; ¨ ¨ ¨ ;𝑥𝑠, 𝑡𝑠q
. (4.24)

With the definition above and the marginal probability, the law of total probability becomes

𝒫p𝑥2, 𝑡2q “

ż

𝒫p𝑥2, 𝑡2 | 𝑥1, 𝑡1q𝒫p𝑥1, 𝑡1q𝑑𝑥1. (4.25)

In the case of a continuous random variable, we define the mean value in terms of the
probability density function and the 𝑘th moment as

x𝑓p𝑋qy “

ż 8

´8

𝒫p𝑥q𝑓p𝑥q𝑑𝑥 (4.26)

and
@

𝑋𝑘
D

“

ż 8

´8

𝒫p𝑥q𝑥𝑘𝑑𝑥. (4.27)

Observe that if we treat the random variables 𝑋1, . . . , 𝑋𝑛 not for fixed 𝜔 but for fixed
instants of time 𝑡𝑗 (𝑗 “ 1, . . . , 𝑛), we have now 𝑛 trajectories, one for each 𝑡𝑗. Therefore we
can present the 𝑘th moment by

C

𝑛
ź

𝑖“1
𝑋𝑘𝑖

𝑖

G

“

ż 8

´8

𝑛
ź

𝑖“1
𝒫p𝑥1, . . . , 𝑥𝑛q𝑥

𝑘𝑖
𝑖 𝑑

𝑛𝑥. (4.28)

4.2.1 Characteristic and Generating functions

A mathematical quantity of great usefulness to calculate the moments is the Character-

istic Function of a random variable 𝑋, defined by the Fourier transform of the probability
distribution function 𝒫p𝑥q by

Φ𝑋p𝑘q :“
ż 8

´8

𝒫p𝑥q𝑒𝑖𝑘𝑥𝑑𝑥 “
@

𝑒𝑖𝑘𝑥
D

, (4.29)
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from where we recover the probability distribution via

𝒫p𝑥q “ 1
2𝜋

ż 8

´8

Φ𝑋p𝑘q𝑒
´𝑖𝑘𝑥𝑑𝑘. (4.30)

The characteristic function satisfies

Φ𝑋p0q “ 1, |Φ𝑋p𝑘q| ď 1 and Φ𝑋p´𝑘q “ Φ˚𝑋p𝑘q. (4.31)

Observe that expanding the exponential in (4.29), we get

Φ𝑋p𝑘q “
8
ÿ

𝑛“0

p𝑖𝑘q𝑛

𝑛! x𝑋𝑛
y . (4.32)

Thus, the characteristic function can be actually seen as a Moment Generating Function

for the 𝑛th moment of the random variable 𝑋,

x𝑋𝑛
y “

1
𝑖𝑛

𝑑𝑛

𝑑𝑘𝑛
Φ𝑋p𝑘q

ˇ

ˇ

ˇ

ˇ

𝑘“0
. (4.33)

As done previously, we can generalized for a random vector of 𝑛 components. Then we
define the characteristic function as

Φ𝑋⃗p𝑘⃗, 𝑛q “

ż 8

´8

𝑒𝑖𝑘⃗¨𝑥⃗𝒫p𝑥⃗q𝑑𝑛𝑥 (4.34)

with
𝒫p𝑥⃗q “ 1

p2𝜋q𝑛

ż 8

´8

Φ𝑋p𝑘q𝑒
´𝑖𝑘⃗¨𝑥⃗𝑑𝑛𝑘, (4.35)

for 𝑥⃗ “ p𝑥1, . . . , 𝑥𝑛q, 𝑘⃗ “ p𝑘1, . . . , 𝑘𝑛q, 𝑑𝑛𝑥 “ 𝑑𝑥1 . . . 𝑑𝑥𝑛 and 𝑑𝑛𝑘 “ 𝑑𝑘1 . . . 𝑑𝑘𝑛. If the
components of the random vector are independent to each other, using (4.22), we have

Φ𝑋⃗p𝑘⃗, 𝑛q “
𝑛
ź

𝑖“1
Φp𝑘𝑖q. (4.36)

Particularly, if all random variables follows the same distribution,

Φp𝑘⃗q “ pΦp𝑘qq𝑛. (4.37)

In addition, consider a sum of independent random variables given by 𝑌 “ 𝑋1` ¨ ¨ ¨`𝑋𝑛.
Since the characteristic function is a Fourier transform, from the convolution theorem, the
characteristic function becomes

Φ𝑌 p𝑘, 𝑛q “
𝑛
ź

𝑖“1
Φ𝑖p𝑘q, (4.38)
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for Φ𝑖p𝑘q ” Φ𝑋𝑖
p𝑘q. If the independent random variables follows the same probability distri-

bution, we have
Φ𝑌 p𝑘, 𝑛q “ pΦp𝑘qq𝑛. (4.39)

Another quantity that will be relevant later is the Averaged Characteristic Function

defined by
𝜒𝑌 p𝑘, 𝑡q :“

8
ÿ

𝑛“´8

𝑃𝑛p𝑡qΦ𝑌 p𝑘, 𝑛; 𝑡q ” xΦ𝑌 p𝑘, 𝑛; 𝑡qy . (4.40)

Another way to express this quantity is (MACêDO, 2020)

𝜒𝑌 p𝑘q “ 2
ż 8

0
cosp𝑘𝑦q𝒫p𝑦q𝑑𝑦 (4.41)

returning the PDF by
𝒫𝑌 p𝑦q “

ż 8

´8

𝑑𝑘

2𝜋𝑒
´𝑖𝑘𝑦𝜒𝑌 p𝑘q. (4.42)

Such a quantity is used to generalize the central limit theorem to include other correlations
(APPLEBAUM, 2009), apart of the one defined in (4.19). It will be useful when we explore the
distributions which satisfies the central limit theorem.

Just as appears in section 2.1.2, we can define the Probability Generating Function by

𝐹 p𝑧, 𝑡q :“
8
ÿ

𝑛“0
𝑃𝑛p𝑡q𝑧

𝑛; 𝑧 P C (4.43)

with the probability distribution given by

𝑃𝑛p𝑡q “

¿

𝑑𝑧

2𝜋𝑖
𝐹 p𝑧q

𝑧𝑛`1 “
1
𝑛!

𝑑𝑛

𝑑𝑧𝑛
𝐹 p𝑧, 𝑡q

ˇ

ˇ

ˇ

ˇ

𝑧“0
. (4.44)

By that, we can see that the probability distribution of a discrete random variable can be
seen as a sequence. Such quantity allow us to obtain the mean x𝑛y of the discrete stochastic
variable 𝑛 by

x𝑛y𝑡 “ ´
𝑑

𝑑𝑧
𝐹 p1´ 𝑧, 𝑡q

ˇ

ˇ

ˇ

ˇ

𝑧“0
. (4.45)

We observe here that the form of (4.43) is very similar to the (4.40) just changing 𝑧 by
Φp𝑘q, if (4.39) is considered. This analogy will be the main point in section 5.3 to construct
a discrete H theory.

4.2.2 Central Limit Theorem

In many aspects of statistics, the Gaussian distribution (4.5) is present, which can be
explained by the following theorem:
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Theorem 4.2.1 (Central Limit Theorem (CLT)). Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random
variables with the same probability distribution and finite variance 𝜎2

𝑋𝑖
“ 𝜎2

𝑋 ă 8. Define the
random variable

𝑌 “

ř𝑛
𝑖“1 𝑋𝑖 ´ x𝑋𝑖y

?
𝑛

. (4.46)

Then, the probability distribution of 𝑌 is a Gaussian distribution with mean x𝑌 y “ 0 and
variance 𝜎𝑋 , as 𝑛 goes to infinity.

Proof. Consider the random variable 𝑍𝑖 “
𝑋𝑖´x𝑋𝑖y?

𝑛
. Its characteristic function is

Φ𝑍p𝑘, 𝑛q “

ż

𝑒
𝑖 𝑘?

𝑛
p𝑥´x𝑥yq𝒫𝑋p𝑥q, (4.47)

which up to second order is given by

Φ𝑍p𝑘, 𝑛q « 1´ 𝑘2

2𝑛𝜎
2
𝑋 . (4.48)

Then from (4.39), taking the limit 𝑛Ñ 8, we get

Φ𝑌 p𝑘, 𝑛q «

ˆ

1´ 𝑘2

2𝑛𝜎
2
𝑋

˙𝑛

, (4.49)

and so
Φ𝑌 p𝑘q “ lim

𝑛Ñ8
Φ𝑌 p𝑘, 𝑛q “ 𝑒´

𝑘2
2 𝜎2

𝑋 . (4.50)

Thus,

𝒫p𝑦q “ 1
2𝜋

ż 8

´8

Φ𝑌 p𝑘q𝑒
´𝑖𝑘𝑦𝑑𝑘 “

𝑒
´

𝑦2

2𝜎2
𝑋

a

2𝜋𝜎2
𝑋

. (4.51)

The theorem above explains, for example, why the distribution of the errors in an experi-
ment is a Gaussian distribution centered in the mean value of the measured quantity. Although
a variety of situations in Nature confirm the validity of the CLT, also many situations exist
where it is not valid. See the following examples.

Example 4.4. Poisson distribution:
Consider the probability distribution

𝑃𝑁 “
𝜇𝑁

𝑁 ! 𝑒
´𝜇,

with mean and variance x𝑁y “ 𝜎2 ” 𝜇. For n random variables t𝑁𝑖u
𝑛
𝑖“1 following this

probability distribution, we have 𝑍𝑖 “
𝑁𝑖´𝜇
?

𝑛
with characteristic function

Φ𝑍p𝑘, 𝑛q “ exp
„

𝜇

ˆ

𝑒
𝑖𝑘?

𝑛 ´ 1´ 𝑖𝑘
?
𝑛

˙

« 1´ 𝑘2

2𝑛𝜎
2,
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assuming the limit 𝑛 Ñ 8, resulting in the Gaussian distribution for the random variable
𝑌 “

ř𝑛
𝑖“1 𝑍𝑖.

In the same way we can confirm the result via the averaged characteristic function (4.40)

𝜒𝑌 p𝑘q “ 𝑒´𝜇
8
ÿ

𝑛“0

p𝜇Φ𝑍p𝑘qq
𝑛

𝑛! “ 𝑒𝜇pΦ𝑍p𝑘q´1q.

Rewriting 𝑍 “ 𝑁𝑖´𝜇
?

𝜇
, we have Φ𝑍p𝑘q “ 1´ 𝑘2

2𝜇
𝜎2 and

𝜒𝑌 p𝑘q “ 𝑒´
𝑘2
2 𝜎2

.

So, if 𝜒𝑌 p𝑘q is a Gaussian, the CLT is valid.

Example 4.5. Pauli process:
Consider the probability distribution

𝑃𝑁 “ p1´ 𝑢q𝑢𝑁 ; 0 ă 𝑢 ă 1

whith mean x𝑁y “ 𝑢
1´𝑢

and variance 𝜎2 “ 𝑢
1´𝑢

`

1` 𝑢
1´𝑢

˘

. As 𝑢 gets closer to 1, the variance
diverges, violating the CLT. To see that, the averaged characteristic function for 𝑌 will be

𝜒𝑌 p𝑘q “
1´ 𝑢

1´ 𝑢Φ𝑍p𝑘q
“

1
1´ x𝑁y pΦ𝑍p𝑘q ´ 1q .

Substituting Φ𝑍p𝑘q “ 1´ 𝑘2

2x𝑁y𝜎
2
𝑋 , we get

𝜒𝑌 p𝑘q “
1

1` 𝑘2

2 𝜎
2
𝑋

.

From the second example above, we conclude there is distributions which violates the CLT.
We will explore it in chapter 5, when we construct the discrete H theory.

4.2.3 Markovian Stochastic Processes

If a stochastic process have a conditional probability for the value 𝑥𝑠`1 occurs at time
𝑡𝑠`1 only depending on the value 𝑥𝑠 at time 𝑡𝑠, it is called a Markov Process. It means that
the evolution of the system does not retain any information of the instants 𝑡𝑗, 𝑗 ă 𝑠. Such
property, known as Markov assumption, can be mathematically translated by the conditional
probability density expression

𝒫p𝑥𝑠`1, 𝑡𝑠`1 | 𝑥1, 𝑡1; . . . ;𝑥𝑠, 𝑡𝑠q “ 𝒫p𝑥𝑠`1, 𝑡𝑠`1 | 𝑥𝑠, 𝑡𝑠q. (4.52)
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In this context, the conditional probability above receives the name of Transition Probability,
since it gives the probability of a transition from one state 𝑠 to a state 𝑠` 1 in a time interval
𝜏 “ 𝑡𝑠`1 ´ 𝑡𝑠.

An important property that such stochastic process gives is, from (4.24),

𝒫p𝑥1, 𝑡1; . . . ;𝑥𝑛; 𝑡𝑛q “
𝑛´1
ź

𝑖“1
𝒫p𝑥𝑖`1, 𝑡𝑖`1 | 𝑥𝑖, 𝑡𝑖q𝒫p𝑥1, 𝑡1q. (4.53)

Integrating it in 𝑥2, . . . , 𝑥𝑛´1, we have the Chapman-Kolmogorov equation

𝒫p𝑥𝑛, 𝑡𝑛 | 𝑥1, 𝑡1q “ 𝒫p𝑥1, 𝑡1q

ż 8

´8

𝑛´1
ź

𝑖“1
𝒫p𝑥𝑖`1, 𝑡𝑖`1 | 𝑥𝑖, 𝑡𝑖q𝑑𝑥2 . . . 𝑑𝑥𝑛´1. (4.54)

A special class of Markov process is the Markov Chain, which is characterized by a discrete
stochastic process in which Markov assumption holds. Here we present all definitions in terms
of continuous random variables, but all previous equations can be translated to discrete random
variables just using the relation in (4.6). As will be discussed in the section about stochastic
epidemic models in chapter 6, the Markov chain can be defined with discrete or continuous
time.

4.3 MASTER EQUATION

Consider a discrete Markov process described by the law of total probability

𝑃 p𝑛, 𝑡` 𝜏q “
8
ÿ

𝑚“0
𝑃 p𝑛, 𝑡` 𝜏 | 𝑚, 𝑡q𝑃 p𝑚, 𝑡q ”

8
ÿ

𝑚“0
𝑃 p𝑚, 𝑡q𝑄𝑚𝑛p𝑡; 𝜏q, (4.55)

where the 𝑄𝑚𝑛p𝑡; 𝜏q is the transition probability from state 𝑚 to state 𝑛. Here we assume
that the transition occurs in a interval 𝜏 such that 𝜏 ! 𝑡.

Expanding 𝑄𝑚𝑛p𝑡; 𝜏q up to first order in 𝜏 , we have the general expression

𝑄𝑚𝑛p𝑡; 𝜏q « 𝛿𝑛𝑚

˜

1´
𝐿
ÿ

𝑘“0
𝑤𝑚𝑛p𝑡q

¸

` 𝜏𝑤𝑚𝑛p𝑡q, (4.56)

where
𝑤𝑚𝑛p𝑡q ”

B𝑃 p𝑛, 𝑡 | 𝑚, 𝑡q

B𝑡

ˇ

ˇ

ˇ

ˇ

𝑡“𝑡

ě 0

is the Transition Rate from state 𝑚 to state 𝑛. Here was assumed the initial condition of
the transition as

𝑃 p𝑛, 𝑡 | 𝑚, 𝑡q “ 𝛿𝑛,𝑚.
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The term 𝜏𝑤𝑚𝑛p𝑡q is the probability to occur the transition 𝑚 to 𝑛 and
´

1´
ř𝐿

𝑘“1 𝑤𝑚𝑛p𝑡q
¯

is the probability of such transition not occur.
Substituting 𝑄𝑚𝑛 in (4.55) and taking 𝜏 Ñ 0, we have

lim
𝜏Ñ0

𝑃 p𝑛, 𝑡` 𝜏q ´ 𝑃 p𝑛, 𝑡q

𝜏
“ 9𝑃 p𝑛, 𝑡q “

ÿ

𝑚

p𝑤𝑚𝑛p𝑡q𝑃 p𝑚, 𝑡q ´ 𝑤𝑛𝑚p𝑡q𝑃 p𝑛, 𝑡qq . (4.57)

Thus, setting 𝑃 p𝑛, 𝑡q ” 𝑃𝑛p𝑡q we obtain the Master equation given by

9𝑃𝑛p𝑡q “
𝐿
ÿ

𝑚

p𝑤𝑚𝑛p𝑡q𝑃𝑚p𝑡q ´ 𝑤𝑛𝑚p𝑡q𝑃𝑛p𝑡qq , (4.58)

where 𝐿 is an integer number in the domain of 𝑛.
The master equation have the name of Differential Chapman-Kolmogorov equation

when written in terms of conditional probabilities, which is given by

B𝑃 p𝑛, 𝑡 | 𝑚, 𝑡1q

B𝑡
“

𝐿
ÿ

𝑙“0
p𝑤𝑙𝑛𝑃 p𝑚, 𝑡

1
| 𝑙, 𝑡2q ´ 𝑤𝑛𝑙𝑃 p𝑛, 𝑡 | 𝑚, 𝑡

1
qq . (4.59)

In reality, the master equation in the form of (4.55) can be seen as a differential-difference
equation with variable coefficients, just comparing the expression above with (2.5). Particularly,
after a long time the process considered reach an equilibrium (stationary) state, where the
time derivative on the left-hand side of (4.58) vanishes, giving the equilibrium probability
distribution

lim
𝑡Ñ8

𝑃𝑛p𝑡q “ 𝑃 𝑒𝑞
𝑛 . (4.60)

For the conditional probability of a Markov chain we say it is time independent if 𝑃 p𝑥𝑠`1, 𝑡𝑠`1 |

𝑥𝑠, 𝑡𝑠q “ 𝑃 p𝑥𝑠`1 | 𝑥𝑠q, @𝑠. In such case becomes clear that what we have is a difference
equation, with solution given by a sequence p𝑃 𝑒𝑞

𝑛 q𝑛PZ.
That will be the motivation to apply the mimetic map in Fokker-Planck equations to map

it into master equations in section 5.1. Because of this, the methods used to find the solution
of difference equations can be applied to find the equilibrium solution of a master equation.
The out of equilibrium solution (time-dependent) can be obtained by many methods, some
of them found in (HAAG, 2017). One of those methods is exemplified in section 4.4, used to
solve the random walk master equation.
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4.3.1 Detailed Balance

From the equilibrium condition above, we see that the master equation (4.58) gives the
identity

ÿ

𝑚

𝑤𝑚𝑛𝑃
𝑒𝑞
𝑚 “

ÿ

𝑚

𝑤𝑛𝑚𝑃
𝑒𝑞
𝑛 , (4.61)

or simply
𝑤𝑚𝑛𝑃

𝑒𝑞
𝑚 “ 𝑤𝑛𝑚𝑃

𝑒𝑞
𝑛 , (4.62)

which is known as Detailed Balance Relation.
The detailed balance can be justified as follows. When the process reaches the equilibrium,

one should expect that there is no preferred state, which is just the ergodic hypothesis of the
Boltzmann-Gibbs statistical mechanics (SALINAS, 1997). So the joint probability of two events
should be the same, whatever was the event that occurred first. Thus consider a process which
in one case it is in state 𝑚 at instant 𝑡 and in state 𝑛 at instant 𝑡, and in another it happens
to be in state 𝑛 at instant 𝑡 and in state 𝑚 at instant 𝑡, for 𝑡 ě 𝑡. In the equilibrium regime,
we have

𝑃 𝑒𝑞
p𝑚, 𝑡;𝑛, 𝑡q “ 𝑃 𝑒𝑞

p𝑛, 𝑡;𝑚, 𝑡q. (4.63)

From the definition of conditional probability, deriving the expression above in 𝑡 and setting
𝑡 “ 𝑡, we got (4.62). A more physically verification of detailed balance can be found in
(KAMPEN, 2007), using the parity invariance property of the Hamilton equations.

