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ABSTRACT

Causal inference deals with estimating the effects of specific interventions on a response
variable. The estimation strategy involves comparing units exposed to intervention factor’s
levels, forming a treatment group, with those units not exposed, forming a control group. The
control group serves as the base to estimate the counterfactual response of the treatment
group. In observational studies, a major concern when building such groups is to ensure their
comparability, controlling for characteristics others than the treatment itself, that may cause
undesired interference on causal effects estimates, leading to systematic bias. Although the
theory behind observational studies has advanced with methods to reduce such bias using
conditional inference, in several of these studies data is obtained through complex probability
sampling designs seldom taken into account in the estimation process. This thesis considers
that, beyond representing a source of variability that must be incorporated in the analysis,
sample design and estimation techniques can have a central role to estimate causal effects
efficiently. Studies are carried out to investigate the use of balanced samples to ensure compa-
rability between treatment and control groups with respect to the distributions of covariates,
and the use of calibration estimates for the control group average response, improving es-
timates of the average counterfactual treatment response. The methods are compared with
those already available in the literature, via Monte Carlo simulation.

Keywords: observational studies; sampling; balanced sampling; calibration.



RESUMO

A inferência causal lida com a estimação do efeito de intervenções específicas sobre uma
variável de resposta. A estratégia de estimação envolve a comparação de unidades expostas
a níveis de fatores de intervenção, com unidades não expostas, as quais formam um grupo
de controle. O grupo de controle serve como base para estimar o contrafactual da resposta
no grupo de tratamento. Em estudos observacionais, uma grande preocupação na construção
desses grupos é garantir a comparabilidade entre eles, a partir do controle de outras caracte-
rísticas que não o próprio tratamento, as quais podem causar interferência indesejada sobre
estimativas dos efeitos causais, provocando um viés sistemático. Embora a teoria por trás de
estudos observacionais tenha avançado com métodos para reduzir esse viés, os dados utilizados
em diversos desses estudos são obtidos por meio de amostragem probabilística complexa ra-
ramente levados em consideração no processo de estimação. A presente dissertação considera
que, além de representar uma fonte de variabilidade que deve ser incorporada na estimação de
efeitos causais, planos e técnicas de estimação de amostragem podem ter um papel central
para estimar efeitos causais de forma eficiente. São realizados estudos para investigar o uso de
amostras balanceadas que garantam a comparabilidade entre grupos de tratamento e controle,
no que diz respeito às distribuições das covariáveis, e de estimadores para a média da variável
de resposta no grupo de controle baseados em calibração, a fim de melhorar as estimativas
da resposta média contrafactual do grupo de tratamento. Comparam-se esses métodos com
aqueles já disponíveis na literatura, por meio de simulações de Monte Carlo.

Palavras-chaves: estudos observacionais; amostragem; amostragem balanceada; calibração.
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1 INTRODUCTION

Causal inference has a vast and well-established literature that roots back to writings of
Neyman and Fisher. Early results were mainly in the direction of setting sound basis to types
of statistical investigation labeled experimental studies, and of making distinctions of those
studies from the ones which were named observational. Both of those types of study share a
common aim: the estimation of effects of particular interventions on a response variable of
interest, measured on a given set of units. However, they represent hugely different situations,
especially regarding the control of the investigator over the data generating process and the
assumptions needed to be made in order to draw statistical inference.

Frequently, the intervention considered is dichotomous, dividing the set of units into two
partitions: one characterized by the truly activeness; the other by the absence of the interven-
tion. Very often in the literature those partitions are called treated and comparison – or control
– groups. The fundamental aim is to estimate if and to what level the intervention affects the
response considered. In order to do that, the researcher must contrast the response measured
in the treatment group with the response measured in a suitable group of comparison units. It
is of greatest importance to consider how similar the groups are, to the extent of all factors –
others than the intervention itself – that, although not affected by the intervention, may influ-
ence response values, because differences with respect to those factors may lead to systematic
biases in causal effects estimates. We call those factors covariates. When the treatment and
control group are similar in terms of covariates, they are said to be balanced.

The fundamental difference of experimental situations, when compared to the observational
ones, is that, when in the former, the investigator (in that case also called experimenter)
completely controls the treatment assignment mechanism over the units in question – what
in general is done randomly. In fact, the physical process of randomization allows inferences
to be made with respect to the design implemented in the study and in addition guarantees
important properties regarding the distributions of covariates over the set of experimental
units: in expectation, the groups compared tend to be balanced on these factors, what leads
to derivations of causal effect estimators of simple forms and good properties.

On the other hand, in observational situations, the researcher does not control the inter-
vention assignment mechanism. Moreover, it is possible, and, indeed, very frequently occurs,
the distributions of covariates to be different in the treated and control groups.
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To illustrate, consider the example addressed in Cochran (1968), using data of death rates
comparisons of men classified in three of the following categories: non-smokers, smokers of
cigarettes only and smokers of cigars, pipes or both. The results presented by Cochran refer
to three different studies, performed in Canada, Britain and United States, whose data were
supplied to the U.S. Surgeon General’s Committee.

Table 1 reproduces the results brought in his paper Cochran (1968, p. 297).

Table 1 – Death rates per 1,000 person-years by smoking classification (Cochran, 1968).

Study
Smoking Group Canadian British U. S.
Non-smokers 20.2 11.3 13.5
Cigarettes only 20.5 14.1 13.5
Cigars and/or pipe 35.5 20.7 17.4

Source: Cochran (1968)

At a first glance, the results may lead to the conclusion that death rates in the cigar-pipe
group is, by a large amount, greater than in the other groups. The reliance on that results may
lead one to claim smokers of cigars and pipes to belong to a much more vulnerable group,
in the sense that the probability of death associated with them is greater than to the other
groups considered and argue that this is caused by their smoking habit.

However, if one finds out that the ages of the individuals, for instance, in the cigar-pipe
group have a different distribution from the other groups, then a part of the effect once
attributed to the smoking habit may be due to the difference in age. That reasoning comes
from the perception that age is a factor which relates to the probability of dying and that is
not affected by the treatment.

Table 2 – Mean ages in years.

Study
Smoking Group Canadian British U. S.
Non-smokers 54.9 49.1 57.0
Cigarettes only 50.5 49.8 53.2
Cigars and/or pipe 65.9 55.7 59.7

Source: Cochran (1968)

As discussed in Cochran’s paper, the mean age of individuals in the cigar-pipe group is
higher than in the other groups. This is shown in Table 2. The bias arising from the utilization of
a simple mean comparison, as may be drawn from Table 1, is an example of what Rosenbaum
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(2002, p. 71) calls an overt bias. In fact, causal inference in observational studies may be
subject to systematic overt or hidden biases.

For the first case, the literature has advanced in the direction of proposing methods to
reduce such biases and to propose estimators for treatment effects. Among the methods pro-
posed, matching methods have become an increasingly popular one, with applications in fields
such as Economics, Political Sciences and Medicine. The idea is that, given some assumptions
about the treatment assignment mechanism, by comparing treated and control units with
similar covariates values – or some special functions of the covariates –, the mean difference
of the response values between treated and control groups is an unbiased estimator of the
average treatment effect in the population.

In this work, we suppose that the population of interest is a finite population, that is: the
population variables are not treated as random variables, but as fixed quantities. Also, the
treatment assignment is viewed as fixed: in the finite population, each unit belongs either to
the treated or the control group. The aim is to estimate the effect of having been assigned
to the treated group, instead of being assigned to the control group, on a response variable
of interest. In order to do that, probabilistic samples are drawn from the finite population.
Consider Cochran’s example (1968) again. Take, for instance, the Canadian study: in a loosely
manner, the finite population may be viewed as all men in Canada in a given period of time.
The number of smoking men is a fixed quantity, the death rates of smoking men is a fixed
quantity, and so on.

Many times, investigators in applied fields use survey data obtained from surveys with
probabilistic complex designs. The nature of the sampling selection are, though, rarely taken
into account. Besides, there are few papers discussing good practices when making causal
inference with survey sampling data, especially in what concerns to the way in which the
sampling process is to be accounted for.

This thesis’ arguments are that, beyond being a source of variation that has to be taken
into account when using already available methods in observational studies, sampling can be
used as a standard tool for estimating causal effects. To this end, sampling theory results are
used to justify the employment of widespread methods from design and analysis of sampling
from finite populations to observational studies. In addition, the randomization-based inference
perspective are adopted, as it is not usual in the literature, where frequently one resorts on
model-based or bayesian perspectives. Our position allows us to make inferences without
making assumptions as the ones needed in the last two cited inference perspectives.
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The aim of this thesis is to propose and discuss ways to cope with the difficulties of causal
inference in observational studies, with the aid of methods developed in Sampling theory,
making use of randomization-based inference, as it is usual in sampling from finite populations.
Specifically, we intend to: discuss the main approaches already available in the literature of
observational studies, especially matching methods and how they relate to sampling from finite
populations; assess the performance of rejective sampling technique as a tool for obtaining
samples where treatment and control groups are balanced in terms of covariates; propose a
causal effect estimator based on the theory of calibration in survey sampling and assess the
performance of the calibration estimator when compared to matching estimators.

This thesis is organized as follows: in Chapter 2 we present a theoretical framework of
causal inference in observational studies. In Section 2.1, we define causal effects in terms of
the model of potential outcomes, commonly known as the Neyman-Rubin Causal Model. In
Section 2.2, we present the approach of Cochran and Rubin (1973) and discuss the appealing
of matching methods. In Sections 2.3 and 2.4, we present the methods of Propensity Score
Matching and Genetic Matching, respectively. In Chapter 3, we discuss the role of sampling in
observational studies. In Section 3.1 we discuss notions of sampling theory. In Section 3.2 we
discuss design-based considerations about the approach in Cochran and Rubin (1973). In Sec-
tion 3.4, we discuss the role of auxiliary variables in sampling theory, particularly focusing on
the methods of calibration and balanced sampling and how they can be useful for causal infer-
ence in observational studies. Specifically, we introduce a treatment effect estimator based on
calibration technique. In Chapter 4 we present the design of the Monte Carlo simulations con-
ducted to compare the performances of the matching estimators and the calibration estimator
and discuss the results. In Chapter 5, we conclude.
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2 CAUSAL EFFECTS IN OBSERVATIONAL STUDIES

The model of potential outcomes, widely known as Neyman-Rubin Causal Model or just
Rubin Causal Model, is the basis on which a large extent of the literature in observational
studies were developed, either theoretically or practically.

Neyman (1923) was the first to employ the concept of potential outcomes in the con-
text of causal inference. In this seminal work, Neyman makes use of an urn model to draw
random samples from a finite population with units corresponding to potential yields of par-
ticular varieties on plots of an agricultural field. The idea of random assignment mechanism
of interventions is present, albeit implicitly, behind his usage of an urn model.

In fact, while Neyman uses random assignment as a mean to make statistical inferences
possible, the idea that the physical process of randomization is a sine qua non to experimental
results validation is attributed to Ronald Fisher (REID, 1998).

A more complete formulation of the model of potential outcomes is often attributed to
Donald Rubin – see Holland (1986), Sekhon (2009), Imbens and Rubin (2015) –, in a series
of important papers (Rubin (1974), Rubin (1977), Rubin (1978), Rubin (1980)). Neverthe-
less, most of the ideas used in Rubin’s formulation were already currently presented in the
formulation of experimental studies. For instance, the very concept of potential outcomes
has essentially the same meaning as the concept of “true” or “conceptual” response, as dis-
cussed, for instance, in Kempthorne (1955), Wilk and Kempthorne (1955) and Hinkelmann
and Kempthorne (2007, p. 157), in the tradition of Kempthorne (1952).

Rubin’s formulation of the potential outcomes framework is an attempt to extend terms
and concepts from experimental to observational studies, and thenceforth represents an effort
to a synthesis comprising different situations of causal inference. In order to do this, several
assumptions are needed to be made, so as to interpret the observational situation “as if” it were
generated by a randomized mechanism, although unknown to the investigator. The Neyman-
Rubin Framework (NRF) thus became the cornerstone on which methods for estimating causal
effects in observational studies were developed.

In this Chapter, we present an overview of the NRF, discussing the role of the treatment
assignment mechanism and the definition of causal effects (Section 2.1). Next, we present
an approach developed by Cochran and Rubin (1973), in which the relationship between the
response variables and the covariates is assumed to follow a regression structure, what makes
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it clear to visualize the appealing of matching methods (Section 2.2).

2.1 OVERVIEW, THE TREATMENT ASSIGNMENT MECHANISM AND THE DEFINI-
TION OF CAUSAL EFFECT

A general presentation of Rubin’s framework is made in Holland and Rubin (1980), Holland
and Rubin (1983), Rosenbaum (1984) and Holland (1986), among others. A population 𝑈 ,
consisting of 𝑁 units, indexed by 𝑘, 𝑘 ∈ 𝑈 is considered. The units are all subject to an
“experimental manipulation” (HOLLAND; RUBIN, 1980, p. 3)– a mechanism through which
treatment conditions, or levels, are assigned to each unit in the population. Throughout this
text, as it is usual in the literature, the terms treatment levels or simply treatments are used
interchangeably. Moreover, without loss of generality, only two treatment levels are considered.

