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ABSTRACT

Multi-access Edge Computing (MEC) and Network Function Virtualization (NFV) emerge
as complementary paradigms that shall support Ultra-reliable Low Latency Communication
(URLLC) by offering fine-grained on-demand distributed resources closer to the User Equip-
ment (UE), thus mitigating physical layer issues. On the other hand, the adoption of the
NFV-MEC inevitably raises deployment and operation costs. We have addressed the combina-
tion of MEC, NFV and dynamic virtual resource allocation in order to overcome the problem
of resource dimensioning in a special scenario were MEC infrastructure is mounted over Un-
manned Aerial Vehicles (UAVs) in the context of URLLC. First, a Continuous-time Markov
Chain (CTMC)-based model was proposed to characterize dynamic virtual resource allocation
in the MEC node together with four performance metrics that are both relevant for URLLC
applications (e.g., reliability and response time) and for service providers (e.g., availability and
power consumption). In order to yield the model more practical, the effect of virtual host
resource failures, setup (repair) times and processing overheads were embedded into the for-
mulation, since they may significantly affect the stringent requirements of URLLC applications.
Moreover, a multi-objective problem related to MEC-enabled UAV node dimensioning in terms
of virtual resources (VMs, containers and buffer positions) was formulated. In this context, the
compromise between on-board computation resources and the URLLC requirements become
a great challenge since UAVs are limited due to their size, weight and power, which imposes a
burden on the conventional Network Functions (NFs). Finally, an approach based on Genetic
Algorithms (GA) was formulated to solve the dimensioning problem, with the proposed scheme
achieving a better tradeoff in terms of availability, reliability, power consumption and response
time compared to the commonly adopted approaches based on the First-fit strategy.

Keywords: multi-access edge computing; network function virtualization; resource allocation.



RESUMO

A Computação de Borda Multiacesso (MEC) e a Virtualização de Funções de Rede (NFV)
surgem como paradigmas complementares que devem suportar a Comunicação de Baixa Latên-
cia Ultraconfiável (URLLC), oferecendo recursos distribuídos sob demanda de forma granular
e mais próximos do Equipamento do Usuário (UE), mitigando assim os problemas da camada
física. Por outro lado, a adoção do NFV-MEC inevitavelmente eleva os custos de implantação
e operação devido a distribuição dos recursos. Abordamos a combinação de MEC, NFV e alo-
cação dinâmica de recursos virtuais para superar o problema de dimensionamento de recursos
em um cenário especial onde a infraestrutura MEC é montada sobre Veículos Aéreos Não Trip-
ulados (UAVs) no contexto de URLLC. Primeiro, um modelo baseado em Cadeias de Markov
de Tempo Contínuo (CTMC) foi proposto para caracterizar a alocação dinâmica de recursos
virtuais no nó MEC juntamente com quatro métricas de desempenho que são relevantes tanto
para aplicações URLLC (por exemplo, confiabilidade e tempo de resposta) quanto para prove-
dores de serviços (por exemplo, disponibilidade e consumo de energia ). Para tornar o modelo
mais prático, o efeito de falhas de recursos de host virtual, tempos de configuração (reparo)
e sobrecargas de processamento foram incorporados à formulação, uma vez que podem afetar
significativamente os requisitos rigorosos de URLLC. Além disso, foi formulado um problema
multiobjetivo relacionado ao dimensionamento de nós UAV habilitados para MEC em termos
de recursos virtuais (VMs, contêineres e posições de buffer). Nesse contexto, o compromisso
entre os recursos computacionais de bordo e os requisitos de URLLC torna-se um grande de-
safio, uma vez que os UAVs são limitados devido ao seu tamanho, peso e potência, o que
impõe um ônus às funções de rede (NFs) convencionais. Por fim, uma abordagem baseada em
Algoritmos Genéticos (GA) foi formulada para resolver o problema de dimensionamento com
os esquemas propostos alcançando um melhor compromisso em termos de disponibilidade,
confiabilidade, consumo de energia e tempo de resposta em comparação com as abordagens
baseadas na estratégia First-fit que é comumente usada por outros autores.

Palavras-chaves: computação de borda multiacesso; virtualização de funções de rede; alo-
cação de recursos.
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1 INTRODUCTION

Mobile communications have experienced dramatic technological changes in short intervals
since the First Generation (1G) and following up until the Fourth Generation (4G). However,
from 1G to 4G the number of end users was generally bounded by the size of a given population
in a region, whereas the Fifth Generation (5G) and future networks focus on both human and
non-human interactions, e.g., inter-machine communications [Arshad and Kashif 2019]. Yet,
this shift is not only related to the increasing amount of traffic, but with a myriad of conflicting
requirements (e.g., reliability and latency) that emerge with a set of applications under the
Ultra-Reliable Low-Latency Communications (URLLC) use case. URLLC is a service category
introduced by the 5G, which is expected to concomitantly deliver end-to-end reliability of up
to 99.999% and packet latencies less than 1ms, often being assigned to critical applications
such as wireless factory automation [Feng et al. 2019].

In this context, Multi-access Edge Computing (MEC) extends the notion of cloud comput-
ing to the customer’s premises, wherein part of the URLLC services would be processed at the
network edge, i.e., physically located close to the user. This allows an application to be hosted
in a private network, directly accessible from the core network, which simplifies the design of
both network and transport layer protocols since the flow and congestion controls are handled
by the application layer, lowering response times and enhancing reliability. On the other hand,
the resources in MEC nodes are limited compared to that in regular datacenters. Thus, the
utilization of these limited resources is usually associated with the concept of Network Func-
tion Virtualization (NFV), which allows network operators to efficiently allocate resources for
Virtual Network Function (VNF) according to the MEC usage [Gundall et al. 2021].

NFV paves the way for the cloudification trend by enabling VNF, i.e., network function (e.g.
Mobility Management Entity) decoupling from dedicated hardware, providing substantial cost
reductions by leveraging the use of physical hardware and allowing seamless elastic resource
provisioning (VNF scaling) [Bi et al. 2019]. Nonetheless, to leverage the advantages of the
joint use of MEC and NFV in the URLLC domain several challenges have to be solved. For
instance, the virtualization layer that supports these technologies are expected to handle VNF
loading and faults without breaking the stringent URLLC requirements. Thus, besides under
and over-provisioning issues that may respectively cause severe Service Level Agreement (SLA)
violations and increased edge costs (e.g., power consumption), another concern resides on
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the URLLC sensibility towards extra delays that can be caused by unexpected faults such
as hardware/software failures and even resource boot, setup or migration delays that usually
depend on the available resources and image size.

Multiple works have compared VMs to containers in the web context but performance
analysis for the mobile MEC-NFV is still in its infancy [Doan et al. 2019]. In general, it is said
that communication software needs to be specifically redesigned for cloud/MEC environments,
specially with regards to URLLC [Pocovi et al. 2018]. Although microservice-based container
is put forward as a natural solution due to their enhanced provisioning, still they are currently
more failure-prone than the stable Virtual Machine (VM) [Li et al. 2017]. Despite the promised
benefits, this research endeavor aims to evaluate the impact of resource allocation in MEC
nodes, taking into account part of the expected burden related to the virtualization layer. In
particular, we have identified that virtual resource failures have been neglected by the literature,
along with VM processing overheads and initialization delays [Ren et al. 2016]. Hence, this
work details the interactions regarding the MEC context and concomitantly addresses dynamic
resource allocation for critical applications such as those in URLLC [Ji et al. 2018].

Moreover, knowing that URLLC is typically prone to dynamic and continuous shifts in de-
vice density, position and services types [Filippou et al. 2020], we provide a node dimensioning
scheme for a particular scenario where the edge servers are mounted over Unmanned Aerial Ve-
hicle (UAV). As opposed to the fixed MEC infrastructure, MEC-enabled UAVs yield a flexible so-
lution to meet the dynamic demands of ultra-dense networks [Islambouli and Sharafeddine 2019].
Owing to the mobility, UAVs enable edge servers/core functions to fly closer to UEs, assuring
the best connectivity conditions towards propagation quality and consequently higher trans-
mission rates and reliability [Li et al. 2019], but is challenged due to the limited resource and
battery life, which leads to the importance of efficient resource dimensioning.

While there has been significant attention paid to latency and energy consumption as-
pects of MEC-enabled UAVs based on trajectory optimisation, computing failure resilience and
resource availability has received far less attention even though these are of paramount impor-
tance for resource dimensioning, especially considering critical applications. Motivated by this
gap, we propose a framework that allows a service provider to optimize a given MEC-enabled
UAV node dimension aiming at maximizing the system’s availability and minimizing power
consumption while also satisfying reliability and latency constraints, offering a complementary
solution to those proposed by previous authors.



19

1.1 OBJECTIVES

The main objective of this work is to address the combination of MEC, NFV and dynamic
virtual resource allocation in the context of URLLC in order to overcome the problem of
resource dimensioning in MEC-enabled UAVs. The following specific aims have been defined
to achieve this objective:

• Identify the main mechanisms/events related to virtualization layer elements that may
affect URLLC application performance.

• Model and validate virtual resource allocation in the MEC-NFV node considering a hybrid
virtualization layer.

• Propose a multi-objective problem in the context of MEC-enabled UAV node dimension-
ing in terms of virtual resources (VMs, containers and buffer positions) for URLLC.

• Propose a scheme to solve the multi-objective problem.

1.2 DOCUMENT ORGANIZATION

This thesis is organized as follows: Chapter 2 examines the technical background, which
includes the key enabling technologies envisioned for future mobile communications namely
MEC and NFV. This chapter also includes an overview on the main mathematical tools used in
this document, namely queueing theory, multi-objective optimization, and Genetic Algorithms
(GA). In Chapter 3, a review of the current literature on the topic of resource allocation for
MEC-NFV is described. It includes the main features of these works and a short classification.
Moreover, in Chapter 4 a single MEC-NFV node is described together with multiple assump-
tions regarding the virtual environment and the proposed analytical formulation that models
these assumptions. Chapter 5 describes some extensions on the model described in Chapter
4 and its validation results. The formulation of the multi-objective problem of resource di-
mensioning is expressed in Chapter 6, which also encompasses the proposed GA-based scheme
for solving it. The simulation and results of the analysis are discussed in the same Chapter.
Finally, Chapter 7 provides our concluding remarks and highlights future work directions.
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2 TECHNICAL BACKGROUND

This Chapter outlines the background and basic concepts for better understanding this
document. It sets out in section 2.1 by addressing the reasons for adopting MEC and NFV in
future mobile communications, and examines some features of these technologies. This section
also illustrates how resource allocation plays a pivotal role in the NFV-MEC environment and
details some of its issues. Next, the basic concepts about queuing theory (section 2.2), multi-
objective optimization (section 2.3) and genetic algorithms (section 2.4) are discussed.

2.1 KEY TECHNOLOGIES FOR A VIRTUALIZED EDGE/CORE

This section presents the concept, characteristics and main functionalities of the main
pieces of technology related to the virtualized edge: MEC and NFV.

2.1.1 Multi-access Edge Computing (MEC)

Next-generation networks are expected to operate at rates up to Tbps and delays lower
than 1ms, e.g., URLLC. In order to achieve such stringent constraints, servers are required to
minimize response time and failures concomitantly and being so, the literature strengthens this
fact by reinforcing the idea of avoiding excessive backhaul delays, with servers being physically
placed closer to the end-user, a phenomenon named as Edge Computing. Two technologies
emerged as candidates: Fog computing and MEC [Khan 2017]. The former is expected to run
at the edge router, while the latter, supported by the European Telecommunications Standards
Institute (ETSI), is expected to run close to base stations. MEC is typically characterized by
the following attributes: (1) physical proximity between server and user, (2) location awareness
and (3) context information. MEC hosts (i.e., small computing infrastructures) are expected
to be deployed on the so called network edges, that is, placed only one or two network hops
away from the users, guaranteeing support to time sensitive applications such as augmented
reality, object recognition and critical data processing.

MEC is said to be mature compared to FoG mainly for two reasons: (1) Some tools have
already been built for its deployment, for instance, Open Source Mano and OpenBaton or-
chestration suites [Kekki and Featherstone 2018]. (2) ETSI has recently updated the reference
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architecture to run MEC entities in a NFV environment (ETSI Group Report MEC 017). Hence,
for now, MEC turns to be the best candidate for URLLC. MEC is not only reasonable for the
end users attached to the edges, but also for the backhaul network, since core decongestion
is a natural side effect.

2.1.2 Network Function Virtualization (NFV)

NFV is a carrier-driven initiative for virtualizing network functions (VNF) e.g. switches,
routers, IDSs and NATs, using virtual machines and/or containers on standard servers instead
of proprietary single-purpose network devices [Zhao et al. 2021]. Two advantages related to
VNFs are (1) the easiness of relocating network functions on different locations, not requiring
new hardware besides reducing operational and (2) task optimization, task scheduling and
resource allocation given a limited amount of available computing resources, as for each service
request that arrives, the required VNF service and/or processing can also differ.

The basic idea is that only one VNF is dedicated to a single request (service on-demand
model). The combined use of NFV and MEC should allow a scalability increase, as it facili-
tates on demand resource scaling. Network Function Virtualization should support the mobile
cloudification trend by enabling mobile network functions, e.g., Mobility Management Entity
(MME) to be decoupled from dedicated hardware [Mijumbi et al. 2016]. According to ETSI,
MEC can use the NFV Infrastructure (NFVI) as the virtualization platform to run mobile edge
applications alongside other VNFs. Therefore, MEC applications also appear as VNFs and
parts of edge orchestration can be delegated to the NFV Orchestration (NFVO).

2.1.3 NFV-MEC Architecture

MEC and NFV can be seen as complementary concepts, especially because their combina-
tion should allow a scalability increase [Kekki and Featherstone 2018], facilitating on demand
resource allocation. The MEC architecture has been designed in such a way that a number
of different deployment options of MEC systems are possible. In this section, we explore the
nuances of a recent architecture proposed by the ETSI that encompasses both MEC and NFV
and furthermore we discuss resource allocation under this new paradigm.

A dedicated Group Report (ETSI GR MEC 017) has recently provided details of MEC
deployment in an NFV environment, which allows MEC application and VNF instantiation
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on the same virtualization infrastructure. Fig. 1 details the entities for both the traditional
MEC and NFV-MEC. The first consists of MEC hosts and the MEC management that are
necessary to run MEC applications within an operator network. The compute, storage, and
network resources are provided by a virtualization infrastructure in the MEC platform. The
MEC platform is the collection of essential functionality required to run MEC applications
on a particular virtualization infrastructure and enable them to provide and consume MEC
services. MEC applications are instantiated on the virtualization infrastructure of the MEC
host based on configuration or requests validated by the MEC management, which comprises
the MEC system level management and the MEC host level management. The MEC system
level management includes the Multi-access edge orchestrator as its main component, which
has an overview of the complete MEC system. Lastly, both MEC platform manager and virtu-
alization infrastructure manager are built in the MEC host level management, which handles
the management of a particular MEC host specific functionality.

Figure 1 – Reference architecture for MEC in NFV

Source: ETSI (2019)

The assumptions for the NFV-MEC are as follows: (1) MEC platform is deployed as a VNF.
(2) MEC applications appear as VNFs towards the ETSI NFV MANO components. (3) The
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virtualization infrastructure is deployed as an NFVI and is managed by a Virtual Infrastruc-
ture Manager (VIM). (4) A MEC platform manager (MEPM-V) delegates the VNF lifecycle
management to one or more VNF managers (VNFM). (5) A MEC application orchestrator
(MEAO) relies on the NFVO for resource orchestration and for orchestration of the set of
MEC application VNFs as one or more network services [Kekki and Featherstone 2018].

2.1.4 Resource Allocation in NFV-MEC

Resource allocation is a complex problem that has been subject of a great deal of effort
since the first network designs. In general, resource allocation accounts for the simple objective
of allocating the minimum amount of assets to support a given performance requirement, often
also being associated to operational cost minimization and scalability. Compared to the tradi-
tional mobile or cloud architecture, resource allocation in the context of future mobile networks
also has to be responsive in order to accommodate workload variations [Zhao et al. 2021].

Resource allocation problems can also be analytically formulated rather than studied in
real environments, allowing greater objective freedom. Due to similar analytical approaches
and objectives, we can cite datacenter VM placement problems [Rochwerger 2009], which
include latency [Alicherry 2012], energy [Beloglazov 2012] and network cost minimization.
These objectives could be achieved in many different ways, e.g. load balancing and data and
end-user locality [Agarwal et al. 2010]. To find optimality, the problem is usually formulated
as NP-hard, so various heuristics to solve the problem have been proposed.

In MEC, the objectives for resource allocation problems can include (1) Round Trip Time
(RTT) [Tong 2016], or (2) cost minimization [Chen 2017], (3) edge resource [Skarlat 2017]
or (4) provider revenue maximization [Guo 2018]. Various constraints can be used in these
different objectives, depending on the relevance for a particular case. For instance, the RTT
minimization objective can take resource capacities [Tan et al. 2017], while the operational
costs can include those due to energy consumption [Huang 2016], which may further depend on
other factors such as edge or the cloud processing, making prices different [Al-Shuwaili 2017].
The system latency and cost may also account for migration and/or reconfiguration costs.
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2.1.5 Edge/Core Failures

Previous sections emphasized the role of MEC and NFV for improved real-time, high-
bandwidth and low-latency access to sensitive applications. The promises of enhanced cost-
benefits have encouraged both market and researches to propose a number of resource alloca-
tion schemes for handling 5G traffic in a similar way to regular traffic in cloud computing envi-
ronments. Unfortunately, many authors simply adapt previous works on that context, assuming
misleading information such as the assumption of failure-proof networks. Indeed, datacenters
promise reliability of up to 99.99999% [Ascierto 2019], which would be quite acceptable even
for 5G standards. There is a widespread belief that virtualization software advances suddenly
made IT services far more resilient, especially when coupled with highly engineered data cen-
ter operations. However, an Uptime Institute survey [Ascierto 2019] shows that failures and
downtimes are still common and possibly even increasing.

According to the Uptime Institute, the “extremely reliable clouds” myth is largely driven by
organization reluctance to report failures, resulting in significant investments and/or assump-
tions without real risk assessments [Ascierto 2019]. The biggest cause of IT service outage is a
data center power outage, closely followed by network problems, and then by an IT system fail-
ure (Fig. 2). Explanations for high outage rates are not clear, but the increased complexity and
interdependencies of different systems and datacenters using complicated management sys-
tems may be increasing the number and impact of failures. Furthermore, the study has found
that failures tend to occur either during technology change periods or non-updated sites. For
the average cost that these failures may cause, there is no standard way for quantifying this
aspect since interdependency and multiple locations make this estimate less reliable.

Figure 2 – Causes of 100 Major Public Outages in Datacenters

Network: 26%

IT systems: 22%

Others: 16%

Power: 36%

Causes of 100 Major Public Outages

Source: Uptime Institute (2018)
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Based on the current cloud scenario, where datacenter’s reliability is far from giving the
promised support to basic internet traffic, many risks have been suppressed by previous authors
that neglected the possibility of edge/core failures on their scaling, resource allocation and even
dimensioning schemes [Ren et al. 2016]. In particular, such risks might severely increase when
the misleading assumptions are propagated towards MEC-like architectures; i.e., if today’s
central clouds with few locations are reported as not fully reliable, even though running over
a mature technology (VM, hypervisors), multiple edge clouds running under newly launched
NFV-MEC architecture are expected to be even less reliable.