4.3.2 Birth and Death Processes

The master equation (4.58) can be rewritten in terms of new transition probabilities𝑊𝑛𝑚p𝑡q

defined by

𝑊𝑛𝑚p𝑡q “ 𝑤𝑚𝑛 ´ 𝛿𝑛𝑚

𝐿
ÿ

𝑘“1
𝑤𝑛𝑘, (4.64)

giving the more compact expression

9𝑃𝑛p𝑡q “
𝐿
ÿ

𝑚“1
𝑊𝑛𝑚p𝑡q𝑃𝑚p𝑡q, (4.65)

or in matrix notation,
9⃗
𝑃 p𝑡q “ W𝑃 p𝑡q. (4.66)

Here W p𝑡q is a 𝐿ˆ 𝐿 matrix called Transition Matrix which satisfies

𝑊𝑛𝑚 ě 0, if 𝑛 ‰ 𝑚, (4.67a)
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and
𝐿
ÿ

𝑛“1
𝑊𝑛𝑚 “ 0, for each 𝑚. (4.67b)

Here 𝑃 p𝑡q “ p𝑃1p𝑡q, . . . , 𝑃𝐿p𝑡qq
𝑇 is a column vector. The usual method to solve (4.66) consists

in find the eigenvectors and eigenvalues by left and by right of W , which is extensively discussed
in (REICHL; LUSCOMBE, 1998).

Let us consider stochastic processes with only transitions between subsequent states. That
is, only transitions

𝑛Ñ 𝑛´ 1, 𝑛Ñ 𝑛, 𝑛Ñ 𝑛` 1,

are allowed. It can be imposed in (4.65) defining the transition rates as

𝑊𝑛𝑚p𝑡q “ 𝜁𝑚p𝑡q𝛿𝑛,𝑚´1 ` 𝛾𝑚p𝑡q𝛿𝑛,𝑚`1 ´ p𝜁𝑚p𝑡q ` 𝛾𝑚p𝑡qq𝛿𝑛,𝑚, (4.68)

where 𝜁𝑚, 𝛾𝑚 ě 0. Which results in the master equation of Birth-Death Processes

9𝑃𝑛p𝑡q “ 𝜁𝑛`1p𝑡q𝑃𝑛`1p𝑡q ` 𝛾𝑛´1p𝑡q𝑃𝑛´1p𝑡q ´ p𝜁𝑛p𝑡q ` 𝛾𝑛p𝑡qq𝑃𝑛p𝑡q. (4.69)

The birth-death master equations can be classified according to the shape of the transition
factors 𝜁𝑛 and 𝛾𝑛, which can be constant, linear or nonlinear in 𝑛. In most cases of interest,
those are time-independent, and linear, namely,

𝜁𝑛 “ 𝑎p𝑛` 𝑟q (4.70a)

and
𝛾𝑛 “ 𝑏p𝑛` 𝑔q. (4.70b)

Examples of birth-death processes can be found in the rest of the dissertation.

4.4 FROM DISCRETE TO CONTINUOUS STOCHASTIC PROCESSES

In this section we present how a discrete stochastic process can be used to obtain a
continuous stochastic process. Specifically, we show how the random walk can be transformed
into the Brownian motion using the tools of stochastic processes and how the Pauli process
can be transformed into a particular case of the gamma process using the tools of the mimetic
map. The latter will be the first application of the discrete calculus to connect discrete and
continuous stochastic processes, which will be the main goal of the remaining chapters of this
dissertation.
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4.4.1 From Random Walk to Brownian Motion

4.4.1.1 Random Walk

Consider the birth-death process described by the master equation
$

’

&

’

%

9𝑃𝑛p𝑡q “ 𝛾p𝑃𝑛`1p𝑡q ` 𝑃𝑛´1p𝑡q ´ 2𝑃𝑛p𝑡qq;

𝑃𝑛p0q “ 𝛿𝑛,0;
(4.71)

for 𝜁𝑛 “ 𝛾𝑛 “ 𝛾 “ 𝑐𝑜𝑛𝑠𝑡.. It describes a one dimensional stochastic process with equal
and constant transition rate of make a transition from one of the adjacent states, imposing
that the system starts in 𝑛 “ 0 at 𝑡 “ 0. Such process is known as a Random Walk of
continuous time. This can be interpreted as a particle allowed to move in steps of size 𝑎 in a
one-dimensional lattice, where the state 𝑛 is a site of such lattice.

In general, we can solve any linear master equation obtaining an ODE for the characteristic
function of the stochastic process (KAMPEN, 2007). For (4.71), let 𝑥 “ 𝑛𝑎 be the position of
the random walker after a time 𝑡 “ 𝑁𝜏 . The characteristic function for a discrete process is
easily obtained from (4.29) and (4.6) as

Φp𝑘, 𝑡q “
8
ÿ

𝑛“´8

𝑒𝑖𝑘𝑛𝑎𝑃𝑛p𝑡q. (4.72)

So, from (4.71), we get the differential equation given by
$

’

&

’

%

B𝑡Φp𝑘, 𝑡q “ 𝛾p𝑒𝑖𝑘𝑎 ` 𝑒´𝑖𝑘𝑎 ´ 2qΦp𝑘, 𝑡q;

Φp𝑘, 0q “ 1,
(4.73)

which have solution given by
Φp𝑘, 𝑡q “ 𝑒´2𝛾𝑡𝑒2𝛾𝑡 cos 𝑘𝑎. (4.74)

Using the identity 𝑒 𝑧
2 p𝑢´

1
𝑢
q “

ř8

𝑛“´8 𝐽𝑛p𝑧q𝑢
𝑛 (DENNERY; KRZYWICKI, 1996), with 𝑧 “

𝑖2𝛾𝑡 and 𝑢 “ 𝑒𝑖𝑘𝑎

𝑖
, we obtain

𝑃𝑛p𝑡q “ 𝑒´2𝛾𝑡𝐼𝑛p𝑡q, (4.75)

where 𝐽𝛼p𝑧q is the Bessel function and 𝐼𝛼p𝑧q is the modified Bessel function of first kind.

4.4.1.2 Brownian Motion

The Brownian motion is usually dated from 1828 when Robert Brown observed strange
movements of pollen particles suspended in an aqueous solution (BROWN, 1828). However,
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in 1784 the same was observed by J. Ingen-Housz 1 (INGEN-HOUSZ, 1784) when identical
movements were observed for particles of charcoal floating in alcohol, which was explained in
1819 by J. Bywater (BYWATER, 1824) associating such behavior with inorganic particles and
microscopic fluctuations, a bit earlier than Brown..

The theoretical description came only in 1905, when A. Einstein explained the behavior
of such particle from a probabilistic point of view resulting in an equation of motion for the
probability density of find a particle at position 𝑥 at time 𝑡 (SILVA; LIMA, 2007), which was
later verified experimentally by the 1926 Nobel Prize laureate J. B. Perrin (PERRIN, 2013), in
1908. Not only him, but many others contributed to the theoretical description of the Brownian
motion, such as M. V. Smoluchowski (SMOLUCHOWSKI, 1906), P. Langevin (LEMONS; GYTHIEL,
1997) and M. Kac (KAC, 1947). In (ABBOTT et al., 1996) a summarized timeline of the Brownian
motion history can be found.

The Brownian motion can emerge as a continuum limit of the random walk. In the random
walk, since 𝛾 is the transition rate per unit time and 𝜏 is the time of each transition, the
product 𝛾𝜏 “ 𝛾𝑡

𝑁
gives the frequency of transitions, i.e., probability of the transition for N

large. And since the transition rate is the same for the two accessible states, 𝑛´ 1 and 𝑛` 1,
we have 𝛾 “ 1

2𝜏
.

Assuming that the quantity

𝐷 ” lim
𝑎Ñ0

𝑎2𝛾 “
1
2 lim

𝑎Ñ0

𝑎2

𝜏
(4.76)

is constant and imposing the continuum limit 𝑎 Ñ 0 on the characteristic function of the
random walk, up to second order in 𝑖𝑘𝑎, we obtain the characteristic function of the Brownian
motion given by

Φp𝑘, 𝑡q “ 𝑒´𝐷𝑡𝑘2
. (4.77)

It results in the probability density

𝒫p𝑥, 𝑡q “ 1
2𝜋

ż 8

´8

𝑒´𝑖𝑘𝑥Φp𝑘, 𝑡q𝑑𝑘 “ 𝑒
´𝑥2
4𝐷𝑡

?
4𝜋𝐷𝑡

, (4.78)

which satisfies the Partial Differential Equation (PDE)
$

’

&

’

%

B𝑡𝒫p𝑥, 𝑡q “ 𝐷B2
𝑥𝒫p𝑥, 𝑡q;

𝒫p𝑥, 0q “ 𝛿p𝑥q;
(4.79)

1 Jan Ingen-Housz is better known for the discovery of photosynthesis (GEERDT, 2007).
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which is the first example of a Fokker-Planck equation. Such equation describes the evolution
of the probability density of a Brownian particle moving in a one-dimensional space.

The parameter 𝐷 is usually called diffusion coefficient. Taking the system studied by R.
Brown in 1820s as an example, with pollen grains of size 𝑏, suspended over a fluid with viscosity
coefficient 𝜂 at temperature 𝑇 , 𝐷 is given by

𝐷 “
𝑘𝐵𝑇

6𝜋𝜂𝑏, (4.80)

where 𝑘𝑏 is the Boltzmann constant. That was found by A. Einstein on his work (SILVA; LIMA,
2007).

We can see a great similarity of the characteristic function (4.72) and the h-generating
function (3.88a) of the previous chapter, making ℎ “ 𝑎 and 𝑧 “ 𝑒𝑖𝑘𝑎, if we had define it
not using a exponential generating function (although, now we have a differential-difference
equation been solved). Thus, the limit 𝑎 Ñ 0 can be seen as the continuum limit of the
mimetic map, with the constraint (4.76). Further, the same can be seen by the use of difference
operators. Observe that (4.71) can be rewritten as

9𝑃𝑛p𝑡q “ 𝛾p𝑃𝑛`1p𝑡q ` 𝑃𝑛´1p𝑡q ´ 2𝑃𝑛p𝑡qq “ 𝛾𝑎2
p𝐷Δ

q
2
p𝑃𝑛p𝑡qq, (4.81)

assuming 𝑛 “ 𝑥
𝑎
, which converges for (4.79) as 𝑎 goes to zero with the constraint (4.76)

imposed.

4.4.2 From Pauli to Gamma Distribution

The connection between discrete and continuous stochastic processes can also be done
through the mimetic map. Consider the Pauli process, which is described by the birth-death
master equation

9𝑃𝑛p𝑡q “ 𝜁p𝑛` 1q𝑃𝑛`1p𝑡q ` 𝛾𝑛𝑃𝑛´1p𝑡q ´ r𝜁𝑛` 𝛾p𝑛` 1qs𝑃𝑛p𝑡q, (4.82)

where 𝜁𝑛 “ 𝜁𝑛 and 𝛾𝑛 “ 𝛾p𝑛` 1q. The stationary solution is given by the Pauli distribution

𝑃 𝑒𝑞
𝑛 “ p1´ 𝑢q𝑢𝑛, (4.83)

giving the mean x𝑛y “ 𝑢
1´𝑢

, where 𝑢 “ 𝛾
𝜁
.

We can rewrite this master equation in terms of the difference operators defined in chapter
2 such that

9𝑃𝑛p𝜏q “ p𝑛` 1q𝑃𝑛`1p𝜏q ` 𝑢𝑛𝑃𝑛´1p𝜏q ´ r𝑛` 𝑢p𝑛` 1qs𝑃𝑛p𝜏q

“ 𝐻𝑃𝑛p𝜏q `𝐷𝑃𝑛p𝜏q ` p1´ 𝑢q𝐸𝑃𝑛p𝜏q ` p1´ 𝑢q𝑃𝑛p𝜏q
(4.84)
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for ℎ “ 1 and 𝜏 “ 𝜁𝑡. Taking the continuum limit we obtain the PDE

B𝜏 𝒫p𝑥, 𝜏q “ 𝑥B2
𝑥𝒫p𝑥, 𝜏q ` r1` p1´ 𝑢q𝑥sB𝑥𝒫p𝑥, 𝜏q ` p1´ 𝑢q𝒫p𝑥, 𝜏q (4.85)

or
B𝜏 𝒫p𝑥, 𝜏q “ B𝑥rpp1´ 𝑢q𝑥´ 1q𝒫p𝑥, 𝜏qs ` B2

𝑥r𝑥𝒫p𝑥, 𝜏qs. (4.86)

The equation above is another example of a Fokker-Planck equation, been a particular case
of the Fokker-Planck of the gamma distribution, which will be found in chapter 5. Observe
that the solution of this Fokker-Planck is proportional to 𝑒´p1´𝑢q𝑥, which gives the solution of
the master equation (4.82) as {𝑒p1´𝑢q𝑥

ℎ“1, or in our case p1´ 𝑢q{𝑒p1´𝑢q𝑥
ℎ“1, validating the use

of the mimetic map.
As presented above, we can find ways to connect discrete and continuous stochastic pro-

cesses. Although the relation between the random walk and the Brownian motion was already
known, a new relation now can be seen between the Pauli distribution and the particular case of
the gamma distribution. Once the Pauli distribution (4.83) is a particular case of the negative
binomial distribution, in chapter 5 we will show via mimetic map that the gamma distribution
indeed is directly related with the negative binomial distribution as its discrete version.

4.5 FOKKER-PLANCK EQUATION

We can generalize (4.79) and (4.86) as the Fokker-Planck equation (F-P equation),
also known as Smoluchowski equation, by

$

’

&

’

%

B𝑡𝒫p𝑥, 𝑡q “ ´B𝑥r𝐷
p1qp𝑥, 𝑡q𝒫p𝑥, 𝑡qs ` B2

𝑥r𝐷
p2q𝒫p𝑥, 𝑡qs;

𝒫p𝑥, 𝑡0q “ 𝛿p𝑥´ 𝑥0q;
(4.87)

Here 𝐷p2q makes the role of the Diffusion Coefficient and 𝐷p1q is the Drift Coefficient. 𝐷p1q

represents the presence of a external force acting on the particle under a stochastic behavior
(KAMPEN, 2007). Such equation describes the dynamics of the PDF 𝒫p𝑥, 𝑡q, assured that the
Brownian particle is at 𝑥 “ 𝑥0 at time 𝑡 “ 𝑡0.

If we have a multivariate stochastic process, described by a random vector 𝑋⃗ of 𝑛 com-
ponents, the definition of the F-P equation can be extended to

$

’

&

’

%

B𝑡𝒫p𝑥⃗, 𝑡q “ ´
ř𝑛

𝑖“1 B𝑥𝑖
r𝐷

p1q
𝑖 p𝑥, 𝑡q𝒫p𝑥⃗, 𝑡qs `

ř𝑛
𝑖“1

ř𝑛
𝑗“1 B𝑥𝑖

B𝑥𝑗
r𝐷

p2q
𝑖𝑗 𝒫p𝑥⃗, 𝑡qs;

𝒫p𝑥⃗, 𝑡0q “
ś𝑛

𝑖“1 𝛿p𝑥𝑖 ´ 𝑥𝑖0q;
(4.88)
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where now we have Dp2 q as the Diffusion Coefficient Matrix and 𝐷p1q as the Drift Coef-

ficient Vector.
The stationary (equilibrium) solution of (4.87) can be obtained assuming that the left-hand

side (time derivative) is null. So,

𝐷p1qp𝑥q

𝐷p2qp𝑥q
r𝐷p2qp𝑥q𝒫𝑒𝑞p𝑥qs “ B𝑥r𝐷

p2qp𝑥q𝒫𝑒𝑞p𝑥qs. (4.89)

Then, the equilibrium solution is given by

𝒫𝑒𝑞p𝑥q “
𝒩

𝐷p2qp𝑥q
𝑒

ˆ

ş𝑥
𝑥0

𝐷p1qp𝜉q
𝐷p2qp𝜉q

𝑑𝜉

˙

. (4.90)

Exists quite many methods to solve the F-P equation (4.87), which part of then can be
found on (RISKEN; HAKEN, 1989). Also, as will be see in section 5.1, we can solve it as any
PDE.

We observe here that the F-P equation is just a particular case of the Master equations,
assuming the size that establish the distance between state is infinitesimal and the transition
matrix 𝑊 is a differential operator (KAMPEN, 2007). However, we were treating them sep-
arately: the F-P equation describes continuous processes and the Master equation describes
discrete processes.

4.5.1 Mapping Into a Brownian Motion Influenced by an External Force

A continuous stochastic behavior can be seen as a Brownian motion affected by an external
force. Under a change of space variable we can transform the general F-P equation (4.87) into
the F-P equation of the Brownian motion (4.79) with an extra drift term (RISKEN; HAKEN,
1989).

Consider the change of space variable 𝑦 “ 𝑦p𝑥q such that

𝐷̄p2qp𝑦q ” 𝐷 “ 𝑦1p𝑥q2𝐷p2qp𝑥q ñ 𝑦p𝑥q “

ż 𝑥

𝑥0

d

𝐷

𝐷p2qp𝜉q
𝑑𝜉. (4.91)

It turns 𝐷p1qp𝑥q into

𝐷̄p1qp𝑦q “

d

𝐷

𝐷p2qp𝑥q

ˆ

𝐷p1qp𝑥q ´
1
2
𝑑𝐷p2qp𝑥q

𝑑𝑥

˙

(4.92)

and (4.87) becomes

B𝑡𝒫p𝑦, 𝑡q “ 𝐷B2
𝑦𝒫p𝑦, 𝑡q ´ B𝑦p𝐷̄

p1q
p𝑦q𝒫p𝑦, 𝑡qq. (4.93)
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The first term is the same of the Brownian motion F-P equation, and the second can be
interpreted as a external force acting in the Brownian particle.

4.6 LANGEVIN EQUATIONS AND STOCHASTIC DIFFERENTIAL EQUATIONS

4.6.1 Wiener Process and Stochastic Differential Equations

The discussion presented in the subsection 4.4.1.2 about the Brownian motion can also
be discussed in terms of Newton’s second law, considering the influence of a stochastic force.
Consider the system studied by R. Brown again, a particle of mass 𝑚 and size 𝑏 suspended
in a solution of viscosity coefficient 𝜂 in thermal equilibrium with a reservoir at temperature
𝑇 . The viscosity of the solution will cause a drag force depending on the velocity 𝑣 of the
particle, given by 𝐹𝑑 “ 6𝜋𝜂𝑏𝑣.

