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ABSTRACT

In this work, using computational simulation, unitary structures of nanopillars and nanopil-
lar arrangements were analyzed. The study was carried out using The Object Oriented Micro-
Magnetic Framework The Object Oriented MicroMagnetic Framework (OOMMF) simulator
using Finite Difference Method (FDM) to simulate Ferromagnetic Resonance (FMR) in the
studied systems. The square nickel nanopillars have lateral length 𝐷 = 30 nm and height
𝐿 = 120 nm. The size of the internal cavity in this system was also varied, with values of
𝑑 = 0 nm (solid pillar), 𝑑 = 10 nm and 𝑑 = 20 nm. To study the column arrangements, they
were arranged in a 3x3 matrix. In addition to inheriting the cavity variation characteristics,
each column had an initial distance of 𝑎 − 𝐷 = 5 nm between its neighbors. This distance
was changed to 𝑎−𝐷 = 10 nm, 𝑎−𝐷 = 20 nm and 𝑎−𝐷 = 50 nm to analyze the influence
on the dipole interactions of this system. The 𝑍𝑒𝑒𝑚𝑎𝑛 interaction was considered when an
external magnetic field was placed on the surface. Due to the geometry of this system, the
anisotropy field 𝐻𝐴 was studied for each nanopillar system. The theoretical model for ad-
justing our parameters and analyzing the anisotropy field was the Kittel equations. Main and
secondary peak frequencies were studied for unitary columns to obtain information about the
anisotropy field of the sample. For the primary peaks, compared with works in the literature,
it was noticed that the ferromagnetic resonance response came from the sides of the structure
on the z-axis, in the secondary peaks, the values of 𝐻𝐴 for the perpendicular field have large
divergences according to the model. It was also possible to observe that the adjustment for
the anisotropy field improves the greater the value of 𝑑. Due to the analyzes made for unitary
columns, the secondary peaks for column arrangements were not analyzed. For primary peaks
with the applied perpendicular field, it was observed that the Kittel equation for FMR does
not correctly adjust the values for 𝐻𝐴. In the analysis of parallel fields, we tried to analyze
the influence of neighboring columns on the value of 𝐻𝐴. A model was used considering the
system’s packaging factor. In this model, it was compared when considering the cavity in the
center of the columns and assuming them to be solid columns. From the comparison with
results in the literature, the packing factor that best described the system was the first, as
more dipole effects are added to the system.

Keywords: ferromagnetic resonance; ferromagnetic simulation; ferromagnetism; anisotropy
field.



RESUMO

Neste trabalho foi analisado, por meio de simulação computacional, estruturas unitárias
de nanopilar e arranjos de nanopilares. O estudo foi feito utilizando o simulador OOMMF

utilizando o Método de Diferenças Finitas (MDF) para simular Ressonância Ferromagnética nos
sistemas estudados. Os nanopilares quadrados de Níquel possuem comprimento lateral 𝐷 = 30