2.2 QUEUEING THEORY

Queueing theory is derived from probability theory and its object of study is the phe-
nomenon of waiting in queues. Although the term is often used to describe the queue’s math-
ematical behavior, it may also be applied to models where queues are not allowed to form
[Cooper 1981]. Queueing theory has been widely adopted to study communication features
in the early days of telecommunication but has continually being used for modern proposals.
This section addresses a review on queueing theory and Continuous-Time Markov process.

2.2.1 Concept and Notation

A general queueing system can be usually described in terms of the following:

• The arrival process: an arrival process is generally characterized by a distribution that
describes the amount of costumers that arrive in queue per unit time and the distribu-
tion that describes the times between successive customer arrivals (inter-arrival times)
[Gross et al. 2008]. The most common Markovian arrival process is a Poisson process
where the time between each arrival is exponentially distributed.

• The service time: describes the time a customer spends being served.

• The number of servers: indicates how many servers are considered in the system to
attend the customers.

• The system capacity: this parameter specifies the maximum number of customers allowed
to stay in the system. This includes customers that may be waiting for service (in a buffer)



26

and those customers that are currently being served.

• Population size: is the total amount of customers that can enter the system. This pa-
rameter can be finite or infinite.

• The service discipline: this parameter defines the policy for service order. The most
common disciplines are the First Come, First Served (FCFS), Last Come, First Served
(LCFS) and the Static Priorities (SP). The latter selects customers to be served based
on pre-defined priorities.

• The preemption discipline can be used in conjunction with the LCFS or Static Priorities.
This discipline interrupts or preempts the customer currently being served if there is a
higher priority customer in the queue [Bolch et al. 2006].

Kendall’s notation has been widely used to represent queueing systems. The symbols
A/S/m/N/K/SD are commonly used to describe them, where A indicates the inter-arrival
times distribution, S is the service time distribution, m is the number of servers, N is the
system capacity, K is the population size and SD is the service discipline [Cooper 1981]. The
letter M (Markovian) is used to denote that the inter-arrival times and service times that
are exponentially distributed. A queueing system can also be represented in a shorter version
considering that the system capacity is infinite, the population size is infinite or the service
discipline is First Come, First Served (FCFS).

2.2.2 Types of Queues

The main queueing systems are briefly described as follows:

• M/M/1 queue: Is a single-server queue, widely used to model systems where a single
server provides the service to the customers. In this type of queue, the inter-arrival times
and service times are exponentially distributed, there is no limitations toward either
the population size or the system capacity and the adopted service discipline is FCFS
[Jain 1991]. The number of customers in the system denotes its state and the two main
parameters are the arrival rate of customers and service rate [Gross et al. 2008].

• M/M/m queue: The M/M/m queue is a multi-server model where the arrival rate dis-
tribution is Poisson, the service times have exponential distributions, and there are m
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identical servers, where each one has the same service capacity. In this system, if there
is at least one idle server, the arriving customer is serviced immediately. Otherwise, the
customer may wait in a buffer to be served. The buffer is of infinite size, which implies
that there is no limit on the number of customers it can handle [Jain 1991].

• M/M/m/N queue: This system is similar to the previous (M/M/m), but it has a limited
amount of users denoted by N, that is, the system capacity is limited [Gross et al. 2008].
If m and N have the same value, thus becoming M/M/N/N, it is assumed that the system
has no buffer to hold blocked or interrupted users. Other sources apply a similar notation
to indicate this special case, for instance, the M/M/m/0 (Erlang’s loss system). They
are characterized by m identical servers, Poisson input, Exponential service times, no
waiting positions N = 0 and unlimited number of customers. This means that after the
system reaches full capacity, all new arrivals are blocked. In such cases, the authors use
the effective arrival rate as the difference between the total and the blocked arrival rates.

Moreover, depending on the system to be modeled, a priority discipline can be adopted.
There are prioritized queueing systems in which customers with higher priority are selected for
service ahead of those with lower priorities, regardless of arrival time. Our research takes the
basic M/M/m/N queue with few adaptations in order to cope with the proposed scenarios.
For instance, we assume that waiting jobs are served according to FCFS, however, priority
feedback is allowed when serving jobs suffer failure. We also admit that server resources may
have different provisioning capacities, i.e., their setup times can differ depending on each
scenario. We call this model an M/M/m/N setup/failure queue.

2.2.3 Continuous-Time Markov Process

In probability theory, Continuous-time Markov Chain (CTMC) is a collection of variables
generally indexed by time, which is a continuous quantity. It follows the Markovian property
that future variable distribution is independent of the historical behavior, depending solely on
its current state [Kemeny 1960]. A continuous-time Markov chain (𝑋𝑡)𝑡 ≥ 0 is defined by:

• a finite state space Ω

• a transition rate matrix Q with dimensions equal to that of Ω; and

• an initial state 𝑆 such that 𝑋0 = 𝑆 or a probability distribution for this first state.



28

For 𝑖 ̸= 𝑗, the elements 𝑞𝑖𝑗 are non-negative and describe the rate of the process transitions
from state 𝑖 to state 𝑗. The elements 𝑞𝑖𝑖 could be chosen to be zero, but for mathematical
convenience a common convention is to choose them such that each row of 𝑄 sums to zero.
Most CTMCs properties follow directly from the results about its discrete version, the Poisson
process and the exponential distribution [Norris 1998].

Moreover, the stationary analysis for a CTMC gives the probability distribution to which
the process converges for large values of time units. In brief, a CTMC may be a powerful tool
for forecasting a system’s stationary state probability (𝜋). The stationary distribution is found
by solving 𝜋 𝑄 = 0, subject to the sum of the elements that must equal 1 [Kemeny 1960].

2.3 MULTI-OBJECTIVE OPTIMIZATION

A multi-objective problem is a problem with two or more objectives that need to be op-
timized, i.e., maximized or minimized simultaneously, which are often conflicting with each
other. Hence, multi-objective problems are related to alternative and incremental strategies
that are usually suitable for medium-size or large scale optimization problems. In addition, there
can also be constraints to be satisfied so as to solution to be considered feasible [Deb 2011].

Being 𝐼𝑛𝑓𝑖 and 𝑆𝑢𝑝𝑖 the inferior and superior bounds (decision space) for the decision
variable 𝑥𝑖, and 𝑥 an array of 𝐼 decision variables 𝑥 = [𝑥1, 𝑥2, ...𝑥𝐼 ]𝑇 , a multi-objective problem
can be defined as in (2.1). Please note that 𝑓𝑚 denotes a specific objective that should be
optimized, whereas the inequalities/equality represent constrained functions. Thus, a solution
𝑥 is only feasible if all constraints and limits are satisfied simultaneously.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑚(𝑥)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑥) ≥ 0,

ℎ𝑘(𝑥) = 0,

𝐼𝑛𝑓𝑖 ≤ 𝑥𝑖 ≤ 𝑆𝑢𝑝𝑖

𝑤𝑖𝑡ℎ 𝑚 = 1, 2, ..., 𝑀 𝑗 = 1, 2, ..., 𝐽 𝑘 = 1, 2, ..., 𝐾 𝑎𝑛𝑑 𝑖 = 1, 2, ..., 𝐼

(2.1)

Conflicting objectives are common in this type of problem. In such case, a single solution
that optimizes all objectives is usually not practical. Hence, the concept of dominance may be
employed to find solutions that result in reasonable trade-offs between objectives of problem.
For instance, in the Pareto’s dominance, two feasible solutions are compared to know whether
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one dominates the other. In other words, given two feasible solutions 𝑥 and 𝑦, 𝑥 is said to
dominate 𝑦 if the following are satisfied [Deb 2011]: (1) The solution 𝑥 is no worse than 𝑦 in
all objectives and (2) The solution 𝑥 is strictly better than 𝑦 in at least one objective.

In Pareto dominance-based multi-objective evolutionary algorithms, Pareto dominance can
sometimes not be effective since it may fail to provide adequate selection pressure, to push
convergence in a faster pace [Palakonda and Mallipeddi 2017]. To enhance convergence, mul-
tiple authors have been using the idea of a secondary criterion such as knee points. In this
work, we propose to employ an adapted version of the classical Pareto Dominance (Section
6.3.1), where the solutions are ranked according to the number of individual objectives that
dominate another solution. In particular, we have used equal weights, but different weights
could also have been applied. Besides aiding convergence, this allows better variability, since a
weaker solution may still earn few points and not be given as completely inferior to the other
solution in pair comparison.

2.4 GENETIC ALGORITHMS

Optimization problems can be approached as searching problem where an algorithm is
proposed to search for feasible solutions. Evolutionary algorithms have been utilized to solve
such problems, including multi-objective problems. GA is a search heuristic and optimization
technique inspired by the evolution theory, in which the most adapted individuals are likely
survive and pass on their genes [McCall 2005].

Some characteristics of the GA make its adoption interesting for the problem to be de-
scribed in Chapter 6. Differently from other methods, it handles multiple solutions simultane-
ously at each interaction and evolves them in order to achieve better solutions. Thus, in our
case, many possible resource configurations are evaluated at each interaction.

In general, GA works well in problems with many objectives or constraints. In addition,
GA has been widely adopted in the literature to solve problems in telecommunications and
computer networks. In addition, although the GA and evolutionary algorithms in general have
slow convergence times, we assume that our scheme is adopted for the MEC node dimensioning
phase (see Chapter 6), i.e., before proper operation. In other words, the time to obtain the
resulting set of possible resource configurations is not critical.

In a GA, each candidate solution is denoted as an individual or chromosome and has a
‘fitness’, i.e., a value that expresses its suitability to a given problem [McCall 2005]. During
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its execution, GA tries out a set of solutions (termed population) simultaneously, and creates
new populations out of parts of previous individuals.

A randomly generated initial population is created by the GA within the problem domain.
For each generation, individuals are evaluated and evolved by the use of genetic operators
(e.g. selection, crossover and mutation), in order to find a most suitable solution. After these
are applied, a new population is generated. The process (from evaluation to mutation) is
repeated until the stop criterion has been met. When satisfied, the best individual of the last
population is selected. Generally, this choice is based on the individual’s fitness value. The stop
criterion is a condition that can be the number of generations, variability degree of individuals,
or predefined values for the fitness.

The GA can be expressed in terms of five main components: (1) chromosome encoding, (2)
fitness function, (3) selection, (4) crossover and (5) mutation [McCall 2005]. These standard
general components are described below while our adaptations are detailed in Chapter 6.

2.4.1 Chromosome Encoding and Fitness Function

The chromosome expresses the information contained in the problem, representing candi-
date solutions, i.e., in a chromosome, each position or ‘locus’ is termed a gene and the value
placed in that position is denoted as its ‘allele’ [McCall 2005]. Information can be coded in
multiple forms such as real (decimal base), octal, hexadecimal, or other symbols that differ
from numbers (e.g. alphabet), however, the most common coding option is binary encoding,
which was adopted in this work. In this type of representation, chromosomes are strings of
genes where the allele values assume 0 or 1. The choice of which encoding to adopt must
consider how well it matches the problem. In [Katoch 2020], a number of different encoding
schemes are outlined, as well as the main kinds of problems they are designed to tackle.

The chromosome encoding contains part of the problem’s information, however, much of
the meaning of the problem is encoded in the ‘fitness function’. The fitness function evaluates
the quality of each chromosome, which is denoted as the ‘fitness value’. The fitness function
guides the evolutionary process in accordance with predefined goals and constraints, and thus
exerts a strong influence on the GA’s effectiveness [Silva et al. 2014]. Different fitness functions
can lead to different solutions, although each has its own fitness landscape.
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2.4.2 Selection, Crossover and Mutation Operators

The Selection operator determines which chromosomes will be used for reproduction. There
are multiple types of such operator, e.g., roulette Wheel, sequential, tournament, and dominant
[Kaya 2011], with the first being most widely used. This operator selects individuals based on
their fitness value, i.e., the probability for selection is proportional to the individual’s fitness.
The proportional value is obtained by dividing the each fitness by the sum of all chromosomes’
fitness in the entire population.

Crossover is the process in which chromosomes selected by the selection operator are
combined to form new members. The operation is applied to each pair of chromosomes ac-
cording to a given probability, denoted as crossover probability [McCall 2005]. Once two parent
chromosomes have been selected, a uniformly distributed random number between [0, 1] is
generated and compared to crossover probability; if the number is greater than the crossover
probability, no crossover occurs and one or both parents move unchanged onto the next stage.
Otherwise, proper crossover is applied. Multiple crossover operators have been proposed, e.g.,
one-point, two-point, and uniform [Kaya 2011]. However, some studies have argued that the
uniform crossover outperforms the single and two-point [Syswerda 1989] since it may combine
features regardless of their relative locations.

The uniform crossover operator adopts a crossover mask that indicates how the parents
will be combined to generate the children. It is defined as a binary string and its length is
equal to the chromosomes’ length. For the first child chromosome, if the 𝑖𝑡ℎ bit of the mask
is 0, then the code of the first parent is used in the position 𝑖 of this child. Otherwise, the
code of the second parent is used in this position. For the second child, if the crossover mask
has the bit 0 in the position 𝑖, then the code of the second parent is used in the 𝑖𝑡ℎ position.
Otherwise, the code for this position comes from the first parent [Syswerda 1989].

The mutation operator determines the search directions and avoids convergence to local
optima by inserting diversity in the process [Kaya 2011]. Applied to each individual after the
crossover operator, it alters each position of the chromosome according to a given probability,
denoted as mutation probability. Thus, for each position of the chromosome, a random number
between 0 and 1 is generated according to a uniform probability distribution and compared
to mutation probability. If this value is less than the mutation probability, then the position
suffers mutation. In binary coding, the most used mutation operator flips the chromosome
position value of from 0 to 1 and vice-versa, and it is termed bit mutation.
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2.5 CHAPTER SUMMARY

In this Chapter the main concepts regarding this work were reviewed. First, the concepts
related to multi-access edge computing and virtualization were explained. These will be used
further in multiple chapters to describe the environment in which future mobile networks will
rely in order to fulfill the strict latency and reliability constrains. The concepts on queueing
theory were also addressed. These will be used especially in Chapters 4 and 5 to model the
proposed MEC node environment and derive performance metrics. Multi-objective optimization
was also described in order to assist the formulation of the multi-objective problem of the MEC
node dimensioning that is discussed in Chapter 6. The classical approach of genetic algorithms
was detailed as one of the possibilities to solve the multi-objective problem. Together with the
multiobjective optimization problem, its contents and notation are presented in Chapter 6.

Table 1 – Chapter 2 Summary

Section Goal(s) Output(s)
2.1 KEY TECHNOLO-
GIES FOR A VIRTU-
ALIZED EDGE/CORE

a) Define MEC and NFV concepts; b) Depict
the key components of the NFV-MEC Architec-
ture; c) Explain the Resource Allocation prob-
lem in NFV-MEC; d) Explain why Edge/Core
Failures can impact URLLC.

Definitions of MEC, NFV and description of the
resource allocation in the NFV-MEC context
for URLLC.

2.2 QUEUEING THE-
ORY

a) Explain the concept, notation and types of
queues regarding Queuing Theory; b) Explain
the Continuous-Time Markov Process.

Queueing Theory notations and Continuous-
Time Markov Process used in Chapters 4 and
5

2.3 MULTI-
OBJECTIVE OP-
TIMIZATION

Explain the main concept, notation and exam-
ples of multi-objective problems.

Formal definition of multi-objective problems
discussed in depth in Chapter 6.

2.4 GENETIC ALGO-
RITHMS

Explain GA basic concepts: Chromosome En-
coding, Fitness Function, Selection, Crossover
and Mutation Operators.

Introductory definitions of GA, useful for un-
derstanding part of Chapter 6.

Source: The author (2020)
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3 RELATED WORK

There is no current consensus on the size, computational power, virtualization technology
nor on the best location of MEC nodes [Santoyo-Gonzalez and Cervello-Pastor 2018]. In fact,
MEC has not yet been clearly defined; neither functionally nor physically, and since there
is a lack of real-world data for new service categories (e.g., URLLC), multiple works fail to
provide adequate considerations in order to evaluate MEC-NFV-enabled networks. Performance
analysis of Infrastructure as a Service (IaaS) clouds has drawn considerable attention in the
last decade although most authors considered solely VMs and hypervisors. Recently, container-
based virtualization has been getting momentum due to many strengths over traditional VMs,
but especially for being leveraged by the microservice architecture. This chapter provides an
overview of the main analytical models and optimization schemes proposed in the literature to
deal with virtualization, particularly with regards to MEC-NFV-enabled networks. It seeks to
clarify what already exists in the field and to highlight the main differences from this thesis.

This chapter is structured as follows. In Section 3.1, we discuss the main subcategories of
resource allocation problems in the MEC-NFV context. Section 3.2 describes how each author
interprets and represents the position of edge servers relative to the User Equipment (UE). Fol-
lowing this, Section 3.3 outlines main assumptions regarding the virtual environment that were
taken into consideration in each work. Finally, Section 3.4 details which performance metrics
were adopted by the related works and, a general classification of the works is presented.

3.1 RESOURCE ALLOCATION PROBLEMS

A body of existing works on MEC-related computational resource issues encompasses mul-
tiple classes of problems. The most common can be categorized in resource placement, schedul-
ing, node dimensioning, and Dynamic resource allocation (DRA) [Li et al. 2021].

Placement and scheduling consider applications with two or more components, one typi-
cally running on a cloud (MEC or central cloud) and another on the UE. Regarding this class of
problems, [Yala and Frangoudis 2018] proposed a placement optimization problem and a GA-
based scheme to solve it, considering two conflicting objectives: minimizing access latency and
maximizing service availability. In [Farhadi et al. 2019], the authors consider a dynamic stand-
point, i.e., adaptable data placement to serve time-varying demands, while considering system
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stability and operation costs under communication, computation, and storage constraints.
Edge node dimensioning problems are usually related to the decision on the computational

resource characteristics based on a given traffic load, e.g., the total number of servers, process-
ing capacity, and storage. In [Lee 2019], the authors designed a greedy-based search algorithm
to find the minimum number of MEC servers considering both delay and workload budget. In
[Emara et al. 2021], an analytical model based on queuing theory was proposed together with
an optimization problem to identify the optimal number of virtual resources to maximize the
task execution capacity by means of first fit strategy to solve it.

Lastly, DRA relates to resource provisioning optimization given both the maximum edge
node dimensions and the expected traffic load range, which allows a Service Provider to
adjust the existing computational resources dynamically, usually with regards to the load. In
[Samanta and Tang 2020], a delay and pricing model to supply equitable resources to UEs and
minimize network delay and price was suggested. [Tong et al. 2020] proposed a DRA algorithm
that minimizes the end-to-end delay while ensuring the minimum service rate and maximum
reliability. Another example can be found in [Sarrigiannis et al. 2020], which investigated a
DRA approach accounting to minimize edge SLA violations and maximize the serving users.

In some cases, a single formulation can be applied to multiple problem classes. For instance,
in [Kherraf et al. 2019] the author jointly solves 1) a MEC dimensioning sub-problem, 2) an
application placement sub-problem, and 3) a workload assignment sub-problem. Besides, other
works propose performance analysis in order to provide guidelines for the design of a specific
service class as in [Ma et al. 2021], where the authors provide a general formulation based on
Stochastic Network Calculus (SNC) but takes the 3GPP standard for URLLC into account
when selecting simulation parameters. The main purpose of these types of work is to verify
how the parameters interact (e.g., Arrival and Service Rate), however, [Ma et al. 2021] goes
further and investigates delay and MEC node dimension optimizations.