The random behavior of the particle will be described by the influence of a fluctuating
force 𝐹𝑟p𝑡q “ 𝐹0𝜉p𝑡q, for which 𝜉 is known as White Noise if satisfy

x𝜉p𝑡qy “ 0 (4.94a)

and
x𝜉p𝑡q𝜉p𝑡1qy “

2𝛼𝑘𝐵𝑇

𝑚
𝛿p𝑡´ 𝑡1q. (4.94b)

Thus, from Newton’s second law the equation of motion for the velocity of the particle is

9𝑣p𝑡q “ ´𝛼𝑣p𝑡q ` 𝜎𝜉p𝑡q, (4.95)

where 𝛼 ” 6𝜋𝜂𝑏
𝑚

and 𝜎 ” 𝐹0
𝑚

.
(4.95) is known as the Langevin Equation and is the first example of an stochastic

differential equation, which was firstly obtained by Paul Langevin, in 1908, as an attempt to
generalize the results obtained by A. Einstein, in 1905. 𝜉p𝑡q characterizes it as a stochastic
differential equation by rewriting (4.95) as

𝑑𝑣 “ ´𝛼𝑣𝑑𝑡` 𝜎𝑑𝑊 p𝑡q, (4.96)

for
𝑑𝑊 p𝑡q ” 𝜉p𝑡q𝑑𝑡, (4.97)

which is the usual way that the stochastic differential equations are presented. The quantity
𝜎𝑑𝑊 p𝑡q is itself a Brownian motion, and the quantity 𝑊 p𝑡q is the Wiener process. Since in
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most of the literature those terms are interchangeable (HASSLER, 2016), we do the same here.
In general, an Stochastic Differential Equation (SDE) can be defined as

𝑑𝑋p𝑡q “ 𝐴p𝑋, 𝑡q𝑑𝑡`𝐵p𝑋, 𝑡q𝑑𝑊 p𝑡q. (4.98)

Formally, consider the stochastic process 𝑊 p𝑡q defined in the interval r0, 𝑡s, with partition
t𝑡0 “ 0, 𝑡1, . . . , 𝑡𝑛 “ 𝑡u, with 𝑡𝑖´1 ď 𝑡𝑖 and 𝑛 P N0. 𝑊 p𝑡q is a Wiener Process (or a Brownian
motion) if satisfies:

(i) Prob(W(0)=0) = 1;

(ii) The increments Δ𝑊𝑖 “ 𝑊 p𝑡𝑖q ´𝑊 p𝑡𝑖´1q, @𝑖, are stationary and independent of each
other;

(iii) For 𝑠 ă 𝑡, the difference 𝑊 p𝑡q´𝑊 p𝑠q follows a normal distribution with null mean and
variance 𝑡´ 𝑠;

(iv) The trajectories are continuous.

From the definition above it is easy to see that a Wiener process 𝑊 p𝑡q is a Gaussian
process with x𝑊 p𝑡qy “ 0 and x𝑊 p𝑡q𝑊 p𝑠qy “ 𝑚𝑖𝑛t𝑡, 𝑠u. Also, some relevant properties are

• 𝑊 p𝑡q is differentiable nowhere;

• For 𝑎 ą 0, the Wiener processes 𝑊 p𝑎𝑡q and ?𝑎𝑊 p𝑡q have the same probability distri-
bution.

In particular, the first means that the relation 𝑑𝑊 p𝑡q “ 𝜉p𝑡q𝑑𝑡 is not well defined in terms of
the usual Riemann integrals once

𝜉p𝑡q “
𝑑𝑊

𝑑𝑡

does not formally exist. To remediate that we use the stochastic calculus, which basically
ensure that integrals like

ż 𝑡

0
𝑔p𝑡1q𝑑𝑊 p𝑡1q (4.99)

converges in some defined sense.
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4.6.2 Stochastic Calculus

The Stochastic Calculus appears as an alternative to solve SDEs. In general, we have the
Riemann-Stieltjes integrals, which can be reduced to Riemann, Stratonovich or Ito integrals
(GARDINER, 2004)(HASSLER, 2016). The latter is the one of our interest here due to it preserves
the statistical properties expected for the Brownian motion, such as the null mean.

Consider the functions 𝑓, 𝑔 : r𝑎, 𝑏s Ñ R and let 𝑃 “ t𝑡0 “ 𝑎, . . . , 𝑡𝑛 “ 𝑏u, with 𝑡𝑖´1 ă 𝑡𝑖,
𝑖 “ 1, . . . , 𝑛, be a partition of the interval r𝑎, 𝑏s, with partition norm defined by |𝑃 | “
maxt𝑡1 ´ 𝑡0, . . . , 𝑡𝑛 ´ 𝑡𝑛´1u and 𝑡˚𝑖 P r𝑡𝑖´1, 𝑡𝑖s. The Riemann-Stieltjes integral of 𝑓 with
respect to 𝑔 is defined by

ż 𝑏

𝑎

𝑓p𝑡q𝑑 𝑔p𝑡q :“ lim
|𝑃 |Ñ0

𝑆𝑛p𝑃 q, (4.100)

where
𝑆𝑛p𝑃 q ”

𝑛
ÿ

𝑖“1
𝑓p𝑡˚𝑖 qΔ𝑔𝑖 (4.101)

and Δ𝑔𝑖 “ 𝑔p𝑡𝑖q´𝑔p𝑡𝑖´1q. The Riemann integral is recovered if we set 𝑔p𝑡q “ 𝑡. If 𝑔p𝑡q “ 𝑊 p𝑡q

is a Wiener process, we have the Riemann-Stieltjes integral as a Stochastic Integral of a
function 𝑓p𝑡q “ 𝐹 p𝑡q which can be either a function or a stochastic process (hence the capital
letter).

For such stochastic integral be completely characterized, the number 𝑡˚𝑖 need to be set,
otherwise the stochastic properties of the system will depend on it, causing statistical incon-
sistencies. For instance suppose 𝐹 p𝑡q “ 𝑊 p𝑡q and let

𝑡˚𝑖 “ p1´ 𝜆q𝑡𝑖´1 ` 𝜆𝑡𝑖

with 0 ď 𝜆 ď 1. Then,

x𝑆𝑛p𝑃 qy “
𝑛
ÿ

𝑖“1
x𝑊 p𝑡˚𝑖 qy xΔ𝑊𝑖y “ p𝑏´ 𝑎q𝜆 (4.102)

using x𝑊 p𝑡q𝑊 p𝑠qy “ 𝑚𝑖𝑛t𝑡, 𝑠u. From that we see that the definition of 𝑡˚𝑖 is influencing the
statistics.

Thus Ito chose 𝑡˚𝑖 “ 𝑡𝑖´1 (𝜆 “ 0), which gives null mean of any stochastic integral, defining
the Ito integral of a function 𝐹 p𝑡q as

ż 𝑡

𝑡0

𝐹 p𝑡q 𝑑𝑊 p𝑡1q :“ lim
𝑛Ñ8

p𝑚𝑠q𝑆𝑛, (4.103)

for
𝑆𝑛 “

𝑛
ÿ

𝑖“1
𝐹 p𝑡𝑖´1qΔ𝑊𝑖.
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In that case is assumed that 𝑡𝑖´ 𝑡𝑖´1 “
𝑡´𝑡0

𝑛
, making the partition norm dependent of 𝑛. Here

lim p𝑚𝑠q denotes what is known as the Mean Square Limit defined by

lim
𝑛Ñ8

p𝑚𝑠q𝑆𝑛 “ 𝐼 ă 8 ðñ lim
𝑛Ñ8

@

p𝑆𝑛 ´ 𝐼q
2D
“ 0. (4.104)

The statistical inconsistency is now avoided since (HASSLER, 2016)
B
ż 𝑡

𝑡0

𝐹 p𝑡1q 𝑑𝑊 p𝑡1q

F

“ 0 (4.105)

and
C

ˆ
ż 𝑡

𝑡0

𝐹 p𝑡1q 𝑑𝑊 p𝑡1q

˙2
G

“

ż 𝑡

𝑡0

@

𝐹 2
p𝑡1q

D

𝑑𝑡1. (4.106)

And with Ito’s integrals at hand is possible to solve SDEs using a useful toolkit. In fact, the
SDE

𝑑𝑋p𝑡q “ 𝐴p𝑋p𝑡q, 𝑡q𝑑𝑡`𝐵p𝑋p𝑡q, 𝑡q𝑑𝑊 p𝑡q (4.107)

is the differential form of a stochastic process

𝑋p𝑡q “ 𝑋0 `

ż 𝑡

𝑡0

𝐴p𝑋p𝑡1q, 𝑡1q𝑑𝑡1 `

ż 𝑡

𝑡0

𝐵p𝑋p𝑡1q, 𝑡1q𝑑𝑊 p𝑡1q, (4.108)

where 𝑋0 is another stochastic process, the second term is an Riemann integral and the third
is an Ito integral. Processes defined by this are called Ito’s or Diffusion Processes. Thus,
some useful consequences and properties are worthy to be mention.

4.6.2.1 Fundamental Theorem of Ito’s Calculus

A function 𝐹 p𝑡q is called a Non Anticipating Function if and only if it is statically
independent of increments 𝑊 p𝑠q´𝑊 p𝑡q, for 𝑡 ă 𝑠. It basically establish that a process cannot
depend on its future history. Using this we can state the Fundamental Theorem of Ito’s

Calculus.

Theorem 4.6.1. Let 𝐹 p𝑡q be a non anticipating function and define the stochastic integral
ż 𝑡

𝑡0

𝐹 p𝑡1q𝑑𝑊 p𝑡1q𝑁`2 :“ 𝑙𝑖𝑚𝑛Ñ8
p𝑚𝑠q

𝑛
ÿ

𝑖“1
𝐹 p𝑡𝑖´1qΔ𝑊𝑖

𝑁`2. (4.109)

Then
ż 𝑡

𝑡0

𝐹 p𝑡1q𝑑𝑊 p𝑡1q𝑁`2
“ 𝛿𝑁,0

ż 𝑡

𝑡0

𝐹 p𝑡1q𝑑𝑡1. (4.110)



89

The proof of the theorem above can be found in (GARDINER, 2004), using Wick Theorem
for the case 𝑁 ą 0. In differential form notation, the theorem gives

𝑑𝑊 p𝑡q𝑁`2
“ 𝛿𝑁,0𝑑𝑡, (4.111)

which can be intuitively expected from the third item of the definition of a Wiener process,
i.e., xp𝑊 p𝑡q ´𝑊 p𝑠qq2y “ 𝑡´ 𝑠.

4.6.2.2 Differentiation Rule

Consider again a non anticipating function 𝐹 p𝑊 p𝑡q, 𝑡q, where 𝑊 p𝑡q is an Ito process. Then

𝑑𝐹 p𝑊 p𝑡q, 𝑡q :“ 𝐹 p𝑊 p𝑡q ` 𝑑𝑊 p𝑡q, 𝑡` 𝑑𝑡q ´ 𝐹 p𝑊 p𝑡q, 𝑡q

“

ˆ

B𝐹

B𝑡
`

1
2
B2𝐹

B𝑊 2

˙

𝑑𝑡`
B𝐹

B𝑊
𝑑𝑊 p𝑡q.

(4.112)

The proof consists in expand 𝐹 p𝑊 p𝑡q`𝑑𝑊 p𝑡q, 𝑡`𝑑𝑡q in powers of 𝑑𝑊 p𝑡q and 𝑑𝑡 “ 𝑑𝑊 p𝑡q2

and retain terms up to second order in 𝑑𝑊 p𝑡q.

4.6.2.3 Change of Variables: Ito’s Formula

Consider the Ito process given by

𝑑𝑋p𝑡q “ 𝐴p𝑋p𝑡q, 𝑡q𝑑𝑡`𝐵p𝑋p𝑡q, 𝑡q𝑑𝑊 p𝑡q. (4.113)

We can obtain an SDE for a new stochastic variable 𝑌 p𝑡q “ 𝐹 p𝑋p𝑡qq. Using 𝑑𝑌 p𝑡q :“

𝐹 p𝑋p𝑡q ` 𝑑𝑋p𝑡qq ´ 𝐹 p𝑋p𝑡qq and 𝑑𝑋p𝑡q as defined above, we obtain the Ito’s formula as

𝑑𝑌 p𝑡q «
´

𝐴p𝑋p𝑡q, 𝑡q𝐹 1p𝑋p𝑡qq ` 𝐵2p𝑋p𝑡q,𝑡q
2 𝐹 2p𝑋p𝑡qq

¯

𝑑𝑡`𝐵p𝑋p𝑡q, 𝑡q𝐹 1p𝑋p𝑡qq𝑑𝑊 p𝑡q.

(4.114)
As a consequence of this result, we can obtain the F-P equation of the PDF 𝒫p𝑥, 𝑡q of

𝑋p𝑡q. Consider the mean of 𝑑𝐹 p𝑋p𝑡qq. Since the mean of 𝑑𝑊 p𝑡q vanishes,

𝑑 x𝐹 p𝑋p𝑡qqy

𝑑𝑡
“

B

𝐴p𝑋p𝑡q, 𝑡q𝐹 1p𝑋p𝑡qq `
𝐵2p𝑋p𝑡q, 𝑡q

2 𝐹 2p𝑋p𝑡qq

F

, (4.115)

or
ż

𝐹 p𝑥qB𝑡𝒫p𝑥, 𝑡q𝑑𝑥 “
ż
ˆ

𝐴p𝑥, 𝑡q𝐹 1p𝑥q `
𝐵2p𝑥, 𝑡q

2 𝐹 2p𝑥q

˙

𝒫p𝑥, 𝑡q𝑑𝑥. (4.116)
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Integrating by parts the right-hand side of the equality above, eliminating the boundary
terms and considering that the interval of integration and 𝐹 p𝑥q are arbitrary, we get

B𝑡𝒫p𝑥, 𝑡q “ ´B𝑥r𝐴p𝑥, 𝑡q𝒫p𝑥, 𝑡qs ` B2
𝑥

„

𝐵2p𝑥, 𝑡q

2 𝒫p𝑥, 𝑡q


, (4.117)

which is just the F-P equation defined in (4.87).
Thus, the functions 𝐴p𝑥, 𝑡q and 𝐵2p𝑥, 𝑡q are just the drift coefficient and the diffusion

coefficient, given by

𝐷p1qp𝑥, 𝑡q ” 𝐴p𝑥, 𝑡q and 𝐷p2qp𝑥, 𝑡q ” 𝐵2p𝑥, 𝑡q

2 . (4.118)

Such a result can be extended for a multivariate stochastic process represented by the
random vector 𝑋⃗ and described by the system of SDEs

𝑑𝑋⃗p𝑡q “ 𝐴⃗p𝑋⃗p𝑡q, 𝑡q𝑑𝑡` Bp𝑋⃗p𝑡q, 𝑡q𝑑𝑊⃗ p𝑡q, (4.119)

where each component of the random vector 𝑑𝑊⃗ p𝑡q itself is a Wiener process independent of
each other. For such a system of SDEs, the multivariate PDF satisfies the F-P equation

B𝑡𝒫p𝑥⃗, 𝑡q “ ´
𝑛
ÿ

𝑖“1
B𝑥𝑖
r𝐴𝑖p𝑥⃗, 𝑡q𝒫p𝑥⃗, 𝑡qs `

1
2

𝑛
ÿ

𝑖“1

𝑛
ÿ

𝑗“1
B𝑥𝑖
B𝑥𝑗

“

Bp𝑥⃗, 𝑡qB𝑇
p𝑥⃗, 𝑡q𝒫p𝑥⃗, 𝑡q

‰

, (4.120)

resulting in
𝐷p1qp𝑥⃗, 𝑡q ” 𝐴⃗p𝑥⃗, 𝑡q and Dp2 q

p𝑥⃗, 𝑡q ”
1
2Bp𝑥⃗, 𝑡qB𝑇

p𝑥⃗, 𝑡q. (4.121)

Such results are of the most importance once states the connection between SDEs and F-P
equations, which will be used to find the probability distributions appearing in the H theory
and in the stochastic epidemic models, which is the usual way that stochastic systems are
presented.
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5 H THEORY

In this chapter we present a physical application of the mimetic map, connecting continuous
and discrete stochastic processes, in a similar manner as was briefly discussed in section 4.4.
The model in which the mimetic map is applied is the H theory, which consists of a stochastic
model used to describe multiscale complex systems, using the fundamental concepts taken from
the statistical description of turbulent fluids, the intermittency and the energy cascade. The
application of the mimetic map reveals the underneath discrete stochastic process from which
emerges the continuous stochastic processes observed in the H theory. Such discrete processes
are called as discrete H theory here. Here we will focus our analysis in the case 𝑠 “ 1{2 of the
theory. In section 5.1 we briefly discuss the H theory formalism and the physical context it is
applied. We also present the out of equilibrium solution of the case 𝑠 “ 1{2. In section 5.2 we
apply the mimetic map to obtain the discrete H theory for the background variables in terms of
already known discrete stochastic processes. And in section 5.3 we show how we can construct
discrete stochastic processes for the observable variable using the decomposition of variables
used in the central limit theorem context, described in the previous chapter. In the central
limit theorem sense the result of the continuous H theory for the observable is recovered as
well as the one for the background variables, which is recovered in the continuum limit sense.

5.1 THE H THEORY

To model turbulent flow (FRISCH; KOLMOGOROV, 1995) from a statistical point of view
is based in two main phenomena, the intermittency and the energy cascade. The energy
cascade consists in an energy transfer from a size scale to a smaller one (see figure 5), while
the intermittency phenomenon consists of the fluctuating feature of energy transfer rates
associated to each scale.

In 1941 A. N. Kolmogorov proposed a statistical model which, although provided great con-
tributions, presented disagreement with experimental results giving the probability distribution
of the velocity increments as Gaussian distributions, while experiments give non-Gaussian ones.
That was caused by the assumption that the energy rate transfer of the small size scale to
be a constant, presenting only the energy cascade feature. In 1962 Kolmogorov modified his
model (KOLMOGOROV, 1962) allowing the energy transfer rate float around an average value
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Figure 5 – Scheme of an energy cascade in a turbulent fluid.

Source: the author (2021).

according to a log-normal probability distribution, i.e., ℱp𝜖q “ 𝑒
´
pln 𝜖´xln 𝜖yq2

2𝜎2
?

2𝜋𝜎2𝜖2 , which made the
model more accurate with the experimental results, presenting the energy cascade and inter-
mittency features. However such choice of distribution gave some unphysical results (FRISCH;

KOLMOGOROV, 1995).
As an attempt to match theory and experiment, a model describing the energy rate as

continuous stochastic variables was developed, that is known as H Theory. In such a context,
the energy rates are described by a system of coupled SDEs. Such a formalism is not only
capable to describe turbulence flow but also other multiscale complex systems, capturing the
non-Gaussianity of the experiments, which causes violation of the central limit theorem defined
in the subsection 4.2.2.