The treatment levels define two groups in the population: if unit 𝑘 is exposed to the
intervention, it is said that it belongs to the treatment group; otherwise, it belongs to the
control group. We may refer to the units in the treatment group as treated units or simply
treated and to the units in control group as control units or simply controls. The population
groups defined by the treatment levels will be denoted by 𝑈𝑇 , with 𝑇 ∈ {0, 1}, so that if unit
𝑘 is treated, then 𝑘 ∈ 𝑈1; if it is not, then 𝑘 ∈ 𝑈0.

We define a random vector T = (𝑇1, . . . , 𝑇𝑘, . . . , 𝑇𝑁) which assumes a realized value
t = (𝑡1, . . . , 𝑡𝑘, . . . , 𝑡𝑁) such that if unit 𝑘 ∈ 𝑈𝑇 , than 𝑡𝑘 = 𝑇 . We call the set of all
possible vectors t the treatment space and denote it by 𝒯 = {0, 1}𝑁 . Thus, the treatment
assignment mechanism is viewed as a probability distribution in 𝒯 , denoted by 𝜆(·) such that
𝜆(t) = Pr(T = t).

It is noteworthy that behind the idea of experimental manipulation is the premise that each
unit in the population has a non-zero probability of receiving the treatment. When this premise
holds, the treatment assignment mechanism is said to be probabilistic (IMBENS; RUBIN, 2015).
Thus, the concept of treatment in the NRF is that of an intervention that can potentially be
applied to any unit in the population considered, so that, in this sense, exposition to radiation
is an example of treatment, while an unit’s attribute, such as gender or race, is not (HOLLAND;

RUBIN, 1983; ROSENBAUM, 1984; HOLLAND, 2008). Moreover, it stands out that, by referring
to an experimental manipulation, the model does not restricts itself to experimental contexts,
but encompasses observational studies, comprised as situations in which a random treatment
assignment mechanism – although out of investigator’s control – is assumed to occur. This is
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considered an important contribution of Rubin’s framework, and has its roots on the oft-quoted
motto “no causation without manipulation” (HOLLAND, 1986, p. 959).

In addition, a set of pre-treatment characteristics is associated with each unit in the pop-
ulation. These characteristics must not be affected by the treatment, but are possibly related
to the response variable. We call them covariates. Without loss of generality, we consider
throughout this text that there is only one single covariate, which we denote 𝑋𝑘 for the 𝑘th
unit in the population. The 𝑁 -vector containing all values 𝑋𝑘 will be denoted by X.

The response variable of interest is defined as 𝑌 . Each unit has a different version of
𝑌 corresponding to each treatment level. These versions are properly what is comprised as
potential outcomes. In this sense, to each unit 𝑘 ∈ 𝑈 there is a corresponding vector of
potential outcomes given by (HOLLAND; RUBIN, 1980):

Y𝑘 =
(︂

𝑌0𝑘 𝑌1𝑘

)︂T

where 𝑌𝑡𝑘 is the response realized for unit 𝑘 when 𝑡𝑘 = 𝑡, 𝑡 ∈ {1, 0}. We denote by Y the
2 × 𝑁 population matrix with all Yk. Likewise, we denote by Yt = (𝑌𝑡1, . . . , 𝑌𝑡𝑘, . . . , 𝑌𝑡𝑁)

the matrix with all response values in population for a given treatment level 𝑇 , such that
Y =

(︂
Y0 Y1

)︂T
.

In general, the function 𝜆(t) can possibly depend on the values of the covariates and the
potential outcomes. For instance, as mentioned in Rubin (1977), children may be assigned
to a treatment – for example, a compensatory reading program – on the basis of a reading
test score – see also Imbens and Rubin (2015), for a further discussion with examples of
treatment assignments depending on covariates and potential outcomes. For this reason, 𝜆(t)

is frequently denoted by 𝜆(t|X, Y).
The unit-level causal effect, in the case of two treatment levels, is defined as the difference

between the potential outcomes

𝜏𝑘 = 𝑌1𝑘 − 𝑌0𝑘 (2.1)

Once that, at a time, only one treatment level is attributed to each unit, only one potential
outcome is observed. Therefore, the unit-level causal effect 2.1 can never be observed in
practice.Holland and Rubin (1980) and Holland (1986) call this the Fundamental Problem of
Causal Inference.

Commonly, the interest is to estimate the population average treatment effect (PATE),
given in Definition
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Definition 2.1 (PATE). The population average treatment effect is given by

𝜏 = E
(︂

𝑌1𝑘 − 𝑌0𝑘

)︂
(2.2)

where E(·) denotes the expectation over the distribution of 𝑌1𝑘 − 𝑌0𝑘 in the population.
Note that the PATE 2.2 involves two unobserved quantities, because

𝜏 = E
(︂

𝑌1𝑘 − 𝑌0𝑘

)︂
= E

(︂
𝑌1𝑘 − 𝑌0𝑘|𝑈1

)︂
+ E

(︂
𝑌1𝑘 − 𝑌0𝑘|𝑈0

)︂
=

= E
(︂

𝑌1𝑘|𝑈1

)︂
− E

(︂
𝑌0𝑘|𝑈1

)︂
+ E

(︂
𝑌1𝑘|𝑈0

)︂
− E

(︂
𝑌0𝑘|𝑈0

)︂
(2.3)

In Equation 2.3, E
(︂

𝑌0𝑘|𝑈1

)︂
and E

(︂
𝑌1𝑘|𝑈0

)︂
are unobserved since we only observe re-

sponses conditional on at most one treated level.
Sometimes, the interest of a study is to estimate the effect of the intervention only on the

treated units. For this reason, another common estimand is the population average treatment
effect on the treated (PATT), given by Definition 2.2 below.

Definition 2.2 (PATT). The population average treatment effect on the treated is given by

𝜏1 = E
(︂

𝑌1𝑘 − 𝑌0𝑘

⃒⃒⃒⃒
𝑈1

)︂
(2.4)

By a similar argument as the one developed in Equation 2.3, it can be easily seen that
there is only one unobserved quantity involved in Equation 2.4.

In experimental situations, the investigator can make use of the known treatment assign-
ment mechanism, induced by the experimental plan, as a source of randomness under which
inferential results can be provided. In addition, under that perspective of inference, estimators
with simple forms, such as the difference in means between treated and control responses, are
unbiased for the PATE in Equation 2.2. Importantly, under the experimental plan, systematic
sources of error tend to be made random, and consequently cancel out on average, a result
that echoes back to Fisher (1992) (COCHRAN; RUBIN, 1973). For a discussion with examples,
see Hinkelmann and Kempthorne (2007) and Rubin (1974). For this reason, differences in co-
variates distributions between the treated and control groups are of minor concern. Moreover,
the experimental plan gives the inferential basis to the estimation of confidence intervals and
hypothesis testing (HINKELMANN; KEMPTHORNE, 2007; COX; REID, 2000).

In observational studies, however, the investigator’s ignorance about the treatment assign-
ment mechanism does not allow him to make use of that inference perspective. In addition,
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there is a major concern about systematic biases caused by differences in covariates distri-
butions. That point will be stated more clearly in Section 2.2. In order to cope with these
difficulties, several methods were developed, unavoidably relying in assumptions either about
the treatment assignment mechanism or the relationship between the response variables, the
treatment effects and the covariates.

2.2 THE APPROACH OF COCHRAN AND RUBIN (1973)

In order to assess biases incurred in the estimation of causal effects in observational studies,
a common approach is to assume a relationship between the response variable, the treatment
effect and the covariates. This approach has been commonly used in texts since before Ru-
bin Causal Model was established and generally with no mention to a treatment assignment
mechanism (see, for instance, Cochran (1968), Cochran and Rubin (1973), Rubin (1973a),
Rubin (1973b)).

In general, the relationship considered is supposed to follow a regression structure. In the
simplest case, the regression equations have only one single covariate, on which the equation
is linear. Moreover, the equations in each treatment group are parallel to each other. The
treatment effect is supposed to be constant and additive for each unit.

Here, we follow the developments presented in Cochran and Rubin (1973). Consider that,
for the 𝑘th unit in the treatment level 𝑈𝑡 of the population, the response variable can be
formulated as

𝑌𝑡𝑘 = 𝜇𝑡 + 𝛽(𝑋𝑡𝑘 − 𝜂𝑡) + 𝜀𝑡𝑘 (2.5)

where 𝜇𝑡 and 𝜂𝑡 are the population means of 𝑌 and 𝑋 in the treatment level 𝑈𝑡, respectively,
and E(𝜀𝑡𝑘|𝑋𝑡𝑘) = 0 and E(𝜀2

𝑡𝑘|𝑋𝑡𝑘) = 𝜎2
𝑡 .

Using Equations 2.2 and 2.4, it is easy to see that, in this case,

𝜏 = 𝜏1 = 𝜏 = 𝜇1 − 𝜇0 − 𝛽(𝜂1 − 𝜂0) (2.6)

what is achieved by considering the difference in the expectations of 𝑌 between the two
treatment levels conditional on 𝑋 values. Note that, under the assumptions of the formulation
in Equation 2.5, treatment effects are constant for all 𝑘 ∈ 𝑈 .
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Cochran and Rubin (1973) argue that, if one draws random samples from the population,
then – using lower case letters to denote sample values –,

E𝑟(𝑦1 − 𝑦0) = 𝜇1 − 𝜇0 = 𝜏 + 𝛽(𝜂1 − 𝜂0) (2.7)

where E𝑟(·) denotes expectation over random samples, 𝑦𝑡 denotes the sample mean of 𝑦𝑡𝑘 and
𝜂𝑡 is the expectation of 𝑥̄𝑡, so that the bias arising when using the simple difference in means
between 𝑦 values equals 𝛽(𝜂1 − 𝜂0).

As a measure of initial bias, Cochran and Rubin (1973) propose the standardized difference-
in-means given by

𝐷 =
𝜂1 − 𝜂0√︁

𝜎2
1+𝜎2

0
2

(2.8)

reporting that values 𝐷 ≥ 1 are considered large.
One way by which the bias in Equation 2.7 can be reduced is by matching control and

treated units. Essentially, in matching, one subsets the sample of control and treated units in
such a way that the units in the resulting matched set have similar values in the covariates –
or some special functions of covariates (see Section 2.3). The efficacy of matching techniques
for reducing bias has been studied for a long time, examples including – besides Cochran and
Rubin (1973) – Cochran (1953), Greenberg (1953), Billewicz (1965), Rubin (1973a) and Rubin
(1973b).

Equations 2.6 and 2.7 reveal the appealing of matching methods. Denote S a sample
from 𝑈 . Consider M ⊂ S the set of matched units. Suppose further that only the control
sample is subset in matching. It is easily seen that if for every 𝑘 ∈ S we have 𝑥1𝑘 = 𝑥0𝑗 for
some 𝑗 ∈ M , then the expected value of the difference between response means in treated
and control groups over matched samples equals

E𝑚(𝑦1 − 𝑦0) = E𝑚{𝜇1 + 𝛽(𝑥̄1 − 𝜂1)} − E𝑚{𝜇0 + 𝛽(𝑥̄0 − 𝜂0)}

= 𝜏 + 𝛽{𝜂1 − E𝑚(𝑥̄0)} = 𝜏 (2.9)

where E𝑚(·) denotes expectation over matched samples.
In fact, matching can be implemented with and without replacement: that is, one may

or may not allow a single control unit to be matched with different treated units. Matching
with replacement has advantages particularly in what concerns to bias reduction, but also
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disadvantages, especially with regard to the variance – and its estimation – of the matching
estimator: on the one hand, the fact that generally few control units will be used in matching,
it is expected the variance of the estimator to increase; on the other hand, matching with
replacement induces correlations between matched pairs that share the same control unit,
what makes variance estimation not as straightforward as in the without-replacement case
(see Imbens and Rubin (2015, Chapter 18), for instance). As our primary aim in this thesis
is not to discuss variance estimation, we will explore the differences between matching with
and without replacement no further, but we include simulation results for both the cases (see
Section 4).

2.3 PROPENSITY SCORE MATCHING

Initial investigations on the use of matching to remove bias in observational studies were,
in general, in the direction of assessing matching on covariates values. However, for cases
with multiple and continuous covariates, it becomes virtually impossible to find exact matches
(ROSENBAUM, 2002; IMBENS; RUBIN, 2015). In order to overcome this, Rosenbaum and Rubin
(1983) proposed the use of special functions of the covariates, known as balancing scores.

A balancing score is a function of the observed covariates 𝑏(𝑋𝑘) such that

𝑇𝑘 ⊥⊥ 𝑋𝑘|𝑏(𝑋𝑘), ∀𝑘 ∈ 𝑈 (2.10)

where ⊥⊥ holds for independence (DAWID, 1979) and 𝑇𝑘 is the indicator of treatment assignment
(see Section 2.1). It is easy to see that the simplest balancing score is given by 𝑏(𝑋𝑘) = 𝑋𝑘.