Similar to [Ma et al. 2021], in this work the performance analysis of the proposed CTMC-
based model is the largest contribution. Besides, we take the 3GPP standard for URLLC
into account when selecting simulation parameters to explore their relationship. However, we
also formulate a multiobjective problem related to MEC node dimensioning which is similar
to [Emara et al. 2021], but instead of the first fit, a GA-based scheme is adopted. Table 2
summarizes the related work contributions in terms of resource allocation problem and adopted
mathematical branch and optimization strategies used to solve it.
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Table 2 – Resource Allocation Problems and Solution Strategies

Work Problem Mathematical Branch Optimization Strategy
[Yala and Frangoudis 2018] Placement n/a GA
[Farhadi et al. 2019] Placement/Scheduling n/a Shadow-Algorithm
[Samanta and Tang 2020] Scheduling/DRA n/a Lagrange Multiplier
[Lee 2019] Dimensioning n/a Greedy Search
[Emara et al. 2021] Dimensioning Queuing Theory First Fit
[Tong et al. 2020] DRA Grapgh Theory Subgraph Isomorphism
[Sarrigiannis et al. 2020] Scheduling/DRA n/a Breadth-First
[Kherraf et al. 2019] Dimensioning Grapgh Theory Decomposition approach
[Ma et al. 2021] Dimensioning/Delay SNC n/a
This Work DRA/Dimensioning Queuing Theory GA

Source: The author (2020)

3.2 EDGE POSITION

Under the MEC paradigm, edge nodes can significantly differ in their deployment lo-
cation. Fig. 3 describes the traditional communication path from UE to a service hosted
in a central cloud, which includes: the backhaul, Core Network (CN) and cloud host. The
three alternatives exemplify the edge placement variants that could emerge to handle fu-
ture mobile applications. While the first commercial deployments follow the Far variant, the
increasing uncertainty brought by each additional intermediate hop may deeply affect the
performance (blue line) for critical applications. In contrast, fine-grained server distribution
is known to increase the overall infrastructure cost (red line) and management complexity
[Santoyo-Gonzalez and Cervello-Pastor 2018].

Figure 3 – Multiple edge node deployment scopes.
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Source: The author (2020)
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While some authors place computation capacities within Radio Access Networks (RAN)
sites, others prefer a farther away location, similarly to centralized data centers but introducing
new components and inter-working procedures to ensure better performance. In [Lee 2019],
[Tong et al. 2020] and [Ma et al. 2021], the analysis covers the full path from the RAN cluster
to the MEC node, including some core functions and application layer besides considering
the edge servers placed exclusively on the Near Scope. Similarly, [Sarrigiannis et al. 2020]
and [Samanta and Tang 2020] also consider the Near Scope solely but excludes the RAN
analysis focusing only on their optimization schemes for MEC resources. On the contrary,
[Yala and Frangoudis 2018] assumes a more flexible approach, allowing an operator to either
install the MEC servers close or far away from the end-users. Finally, the analytical model in
[Emara et al. 2021] allows a high degree of flexibility since there are separate models for the
RAN and MEC, i.e., the RAN model’s output flow is one of the inputs to the MEC model.
Table 3 summarizes the related work in terms of edge position.

Table 3 – Edge Position in Related Work

Work Edge Position
[Yala and Frangoudis 2018] Flexible
[Farhadi et al. 2019] Near
[Samanta and Tang 2020] Near
[Lee 2019] Near
[Emara et al. 2021] Flexible
[Tong et al. 2020] Near
[Sarrigiannis et al. 2020] Near
[Kherraf et al. 2019] Near
[Ma et al. 2021] Flexible
This Work Near

Source: The author (2020)

Concerning edge node positioning, the closest works to ours are [Emara et al. 2021] and
[Ma et al. 2021]. In summary, both models offer no restrictions towards the total Edge node
size nor any underlying considerations that compel the edge node position to a certain location
from the UE (Near, Mid, or Far). Hence, it is possible to shift the edge node position towards
the UE (Near Scope) or central cloud (Far Scope), alter the total number of resources and
other parameters (e.g., processing capacity). However, by doing so, very few variables become
overloaded with multiple sub-parts, i.e., the overall service rate becomes a representation of
the multiple service rates in each network sub-part. Thus, we indicate that our model is most
adequate for the near scope, isolated from the RAN and CN.
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3.3 VIRTUAL HOST TYPES AND ASSUMPTIONS

MEC is frequently put forward considering virtualization instead of legacy physical equip-
ment. However, the literature consistently brought regular data center architectural approaches
as if they could also be applied seamlessly and without greater modifications to the mobile
environment, e.g., [Ren et al. 2016]. For this reason, some works such as [Farhadi et al. 2019],
[Lee 2019], [Sarrigiannis et al. 2020], [Tong et al. 2020] and [Ma et al. 2021] are agnostic to-
wards a given virtualization technology, which denotes a certain lack of commitment to the
feasibility of their propositions.

Moreover, multiple works have proposed a resource infrastructure built only by physical
machine (PM) [Lee 2019], VM as in [Emara et al. 2021] and [Kherraf et al. 2019] or a mix of
both as in [Yala and Frangoudis 2018]. However, although NFV has traditionally been imple-
mented over VMs, the concept of Container-as-a-Service (CaaS) has gained momentum. In
contrast to VM-based VNFs, CaaS allows VNF instances to be loaded using containers, which
are known to consume less computational resources, besides having less instantiation overhead
and thus being much more cost-effective [Morabito 2015]. Therefore, some authors consider
MEC infrastructure using only containers [Samanta and Tang 2020].

The main issue of solely using containers for future mobile communications is that they are
still not mature compared to VMs. There are multiple security risks involved in containerization
since all containers in an Operating System (OS) share a single kernel. Hence, any breach on
kernel OS can break all containers dependent on it. Besides, isolating faults within containers
is not trivial and as a fault can be replicated to subsequent instances. On the other hand,
containers can be used along with VMs (hybrid) in NFV environments. In our model, this
property is explored as we consider a hybrid VM-containerized infrastructure that leverages
the best of both: the VM’s strong isolation and the flexibility of containers.

The appropriate selection of the underlying virtual environment directly impacts the feasi-
bility of the NFV-MEC environment. In particular, multiple works have ignored the possibility
of faults related to the virtual host technology, which can be key for many of the afore-
mentioned categories, e.g., if a resource dimensioning strategy does not account to the resource
failure possibility, the resulting node size will likely be underestimated. In [Ma et al. 2021],
for instance, although a reliability-related metric is proposed, the authors recognize that
SNC is still not advisable for evaluating reliability. Moreover, [Yala and Frangoudis 2018],
[Samanta and Tang 2020] and [Tong et al. 2020] do not account for the repair delay, which
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impacts resource availability and power consumption. In this context, we believe that an ac-
curate model should account for virtual host failures, repair delays and other events that may
cause burdens to the communication process, some of which can be found in [Emara et al. 2021]
and in this work. Table 4 adds the information on the virtual resource and their assumptions
in each evaluated work (two final columns).

Table 4 – Virtual Resource and Resource Assumptions in Related Work

Work Virtual Resource Resource Assumptions
[Yala and Frangoudis 2018] VMs Failure
[Farhadi et al. 2019] n/a n/a
[Samanta and Tang 2020] Container Failure
[Lee 2019] n/a n/a
[Emara et al. 2021] VM Failure/Repair
[Tong et al. 2020] n/a Failure
[Sarrigiannis et al. 2020] n/a n/a
[Kherraf et al. 2019] VM n/a
[Ma et al. 2021] n/a n/a
This Work VMs and Containers Failure/Repair

Source: The author (2020)

3.4 PERFORMANCE METRICS

From the 3rd Generation Partnership Project (3GPP) Release 16 [3GPP 2020] onwards,
potential architecture enhancements for supporting URLLC services focused on MEC-NFV have
been issued. With regards to the performance metrics, in addition to the most representative
metrics for future critical applications (e.g., URLLC), i.e., reliability and latency, the document
also includes the MEC resource availability. In the following lines, we have mapped which
indicators have been used in the literature.

From the above-mentioned list, the only adopted metric in [Sarrigiannis et al. 2020] was
network delay. The works [Ma et al. 2021] and [Tong et al. 2020] only evaluate reliability and
latency. In [Kherraf et al. 2019] and [Yala and Frangoudis 2018], the authors only accounted
for availability and latency (network delay). Differently, in [Samanta and Tang 2020], besides
reliability and a latency-related indicator (Network Delay), energy consumption was also ana-
lyzed. Similarly, [Emara et al. 2021] covers availability and reliability with an energy constraint
per device. Lastly, in [Lee 2019], both delay and energy constraints are considered, while avail-
ability and reliability are left out of scope.



39

Besides the performance indicators suggested by the 3GPP, some authors also adopt the
energy-related indicators. From the user perspective, the suggested indicators should be rea-
sonable, however, from the service provider perspective, infrastructure cost metrics are equally
relevant. The problem is that the list of location-dependent costs for building and operating
edge nodes can be quite extensive, going from land acquisition to installation expenses. Be-
sides, it is not feasible to numerically map many of these variables since they are not universal.
One of the few exceptions is the computational power consumption, which does reflect part of
the operational costs. Thus, together with 3GPP metrics, we have included power consump-
tion in the evaluation so as to make our results strongly-coupled with the Service Provider
reality. The related work classification in terms of performance metrics is given in Table 5.

Table 5 – Performance Metrics Adopted in Related Work

Work Availability Reliability Energy Latency
[Yala and Frangoudis 2018] ✗ ✗

[Farhadi et al. 2019] ✗ ✗

[Samanta and Tang 2020] ✗

[Lee 2019] ✗ ✗

[Emara et al. 2021] ✗

[Tong et al. 2020] ✗ ✗

[Sarrigiannis et al. 2020] ✗ ✗ ✗

[Kherraf et al. 2019] ✗ ✗

[Ma et al. 2021] ✗ ✗

This Work

Source: The author (2020)

Contribution We propose a multipurpose analytical model to analyze MEC-NFV environ-
ment from the virtualization layer standpoint, which enables service providers to tune multiple
network and infrastructure parameters. The model allows the evaluation of traffic behavior
in isolation from the RAN and Core networks, not being restricted by the edge node posi-
tion nor a particular choice of virtual technology. Finally, taking into account the literature
review, the proposed model includes a formulation for the main performance metrics related
to critical applications: Availability, Reliability, Power Consumption and Latency. The resulting
classification, is summarized in Table 6.
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Table 6 – Summary of Existing Related Work
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3.5 CHAPTER SUMMARY

In this chapter, we highlighted the characteristics, strengths and shortcomings, and per-
formed a qualitative comparison towards the related work, clarifying our thesis proposal con-
tributions. In addition, a classification of the main related works was performed. We took into
account aspects such as scenarios in which the proposed models could be used, the types of
underlying virtualization technologies and its assumptions towards failure and repair events,
besides the adopted performance metrics.

Table 7 – Chapter 3 Summary

Section Goal(s) Output(s)
3.1 RESOURCE ALLO-
CATION PROBLEMS

Describe and compare the most updated works
regarding MEC infrastructure and URLLC.

Placement, Dimensioning, Scheduling and Dy-
namic Resource Allocation are the most popu-
lar topics regarding MEC infrastructure.

3.2 EDGE POSITION Compare how each author’s formulation de-
scribe the edge position.

Edge position considerations are usually for the
near scope.

3.3 VIRTUAL HOST
TYPES AND AS-
SUMPTIONS

Describe which virtual technology assumptions
are taken into consideration by other works.

a) Most authors ignore the underlying virtual
technology assumptions; b) Few works consider
virtual host problems in their formulations.

3.4 PERFORMANCE
METRICS

Discover which performance metrics are the
most adequate for the URLLC scenario consid-
ering MEC.

Latency, Reliability and Energy Consumption
are the most commonly adopted metrics.

Source: The author (2020)
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4 SINGLE NODE LOCATION-AGNOSTIC NFV-MEC MODEL

In light of the characteristics described in Chapter 3, this chapter describes a CTMC-based
analytical representation for a single node NFV-MEC, assuming a hybrid virtual environment
which is prone to failures and repair times. This Chapter is structured as follows. First, Section
4.1 outlines the main events related to the computing model and failure/repair characteris-
tics. Section 4.2 details the formulation/modeling itself, providing the equations and its main
conditions. Section 4.3 describes the formulation for the adopted performance metrics and
Section 4.4 describes the validation scenarios based on simulation of the proposed model.

4.1 SYSTEM MODEL

Analytical models can be useful tools for rapidly evaluating largely distributed MEC-related
infrastructure projects since simulation and testbeds for this kind of experiment, where thou-
sands of Edge Nodes are expected, may not be feasible. In this work, we evaluate a single
isolated MEC node depicted in Fig. 4, where requests originated from UEs are processed by
the RAN, passed to the MEC node and handled by a VM-hosted (red flow) or containerized
VNF (blue flow). This model was designed in isolation from RAN, Core, and Central Cloud,
i.e., rather than accounting for multiple network path subparts, the only uncertainty is related
to the virtual components, thus having two advantages: (1) the flexibility for adapting to
multiple node sizes and (2) the precision due to the limited variables that can affect Quality
of Service (QoS).

Figure 4 – Hybrid VM-Container edge node infrastructure
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A dynamic VNF scaling strategy was embedded into our formulation to help cope with the
sudden load increase caused by the intensive requests. Each VNF runs equally and indepen-
dently on a single VM or container, with VMs executing uninterruptedly while containers are
scaled upon demand. A centralized control unit determines if requests are admitted or blocked,
only activating containers when all VMs are busy.

The containerized VNF activation comprises two phases: initializing the kernel image and
launching the specified function, which is interpreted as a single transition interval (setup time),
during which power and resources are consumed but no request is processed. Furthermore,
active containerized VNFs may suffer failures during attendance, which implies either a service
migration to an available VM/container or a reset, triggering a new setup period, with progress
being lost only in the latter case.

In general, recovery time depends on the failure type; for instance, a software component
crash can be rapidly fixed by the host in few microseconds, while others may take milliseconds
to reboot device and VNF. Since future mobile networks encompass highly critical applications
(e.g., URLLC), only the worst-case scenario is considered. Lastly, as soon as an operative VNF
concludes processing and there are no remaining requests, the VNF instance can either be
powered down instantaneously together with the host container or remain active if hosted by
a VM. The shutdown delay is ignored for being significantly smaller than the setup/recovery
magnitudes [Kaur et al. 2017].

4.2 ANALYTICAL MODEL

The system comprises 𝑛 VMs and 𝑐 containers, with a maximum limit of 𝑘 simultane-
ous services. The service request follows a Poisson process with rate 𝜆 (requests/ms) and
server capacities of one service with an exponentially distributed service rate 𝜇 for both
VM-based and containerized VNFs. A Poissonian arrival process was selected for its sim-
plicity and tractability. Control applications are likely to fit a regularly spaced packet trace
(isochronous), i.e., a superposition of deterministically spaced and sporadic packet streams,
where each contributes to a portion of the overall traffic, which might be well modeled as a
Poisson [Anand and Veciana 2018]. Container setup/recovery times and failures are also ex-
ponentially distributed with rates 𝛼 and 𝛾, respectively. A regular FCFS was assumed for new
requests with prioritization for retrial due failures.

We assume that the network is a standalone deployment and the system is modeled as
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an M/M/n+c/k queue (Fig.5) with setup time and failure, 𝑛, 𝑐, 𝑘 > 0 and 𝑛 + 𝑐 ≤ 𝑘

[Kleinrock 1975]. The two-dimension CTMC diagram in Fig.5 includes horizontal flows to
the right (left) representing requests (service conclusion) whereas the vertical flows to the
top (down) denote the container startup (failures). The diagonal transitions represent both
a service conclusion and a container shutdown following our scaling rule. The feasible state
space (Ω) is formed by a set of states (𝑖,𝑗), which denotes the number of active containers
(𝑖) and online services (𝑗). Ω = (𝑖, 𝑗) | 0 ≤ 𝑖 ≤ 𝑐, 0 ≤ 𝑗 ≤ 𝑘, provided that 𝑖 ≤ 𝑗 − 𝑛.
Since VMs are always active regardless of being busy or idle, the states (0, 𝑗) with 0 ≤ 𝑗 ≤ 𝑛

indicates that the existing load is being processed in VMs, whereas states with 𝑗 > 𝑛 imply
that in addition to all available VMs, there are requests being processed in containers.

Figure 5 – State Transition Diagram
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4.2.1 System Example

A short example for a system formed by one VM, two Containers (CTs) and capacity
for three simultaneous services (n=1, c=2 and k=3) is depicted in Fig. 6. The first three
events are regular service requests that are allocated to each available resource in t1,t2 and
t3, respectively. Each container (CT2 and CT3) requires a setup, hence a waiting period is
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set until the resource is ready; the service is only processed if the setup is successful, such as
in t4 and t5. Conversely, VMs are always available for immediately attending; not requiring
waiting periods and ergo begins serving since the task arrival in t1. In t6, VM1 completes
processing the first service, becoming available. In t7, a CT2 failure forces the system either
to reset or to move the current service to another available resource, but since there no free
resources, CT2 is reset. In t8, another failure forces the system to the same situation, except
that a resource is available at VM1. Hence, since the delay for moving a service is negligible
compared to a Container (CT) reset, the former becomes the best decision, which causes CT3
to shut down as there are no new requests. In t9, CT2 starts processing the same service again
after the setup period. Furthermore, the events in t10 and t11 are regular service completions,
differing only with regards to the post completion resource status; since there are no new
service requests, CT2 is shut down whereas VM1 remains active.

Figure 6 – Simulation Example for n=1, c=2 and k=3
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4.2.2 Steady State Analysis

The steady-state probabilities 𝜋(𝑖, 𝑗) are extracted from the solution of a linear system
formed by the normalization condition (4.1) and balance equations (4.2-4.12), which are sum-
marized in Table 8. Please consider (𝑖, 𝑗) ∈ Ω in all equations to follow.
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𝑐∑︁
𝑖=0

𝑘∑︁
𝑗=0

𝜋(𝑖, 𝑗) = 1 (4.1)

The balance-equation for the empty system (0, 0) can be expressed in (4.2). For states
where no container is active (𝑖 = 0), there is at least one service (𝑗 > 0) and there are enough
VMs to process the admitted requests, the following will apply: (4.3) if 𝑗 < 𝑛 and 𝑛 > 1

or (4.4) if 𝑗 = 𝑛. However, if the ongoing services overcome the existing VM limit and the
system allows at least two containers and two services (𝑗 > 𝑛, 𝑐 > 1 and 𝑘 > 1), then only
(4.5) applies. Finally, other border states are represented by (4.6), i.e., no container is on
(𝑖 = 0, 𝑗 > 0) and request limit 𝑘 is reached (𝑗 = 𝑘 and 𝑐 > 0).