For instance (SALAZAR; VASCONCELOS, 2010), consider a turbulent fluid with a cascade of
𝑛` 1 eddies, with sizes

𝐿𝑗 “
𝐿

𝑏𝑗
; 𝑗 “ 0, 1, . . . , 𝑛;

with 𝑏 ą 1. For each eddy we associate an energy transfer rate 𝜖𝑗 which gives the energy
transferred from the scale 𝐿𝑗´1 to the scale 𝐿𝑗. An amount of energy is injected in the large
scale 𝐿0 “ 𝐿 of the cascade and is transferred from the larger to the smaller scale until be
dissipated at the small scale 𝐿𝑛. Then, the SDEs of the 𝜖𝑗 are given by

𝑑𝜖𝑗 “ ´𝛾𝑗p𝜖𝑗 ´ 𝜖𝑗´1q𝑑𝑡` 𝑘𝑗𝜖𝑗𝑑𝑊𝑗, (5.1)

where 𝑑𝑊𝑗 are independent Wiener processes. Such SDEs will be justified bellow. The quantity
of interest here are the velocity increments 𝛿𝑣 of the fluid, which will have its probability
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distribution affected by the intermittency.
As said above, such a formalism can be used to describe a large set of multiscale complex

systems described by many scales of length and/or time. Then, to present the formalism
consider a multiscale complex system with 𝑛 time scales 𝜏𝑗 (𝑗 “ 0, 1, . . . , 𝑛), such that
𝜏0 " 𝜏1 " ¨ ¨ ¨ " 𝜏𝑛. For each time scale 𝜏𝑗 we have a quantity 𝜖𝑗, called Background

Variable, which fluctuates according to a PDF ℱ𝑗p𝜖𝑗q, with exception in the large scale 𝜏0

where 𝜖0 is a constant.
The Observable Variable 𝑋, is the relevant quantity of the study and have the role of

the velocity increment 𝛿𝑣 in the example above. It is measured in the smaller scale 𝜏𝑛 and
is assumed to vary faster than the background variable 𝜖𝑛, which gives the interpretation of
a quantity evolving in time in a background almost static, as a local equilibrium (MACêDO et

al., 2017). Due to this local equilibrium, we can define the conditional PDF 𝒫𝑛p𝑥|𝜖𝑛q for a
measurement 𝑋 “ 𝑥 given the value 𝜖𝑛 of the background variable of the 𝑛th scale as

𝒫𝑛p𝑥|𝜖𝑛q “
𝑒´

𝑥2
2𝜖𝑛

?
2𝜋𝜖𝑛

. (5.2)

In that case the distribution of 𝑋 is affected by the intermittency phenomenon, due the
fluctuation of 𝜖𝑛, which is represented by the marginal distribution

𝒫𝑛p𝑥q “

ż 8

0
𝒫p𝑥|𝜖𝑛qℱ𝑛p𝜖𝑛q𝑑𝜖𝑛. (5.3)

Such process of compose two or more statistics is called superstatistics (BECK, 2001).
Because of the energy cascade, the probability distribution of 𝜖𝑛 is directly affected by the

larger scales. Via Chapman-Kolmogorov equation (4.54) we have

ℱ𝑛p𝜖𝑛q “

ż 𝑛
ź

𝑖“1
ℱp𝜖𝑖 | 𝜖𝑖´1q𝑑𝜖1 . . . 𝑑𝜖𝑛´1, (5.4)

for ℱp𝜖0q “ 1.
The definition of (5.2) is only made by assumption taking into account the turbulence

flow as the reference model, once with the constant energy transfer rate was obtained a
Gaussian probability distribution (FRISCH; KOLMOGOROV, 1995). Another proposal for the
conditional PDF can be found in the context of canonical formalism where the system can be
seen as nested heat baths with fluctuating temperatures 𝛽𝑗 “

1
𝑘𝐵𝑇𝑗

(VASCONCELOS; SALAZAR;

MACÊDO, 2018), where 𝑘𝐵 is the Boltzmann constant (see figure 6).
Here the conditional PDF is given by

𝒫𝑛p𝑞|𝛽𝑛q “
𝑒´𝛽𝑛𝐸p𝑞q

𝑍p𝛽𝑛q
, (5.5)
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Figure 6 – Nested reservoirs representing a multiscale complex system in the canonical formal-
ism. The outermost reservoir is in thermal equilibrium.

Source: (VASCONCELOS; SALAZAR; MACÊDO, 2018).

where 𝑞 denotes the degrees of freedom of the subsystem contained in the innermost reservoir
and 𝑍p𝛽𝑛q “

ş

𝑒´𝛽𝑛𝐸p𝑞q𝑑𝑞 is the canonical partition function of the 𝑛th scale (SALINAS, 1997).
The temperature 𝑇0 of the larger scale, outermost reservoir, is held fixed, i.e., the system is in
thermal equilibrium with the environment. In this context, the PDF found for the observable
variable are given in terms of the H-function (appendix A), not the G-function as is shown
bellow.

Aiming to describe the system completely is necessary to find the conditional PDFs ℱp𝜖𝑗 |

𝜖𝑗´1q. To do so, we can start by constructing the stochastic differential equations obeyed by
the background variables 𝜖𝑗, which in general is given by

𝑑𝜖𝑗 “ 𝐹 p𝜖𝑗, 𝜖𝑗´1q𝑑𝑡`𝐺p𝜖𝑗, 𝜖𝑗´1q𝑑𝑊𝑗, (5.6)

where 𝑑𝑊𝑗 are Wiener processes independent of each other. Here the dependence in 𝜖𝑗 and
𝜖𝑗´1 exhibit the local hierarchy of the system, showing that the larger scale affects the shorter
scale indirectly, under the hierarchical chain. To obtain the functional form of 𝐹 p𝜖𝑗, 𝜖𝑗´1q and
𝐺p𝜖𝑗, 𝜖𝑗´1q we impose the following physics requirements:

(i) Equilibrium condition:
lim
𝑡Ñ8

x𝜖𝑗p𝑡qy “ 𝜖0;

(ii) Invariance under change of scale:

𝐹 p𝜆𝜖𝑗, 𝜆𝜖𝑗´1q “ 𝐹 p𝜖𝑗, 𝜖𝑗´1q and 𝐺p𝜆𝜖𝑗, 𝜆𝜖𝑗´1q “ 𝐺p𝜖𝑗, 𝜖𝑗´1q;
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(iii) Positivity:
𝑃𝑟𝑜𝑏p𝜖𝑗p𝑡q ě 0q “ 1 if 𝜖𝑗p0q ě 0, @𝑡 and @𝑗.

That will gives (MACêDO et al., 2017)

𝑑𝜖𝑗 “ ´𝛾𝑗p𝜖𝑗 ´ 𝜖𝑗´1q𝑑𝑡` 𝑘𝑗𝜖
1´𝑠
𝑗´1𝜖

𝑠
𝑗𝑑𝑊𝑗, (5.7)

where 𝛾𝑗9𝜏
´1
𝑗 , 𝑘𝑗 are positive constants and 𝑠 P r0, 1s. Observe that the first term of (5.7) is

the deterministic one: if we take the mean of this equation, once x𝑑𝑊𝑗y “ 0, we obtain ODEs
for the x𝜖𝑗p𝑡qy which solutions tend to 𝜖0 when 𝑡Ñ 8. The second is the one which encodes
the fluctuation of the variable.

Observe that 𝜖𝑖´1 is still a variable, but due to the time scale separation, we can treat it as
approximately constant in comparison with 𝜖𝑖, allowing the obtainment of the F-P equation.
Thus, from Ito’s formula we obtain the F-P equation associated with (5.7) as

B𝑡ℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1q “

„

𝛾𝑖 `
𝑘2

𝑖

2 2𝑠p2𝑠´ 1q𝜖2p1´𝑠q
𝑖´1 𝜖

2p𝑠´1q
𝑖



ℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1q

`

”

𝛾𝑖p𝜖𝑖 ´ 𝜖𝑖´1q ` 𝑘
2
𝑖 p2𝑠q𝜖

2p1´𝑠q
𝑖´1 𝜖2𝑠´1

𝑖

ı

B𝑖ℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1q

`
𝑘2

𝑖

2 𝜖
2p1´𝑠q
𝑖´1 𝜖2𝑠

𝑖 B
2
𝑖 ℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1q.

(5.8)

Here we denoted B𝑖 “
B

B𝜖𝑖
and B𝑡 “

B

B𝑡
. The time scale separation could be dropped, but then

the SDEs can only be solved numerically.
Imposing that the F-P equation have an analytic solution, the only acceptable values for

𝑠 are 𝑠 “ 1
2 and 𝑠 “ 1. In those cases, the stationary solutions are the gamma distribution

ℱ𝑠“ 1
2
p𝜖𝑖 | 𝜖𝑖´1q “

p𝛽𝑖{𝜖𝑖´1q
𝛽𝑖

Γp𝛽𝑖q
𝜖𝛽𝑖´1

𝑖 𝑒
´𝛽𝑖

𝜖𝑖
𝜖𝑖´1 , (5.9)

for 𝑠 “ 1
2 , and the inverse-gamma distribution

ℱ𝑠“1p𝜖𝑖 | 𝜖𝑖´1q “
p𝛽𝑖𝜖𝑖´1q

𝛽𝑖`1

Γp𝛽𝑖 ` 1q 𝜖
´𝛽𝑖´2
𝑖 𝑒

´𝛽𝑖
𝜖𝑖´1

𝜖𝑖 , (5.10)

for 𝑠 “ 1, where 𝛽𝑖 “
2𝛾𝑖

𝑘2
𝑖

. Observe that 𝑠 “ 1 is the case of (5.1), thus making (5.10) the
stationary conditional distribution used to describe the turbulent fluid statistics. Such analytic
cases form universality classes (MACêDO et al., 2017) in which multiscale systems fit in, with
the conditional probability of their respective background variables been described by either
the gamma or the inverse-gamma distribution.

Substituting (5.9) or (5.10) into (5.4), we obtain the probability distribution for the back-
ground variable 𝜖𝑛 as

ℱ𝑛p𝜖𝑛q “
𝜔

𝜖0Γp𝛽q
𝐺𝑛,0

0,𝑛

„

´´´

𝛽´1⃗ | 𝜔
𝜖𝑛

𝜖0



, (5.11)
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or
ℱ𝑛p𝜖𝑛q “

1
𝜖0𝜔Γp𝛽 ` 1⃗q

𝐺0,𝑛
𝑛,0

„

´𝛽´1⃗
´´´ |

𝜖𝑛

𝜔𝜖0



(5.12)

where 𝜔 “
ś𝑛

𝑗“1 𝛽𝑗, 𝛽 “ p𝛽1, . . . , 𝛽𝑛q and Γp𝛼⃗q “
ś𝑛

𝑗“1 Γp𝛼𝑗q.
And with that we can then obtain the probability distribution of the observable 𝑋 as

𝒫𝑛p𝑥q “

c

𝜔

2𝜋𝜖0

1
Γp𝛽q

𝐺𝑛`1,0
0,𝑛`1

„

´´´

𝛽´ 1
2 1⃗ |

𝜔

2𝜖0
𝑥2


, (5.13)

for 𝑠 “ 1
2 , and

𝒫𝑛p𝑥q “

c

1
2𝜋𝜔𝜖0

1
Γp𝛽 ` 1⃗q

𝐺1,𝑛
𝑛,1

„

´𝛽´ 1
2 1⃗

´´´ |
𝑥2

2𝜔𝜖0



, (5.14)

for 𝑠 “ 1.
To confirm the agreement of the H theory with experiments, an important application can

be found in photonics. The intensity increments 𝛿𝐼𝜏 of the radiation emitted by a random fibre
laser (LETOKHOV, 1968) present the turbulent features (intermittency and energy cascade) for
a given excitation power threshold (GONZáLEZ I. R. R., 2018).

In such a construction the multiscale is represented by the time separation between points
of the time series of the intensity increments, 𝜏 “ 𝛽´𝛼, for 𝛽 and 𝛼 been given points of the
time series. The multiscale is defined in such a way that as smaller 𝜏 is, the bigger is the label
𝑛 of the scale. The background variables are the variances 𝜖𝜏 of the intensity increments. For
a normalized intensity increment 𝑥𝜏 , which is the observable variable, the distribution for the
small scale 𝜏 “ 1 is given in the left hand side of figure 7 and the distribution for the large scale
𝜏 “ 5000 in the right hand side of the figure. The class of hierarchical theory describing the
system is 𝑠 “ 1

2 and the analytic solution, which fits the distributions found in the experiment, is
given by a statistical mixture of (5.13) for 𝑛 “ 6 given by 𝒫p𝑥𝜏 q “ 𝑝𝒫𝑛,𝑎p𝑥𝜏 q`p1´𝑝q𝒫𝑛,𝑏p𝑥𝜏 q,
where 𝑝 is adjusted to fit the curves adequately.

We observe the Gaussian behavior in the semi-log graphs for great values of 𝜏 (large scale,
𝑛 “ 0), which is revealed by the parabolic curve observed. The non Gaussian behavior is
observed for small values of 𝜏 (small scale, 𝑛 “ 6), which is noted by the deviation from
a parabola. In both cases the system is observed with the excitation power set above the
threshold.
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Figure 7 – Left: probability distribution of the normalized intensity increments 𝑥1 for 𝜏 “ 1.
The solid red line is the statistical mixture solution with parameters 𝑝 “ 0.3,
𝛽𝑎 “ 8.53, 𝜖0,𝑎 “ 0.16, 𝛽𝑏 “ 6.47, 𝜖0,𝑏 “ 1.36 and scale 𝑛 “ 6. The dashed green
line are the probability distributions of the statistical mixture. Right: probability
distribution of the normalized intensity increments 𝑥5000 for 𝜏 “ 5000. The solid
red line is the Gaussian distribution provided for the large scale 𝑛 “ 0. The analytic
solution fits well the experimental data given by the blue squares.

Source: (GONZáLEZ I. R. R., 2018).

5.1.1 Out of Equilibrium Solution for 𝑠 “ 1
2

Let us solve (5.8). However, the out of equilibrium solutions, i.e., time dependent solutions,
could be complicated to be solved, so we focus in the case 𝑠 “ 1

2 only. In that case, we have

B𝑡ℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1q “ 𝛾𝑖B𝑖 rp𝜖𝑖 ´ 𝜖𝑖´1qℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1qs `
𝑘2

𝑖 𝜖𝑖´1

2 B
2
𝑖 r𝜖𝑖ℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1qs . (5.15)

The PDE (5.15) is known as a parabolic equation (FELLER, 1951) and appears in many con-
texts of stochastic processes like econophysics (COX; INGERSOLL; ROSS, 1985) and in systems
of particles confined under a harmonic potential (SALAZAR; LIRA, 2016).

Consider the SDE
𝑑𝑟 “ ´𝜅p𝑟 ´ 𝜃q𝑑𝑡` 𝜎

?
𝑟𝑑𝑊. (5.16)

The solution of the F-P equation associated with it is given by (COX; INGERSOLL; ROSS, 1985)

𝑓p 𝑟p𝑠q, 𝑠; 𝑟p𝑡q, 𝑡q “ 𝐶𝑒´𝑢´𝑣
´𝑣

𝑢

¯𝑞{2
𝐼𝑞

`

2p𝑢𝑣q1{2
˘

, (5.17)
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where
𝐶p𝑠, 𝑡q ” 2𝜅

𝜎2

`

1´ 𝑒´𝜅p𝑠´𝑡q
˘´1

,

𝑢p𝑠, 𝑡q ” 𝐶p𝑠, 𝑡q𝑟p𝑡q𝑒´𝜅p𝑠´𝑡q,

𝑣p𝑠, 𝑡q ” 𝐶p𝑠, 𝑡q𝑟p𝑠q,

𝑞 ” 2𝜅𝜃
𝜎2 ´ 1

(5.18)

and 𝐼𝑞p𝑧q is the modified Bessel function of the first kind.
Using this, we find

ℱp𝜖𝑖p𝑡q, 𝑡; 𝜖𝑖p𝑡0q, 𝑡0|𝜖𝑖´1q “ 𝐶p𝑡, 𝑡0q𝑒
´𝐶p𝑡,𝑡0qp𝜖𝑖p𝑡q`𝜖𝑖p𝑡0q𝑒´𝛾𝑖p𝑡´𝑡0qq¨

¨

´

𝜖𝑖p𝑡q

𝜖𝑖p𝑡0q𝑒´𝛾𝑖p𝑡´𝑡0q

¯

𝛽𝑖´1
2
𝐼𝛽𝑖´1

´

2𝐶p𝑡, 𝑡0q
a

𝜖𝑖p𝑡0q𝑒´𝛾𝑖p𝑡´𝑡0q𝜖𝑖p𝑡q
¯

,

(5.19)

where
𝐶p𝑡, 𝑡0q “

𝛽𝑖{𝜖𝑖´1

1´ 𝑒´𝛾p𝑡´𝑡0q
“

1´ 𝑢𝑖

1´ 𝑒´𝛾p𝑡´𝑡0q
. (5.20)

Indeed, if we consider the stationary limit 𝑡 Ñ 8, we recover the result (5.9), using
(ABRAMOWITZ, 1974)

𝐼𝛼p𝑧q „
1

Γp𝛼 ` 1q

´𝑧

2

¯𝛼

, for |𝑧| Ñ 0. (5.21)

5.2 DISCRETE H THEORY FOR THE BACKGROUND VARIABLES

Our goal is find the image of the the H theory after the action of the mimetic map,
constructing a discrete H theory for the background variables in terms of master equations
instead of SDE and thus analyze the special cases 𝑠 “ 1

2 and 𝑠 “ 1.
First of all, we need to find the discrete version of the equation (5.8) finding the image of

the maps 𝑥𝑚 𝑑
𝑑𝑥
Ñ 𝐸𝑚 and 𝑥𝑚 𝑑2

𝑑𝑥2 Ñ 𝐻𝑚. Defining

𝐻̂𝑚𝑓ℎp𝜈q :“
ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝑡
𝜈
ℎ
´1𝑒´𝑡

p´ℎ𝑡q𝑚𝑓2p´ℎ𝑡q (5.22)

and
𝐸̂𝑚𝑓ℎp𝜈q :“

ż 8

0

𝑑𝑡

Γp𝜈{ℎq𝑡
𝜈
ℎ
´1𝑒´𝑡

p´ℎ𝑡q𝑚𝑓 1p´ℎ𝑡q, (5.23)

we obtain

𝐻𝑚
p𝑓ℎp𝑥q “ x𝑥𝑚

ℎ

p𝑓ℎp𝑥´𝑚ℎq ´ 2 p𝑓ℎp𝑥´ p𝑚´ 1qℎq ` p𝑓ℎp𝑥´ p𝑚´ 2qℎq
ℎ2 (5.24)
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and
𝐸𝑚

p𝑓ℎp𝑥q “ x𝑥𝑚
ℎ

p𝑓ℎp𝑥´ p𝑚´ 1qℎq ´ p𝑓ℎp𝑥´𝑚ℎq

ℎ
. (5.25)

Then, the discrete version of (5.8) will be

9𝐹𝑀𝑖
p𝑡q “

𝑘2
𝑖

2 𝑀
2p1´𝑠q
𝑖´1

y𝑀2𝑠
𝑖

“

𝐹𝑀𝑖´2𝑠p𝑡q ´ 2𝐹𝑀𝑖´p2𝑠´1qp𝑡q ` 𝐹𝑀𝑖´2p𝑠´1qp𝑡q
‰

` 𝛾𝑖t𝑀𝑖r𝐹𝑀𝑖
p𝑡q ´ 𝐹𝑀𝑖´1p𝑡qs ´𝑀𝑖´1p𝐹𝑀𝑖`1p𝑡q ´ 𝐹𝑀𝑖

p𝑡qqu

` p2𝑠q𝑘2
𝑖𝑀

2p1´𝑠q
𝑖´1

{𝑀2𝑠´1
𝑖 r𝐹𝑀𝑖´2p𝑠´1qp𝑡q ´ 𝐹𝑀𝑖´p2𝑠´1qp𝑡qs

` r𝛾𝑖 ` p2𝑠qp2𝑠´ 1q𝑘
2
𝑖

2 𝑀
2p1´𝑠q
𝑖´1 𝑀

2p𝑠´1q
𝑖 s𝐹𝑀𝑖

p𝑡q,

(5.26)

for ℎ “ 1, 𝑀𝑖 “ 0, 1, 2, . . . and x𝑀 𝑟
𝑖 “

Γp𝑀𝑖`1q
Γp𝑀𝑖´𝑟`1q .