nm e altura 𝐿 = 120 nm. Também foi variado o tamanho da cavidade interna neste sistema,
com valores de 𝑑 = 0 nm (pilar sólido), 𝑑 = 10 nm e 𝑑 = 20 nm. Para o estudo dos arranjos de
pilares, estes foram dispostos em uma matriz 3x3. Além de herdar as características de variação
da cavidade, cada pilar possuía uma distância inicial de 𝑎 − 𝐷 = 5 nm entre seus vizinhos.
Esta distância foi alterada para 𝑎−𝐷 = 10 nm, 𝑎−𝐷 = 20 nm e 𝑎−𝐷 = 50 nm para analisar
a influência nas interações dipolares deste sistema. Foi considerado a interação 𝑍𝑒𝑒𝑚𝑎𝑛 ao
incidir um campo magnético externo na superfície. Devido a geometria deste sistema, o campo
de anisotropia 𝐻𝐴 foi estudado para cada sistema de nanopilar. O modelo teórico para ajuste
dos nossos parâmetros e análise do campo de anisotropia foram as equações de Kittel. Foram
estudados para os pilares unitários as frequências de pico principal e secundário, a fim de obter
informações sobre o campo de anisotropia da amostra. Para os picos primários, comparando
com trabalhos da literatura notou-se que a resposta de ressonância ferromagnética vinha
das laterais da estrutura no eixo z, nos picos secundários, os valores de 𝐻𝐴 para campo
perpendicular possuem grandes divergências de acordo com o modelo. Também foi possível
observar que o ajuste para o campo de anisotropia melhora quão maior for 𝑑. Devido as análises
feitas para pilares unitários, não foram analisados os picos secundários para arranjos de pilares.
Para os picos primários com campo perpendicular aplicado, foi observado que as equações de
Kittel para ressonância ferromagnética não ajustam corretamente os valores de 𝐻𝐴. Na análise
dos campos paralelos, procurou-se analisar a influência dos pilares vizinhos no valor de 𝐻𝐴.
Utilizou-se um modelo considerando o fator de empacotamento do sistema. Neste modelo, foi
comparado quando considera-se a cavidade no centro dos pilares e supondo-os pilares sólidos.
A partir de comparação com resultados na literatura, o fator de empacotamento que melhor
descreveu o sistema foi o primeiro, pois é adicionado mais efeitos dipolares ao sistema.

Palavras-chaves: ressonância ferromagnética; simulação ferromagnética; ferromagnetismo;
campo de anisotropia.
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1 INTRODUCTION

The study of nanostructures has been growing, especially in recent years due to the needs
of the technological sector in the construction of each time smaller equipment and the opti-
mization of space inside electronic devices (APPELL, 2002; RUDI; LARSEN; JAKOBSEN, 1998).
Nanotechnology deals with nano-scale (≈ 10−9 m) objects and materials, that are useful in
electronic devices that have applications in many areas, i. e., medicine, science materials, and
physics. The nano characteristic permits the of study various properties because the short
distances permits to reduce the energy lost in the electrons movement or studies in magnetical
proprieties as domain walls and shape anisotropy field for example. In resume, nanomaterials
have key physical characteristics imposed by the nano-objects part of it (BALL, 2001; REICH et

al., 2003).
There are two kinds of nanomaterials, compact materials, and nanodispersions. The first

type includes so-called nanostructured materials (MORIARTY, 2001), i.e., isotropic material in
the macroscopic composition and consisting of attached nanometer-sized units as periodic re-
peating structural elements (GUSEV; REMPEL, 2004). Contrasting to nanostructured materials,
nanodispersions include a homogeneous dispersion medium (vacuum, gas, liquid, or solid) and
nanosized particles dispersed in this medium and isolated from each other. The distance be-
tween the nano-objects in these dispersions can vary over wide limits from below one hundred
nanometers to rather more than fractions of a nanometer (GUBIN, 2009).

The study of nanoparticles has a great scientific interest because they present character-
istics that connect bulk materials and molecules and structures at an atomic level. The term
"cluster", is used to designate small nanoparticles with sizes comparable to 1 nm.

Figure 1 shows that nanorods and nanowires present a quasi-one-dimensional behavior due
to the higher symmetry in one direction (1D) of these nano-objects. These systems present
a principal axis where one dimension is larger in magnitude than the other two dimensions,
all dimensions are in nanoscale. Analyzing the group of two-dimensional confinement objects
(2D) which includes planar structures – nanodisks, thin-film magnetic structures, and magnetic
nanoparticle layers, see Figure 1, it is possible to see that two dimensions are clearly greater
than a third dimension, which is in the nanometer range also. The unique magnetic properties
are usually inherent in the particles with a core size of 2–30 nm.The magnetic properties of
these structures are unique and usually intrinsic in particles with a core size of 2–30 nm. In
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the case of magnetic nanoparticles, this value coincides with the size (or less) of a magnetic
domain in many magnetic bulk materials.

Figure 1 – The classification of structures containing nanoparticles by the shape. 0D are structures which has
high symmetry in their axis, 1D have one axis longer than the other two generating elongated
structures, 2D have one axis smaller than the other two, which generates nanodisc or nanoroll.