𝜆𝜋0,0 = 𝜇𝜋0,1 (4.2)

(𝜆 + 𝑗𝜇)𝜋0,𝑗 = 𝜆𝜋0,𝑗−1 + (𝑗 + 1)𝜇𝜋0,𝑗+1 (4.3)

(𝜆 + 𝑛𝜇)𝜋0,𝑛 = (𝜆𝜋0,𝑛−1) + (𝑛𝜇𝜋0,𝑛+1) + ((𝑛 + 1)𝜇𝜋1,𝑛+1) (4.4)

(𝜆 + (𝑚𝑖𝑛(𝑐, 𝑗 − 𝑛)𝛼) + 𝑛𝜇)𝜋0,𝑗 = (𝜆𝜋0,𝑗−1) + (𝑛𝜇𝜋0,𝑗+1) + (𝛾𝜋1,𝑗) (4.5)

((𝑚𝑖𝑛(𝑐, 𝑘 − 𝑛)𝛼) + 𝑛𝜇)𝜋0,𝑘 = (𝜆𝜋0,𝑘−1) + (𝛾𝜋1,𝑘) (4.6)

For the states where the number of active containers varies between 0 < 𝑖 < 𝑐, (4.7) only
applies if the amount of active containers and VMs is equal to the number of active services
(𝑗 = 𝑖 + 𝑛, 𝑗 < 𝑘 and 𝑐 > 1), otherwise, if the active service number is bounded by that value
and the limit 𝑘 (𝑖 + 𝑛 < 𝑗 < 𝑘 and 𝑘 > 𝑛 + 2), then (4.8) is applicable. The remaining states
covered by (4.9) are limited by k (𝑗 = 𝑘 and 𝑐 > 1).

(𝜆 + (𝑛 + 𝑖)𝜇 + 𝑖𝛾)𝜋𝑖,𝑗 = ((𝑛 + 𝑖)𝜇𝜋𝑖,𝑗+1) + (𝛼𝜋𝑖−1,𝑗) + (𝑛 + 𝑖 + 1)𝜇𝜋𝑖+1,𝑗+1) (4.7)

(𝜆 + (𝑛 + 𝑖)𝜇 + ((𝑚𝑖𝑛(𝑐, 𝑗 − 𝑛) − 𝑖)𝛼 + 𝑖𝛾))𝜋𝑖,𝑗

= 𝜆𝜋𝑖,𝑗−1 + ((𝑚𝑖𝑛(𝑐, 𝑗 − 𝑛) − (𝑖 − 1))𝛼𝜋𝑖−1,𝑗) + ((𝑛 + 𝑖)𝜇𝜋𝑖,𝑗+1) + ((𝑖 + 1)𝛾𝜋𝑖+1,𝑗) (4.8)
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((𝑛 + 𝑖)𝜇 + ((𝑚𝑖𝑛(𝑐, 𝑘 − 𝑛) − 𝑖)𝛼 + 𝑖𝛾)𝜋𝑖,𝑘

= ((𝑚𝑖𝑛(𝑐, 𝑘 − 𝑛) − (𝑖 − 𝑛))𝛼𝜋𝑖−1,𝑘) + (𝜆𝜋𝑖,𝑘−1) + ((𝑖 + 1)𝛾𝜋𝑖+1,𝑘) (4.9)

When all containers are active (𝑖 = 𝑐), (4.10) relates only if the active service limit is
reached (𝑗 = 𝑐 + 𝑛). However, if the active service number varies between 𝑐 + 𝑛 < 𝑗 < 𝑘 and
𝑘 is larger than the previous case (𝑐 + 𝑛 < 𝑘 − 1) then (4.11) applies instead. Lastly, (4.12)
refers to the set of states where all containers are active (𝑖 = 𝑐) and the service limit (𝑗 = 𝑘)

is reached.

(𝜆 + (𝑛 + 𝑐)𝜇 + 𝑖𝛾)𝜋𝑐,𝑐+𝑛 = ((𝑛 + 𝑐)𝜇𝜋𝑐,𝑐+𝑛+1) + (𝛼𝜋𝑐−1,𝑐+𝑛) (4.10)

(𝜆 + (𝑛 + 𝑐)𝜇 + 𝑖𝛾)𝜋𝑐,𝑗 = 𝜆𝜋𝑐,𝑗−1 + ((𝑛 + 𝑐)𝜇𝜋𝑐,𝑗+1) + (𝛼𝜋𝑐−1,𝑗) (4.11)

((𝑛 + 𝑐) + 𝑖𝛾)𝜇𝜋𝑐,𝑘 = (𝛼𝜋𝑐−1,𝑘) (4.12)

Table 8 – Balance Equations Summary

Eq. State(s) Condition(s) Description
(4.2) (0, 0) 𝑛/𝑎 Empty system.
(4.3) (0, 𝑗) (0 < 𝑗 < 𝑛) and (𝑛 > 1) All services running on VMs
(4.4) (0, 𝑛) 𝑗 > 0 Existing VMs match service load
(4.5) (0, 𝑗) (𝑗 > 𝑛), (𝑐 > 1) and (𝑘 >

1)
Service load surpasses VM capacity;
Containers are setting up

(4.6) (0, 𝑘) (𝑗 > 𝑛), (𝑐 > 1) and (𝑘 >
1)

Similar to (4.4) but with full system;

(4.7) (𝑖, 𝑖 + 𝑛) (0 < 𝑖 < 𝑐), (0 < 𝑗 < 𝑘)
and (𝑐 > 1)

All VMs are busy and some Containers
are serving;

(4.8) (𝑖, 𝑗) (0 < 𝑖 < 𝑐), (𝑖 + 𝑛 < 𝑗 <
𝑘) and (𝑘 > 𝑛 + 2)

Similar to (4.6) but with containers
setting up

(4.9) (𝑖, 𝑘) (0 < 𝑖 < 𝑐), (𝑖 + 𝑛 < 𝑗 <
𝑘),(𝑘 > 𝑛+2) and (𝑐 > 1)

Similar to (4.7) but with full system

(4.10) (𝑐, 𝑐 + 𝑛) 𝑐 > 1 All online services are being served by
all resources

(4.11) (𝑐, 𝑗) (𝑐 + 𝑛 < 𝑗 < 𝑘) and (𝑐 +
𝑛 < 𝑘 − 1)

All resources are serving but there are
waiting services

(4.12) (𝑐, 𝑘) 𝑛/𝑎 All resources are processing and the
system is full

Source: The author (2020)
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4.3 PERFORMANCE METRICS

In this section, we consider the steady-state analysis of the CTMC under study, followed
by the derivation of four performance metrics: Availability (𝐴), Reliability (𝑅), Mean Power
Consumption (𝐶) and Mean Response Time (𝑇 ).

4.3.1 Availability (A)

It is widely accepted that the adoption of the MEC-NFV environment for Core Network and
Application functions closer to the UE can reduce Latency and increase Reliability. However,
the likely resource limitation of edge nodes restricts their service capacity and consequently
its availability, i.e., if the maximum capacity is reached, the natural options are to forward the
flow to a neighbor MEC node or central cloud [Sarrigiannis et al. 2020], both of which incur
on a new route built of multiple intermediate hops, introducing a high degree of uncertainty
towards latency and reliability. In this respect, it becomes imperative to analyze the MEC-NFV
node availability. In our model, Availability is the system’s ability to offer the minimum amount
of functional and accessible VNFs. In particular, a VNF instance is considered available if at
least one of its constituents (VM-hosted or containerized) remains accessible. In brief, the
MEC node Availability (𝐴) (4.12) is obtained by the probability sum of all states except those
representing full capacity, i.e., the system with k users.

𝐴 = 1 −
𝑐∑︁

𝑖=0
𝜋𝑖,𝑘 (4.12)

4.3.2 Reliability (R)

The reliability analysis of future mobile networks is of paramount importance for network
operators, especially considering critical applications since it directly impacts the QoS and user
experience (e.g., service response time). The designed model also evaluates the Reliability (𝑅)
being given by (4.13), which combines the admitted flow 𝜆*𝐴 with the effective failure rate in
the node, i.e., denotes the probability that a service is processed without experiencing failure.

𝑅 = 1 − 𝛾

𝜆 * 𝐴

𝑐∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑖𝜋𝑖,𝑗. (4.13)
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4.3.3 Power Consumption (C)

The computational power consumption is an important component of the operational
costs and must be considered by the service provider for resource planning to address cost-
performance trade-off. In this model, power consumption (𝐶) is formed from the combination
of the mean number of virtual resources and energy consumption constants (𝑃 ) for each
virtualization technology (VM and Container) and operating states (Idle, Setup and Busy).
The power consumption (in Watts) of a single VM in idle state is denoted as: 𝑃 𝑉 𝑀

𝑖𝑑𝑙𝑒 , with the
remaining variables being represented in the same notation (Table 9).

The mean number of VMs and containers (CT) in each state is described in (4.14)-(4.18),
which are detailed in the following lines. (4.14) captures the mean amount of VMs in idle state
by iterating over each system state in which no container is active (𝑖 = 0) and until the total
number of online services reaches the maximum amount of VMs (𝑗 = 𝑛). (4.15) has three
terms: the first is similar to the one in (4.14), but captures only the mean amount of busy
VMs within the range of states until (𝑗 = 𝑛 − 1). The second iterates over the states where
the load is equal or greater than the VM maximum amount and there are no containers ready
yet. Lastly, the third term contains the mean amount of busy VMs on states where at least
one container is processing. The same idea is applied for (4.16) and (4.18), whereas (4.17)
calculates the mean number of containerized VNFs in setup by iterating over states where
the number of online services is greater than the total number of active resources (VMs and
Containers). Finally, power consumption (𝐶) is given by (4.19).

Table 9 – Power Consumption Notation

Virtualization Technology State Status Notation
VM-hosted Idle ON 𝑃 𝑉 𝑀

𝑖𝑑𝑙𝑒

VM-hosted Busy ON 𝑃 𝑉 𝑀
𝑏𝑢𝑠𝑦

Containerized Idle SLEEP 𝑃 𝐶𝑇
𝑖𝑑𝑙𝑒

Containerized Setup ON 𝑃 𝐶𝑇
𝑠𝑒𝑡𝑢𝑝

Containerized Busy ON 𝑃 𝐶𝑇
𝑏𝑢𝑠𝑦

Source: The author (2020)

𝑉 𝑀 𝑖𝑑𝑙𝑒 =
𝑛∑︁

𝑗=0
(𝑛 − 𝑗)𝜋0,𝑗 (4.14)
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𝑉 𝑀 𝑏𝑢𝑠𝑦 =
𝑛−1∑︁
𝑗=0

𝑗𝜋0,𝑗 +
𝑘∑︁

𝑗=𝑛

𝑗𝜋0,𝑗 +
𝑐∑︁

𝑖=1

𝑘∑︁
𝑗=𝑛+𝑖

𝑗𝜋𝑖,𝑗 (4.15)

𝐶𝑇 𝑖𝑑𝑙𝑒 =
𝑛∑︁

𝑗=0
𝑐𝜋0,𝑗 +

𝑛+𝑐∑︁
𝑗=𝑛+1

(𝑛 + 𝑐 − 𝑗)𝜋0,𝑗

+
𝑐∑︁

𝑖=1

𝑛+𝑐∑︁
𝑗=𝑛+𝑖

(𝑛 + 𝑐 − 𝑗)𝜋𝑖,𝑗

(4.16)

𝐶𝑇 𝑠𝑒𝑡𝑢𝑝 =
𝑐∑︁

𝑖=0

𝑘∑︁
𝑗=𝑛+𝑖

𝑚𝑖𝑛(𝑗 − 𝑛, 𝑐)𝜋𝑖,𝑗 (4.17)

𝐶𝑇 𝑏𝑢𝑠𝑦 =
𝑐∑︁

𝑖=1

𝑘∑︁
𝑗=𝑛+𝑖

𝑖𝜋𝑖,𝑗 (4.18)

𝐶 = 𝑃 𝑉 𝑀
𝑖𝑑𝑙𝑒 𝑉 𝑀 𝑖𝑑𝑙𝑒 + 𝑃 𝑉 𝑀

𝑏𝑢𝑠𝑦 𝑉 𝑀 𝑏𝑢𝑠𝑦

+𝑃 𝐶𝑇
𝑖𝑑𝑙𝑒 𝐶𝑇 𝑖𝑑𝑙𝑒 + 𝑃 𝐶𝑇

𝑠𝑒𝑡𝑢𝑝𝐶𝑇 𝑠𝑒𝑡𝑢𝑝 + 𝑃 𝐶𝑇
𝑏𝑢𝑠𝑦 𝐶𝑇 𝑏𝑢𝑠𝑦

(4.19)

4.3.4 Response Time (T)

Since part of the future mobile applications have strict communication latency require-
ments, analyzing the response time also becomes crucial for MEC node resource-related issues
such as dimensioning. We define the Response Time of a VNF that processes the service 𝑇 as
the interval between the service arrival (on the edge node) and its departure (service conclu-
sion), which includes the containerized VNF setup restart times if these events are triggered.
The Response Time (4.21) is obtained by calculating the mean number of online services
(4.20) and dividing by the mean number of accepted services.

𝑈 =
𝑘∑︁

𝑗=0
𝑗𝜋0,𝑗 +

𝑐∑︁
𝑖=1

𝑘∑︁
𝑗=𝑛+𝑖

𝑗𝜋𝑖,𝑗 (4.20)

𝑇 = 𝑈

𝜆𝐴
(4.21)
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4.4 MODEL VALIDATION

A simulation model was adopted to validate the analytical model. In this simulator, the
interactions between requests and attendance are implemented so that the same performance
metrics can be obtained and compared to those from the analytical model.

4.4.1 The Discrete-event Simulator

A discrete-event simulator (Fig. 7) emulates the system’s operation such as the behavior
of a multipurpose network based on a discrete sequence of events in time. Each event occurs
at a particular instant and may cause a state change [Tako and Robinson 2009]. As opposed
to real-time simulations, no state transitions are assumed to occur between consecutive events
and the simulation jumps to the next event. The simulation must also keep track of the current
time; in whatever measurement units are suitable for the system being modeled.

In a simulation model, the performance metrics are not analytically derived from probability
distributions, but rather determined as averages from different runs. For this reason, it is
important to dimension the total number of runs that is necessary to guarantee reasonable
statistical significance. In addition, the simulation designer must decide the ending condition
for a “run”. Common examples are: at a specific time instant or after processing a pre-defined
number of events. We have opted for discrete-event simulators for validating our models mainly
due to simplicity and flexibility. In one hand, these are quite straightforward and accurate but
on another, it takes some effort to code when compared to off-the-shelf solutions (e.g., ns2,
ns3). We have built our simulators using MATLAB v2016 but other researchers also distribute
their code within two or more languages (e.g., C) for performance gains.

Figure 7 – Simulation Flow
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Source: The author (2020)

The simulator is formed by three blocks: (1) event creation, (2) event sorting and (3)
event processing, and two additional steps: input setting (e.g., request and service rates) and
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stop criterion (total simulation time). The first block creates events that can be either static,
i.e., created before the simulation starts (e.g. request arrivals) or dynamic, i.e., created during
simulation (e.g. service conclusions). A list of events is then sent to the next block, with
each event being associated to an unique time instant, i.e., the time that the event will be
processed during the simulation. The second block essentially sorts the event list in ascending
order (time occurrence), providing an ordered list to the next phase. Lastly, the third block
processes each event individually, deciding which actions to take by consulting the system
status, hence creating dynamic events if necessary, for instance. Moreover, it also updates the
state variables and registers all relevant data in an event log, which is the source for further
producing the performance metrics.

Figure 8 – Part of the simulator logic
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Source: The author (2020)

The simulation model allows greater control since we are able to track which resource is
being used by each request, which is not possible in an analytical model. Hence, we keep a
resource table that maps the Resource ID to the Active request ID. The logic subdivision is
quite long for being fully represented in this document, but part of the simulator was depicted
in Fig. 8, which encompasses three main event types “Service Request”, “Resource Allocation”
and “Service Conclusion”. Please note that each of these events may trigger multiple actions
depending on the system state. For instance, a “service conclusion” that was running on a
Container may trigger a Container Allocation event if there are buffered services. Finally, the
consequences of each event are recorded using the log component, after each round (see Table
10); Once the stop criteria is met, the simulation is considered to be finished and therefore
the performance metrics can be computed.
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Table 10 – Log description

Status Description
№ of Accepted Request № of accepted requests for VMs or Containers
№ of Blocked Requests № of blocked requests due to resource occupation
№ of VM allocations № of requests allocated to a VM
№ of Container allocations № of requests allocated to a Container
№ Containers in Setup № of Containers in setup process
№ of Container Failures № of Containers that failed during service
№ of Buffered Requests № of buffered requests due to resource occupation

Source: The author (2020)

4.4.2 Validation Results

The analytical results were validated against extensive discrete-event simulations (Figs.
9-20), where the lines denote the analytical and the markers represent simulation results. With
regards to the main parameters, we have followed a subset of the 3GPP Release 16 (TR 38.824)
[3GPP 2020], in which the service time is 1ms (1 service/ms) while service arrivals range from
1 up to 100 requests/ms. In addition, unless otherwise stated, the baseline values for failure
(𝛾) and setup rates (𝛼) were 0.001 and 1 unit/ms, respectively, which is in accordance with
[Kaur et al. 2017]. In terms of energy power consumption for VMs and containers in different
operation states, we adopted the individual consumption values described in [Morabito 2015],
and summarized in Table 11 with other general parameters. The subsections 4.4.2.1-4.4.2.3
encompass three evaluation scenarios were we show the flexibility of the proposed model in
terms of multiple edge sizes (4.4.2.1), the impact of various VM-hosted/containerized VNF
arrangements (4.4.2.2) and improved setup/failure rates (4.4.2.3). In all experiments, it is
assumed that all calculations related to the steady-state analysis and performance metrics are
performed in a central cloud or neighbor MEC node.

4.4.2.1 Multiple edge sizes (𝑘)

This scenario shows the impacts of 𝜆 on the different MEC-enabled node sizes (𝑘 =

25, 50, 100) but running the same VNF scaling process with equal VM or Containerized (CT)
VNF ratios (𝑉 𝑀𝑠 = 40%, 𝐶𝑇𝑠 = 60%). Generally, one can see that in Figs. 9-10 the best
values for Availability and Reliability are found for low workloads, respectively. However, as 𝜆

increases, the Availability tends to always decrease and it is not bounded by a particular value.
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Table 11 – Simulation Parameters

Parameter Value
Arrival rate (𝜆) [1100] requests/ms
Service rate (𝜇) 1 service/ms
Failure rate (𝛾) 0.001 unit/ms
Setup rate (𝛼) 1 unit/ms
Idle VM Energy Consumption (𝑃 𝑉 𝑀

𝑖𝑑𝑙𝑒 ) 20 W
Busy VM Energy Consumption (𝑃 𝑉 𝑀

𝑏𝑢𝑠𝑦) 25 W
Idle CT Energy Consumption (𝑃 𝐶𝑇

𝑖𝑑𝑙𝑒) 4 W
Setup CT Energy Consumption (𝑃 𝐶𝑇

𝑠𝑒𝑡𝑢𝑝) 8 W
Busy CT Energy Consumption (𝑃 𝐶𝑇

𝑏𝑢𝑠𝑦) 23 W
Source: The author (2020)

In addition, although the same VM/Containerized VNF ratios were used, the number of VM-
hosted VNFs in each curve are different (𝑛 = 15, 20 and 40), which explains the discrepancy
towards the results for this metric.