5.2.0.1 Case 𝑠 “ 1
2

For 𝑠 “ 1
2 , (5.26) becomes

9𝐹𝑀𝑖
p𝜏q “ p𝑀𝑖`2´𝛽𝑖q𝐹𝑀𝑖`1p𝜏q`𝑢𝑖𝑀𝑖𝐹𝑀𝑖´1p𝜏q´rp𝑢𝑖`1q𝑀𝑖`𝑢𝑖`1´𝛽𝑖s𝐹𝑀𝑖

p𝜏q, (5.27)

where 𝑢𝑖 “ 1´ 𝛽𝑖

𝑀𝑖´1
“ 1´ 2 𝛾𝑖

𝑘2
𝑖 𝑀𝑖´1

and 𝜏 “ 𝑘2
𝑖 𝑀𝑖´1

2 𝑡. That is just the discrete version of the
equation (5.15), which is the master equation with stationary solution given by the negative
binomial distribution. In fact, the discrete version of (5.9) is given by the negative binomial
distribution

𝐹𝑠“ 1
2
p𝑀𝑖 |𝑀𝑖´1q “

ˆ

𝑀𝑖

𝑀𝑖 ` 1´ 𝛽𝑖

˙

p1´ 𝑢𝑖q
𝛽𝑖𝑢𝑀𝑖`1´𝛽𝑖

𝑖 , (5.28)

which satisfies the equation above. As mentioned in section 4.4, the F-P equation associated
with the Pauli master equation is a particular case of the gamma distribution F-P equation
(5.15). We note that for 𝛽𝑖 “ 1 (5.28) becomes the Pauli distribution, confirming the previous
observation.

Been confirmed that our theory is consistent in the stationary case, we try to obtain the
out of equilibrium solution of the master equation (5.27). To obtain that solution we just need
to obtain the discrete version of (5.19) in the 𝜖𝑖-dependence, which means, obtain the discrete
version of

𝑓p𝑥q “ Λ𝑒´𝐶𝑥𝑥
𝛽𝑖´1

2 𝐼𝛽𝑖´1p
?
𝜆2𝑥q, (5.29)

with
Λ ”

𝐶 exp
 

´𝐶𝜖𝑖p𝑡0q𝑒
´𝛾p𝑡´𝑡0q

(

r𝜖𝑖p𝑡0q𝑒´𝛾p𝑡´𝑡0qs
𝛽𝑖´1

2
,
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𝜆 ” 2𝐶
b

𝑒´𝛾𝑖p𝑡´𝑡0q𝜖𝑖p𝑡0q

and 𝑥 “ 𝜖𝑖p𝑡q.
From the mimetic map,

𝑓ℎp𝜈q “

ż 8

0

𝑑𝑡

Γp 𝜈
ℎ
q
𝑒´𝑡𝑡

𝜈
ℎ
´1𝑒𝐶ℎ𝑡

p´ℎ𝑡q
𝛽𝑖´1

2 𝐼𝛽𝑖´1p𝑖
?
ℎ𝜆2𝑡q. (5.30)

Using the identities
𝐼𝛼p𝑧q “ 𝑖´𝛼𝐽𝛼p𝑖𝑧q, (5.31a)

𝐽𝛼p´𝑧q “ p´1q𝛼𝐽𝛼p𝑧q (5.31b)

and (ERDéLYI, 1953)
𝐺1,0

0,2

”

´´
𝑎,𝑏 |

𝑧

4

ı

“

´𝑧

4

¯
𝑎`𝑏

2
𝐽𝑎´𝑏p𝑧

1{2
q, (5.32a)

ż 8

0
𝑒´𝜔𝑥𝑥´𝛼𝐺𝑚,𝑛

𝑝,𝑞

“

𝑎⃗
𝑏⃗
| 𝜂𝑥

‰

𝑑𝑥 “ 𝜔𝛼´1𝐺𝑚,𝑛`1
𝑝`1,𝑞

”

𝛼,t𝑎𝑝u

𝑏⃗
|
𝜂

𝜔

ı

, (5.32b)

we have

𝑓ℎp𝜈q “
Λp´ℎq

𝛽𝑖´1
2

Γp 𝜈
ℎ
q

𝑖𝛽𝑖´1
ˆ

ℎ𝜆2

4

˙´
𝛽𝑖´1

2
ż 8

0

𝑑𝑡

Γp 𝜈
ℎ
q
𝑒´p1´𝐶ℎq𝑡𝑡

𝜈
ℎ
´1𝐺1,0

0,2

„

´´´
𝛽𝑖´1,0 |

ℎ𝜆2

4 𝑡



“
p´1q𝛽𝑖´1Λ

Γp 𝜈
ℎ
q

ˆ

2
𝜆

˙𝛽𝑖´1

𝐺1,1
1,2

„

1´ 𝜈
ℎ

𝛽𝑖´1,0 |
ℎ𝜆2

4p1´ 𝐶ℎq



.

(5.33)

And from (ERDéLYI, 1953)

𝐺1,1
1,2

“

𝑎
𝑏,0 | 𝑥

‰

“
Γp1` 𝑏´ 𝑎q

Γp1` 𝑏q 𝑥𝑏
1𝐹1p1` 𝑏´ 𝑎; 1` 𝑏;´𝑥q, (5.34)

turns out that the discrete version of (5.29) is

𝑓ℎp𝑥q “
ℎ𝛽𝑖´1Λ
Γp𝛽𝑖q

Γp𝑥
ℎ
` 1q

Γp𝑥
ℎ
` 2´ 𝛽𝑖q

ˆ

𝜆

2

˙𝛽𝑖´1

p1´ 𝐶ℎq 𝑥
ℎ
`1´𝛽𝑖

1𝐹1

ˆ

𝛽𝑖 ´ 1´ 𝑥

ℎ
; 𝛽𝑖;

ℎ𝜆2

4p𝐶ℎ´ 1q

˙

.

(5.35)
And thus, the discrete version of (5.19) is

𝐹 p𝑀𝑖p𝑡q, 𝑡;𝑀𝑖0, 𝑡0 |𝑀𝑖´1q “

ˆ

𝑀𝑖

𝑀𝑖 ´ 𝛽𝑖 ` 1

˙

𝑒´𝐶p𝑡,𝑡0q𝑀𝑖0𝑒´𝛾p𝑡´𝑡0q𝐶p𝑡, 𝑡0q
𝛽𝑖p1´ 𝐶p𝑡, 𝑡0qq𝑀𝑖´𝛽𝑖`1

¨

¨ 1𝐹1

ˆ

𝛽𝑖 ´ 1´𝑀𝑖; 𝛽𝑖;
𝐶p𝑡, 𝑡0q

2

4p𝐶p𝑡, 𝑡0q ´ 1q𝑒
´𝛾p𝑡´𝑡0q𝑀𝑖0

˙

,

(5.36)
where 𝑀𝑖0 “𝑀𝑖p𝑡0q, 1𝐹1p𝛼; 𝛽;𝑥q is the confluent hypergeometric function and now

𝐶p𝑡, 𝑡0q “
𝛽𝑖{𝑀𝑖´1

1´ 𝑒´𝛾p𝑡´𝑡0q
“

1´ 𝑢𝑖

1´ 𝑒´𝛾p𝑡´𝑡0q
.
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As a matter of fact, in the limit 𝑡Ñ 8, we recover the result of (5.28).
Now only remains to confirm if such solution satisfy the master equation (5.27). Due the

complexity of such expression, show it analytically is a bit cumbersome, so we choose to show
it numerically. Note that from the definition of a conditional probability the master equation
(5.27) is the same for 𝐹 p𝑀𝑖p𝑡q, 𝑡;𝑀𝑖0, 𝑡0 |𝑀𝑖´1q.

The derivative of (5.36) is

9𝐹 p𝑀𝑖p𝑡q, 𝑡;𝑀𝑖0, 𝑡0 |𝑀𝑖´1q “
`

𝑀𝑖

𝑀𝑖´𝛽𝑖`1

˘

𝑒´𝐶𝑀𝑖0𝑒´𝛾p𝑡´𝑡0q𝐶𝛽𝑖p1´ 𝐶q𝑀𝑖´𝛽𝑖`1¨

¨

!

𝛽𝑖´𝑀𝑖´1
𝛽𝑖

9𝑥1𝐹1p𝛽𝑖 ´𝑀𝑖; 𝛽𝑖 ` 1;𝑥q `
”

𝑀𝑖0p𝛾𝐶 ´ 9𝐶q𝑒´𝛾p𝑡´𝑡0q

`𝛽𝑖
9𝐶

𝐶
` p𝑀𝑖 ` 1´ 𝛽𝑖q

9𝐶
𝐶´1

ı

1𝐹1p𝛽𝑖 ´𝑀𝑖 ´ 1; 𝛽𝑖;𝑥q
)

,

(5.37)

with 𝑥 “ 𝐶2𝑒´𝛾p𝑡´𝑡0q

𝐶´1 𝑀𝑖0, 9𝑥 “ 𝐶𝑒´𝛾p𝑡´𝑡0q

𝐶´1

´

2 9𝐶 ´ 𝐶 9𝐶
𝐶´1 ´ 𝛾𝐶

¯

𝑀𝑖0 and 9𝐶 “
´𝛾p1´𝑢q𝑒´𝛾p𝑡´𝑡0q

r1´𝑒´𝛾p𝑡´𝑡0qs2
.

Also, denote the right hand side of (5.27) as

𝑔p𝑀𝑖, 𝑡q “
𝑘2

𝑖𝑀𝑖´1

2 rp𝑀𝑖 ` 2´ 𝛽𝑖q𝐹 p𝑀𝑖 ` 1, 𝑡;𝑀𝑖0 |𝑀𝑖´1q ` 𝑢𝑖𝑀𝑖𝐹 p𝑀𝑖 ´ 1, 𝑡;𝑀𝑖0 |𝑀𝑖´1q

´rp𝑢𝑖 ` 1q𝑀𝑖 ` 𝑢𝑖 ` 1´ 𝛽𝑖s𝐹 p𝑀𝑖, 𝑡;𝑀𝑖0 |𝑀𝑖´1qs

(5.38)
We can see in figure 8 that comparing the time evolution of these expressions, we have an

excellent agreement, which deviation is of order of 10´15.

Figure 8 – Numerical confirmation of the solution (5.36) with 𝑀𝑖 “ 10, 𝑀𝑖0 “ 1, 𝑀𝑖´1 “ 6,
𝛾𝑖 “ 1, 𝑘𝑖 “

?
2 and 𝛽𝑖 “ 1.

Source: the author (2021).
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5.2.0.2 Case 𝑠 “ 1

For 𝑠 “ 1, the F-P equation is

B𝑡ℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1q “ 𝛾𝑖B𝑖 rp𝜖𝑖 ´ 𝜖𝑖´1qℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1qs `
𝑘2

𝑖

2 B
2
𝑖

“

𝜖2
𝑖 ℱp𝜖𝑖p𝑡q, 𝑡|𝜖𝑖´1q

‰

. (5.39)

And from (5.26), its discrete version is

9𝐹𝑀𝑖
p𝜏q “ ´ r2𝑀𝑖p𝑀𝑖 ´ 1q ` p𝛽𝑖 ` 4q𝑀𝑖s𝐹𝑀𝑖´1p𝜏q ´ 𝛽𝑖𝑀𝑖´1𝐹𝑀𝑖`1p𝜏q

` r𝑀𝑖p𝑀𝑖 ´ 1q ` 𝛽𝑖p𝑀𝑖 `𝑀𝑖´1 ` 1q ` 2p2𝑀𝑖 ` 1qs𝐹𝑀𝑖
p𝜏q

`𝑀𝑖p𝑀𝑖 ´ 1q𝐹𝑀𝑖´2p𝜏q.

(5.40)

It is not trivial to find the stationary solution of such equation by inspection, as was done
before. So, we obtain the discrete version of the inverse-gamma distribution (5.10), which we
expect to be the stationary solution of (5.40). From (5.10), we have

𝐹𝑠“1p𝑀𝑖 |𝑀𝑖´1q “ lim 𝜈Ñ´𝑀𝑖
𝜖𝑖´1Ñ𝑀𝑖´1

ℎÑ1

p𝛽𝑖𝜖𝑖´1q𝛽𝑖`1

Γp𝛽𝑖`1q

ş8

0
𝑑𝑡

Γp𝜈{ℎq𝑒
´𝑡𝑡

𝜈
ℎ
´1p´ℎ𝑡q´p𝛽𝑖`2q𝑒

𝛽𝑖𝜖𝑖´1
ℎ𝑡 . (5.41)

To solve the integral appearing in (5.41) we make use of the Meijer G-function relations.
Consider the following identities of the G-function:

𝑒𝑧
“ 𝐺1,0

0,1
“

´
0 | ´𝑧

‰

, (5.42a)

𝐺𝑚,𝑛
𝑝,𝑞

”

t𝑎𝑝u

t𝑏𝑞u
| 𝑧
ı

“ 𝐺𝑛,𝑚
𝑞,𝑝

”

t1´𝑏𝑞u

t1´𝑎𝑝u
| 𝑧´1

ı

(5.42b)

and
ż 8

0
𝑒´𝜔𝑥𝑥´𝛼𝐺𝑚,𝑛

𝑝,𝑞

“

𝑎⃗
𝑏⃗
| 𝜂𝑥

‰

𝑑𝑥 “ 𝜔𝛼´1𝐺𝑚,𝑛`1
𝑝`1,𝑞

”

𝛼,t𝑎𝑝u

𝑏⃗
|
𝜂

𝜔

ı

. (5.42c)

With that we can rewrite (5.41) as

𝐹𝑠“1p𝑀𝑖 |𝑀𝑖´1q “ lim 𝜈Ñ´𝑀𝑖
𝜖𝑖Ñ𝑀𝑖´1

ℎÑ1

p𝛽𝑖𝜖𝑖´1q𝛽𝑖`1

Γp𝛽𝑖`1q
p´ℎq´p𝛽𝑖`2q

Γp 𝜈
ℎq

𝐺0,1
2,0

”

´ 𝜈
ℎ
`𝛽𝑖`3,1

´´´´´´ | ´ℎ
𝛽𝑖𝜖𝑖´1

ı

(5.43)

or
𝐹𝑠“1p𝑀𝑖 |𝑀𝑖´1q “ p𝛽𝑖𝑀𝑖´1q

𝛽𝑖`1 Γp𝑀𝑖 ` 1q
Γp𝛽𝑖 ` 1q 𝐺

0,1
2,0

„

𝑀𝑖`𝛽𝑖`3,1
´´´´´´ |

1
𝛽𝑖𝑀𝑖´1



. (5.44)

One can easily check, in a similar manner as was done for the case 𝑠 “ 1
2 , that (5.44) satisfy

(5.40) as its stationary solution.
With this results, we can see that a discrete version of continuous stochastic processes

in terms of discrete stochastic processes can be constructed using the mimetic map in the
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probabilistic description of such processes. What is done here for the H theory can be exploited
in other stochastic models, as it will be done in the next chapter with stochastic epidemic
models.

5.3 DISCRETE H THEORY FOR THE OBSERVABLE VARIABLE

The description of the H theory involves probability distributions that does not satisfy
the central limit theorem, which clearly can be seen by the distributions found describing
the background and observable variables in section 5.1. Here we show how such distributions
emerge by constructing a discrete H theory for the observable variable for the case 𝑠 “ 1

2

(MACêDO, 2020) using the construction use to prove the CLT.
Consider the procedure done to verify that the Pauli distribution violates the CLT in

subsection 4.2.2, but now for its generalization, the negative binomial distribution

𝑃𝑁 “

ˆ

𝑁 ` 𝜈 ´ 1
𝑁

˙

𝑎𝑁

p1` 𝑎q𝑁`𝜈
; 𝜈 ě 1. (5.45)

The probability generating function (4.43) associated with it is

𝐹 p𝑧q “
1

r1´ 𝑎p𝑧 ´ 1qs𝜈 , (5.46)

which gives the mean x𝑁y “ 𝜈𝑎. Such a mean diverges if 𝜈 is large, violating the CLT. As
mentioned in subsection 4.2.1, the averaged characteristic function can be obtained from 𝐹 p𝑧q

by analogy, changing 𝑧 by Φp𝑘q. Then,

𝜒𝑌 p𝑘q “
1

r1´ 𝑎pΦp𝑘q ´ 1qs𝜈 «
1

r1` 𝜎2𝑘2

2𝜈
s𝜈
, (5.47)

for Φp𝑘q « 1 ´ 𝜎2

2x𝑁y𝑘
2 and 𝑌 “

ř𝑛
𝑖“1 𝑍𝑖 with 𝑍𝑖 “

𝑁𝑖´x𝑁y?
x𝑁y

and 𝑁𝑖 following the negative
binomial distribution. Then, using

𝒫𝑌 p𝑦q “

ż

𝑑𝑘

2𝜋𝑒
´𝑖𝑘𝑦𝜒𝑌 p𝑘q,

and the identities (GRADSHTEYN; RYZHIK, 2007)
ż 8

´8

𝑒´𝑖𝑘𝑦
`

1` 𝛼2𝑘2˘´𝜈
𝑑𝑘 “

2 3
2´𝜈
?
𝜋

Γp𝜈q
𝑦𝜈´ 1

2

𝛼𝜈` 1
2
𝐾 1

2´𝜈

´ 𝑦

𝛼

¯

(5.48)

and (ERDéLYI, 1953)
𝐺2,0

0,2
“

´
𝑎,𝑏 | 𝑥

‰

“ 2𝑥 1
2 p𝑎`𝑏q𝐾𝑎´𝑏p2

?
𝑥q. (5.49)
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we obtain
𝒫𝑌 p𝑦q “

c

𝜈

2𝜋𝜎2
1

Γp𝜈q𝐺
2,0
0,2

„

´´´

0,𝜈´ 1
2
|
𝜈𝑦2

2𝜎2



, (5.50)

confirming the violation of the CLT.
Comparing the result above with the expression in (5.13) with 𝑛 “ 1, we see those

are identical, apart of a change of parameters. So the discrete variables which compose the
observable 𝑋 in the case 𝑛 “ 1, in the CLT sense, follow the negative binomial distribution.
Starting from the PDF (5.13) and performing the inverse procedure, we can generalize it for
any scale 𝑛.