Rosenbaum and Rubin (1983) showed that, under regularity assumptions about the treat-
ment assignment (see Appendix B), an important balancing score is the propensity score.
Briefly, the propensity score is the unit-level probability of being treated, conditional on the
values of covariates.

Definition 2.3 (Propensity Score). Given a treatmant assignment mechanism 𝜆(t|X𝑘), we

call

𝜃𝑘(X𝑘) =
∑︁

t∈𝒯 |(𝑡𝑘=1)
𝜆(t|X𝑘) (2.11)

the propensity score.
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As an important contribution, Rosenbaum and Rubin (1983) also showed that, under
regularity assumptions, if one conditions the 𝑌 values on a balancing score, then one can get
an unbiased estimator of the population treatment effects. This result is presented in Result
C.3, in Appendix C.

The appealing of using the propensity score is that it is the “coarsest” balancing score, in
the sense that it is a function every other balancing score. This result is stated in Result C.1,
in Appendix C. In this sense, using the propensity score allows one to overcome the problem
of dimensionality and makes it easier to get exact matches.

After defining the balancing score on which matching will be made, the next element
needed is a distance metric to compare alternative potential units to be matched. In general,
the method of Nearest Available Matching (COCHRAN; RUBIN, 1973; ROSENBAUM; RUBIN,
1985b; IMBENS; RUBIN, 2015) is implemented. By this method, each treated unit is matched
with the nearest (in terms of a pre-defined distance function) control. A common approach
is to use either Euclidean Distance or Mahalanobis Distance (ROSENBAUM; RUBIN, 1985b;
DIAMOND; SEKHON, 2013; SEKHON, 2009). For the case of multiple covariates, given two
vectors of balancing scores b𝑘 and b𝑗, for any 𝑘, 𝑗 ∈ 𝑈 , the Mahalanobis distance is defined
as

𝑀𝐷(b𝑘, b𝑗) =
√︁

(b𝑘 − b𝑗)T𝑉 −1(b𝑘 − b𝑗) (2.12)

where 𝑉 is a covariance matrix.
For the case of a single covariate, or when one uses a single balancing score, a simplified

version of the Mahalanobis Distance is obtained as

𝑀𝐷(𝑏(𝑋𝑘), 𝑏(𝑋𝑗)) =

⎯⎸⎸⎷(𝑏(𝑋𝑘) − 𝑏(𝑋𝑗))2

V(b) (2.13)

In particular, 𝑏(𝑋𝑘) can equal the covariate value for 𝑘th unit, 𝑋𝑘. In general, the vector
b𝑘 can also include functions of 𝑋𝑘 and other balancing scores, such as the propensity score.
Rosenbaum and Rubin (1985b) define 𝑉 , for the multivariate case, as the covariance matrix
of the balancing scores in the control group. More generally, we can consider 𝑉 to take into
account both treated and control groups as, in our case of a single covariate,

𝑉 = (b − b̄)T(b − b̄) (2.14)

where
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b =
(︂

𝑏(𝑋1), . . . , 𝑏(𝑋𝑘), . . . , 𝑏(𝑋𝑁)
)︂T

and b̄ denotes the mean of b.
In particular, there are many forms by which propensity scores can be combined with

Mahalanobis distance. For instance, Rosenbaum and Rubin (1985b) suggest using Mahalanobis
Distance with the vectors b𝑘 and b𝑗 in Equation 2.12 including both the units’ covariates and
propensity scores, and using Mahalanobis Distance within groups defined by similar values
of the propensity score. The rationale behind this suggestion is that Mahalanobis Distance
matching are generally more successful in producing balance in covariates than in the propensity
score.

If one’s option is to use the propensity score as a matching criterion, it needs to be
estimated, since its true form is almost always unknown. The usual proceeding is to apply
binary variable regressions models in the class of generalized linear models – such as logit

and probit models (see McCullagh and Nelder (2019) and Agresti (2003)) – on the realized
treatment assignment vector t as a function of the observed covariates X. Furthermore, as
Sekhon (2009) points out, if the propensity score is estimated by logit or probit models, it is
generally better to match units on the basis of the linear predictors, what avoids matching
based on values between 0 and 1. This whole process is, however, subject to misspecifications
of the propensity score model.

The property that the propensity score is a balancing score (see Result C.1) is frequently
used, in practice, as a guideline so as to accept a given specification of the estimated propensity
score. A step-by-step procedure is described, for instance, in Rosenbaum and Rubin (1985b):
a propensity score model is estimated with an initial specification – say, with covariates main
effects as explanatory variables, only – and matches are found using the estimated model. Next,
balance in covariates is assessed for the matched sample, using some criterion: if balance
is judged acceptable, the matched sample is maintained and one can proceed to analysis;
otherwise, one reformulates the propensity score model, possibly including functions of the
covariates, such as quadratic and interactions terms. This process is repeated until balance is
achieved.

Whenever applying this procedure, the investigator faces the question of how balance
should be assessed, a question that has no definitive answer in the literature. There are
many commonly suggested balance measures, including the standardized difference-in-means
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(COCHRAN; RUBIN, 1973; IMBENS; RUBIN, 2015), two sample t-statistics (ROSENBAUM; RUBIN,
1985b; DIAMOND; SEKHON, 2013), F-ratios Rosenbaum and Rubin (1985b) and, more recently,
Kolmogorov-Smirnov statistics (DIAMOND; SEKHON, 2013). Besides, Imbens and Rubin (2015)
suggest computing log standard deviations ratios as a measure of dispersion comparison be-
tween treated and control covariates distributions and the frequency of one group’s units whose
covariate values lie in the tail – defined by arbitrarily choosing an 𝛼-quantile – of the other
group’s covariates empirical distribution function.

In addition to the large number of balancing assessment measures, there doesn’t seem to
exist a definite guidance on what values of these measures should be accepted as sufficiently
good in practice. Therefore, it is not astounding that many studies fail to report any measure
of balancing quality as discussed in Diamond and Sekhon (2013) and Austin (2008).

Moreover, the process of “manually” checking balance may not be optimum (DIAMOND;

SEKHON, 2013; SEKHON, 2009). One’s judgement about the quality of balance is a quiet
relative measure. Thus, it is not infrequent that proceeding like this do not produce sufficient
covariate balance.

2.4 GENETIC MATCHING

As a mean to overcome the problems faced in Propensity Score Matching, Diamond and
Sekhon (2013) proposed a different matching method, based on a generalization of the Ma-
halanobis Distance. They consider a weighting version of Equation 2.12 given by

𝐺𝐷(b𝑘, b𝑗) =
√︁

(b𝑘 − b𝑗)T(𝑆− 1
2 )T𝑊𝑆− 1

2 (b𝑘 − b𝑗) (2.15)

where 𝑊 is a positive definite square matrix with dimension equal to the length of b𝑘 and
such that every element lying outside the main diagonal is set to equal zero. The 𝑊 matrix
is, therefore, a weight matrix, that weights every coordinate of b𝑘 − b𝑗. In turn, 𝑆− 1

2 is such
that 𝑉 = 𝑆− 1

2 (𝑆− 1
2 )T – that is, it corresponds to the Cholesky decomposition of 𝑉 .

It is easily seen that Mahalanobis Distance 2.12 is a particular case of distance 2.15, with
the former expression being obtained if the matrix 𝑊 , in the later expression, is the identity
matrix.

Distance 2.15 is combined with an iterative, genetic optimization algorithm, developed by
Sekhon and Mebane (1998) (see also Mebane and Sekhon (2011)). The combination of dis-
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tance 2.15 with genetic optimization has been called the Genetic Matching method, or simply
GenMatch (DIAMOND; SEKHON, 2013). As stated by Sekhon (2009), GenMatch attempts to
find matches of treated and control units so as to maximize covariate balance, by minimizing
some loss function. To this end, at each step of the algorithm, the weight matrix 𝑊 is au-
tomatically adjusted: for example, if Bk includes both the propensity score and the vector of
covariates and if the optimal balance is achieved using only the covariates, then the element of
𝑊 corresponding to the propensity score is set to 0, while the elements in 𝑊 corresponding to
the covariates is set to a positive number, found by the algorithm so as to maximize balance.

In short, GenMatch optimizes the balance on covariates distributions between treated and
control matches given pre-defined measures of balance. As default measures of balance, the
algorithm uses Kolmogorov-Smirnoff statistics and Paired t-statistics, minimizing the largest
individual discrepancy, as measured by the p-value of the tests “for all variables that are being
matched on” (DIAMOND; SEKHON, 2013, p. 934). As emphatically highlighted by Sekhon
(2008) and Diamond and Sekhon (2013), the tests are not used to conduct formal hypothesis
inferences, but only as measures of discrepancy between matched treated-control groups.

A description of the algorithm is given by Diamond and Sekhon (2013):

1. Set an initial value for the 𝑊 matrix in Equation 2.15;

2. Create a generation composed of 𝑔 different 𝑊 matrices, where 𝑔 is a number that may
be specified by the user;

3. For each 𝑊 matrix in generation, match units based on the distance 2.15;

4. For each of the 𝑔 matched samples, compute the value of the loss function;

5. Get the 𝑊 matrix from the minimum loss sample and check optimization criterion. If
satisfied, go to next step; otherwise, go back to 2;

6. Use distance 2.15 with optimal 𝑊 matrix to find the final matched sample.

The algorithm will converge to the optimal matched sample asymptotically in the size of
𝑔 (DIAMOND; SEKHON, 2013; MEBANE; SEKHON, 2011; SEKHON, 2008). Besides the genetic
optimization algorithm, which seeks to guarantee maximum balance, GenMatch works exactly
as a method of Nearest Available Matching, with the generalized distance function 2.15.
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3 THE ROLE OF SAMPLING IN OBSERVATIONAL STUDIES

Insofar, we have not considered the role of sampling in observational studies. This is,
however, an important task: first because many observational studies, in particular in social
and biomedical sciences, utilize survey data as sources of information; secondly, because that
will be the basis for the main propositions in this thesis. In the present chapter, we give an
outline of sampling theory and discuss how observational studies relate to it.

3.1 NOTIONS OF SAMPLING THEORY

In this section, we discuss notions of sampling. In particular, we consider that 𝑈 = (Y, X)

is a finite population. By finite population, we mean that the variables Y and X are viewed
as fixed, rather than random, quantities. Again, 𝑈 has 𝑁 units, X denotes an 𝑁 -vector of
covariates and Y =

(︂
Y0 Y1

)︂T
.

We do not mention the treatment assignment mechanism in this section, supposing, thus,
that the finite population is given under a fixed treatment assignment. We want to reinforce
that, although each individual in the population has a true, conceptual, 𝑌 value both under
treatment and control levels, once we suppose the treatment assignment as given, we can
only observe at most one of these values. In other words, although we include both potential
outcomes for each population unit as components of the finite population, we do not mean
that they are simultaneously observed.

We denote by Ω = {0, 1}𝑁 the sample space. Note that a sample is represented by a vector
of sample inclusion indicator variables, in an analogous way as the treatment assignment vector
in Chapter 2. In a similar way, we define S = (𝑆1, . . . , 𝑆𝑘, . . . , 𝑆𝑁)T, a random sample vector
that assumes a particular value s = (𝑠1, . . . , 𝑠𝑘, . . . , 𝑠𝑁)T ∈ Ω, so that, if the 𝑘th unit in
the population is selected in the sample, 𝑠𝑘 = 1; otherwise 𝑠𝑘 = 0. Let 𝑝(·) be a probability
distribution on Ω that ascribes the probability Pr(S = s) = 𝑝(s). We call 𝑝(s) a sampling

design. For a value s, we define the set of sampled units S ⊆ 𝑈 such that 𝑘 ∈ S if
𝑠𝑘 = 1. Likewise, we define S1 ⊆ 𝑈1 and S0 ⊆ 𝑈0 the samples of treated and control units,
respectively.

Every population unit 𝑘 has a sampling selection probability, given by the sampling de-
sign 𝑝(s), known by the investigator, which we denote by 𝜋𝑘. These probabilities are called
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first-order inclusion probabilities. Note that 𝜋𝑘 is the probability of 𝑆𝑘 = 1. The first-order
inclusion probability is the sum of the probabilities of all sample assignment vectors s =

(𝑠1, . . . , 𝑠𝑘, . . . , 𝑠𝑁)T ∈ Ω such that 𝑠𝑘 = 1.

Definition 3.1 (First-Order Inclusion Probability). For all 𝑘 ∈ 𝑈 , we call

𝜋𝑘 =
∑︁

s∈Ω|(𝑠𝑘=1)
𝑝(s) (3.1)

the first-order inclusion probability for unit k.

Our aim is to estimate population average treatment effects. Here, we focus on the popu-
lation average treatment effect on the treated (PATT). If we recall Equation 2.4, it is easy to
see that in a finite population, the PATT can be written as a difference in means. For ease of
notation, denote

𝑌11 = 𝑁−1
1

∑︁
𝑘∈𝑈1

𝑌1𝑘 (3.2)

𝑌10 = 𝑁−1
1

∑︁
𝑘∈𝑈1

𝑌0𝑘 (3.3)

𝑌01 = 𝑁−1
0

∑︁
𝑘∈𝑈0

𝑌0𝑘 (3.4)

𝑌00 = 𝑁−1
0

∑︁
𝑘∈𝑈0

𝑌0𝑘 (3.5)

Then, we can define the finite population average treatment effect on the treated (FPATT),
as in Definition 3.2 below.