Figure 9 – Availability
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Figure 10 – Reliability
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Contrarily, the Reliability is bounded by the number of accepted services, and since the
same VM/Containerized VNF ratios were used, the curves are expected to overlap for higher
𝜆 values. The reasons are as follows. When 𝜆 << 𝑛𝜇, the incoming services are usually
handled by VMs, i.e., the containerized VNFs are hardly required. Moreover, they are turned
on as 𝜆 approaches 𝑛𝜇, negatively impacting the Reliability due to the increasing failures
brought by the containerized VNFs. Finally, when 𝜆 approaches (𝑛 + 𝑐)𝜇, most containerized
VNFs are turned on, indicating a saturated infrastructure. The same reasoning applies for the
Power Consumption in Fig. 11. However, the curves do not overlap for higher 𝜆 since each
configuration has a different absolute number of resources.
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Figure 11 – Power Consumption
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Figure 12 – Response Time
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The impact of the increasing load on the mean response time (Fig. 12) illustrates the only
metric in which the trend of the curves experiences both an ascent and descent phase. In the
first phase, the response time grows sharply due to the containerized VNF setup delay. Specifi-
cally, smaller response delays will happen invariably when 𝜆 << 𝑛𝜇 because most services will
be handled by VM-hosted VNFs. As 𝜆 approaches 𝑛𝜇 and becomes larger, containerized VNFs
are turned on. In this phase, however, the response time still increases due to the setup delay.
The third phase encompasses the moment when the mean response time begins to decrease
in 𝜆 = 20, 32.5, and 60 respectively for 𝑘 = 25, 50, 100. Such behavior occurs since the
containerized VNFs tend to become readily available for new service arrivals, not needing to
wait for the setup delay. Lastly, a saturation phase takes place when 𝜆 >> (𝑛 + 𝑐)𝜇, i.e., the
system is unable to handle the load, which is only reflected in the Availability (Fig. 9).

In order to keep the figures within the same range of 𝜆, Fig. 12 is limited to 𝜆 = 100 which
might be confusing since the best apparent result for this metric comes from the intermediate
configuration (𝑘 = 50). Indeed, this configuration shows the best result for large part of the
experiment, but for 𝜆 > 100 the configuration 𝑘 = 100 is likely to retake the advantage,
similar to the comparison between 𝑘 = 25 and 𝑘 = 50. The fact is that at some point,
the impact of the setup phase of the containerized VNFs is mitigated. This result reinforces
the importance of the holistic view promoted by the evaluation of at least these four metrics
concomitantly, since for a given scenario, the intermediate (𝑘 = 50) or even the configuration
with least resources (𝑘 = 25) could eventually be the most cost-beneficial to handle the load.

The designed model allows the evaluation of multiple MEC node sizes by tuning the appro-
priate parameters accordingly, however, the next evaluations (subsections 4.4.2.2 and 4.4.2.3)
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focus on a single-sized MEC node (𝑘 = 25) positioned together within RAN equipment, i.e.,
similar to the Near Scope in Fig. 3. In addition, the following results display dashed lines for
the Reliability and Response Time, which represent three URLLC industry vertical thresholds:
Augmented Reality (AR), Smart Manufacturing (SM) and, Transport Industry (TI) that are
summarized in Table 12. For the sake of simplicity, we have adopted specific values rather
than the ranges described in the original document.

Table 12 – Reliability and Response Time Thresholds for URLLC

Industry Vertical Reliability Response Time
Augmented Reality (AR) 99.9% 1.1 ms
Smart Manufacturing (SM) 99.99% 1.15 ms
Transport Industry (TI) 99.999% 1.2 ms

Source: [Kherraf et al. 2019]

4.4.2.2 Multiple VM/Container Arrangements (𝑛, 𝑐)

Figs. 13-16 illustrate the impact of varying VM/Container ratios that are limited to the
same amount of resources (𝑘). The results evince that configurations with a smaller number of
VMs compared to Containers tend to have lower Availability, faster Response Times and higher
Reliability, which is expected since the VM-hosted VNFs are stable compared to containerized
VNFs, i.e., not prone to failures. For these metrics, we expected similar results between curves
at least until 𝜆 = 5, since this is the load in which all analyzed configurations have enough
VMs 𝑛 = (5, 10, 15, 20). However, for the Availability (Fig. 13) the curves start to differentiate
only at 𝜆 = 11 whereas the Reliability and Response Times responded from 𝜆 = 3.

With regards to Reliability in Fig. 14, not even the arrangement with most VMs (𝑛 =

20, 𝑐 = 5) was able to keep itself above all dashed lines, breaking the TI threshold at 𝜆 = 15,
i.e., with a significant distance between its theoretical VM capacity at 𝜆 = 20. The fact is
that 𝜆 ≤ 𝑐 does not guarantee that all requests will be processed by VMs. Considering URLLC
applications, if even relatively few requests are experiencing setup delays, one or multiple
failures can cause serious capacity issues, leading to lower Reliability as more containerized
VNFs are needed. On the other hand, we expected that a platform formed only by VMs would
become costly in terms of power consumption since VMs are not scaled fast enough for URLLC
applications, and therefore must be continuously active, regardless of being idle or busy.
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Figure 13 – Availability
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Figure 14 – Reliability
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In Fig. 15 we observed that although there is a large difference in terms of power consump-
tion until 𝜆 = 7, from this point on, the curves rapidly converge despite the scaling feature
and lower consumption of containerized VNFs, possibly because the absolute difference be-
tween the curves is largely correlated with the difference between the adopted constants for
the consumption of VMs and Containers in Busy state, which is only of 2W. Thus the scaling
strategy is not as effective for higher loads as it is in lower loads.

Figure 15 – Power Consumption
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Figure 16 – Response Time
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A possible solution is to adjust the VM/container ratio according to the demand, i.e., an
operator can enable arrangements with more containers for low demands or with more VMs for
higher loads, similarly to the approach used in [Emara et al. 2021]. For instance, considering
only the Reliability and the Smart Manufacturing applications (Fig. 14), the configuration with
5 VMs and 20 containers could be used if 𝜆 < 3, whereas if 3 < 𝜆 < 15 a more balanced
set with 15 VMs and 10 containers could take place and finally, the arrangement with 20
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VMs and 5 containers would only become available if 𝜆 > 15. Please note that this example
would not be applicable considering the Mean Response Time (Fig. 16), i.e., the intervals
for swapping between arrangements would necessarily differ. In [Emara et al. 2021], although
multiple indicators were suggested, the authors proposed a resource optimization solution
based only in one argument. On the other hand, besides considering the virtual host pitfalls,
our model allows using multiple performance metrics and URLLC application thresholds to
formulate specific and practical solutions.

4.4.2.3 Multiple Setup and Failure Rates (𝛼, 𝛾)

In this evaluation, a single configuration with 𝑘 = 25 was adopted, but with a fixed
arrangement of 10 VMs and 15 containers and varying setup (𝛼) and failure (𝛾) rates. This
configuration was analyzed in section 4.4.2.1 with fixed 𝛼 = 1 and 𝛾 = 0.001 and becomes
interesting for the current experiment since it is balanced in terms of both resource types and
yet it is prone also to be impacted by 𝛼 and 𝛾.

Figure 17 – Availability
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Figure 18 – Reliability
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A larger 𝛼 means smaller container setup delays, i.e., more VNF instances become available
per unit time. As expected, higher 𝛼 rates resulted in a blocking probability reduction (Fig. 17),
but interestingly, Fig. 18 reveals the opposite: higher 𝛼 rates actually increased the system’s
failure probability. This unexpected behavior indicates that isolated improvements in the setup
rate may help the admission process but become a burden to the admitted flows. In other words,
a higher setup rate increases the flow served by the failure-prone component (containerized
VNFs) per unit time, therefore also increasing the chances of failures, which suggests that
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future enhancements in this parameter might be insufficient.

Figure 19 – Power Consumption
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Figure 20 – Response Time
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In Fig. 19, the Power Consumption is expected to differ since 𝛼 variations necessarily impact
the amount of powered on container per unit time. However, this experiment has shown that
the baseline configuration (𝛼 = 1) presented a similar power consumption pattern compared to
those with higher 𝛼 values throughout the entire evaluation. A performance difference is also
observed in Fig. 20, where the Mean Response Times from the baseline curve are significantly
greater than the curves with enhanced 𝛼 rates. In 𝜆 = 15 the difference between baseline and
the curve with 𝛼 = 100 reaches a maximum of 0.150 ms.

A larger 𝛾 means smaller intervals between successive containerized VNF failures. In con-
trast to 𝛼, this parameter improves as it gets smaller. Thus, we have enhanced 𝛾 by dividing
its default value by 10 e and 100 times. However, if, on the one hand, our expectations
were met regarding the overall Reliability (Fig. 18), i.e., lower failure rates allowed the two
curves to surpass the Smart Manufacturing Reliability threshold, to our surprise, the Avail-
ability (Fig. 17), Power Consumption (Fig. 19) and Response Time (Fig. 20) remained almost
unchanged, despite the large difference between the adopted 𝛾 values. These findings evince
what level of improvement containerized VNFs must achieve to meet specific requirements,
recalling that both software and hardware share relevance towards this aspect, as investigated
in [Lal et al. 2017]. In brief, it becomes clear that containerized VNF setup delays critically
impact the admission (Availability), whereas the Reliability reacts severely to failures.
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4.5 CHAPTER SUMMARY

In this Chapter we described the elements that compose a single MEC node environment,
giving special attention to the virtualized components and their assumptions. Once the envi-
ronment was defined, a model was designed to denote the interactions between VM-hosted
and containerized VNFs. For this, a queuing system with priority and repair times was consid-
ered and four performance metrics were derived, based on the related works. To validate the
analytical model, an approach based on simulation was used.

Table 13 – Chapter 4 Summary

Section Goal(s) Output(s)
4.1 SYSTEM MODEL Describe the top-level elements of the system

to be modelled.
Virtual host assumptions: setup/recovery de-
lays, failures and dynamic containerized VNF
scaling.

4.2 ANALYTICAL
MODEL

Describe the CTMC-based model of a single
MEC node for URLLC with VMs and Contain-
ers scaled upon demand.

a) Steady State Analysis (transitions and state
space) illustrated in the two-dimension CTMC
diagram in Fig.5; b) Normalization condition
(4.1) and balance equations (4.2-4.12) summa-
rized in Table 8.

4.3 PERFORMANCE
METRICS

a) Explain the importance of each adopted met-
ric: Availability (A), Reliability (R), Power Con-
sumption (C) and Response Time (T); b) De-
tail each metric formulation.

Expressions: MEC node Availability (𝐴) (4.12),
Reliability (𝑅) (4.13), Power Consumption (𝐶)
(4.19). and Response Time (𝑇 ) (4.21).

4.4 MODEL VALIDA-
TION

a) Describe the adopted discrete-event simu-
lator; b) Validate results in the following sce-
narios: 1) Multiple edge sizes (k), 2) Multiple
VM/Container Arrangements (n,c) and 3) Mul-
tiple Setup and Failure Rates (𝛼, 𝛾).

a) First scenario: The trend of the curves for the
Response Time (Fig. 12) has both an ascent
and descent phase. b) Second Scenario: The
scaling strategy is not as effective for higher
loads as it is in lower loads. c) Third scenario:
the Availability (Fig. 17), Power Consumption
(Fig. 19) and Response Time (Fig. 20) re-
mained almost unchanged, despite the large dif-
ference between the adopted 𝛾 values.

Source: The author (2020)
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5 MODEL EXTENSION

This chapter describes an extension of the model designed in Chapter 4. Compared to the
previous model, this part differs in terms of two main characteristics: (a) separate service rates
for VMs and containers and (b) service migration.

In Chapter 4, the MEC node is equipped with a single Physical Machine (PM) that en-
compasses multiple VMs and containers. In that case, the VMs were considered not to be
prone to failures, contrarily to the containers. However, it is widely known that VMs inter-
fere with one another due to the limited physical resources [Mavridis and Pantelis 2019]. To
account for resource sharing among the VMs (e.g., CPU, I/O, and memory), which leads to
a degraded performance, input/output (I/O) interference is observed in the extended model.
Hence, while the containers remained failure-prone, which indirectly impacts the overall service
rate, a higher number of VMs can also negatively impact the system’s service rate. Moreover,
service migration between containers and VMs occurred in two ways: (1) due to container
failure and (2) due to a VM becoming idle. In the extended model, the second case is not
considered anymore since this move could incur extra overhead without necessarily having
occurred a failure event.

This chapter is structured similarly to Chapter 4, with Section 5.1 describing the most
relevant events, together with the model assumptions. Section 5.2 details the analytical for-
mulation/modeling for the MEC node. Following this, Section 5.3 outlines the formulation for
each adopted metric and finally, the validation based on simulation of the proposed model is
outlined in Section 5.4.

5.1 SYSTEM MODEL

This section describes the proposed analytical scaling model, considering a single isolated
MEC node, where requests originated from UEs are processed by VNFs, which can be scaled
up (down) to cope with intensive (mild) request periods. Similar to Chapter 4, each VNF
runs equally and independently on a single microkernel–based VM [Fautrel et al. 2019] or
container sharing a common Physical Machine (PM), with VMs executing uninterruptedly
while containers can be scaled upon demand. A centralized control unit determines request
admissions, only activating containerized VNFs when all VM-hosted are busy. The containerized
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VNF activation comprises the same two phases: initializing the kernel image and launching the
specified function, which is interpreted as a single transition interval (setup time).

In this model, however, a VM processing overhead is taken into account, i.e., how parallel-
operating VMs influence on each other, leading to degraded computational performance
[Mavridis and Pantelis 2019]. Various authors have considered that multiple VMs sharing the
same PM can incur in a performance reduction, mainly due to I/O interference between VMs
[Bruneo 2014], [Emara et al. 2021]. We define the degradation factor 𝑑 (≥ 0) as the percent-
age increase in the expected service time experienced by a VM when multiplexed with another
VM. We also assume that, in order to obtain a fair distribution of VMs, the system is able
to optimally balance the load among the PMs with respect to the resources required by VMs,
thus reaching a homogeneous degradation factor.

For the case of a single VM deployment, the task’s execution rate is 𝜇 services/unit time;
but, to account for the VM overhead, the task’s execution rate (5.1) takes the total number
of VMs, where 𝑑 is the computation degradation factor [Emara et al. 2021]. Hence, 𝜇𝑣 is a
monotone decreasing function of 𝑑. On the other hand, the container’s average performance
is generally better than the VM’s and is even comparable to that of the PM with regards to
multiple features [Mavridis and Pantelis 2019]. Thus, the container performance overhead was
considered to be negligible.

𝜇𝑣 = 𝜇

(1 + 𝑑)(𝑛−1) (5.1)

Another key difference in this model compared to the one in Chapter 4 is the fact that
services that are processed by a container shall remain in that specific instance until finishes
being processed or until a failure event, regardless of any VM being idle. As in Chapter 4, only
active containerized VNFs may suffer failures during attendance, which implies either a service
migration to an available VM/container or a repair (triggering a new setup period), with
progress being lost only in the latter case. In addition, as soon as an operative VNF finishes
processing and there are no remaining requests, the VNF instance can either be powered down
together with the host container or remain active if hosted by a VM. The shutdown delay is
ignored for being significantly smaller than the setup (repair) magnitudes [Kaur et al. 2017].
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5.2 ANALYTICAL MODEL

The current system also comprises a single MEC node, with a maximum capacity of 𝐾

requests that are served by up to 𝑛 VMs and 𝑐 containers, with 𝐾 ≥ 𝑛 + 𝑐, which implies
a queue (𝑞) that is limited to 𝐾 − (𝑛 + 𝑐) requests. Service requests also follow a Poisson
process with rate 𝜆 (requests/ms) and server capacities of one service with an exponentially
distributed service rate of 𝜇𝑐 for containerized VNFs, whereas for VMs, 𝜇𝑣 is given by (5.1).
In other words, the current model allows different service rates for each resource type.

Container setup/repair times and failures are also exponentially distributed with rates 𝛼

and 𝛾, respectively. A regular first come first served queue was assumed for new requests
with prioritization for retrial. We assume a standalone deployment and the system is modeled
as an M/M/n+c/K queue (Fig. 21) with setup time and failure. The feasible state space
is given by Ω = (𝑖, 𝑗, 𝑘) | 0 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 𝑐, and 0 ≤ 𝑘 ≤ 𝐾, with 𝑖 + 𝑗 ≤ 𝑘

and 𝑖, 𝑗, 𝑛, 𝑐, 𝑘, 𝐾 ∈ Z+. Each state (𝑖,𝑗,𝑘) denotes the number of services allocated to
VMs (𝑖), containers (𝑗) and the total number of services in the system (𝑘), respectively.
Furthermore, the steady-state probabilities 𝜋(𝑖, 𝑗, 𝑘) are extracted from the solution of a linear
system formed by the normalization condition (5.2) and balance equations (5.3)-(5.16). Please
consider (𝑖, 𝑗, 𝑘) ∈ Ω in all equations to follow.

𝑛∑︁
𝑖=0

𝑐∑︁
𝑗=0

𝐾∑︁
𝑘=𝑖+𝑗

𝜋(𝑖, 𝑗, 𝑘) = 1 (5.2)

The single state where there are no services is represented by (5.3). (5.4) covers the states
where all services are running on VM-hosted VNFs, i.e., no containers are required. Next, (5.5)
and (5.6) are similar to (5.4), however, in the first there are services in the buffer for containers
to setup while in the latter there are no containers in the system to be turned on.

𝜆𝜋(0,0,0) = 𝜇𝑐𝜋(0,1,1) + 𝜇𝑣𝜋(1,0,1) (5.3)

(𝜆 + 𝑖𝜇𝑣)𝜋(𝑖,0,𝑖)

= 𝜆𝜋(𝑖−1,0,𝑖−1) + 𝑚𝑖𝑛(𝑖 + 1, 𝑛)𝜇𝑣𝜋(𝑚𝑖𝑛(𝑖+1,𝑛),0,𝑖+1) + 𝛾𝜋(𝑖−1,1,𝑖) + 𝜇𝑐𝜋(𝑖,1,𝑖+1) (5.4)

[(𝜆 + 𝑛𝜇𝑣) + 𝑚𝑖𝑛(𝑘 − 𝑛, 𝑐)𝛼]𝜋(𝑛,0,𝑘) = 𝜆𝜋(𝑛,0,𝑘−1) + 𝑛𝜇𝑣𝜋(𝑛,0,𝑘+1) + 𝛾𝜋(𝑛,1,𝑘) (5.5)
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[𝑛𝜇𝑣 + 𝑚𝑖𝑛(𝐾 − 𝑛, 𝑐)𝛼]𝜋(𝑛,0,𝐾) = 𝜆𝜋(𝑛,0,𝐾−1) + 𝛾𝜋(𝑛,1,𝐾) (5.6)

The leftmost diagonal states of Fig. 21 are described by (5.7), with no busy VM and some
containers running services, while (5.8) refers to the system states with all VM-hosted VNFs
idle and all the containers busy. The top-left states in Fig. 21 are represented by 5.9, where all
containers are occupied but some VMs are idle. In (5.10), all VMs and CTs are busy and there
are no services in the buffer. Given by (5.11), the top-right states (Fig. 21) are those where
all VMs and CTs are Busy and some services waiting in the buffer. Similar to the previous set,
5.12 refers to the top-rightmost part of Fig. 21, where all VM-hosted and containerized VNFs
are busy and the system is full.