Consider the probability distribution of 𝑋 for the case 𝑠 “ 1
2 , given in (5.13). From

𝜒𝑋p𝑘q “ 2
ż 8

0
cosp𝑘𝑥q𝒫𝑛p𝑥q𝑑𝑥

we get the associated averaged characteristic function. To do so, we rewrite it using (5.3) and
the identities

ż 8

0
𝑒´𝜆𝑥𝑥´𝛼𝐺𝑚,𝑛

𝑝,𝑞

“

𝑎⃗
𝑏⃗
| 𝜂𝑥

‰

𝑑𝑥 “ 𝜆𝛼´1𝐺𝑛`1,𝑚
𝑞,𝑝`1

„

1⃗ ⃗́𝑏
1´𝛼,⃗1´𝑎⃗

|
𝜆

𝜂



(5.51)

and
𝑥𝜎𝐺𝑚,𝑛

𝑝,𝑞

“

𝑎⃗
𝑏⃗
| 𝑥

‰

“ 𝐺𝑚,𝑛
𝑝,𝑞

”

𝑎⃗`𝜎⃗

𝜎𝑏⃗
| 𝑥

ı

, (5.52)

to obtain
𝜒𝑋p𝑘q “

c

𝜔

2𝜋𝜖0

1
Γp𝛽q

𝐺1,𝑛
𝑛,1

”

1⃗´𝛽
0 |

𝜖0

2𝜔𝑘
2
ı

. (5.53)

Using the identity
1

Γp𝜈q𝐺
1,1
1,1

“1´𝜈
0 | 𝑥

‰

“ p1` 𝑥q´𝜈 , (5.54)

for 𝑛 “ 1, we have the same expression of (5.47) for the negative binomial distribution, if we
change

𝜔

𝜖0
Ñ

𝜈

𝜎2

with 𝜈 “
ś𝑛

𝑗“1 𝜈𝑗, and 𝛽 Ñ 𝜈⃗. In that case we get

𝜒𝑋p𝑘q «

c

𝜈

2𝜋𝜎2
1

Γp𝜈⃗q𝐺
1,𝑛
𝑛,1

”

1⃗´𝜈⃗
0 | ´𝑎pΦp𝑘q ´ 1q

ı

. (5.55)

Thus changing Φp𝑘q by 𝑧, we obtain

𝐹 p𝑧q “

c

𝜈

2𝜋𝜎2
1

Γp𝜈⃗q𝐺
1,𝑛
𝑛,1

”

1⃗´𝜈⃗
0 | 𝑎p1´ 𝑧q

ı

. (5.56)
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And using
𝐺1,𝑝

𝑝,𝑞`1

”

1⃗´𝑎⃗

0,⃗1 ⃗́𝑏
| 𝑧
ı

“

ś𝑝
𝑗“1 Γp𝑎𝑗q

ś𝑞
𝑗“1 Γp𝑏𝑗q

𝑝𝐹𝑞 p⃗𝑎; 𝑏⃗;´𝑥q, (5.57)

we can simplify those as

𝜒𝑋p𝑘q “

c

𝜈

2𝜋𝜎2 𝑛𝐹0 p𝜈⃗; 𝑎pΦp𝑘q ´ 1qq (5.58)

and
𝐹 p𝑧q “

c

𝜈

2𝜋𝜎2 𝑛𝐹0 p𝜈⃗; 𝑎p𝑧 ´ 1qq . (5.59)

With 𝐹 p𝑧q we can now get the probability distribution for the random variable 𝑁 for any
number of scales 𝑛. From (5.56), using

𝐺𝑚,𝑛
𝑝,𝑞

“

𝑎⃗
𝑏⃗
| 𝜆𝑧

‰

“ 𝜆𝑏1
8
ÿ

𝑟“0

p1´ 𝜆q𝑟

𝑟! 𝐺𝑚,𝑛
𝑝,𝑞

”

𝑎⃗
𝑏1`𝑟,𝑏2,...,𝑏𝑞

| 𝑧
ı

, (5.60)

we get

𝑃𝑛p𝑁q “

c

𝜈

2𝜋𝜎2
1

Γp𝜈⃗q𝑁 !𝐺
1,𝑛
𝑛,1

”

1⃗´𝜈⃗
𝑁 | 𝑎

ı

, (5.61)

which is the discrete version of (5.13) in the CLT sense. Also, using the power series of

𝑛𝐹0p𝜈⃗; 𝑎p𝑧 ´ 1qq we get
x𝑁y “ ´

𝑑

𝑑𝑧
𝐹 p1´ 𝑧q

ˇ

ˇ

ˇ

ˇ

𝑧“0
“ 𝑎𝜈. (5.62)

Changing back for the 𝛽 notation, we have

𝑃𝑛p𝑁q “

c

𝜔

2𝜋𝜀0

1
Γp𝛽q𝑁 !

𝐺1,𝑛
𝑛,1

„

1⃗´𝛽
𝑁 |

x𝑁y

𝜔



(5.63a)

with
x𝑁y “ 𝑎𝜔. (5.63b)

That is 𝑟 random variables t𝑁𝑖u
𝑟
𝑖“1 following the above probability distribution are composed

to obtain the observable variable 𝑋 “
ř𝑟

𝑖“1
𝑁𝑖´x𝑁y?

𝑟
which follows the probability distribution

(5.13) of the continuous H theory.
Confirming this result, consider the particular case 𝑛 “ 0. Then,

𝑃0p𝑁q “
1
𝑁 !𝐺

1,0
0,1

“

´
𝑁 | x𝑁y

‰

“
x𝑁y𝑁

𝑁 ! 𝑒´x𝑁y, (5.64)

which is the Poisson distribution. As was seen in 4.2.2, such distribution satisfies the CLT,
converging to the Gaussian distribution, which is the probability distribution of 𝑋 at the large
scale 𝑛 “ 0 (see equation (5.2)). And taking 𝑛 “ 1, we have

𝑃1p𝑁q “

c

𝜔

2𝜋𝜖0

ˆ

𝑁 ` 𝛽 ´ 1
𝑁

˙

𝑎𝑁

p1` 𝑎q𝑁`𝛽
(5.65)
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and x𝑁y “ 𝑎𝛽. Such a distribution violates the CLT as was saw above. In fact, from (5.63b)
and once the 𝛽𝑗 parameters can assume any positive value, we see that only the case 𝑛 “ 0

satisfies the CLT because the mean will be the finite parameter 𝑎.
Thus, with the results presented in this and previous section, we see that a discrete version

of the H theory can be constructed. For 𝑛 “ 0 we recover the Gaussianity assumed for the
large scale and for 𝑛 ą 0 we have the non-Gaussianity observed in the theory and experiments.

Although not clear, may exists a connection between the discretization process in terms
of the mimetic map and in the CLT sense which possibly can be found if a discrete version
of the Ito calculus is constructed, together with a stochastic mimetic map connecting both
continuous and discrete Ito calculus.
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6 EPIDEMIC MODELS

In this chapter we present the SIR stochastic epidemic model as a possible application
of the mimetic map in stochastic models used to model disease outbreaks. Here we present
how the three stochastic approaches can be directly connected using the mimetic map and
the discrete calculus in a similar as was done for the H theory in the previous chapter. In
the section 6.1, we present the deterministic SIR epidemic model in terms of the Kernack-
McKendrick equations, which describes the epidemic spread in terms of a compartmental Petri
net model. We present how the parameters indicates the existence of an epidemic and in what
conditions the system can reach a disease-free or an endemic equilibrium. Also a parametric
solution of the Kernack-McKendrick equations is presented. In section 6.2 we present how a
stochastic epidemic model can be constructed, starting from the deterministic one, and the
three approaches used to described it. Then we end the chapter showing how these three
approaches can be connected using the discrete calculus and the mimetic map.

6.1 DETERMINISTIC SUSCEPTIBLE-INFECTED-REMOVED (SIR) MODEL

For any transmissive disease the individuals of a population, which are not immune to
the virus (or bacteria) which is causing the disease, are susceptible to acquire it. After the
contamination by the virus, exists a time interval of latency where the virus incubates, and then
becomes active; that is when the individuals is notably infected by the disease. After the time
interval of infection, the individuals could die or be recovered of the disease, becoming immune
to the virus. After some time the immunity of the individual change due to some response
of the body or because the virus suffered a mutation, making the individual susceptible again
and restarting the cycle. An epidemic consists of cycles like this occurring in a large number
of individuals of some population.

Such complicated dynamics could be mathematically modelled by a Petri Net (BAEZ;

BIAMONTE, 2019), which consists of a network describing the dynamics of a general model,
similar to the one above, in terms of compartments. As examples could be the predator-prey
dynamics between animals, a chemical reaction or even the creation-annihilation of quantum
particles. Here we concentrate in the epidemic model described above.

The Petri nets could be mathematically subdivided in two points of views which are the
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rate (deterministic) equations and the master (stochastic) equations, presented previously.
Those points of views are directly related once the deterministic emerges as an averaged limit
of the stochastic one, for a large population.

6.1.1 The Kernack-McKendrick Equations

In 1927 (KERNACK; MCKENDRICK, 1927) was published a mathematical model to describe
the spread of contagious diseases in a population, known as Kernack-McKendrick equations,
which was capable not only to foresee the number of infected and recovered individuals at a
given instant of time but also indicates how many individuals would be recovered at the end
of the epidemic, when all the infected got recovered. Such equations predicted such values
according to numerical parameters associated which describes the intensity of the interaction
between individuals and the individuals reaction to the disease.

If we set 𝑆 as the number of susceptible, 𝐼 as the number of infected, 𝑅 as the number
of recovered and 𝑁 as the number of total individuals of the population, the Kernack-

McKendrick equations (K-M) are given by

9𝑆p𝑡q “ ´
𝛽

𝑁
𝑆p𝑡q𝐼p𝑡q, (6.1a)

9𝐼p𝑡q “
𝛽

𝑁
𝑆p𝑡q𝐼p𝑡q ´ 𝛾𝐼p𝑡q, (6.1b)

9𝑅p𝑡q “ 𝛾𝐼p𝑡q. (6.1c)

Here 𝛽 ą 0 is the Transmission rate, which is inversely proportional to the time of contact
between susceptible and infected individuals, and 𝛾 ą 0 is the Recovery rate, which is
inversely proportional to the time of infection of the infected individual. These constants
indicates the proportion of individuals which pass from one compartment of individuals to the
other, per unit of time.

In that case, the equations in (6.1) describes the dynamics mentioned above, assuming
the time of incubation of the virus is insignificant. Thus, the compartmental description of the
system is also called Susceptible-Infected-Individual (SIR) Model and is represented by
the net scheme of figure 9, or by figure 10 in terms of a Petri net.

The K-M equations can be obtained via the Petri net formalism. Observe figure 10 and
consider a system of 𝑘 compartments and 𝑙 transitions, e.g., infection, recovery, with the
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Figure 9 – SIR compartmental model scheme.

Source: the author (2021).

number of individuals in each compartment given by t𝑥𝑖u
𝑘
𝑖“1. For the 𝑗th transition, 𝑚p𝑗q

𝑖

inputs and 𝑛p𝑗q𝑖 outputs of the 𝑖th compartment occurs with rate 𝑟𝑗 ą 0. Then, the dynamics
of the system is described by ODEs of the form (BAEZ; BIAMONTE, 2019)

𝑑𝑥𝑖

𝑑𝑡
“

𝑙
ÿ

𝑗“1
𝑟𝑗p𝑛

p𝑗q
𝑖 ´𝑚

p𝑗q
𝑖 q𝑥

𝑚
p𝑗q
1

1 . . . 𝑥
𝑚
p𝑗q
𝑘

𝑘 . (6.2)

Such equations are known as Rate Equations In the SIR model the compartments are the
susceptible, infected and recovered individuals and the transitions are the process of infection
and recovery. From the equation above is easy to see that we obtain (6.1) if 𝑟1 “

𝛽
𝑁

and
𝑟2 “ 𝛾, with 𝑥1 “ 𝑆, 𝑥2 “ 𝐼 and 𝑥3 “ 𝑅.

Figure 10 – Petri net scheme of the SIR model.

Source: the author (2021).

For such a system of ODEs have connection with the real world, the initial conditions
should satisfy

𝑆p0q ą 0, 𝐼p0q ą 0 and 𝑅p0q ě 0, (6.3)

otherwise there is no way of a disease spread. Also, observe that summing the equations in
(6.1), we have

9𝑆p𝑡q ` 9𝐼p𝑡q ` 9𝑅p𝑡q “ 0 (6.4)

or just
𝑆p𝑡q ` 𝐼p𝑡q `𝑅p𝑡q “ 𝑐𝑜𝑛𝑠𝑡. “ 𝑁 ; @𝑡 P r0,8q, (6.5)

once the total number of individuals of the population should be the same, since we disregard
the births and deaths of the population in this model. Observe that the equation (6.5) elim-
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inates one of the compartmental variables, say 𝑅p𝑡q, been necessary to solve the differential
equations only for 𝑆p𝑡q and 𝐼p𝑡q.

We can see that the dynamics of the epidemic can be characterized by the values of the rate
parameters. In (6.1b), if 𝑆p0q

𝑁
ą

𝛾
𝛽
, 9𝐼p0q ą 0 ensures that the number of infected will increase,

causing an epidemic. Otherwise, if 𝑆p0q
𝑁
ă

𝛾
𝛽
, 9𝐼p0q ă 0 and the number of infected decreases to

zero monotonically. That impel us to define a quantity, called Basic Reproduction Number,
by

R0 ”
𝛽

𝛾

𝑆p0q
𝑁

, (6.6)

or just
R0 “

𝛽

𝛾
, (6.7)

if we set the initial condition as 𝑆p0q « 𝑁 . Such condition means that a very small number of
infected individuals is inserted on the population at time 𝑡 “ 0, which is what we will consider
from now on. The quantity R0 denotes the average number of second infected cases as a result
of one infected case in a population of only susceptible individuals. Such quantity will be of
great importance as we will see.

However (6.1) have its modelling value, it excludes many feature of a disease transmission
in the real world. For instance, the lost of immunity, the time of incubation or the effect of
vaccination are not taken into account here. Those are elements which can be added to the
scheme in figure 9, see (KEELING; ROHANI, 2008). Thus, we can extend the SIR model a bit
to include birth and death of the population. In that case, the Kernack-McKendrick equations
becomes

9𝑆p𝑡q “ ´
𝛽

𝑁
𝑆p𝑡q𝐼p𝑡q ` 𝜇p𝐼p𝑡q `𝑅p𝑡qq, (6.8a)

9𝐼p𝑡q “
𝛽

𝑁
𝑆p𝑡q𝐼p𝑡q ´ p𝜇` 𝛾q𝐼p𝑡q, (6.8b)

9𝑅p𝑡q “ 𝛾𝐼p𝑡q ´ 𝜇𝑅p𝑡q, (6.8c)

where 𝜇 ą 0 denotes the Birth and Death rates, which are made equal to maintain the total
population size 𝑁 constant, such that 𝑆p𝑡q ` 𝑅p𝑡q ` 𝐼p𝑡q “ 𝑁 . We call it the SIR Model

with birth/death, which possess reproduction number given by

R0 “
𝛽

𝜇` 𝛾

𝑆p0q
𝑁

«
𝛽

𝜇` 𝛾
. (6.9)
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Once the population is constant and the number of susceptibles only decrease, after a long
time an equilibrium should be reached, such that

lim
𝑡Ñ8

p𝑆p𝑡q, 𝐼p𝑡q, 𝑅p𝑡qq “ p𝑆8, 𝐼8, 𝑁 ´ 𝑆8 ´ 𝐼8q (6.10)

and
lim
𝑡Ñ8

p 9𝑆p𝑡q, 9𝐼p𝑡q, 9𝑅p𝑡qq “ p0, 0, 0q. (6.11)

Thus, we can obtain the stationary solutions of the system solving
$

’

’

’

’

’

&

’

’

’

’

’

%

𝛽
𝑁
𝑆8𝐼8 ´ 𝜇p𝐼8 `𝑅8q “ 0

𝛽
𝑁
𝑆8𝐼8 ´ p𝜇` 𝛾q𝐼8 “ 0

𝛾𝐼8 ´ 𝜇𝑅8 “ 0.

(6.12)

It will gives
p𝑆8, 𝐼8, 𝑅8q “ p𝑁, 0, 0q. (6.13)

or
p𝑆8, 𝐼8, 𝑅8q “

ˆ

𝑁

R0
,
𝜇𝑁

𝜇` 𝛾
p1´ R´1

0 q, 𝑁 ´
𝑁

R0
´

𝜇𝑁

𝜇` 𝛾
p1´ R´1

0 q

˙

. (6.14)

The first solution is known as the Disease-free Equilibrium and the second is the Endemic

Equilibrium. Particularly for the second solution, we see that R0 ą 1 once 0 ď 𝑆, 𝐼, 𝑅 ď

𝑁 . Indeed, can be shown (KEELING; ROHANI, 2008) that if R0 ď 1 we have a disease-free
equilibrium and if R0 ą 1 we have an endemic equilibrium.

6.1.2 Parametric Solutions of the Kernack-McKendrick Equations

The SIR and SIR with birth/death models can be easily solved numerically, as can be seen
in figures 11 and 12. To plot the solutions bellow, we rewrite the compartmental variables as

p𝑠p𝑡q, 𝑖p𝑡q, 𝑟p𝑡qq “
1
𝑁
p𝑆p𝑡q, 𝐼p𝑡q, 𝑅p𝑡qq,

turning the equations (6.1) into

9𝑠p𝑡q “ ´𝛽𝑠p𝑡q𝑖p𝑡q, (6.15a)

9𝑖p𝑡q “ 𝛽𝑠p𝑡q𝑖p𝑡q ´ 𝛾𝑖p𝑡q, (6.15b)
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9𝑟p𝑡q “ 𝛾𝑖p𝑡q, (6.15c)

and (6.8) into
9𝑠p𝑡q “ ´𝛽𝑠p𝑡q𝑖p𝑡q ` 𝜇p𝑖p𝑡q ` 𝑟p𝑡qq, (6.16a)

9𝑖p𝑡q “ 𝛽𝑠p𝑡q𝑖p𝑡q ´ p𝜇` 𝛾q𝑖p𝑡q, (6.16b)

9𝑟p𝑡q “ 𝛾𝑖p𝑡q ´ 𝜇𝑟p𝑡q, (6.16c)

with (6.5) becoming 𝑠p𝑡q ` 𝑖p𝑡q ` 𝑟p𝑡q “ 1. Due to the simplicity of those equations, let us
stick with the expressions above until otherwise necessary.

Figure 11 – Numerical solutions for 𝑠p𝑡q (blue), 𝑖p𝑡q (red) and 𝑟p𝑡q (green) of the SIR model.
Left: 𝛽 “ 0.2 and 𝛾 “ 0.2. Middle: 𝛽 “ 0.2 and 𝛾 “ 0.12. Right: 𝛽 “ 0.2,
𝛾 “ 0.05.

Source: the author (2021).

Figure 12 – Numerical solutions for 𝑠p𝑡q (blue), 𝑖p𝑡q (red) and 𝑟p𝑡q (green) of the SIR with
birth/death model, with equal birth and death rates. Left: 𝛽 “ 0.2, 𝛾 “ 0.1 and
𝜇 “ 0.1. Middle: 𝛽 “ 0.2, 𝛾 “ 0.1 and 𝜇 “ 0.02. Right: 𝛽 “ 0.2, 𝛾 “ 0.03 and
𝜇 “ 0.02.

Source: the author (2021).

In figure 11 we observe that a significant number of infected individuals only appears when
R0 ą 1, decreasing fast to zero after some time. Here the value of R0 only influence the
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maximum value of infected individuals. Yet, in figure 12 we see that the increase of R0 affects
the maximum value as well as the final value of infected individuals, causing the endemic
equilibrium when R0 ą 1.