Definition 3.2 (Finite PATT). In a finite population 𝑈 , the population average treatment

effect on the treated is given by

𝜏1 = 𝑌11 − 𝑌10 (3.6)

where 𝑌11 and 𝑌10 is given by Equations 3.2 and 3.3, respectively.

A design-unbiased estimator for 𝑌11 is given by

^̄𝑌11𝜋 = 𝑁−1
1

∑︁
𝑘∈S1

𝑑𝑘𝑌1𝑘 (3.7)

where
𝑑𝑘 = 𝜋−1

𝑘



29

is called the basic design weight.
The estimator in Equation 3.7 is commonly called the Horvitz-Thompson (HT) estimator

of the population mean as a reference to Horvitz and Thompson (1952). Next, we show the
design-unbiasedness of the HT estimator, using the concept of design expectation. The design
expectation is the expected value of a statistic taken over all possible realizations of the vector
S = (𝑆1, . . . , 𝑆𝑘, . . . , 𝑆𝑁)T – that is, over all samples possibly drawn by the sampling design.

Result 3.1 (Design-Unbiasedness of HT Estimator). Suppose we want to estimate 𝑌11 . Then

^̄𝑌1𝜋 = 𝑁−1
1

∑︁
𝑘∈S1

𝑑𝑘𝑌1𝑘 (3.8)

is a design-unbiased estimator.

Proof. We can rewrite

^̄𝑌1𝜋 = 𝑁−1
1

∑︁
𝑘∈S1

𝑑𝑘𝑌1𝑘 = 𝑁−1
1

∑︁
𝑘∈𝑈1

𝑑𝑘𝑌1𝑘𝑆𝑘 (3.9)

Since population values and weights are fixed, the only random variable in Equation 3.9 is 𝑆𝑘.
Now, taking design expectations, we have

E𝑝( ^̄𝑌1𝜋) = 𝑁−1
1

∑︁
𝑘∈𝑈1

𝑑𝑘𝑌1𝑘 × E𝑝(𝑆𝑘) = 𝑁−1
1

∑︁
𝑘∈𝑈1

𝑌1𝑘 (3.10)

because 𝑆𝑘 is a Bernoulli variable with probability of success 𝜋𝑘.

3.2 DESIGN-BASED CONSIDERATIONS ABOUT THE APPROACH OF COCHRAN AND
RUBIN (1973)

An important question to be made: is the sample mean a design-unbiased estimator of the
population mean? The answer is: generally not. This point is discussed, for instance, in Skinner
and Wakefield (2017) and Haziza and Beaumont (2017). Particularly, Haziza and Beaumont
(2017) show that the bias incurred in using the sample mean as an estimator for the sample
mean will only disappear if the first-order inclusion probability 𝜋𝑘 is not correlated with the
response variable 𝑌1𝑘, for all 𝑘 ∈ 𝑈 .

Recall the approach discussed in Section 2.2. It is important to note that, even though
Cochran and Rubin (1973) do not mention it, their approach to inference imply assumptions
about the sampling mechanism. In particular, they assume that the sample mean is an unbiased
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estimator of the population mean. Consider that S ⊆ 𝑈 is the set of sampled units. This
assumption is equivalent to state that

E𝑟(𝑦𝑡|𝑘 ∈ S ) = E𝑟(𝑦𝑡|𝑘 /∈ S ) (3.11)

where, as in Section 2.2, 𝑦𝑇 is the sample mean of 𝑌 for sampled units in treatment level
𝑡 ∈ {1, 0}.

This corresponds to the notion of non-informative sampling (SKINNER; WAKEFIELD, 2017).
Specifically, for 𝑦𝑡𝑘, under the formulation of the problem as given by Equation 2.5 this assump-
tion holds by construction, as each 𝑌𝑡𝑘, 𝑘 ∈ 𝑈 , is independently and identically distributed with
mean 𝜇𝑡 – that is, because treatment effects are supposed constant. In practice, however, this
can be nothing but an assumption which the investigator may or may not be willing to make.
For this reason, using the HT estimator, defined in Section 3.1, instead of sample means, is
a good way of preventing against assumptions failures arising from non-informative sampling
designs. The HT estimator is unbiased under any sampling design.

Even if we imagine that the random samples, as referred to by Cochran and Rubin (1973),
are obtained via some non-informative sampling procedure, still matching can produce bias on
causal effects estimates: in the same sense as pointed out in last paragraph for the case of
sampling mechanisms, matching can be informative.

It is not always possible to find good matches for all treated units in a study. This is
the case when the covariates distributions in the treated group do not completely overlap the
support of the covariates distribution in the control group. When this occurs, matches will only
be found for those treated units within the common support between treatment and control
covariates and the other, non-matched units, will generally be dropped from analysis. Unless
the specification of the model in Equation 2.5 holds, with constant treatment effects, the
quantity being estimated will change and will concern to treatment effects on the restricted
set of matched units. Rosenbaum and Rubin (1985a) call this incomplete matching.

It raises a question about external vs. internal validity of the inferences one can draw:
whereas the result of analysis is reliable – in the sense of bias reduction and precision increasing
– for the matched units in the study, it does not generalize itself, under broad assumptions,
to a larger population of interest. This issue has been discussed in a long-standing debate in
experimental studies, receiving increasingly attention (see Campbell and Stanley (2015) and
Yang, Qu and Li (2021)), but has been relatively less addressed in observational contexts (as
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exceptions, see Imbens and Rubin (2015, p. 359) and Khandker, Koolwal and Samad (2009,
p. 59), for instance).

To illustrate, consider that the population model has the form as in Equation 3.12 below

𝑌𝑡𝑘 = 𝜇𝑡𝑘 + 𝛽(𝑋𝑡𝑘 − 𝜂𝑡) + 𝜀𝑡𝑘 (3.12)

with all terms being equal to those in Equation 2.5, except for the fact that the treatment
effect is not constant anymore. Now, we have that the average treatment effect is given by

𝜏 = E
(︂

𝑌1𝑘 − 𝑌0𝑘

)︂
= E

(︂
𝜇1𝑘 − 𝜇0𝑘

)︂
− 𝛽

(︂
𝜂1 − 𝜂0

)︂
(3.13)

where E(·) denotes expectation over the conceptual response population.
Consider now that we construct a matched sample but, instead of subsetting the sampled

control group, only, we have – for lack of overlap – to subset the treatment group, as well.
Again, denote M ⊂ S the set of matched units. Suppose also that, within M we have
perfect matches, so that for all 𝑥1𝑘 there is a 𝑥0𝑗 such that 𝑥1𝑘 = 𝑥0𝑗. Then,

E𝑚(𝑦1 − 𝑦0) = E𝑚{𝜇̄1 + 𝛽(𝑥̄1 − 𝜂1)} − E𝑚{𝜇̄0 + 𝛽(𝑥̄0 − 𝜂0)}

= E𝑚(𝜇̄1 − 𝜇̄0) − 𝛽(𝜂1 − 𝜂0) (3.14)

and bias may arise whenever E𝑚(𝜇̄1 − 𝜇̄0) ̸= E(𝜇̄1 − 𝜇̄0).
In summary, even if good matches can be found for all units in a study, it is indispensable

that the investigator correctly take sampling weights into account when doing analysis. This
is discussed, for example, by Ridgeway et al. (2015), DuGoff, Schuler and Stuart (2014) and
Austin, Jembere and Chiu (2018). Moreover, whenever matches are found only for a subset of
the sampled treated treated units, it will not be possible to estimate the average effect of the
treatment for the entire population, unless the treatment effect is constant for every unit.

3.3 MATCHING ESTIMATION AS A DOMAIN ESTIMATION PROBLEM

If we restrict ourselves to situations where matching is non-informative – or if we resign
ourselves to estimate causal effects only for a subset of treated units, one way by which we
can tackle the estimation problem is by viewing each matched treatment group as a sample
from a domain.
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In general terms, a domain is any subpopulation for which we may want to produce esti-
mates. The sample size corresponding to a domain is not necessarily controlled by the sampling
design: sometimes, a sampling frame informing which population units belong to each domain
of interest is not available; at other times, a specific subpopulation is only perceived to be
of interest after the field work has been completed. When this occurs, the sample size corre-
sponding to a given domain is a random variable and, in practice, can be very small. For these
reasons, estimation for domains is a topic in survey sampling with its own challenges.

Here, we only give a brief outline of estimation for domains, relating it to matching es-
timation, in the hope of inciting a discussion that may be treated with more complexity –
possibly with fruitful outcomes – later on. We follow the developments of Särndal, Swensson
and Wretman (1992, Chapter 10), to whom we refer for further details.

For convenience, suppose that, for our purposes, we only need to subset the control group,
in matching, leaving the treatment group intact. The subset of the population control group
composed of potential matches to the treatment units is our subpopulation of interest. Of
course, for each matching metric we will have a corresponding subset. Thus, our subpopulation
can, in general terms, be defined as

𝑀0 = {𝑘 | 𝑑(𝑏𝑘, 𝑏𝑗) < 𝛾 for some 𝑗 ∈ 𝑈1} ⊆ 𝑈0 (3.15)

where 𝛾 is an arbitrarily chosen non-negative value, 𝑑(·) is any distance metric – such as the
Euclidean, Mahalanobis and Genetic distances – and 𝑏𝑘 is the value of a balancing score for
the 𝑘th unit, as before (see Sections 2.3 and 2.4).

In a finite population – for a given metric – we can define fixed variables indicating whether
a unit belongs to the domain of interest. We denote it by

𝑍𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑘 ∈ 𝑀0

0, otherwise.
(3.16)

Then, the subpopulation size is given by

𝑁𝑀0 =
∑︁

𝑘∈𝑈0

𝑍𝑘 (3.17)

In a similar fashion, the total of the response variable 𝑌 in the domain is given by

𝑡𝑌𝑀0
=

∑︁
𝑘∈𝑈0

𝑍𝑘𝑌𝑘 (3.18)
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If we have information so as to identify, at the design stage, the subset of control potential
matches, we can treat that subpopulation as a stratum, hence controlling the number of
sampled units which belong to that domain, in a similar manner as proposed by Ferraz and
Vieira (2013). Instead, if we do not know beforehand which units belong to the domain – as
is frequently the case –, the domain mean for the response variable is defined as a ratio of two
unknown quantities

𝑌𝑀0 =
𝑡𝑌𝑀0

𝑁𝑀0

=
∑︀

𝑘∈𝑈0 𝑍𝑘𝑌𝑘∑︀
𝑘∈𝑈0 𝑍𝑘

(3.19)

In this case, we use the Horvitz-Thompson principle to get an approximately design-
unbiased estimator as

^̄𝑌𝑀0𝜋
=

∑︀
𝑘∈S0 𝑑𝑘𝑌𝑘∑︀
𝑘∈S0 𝑑𝑘𝑍𝑘

=
∑︀

𝑘∈M0 𝑑𝑘𝑌𝑘∑︀
𝑘∈M0 𝑑𝑘𝑍𝑘

(3.20)

where

M0 = 𝑀0 ∩ S0

Then, a matching estimator for the FPATT can be given as

^̄𝜏1𝑀
= ^̄𝑌11𝜋 − ^̄𝑌𝑀0𝜋

(3.21)

where ^̄𝑌11𝜋 is given by equation 3.7.
We want to make two important remarks. Firstly, it is easy to see that, in this case, the

number of sampled units which belong to the domain is a random variable and can be denoted
by

𝑛M0 =
∑︁

𝑘∈𝑈0

𝑍𝑘𝑆𝑘 (3.22)

where, as before, 𝑆𝑘 denotes the sample membership indicator. Hence, over repeated samples,
the expected number of units sampled from the domain is given by

E𝑝(𝑛M0) =
∑︁

𝑘∈𝑈0

𝑍𝑘𝜋𝑘 =
∑︁

𝑘∈𝑀0

𝜋𝑘 (3.23)

As a consequence, assuming the number of potential matches in the control population
is non-negligible, to guarantee a reasonable sample fraction of them, the sampling design
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must assign relatively higher inclusion probabilities to the individuals which belong to that
subpopulation. We consider a way to do that in Section 3.4, making use of auxiliary information.

Secondly, the estimator 3.20 should be used very carefully. The reason is that the indicator
variables 𝑍𝑘 are defined as population quantities and so, in order to use them from a sample, we
must guarantee that their respective sample values are correctly measured, so as to properly
identify the sample units which belong to the domain, as defined in equation 3.15. This is
crucial when the matching metric to be used includes functions of the measured variables,
such as the propensity score.