[(𝜇𝑐 + 𝛾)𝑗 + 𝜆]𝜋(0,𝑗,𝑗) = 𝜇𝑣𝜋(1,𝑗,𝑗+1) + (𝑗 + 1)𝜇𝑐𝜋(0,𝑗+1,𝑗+1) (5.7)

[(𝜇𝑐 + 𝛾)𝑐 + 𝜆]𝜋(0,𝑐,𝑐) = 𝜇𝑣𝜋(1,𝑐,𝑐+1) (5.8)

[(𝜇𝑐 + 𝛾)𝑐 + 𝑖𝜇𝑣 + 𝜆]𝜋(𝑖,𝑐,𝑐+𝑖) = 𝜆𝜋(𝑖−1,𝑐,𝑐+𝑖−1) + (𝑖 + 1)𝜇𝑣𝜋(𝑖+1,𝑐,𝑐+𝑖+1) (5.9)

[(𝜇𝑐+𝛾)𝑐+𝑛𝜇𝑣+𝜆]𝜋(𝑛,𝑐,𝑛+𝑐) = 𝜆𝜋(𝑛−1,𝑐,𝑛+𝑐−1)+(𝑛𝜇𝑣+𝑐𝜇𝑐)𝜋(𝑛,𝑐,𝑛+𝑐+1)+𝛼𝜋(𝑛,𝑐−1,𝑛+𝑐) (5.10)

[(𝜇𝑐 + 𝛾)𝑐 + 𝑛𝜇𝑣 + 𝜆]𝜋(𝑛,𝑐,𝑘) = 𝜆𝜋(𝑛,𝑐,𝑘−1) + (𝑛𝜇𝑣 + 𝑐𝜇𝑐)𝜋(𝑛,𝑐,𝑘+1) + 𝛼𝜋(𝑛,𝑐−1,𝑘) (5.11)

[(𝜇𝑐 + 𝛾)𝑐 + 𝑛𝜇𝑣]𝜋(𝑛,𝑐,𝐾) = 𝜆𝜋(𝑛,𝑐,𝐾−1) + 𝛼𝜋(𝑛,𝑐−1,𝐾) (5.12)

The left-most states in Fig. 21 are covered by (5.13), where all VMs are running services
and the system is full, but some containers are still scaling up. The set of states where the
number of services is larger than that of both active VMs and Containers, i.e., the buffer is
holding some services is described by (5.14). Furthermore, at the frontier, (5.15) refers to the
states where all VMs and part of the containers are serving, but no services are buffered. Lastly,
the states where both VMs and containers are partially occupied and the buffer is empty is
located at the left intermediate part of Fig. 21, and its respective equation is (5.16). The
complete equation set is summarized in Table 14.



66

[(𝜇𝑐 + 𝛾)𝑗 + 𝑛𝜇𝑣 + 𝑚𝑖𝑛(𝐾 − 𝑛 − 𝑗, 𝑐 − 𝑗)𝛼]𝜋(𝑛,𝑗,𝐾)

= 𝜆𝜋(𝑛,𝑗,𝐾−1) + (𝑗 + 1)𝛾𝜋(𝑛,𝑗+1,𝐾) + 𝑚𝑖𝑛(𝐾 − 𝑛 − 𝑗 − 1, 𝑐 − 𝑗 − 1)𝛼𝜋(𝑛,𝑗−1,𝐾) (5.13)

[(𝜇𝑐 + 𝛾)𝑗 + 𝑛𝜇𝑣 + 𝜆 + 𝑚𝑖𝑛(𝑘 − 𝑛 − 𝑗, 𝑐 − 𝑗)𝛼]𝜋(𝑛,𝑗,𝑘)

= 𝜆𝜋(𝑛,𝑗,𝑘−1) + (𝑗 + 1)𝛾𝜋(𝑛,𝑗+1,𝑘) + 𝑚𝑖𝑛(𝑘 − 𝑛 − 𝑗 − 1, 𝑐 − 𝑗 − 1)𝛼𝜋(𝑛,𝑗−1,𝑘) (5.14)

[(𝜇𝑐 + 𝛾)𝑗 + 𝑛𝜇𝑣 + 𝜆]𝜋(𝑛,𝑗,𝑘)

= 𝜆𝜋(𝑛−1,𝑗,𝑘−1) + (𝑗 + 1)𝛾𝜋(𝑛−1,𝑗+1,𝑘) + (𝑗 + 1)𝜇𝑐𝜋(𝑛,𝑗+1,𝑘+1)

+ (𝑛𝜇𝑣 + 𝑗𝜇𝑐)𝜋(𝑛,𝑗,𝑘+1) + 𝛼𝜋(𝑛,𝑗−1,𝑘) (5.15)

[(𝜇𝑐 + 𝛾)𝑗 + 𝑖𝜇𝑣 + 𝜆]𝜋(𝑖,𝑗,𝑘)

= 𝜆𝜋(𝑖−1,𝑗,𝑘−1) + (𝑖 + 1)𝜇𝑣𝜋(𝑖+1,𝑗,𝑘+1) + (𝑗 + 1)𝛾𝜋(𝑖−1,𝑗+1,𝑘) + (𝑗 + 1)𝜇𝑐𝜋(𝑖,𝑗+1,𝑘+1) (5.16)
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Table 14 – Balance Equations Summary

Eq. State(s) Condition(s) Description
(5.3) (0, 0, 0) 𝑛/𝑎 Empty system.
(5.4) (𝑖, 0, 𝑖) (0 ≤ 𝑖 ≤ 𝑛) All services are running on VMs.
(5.5) (𝑛, 0, 𝑘) (𝑛 + 1 ≤ 𝑘 ≤ 𝐾 − 1) All VMs are busy and no container is

yet active.
(5.6) (𝑛, 0, 𝐾) (𝑛/𝑎) Similar to (5.4), but the system is full.
(5.7) (0, 𝑗, 𝑗) (1 ≤ 𝑗 ≤ 𝑐 − 1) No busy VM and some containers run-

ning services.
(5.8) (0, 𝑐, 𝑐) (𝑛/𝑎) Containers running all services.
(5.9) (𝑖, 𝑐, 𝑐 + 𝑖) (1 ≤ 𝑖 ≤ 𝑛 − 1) VMs partially busy and all containers

running services.
(5.10) (𝑛, 𝑐, 𝑛 + 𝑐) (𝑛/𝑎) All containers and VMs are serving;

queue is empty.
(5.11) (𝑛, 𝑐, 𝑘) (𝑛 + 𝑐 + 1 ≤ 𝑘 ≤ 𝐾 − 1) Similar to (5.9), but with waiting ser-

vices.
(5.12) (𝑛, 𝑐, 𝐾) (𝑛/𝑎) All VMs and containers are serving and

the system is full.
(5.13) (𝑛, 𝑗, 𝐾) (1 ≤ 𝑗 ≤ 𝑐 − 1) Full system with busy VMs and con-

tainers either serving or scaling up.
(5.14) (𝑛, 𝑗, 𝑘) (1 ≤ 𝑗 ≤ 𝑐) 𝑎𝑛𝑑 (𝑛 + 𝑗 +

1 ≤ 𝑘 ≤ 𝐾 − 1)
All VMs and containers are serving and
the queue is not empty.

(5.15) (𝑛, 𝑗, 𝑛 + 𝑗) (1 ≤ 𝑗 ≤ 𝑐) All VMs and part of the containers are
serving.

(5.16) (𝑖, 𝑗, 𝑖 + 𝑗) (1 ≤ 𝑖 ≤ 𝑛 − 1) 𝑎𝑛𝑑 (1 ≤
𝑗 ≤ 𝑐 − 1)

VMs and containers are partially occu-
pied and the queue is empty.

Source: The author (2021)

5.3 PERFORMANCE METRICS

In Chapter 4, four key performance indicators were studied and modeled for that specific
framework. In this section, a similar steady-state analysis of the CTMC is considered, followed
by the derivation of the same performance metrics: Availability (𝐴), Reliability (𝑅), Power
Consumption (𝐶) and Response Time (𝑇 ). However, since the CTMC differs from that of
Chapter 4, new equations were derived.

5.3.1 Availability (A)

The Availability is the system’s ability to offer the minimum amount of functional and
accessible VNFs. In particular, a VNF instance is considered available if at least one of its
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constituents (VM-hosted or containerized) remains accessible. With regards to the queuing
system, the MEC node Availability (𝐴) (5.17) is obtained by the probability sum of all states
except those representing full capacity.

𝐴 = 1 −
𝑛∑︁

𝑖=0

𝑐∑︁
𝑗=0

𝜋𝑖,𝑗,𝐾 (5.17)

5.3.2 Reliability (R)

The Reliability (𝑅) is given by (5.18), which combines the admitted flow 𝜆*𝐴 with the
effective failure rate in the entire node, i.e., denotes the probability that a service is served
without experiencing failures while being processed by MEC VNFs.

𝑅 = 1 − 𝛾

𝜆 * 𝐴

𝑐∑︁
𝑗=1

𝑗

[︃
𝑛∑︁

𝑖=0

𝐾∑︁
𝑘=1

𝜋𝑖,𝑗,𝑘

]︃
(5.18)

5.3.3 Power Consumption (C)

The power consumption (𝐶) Eq. 5.24 is formed from the combination of the mean number
of virtual resources and power consumption values (𝑃 ) for each virtualization technology (VM
and Container) and operating states (Idle, Setup and Busy). Thus, the power consumption
(in Watts) of a single VM in idle state is denoted 𝑃 𝑉 𝑀

𝑖𝑑𝑙𝑒 , and the remaining variables are
represented with the same notation. However, in order to obtain the aforementioned metric,
the mean number of VMs and containers (CT) in each state are described in Eqs. 5.19-5.23.
Again, since VMs are constantly powered, no equation for its Setup state is described.

𝑉 𝑀 𝑖𝑑𝑙𝑒 =
𝑛∑︁

𝑖=0
(𝑛 − 𝑖)

⎡⎣ 𝑐∑︁
𝑗=0

𝐾∑︁
𝑘=0

𝜋𝑖,𝑗,𝑘

⎤⎦ (5.19)

𝑉 𝑀 𝑏𝑢𝑠𝑦 =
𝑛∑︁

𝑖=0
𝑖

⎡⎣ 𝑐∑︁
𝑗=0

𝐾∑︁
𝑘=0

𝜋𝑖,𝑗,𝑘

⎤⎦ (5.20)
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𝐶𝑇 𝑖𝑑𝑙𝑒 =
𝑐∑︁

𝑗=0
(𝑐 − 𝑗)

𝑛∑︁
𝑖=0

𝜋𝑖,𝑗,𝑘

+
𝑐∑︁

𝑗=0

𝑛∑︁
𝑖=0

𝐾∑︁
𝑘=𝑖+𝑗+1

(𝑐 − 𝑗 − 𝑚𝑖𝑛(𝑘 − 𝑖 − 𝑗, 𝑐 − 𝑗))𝜋𝑖,𝑗,𝑘

(5.21)

𝐶𝑇 𝑠𝑒𝑡𝑢𝑝 =
𝑐∑︁

𝑗=0

𝐾∑︁
𝑘=𝑛+𝑗+1

𝑚𝑖𝑛(𝑘 − 𝑛 − 𝑗, 𝑐 − 𝑗)𝜋𝑛,𝑗,𝑘. (5.22)

𝐶𝑇 𝑏𝑢𝑠𝑦 =
𝑐∑︁

𝑗=1
𝑗

⎡⎣ 𝑛∑︁
𝑖=0

𝐾∑︁
𝑘=𝑗+𝑖

𝜋𝑖,𝑗,𝑘

⎤⎦ . (5.23)

𝐶 = 𝑃 𝑉 𝑀
𝑖𝑑𝑙𝑒 𝑉 𝑀 𝑖𝑑𝑙𝑒 + 𝑃 𝑉 𝑀

𝑏𝑢𝑠𝑦 𝑉 𝑀 𝑏𝑢𝑠𝑦

+𝑃 𝐶𝑇
𝑖𝑑𝑙𝑒 𝐶𝑇 𝑖𝑑𝑙𝑒 + 𝑃 𝐶𝑇

𝑠𝑒𝑡𝑢𝑝𝐶𝑇 𝑠𝑒𝑡𝑢𝑝 + 𝑃 𝐶𝑇
𝑏𝑢𝑠𝑦 𝐶𝑇 𝑏𝑢𝑠𝑦

(5.24)

5.3.4 Response Time (T)

The Response Time (𝑇 ) is defined exactly as in 4: the interval between the service arrival
(on the edge node) and its departure (service conclusion) and is obtained by calculating the
mean number of online services and the mean number of accepted services (5.25).

𝑇 = 1
𝜆 * 𝐴

𝐾∑︁
𝑘=0

𝑘

⎡⎣ 𝑛∑︁
𝑖=0

𝑐∑︁
𝑗=0

𝜋𝑖,𝑗,𝑘

⎤⎦ (5.25)

5.4 MODEL VALIDATION

The simulation structure is quite similar to that of the base analytical model presented in
Section 4.4.1, differing only from the programmed logic to meet the specific design. Again, the
analytical results were validated against discrete-event simulations (Figs. 22-33), where the
lines denote the analytical and the markers represent simulation results. With regards to the
main parameters, we have followed a subset of the 3GPP Release 16 (TR 38.824) [3GPP 2020],
in which the service rates 𝜇 and 𝜇𝑐 are 1 (1 service/ms), whereas 𝜇𝑣 is calculated in (5.1).
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Table 15 – Power Consumption Values

Parameter Value
Idle VM Energy Consumption (𝑃 𝑉 𝑀

𝑖𝑑𝑙𝑒 ) 20 W
Busy VM Energy Consumption (𝑃 𝑉 𝑀

𝑏𝑢𝑠𝑦) 25 W
Idle CT Energy Consumption (𝑃 𝐶𝑇

𝑖𝑑𝑙𝑒) 4 W
Setup CT Energy Consumption (𝑃 𝐶𝑇

𝑠𝑒𝑡𝑢𝑝) 8 W
Busy CT Energy Consumption (𝑃 𝐶𝑇

𝑏𝑢𝑠𝑦) 23 W
Source: Morabito (2015)

Each scenario simultaneously evaluates the impact of a pair of the following parameters:
Multiple VM Amounts (n) and Overhead Degradation Factor (d),multiple container amounts
(c) and failure rates (𝛾), and multiple buffer sizes (q) and container setup rates (𝛼), with the
service arrivals ranging from 1 up to 100 requests/ms. In addition, unless otherwise stated
the baseline values for failure (𝛾) and setup rates (𝛼) were 0.001 and 1 unit/ms, respectively,
which is in accordance with [Kaur et al. 2017]. In terms of power consumption for VMs and
containers for different operation states, we adopted the values from the network intensive
experiment in [Morabito 2015], which is summarized in Table 15. The remaining parameters
can be found in Table 16.

Table 16 – Experiment Sets

Varying Parameters 𝑛 𝑐 𝑞 𝑑 𝛾 𝛼

n, 𝑑 10,30,50 40 10 10−2,10−1 10−3 1
c, 𝛾 10 40,60,80 10 10−2 10−3,10−2 1
q, 𝛼 10 40 10,30,50 10−2 10−3 10−1,1

Source: The author (2021)

5.4.1 Multiple VM Amounts (𝑛) and Overhead Degradation Factor (𝑑)

In Figs. 22-23 both Availability and Reliability have similar configuration disposal, however
with large magnitude differences between them. In Fig. 22, the combined increase of 𝑛 and 𝑑

implies a less available system due to a lower VM service rate. This also means that containers
are likely to be more required, meaning that failures happen more often, leading to a less
reliable system (Fig. 23). Comparing the Availability for configurations ((𝑛 = 10), (𝑛 = 30))
and ((𝑛 = 30), (𝑛 = 50)) that share 𝑑 = 0.01, the absolute difference is 11.5% and 9.1%,
respectively, whereas in Fig. 23 the difference among the Reliability from the same curves is
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much smaller in absolute terms, which would be relevant URLLC.

Figure 22 – Availability
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Figure 23 – Reliability
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In Fig. 24, both the maximum number of VMs (𝑛) and overhead degradation factor (𝑑)
greatly impacted power consumption, but in different ways. Since VMs are not dynamically
scalable, it was expected that the increase in 𝑛 would also increase overall power consumption,
regardless of 𝜆. On the other hand, the overhead degradation factor (𝑑) clearly impacts the
non-saturated system, and particularly in this scenario has only impacted configurations with
higher 𝑛 values (30 and 50), respectively. For values of 𝜆 tending to 100, the curves with
same 𝑛 overlap, which evinces a saturated system, i.e., all resources are processing services
although each pair of curves has different throughput due to the different values for 𝑑. With
respect to the differences in power consumption, the two curves with equal 𝑛 values: (𝑛 = 30,
𝑑 = 0.01) and (𝑛 = 30, 𝑑 = 0.1) present a 500W maximum gap in 𝜆 = 35, whereas the
difference in (𝑛 = 50, 𝑑 = 0.01) and (𝑛 = 50, 𝑑 = 0.1) is approximately 600𝑊 in the same
reference point, which are quite significant since each of them has the same VM amount.
Another particularity is observed when comparing the curves (𝑛 = 30, 𝑑 = 0.1) and (𝑛 = 50,
𝑑 = 0.01) for 𝜆 values ranging from = 20 to 50, which performed similarly regardless of the
difference in the total number of resources. In brief, in addition to account that the impact of
𝑑 is potentialized by 𝑛, higher 𝑑 values also makes the overall service rate lower, leaving VMs
in Busy mode for longer periods besides forcing the system to activate containers more often.

Unlike the power consumption, the changes in 𝑛 have very little impact on the Response
time (Fig. 25) if compared to the results of the curves with different 𝑑. This indicates that
the positive effects of increasing 𝑛 can be mitigated depending on 𝑑. In general, there are
multiple nuances involving each parameter, service load and performance metrics that might
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Figure 24 – Power Consumption
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Figure 25 – Response Time
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be conflicting, indicating the relevance of an adequate dimensioning process. For instance,
comparing the two curves with 𝑛 = 50 the Response Time almost doubles. Moreover, consid-
ering Availability and Reliability the curve with (𝑛 = 50, 𝑑 = 0.01) had the best performance,
whereas for Power Consumption it was one of the worse.

5.4.2 Multiple Container Amounts (𝑐) and Failure Rates (𝛾)

A larger 𝛾 means smaller intervals between successive containerized VNF failures. In con-
trast to 𝛼, this parameter improves the system as it gets smaller. Thus, 𝛾 was enhanced by a
factor of 10 and 100. In addition, containers are not prone to significant overhead issues unlike
VMs, and besides, there is no correlation between the container amount and its individual ser-
vice rate. For this resource type, failures are isolated events. In this scenario, we have reduced
and fixed the total amount of VMs to ten units (𝑛 = 10) to highlight the impact of 𝑐 and 𝛾.
Thus, for small 𝜆 < 10 most services are processed in VMs, not having a great influence on
the results.

It was verified that 𝛾 values have little influence on the Availability (Fig. 26), Power
Consumption (Fig. 28), and even in the Response Time (Fig. 29) for the assumed ranges.
This does not means that this parameter has no impact of those metrics; but in order for
this to happen, 𝛾 must be at least of the same order as 𝛼, making containers failure more
frequently, thus rapidly deteriorating the system capacity. Otherwise, the container amount
𝑐 has highly impacted those metrics, especially for values of 𝜆 tending to 100, where the
maximum differences in each figure were registered. As for the Reliability (Fig. 27), the failure
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Figure 26 – Availability
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Figure 27 – Reliability
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rate 𝛾 remains as one of its key components and hence significantly impacts the curves while
𝑐 has little influence. In addition, compared to the Reliability in the previous experiment Fig.
23, the maximum absolute difference between curves is much higher (0.007).