Although numerical solutions have its own value, we can have a better interpretation of
the model by showing how exactly it depends on its parameters (𝛽, 𝛾 and 𝜇). Therefore, we
can decouple the differential equations in (6.1) and (6.8) to solve those analytically, in terms
of independent parameters related to the time variable (HARKO; LOBO; MAK, 2014). Let us
show it first for the SIR model, without birth/death.

Consider the equations (6.1) and (6.5). Deriving (6.1a), we get a term with 9𝑖p𝑡q, allowing
to use (6.1b) to obtain

:𝑠

𝑠
´

ˆ

9𝑠

𝑠

˙2

` 𝛾
9𝑠

𝑠
´ 𝛽 9𝑠 “ 0. (6.17)

And using (6.1a) in (6.1c) we have

9𝑟 “ ´
𝛾

𝛽

9𝑠

𝑠
. (6.18)

Assuming that 𝑟p𝑡q “ 𝑟p𝑠p𝑡qq, we can solve it to obtain

𝑠p𝑡q “ 𝑠p0q𝑒´
𝛽
𝛾

𝑟p𝑡q, (6.19)

with 𝑠p0q “ 𝑒
𝛽
𝛾

𝑟p0q.
Thus, differentiating (6.18) and (6.19) and putting it all in (6.17) we get

:𝑟 “ 𝛽𝑠p0q 9𝑟𝑒´
𝛽
𝛾

𝑟p𝑡q
´ 𝛾 9𝑟. (6.20)

Thus, solving (6.17) we have the solution of (6.15), using (6.19) and 𝑠p𝑡q ` 𝑖p𝑡q ` 𝑟p𝑡q “ 1.
To do that, we make the following change of variables:

𝑢 “ 𝑒´
𝛾
𝛽

𝑟p𝑡q and 𝜉 “
𝑑𝑡

𝑑𝑢
, (6.21)

transforming (6.20) in
𝑑𝜉

𝑑𝑢
`

1
𝑢
𝜉 “ p𝛾 ´ 𝛽𝑠p0q𝑢q𝜉2, (6.22)

which is a Bernoulli differential equation with solution

𝜉p𝑢q “
1

𝑢p𝐶 ´ 𝛾 ln 𝑢` 𝛽𝑠p0q𝑢q , (6.23)

for a constant of integration 𝐶. Then,

𝑡´ 𝑡0 “

ż 𝑢

𝑢0

𝑑𝑢1

𝑢1p𝐶 ´ 𝛾 ln 𝑢1 ` 𝛽𝑠p0q𝑢1q , (6.24)
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where 𝑡0 “ 0 and 𝑢0 “ 𝑢p0q “ 𝑒´
𝛾
𝛽

𝑟p0q.
Thus, solving the above integral we can find the expression 𝑡p𝑢q, or 𝑢p𝑡q, such that

𝑠p𝑡q “ 𝑠p0q𝑢p𝑡q, (6.25a)

𝑖p𝑡q “
𝛾

𝛽
ln 𝑢p𝑡q ´ 𝑠p0q𝑢p𝑡q ` 1, (6.25b)

𝑟p𝑡q “
𝛾

𝛽
ln 𝑢p𝑡q. (6.25c)

Thus we have the parametric analytic solutions for the SIR model in terms of a parameter
𝑢, given by (6.25) together with (6.24). As can be seen comparing figures 13 and 14, the plot
of the parametric solution agrees perfectly with the numeric solution. In this plot the 𝑆p𝑡q,
𝐼p𝑡q and 𝑅p𝑡q has been used again.

Figure 13 – Parametric solutions for S(t) (solid curve), I(t) (dotted curve) and R(t) (dashed
curve) of the SIR model. Here 𝛽 “ 0.01𝑁 “ 0.45 and 𝛾 “ 0.02, and the initial
conditions are 𝑆p0q “ 20, 𝐼p0q “ 15, 𝑅p0q “ 10.

Source: (HARKO; LOBO; MAK, 2014).

A parametric solution can also be obtained for the SIR model with equal birth/death rates.
In that case, what we obtain is the Abel differential equation of first kind given by

𝑑𝑣

𝑑𝜁
“

ˆ

𝑎`
𝑏

𝜁

˙

𝑣3
`

ˆ

𝑐`
𝜇

𝜁

˙

𝑣2, (6.26)

where
𝜁 “ 9𝑟 ` 𝜇𝑟 and 𝑣 “ 𝜁

𝑑𝑡

𝑑𝜁
, (6.27)
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Figure 14 – Numerical solutions for S(t) (blue), I(t) (red) and R(t) (green) of the SIR model.
Here 𝛽 “ 0.01𝑁 “ 0.45 and 𝛾 “ 0.02, and the initial conditions are 𝑆p0q “ 20,
𝐼p0q “ 15, 𝑅p0q “ 10.

Source: the author (2021).

with the constants

𝑎 “ 𝛽

ˆ

𝜇

𝛾
` 1

˙

, 𝑏 “ 𝜇p𝜇` 𝛾 ´ 𝛽𝑁q and 𝑐 “
𝛽

𝛾
. (6.28)

Since the ODE above do not have a closed solution, we approximate it by an iterative
solution. Making the change of variable

Ξ “ ln 𝑣, (6.29)

(6.27) becomes
𝑑Ξ
𝑑𝜁
“

ˆ

𝑎`
𝑏

𝜁

˙

𝑒2Ξ
`

ˆ

𝑐`
𝜇

𝜁

˙

𝑒Ξ. (6.30)

The iterative method consists of expands the factors 𝑒Ξ as

𝑒Ξ
“ 1` Ξ` pΞq

2

2! `
pΞq3

3! ` . . . ,

retain the first order term and obtain the approximated solution Ξ1 of the approximated version
of the differential equation, namely

𝑑Ξ1

𝑑𝜁
“

ˆ

2𝑎` 𝑐` 2𝑏` 𝜇
𝜁

˙

Ξ1 ` 𝑎` 𝑐`
𝑏` 𝜇

𝜁
. (6.31)

After that, one do the same retaining the high order terms and assuming the validity of
the previous order differential equation solution, obtaining in general

𝑑Ξ𝑛

𝑑𝜁
“

ˆ

2𝑎` 𝑐` 2𝑏` 𝜇
𝜁

˙

Ξ𝑛`𝑎`𝑐`
𝑏` 𝜇

𝜁
`

8
ÿ

𝑘“2

„

2𝑘

ˆ

𝑎`
𝑏

𝜁

˙

`

ˆ

𝑐`
𝜇

𝜁

˙

Ξ𝑘
𝑛´1
𝑘! , (6.32)
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for 𝑛 ą 1. The solution for the above differential equation is given by

Ξ𝑛p𝜁q “ Ξ0p𝜁q ` 𝑒
p2𝑎`𝑐q𝜁𝜁2𝑏`𝜇

ż

𝑒´p2𝑎`𝑐q𝜁𝜁´p2𝑏`𝜇q
8
ÿ

𝑘“2

„

2𝑘

ˆ

𝑎`
𝑏

𝜁

˙

`

ˆ

𝑐`
𝜇

𝜁

˙

Ξ𝑘
𝑛´1
𝑘! 𝑑𝜁.

(6.33)
The general solution of (6.30) is obtained taking the limit

Ξp𝜁q “ lim
𝑛Ñ8

Ξ𝑛p𝜁q. (6.34)

With that, the parametric solutions of (6.16) is given by

𝑠p𝜁q “ Λp𝜁q
«

ż 𝜁

1

𝜇𝑒Ξp𝜒qΛp𝜒q
𝜒

𝑑𝜒´

ż 𝛾𝑖p0q

1

𝜇𝑒Ξp𝜒qΛp𝜒q
𝜒

𝑑𝜒` 𝑠p0qΛp𝛾𝑖p0qq
ff

, (6.35a)

𝑖p𝜁q “
𝜁

𝛾
, (6.35b)

𝑟p𝜁q “ Ψp𝜁q´1

«

ż 𝜁

1
𝑒Ξp𝜒qΨp𝜒q𝑑𝜒´

ż 𝛾𝑖p0q

1
𝑒Ξp𝜒qΨp𝜒q𝑑𝜒` 𝑟p0qΨp𝛾𝑖p0qq

ff

(6.35c)

with Λp𝑥q ” 𝑒´
ş𝑥
1

𝑒Ξp𝜂qp𝑐𝜂`𝜇q
𝜂 𝑑𝜂 and Ψp𝑥q ” 𝑒𝜇

ş𝑥
1

𝑒Ψp𝜂q
𝜂

𝑑𝜂.
Therefore, we have analytic parametric solutions for the SIR model with birth/death rates

in terms of the parameter 𝜁, considering the relation (6.27). However, notice how complicated
became the solution just adding the contribution of the birth/death rate 𝜇 to the model,
imposing limits to which situations that kind of solution could be obtained.

In what follows we pass to the stochastic description of the SIR model and how the discrete
calculus could be used to connect the stochastic approaches.

6.2 STOCHASTIC SIR MODEL

In the previous section was presented the deterministic approach for the SIR model, which
well describes the main features of the model. However, such approach gives good results only
when the total size of the population is large, ignoring possible errors in the estimation of the
rates and the possible fluctuations of the compartmental variables (BRITTON, 2010), making
the deterministic approach an idealization. To correct this, we interpret the compartmental
variables not as functions but rather as random variables (ALLEN, 2008).

Although not presented here, the disease-free/endemic equilibrium conditions can also be
described in the stochastic SIR formulation.
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6.2.1 Discrete Time Markov Chain

Consider a discrete stochastic process t𝑋𝑡u𝑡P𝑇 for 𝑇 “ Δ𝑡N0, with Δ𝑡 ă 8, and 𝑋𝑡 P Z.
This stochastic process is defined in such a way that in a time interval Δ𝑡, only the transitions

𝑋𝑡 Ñ 𝑋𝑡`Δ𝑡 “ 𝑋𝑡 ´ 1 , 𝑋𝑡 Ñ 𝑋𝑡`Δ𝑡 “ 𝑋𝑡 or 𝑋𝑡 Ñ 𝑋𝑡`Δ𝑡 “ 𝑋𝑡 ` 1

are allowed. In that case, the probability distribution of 𝑋𝑡 is defined by

𝑃𝑛p𝑡q :“ 𝑃𝑟𝑜𝑏p𝑋𝑡 “ 𝑛q, (6.36)

with conditional probability given by the Markov assumption (4.52)

𝑃 p𝑛1, 𝑡`Δ𝑡|𝑛, 𝑡q “ 𝑃𝑟𝑜𝑏p𝑋𝑡`Δ𝑡 “ 𝑛1|𝑋𝑡 “ 𝑛q, (6.37)

where 𝑛1 can only be 𝑛´1, 𝑛 or 𝑛`1. Such a construction defines a Discrete Time Markov

Chain (DTMC).
Since it is a Markovian process, we can represent the dynamics of the probability distribution

as a law of total probability for a birth-death stochastic process given by

𝑃𝑛p𝑡`Δ𝑡q “ 𝜁𝑛`1Δ𝑡𝑃𝑛`1p𝑡q ` 𝛾𝑛´1Δ𝑡𝑃𝑛´1p𝑡q ` r1´ p𝜁𝑛 ` 𝛾𝑛qΔ𝑡s𝑃𝑛p𝑡q, (6.38)

where the coefficients are proportional to the conditional probabilities by

𝑃 p𝑛1, 𝑡`Δ𝑡|𝑛, 𝑡q “

$

’

’

’

’

’

&

’

’

’

’

’

%

𝛾𝑛Δ𝑡, 𝑛1 “ 𝑛` 1

𝜁𝑛Δ𝑡, 𝑛1 “ 𝑛´ 1

1´ p𝛾𝑛 ` 𝜁𝑛qΔ𝑡, 𝑛1 “ 𝑛.

(6.39)

To accept it, just remember that the coefficients 𝜁 and 𝛾 appearing in the master equations
can be interpreted as probabilities per unit of time, as discussed in subsection 4.4.1.2. And
since the sum of all probabilities is equal to one, the case 𝑛1 “ 𝑛 can only have this form.
Notice that to assure that these probabilities are well defined, Δ𝑡 should be chosen such that

maxtp𝛾𝑛 ` 𝜁𝑛qΔ𝑡u ď 1, @𝑛.

Observe that equation (6.38) can be viewed actually as a difference equation, revealing
that the DTMC can be seen as a discrete case of a differential equation.
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Thus, to construct a DTMC SIR Model we consider the discrete random variables 𝑆𝑡,
𝐼𝑡 and 𝑅𝑡, which represent the number of susceptible, infected and recovered individuals of a
population, respectively. And since the total size of the population 𝑁 is finite, we have

𝑆𝑡, 𝐼𝑡, 𝑅𝑡 P t0, 1, . . . , 𝑁u (6.40)

such that
𝑆𝑡 ` 𝐼𝑡 `𝑅𝑡 “ 𝑁. (6.41)

Which means that the probability distributions can be defined in terms of 𝑆𝑡 and 𝐼𝑡 only, as a
bivariate probability distributions given by

𝑃𝑠,𝑖p𝑡q “ 𝑃𝑟𝑜𝑏p𝑆𝑡 “ 𝑠, 𝐼𝑡 “ 𝑖q (6.42)

and
𝑃 p𝑠1, 𝑖1, 𝑡`Δ𝑡|𝑠, 𝑖, 𝑡q “ 𝑃𝑟𝑜𝑏p𝑆𝑡`Δ𝑡 “ 𝑠1, 𝐼𝑡`Δ𝑡 “ 𝑖1|𝑆𝑡 “ 𝑠, 𝐼𝑡 “ 𝑖q. (6.43)

Then the conditional probabilities are defined by

𝑃 p𝑠1, 𝑖1, 𝑡`Δ𝑡|𝑠, 𝑖, 𝑡q “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

𝛽
𝑁
𝑖𝑠Δ𝑡, p𝑠1, 𝑖1q “ p𝑠´ 1, 𝑖` 1q

𝛾𝑖Δ𝑡, p𝑠1, 𝑖1q “ p𝑠, 𝑖´ 1q

𝜇𝑖Δ𝑡, p𝑠1, 𝑖1q “ p𝑠` 1, 𝑖´ 1q

𝜇p𝑁 ´ 𝑠´ 𝑖qΔ𝑡, p𝑠1, 𝑖1q “ p𝑠` 1, 𝑖q

1´
“

𝛽
𝑁
𝑖𝑠` 𝛾𝑖` 𝜇p𝑁 ´ 𝑠q

‰

Δ𝑡, p𝑠1, 𝑖1q “ p𝑠, 𝑖q

(6.44)

From the Petri nets point of view it is easy to see how those coefficients can be obtained
(BAEZ; BIAMONTE, 2019). Once the rates defined in (6.1) are interpreted as a frequency of
individuals passing from one compartment to the other per unit time, the probability of a
transition can be given by the rate times the time interval Δ𝑡 which the transition occurs
times the total number of ways the transition can occur. For instance, the probability for
the transition p𝑠, 𝑖q Ñ p𝑠 ´ 1, 𝑖 ` 1q occurs is 𝛽

𝑁
Δ𝑡, but it occurs in 𝑆𝐼 ways, once an

infected individual appears from the interaction of one infected and one susceptible. Thus, the
conditional probability is 𝛽

𝑁
𝑆𝐼Δ𝑡. The same reasoning can be followed for the other conditional

probabilities.



119

Then, the dynamics of the probability distribution (6.42) can be described by

𝑃𝑠,𝑖p𝑡`Δ𝑡q “ 𝛽

𝑁
p𝑖´ 1qp𝑠` 1qΔ𝑡𝑃𝑠`1,𝑖´1p𝑡q ` 𝛾p𝑖` 1qΔ𝑡𝑃𝑠,𝑖`1p𝑡q

` 𝜇p𝑖` 1qΔ𝑡𝑃𝑠´1,𝑖`1p𝑡q ` 𝜇p𝑁 ´ 𝑠` 1´ 𝑖qΔ𝑡𝑃𝑠´1,𝑖p𝑡q

`

"

1´
„

𝛽

𝑁
𝑖𝑠` 𝛾𝑖` 𝜇p𝑁 ´ 𝑠q



Δ𝑡
*

𝑃𝑠,𝑖p𝑡q.

(6.45)

In the figure 15 we see how the trajectories of the stochastic process, in average, agree
with the deterministic solution. Also, we see that the discrete random variable makes the
trajectories discontinuous.

Figure 15 – Trajectories of the number of infected individuals of the DTMC SIR model and
solution of the the number of infected individuals of the deterministic SIR model
(dashed curve). Here Δ𝑡 “ 0.01, 𝑁 “ 100, 𝛽 “ 1.0, 𝜇 “ 0 and 𝛾 “ 0.5, with
initial conditions 𝑆0 “ 98, 𝐼0 “ 2 and 𝑅0 “ 0. The reproduction number is
R0 “ 1.96.

Source: (ALLEN, 2008).

6.2.2 Continuous Time Markov Chain

The Continuous Time Markov Chain (CTMC) approach distinguishes from the DTMC
only by the definition of the time variable, defining a discrete stochastic process t𝑋𝑡u𝑡P𝑇 with
𝑇 “ r0,8q, instead of Δ𝑡N0. As a consequence, the conditional probability is defined by

𝑃 p𝑛1, 𝑡𝑗`1|𝑛, 𝑡𝑗q “ 𝑃𝑟𝑜𝑏p𝑋𝑗`1 “ 𝑛1|𝑋𝑗 “ 𝑛q, (6.46)

denoting 𝑋𝑗 “ 𝑋𝑡𝑗
, for a time partition 0 “ 𝑡0 ă 𝑡1 ă . . . ă 𝑡𝑛´1 ă 𝑡𝑛 ă 𝑡𝑛`1 ă . . . . The

difference 𝑡𝑛 ´ 𝑡𝑛´1 “ Δ𝑡, is now assumed to be an infinitesimal quantity. Thus, taking the
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limit of Δ𝑡Ñ 0, the law of total probability becomes a birth-death master equation given by

9𝑃𝑛p𝑡q “ 𝜁𝑛`1𝑃𝑛`1p𝑡q ` 𝛾𝑛´1𝑃𝑛´1p𝑡q ´ p𝜁𝑛 ` 𝛾𝑛q𝑃𝑛p𝑡q, (6.47)

for
9𝑃𝑛p𝑡q “ lim

Δ𝑡Ñ0

𝑃𝑛p𝑡`Δ𝑡q ´ 𝑃𝑛p𝑡q

Δ𝑡 . (6.48)

Now we have the conditional probabilities as infinitesimal quantities given by

𝑃 p𝑛1, 𝑡𝑗`1|𝑛, 𝑡𝑗q “

$

’

’

’

’

’

&

’

’

’

’

’

%

𝛾𝑛Δ𝑡`𝑂pΔ𝑡q, 𝑛1 “ 𝑛` 1

𝜁𝑛Δ𝑡`𝑂pΔ𝑡q, 𝑛1 “ 𝑛´ 1

1´ p𝛾𝑛 ` 𝜁𝑛qΔ𝑡`𝑂pΔ𝑡q, 𝑛1 “ 𝑛;

(6.49)

such that limΔ𝑡Ñ0
𝑂pΔ𝑡q

Δ𝑡
“ 0.