To clarify, let us illustrate it briefly. Suppose that our domain of interest is defined using
the Euclidean distance and the propensity scores. Then, from equation 3.15, we have

𝑀0 = {𝑘 | ‖𝜃𝑘 − 𝜃𝑗‖2 < 𝛾 for some 𝑗 ∈ 𝑈1} ⊆ 𝑈0 (3.24)

where ‖·‖2 denotes the Euclidean distance function and 𝜃𝑘 denotes the propensity score for the
𝑘th unit, as in section 2.3. To retrieve the population indicator variables from the sample, it is
required that either one knows the true propensity scores for the sampled units or one correctly
estimates their true values. Thus, it is imperative that sampling design information is taken into
account. This reinforces, using different arguments, the results presented by Ridgeway et al.
(2015), who conclude that sampling weights must be used both when estimating the propensity
scores and when estimating causal effects. Besides, an additional variance is expected for the
estimator, as a logical consequence of using estimated values (of the propensity score, in that
case) to compute the domain indicator variables in the sample.

3.4 THE ROLE OF AUXILIARY VARIABLES

Auxiliary information is, in a broad concept, any information about the population available
independently of the sampling process itself (TILLÉ, 2020, p. 9). In general, auxiliary infor-
mation is used to increase the precision of sampling estimates. There are many ways whereby
one can use these information, either in the sampling design or analysis. Particularly important
for our purposes are balanced sampling and calibration techniques, that use auxiliary infor-
mation in design and analysis, respectively. In this section, we present an overview of these
techniques. For the case of balanced sampling, we suppose that we have information on the
covariate values for each unit in the population, treating them as our auxiliary variables. Even
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in the case of a single covariate, we denote the the set of auxiliary information for the 𝑘th
unit in the population as

X𝑘 = (1 𝑋𝑘)T, ∀𝑘 ∈ 𝑈

For the general case of calibration and balanced sampling, doing so permits one to, on
the one hand, unbiasedly estimate the population size or, on the other hand, control to some
extent the actual sample size. For more details, the reader is referred to Tillé (2011) and Tillé
(2020).

3.4.1 Calibration

Differently from the other case considered in this thesis – in balancing samples (see Section
3.4.4) –, the calibration technique uses auxiliary variables after the sample is drawn. The
formalization of calibration technique was made by Deville and Särndal (1992). Here, we use
as references the presentations of Silva (2004), Särndal (2007) and Tillé (2020), as well.

Originally, the idea behind the calibration method consists of changing the basic design
weights in order to obtain an estimator consistent with the population totals and means.
Mathematically, it corresponds to finding weights 𝑤𝑘 such that

∑︁
𝑘∈S

𝑤𝑘X𝑘 = T𝑋 (3.25)

where X𝑘 is a vector of auxiliary variables and X = ∑︀
𝑘∈𝑈 X𝑘 is the vector of auxiliary variables

totals.
In general, the weights 𝑤𝑘 are sought in such a way that they are not so distant from the

basic design weights. Define the function

𝐺𝑘(𝑤𝑘, 𝑑𝑘)

We want 𝐺𝑘(𝑑𝑘, 𝑤𝑘) to be positive, strictly convex, differentiable with respect to 𝑤𝑘 and
such that 𝐺𝑘(𝑑𝑘, 𝑑𝑘) = 0.

Then, the problem of finding 𝑤𝑘 may be stated as follows:
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min
𝑤𝑘

∑︁
𝑘∈S

𝐺𝑘(𝑑𝑘, 𝑤𝑘)

s.t.
∑︁
𝑘∈S

𝑤𝑘X𝑘 = T𝑋

(3.26)

Writing the Lagrange function as

L (𝑤𝑘,𝜆𝜆𝜆) =
∑︁
𝑘∈S

𝐺𝑘(𝑑𝑘, 𝑤𝑘) − 𝜆𝜆𝜆T
(︂ ∑︁

𝑘∈S

𝑤𝑘X𝑘 − T𝑋

)︂
(3.27)

where 𝜆𝜆𝜆 is the vector of Lagrange multipliers, 𝜆𝜆𝜆 = (𝜆1, . . . , 𝜆𝑗, . . . , 𝜆𝑝)T, 𝑝 being the dimension
of X𝑘.

Differentiating Equation 3.27 with respect to 𝑤𝑘 and equaling to zero, we obtain

𝜕L (𝑤𝑘, 𝜆𝑝)
𝜕𝑤𝑘

= 𝑔𝑘(𝑑𝑘, 𝑤𝑘) − 𝜆𝜆𝜆TX𝑘 = 0 (3.28)

where

𝑔𝑘(𝑑𝑘, 𝑤𝑘) = 𝜕𝐺𝑘(𝑑𝑘, 𝑤𝑘)
𝜕𝑤𝑘

We have, then

𝑤𝑘 = 𝑑𝑘𝐹𝑘(XT
𝑘 𝜆𝜆𝜆) (3.29)

where 𝐹𝑘(·) is the inverse of the function 𝑔𝑘(·, 𝑑𝑘) (TILLÉ, 2020, p. 238). The function 𝐹𝑘(·)

is called the calibration function. The calibration weight are found by solving the calibration
equation

∑︁
𝑘∈S

𝑑𝑘X𝑘𝐹𝑘(XT
𝑘 𝜆𝜆𝜆) = T𝑋 (3.30)

for 𝜆𝜆𝜆. We denote the 𝜆𝜆𝜆 value satisfying Equation 3.30 by 𝜆𝜆𝜆*. Then, the final calibration weights
are given by

𝑤𝑘 = 𝑑𝑘𝐹𝑘(XT
𝑘 𝜆𝜆𝜆*) (3.31)

Definition 3.3. (Calibration Estimator) Let 𝑌 be a population quantity, the total of which

we want to estimate. Then

𝑌𝑤 =
∑︁
𝑘∈S

𝑤𝑘𝑌𝑘 (3.32)
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where 𝑤𝑘 is defined as in Equation 3.31, is called the calibration estimator of the 𝑌 total.

Many distance functions have been proposed in the literature, each one leading to a dif-
ferent calibration function. Here, we consider the simplest case, where

𝐺𝑘(𝑤𝑘, 𝑑𝑘) = (𝑤𝑘 − 𝑑𝑘)2

2𝑑𝑘

with corresponding calibration equation given by

𝐹𝑘(XT
𝑘 𝜆𝜆𝜆) = 1 − 𝜆𝜆𝜆TX𝑘 (3.33)

Substituting Equation 3.33 in Equation 3.30, we get the corresponding calibration equation

∑︁
𝑘∈S

𝑑𝑘X𝑘(1 − 𝜆𝜆𝜆TX𝑘) = T̂𝑋 +
∑︁
𝑘∈S

𝑑𝑘X𝑘XT
𝑘 𝜆𝜆𝜆 = T𝑋

Now, if the matrix ∑︀
𝑘∈S 𝑑𝑘X𝑘XT

𝑘 is non-singular, then we get

𝜆𝜆𝜆* = (
∑︁
𝑘∈S

𝑑𝑘X𝑘XT
𝑘 )−1T𝑋 − T̂𝑋 (3.34)

and, substituting Equation 3.34 in 3.31, and applying altogether in Equation 3.32 we have

𝑌𝑤 =
∑︁
𝑘∈S

𝑤𝑘𝑌𝑘 = 𝑌 + (T𝑋 − T̂𝑋)T(
∑︁
𝑘∈S

𝑑𝑘X𝑘XT
𝑘 )−1 ∑︁

𝑘∈S

𝑑𝑘X𝑘𝑌𝑘

= 𝑌 + (T𝑋 − T̂𝑋)TB̂ (3.35)

The estimator given in Equation 3.35 is equal to the regression estimator, which is very
well discussed in Särndal, Swensson and Wretman (1992). Note that the calibration estimators
of totals and means of the auxiliary variables have null variances. In addition, if some variable
of interest, say 𝑌 , have the form 𝑌𝑘 = XT

𝑘 B for any constant vector B, then the calibrated
estimators of the total and mean of 𝑌 have null variances, as well. In other words, the regression
estimator explores the relationship between the 𝑌 variable and the auxiliary variable, using it
to assist inferences about the finite population.

It is worthy to emphasize this perspective, as it is in the core of the justification of the
approach presented in the next chapters. To cite Särndal, Swensson and Wretman (1992):
“We do not require the model to be ‘true’ in the sense of correctly depicting some process by
which the population data have been generated. We only believe that the population data can
be fairly well described by the model” (SÄRNDAL; SWENSSON; WRETMAN, 1992, p. 239).
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For a discussion on the use of different distance functions to obtain calibration weights,
see Tillé (2020, Chapter 12). For a more detailed description of the regression estimator and
its properties, see Särndal, Swensson and Wretman (1992, Chapter 6).

3.4.2 Calibration and The Analogy Between NRF and Survey Non-Response

As mentioned in Section 3.4.1, the primarily aim of using auxiliary variables in sampling
design and analysis is to obtain efficiency gains in estimation. However, calibration techniques
have been proposed as a method to handle problems arising from survey non-response, as
well. In that case, calibration is used to limit the bias incurred when some sampled units fail
to respond survey questionnaires.

In Section 3.4.3, we discuss how the ideas developed in that context can fit the problem
of estimating treatment effects in observational studies. We explore the frequently mentioned
analogy between the Fundamental Problem of Causal Inference (see Section 2.1) and survey
estimation in the presence of non-response (see, for instance, Imbens and Rubin (2015) and
Rubin (1990), among many others). But first, it is important to discuss the analogy between
the NRF and the theory of survey non-response. We will only discuss notions of survey non-
response theory to the extent that it will be helpful for our purposes.

Usually, the theoretical approach to handling non-response is conceived under the assump-
tion that response has a probabilistic nature: every unit in population has a probability of
responding the survey. This probability, often is viewed as depending on the corresponding
unit’s characteristics. Thus, the sampling process can be decomposed into two phases, one
corresponding to the sample selection and the other corresponding to response selection. In the
former, the sampled units are drawn with probabilities given by the sampling design, whereas in
the latter, the probabilities are given by a response mechanism. The unit’s response probability
is called the response propensity.

As we discuss in Section 2.1, under the assumptions of the NRF, the problem in estimating
causal effects is that we cannot observe both potential outcomes for every unit in the popu-
lation. This is exemplified in Equations 2.2 and 2.4. The unobserved potential outcomes for
each unit, thus, can be viewed as missing values with the response probabilities given by the
treatment assignment mechanism (RUBIN, 1974; RUBIN, 1990; IMBENS; RUBIN, 2015, p. 14).

The ideas and terms used in the traditional formulation of non-response handling have a
lot in common with the ones in the Neyman-Rubin Framework. This is partially due to the
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influence of Rubin (1976), for instance, who proposed a classification of response mechanisms
in a very similar way as the one employed in the NRF. For this reason, the terms ignorable

and unconfounded response mechanism are common in survey non-response jargon, and are
defined in an analogous way as in NRF.

Exploring this analogy, in the regular conditions (see Appendix B), we have that the propen-
sity score (see Definition 2.3) works as an analogous concept as the response propensity relative
to the unit’s potential outcome when allocated to the treatment group.

Nevertheless, there are differences between the two approaches. In particular, in the context
of survey non-response, the classic approach suppose that the response selection occurs after
the sampling selection (TILLÉ, 2020, p. 336). In the NRF, specifically in observational studies,
the response selection is made previous to – and, thus, independently of – the sampling
selection.

As a consequence, whereas in handling survey non-response, the inferential process has
to take into account the response mechanism as a source of randomness (see the discussion
in Haziza and Lesage (2016) and Lesage, Haziza and D’Haultfœuille (2019), for instance), in
observational studies we can take the response assignment – that is, the treatment assignment
– as given. In other words, in the classic two-phase approach to survey non-response, whenever
a sample is drawn, two random selections occur, and this must be taken into account. Other-
wise, in observational studies, our position is that the fundamental aim is to make inferences
about a finite population with a fixed response structure.

As references to a more complete discussion of the theory involved in survey non-response,
we cite Särndal, Swensson and Wretman (1992, Chapter 15) and Tillé (2020, Chapter 16).
Here, our development will also be based on the approach brought in Lundström and Särndal
(1999), Särndal and Lundström (2005) and Särndal (2007). More recent debates include
Haziza and Lesage (2016) and Lesage, Haziza and D’Haultfœuille (2019).

3.4.3 Calibration as Tool for Reducing Non-Response Bias

Consider that we have a finite population 𝑈 , described in the same way as in Section 3.1.
Suppose we draw a sample S from 𝑈 by a probabilistic sampling design 𝑝(s), giving first-order
inclusion probabilities 𝜋𝑘, for 𝑘 ∈ 𝑈 . Denote, as previously, 𝑑𝑘 = 𝜋−1

𝑘 , the basic design weight.
Suppose further we want to estimate
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∑︁
𝑘∈𝑈

𝑁−1𝑌0𝑘 (3.36)

Let 𝛿0𝑘 denote a variable, indicating whether the 𝑘th unit in the population was assigned
to the control group, that is

𝛿0𝑘 =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑘 ∈ 𝑈0

0, otherwise

We can think of 𝛿0𝑘 as an indicator variable denoting whether the 𝑘th unit responds the
value 𝑌0𝑘 or not.