Figure 28 – Power Consumption
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Figure 29 – Response Time
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In Fig. 29, the Response Time spikes for 𝜆 = 10, which corresponds to the fixed VM
maximum amount (𝑛 = 10). From this point on, the containers are turned on, which explains
the sudden spike due to the setup time and moreover the sudden drop, when part of the these
resources are available and processing incoming services. Lastly, in each pair of curves there
is a slight increase on the Response Time in different 𝜆 which is explained by the resource
limit and further queue activation, which is not a processing unit. Compared to the Response
Time in the previous experiment Fig. 25, it is noticeable that the maximum difference between
curves is much less significant (less than 0.1 ms).
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5.4.3 Multiple Queue Sizes (𝑞) and Container Setup Rates (𝛼)

Larger 𝛼 and 𝑞 values mean smaller container setup delays, i.e., more VNF instances
become available per unit time and greater buffer capacity, respectively. The results to follow
could have been amplified for larger 𝑞 values or for a higher ratio between 𝛼 and 𝛾, however,
in order to keep the same total amount of resources as in previous experiments, we have opted
for 𝑞 = 10, 30 and 50, followed [3GPP 2020] to select appropriate values for 𝛼 and 𝛾. In this
way, most configurations performed similarly for the Availability (Fig. 30), except the curves
with 𝑞 = 10. In fact, Availability, Power Consumption (Fig. 32) and Response Time (Fig. 33)
are likely to increase when 𝑞 → +∞ but in much different rates. On the other hand, the
Reliability (Fig. 31) is barely affected by the increase on 𝑞.

Figure 30 – Availability
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Figure 31 – Reliability

20 40 60 80 100
Arrival Rate (6 Requests/ms)

0.9992

0.9994

0.9996

0.9998

1

R
el

ia
bi

lit
y 

(R
)

q = 10, , = 0.1
q = 10, , = 1
q = 30, , = 0.1
q = 30, , = 1
q = 50, , = 0.1
q = 50, , = 1

Source: The author (2021)

With regards to 𝛼 variations, the Availability (Fig. 30) difference from the curves in which
"𝑞 = 10" were significant, similarly to the results for different 𝑞. This was somehow expected
since higher 𝛼 mean more available containers per unit time. On the other hand, the reliability
results (Fig. 31) were not significantly affected by either parameters. We believe that the
ratio between 𝛼 and 𝛾 has contributed for this result; if 𝛾 becomes higher, different 𝛼 may
result in great differences towards the Reliability being the curves with higher 𝛼 the most
likely to present lower reliability. Although the difference is quite small, one may note that the
configuration 𝑞 = 10, 𝛼 = 0.1 was the most reliable since less containers are serving per unit
time, and thus there are less failures.

With respect to the Response time in Fig. 33, two configuration groups overlap until 𝜆 = 20

and 𝜆 = 40. Then, the groups are split end up forming 3 pairs of curves each of which with the
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Figure 32 – Power Consumption
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Figure 33 – Response Time
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same 𝑞, crossing each other for multiple 𝜆. The reason for such a different behavior is related to
the resource availability empowered by higher 𝛼 and the use of queue to store service surplus.
For this reason, configurations with higher 𝛼 and lower 𝑞 are likely to respond much faster.
For 𝜆 → +∞, 𝛼 becomes irrelevant since the containers are continuously processing services
only resetting in case of failure. On the other hand, higher 𝑞 values allows the system to store
more services without actually processing them, which incurs in higher response times.

5.5 CHAPTER SUMMARY

In this chapter we described additional elements that compose a single MEC node virtual
environment with extra assumptions, namely (a) separate service rates for VMs and contain-
ers and (b) service migration. The new assumptions yielded a more realistic model, especially
considering that in the previous model VMs were considered perfect computational resources,
i.e., no failures and no further characteristics that could cause negative impacts. In addition,
the CTMC was also altered so as to add some flexibility to the model and to facilitate com-
prehension by using three variables instead of only two as described in the previous chapter.
For the next chapter, the multi-objective problem of MEC node dimensioning is formulated
and a scheme based on genetic algorithms to solve it is proposed and evaluated.
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Table 17 – Chapter 5 Summary

Section Goal(s) Output(s)
5.1 SYSTEM MODEL Describe the top-level elements of the system

to be modelled and the key differences from the
previous model from 4.

Virtual host assumptions: setup/recovery de-
lays, failures, dynamic VNF scaling and process-
ing overhead (5.1).

5.2 ANALYTICAL
MODEL

Describe the CTMC-based model of a single
MEC node for URLLC with VMs and Contain-
ers scaled upon demand.

a) Steady State Analysis (transitions and state
space) illustrated in Fig.21; b) normalization
condition (5.2) and balance equations (5.3)-
(5.16), summarized in Table 14.

5.3 PERFORMANCE
METRICS

a) Explain the importance of each adopted met-
ric: Availability (A), Reliability (R), Power Con-
sumption (C) and Response Time (T); b) De-
tail each metric formulation.

Expressions: MEC node Availability (𝐴) (5.17),
Reliability (𝑅) (5.18), Power Consumption (𝐶)
(5.24). and Response Time (𝑇 ) (5.25).

5.4 MODEL VALIDA-
TION

a) Describe the adopted discrete-event simula-
tor; b) Validate results in the following scenar-
ios: 1) Multiple VM Amounts (𝑛) and Overhead
Degradation Factor (𝑑), 2) Multiple Container
Amounts (𝑐) and Failure Rates (𝛾) and 3)
Multiple Queue Sizes (𝑞) and Container Setup
Rates (𝛼).

a) First scenario: Multiple nuances involving
each parameter, service load and performance
metrics that might be conflicting, indicating the
relevance of an adequate dimensioning process.
b) Second Scenario: the container amount 𝑐
has highly impacted those metrics, especially
for values of 𝜆 tending to 100, where the maxi-
mum differences in each figure were registered.
c) Third scenario: higher 𝑞 allows the system
to store more services without processing them,
which incurs in higher response times.

Source: The author (2021)
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6 A SCHEME BASED ON GENETIC ALGORITHMS FOR MEC NODE DIMEN-

SIONING

Based on the designed models described in Chapters 4-5, we have analyzed the influence
of various system parameters on different performance metrics. Those experiments required
previous knowledge of all input parameters, however, it is also possible to select part of those
parameters to be optimized. Although multiple subsets could have been selected, this chapter
aims at the problem of optimizing the MEC node dimensions (size) in terms of its resource
components, i.e., maximum number of VMs, containers and buffer positions. In addition, the
scheme takes into account the model and metrics formulated in Chapter 5, i.e., the model
extension, which best represents the MEC node operation.

This chapter starts with a motivation scenario again emphasizing the role of MEC on future
mobile networks (Section 6.1), but embraces a new paradigm shift known as MEC-enabled
UAV that is part of the space-air-ground integrated network effort [Zhao et al. 2021]. Then,
in Section 6.2 the dimensioning optimization problem is formulated and characterized as a
multi-objective problem, which considers multiple aspects discussed in Chapter 2. In Section
6.3, a scheme based on genetic algorithms is proposed to solve the multi-objective problem. It
sets out by describing the basis GA elements: chromosome structure and fitness function, as
well as its remaining operators: Selection, Crossover and Mutation. Following this, the genetic
operators and test results that are needed to select the mutation and crossover probability
values are presented together with the execution flow of the proposed scheme in Section 6.3.
Finally, Section 6.4 contains two parts: the first is dedicated to the GA convergence analysis
and the second to the results and comments on the comparison between the proposed scheme
and other strategies to obtain the most suitable MEC node dimensions.

6.1 MEC-ENABLED UAVS

Cloud resource management has been a key factor for since the early datacenter develop-
ment. Improper resource management results in under or over-utilized resources, which may
lead to poor service quality. The scenario of MEC-enabled UAVs draws particular attention
since it has limited resources and battery life. On the other hand, contrarily to fixed infrastruc-
ture, MEC-enabled UAVs yield a flexible solution to meet the stringent demands from criti-
cal applications such as in URLLC [Islambouli and Sharafeddine 2019]. Owing to the mobility,
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UAVs enable edge servers/core functions to fly closer to UEs, establishing Line-of-Sight (LOS),
which assures the best connectivity conditions towards channel quality and consequently higher
transmission rates and reliability [Li et al. 2019]. Thus, the main challenges rely on the limited
resource and battery life, which leads to the importance of efficient resource dimensioning.

The role of UAVs on enhancing future networks can be widely diverse, with UAVs acting
as radio, core NFs, edge cloud servers or backhaul equipment [Yang et al. 2019]. The benefits
of co-locating these capabilities on a single UAV include improvements on service latency and
signaling overhead, while the limitations are mainly related to energy consumption.

UAV-enabled NFs complement ground core network, facilitating cooperation. Core NFs
on UAVs can reduce latency while ensuring stable connectivity, also providing a means of
collecting local environment data for enriching network analytics, e.g. for QoS assurance.
Given the natural energy limitations on UAVs, core NFs that hold user registration data, policy
and authentication are not suitable to be hosted on UAVs to avoid losing data.

Typical core NFs that can be hosted on UAVs include Control plane functions e.g., Access
and Mobility Function (AMF), Session Management Function (SMF) and Network Exposure
Function (NEF), which are depicted in Fig. 34. This figure describes an example of a MEC-NFV
deployment based on the ETSI [Kekki and Featherstone 2018] in a 3GPP 5G [3GPP 2020]
system, where the MEC platform is implemented as an Application Function (AF) and the
MEC data plane is as a particular implementation of a 5G User Plane Function (UPF) that
forwards the traffic to MEC applications running in the Data Network (DN).

Previous studies proposed different solutions for optimal use of UAV as network infras-
tructure. In [Zhang et al. 2019], the authors used stochastic optimization tools for energy
consumption minimization on both UE and UAV while optimizing the horizontal trajectory
of the vehicle. In [Costanzo and Lorenzo 2019], a dynamic communication and computation
allocation strategy is proposed for selecting the ideal altitude and minimizing the UAV en-
ergy consumption while concomitantly satisfying latency constraints. In [Yang et al. 2019],
the authors propose MEC-enabled networks over multiple UAVs aiming at power consumption
minimization and focusing on UAVs as backhaul and core network equipment. More recently,
the authors in [Bekkouche et al. 2020] explored the multiple roles of UAVs on enhancing 5G
networks, with UAVs acting as radio, core network, and edge clouds but focusing the proposed
testbed on the latter case, i.e., the performance of UAVs as edge clouds hosting Aerial Control
System (ACS) functions instances responsible for the control and orchestration of a UAV fleet.

While there has been significant attention paid to latency and energy consumption as-
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pects of MEC-enabled UAVs based on trajectory optimization, computing failure resilience
and resource availability has received far less attention even though these are of paramount
importance for resource dimensioning. Motivated by this gap, we propose a resource opti-
mization in terms of maximum number of VMs, containers and buffer size, representing a
single MEC-enabled UAV node described in Chapter 5. In particular, we aim at maximizing
the system’s availability and minimizing power consumption while also satisfying reliability
and latency constraints (for the case of URLLC), offering a complementary solution to those
proposed by previous authors.

6.2 MEC NODE DIMENSIONING OPTIMIZATION PROBLEM

Different objectives must be considered for proper MEC-enabled UAV resource dimension-
ing, which may be formulated as an optimization problem as follows (6.1). Given a service
demand characterized by arrival (𝜆) and service rates when running on virtual machines and
containers (𝜇𝑛 and 𝜇𝑐, respectively) and the containerized VNF setup and failure rates (𝛼
and 𝛾, respectively), it determines the most appropriate node dimension in terms of number
of virtual machines, containers and buffer size (𝑥* = [𝑥1

*, 𝑥2
*, 𝑥3

*] ∈ 𝑋) that maximizes the
system’s availability (A) and minimizes power consumption (C) while also satisfying reliability
(R) and response time (T) constraints (𝑅𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥). 𝑋 is the problem’s feasible solution
space, 𝑥𝑖

1, 𝑥𝑖
2, 𝑥𝑖

3 denote the number of VMs, CTNs and buffer size that compose the solution
𝑥𝑖, which are defined within [𝐼𝑚𝑖𝑛𝑗, 𝐼𝑚𝑎𝑥𝑗], with 𝑗 = 1, 2, 3, respectively.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴(𝑥) 𝑎𝑛𝑑 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶(𝑥)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑅(𝑥) ≥ 𝑅𝑚𝑖𝑛,

𝑇 (𝑥) ≤ 𝑇𝑚𝑎𝑥,

𝑥𝑖 ∈ 𝑋, 𝑥𝑖
𝑗 ∈ Z+,

𝑤𝑖𝑡ℎ 𝑗 = 1, 2, 3 𝑎𝑛𝑑 𝑥𝑖
𝑗 ∈ [𝐼𝑚𝑖𝑛𝑗, 𝐼𝑚𝑎𝑥𝑗]

(6.1)

Focusing on a specific objective may deteriorate others or violate constraints. To miti-
gate such effect, we propose an evolutionary scheme based on GA that copes with the given
conflicting objectives and constraints that uses an adjusted dominance concept. In this work,
we assume that the GA is adopted for the dimensioning phase, i.e., before proper operation.
The scheme should be executed on a separate structure such as a ground MEC node or cen-
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tral cloud since the dimensioning phase may require additional resources and is usually not
a critical, i.e., once the limits are defined, the scheme is not required to run run during the
operation.

6.3 GA OPERATIONAL DETAILS

The GA relies on evolving a solution set given (chromosomes) through the combination of
several possible sets through its operators: selection, crossover and mutation. In this work, the
GA handles multiple MEC-enabled UAV node configurations simultaneously in each interaction.

6.3.1 Chromosome Structure and Fitness Function

In order to handle this multiobjective problem and reduce its complexity, we adopted a
fitness function based on the dominance concept [Deb 2011], which takes each individual and
compares it to the remaining population in terms of the already known four performance
metrics (A,R,C and T).

The individual 𝑥 (chromosome) represents the maximum number of VMs, CTNs and buffer
size for the solution 𝑥𝑖, i.e., 𝑥𝑖

1, 𝑥𝑖
2, 𝑥𝑖

3 ∈ Z+. The possible node configurations evolves as differ-
ent generations and produces more appropriate solutions represented by the set of resources.
In this respect, each individual 𝑥𝑖 is compared to the entire population. Hence, equations
(6.3)-(6.6) describe the number of dominated individuals for each metric.

In addition to the points scored in each comparison, the individual’s fitness is increased by
another constant 𝜔𝑟 and/or 𝜔𝑡 ∈ R+, if the Reliability (R) and Response Time (T) overcome a
predefined threshold (𝑅𝑚𝑖𝑛 and T𝑚𝑎𝑥, respectively), which is given by (6.7) and (6.8). For the
population size considered in the following experiments (50), 𝜔𝑟 = 1 and 𝜔𝑡 = 1 represented
reasonable values and thus were assumed. The resulting fitness function (6.2) sums up all the
above mentioned parts.
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) =
∑︁
𝑀

𝐷𝑀(𝑥𝑖) +
∑︁
𝑆

𝐵𝑆(𝑥𝑖),

𝑤𝑖𝑡ℎ 𝑀 𝑏𝑒𝑖𝑛𝑔 𝐴, 𝑅, 𝐶, 𝑎𝑛𝑑 𝑇,

𝑆 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑅 𝑎𝑛𝑑 𝑇,

𝑖, 𝑗 ∈ Z+𝑎𝑛𝑑 𝑖, 𝑗 ≤ 𝐿,

𝑤ℎ𝑒𝑟𝑒 𝐿 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

(6.2)

𝐷𝐴(𝑥𝑖) =
𝐿∑︁

𝑖 ̸=𝑗,𝑗=1

⎧⎪⎪⎨⎪⎪⎩
1 , 𝑖𝑓 𝐴(𝑥𝑖) ≥ 𝐴(𝑥𝑗)

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.3)

𝐷𝑅(𝑥𝑖) =
𝐿∑︁

𝑖 ̸=𝑗,𝑗=1

⎧⎪⎪⎨⎪⎪⎩
1 , 𝑖𝑓 𝑅(𝑥𝑖) ≥ 𝑅(𝑥𝑗)

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.4)

𝐷𝐶(𝑥𝑖) =
𝐿∑︁

𝑖 ̸=𝑗,𝑗=1

⎧⎪⎪⎨⎪⎪⎩
1 , 𝑖𝑓 𝐶(𝑥𝑖) ≤ 𝐶(𝑥𝑗)

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.5)

𝐷𝑇 (𝑥𝑖) =
𝐿∑︁

𝑖 ̸=𝑗,𝑗=1

⎧⎪⎪⎨⎪⎪⎩
1 , 𝑖𝑓 𝑇 (𝑥𝑖) ≤ 𝑇 (𝑥𝑗)

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.6)

𝐵𝑅(𝑥𝑖) =

⎧⎪⎪⎨⎪⎪⎩
𝜔𝑟 , 𝑖𝑓 𝑅(𝑥𝑖) ≥ 𝑅𝑚𝑖𝑛

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.7)

𝐵𝑇 (𝑥𝑖) =

⎧⎪⎪⎨⎪⎪⎩
𝜔𝑡 , 𝑖𝑓 𝑇 (𝑥𝑖) ≤ 𝑇𝑚𝑎𝑥

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6.8)

6.3.2 Genetic Operators and Parameters

We adopted the classical GA operators, i.e., the roulette wheel for selection and uniform
operator for the crossover, hence, the highest fitness individuals are more likely to move to the
next generation while creating new individuals from the crossover process, while a bit mutation
operator was also employed [Deb 2011].

Multiple tests were conducted to define the crossover (𝑃𝑐) and mutation (𝑃𝑚) probabilities.
Five values within the intervals [0.2, 1] and [0.01, 0.09] were tested for 𝑃𝑐 and 𝑃𝑚, respectively
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Table 18 – Crossover rate and Mutation Probability Tests

Parameter Value
Crossover probability (𝑃𝑐) 0.2/0.4/0.6/0.8/1
Mutation probability (𝑃𝑚) 0.01/0.03/0.05/0.07/0.09

Source: The author (2021)

(Table 18). The test scenario was composed of up to 50 VMs, 50 Containers and 50 Buffer
positions, with the remaining parameters being described in Table 20) and 𝜆 was fixed to a
mid range value of 50. For each test case, five simulation instances were performed.

Figure 35 – Test Cases for Pc and Pm
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The highest average fitness value for the last generation’s population was selected for each
test case (Fig. 35). The best performance was obtained by test case 16, in which 𝑃𝑐 and
𝑃𝑚 assumed 0.8 and 0.01, respectively. Thus, these values were applied in the next section
together with the population size (L) and number of generations (G), which were set to 50
and 100, respectively. The GA parameters are summarized in Table 19.

Table 19 – Selected GA Parameters

Parameter Value
Population size (L) 50
Generations (G) 100
Crossover probability (𝑃𝑐) 0.8
Mutation probability (𝑃𝑚) 0.01

Source: The author (2021)
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6.3.3 GA Scheme Execution Flow

Given a maximum estimated service load (requests/ms) and resource limits for VMs, Con-
tainers and Buffer size, an initial set of candidate solutions is randomly generated (first popu-
lation). Then, the individuals are evaluated using the dominance-based fitness function (6.2),
which takes four performance metrics, besides an additional score for each threshold that
it overcomes. Moreover, the operators: selection, crossover and mutation are applied in this
order, generating an entirely new population. In addition, to ensure that the best individual
will not be lost during the selection process, we have also employed elitism, i.e., the most fit
individual is guaranteed in the next generation unchanged. Finally, the process repeats until
the maximum number of generations (G) is reached (stop criterion). Then, the best individual
is chosen as the final solution, which represents the most suitable configuration (maximum
number of VMs, Containers and Buffer size). The GA execution flow is depicted in Fig. 36.