By this approach the stochastic CTMC SIR Model have conditional probabilities given
by

𝑃 p𝑠1, 𝑖1, 𝑡`Δ𝑡|𝑠, 𝑖, 𝑡q “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

𝛽
𝑁
𝑖𝑠Δ𝑡`𝑂pΔ𝑡q, p𝑠1, 𝑖1q “ p𝑠´ 1, 𝑖` 1q

𝛾𝑖Δ𝑡`𝑂pΔ𝑡q, p𝑠1, 𝑖1q “ p𝑠, 𝑖´ 1q

𝜇𝑖Δ𝑡`𝑂pΔ𝑡q, p𝑠1, 𝑖1q “ p𝑠` 1, 𝑖´ 1q

𝜇p𝑁 ´ 𝑠´ 𝑖qΔ𝑡`𝑂pΔ𝑡q, p𝑠1, 𝑖1q “ p𝑠` 1, 𝑖q

1´
“

𝛽
𝑁
𝑖𝑠` 𝛾𝑖` 𝜇p𝑁 ´ 𝑠q

‰

Δ𝑡`𝑂pΔ𝑡q, p𝑠1, 𝑖1q “ p𝑠, 𝑖q;
(6.50)

resulting in the master equation

9𝑃𝑠,𝑖p𝑡q “
𝛽

𝑁
p𝑖´ 1qp𝑠` 1q𝑃𝑠`1,𝑖´1p𝑡q ` 𝛾p𝑖` 1q𝑃𝑠,𝑖`1p𝑡q

` 𝜇p𝑖` 1q𝑃𝑠´1,𝑖`1p𝑡q ` 𝜇p𝑁 ´ 𝑠` 1´ 𝑖q𝑃𝑠´1,𝑖p𝑡q

´

„

𝛽

𝑁
𝑖𝑠` 𝛾𝑖` 𝜇p𝑁 ´ 𝑠q



𝑃𝑠,𝑖p𝑡q.

(6.51)

6.2.3 Stochastic Differential Equations for Epidemic Models

In this last approach we define a SDE of the stochastic process given by t𝑋𝑡u𝑡P𝑇 , for 𝑇 “
r0,8q and 𝑋𝑡 P R, been time and random variable both continuous. Thus, the probabilities
are given by the PDF

𝑃𝑟𝑜𝑏p𝑎 ď 𝑋𝑡 ď 𝑏q “

ż 𝑏

𝑎

𝒫p𝑥, 𝑡q𝑑𝑥 (6.52)
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and the conditional PDF

𝑃𝑟𝑜𝑏p𝑋𝑗`1 ď 𝑥1|𝑋𝑗 ď 𝑥q “

ż 𝑥1

´8

ż 𝑥

´8

𝒫p𝑧, 𝑡𝑗`1|𝑦, 𝑡𝑗q𝑑𝑦𝑑𝑧. (6.53)

To determine the F-P equation satisfied by the PDF above, we deduce the SDE estimating
it by the Euler-Maruyama method (ALLEN, 2017), which is used to solve SDEs numerically,
applied to the CTMC model. Thus, consider the random variable Δ𝑋 “ 𝑋𝑡`Δ𝑡´𝑋𝑡, that has
a Gaussian distribution for small values of Δ𝑡. In the CTMC approach it will possess mean
and variance given by

xΔ𝑋y “ p𝛾𝑛 ´ 𝜁𝑛qΔ𝑡`𝑂pΔ𝑡q (6.54)

and
𝜎2

Δ𝑋 “ p𝛾𝑛 ` 𝜁𝑛qΔ𝑡`𝑂pΔ𝑡q. (6.55)

The Euler-Maruyama method consists in write the SDE of 𝑋𝑡 as (ALLEN, 2017)

Δ𝑋 « xΔ𝑋yΔ𝑡` 𝜎Δ𝑋𝜂
?

Δ𝑡, (6.56)

where 𝜂 is a random variable with normal distribution. In the limit of Δ𝑡Ñ 0, we obtain the
SDE

𝑑𝑋 “ p𝛾p𝑥q ´ 𝜁p𝑥qq𝑑𝑡`
a

p𝛾p𝑥q ` 𝜁p𝑥qq𝑑𝑊 p𝑡q, (6.57)

where 𝛾𝑛 and 𝜁𝑛 became 𝛾p𝑥q and 𝜁p𝑥q, passing from discrete to continuous random variables.
Therefore, we can obtain the F-P equation for 𝒫p𝑥, 𝑡q as

B𝑡𝒫p𝑥, 𝑡q “ ´B𝑥rp𝛾p𝑥q ´ 𝜁p𝑥qq𝒫p𝑥, 𝑡qs `
1
2B

2
𝑥rp𝛾p𝑥q ` 𝜁p𝑥qq𝒫p𝑥, 𝑡qs. (6.58)

To construct a SIR model based in SDEs, we consider a bivariate PDF associated with the
continuous random variables 𝑆𝑡 and 𝐼𝑡, such that

𝑃𝑟𝑜𝑏p𝑠0 ď 𝑆𝑡 ď 𝑠𝑛, 𝑖0 ď 𝐼𝑡 ď 𝑖𝑛q “

ż 𝑠𝑛

𝑠0

ż 𝑖𝑛

𝑖0

𝒫p𝑠, 𝑖, 𝑡q𝑑𝑠𝑑𝑖 (6.59)

with conditional PDF

𝑃𝑟𝑜𝑏p𝑆𝑗`1 ď 𝑠1, 𝐼𝑗`1 ď 𝑖1|𝑆𝑗 ď 𝑠, 𝐼𝑗 ď 𝑖q “

ż 𝑠1

0

ż 𝑖1

0

ż 𝑠

0

ż 𝑖

0
𝒫p𝑥1, 𝑦1, 𝑡𝑗`1|𝑥, 𝑦, 𝑡𝑗q𝑑𝑦𝑑𝑥𝑑𝑦

1𝑑𝑥1.

(6.60)
Now we should have here a pair of SDEs to describe the evolution of the random variables
and, instead of the variance, we need to estimate the covariance matrix. Thus, for the random
vector Δ𝑋⃗ “ pΔ𝑆,Δ𝐼q𝑇 “ p𝑆𝑡`Δ𝑡 ´ 𝑆𝑡, 𝐼𝑡`Δ𝑡 ´ 𝐼𝑡q

𝑇 we have

A

Δ𝑋⃗
E

“

¨

˚

˝

´
𝛽
𝑁
𝑆𝐼 ` 𝜇p𝑁 ´ 𝑆q

𝛽
𝑁
𝑆𝐼 ´ p𝜇` 𝛾q𝐼

˛

‹

‚

Δ𝑡 (6.61)
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and
A

Δ𝑋⃗,Δ𝑋⃗
E

“

¨

˚

˝

𝛽
𝑁
𝑆𝐼 ` 𝜇p𝑁 ´ 𝑆q ´

𝛽
𝑁
𝑆𝐼 ´ 𝜇𝐼

´
𝛽
𝑁
𝑆𝐼 ´ 𝜇𝐼 𝛽

𝑁
𝑆𝐼 ` p𝜇` 𝛾q𝐼

˛

‹

‚

Δ𝑡. (6.62)

The Euler-Maruyama method gives

Δ𝑋⃗ «

A

Δ𝑋⃗
E

` B 𝜂⃗, (6.63)

for the random vector 𝜂⃗ “ p𝜂1, 𝜂2q
𝑇 with normal distributed random variables 𝜂1 and 𝜂2, and

the 2ˆ 2 matrix B satisfying the equation

BB𝑇
“

A

Δ𝑋⃗,Δ𝑋⃗
E

.

Then the SDEs for the SIR model with birth/death are

𝑑𝑆 “

„

´
𝛽

𝑁
𝑆𝐼 ` 𝜇p𝑁 ´ 𝑆q



𝑑𝑡` B11𝑑𝑊1p𝑡q ` B12𝑑𝑊2p𝑡q (6.64)

and
𝑑𝐼 “

„

s
𝛽

𝑁
𝑆𝐼 ´ p𝜇` 𝛾q𝐼



𝑑𝑡` B21𝑑𝑊1p𝑡q ` B22𝑑𝑊2p𝑡q, (6.65)

where 𝑑𝑊1p𝑡q and 𝑑𝑊2p𝑡qq are independent Wiener processes.
Since can be complicated to obtain B for the SIR model with birth/death, we set 𝜇 “ 0

to stick with the SIR model without birth/death. Making easier to obtain the SDEs (ALLEN,
2017)

𝑑𝑆 “ ´
𝛽

𝑁
𝑆𝐼𝑑𝑡´

c

𝛽

𝑁
𝑆𝐼𝑑𝑊1p𝑡q (6.66)

and
𝑑𝐼 “

ˆ

𝛽

𝑁
𝑆𝐼 ´ 𝛾𝐼

˙

𝑑𝑡`

c

𝛽

𝑁
𝑆𝐼𝑑𝑊1p𝑡q ´

a

𝛾𝐼𝑑𝑊2p𝑡q. (6.67)

Using Ito’s formula for 𝑛 random variables (subsection 4.6.2.3), we obtain

B𝑡𝒫p𝑠, 𝑖, 𝑡q “B𝑠

ˆ

𝛽

𝑁
𝑠𝑖𝒫p𝑠, 𝑖, 𝑡q

˙

´ B𝑖

„ˆ

𝛽

𝑁
𝑠𝑖´ 𝛾𝑖

˙

𝒫p𝑠, 𝑖, 𝑡q


`
1
2B

2
𝑠

ˆ

𝛽

𝑁
𝑠𝑖𝒫p𝑠, 𝑖, 𝑡q

˙

`
1
2B

2
𝑖

„ˆ

𝛽

𝑁
𝑠𝑖` 𝛾𝑖

˙

𝒫p𝑠, 𝑖, 𝑡q


´ B𝑠B𝑖

ˆ

𝛽

𝑁
𝑠𝑖𝒫p𝑠, 𝑖, 𝑡q

˙

.

(6.68)

Again, we see in figure 16 how the stochastic trajectories agrees, in average, with the
deterministic solution. Also, observe that the stochastic trajectories are continuous, which
now occurs due to the continuous stochastic variable assumption of the SDE approach.
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Figure 16 – Trajectories of the number of infected individuals of the stochastic differential
equations of the SIR model and solution of the the number of infected individuals
of the deterministic SIR model (dashed curve). Here Δ𝑡 “ 0.01, 𝑁 “ 100,
𝛽 “ 1.0, 𝜇 “ 0 and 𝛾 “ 0.5, with initial conditions 𝑆0 “ 98, 𝐼0 “ 2 and 𝑅0 “ 0.
The reproduction number is R0 “ 1.96.

Source: (ALLEN, 2008).

6.2.4 The Role of Discretization Connecting these Approaches

The dynamics of the DTMC and the CTMC processes are described by the equations (6.38)
and (6.47), respectively. It is easy to see that the transition from one equation to the other
can be done following the same procedure made for the construction of the master equation
on section 4.3. The inverse path can be done if we apply the mimetic map in the term 9𝑃𝑛p𝑡q

of (6.47) to get
9𝑃𝑛p𝑡q Ñ 𝐷Δ

𝑡 𝑃𝑛p𝑡q, (6.69)

with ℎ “ Δ𝑡.
We should expect that a similar procedure can be applied to connect the master equation

of the CTMC and the F-P of the SDE approach. As a matter of fact, (ALLEN, 2008) shows
that (6.47) can be rewritten as

9𝑃𝑛p𝑡q “ ´
rp𝛾𝑛`1 ´ 𝜁𝑛`1q𝑃𝑛`1p𝑡q ´ p𝛾𝑛´1 ´ 𝜁𝑛´1q𝑃𝑛´1p𝑡qs

2Δ𝑛

`
1
2
rp𝛾𝑛`1 ` 𝜁𝑛`1q𝑃𝑛`1p𝑡q ´ 2p𝛾𝑛 ` 𝜁𝑛q𝑃𝑛p𝑡q ` p𝛾𝑛´1 ` 𝜁𝑛´1q𝑃𝑛´1p𝑡qs

pΔ𝑛q2
(6.70)

or, in difference operator notation, as

9𝑃𝑛p𝑡q “ ´ 𝐷𝑛rp𝛾𝑛 ´ 𝜁𝑛q𝑃𝑛p𝑡qs|ℎ“2Δ𝑛 ` 𝐷2
𝑛rp𝛾𝑛 ` 𝜁𝑛q𝑃𝑛p𝑡qs

ˇ

ˇ

ℎ“Δ𝑛
, (6.71)
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where 𝐷𝑥p
p𝑓ℎp𝑥qq

ˇ

ˇ

ˇ

ℎ“Δ𝑥
“

p𝑓Δ𝑥p𝑥`Δ𝑥q´ p𝑓Δ𝑥p𝑥q
Δ𝑥

. Then, taking the limit Δ𝑛Ñ 0, we obtain (6.58).
In that case the sequence 𝑃𝑛p𝑡q becomes the function 𝒫p𝑥, 𝑡q and the coefficients 𝛾𝑛 and 𝜁𝑛

become the functions 𝛾p𝑥q and 𝜁p𝑥q.
Once again, the connection between discrete and continuous stochastic processes is made

possible by the mimetic map and discrete calculus. We observe that if the mimetic map was
directly applied to the F-P equation (6.58) of the SDE approach we would not obtain the
CTMC master equation due to the stochastic terms of the F-P equation, coming from the
stochastic terms of the SDE. It may occurs because the probabilistic feature of the system can
not be captured by the mimetic map, which discretizes the deterministic infinitesimal calculus.
The situation becomes even more complicated if the SDE SIR model is considered once it
involves two random variables with constraints caused by the physical behavior of the system.
This situation could be overcome by the construction of a mimetic map which captures such
feature, a stochastic mimetic map, which would be a generalization of the current mimetic
map.

Such a map would generate a discrete version of the stochastic calculus presented in section
4.6. It would be responsible to map stochastic differential equations onto stochastic difference
equations, allowing the obtainment of the Master equations from those, analogously to the
F-P equations obtained via Ito’s formula.
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7 CONCLUSIONS

The connection between a infinitesimal and a discrete substratum to construct mathe-
matical models of Nature seems of great relevance to narrow the connection between the
mathematical and experimental/numerical descriptions. Thus, it was proposed in this disserta-
tion how it can be achieved via an integral transform, called mimetic map, connecting all the
structure of the infinitesimal calculus with a discrete calculus which preserves such a structure,
presenting applications in mathematics and physical stochastic processes.

In conclusion, we saw along the dissertation that the space of functions can be mapped onto
a space of discrete functions via an integral transform, making it possible to obtain the discrete
h-calculus from the infinitesimal calculus in a very systematic way. With that it was possible not
only to obtain the already known discrete calculus, but also to generalize it providing a direct
connection between functions and differential equations to discrete functions and difference
equations, respectively. It is worth mentioning that only with this systematic procedure it
was possible to obtain discrete versions of the incomplete gamma, the complex confluent
hypergeometric functions and some orthogonal polynomials. Plus, due to the mimetic map
it was shown that it is possible to construct discrete versions of integral transforms, relating
it to already known discrete transforms, like the h-Laplace and the Z transform, and also
obtaining new discrete integral transforms, like the h-Mellin transform. It was also shown that
the sequences and difference equations can be generalized to include steps depending on a
parameter ℎ, where the standard objects appears in the particular case ℎ “ 1. It can be seen
by how the method to solve difference equations via generating function is extended to the
h-generating function.

The application of the mimetic map in the physical context proved to be useful as a tool
to relate discrete and continuous stochastic processes due to the mapping of F-P equations
onto master equations and vice-versa. It was capable to present how the gamma distribution
emerges as a continuum limit of the negative binomial distribution, or more general, it was
possible to construct a discrete version of the description of the background variable of the H
theory described in terms of master equations instead of F-P equations. Motivated by that,
once the central limit theorem consists of a continuum limit of composed discrete random
variables, we could construct a discrete H theory for the observable variable, from where the
standard H theory emerges in the central limit sense. Also, applications of the mimetic map
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in stochastic epidemic models are foreseen once we can move from one of the approaches
(DTMC, CTMC, SDE) to the other via the mimetic map and the discrete calculus.

Therefore the discrete calculus, and specially the mimetic map, provides theoretical and
numerical tools to a deeper understanding of many areas of science. In the numerical tools
context, the discretization procedure provides a new way to look to continuous quantities for
simulations, giving the evolution of a PDF of a continuous variable in terms of a probability
distribution of a discrete one, for instance. Or, equivalently, the numerical solution of a F-P
equation given in terms of the numerical solution of a master equation.

In the discretization via mimetic map of the F-P equations of the case 𝑠 “ 1 (5.39) of
the H theory and of the stochastic epidemic model (6.68) we expected that a birth-death
master equation would be obtained which did not happen (see (6.51)). A possibility is that a
discrete Ito calculus could provide a set of tools to obtain discrete SDEs from the standard
one, associating master equations to those, instead of F-P equations. Such a discrete Ito
calculus could also be used to obtain a discrete version of a stochastic variational method
(KOIDE; KODAMA; TSUSHIMA, 2015), similarly to the discrete variational method mentioned in
the introduction of the dissertation (DESBRUN et al., 2005).

Many applications of the mimetic map will be explored by us in a near future in many
topics of mathematics, as in discrete analogues of mathematical objects such as monodromy
(IWASAKI et al., 1991), the construction of a discrete Clifford algebra (SCHEPPER; SOMMEN;

VOORDE, 2009) and further applications in number theory will be explored, which may lead
to connections with statistical mechanics (KNAUF, 1999). In computational science, useful
algorithms for finite difference methods can be developed or the current ones can be updated.

In physics, we will use it to connect continuum models to lattice models, like the Schramm-
Loewner evolution (CARDY, 2005) and the Hubbard model, it can have applications in the
renormalization group (PANZER, 2015) and the corresponding regularization procedure. Also
some applications in quantum mechanics will be explored, connecting systems described by
continuous observables (continuous eigenvalues) with the ones described by discrete observ-
ables (discrete eigenvalues).
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APPENDIX A – MEIJER AND FOX FUNCTIONS

A.1 DEFINITION OF THE MEIJER G FUNCTION

The Meijer G function is a generalization of the generalized hypergeometric function. We
can define the Fox G-function by the Mellin-Barnes representation as (ERDéLYI, 1953)
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The indices 𝑚,𝑛, 𝑝, 𝑞 are such that 0 ď 𝑚 ď 𝑞 and 0 ď 𝑛 ď 𝑝, the parameters 𝑎𝑗 and 𝑏𝑗

are both real or complex and the contour of integration 𝛾 is choose in such a way the poles
of Γp𝑏𝑗 ` 𝜂q and Γp1´ 𝑎𝑗 ´ 𝜂q are separated from each other. An excellent discussion about
the construction of the Meijer G-function and its relation with the generalized hypergeometric
function can be found in (BEALS; SZMIGIELSKI, 2013).

A.2 DEFINITION OF THE FOX H FUNCTION

The Fox H-function is a generalization of the Meijer G-function. We define the Fox H-
function by the Mellin-Barnes representation as (MATHAI, 2010) (KILBAS, 2004)
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The indices 𝑚,𝑛, 𝑝, 𝑞 are such that 0 ď 𝑚 ď 𝑞 and 0 ď 𝑛 ď 𝑝, just like the Meijer
G-function defined previously. The parameters 𝑎𝑗 and 𝑏𝑗 are both real or complex numbers
and the 𝐴𝑗 and 𝐵𝑗 are real positive numbers. The contour of integration 𝛾 is choose in such
a way the poles of Γp𝑏𝑗 `𝐵𝑗𝜂q and Γp1´ 𝑎𝑗 ´ 𝐴𝑗𝜂q are separated from each other.
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