We have that

Pr(𝛿0𝑘 = 1) = 1 − 𝜃𝑘(𝑋𝑘) = 𝜑𝑘 (3.37)

where 𝜃𝑘(𝑋𝑘) is the unit-level assignment probability, or, equivalently (as the regularity con-
ditions discussed in Appendix B holds), the unit’s propensity score. We call 𝜑𝑘 the 𝑘th unit
response propensity.

It is easy to see that

E𝑝(
∑︁
𝑘∈S

𝑑𝑘𝑌0𝑘) =
∑︁
𝑘∈𝑈

𝛿0𝑘𝑌0𝑘 =
∑︁

𝑘∈𝑈0

𝑌0𝑘 (3.38)

However, we can propose a calibration-based estimator for ∑︀
𝑘∈𝑈1 𝑁−1𝑌0𝑘, using a similar

approach as the one adopted by Lundström and Särndal (1999), Deville (2002) and Särndal
and Lundström (2005), who advocate the usage of a calibration approach to limit the bias
due to non-response.

If we assume that that the bias of the HT estimator in estimating ∑︀
𝑘∈𝑈 𝑌0𝑘 comes solely

from the differences in the covariates values between the treatment-control groups, then a
calibration estimator for ∑︀

𝑘∈𝑈1 𝑌0𝑘 may be expressed as

𝑌10𝑤 =
∑︁

𝑘∈S0

𝑤𝑘𝑌0𝑘 (3.39)

with

𝑤𝑘 = 𝑑𝑘

{︂
1 + (

∑︁
𝑘∈S1

𝑑𝑘X𝑘 −
∑︁

𝑘∈S0

𝑑𝑘X𝑘)T(
∑︁

𝑘∈S0

𝑑𝑘X𝑘XT
𝑘 )−1X𝑘

}︂
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We now propose a expression for the bias of the estimator in Equation 3.39, based on
the development given in Lundström and Särndal (1999) and Särndal and Lundström (2005).
Unlike them, however, we only consider the design bias, whereas they consider the bias under
the response mechanism as well. As we have discussed in Section 3.4.2, that position comes
from the fact that we do not intend to make inferences about populations under different
realizations of the treatment assignments and, thus, treat the response mechanism as given.

Result 3.2 (Bias of the Calibration Estimator). Let 𝑌0𝑤 be an estimator as given in Equation

3.39. Then

E𝑝(𝑌0𝑤) −
(︂ ∑︁

𝑘∈𝑈

𝑌0𝑘 −
∑︁

𝑘∈𝑈0

𝑌0𝑘

)︂
=

∑︁
𝑘∈𝑈0

𝐸𝑘 −
∑︁

𝑘∈𝑈1

𝐸𝑘 (3.40)

where

𝐸𝑘 = 𝑌𝑘 − XT
𝑘 BU0

and

BU0 =
(︂ ∑︁

𝑘∈𝑈0

X𝑘XT
𝑘

)︂−1 ∑︁
𝑘∈𝑈0

X𝑘𝑌0𝑘

Proof. See Appendix A.
If we believe that the relationship given by 𝐸𝑘 in Result 3.2 represents a good description

of the 𝑌 variables in the population, in particular, that 𝑌𝑘 and 𝑋𝑘 have a linear relationship
for every unit in both treatment levels in population, and that the response curves in each
treatment group are parallel to each other – that is, that both treatment and control groups
share a common constant value BU = BU0 = BU1 –, then we can get an unbiased estimator
of the FPATT as

^̄𝜏1𝑤 = ^̄𝑌11𝜋 − ^̄𝑌10𝑤 (3.41)

where, from Equations 3.7 and 3.39,

^̄𝑌11𝜋 = 𝑁−1
1

∑︁
𝑘∈S1

𝑑𝑘𝑌1𝑘

^̄𝑌10𝑤 = 𝑁−1
1

∑︁
𝑘∈S0

𝑤𝑘𝑌0𝑘
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with

𝑤𝑘 = 𝑑𝑘

{︂
1 + (

∑︁
𝑘∈S1

𝑑𝑘X𝑘 −
∑︁

𝑘∈S0

𝑑𝑘X𝑘)T(
∑︁

𝑘∈S0

𝑑𝑘X𝑘XT
𝑘 )−1X𝑘

}︂
Note that, in order to use the calibration estimator in Equation 3.41 we do not need to

have access to any population level auxiliary information. This situation is equivalent to the
case described in Lundström and Särndal (1999) and Särndal and Lundström (2005), where
they denote auxiliary information at the sample level as InfoS (see Särndal and Lundström
(2005, p. 54)).

However, if we have access to population-level auxiliary information on the covariates
values, we can use a double-calibration approach: instead of calibrating the control group
covariate mean estimator on the mean estimator of the treated group covariate (see Equation
3.39), only, we can also calibrate the control group covariate mean estimator to make it
consistent with its corresponding population mean, as in the traditional usage of calibration
technique. The rationale behind this is that, as the arguments discussed in Section 3.4.1
suggest, we can decrease the variance of our estimator.

In this case, we proceed in two steps:

1. Find first-step weights 𝑤1
𝑘, for every 𝑘 ∈ S𝑡, such that

𝑤1
𝑘 = 𝑑𝑘

{︂
1 + (

∑︁
𝑘∈𝑈𝑡

X𝑘 −
∑︁

𝑘∈S𝑡

𝑑𝑘X𝑘)T(
∑︁

𝑘∈S𝑡

𝑑𝑘X𝑘XT
𝑘 )−1X𝑘

}︂
(3.42)

2. For 𝑘 ∈ S0, find second-step weights 𝑤2
𝑘 such that

𝑤2
𝑘 = 𝑤1

𝑘

{︂
1 + (

∑︁
𝑘∈S1

𝑤1
𝑘X𝑘 −

∑︁
𝑘∈S0

𝑤1
𝑘X𝑘)T(

∑︁
𝑘∈S0

𝑤1
𝑘X𝑘XT

𝑘 )−1X𝑘

}︂
(3.43)

Our double-calibration estimator will, then, be

^̄𝜏12
𝑤

= ^̄𝑌111
𝑤

− ^̄𝑌102
𝑤

(3.44)

where

^̄𝑌111
𝑤

= 𝑁−1
1

∑︁
𝑘∈S1

𝑤1
𝑘𝑌1𝑘

^̄𝑌102
𝑤

= 𝑁−1
1

∑︁
𝑘∈S0

𝑤2
𝑘𝑌0𝑘
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It is important to remark that regression estimators have been used for a long time in obser-
vational studies. However, usually they are derived from a model-based inference perspective.
Imbens and Rubin (2015) show concerns about employing regression estimators to estimate
causal effects. They argument that regression estimators can be very sensitive with relation
to model mispecifications. For instance, in Imbens and Rubin (2015, pp. 335-336), they use
the example of LaLonde’s experimental data (LALONDE, 1986) to estimate the outcome of
the treated in the absence of treatment, comparing experimental with non-experimental data.
To this end, they use a series of polynomial regressions and show that the point estimators as
well as the variances of these estimators, are very unstable, presenting significantly different
values from one model specification to another, when using non-experimental data. This oc-
curs in contrast with the experimental situation, where increasing the degree of the polynomial
used in the model, besides mildly increasing variances, does not significantly affect the point
estimators. For a detailed description of the problem, see Imbens and Rubin (2015), in the
referred pages.

The evidence we produce in the simulation results (see Chapter 4) points to the reasoning
that, at least from a design-based, model-assisted inference perspective, the estimated bias and
variance of the calibration estimators tend to be stable. In particular, if we include covariate
higher-order terms as auxiliary variables in the regression estimator – even if they are absent
in the true population relationship between the response variable and the covariate –, the
point estimators and their respective variances show to be pretty stable. See Section 4. This
can support the view that, at least for models in a “neighbourhood” of the true model –
considering a sequence of nested models – the estimates produced are stable, a question that
needs further investigation. An interesting question, that was not addressed here, is whether
using model-based regression estimators would result in significantly different estimates under
the same model-misspecification setup.

3.4.4 Balanced Sampling

Throughout survey sampling history, the term “balanced sample” has been given many
meanings. For a brief historical perspective, see Tillé (2020) and Tillé (2011). Here, we use
the definition given in Deville and Tillé (2004).

Definition 3.4 (Balanced Sample). A sample S that satisfies
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∑︁
𝑘∈S

𝑑𝑘X𝑘 = T𝑋 (3.45)

is said to be balanced on the totals of the covariates variables. Here, 𝑑𝑘 is the basic design

weight as defined in Section 3.1.

Of course, if a sample is balanced on the totals of the auxiliary vector variables, then
it is balanced on their means. To see this, just divide both sides of Equation 3.45 by 𝑁 .
Equation 3.45 is referred to as the balancing equation, whereas 𝑋𝑘 is referred to as the vector
of balancing variables.

Moreover, if a sampling design 𝑝(s) is such that, for a given vector of values 𝑋𝑘, Equation
3.45 is always satisfied, then 𝑝(s) is said to be a balanced sampling design. Deville and Tillé
(2004) give various examples of commonly used sampling designs which are particular cases
of balanced sampling designs, for other balancing variables. Importantly, any sampling design
that gives fixed sized samples are balanced, with the balancing variable corresponding, for
instance, to X𝑘 = 11×𝑁 , where 11×𝑁 is any 𝑁 -vector whose elements all equals 1. In fact,
X𝑘 could be an 𝑁 -vector whose elements equals any constant.

Tillé (2011) discusses some advantages of balanced samples. Among them, in a similar
manner as discussed in Section 3.4.1, if the balancing equations are fully satisfied, then the
variances of estimators under balanced sampling can be largely reduced.

It is not always possible to find exactly balanced samples, especially if the dimension of
the auxiliary vector is large. For this reason, the many methods proposed try to find samples
which is, as best as it is possible, approximately balanced.

A way to do that was proposed by Fuller (2009). He considers a rejective sampling proce-
dure, by which a sample is selected only if the difference between the sample estimates and the
respective population quantities lies within a pre-defined threshold. In his case, Fuller (2009)
considers the case where the sample is accepted if

(︂
^̄X − X̄

)︂T
𝑉 −1

X̄X̄

(︂
X̄ − X̄

)︂
< 𝛾 (3.46)

where ^̄X = 𝑁−1 ∑︀
𝑘∈S 𝑑𝑘X𝑘, X̄ = 𝑁−1T𝑋 and

𝑉X̄X̄ = 𝑁−2 ∑︁
𝑘∈𝑈

∑︁
𝑙∈𝑈

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙)XT
𝑘 X𝑘𝑑𝑘𝑑𝑙
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the HT estimator design variance (see Särndal, Swensson and Wretman (1992) and Lohr
(2009) as references).

The sampling procedure goes as follows: by a sampling design 𝑝(s), repeated samples are
drawn. At each repetition, the condition given by the metric in inequality 3.46 is assessed. If
verified, the sample is accepted; otherwise, the process continues.

The appealing of using inequality 3.46 as a metric of balance is that, if the original sampling
design has a central limit theorem, the left side in inequality 3.46 asymptotically follows a 𝜒2

distribution with degrees of freedom corresponding to the length of X (FULLER, 2009; LEGG;

YU, 2010). Thus, we can have a guess on the rejection rate of the procedure by looking at the
probability of the corresponding 𝜒2 distribution, associated with the quantile equal to 𝛾.

While, originally, the idea behind drawing balanced samples was to make sample estimates
of auxiliary variables consistent with their respective population values, to our purposes, the
question to be answered will be: is it possible to obtain samples of treated and control units
that are balanced on covariates through probabilistic sampling design? If so, do they provide
good estimates of population treatment effects?

In order to do that we may stipulate a different criterion for sampling rejection. We can,
for instance, draw samples requiring that the difference between the sample means in each
sampled group are less than a pre-specified threshold, as follows

𝑛−1
1

∑︁
𝑘∈S1

𝑋𝑘 − 𝑛−1
0

∑︁
𝑘∈S0

𝑋𝑘 < 𝛾 (3.47)

where 𝑛𝑡 is the size of each sampled group S𝑡.
Note that, if we were to substitute each sample mean in inequality 3.47 for a design-

unbiased estimator of the covariates means in each population group – as the HT estimator –,
then the value 𝛾 would be virtually limited to the actual difference in means in the population,
and no bias could be reduced.

We can combine the rejective rule in inequality 3.47 with an initial sampling design that
ascribes greater inclusion probabilities for the units in one treatment group whose covariates
values are closer to the other groups’ covariates means. The rationale behind this is that units
with covariate values closer to the other group’s mean will tend to be oversampled and the
restriction in inequality 3.47 will be more easily satisfied.

For instance, we can attribute 𝜋𝑘 values such that
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𝜋𝑘 =

⎧⎪⎪⎨⎪⎪⎩
𝜋𝑘 ∝ 1

(𝑋𝑘−𝑋̄1)2 , if 𝑘 ∈ 𝑈0

𝜋𝑘 ∝ 1
(𝑋𝑘−𝑋̄0)2 , if 𝑘 ∈ 𝑈1

(3.48)

where 𝑋̄𝑡 is the mean of the covariate value in the treatment level 𝑈𝑡.
A concern about rejective procedures is that it alters the units initial inclusion probabilities.