Figure 36 – GA Scheme Execution Flow
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6.4 SCHEME EVALUATION

The following lines describe the evaluation scenarios, convergence time of the proposed
GA scheme and its results compared to two other approaches that are based on the first-fit
strategy. The evaluation scenarios share the same parameter values such as service, failure and
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setup rates, as well as the same resource limits, but differ in terms of request loads, being
characterized as Low, Mid and High. The goal is to assess the proposed scheme and the other
strategies under different request rates.

6.4.1 GA Convergence

The GA convergence was examined with regards to the population average fitness. To this
end, an intermediate load fixed value 𝜆 = 50 was selected. We extended the GA’s evolution
process by adopting 150 generations to verify if the average fitness would significantly change
after 50 generations (see Fig. 37). For each point, 30 instances were performed and the average
results are presented considering a 95 confidence level, which were obtained by the Bootstrap
method, with ‘resample’ size and number of (re)samplings equal to 30 and 1000, respectively.
No bars were drawn due to a small difference between upper and lower bounds.

Figure 37 – GA Convergence Test
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6.4.2 Evaluation Scenarios

It was observed that the average fitness increases sharply in the first 25 generations as the
GA explores the search space. In the next 75 generations (from the 25𝑡ℎ approximately up
to the 100𝑡ℎ), the average fitness also rises but in a much longer slope, which indicates that
the GA is refining already existing solutions. Lastly, from generation 100 onwards, the average
fitness seems to becomes stable, with no significant changes taking place, denoting that the
individuals from these populations have similar fitness values.
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The evaluation takes multiple network loads (𝜆) segmented in Low, Mid and High as
follows. The request arrival rate of each channel was defined within the interval 10 to 30 for
the low load, 40 to 60 for intermediate (mid) load and 80 to 120 for high range. A total of 10

values of 𝜆 are drawn for each range and the experiment is repeated 10 times. Then, the mean
values for each performance metric (A,R,C and T) in each of these scenarios are calculated.

The remaining parameters are kept the same for each scenario as follows: container setup
and failure rates 𝛼 and 𝛾 are fixed 0.1 and 0.001, whereas the container service rate is fixed
to 1. However, since the adoption of the degradation factor 𝑑 = 0.01, the VM service rate is
defined in (5.1), considering the baseline rate 𝜇 = 1. Hence, its final value depends on the
adopted number of VMs, which is varied between 1 and 50 with step of 1 unit. The same
range and step are applied to the containers, while the buffer size varies between 10 and 50

with a step of 10. Thus, the size of the search state space if given by 5(502) = 12, 500 possible
resource configurations. These parameters are summarized in Table 20. Please assume that
the power consumption constants are the same as in Table 15.

Table 20 – Scheme Evaluation Parameters

Parameter Value
VMs Range [1,50]
CTs Range [1,50]
Buffer Sizes [10,20,30,40,50]
VM/CT Service rates 1
Overhead Degrad. Factor (𝑑) 0.01
Container Failure Rate (𝛾) 0.001
Container Setup Rate (𝛼) 0.1
𝜆 Low Range [10,30]
𝜆 Mid Range [40,60]
𝜆 High Range [80,120]
Reliability Threshold (𝑅𝑚𝑖𝑛) 0.9995
Response Time Threshold (𝑇𝑚𝑎𝑥) 5 ms

Source: The author (2021)

In addition to these different scenarios, we analyzed the effectiveness of our scheme by
comparing it to schemes based on the first-fit strategy, similar to [Emara et al. 2021]. The
First-Fit scheme (denoted as FF) tests each configuration possibility, i.e., tries out every
possible configuration set from 1 VM, 1 CT and 10 buffer spaces up to 50 VMs, 50 CTs and
50 buffer spaces. The first tuple that overcomes the predefined reliability (𝑅𝑚𝑖𝑛) and response
time (𝑇𝑚𝑎𝑥) limits is considered the final answer. Please note that no restrictions were defined
for the Availability nor the Power Consumption.
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The First Fit strategy was segmented in two alternatives, which differ in terms of the
exploration order of the available state space. While the 𝐹𝐹𝑚𝑖𝑛 searches for the appropriate
configuration departing from the minimum established values, i.e., VM = 1, CT = 1 and
buffer size = 10, upgrading first the VMs, second the CTs and last the buffer dimension,
the 𝐹𝐹𝑚𝑎𝑥 tries the opposite, i.e., starts the search from the maximum configuration values,
i.e., VM = 50, CT = 50 and buffer size = 50, downgrading first the buffer variable, then
the containers and only then the VM amounts. Although both may reach the same answer,if
only one matches the constraints, 𝐹𝐹𝑚𝑖𝑛 most likely results in configurations with a smaller
number of resources, while 𝐹𝐹𝑚𝑎𝑥 should respond with a greater number of resources.

6.4.3 Numerical Results

This section draws a comparison between our GA-based scheme and the First-Fit variants
𝐹𝐹𝑚𝑖𝑛 and 𝐹𝐹𝑚𝑎𝑥, defined in Section 6.4.4.

6.4.4 Evaluation Scenarios

Considering the Availability (Fig. 38), it was noted great discrepancy among scenarios
(Low, Medium and High loads) and adopted schemes (𝐹𝐹𝑚𝑖𝑛, 𝐹𝐹𝑚𝑎𝑥 and GA). The first
reason for such a great gap between their results is the lack of the inferior bound for this
metric. For instance, the 𝐹𝐹𝑚𝑖𝑛, is free to select any given resource configuration as long as
it produces at least the predefined reliability (𝑅𝑚𝑖𝑛) and response time (𝑇𝑚𝑎𝑥). Hence, this
scheme resulted in poor availability values (under provisioning) for each scenario (14.98%,
5.96% and 2.98%, respectively). The same applies to the 𝐹𝐹𝑚𝑎𝑥 scheme, except that it first
handles large resource configurations, which will often result in over provisioned configurations,
i.e, high availability (99.99%, 99.99% and 66.81%, respectively for low, medium and high
loads). On the other hand, the GA scheme has a more balanced approach due to the design of
its fitness function (6.2), achieving a similar result to the 𝐹𝐹𝑚𝑎𝑥 in the first scenario (low load),
but then dropping to 87.42% and 56.85% in the medium and high load scenarios, resulting in
a difference of 12.58% and 9.96%, respectively. This difference was somehow expected since
maximizing the Availability directly impacts conflicting metrics (e.g., power consumption),
which should be minimized. Thus, the GA opted opted for least available configurations so as
to balance off these other performance metrics.
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Figure 38 – Availability

Source: The author (2021)

With respect to the Reliability defined in (5.18), Fig. 39 shows that the 𝐹𝐹𝑚𝑖𝑛 scheme
outperforms both 𝐹𝐹𝑚𝑎𝑥 and the GA. Again, this results reflects the GA’s balanced approach,
which approaches the 𝐹𝐹𝑚𝑖𝑛 in the low load scenario, whereas sits closer to the 𝐹𝐹𝑚𝑎𝑥

on the others. The 𝐹𝐹𝑚𝑖𝑛 scheme is far superior in both low and medium scenarios since
it activates the minimum container amounts, thus very few failures occur. Contrarily, the
𝐹𝐹𝑚𝑎𝑥 will usually respond with a higher number of container in its configurations, which
is likely to result in more failures. Lastly, the high load scenario presents the least significant
difference among the schemes, although there were great discrepancies for the Availability
in the previous experiment (Fig. 38). In other words, each scheme opted for very different
resource configurations, yet, since the Reliability is dependant on the amount of failure-prone
resources (containers) and that the high load forces container activation, the failure probability
among each scheme is likely to converge to the inferior bound of 0.9995. However, this does
not mean that the schemes converge in total number of containers since the Reliability only
takes into account the requests that were accepted in the system, not the overall arrival rate.

Figure 39 – Reliability

Source: The author (2021)

With regards to the motivational scenario of MEC-enabled UAVs, the power consumption
metric is by far the most interesting. Indeed, this evaluation (Fig. 40) is closely related to
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the availability (Fig. 38), and in most cases, the schemes will share similarities among both
experiments. For instance, the least available scheme (𝐹𝐹𝑚𝑖𝑛) is also the one that consumes
less energy, whereas 𝐹𝐹𝑚𝑎𝑥 is the opposite, being the largest consumer. However, the GA,
which shares a similar availability to the 𝐹𝐹𝑚𝑎𝑥 in the low load scenario and differs 9.96% from
that same scheme in the high load case, differs 44% and 19% in terms of power consumption
for the same low and high scenarios, respectively. The reason for the large gap relies on the fact
that 𝐹𝐹𝑚𝑎𝑥 stops at the first resource configuration that meets the Reliability and Response
Time thresholds, thus, large resource amounts can be adopted, whereas the GA tries multiple
possibilities not only with respect to those limits but also minimizing power consumption.

Figure 40 – Power Consumption

Source: The author (2021)

The last comment is dedicated to the results regarding the Response Time metric (Fig.
41). First, it was noted that the 𝐹𝐹𝑚𝑖𝑛 scheme responds with the highest delays, surpassing
4𝑚𝑠 in each scenario, reaching 4.59𝑚𝑠 in the high load case, which is close to the adopted
superior bound of 5𝑚𝑠. This denotes its design that most often will select configurations
with higher number of VMs, which in turn, is the main cause for higher Response Times due
to its associated degradation factor 𝑑. On the contrary, both 𝐹𝐹𝑚𝑎𝑥 and GA respond with
much faster response times, under 2𝑚𝑠 in most cases. However, please note that the GA
overcomes the 𝐹𝐹𝑚𝑎𝑥 in every scenario, with large differences of 24%, 42% and 21% for the
low, medium and high load scenarios, respectively. Again, we believe that two factors are key:
(1) the availability (Fig. 38) and (2) the distribution of requests to each resource type. In the
first case, the fact that the GA allows less requests to be processed in the medium and high
load scenarios compared to the 𝐹𝐹𝑚𝑎𝑥, with differences of 12.58% and 9.96%, respectively,
allows gains in terms of response time of 42% and 21%, compared to the 𝐹𝐹𝑚𝑎𝑥. On the
latter, for the low load scenario, although both schemes share similar availability (close to
100%), The GA probably selects configurations with relatively more containers than VMs,
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which significantly decreases the overall response time (24%).

Figure 41 – Response Time

Source: The author (2021)

6.5 CHAPTER SUMMARY

In this Chapter, the multi-objective problem of MEC node dimensioning in terms of virtual
resources was formulated and a scheme based on GA was designed to solve it. The scheme
adopted a classical structure to deal with the objectives and to reduce the problem complexity.
In addition, in order to verify its effectiveness, two schemes based on the First Fit approach
were adopted and an evaluation was performed. Considering the context of MEC-enabled
UAVs, the GA-based scheme achieves a reasonable tradeoff between the objectives and, in
general, a better overall performance than First-Fit variants.

Table 21 – Chapter 6 Summary

Section Goal(s) Output(s)
6.1 MEC-ENABLED
UAVS

a) Describe the role of MEC on MEC-enabled
UAV. b) Explain the importance of resource
optimization in terms of maximum number of
VMs, containers and buffer size, representing a
single MEC-enabled UAV node.

a) Data Plane architecture mapping example -
3GPP 5G system and MEC-NFV Fig. 34

6.2 MEC NODE DI-
MENSIONING OPTI-
MIZATION PROBLEM

Describe the proposed MEC-enabled UAV re-
source dimensioning problem.

The dimensioning optimization problem is for-
mulated and characterized as a multi-objective
problem with the formulation (6.1).

6.3 GA OPERA-
TIONAL DETAILS

Describe the GA parameters and scheme flow
(Selection, Crossover and Mutation).

a) The fitness function (6.2); b) Population size
(L) of 50, Generations (G) of 100, Crossover
probability (𝑃𝑐) of 0.8 and Mutation probability
(𝑃𝑚) of 0.01. c) Scheme flow in Fig. 6.3.

6.4 SCHEME EVALU-
ATION

a) Describe evaluation scenarios; b) Describe
other strategies to be compared with our
scheme. c) Compare proposed scheme results
to those obtained by the First Fit strategies.

a) The evaluation takes multiple network loads
(𝜆) and other parameters in 20; First Fit strate-
gies: 𝐹𝐹𝑚𝑖𝑛 and 𝐹𝐹𝑚𝑎𝑥. c) The proposed
scheme achieves greater balance among the
proposed performance metrics.

Source: The author (2021)
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7 CONCLUSION AND FUTURE WORKS

This chapter concludes this thesis by offering some considerations, showing its main value
as a contribution to studies in the field, and proposing future studies.

7.1 FINAL CONSIDERATIONS

We have addressed the combination of MEC, NFV and dynamic virtual resource alloca-
tion in the context of URLLC in order to overcome the problem of resource dimensioning in
MEC-enabled UAVs. We took character of the MEC-NFV architecture into account to model
and analyze how requests are processed by the underlying virtualization resources of a single
MEC node, focusing on the limits of the URLLC service category. A CTMC-based model was
proposed to characterize dynamic virtual resource allocation together with four performance
metrics that are both relevant for URLLC (e.g., reliability and response time) and for ser-
vice providers (e.g., availability and power consumption). In order to yield the model more
practical, the effect of resource failures, setup (repair) times and processing overheads were
embedded into the formulation, since they may greatly affect the stringent requirements of
URLLC applications. Finally, a multi-objective problem related to MEC-enabled UAV node di-
mensioning in terms of virtual resources (VMs, containers and buffer positions) was formulated
and a GA-based approach was adopted to solve it. The proposed scheme achieved a better
tradeoff in terms of availability, reliability, power consumption and response time compared to
the approaches based on the First-fit strategy. We hope that this work will encourage further
research in the MEC-NFV domain, provide guidelines for the design of MEC-NFV architecture,
business models and mechanisms that can help to deal with communication constraints.

7.2 CONTRIBUTIONS

The main contributions of this work can be summarized as follows:

• Description and classification on the main works in the field of MEC-NFV resource
allocation focusing on mathematical models.

• Description of the main benefits and drawbacks related to the virtualization layer ele-
ments that compose the MEC-NFV environment.
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• Modeling of a MEC-NFV node considering a hybrid virtualization layer that scales dy-
namically according to the load and formulation of the most relevant performance metrics
related to URLLC.

• Formulation of the multi-objective problem in the context of MEC-enabled UAV node
dimensioning in terms of virtual resources (VMs, containers and buffer positions).

• A GA-based scheme to solve the multi-objective problem and its evaluation.

7.2.1 Publication List

This section describes the author’s list of published papers during the doctorate program
(Table 22) and future publication plans. The first two papers in Table 22 [Falcao et al. 2021]
and [Souza et al. 2021] were derived from the content of this thesis, especially with regards
to the Related Works chapter (Chapter 3) and the description and validation of the base
model (Chapter 4). The remaining works in Table 22 are mostly related to our previous topic
of interest: Cognitive Radio Networks, however, it also involved related mathematical tools
and/or optimization schemes in the field of mobile communications.

Table 22 – Publication List
Reference Source Title

[Falcao et al. 2021] Journal of Supercomputing An analytical framework for URLLC in hybrid MEC environments
[Souza et al. 2021] IEEE Latin America Transac. Modelling and Analysis of 5G Networks Based on MEC-NFV for

URLLC Services
[Balieiro et al. 2021]IEEE LATINCOM A Fuzzy-Genetic Approach for 5G/6G Opportunistic Slicing
[Balieiro et al. 2019]Wireless Comm. and Mobile An Evolutionary Scheme for Secondary Virtual Networks Mapping

onto Cognitive Radio Substrate
[Falcao et al. 2018] Computer Networks A flexible-bandwidth model with channel reservation and channel

aggregation for three-layered Cognitive Radio Networks
[Balieiro et al. 2017]IEEE Comm. Letters Secondary Virtual Network Mapping onto Cognitive Radio Sub-

strate: A Collision Probability Analysis
[Falcao et al. 2017] SBRC Um Modelo de Largura de Banda Flexível para Redes de Rádios

Cognitivos Baseadas em Prioridade
[Falcao et al. 2016] IEEE LATINCOM Three-layered prioritized cognitive radio networks with channel ag-

gregation and fragmentation techniques

Source: The author (2022)

Furthermore, by the time this thesis was delivered, two other works have been submit-
ted and are waiting for a decision. These works are related to the model extension (Chapter
5) and optimization problem (Chapter 6). Another likely submission is related to the related
works (Chapter 3), which compares multiple analytical works related to the MEC-NFV vir-
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tual resource topic. Thus, we could extend this chapter and add other characteristics to the
comparison in order to create a short survey on the topic.

7.3 FUTURE WORKS

This section is segmented into three groups of future works related to the content of this
thesis. The first is related to improvements on the proposed model. The second is concerned
with the other schemes to solve the multi-objective problem. The last group contains other
research approaches towards the same problem (e.g., Testbed).

7.3.1 Related Mathematical Models

7.3.1.1 Reducing model computational complexity

In general, the computational cost to solve Markov chains with Ω states by a naive algorithm
is 𝑂(Ω)3 making it difficult to be solved in a short time. One more challenge is to modify
some steps towards solving the proposed analytical model linear system, using reasonable
approximations that should be lightweight in terms of computational cost.

7.3.1.2 Edge and Central Cloud Representation

The present thesis accounted for a single MEC node instance, which limits a holistic
analysis. In order to widen the model’s capacity, multiple MEC nodes and/or Central Clouds
could be incorporated and other problems such as traffic scheduling could be tackled.

7.3.1.3 Multiple Service Classes

There is a perspectives of combining two or more service categories in 6G, e.g., com-
bined Ultra mobile broadband (uMBB) and Ultra-high precision communication (uHPC),
which should evolve from Enhanced Mobile Broadband (EMBB) and URLLC, respectively
[Yeh and Jo 2022], addressesing their requirements simultaneously. Thus, another possible
model could encompass the representation of multiple service categories.
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7.3.1.4 Precision Models

Mathematical tools that characterize extreme events and precise bounds have been recently
used for the design of low-latency and highly-reliable wireless networks. In this regard, extreme
value theory, Meta distribution and network calculus are important methodologies. Instead
of averages, these alternatives are interesting for allowing a more precise evaluation such as
worst-case latency values (bound analysis). Hence, a new challenge is to compare the results
obtained in this work to those produced by one or more of these alternatives.

7.3.2 Optimization Algorithms for Multi-Objective Problems

7.3.2.1 Bio-Inspired Approaches

We have restricted the solution of the multi objective problem to the adoption of GA.
However, multiple bio-inspired approaches can be adopted and the comparison of their results
could yield another work. We have recently adopted the Fuzzy approach together with GA in
[Balieiro et al. 2021] towards the problem of opportunistic slicing.

7.3.3 Other Approaches Towards MEC-NFV Environment

7.3.3.1 Probability Distributions

We adopted Poisson and exponential distributions to express the arrival process and service
times. However, other probability distributions such as Hyper-Exponential and Erlang General
can be considered.

7.3.3.2 Testbed and Simulation

Small-scale network experiments are quite rare in the topic of MEC-NFV, probably due to
a still emerging set of open source tools [Zhao et al. 2021]. Yet, we believe that those tools
will become available in a near future, and hence, it would be possible to compare analytical
to testbed or to other simulation results, specially those of preexisting frameworks known to
the community such as OMNeT++, NS-3 and CloudSim.
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