In the case presented in Fuller (2009), using the criterion in inequality 3.46, units have a
greater chance of being included in the sample when their respective X𝑘 values are closer to
the population mean. Legg and Yu (2010) presented Monte Carlo simulation results which
corroborate this rationale. However, both Fuller (2009) and Legg and Yu (2010) point out
that the regression estimator (see Section 3.4.1) have practically the same properties under
the rejective design and the original design. Furthermore, they show that the variance estimator
of the expansion estimator will also be biased, and propose, in a similar manner, the use of
regression estimators as a way to obtain efficient estimates.

In general, we expect the rejective sampling to perform well in terms of bias reduction only
if the treatment effect is constant or if combined with one of the other methods discussed
in this text. In other words, we do not expect that any direct estimator can be derived from
the rejective sampling procedure, under non-constant treatment effects. The reason for that is
that, although we expect rejective sampling to work well in the task of finding more balanced
samples – which is very beneficial for the other methods –, if we were to use any design-unbiased
estimator with the balanced samples obtained, we would eventually retrieve the respective
population quantities. To illustrate, suppose that the HT estimator is design-unbiased under
rejective sampling. This is not the case, as we have discussed, but it will serve as an illustration.
If we estimate the treatment effect as

^̄𝑡𝑟𝑗 = 𝑁−1
1

(︂ ∑︁
𝑘∈S1

𝑑𝑘𝑌1𝑘

)︂
− 𝑁−1

0

(︂ ∑︁
𝑘∈S0

𝑑𝑘𝑌0𝑘

)︂
(3.49)

then, obviously, we would have that

E𝑝(^̄𝑡𝑟𝑗) = 𝑌11 − 𝑌00 (3.50)

Unavoidably, even if we do succeed in drawing balanced samples, we need to condition our
estimators on the covariate values to get unbiased estimates of treatment effects. It is easy
to use the rejective sampling in conjunction with the calibration estimator, for example. Once
that the HT estimator is biased under rejective sampling, but the regression estimator is not,
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we can use a double-calibration approach as described previously in Section 3.4.3. As we will
see in Chapter 4, balanced samples combined with double-calibration estimator can reduce the
estimates variance.
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4 SIMULATION DESIGN AND RESULTS

A Monte Carlo simulation was implemented to evaluate the performance of the different
estimators presented in the last chapters. We generated a finite population 𝑈 of size 𝑁 = 6000,
with 𝑁1 = 1000 and 𝑁0 = 5000. Each unit 𝑘 in the population has values recorded for a
single covariate 𝑋𝑡𝑘 and for the response variable 𝑌𝑡𝑘. We consider that 𝑋𝑡𝑘 were generated
by Normal distributions with different means for each treatment level, as follows:

• 𝑋1𝑘 ∼ 𝒩 (23, 1), ∀𝑘 ∈ 𝑈1

• 𝑋0𝑘 ∼ 𝒩 (20, 1), ∀𝑘 ∈ 𝑈0

With these parameters, the value of initial bias, as calculated by the measure in Equation
2.8 is 𝐷 = 2.9905.

We generated the response variable accordingly to the model

𝑌𝑡𝑘 = 100 + 𝜏𝑘𝑡𝑘 + 𝑋𝑡𝑘 + 𝜀𝑘

where 𝑡𝑘 is the treatment indicator of the 𝑘th unit, each 𝜀𝑘 is independently and identically
distributed as 𝜀𝑘 ∼ 𝒩 (0, 1) and with 𝜏𝑘 defined in two ways

1. Constant, where 𝜏𝑘 = 𝜏 = 10, ∀𝑘 ∈ 𝑈1;

2. Non-constant, where 𝜏𝑘 = −10 + 10𝑋1𝑘.

Next, we draw 𝑅 = 100 repeated samples from 𝑈 . To this end, three sampling designs
were considered:

1. Simple Random Sampling Without Replacement – SRSWOR;

2. Poisson Sampling – POI;

3. Rejective Sampling with Initial Poisson Design – REJPOI.

Both SRSWOR and POI designs are very well-known sampling designs. For references, see
Särndal, Swensson and Wretman (1992, p. 66) and Tillé (2020, p. 27), for SRSWOR, and
Särndal, Swensson and Wretman (1992, p. 85) and Tillé (2020, p. 92), for POI.

Both in POI and REJPOI, the first-order inclusion probabilities were generated as described
in Equation 3.48
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𝜋𝑘 =

⎧⎪⎪⎨⎪⎪⎩
𝜋𝑘 ∝ 1

(𝑋𝑘−𝑋̄1)2 , if 𝑘 ∈ 𝑈0

𝜋𝑘 ∝ 1
(𝑋𝑘−𝑋̄0)2 , if 𝑘 ∈ 𝑈1

where 𝑋̄𝑡 is the mean of the covariate value in the treatment level 𝑈𝑡.
In REJPOI, the rejection rule given by inequality 3.47 was set to be

𝑛−1
1

∑︁
𝑘∈S1

𝑋𝑘 − 𝑛−1
0

∑︁
𝑘∈S0

𝑋𝑘 < 0.2

In total, six scenarios were created, defined by combinations of the two definitions of 𝜏𝑘

and the three sampling designs.
Samples of size 𝑛1 = 250 and 𝑛0 = 500 were drawn from 𝑈1 and 𝑈0, respectively, under

SRSWOR. In the case of POI, these were set to be the expected sample sizes in each group,
by the construction of the inclusion probabilities.

The REJPOI design showed to be very sensitive to the expected sample sizes, so that no
samples could be drawn using the specifications for POI, for example. Because of this, the
expected sample size when using REJPOI was set to be E𝑝(𝑛𝑡) = 100 for both treatment
levels. Moreover, it is noteworthy that no samples could be drawn for distributions with larger
differences in covariates means.

For each sample drawn, we compute the estimate of 𝜏1 = 𝑁−1
1

∑︀
𝑘∈𝑈1 𝜏𝑘, the Finite Pop-

ulation Average Treatment Effect on the Treated (FPATT).
We compute the estimated absolute bias for each estimator ^̄𝜏 as

B̂(^̄𝜏) = 𝑅−1 ∑︁
𝑖∈𝑅

^̄𝜏𝑖 − 𝑁−1
1

∑︁
𝑘∈𝑈1

𝜏𝑘

The estimated variance for each estimator was computed as

V̂(^̄𝜏) =
(︂

𝑅 − 1
)︂−1 ∑︁

𝑖∈𝑅

(︂
^̄𝜏𝑖 − 𝑅−1 ∑︁

𝑖∈𝑅

^̄𝜏𝑖

)︂2

At last, the estimated mean-squared error (MSE) of each estimator was computed as

MŜE(^̄𝜏) = V̂(^̄𝜏) + B̂(^̄𝜏)2

We enumerate the scenarios as follows

1. SRSWOR

a) Constant treatment effect;
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b) Non-constant treatment effects;

2. POI

a) Constant treatment effect;

b) Non-constant treatment effects;

3. REJPOI

a) Constant treatment effect;

b) Non-constant treatment effects;

We evaluated the performance of six estimators:

• Propensity Score Matching Without Replacement estimator – PSMwor;

• Propensity Score Matching With Replacement estimator – PSMwr;

• Genetic Matching Without Replacement estimator – GMwor;

• Genetic Matching With Replacement estimator – GMwr;

• Calibration estimator – CALIB;

• Double-Calibration estimator - DCALIB.

Note, again, that the calibration estimator was not computed in the case of REJPOI.
We now recall the form of each one of the estimators.
For both matching methods, the treatment effect estimator is given by the difference

between the matched sample means in treated and control group. Let M ⊂ S be the set of
matched units in the sample, either by Propensity Score Matching or Genetic Matching. Let
𝑀 denote the cardinality of M . Then, the matching estimator for 𝜏1 is given by

^̄𝜏M = 𝑀−1
(︂ ∑︁

𝑘∈M

𝑌1𝑘 −
∑︁

𝑗∈M

𝑌0𝑗

)︂
Note that the forms of with and without-replacement matching estimators are identical, with
the difference in them corresponding to the units composing the matching subset.

The calibration estimator is given by
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^̄𝜏1𝑤 = 𝑁−1
1

(︂ ∑︁
𝑗∈S1

𝑑𝑗𝑌1𝑗 −
∑︁

𝑘∈S0

𝑤𝑘𝑌0𝑘

)︂
where

𝑤𝑘 = 𝑑𝑘

{︂
1 + (

∑︁
𝑘∈S1

𝑑𝑘X𝑘 −
∑︁

𝑘∈S0

𝑑𝑘X𝑘)T(
∑︁

𝑘∈S0

𝑑𝑘X𝑘XT
𝑘 )−1X𝑘

}︂
In turn, the double-calibration estimator is given by

^̄𝜏12
𝑤

= 𝑁−1
1

∑︁
𝑘∈S1

𝑤1
𝑘𝑌1𝑘 − 𝑁−1

1
∑︁

𝑘∈S0

𝑤2
𝑘𝑌0𝑘

where

𝑤1
𝑘 = 𝑑𝑘

{︂
1 + (

∑︁
𝑘∈𝑈𝑡

X𝑘 −
∑︁

𝑘∈S𝑡

𝑑𝑘X𝑘)T(
∑︁

𝑘∈S𝑡

𝑑𝑘X𝑘XT
𝑘 )−1X𝑘

}︂

𝑤2
𝑘 = 𝑤1

𝑘

{︂
1 + (

∑︁
𝑘∈S1

𝑤1
𝑘X𝑘 −

∑︁
𝑘∈S0

𝑤1
𝑘X𝑘)T(

∑︁
𝑘∈S0

𝑤1
𝑘X𝑘XT

𝑘 )−1X𝑘

}︂

A summary of the performance of each estimator under each scenario is given in Table 3.
From Table 3, we can see that the CALIB estimator performs well in all scenarios, except

under POI with non-constant treatment effects, where its variance is very large, even though
its absolute bias is relatively small. As expected, in this situation, the DCALIB estimator
represents a way whereby one can prevent the variance to increase.

In what matching estimators are concerned, we can see that, as expected, matching with re-
placement performs better in terms of bias reduction, comparing with the without-replacement
case, with an increase in the variance. Anyway, the variances of all matching estimators are
very small relatively to the true parameter values, and that increase in variance should not be a
problem when drawing inferences. In general, considering matching without replacement, GM
and PSM performances are similar. Considering matching with replacement, otherwise, GM
performs much better than PSM. As expected, PSM and GM perform better when treatment
effects are constant. Differently from what expected, however, even with non-constant treat-
ment effects, under SRSWOR, both matching estimators do not seem to perform worse than
in the case of constant treatment effects. This is probably due to the fact that the population
distributions are not sufficiently apart from one group to another and, in addition, that the
average treatment effect for the matched units are not very far from the average treatment
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Table 3 – Estimated Absolute Bias and Variance of PATT Estimators in Each Simulated Scenario.

Scenario
1a. 1b. 2a. 2b. 3a. 3b.

Bias 2.2813 2.3046 0.5902 -6.6947 0.3567 -10.2572
PSMwor Variance 0.0151 0.3588 0.0099 0.2902 0.0330 3.9743

MSE 5.2194 5.6700 0.3582 45.1092 0.1602 109.1845
Bias 2.2818 2.3052 0.5886 -6.6963 0.1934 -11.6209

GMwor Variance 0.0151 0.3584 0.0100 0.2880 0.0229 0.7171
MSE 5.2217 5.6723 0.3564 45.12843 0.0603 135.7624
Bias 1.4676 1.4910 0.6185 -6.6664 0.1611 -11.6522

PSMwr Variance 0.0483 0.3626 0.0092 0.2673 0.0303 0.6236
MSE 2.20215 2.5856 0.3917 44.7082 0.0562 136.3974
Bias 0.6047 0.6281 0.2642 -7.0207 0.1090 -11.7043

GMwr Variance 0.2650 0.5466 0.0056 0.2467 0.0275 0.5857
MSE 0.6307 0.9411 0.0754 49.5369 0.0394 137.5763
Bias 0.0923 0.1157 0.2609 1.8270 - -

CALIB Variance 0.0215 0.2849 0.1982 288.6043 - -
MSE 0.0300 0.2983 0.6200 291.9422 - -
Bias 0.1043 0.1277 0.1214 0.1255 0.1841 -0.0401

DCALIB Variance 0.0950 0.6456 0.0356 0.2270 0.1580 0.1656
MSE 0.1059 0.6619 0.0503 0.2428 0.1919 0.1672

Source: The author (2022)

effect for the entire population. We expect that, if the individual-level treatment effect vary
more, the performance of matching will be poorer.

Nonetheless, once we consider informative sampling designs with non-constant treatment
effects (scenarios 2b. and 3b.), both matching methods perform very poorly. This fact shows
the importance of taking the sampling design into account, using sampling weights, for exam-
ple.

An interesting aspect is that, although matching without replacement performs poorly in
terms of bias even for the case of constant treatment effects in SRSWOR, as we change the
sampling design appropriately, their performance get better and better. The rationale behind
that fact is that the sampling distributions of the covariate in the treatment and control groups
tend to overlap each other more and more, as we change from scenarios 1 to 3, as we discuss
below, allowing for better matches to be found.

We expected that the rejective rule in REJPOI would improve the performances of the
estimators. We see that, in the case of non-constant treatment effects, even with less than a
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half the sample sizes considered in the other scenarios, the estimated bias and variance of the
double-calibration estimator are very small.

Moreover, we can see that, in fact, REJPOI achieves a greater covariate balance between
the treated and control sampled groups. In Figures 1, 2 and 3, we show the distributions of
treated and control covariates both at the population-level – showed as the histograms – and
in one of the 𝑅 = 100 repeated samples, arbitrarily chosen, respectively for SRSWOR, POI
and REJPOI. The pink histogram represents the control distribution and the blue histogram
represents the treated distribution at the population-level. Likewise, the red line represents the
control distribution and the blue line represents the treated distribution in the sample.

Figure 1 – Distributions of covariate values in the population and in SRSWOR samples, for treated and control
groups.

Source: The author (2022)

As expected, in the case of SRSWOR, Figure 1, the sampling design preserves the balancing
structure seen at the population level. We can see that in the case of REJPOI, Figure 3, the
sample distributions of the covariates practically overlap one another. The case of POI, Figure
2, shows an intermediary degree of balance, in comparison with SRSWOR and REJPOI.

These results suggest that, if matching procedures correctly incorporate sampling weights,
maybe they could produce reliable estimates even if the sampling design is informative and if
treatment effects vary more across the population units. In particular, with REJPOI, we expect
the procedure of matching to be facilitated.
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Figure 2 – Distributions of covariate values in the population and in POI samples, for treated and control
groups.

Source: The author (2022)

Figure 3 – Distributions of covariate values in the population and in REJPOI samples, for treated and control
groups.

Source: The author (2022)
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Figure 4 – Boxplots of double-calibration estimator with higher order terms included for non-constant treat-
ment effects under SRSWOR.

Source: The author (2022)

Another aspect we want to assess, via simulation, is the stability of the calibration estimator
in face of model mispecification. In order to do that, we included in the specification of the
calibration weights higher order terms of the covariate values. Particularly, we included terms
of order 𝑚 = 1, 2, 3, 4.

Figures 4, 5 and 6 show boxplots of the double-calibration estimator under each one of
the specifications, for SRSWOR, POI and REJPOI, respectively. As we mentioned in Section
3.4.3, we can see that the expected point estimates and variances are very stable for the three
scenarios: the median estimate, for each model, in each scenario, is very close to the true
parameter; besides, the lengths of the intervals spanned by the estimates, for each model,
in each scenario, practically overlap one another. Moreover, we can see that, albeit including
additional terms in the model implies in additional variability among the estimates, this increase
in the variance of the estimators is small relatively to the true parameter value. In summary, we
can expect that including higher-order terms as auxiliary variables in the calibration estimator
do not significantly change the inference one can draw, either in terms of point or interval
estimates of the true parameter. The performances of the estimators for the other cases and
scenarios were similar and were not presented here for the sake of brevity.
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Figure 5 – Boxplots of double-calibration estimator with higher order terms included for non-constant treat-
ment effects under POI.

Source: The author (2022)

Figure 6 – Boxplots of double-calibration estimator with higher order terms included for non-constant treat-
ment effects under REJPOI.

Source: The author (2022)
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5 CONCLUSION

This work discussed some of the main approaches available for estimation of causal effects
in observational studies. We showed that, when the study regards to estimating causal effects
in a finite population, the role of sampling is an important factor, that has to be accounted
for. In particular, when using common approaches such as matching, if the investigator fails
to incorporate sampling design information, such as sampling weights, causal effects estimates
can be very biased, specifically when one is not able to match all treated units and treatment
effects are not constant across the population units.

Apart from being a source of randomness that has to be taken into account, the sampling
process can be used in order to obtain accurate and unbiased estimates of causal effects. From
the sampling design perspective, the combination of rejective sampling with an appropriate
initial design can improve balance between treated and control groups in the sample. This sug-
gests that, if the analyst is able to appropriately incorporate sampling weights in the analysis,
causal effects may be estimated with less bias and more precision.

From the sampling analysis perspective, the calibration and double-calibration estimators
proposed in this work showed to perform very well in the estimation of causal effects. In
particular, one has a lot to gain in using those estimators as alternatives to model-based
regression estimators, which largely depends on model assumptions. The calibration estimators
showed to be pretty stable even under model misspecification. Besides, the calibration approach
represents a very straightforward way of using sampling weights.

Of course, only a simple case was addressed, that of a response variable with linear regres-
sion structures, single covariate and additive effects. The literature of calibration, however,
has largely advanced in the direction of proposing calibrated weights that can encompass more
complex relationships between the auxiliary variables and the response variable. Whereas the
first formulations of the calibration method were presented in order to make estimators consis-
tent with known population totals and means, there has been an increasing interest in deriving
weight systems to make estimators consistent with other population quantities of interest. In
particular, we mention the works of Harms and Duchesne (2006), who considers calibration on
quantiles, Wu and Sitter (2001), who proposed model calibration, and Goga and Ruiz-Gazen
(2014), who proposed nonparametric calibration. These are approaches that can be explored
in future works.



58

REFERENCES

AGRESTI, A. Categorical data analysis. [S.l.]: John Wiley & Sons, 2003.

AUSTIN, P. C. A critical appraisal of propensity-score matching in the medical literature
between 1996 and 2003. Statistics in medicine, Wiley Online Library, v. 27, n. 12, p.
2037–2049, 2008.

AUSTIN, P. C.; JEMBERE, N.; CHIU, M. Propensity score matching and complex surveys.
Statistical methods in medical research, SAGE Publications Sage UK: London, England,
v. 27, n. 4, p. 1240–1257, 2018.

BILLEWICZ, W. The efficiency of matched samples: an empirical investigation. Biometrics,
JSTOR, p. 623–644, 1965.

CAMPBELL, D. T.; STANLEY, J. C. Experimental and quasi-experimental designs for
research. [S.l.]: Ravenio Books, 2015.

CAMPOS, H. de. Os melhores poemas de Haroldo de Campos. [S.l.]: Global Editora, 1992.

COCHRAN, W. G. Matching in analytical studies. American Journal of Public Health and the
Nations Health, American Public Health Association, v. 43, n. 6_Pt_1, p. 684–691, 1953.

COCHRAN, W. G. The effectiveness of adjustment by subclassification in removing bias in
observational studies. Biometrics, JSTOR, p. 295–313, 1968.

COCHRAN, W. G.; RUBIN, D. B. Controlling bias in observational studies: A review.
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APPENDIX A – PROOF OF RESULT 3.2

Proof. We have
𝑌0𝑤 =

∑︁
𝑘∈S0

𝑑𝑘𝑌0𝑘 + (
∑︁
𝑘S1

𝑑𝑘X𝑘 −
∑︁

𝑘∈S0

𝑑𝑘X𝑘)TB̂ (A.1)

where

B̂ = (
∑︁

𝑘∈S0

𝑑𝑘X𝑘XT
𝑘 )−1X𝑘

Taking design expectations on each term of 3.32 and using 𝛿0𝑘 as the control assignment
indicator (see Section 3.4.3), we have

E𝑝(
∑︁

𝑘∈S0

𝑑𝑘𝑌0𝑘) =
∑︁
𝑘∈𝑈

𝛿0𝑘𝑌0𝑘

E𝑝(B̂) =
(︂ ∑︁

𝑘∈𝑈

𝛿0𝑘X𝑘XT
𝑘

)︂−1 ∑︁
𝑘∈𝑈

𝛿0𝑘X𝑘𝑌0𝑘 = BU0

E𝑝(
∑︁
𝑘S0

𝑑𝑘X𝑘) =
∑︁
𝑘∈𝑈

𝛿0𝑘X𝑘

E𝑝(
∑︁
𝑘S1

𝑑𝑘X𝑘) =
∑︁
𝑘∈𝑈

(1 − 𝛿0𝑘)X𝑘

Thus,

𝑌0𝑤 =
∑︁
𝑘∈𝑈

𝛿0𝑘𝑌0𝑘 +
∑︁
𝑘∈𝑈

(1 − 𝛿0𝑘)XT
𝑘 BU0 −

∑︁
𝑘∈𝑈

𝛿0𝑘XT
𝑘 BU0 (A.2)

Now, subtracting ∑︀
𝑘∈𝑈 𝑌0𝑘 − ∑︀

𝑘∈𝑈0 𝑌0𝑘 from A.2, rearranging and using 𝐸𝑘 = 𝑌0𝑘 −

XT
𝑘 BU0 ,

𝑌0𝑤 −
(︂ ∑︁

𝑘∈𝑈

𝑌0𝑘 −
∑︁

𝑘∈𝑈0

𝑌0𝑘

)︂
= 2

(︂ ∑︁
𝑘∈𝑈

𝛿0𝑘𝐸𝑘

)︂
−

∑︁
𝑘∈𝑈

𝐸𝑘

= 2
(︂ ∑︁

𝑘∈𝑈

𝛿0𝑘𝐸𝑘

)︂
−

(︂ ∑︁
𝑘∈𝑈

(1 − 𝛿0𝑘)𝐸𝑘 +
∑︁
𝑘∈𝑈

𝛿0𝑘𝐸𝑘

)︂

=
∑︁

𝑘∈𝑈0

𝐸𝑘 −
∑︁

𝑘∈𝑈1

𝐸𝑘
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APPENDIX B – NEYMAN-RUBIN FRAMEWORK REGULARITY

ASSUMPTIONS

Assumption B.1 (Stable Unit Treatment Value). For each unit in the population, there is only

one version of the potential outcome for each treatment level. Moreover, one unit’s potential

outcomes is not affected by other unit’s treatment status.

Assumption B.2 (Individualistic Treatment Assignment Mechanism). The Treatment As-

signment Mechanism 𝜆(T|X, Y) is individualistic if. That is, for some function 𝑔(·) ∈ [0, 1]

𝜃𝑘(X, Y) = 𝑔(X𝑘, Yk) (B.1)

and

𝜆(T|X, Y) =
∏︁
𝑘∈𝑈

𝑔(X𝑘, Yk)𝑡𝑘(1 − 𝑔(X𝑘, Yk))(1−𝑡𝑘) (B.2)

where

𝜃𝑘(X, Y) =
∑︁

t∈𝒯 |(𝑡𝑘=1)
𝜆(t|X, Y) (B.3)

is the individual-level assignment probability.

Then, we can rewrite 𝜃𝑘(X, Y) = 𝜃𝑘(X𝑘, 𝑌𝑘).

Assumption B.3 (Unconfounded Treatment Assignment Mechanism). The Treatment As-

signment Mechanism is unconfounded. That is, it satisfies

𝑌1𝑘, 𝑌0𝑘 ⊥⊥ 𝑇𝑘|X𝑘 (B.4)

and we can rewrite 𝜃𝑘(X𝑘, 𝑌𝑘) = 𝜃𝑘(X𝑘).

Assumption B.4 (Probabilistic Treatment Assignment Mechanism). The Treatment Assign-

ment Mechanism is probabilistic. That is,

0 < 𝜃𝑘(X𝑘) < 1, ∀𝑘 ∈ 𝑈 (B.5)
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APPENDIX C – THEORETICAL RESULTS CONCERNING BALANCING

SCORES

Result C.1. For every unit 𝑘 ∈ 𝑈

X𝑘 ⊥⊥ 𝑇𝑘|𝜃𝑘(X𝑘)

Moreover,

X𝑘 ⊥⊥ 𝑇𝑘|𝑏(X𝑘) ⇐⇒ 𝜃𝑘(X𝑘) = 𝑓{𝑏(X𝑘)}

for some function 𝑓(·).

Proof. see Theorems 1 and 2 in Rosenbaum and Rubin (1983, p. 44).

Result C.2. For a given treatment assignment mechanism, if

𝑌1𝑘, 𝑌0𝑘 ⊥⊥ 𝑇𝑘|X𝑘, ∀𝑘 ∈ 𝑈

then

𝑌1𝑘, 𝑌0𝑘 ⊥⊥ 𝑇𝑘|𝑏(X𝑘), ∀𝑏(X𝑘)|𝑘 ∈ 𝑈

Proof. see Theorem 3 in Rosenbaum and Rubin (1983, p. 45).

Result C.3. Assuming unconfoundedness of treatment assignments, we have

E(𝑌1|𝑏(x), 𝑈1) − E(𝑌0|𝑏(x), 𝑈0) = E(𝑌1|𝑏(x)) − E(𝑌0|𝑏(x))

Moreover,

E𝑏(x)

{︂
E(𝑌1|𝑏(x), 𝑈1) − E(𝑌0|𝑏(x), 𝑈0)

}︂
= E𝑏(x)

{︂
E(𝑌1|𝑏(x)) − E(𝑌0|X𝑘)

}︂
= E(𝑌1) − E(𝑌1)

for every balancing score 𝑏(x).

Proof. The first part is straightforward, by the definition of unconfoundedness, which holds by
assumption, and by Result C.2. The second part holds by applying iterative expectations.
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