Source: GUBIN (2009)

Some applications of nanostructures can be found in medicine (REICH et al., 2003) by using
nanomaterials to perform cell biopsy, besides that, some improvements in the scanning probe
microscopes precision were also made (DAI et al., 1996). The implementations of nanomaterials
also formed the basis for nanoscale tweezers that can rearrange microscopic particles in the
structures (KIM; LIEBER, 1999), furthermore many applications on logic gates (RUECKES et al.,
2000; DERYCKE et al., 2001).

Magnetic nanostructures have been extensively studied by many authors and it is known
that magnetic materials have a high shape correlation with coercivity and remanence. Guerra
et al. in his work with nanoshell array showed the dependence of coercivity and remanence
with the arrangement of structure (isolated nanoshell, chained nanoshell, and hexagonal array
of nanoshell) with the magnetization reversal process that affects the coercivity due to shape
anisotropy (DÁVILA, 2019) and showed that inter-pillar dipolar interaction is the reason for
modification in the coercivity (GUERRA et al., 2021). Those results are also theoretical predicted
in literature by some authors (GUIMARÃES; OLIVEIRA, 1998; REZENDE, 2020; YALÇIN, 2013;
BERTOTTI, 1998).
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Due to the difficulty in getting these materials and the expensive measuring and preparation
equipments, micromagnetic simulation becomes a cheap and efficient way to conduct the
research. The micromagnetic simulation method consists in discretizing the Landau Lifshtz
Gilbert (LLG) equation. This equation is applied to each magnetizing element in a unit cell.
Discretization can be done in two ways, using the FDM and FEM method which works better
for Cubic and Spheroidal surfaces respectively.

One way to analyze the results, in addition to using the hysteresis curves to characterize
the samples, is to analyze the FMR frequency spectrum in each structure. From the analysis
of the field and frequency parameters, it is possible to obtain the arrangement interference in
each of the particles by analyzing the packing factor or comparing the data generated for the
unit pillar with the theoretical result.

ENCINAS-OROPESA et al. studied nickel nanowires dipolar interaction by using FMR and
they found that the dipolar coupling can be characterized by FMR technique and the limit
of isolated nanowire and interacting wire can be found by changing the porosity (ENCINAS-

OROPESA et al., 2001). In other work, DEMAND et al. analyzed Kittel equation with experi-
mental data to obtain the anisotropy field and used the equations from the work of Hernandez
et al. to obtain each magnetic nanowire fabricated packing factor(HERNÁNDEZ; REZENDE;

AZEVEDO, 2008; DEMAND et al., 2002). BAKER et al. suggest a method to simulate FMR for
a thin film of permalloy (BAKER et al., 2017). The method can be replied as done by SILVA
et al. did to study the anisotropy in hollow nanopillars (SILVA; GUERRA; PADRÓN-HERNÁNDEZ,
2021). The results imply the dipole effects due to the inner and outer faces are reverted in the
increase of the uniaxial anisotropy.

Geometry analysis response in some works shows (SILVA; GUERRA; PADRÓN-HERNÁNDEZ,
2021; DEMAND et al., 2002) that sample’s shape is important because it generates an anisotropy
field (𝐻𝐴) opposite to the applied field (𝐻⃗). In addition to the shape, the influence of nearing
structures affects the geometry so analyzing isolated objects or disposed in an array influences
the system dipole response. In structures with one axis great than the others, the effect of
a cavity in the center of each structure must be analyzed because it introduces more dipole
interactions. ESCRIG et al. noted that the increase of radius in a nanowire array decreases its
coercivity (ESCRIG et al., 2008). SILVA et al. also reported that for greater hollows in nanopillar
the anisotropy field increases, causing the coercivity field to increase (SILVA; GUERRA; PADRÓN-

HERNÁNDEZ, 2021).
This dissertation work is described in 5 chapters, Chapter 1 addresses the need to under-
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stand the basic concepts of magnetism, where the ferromagnetic response comes from, and
how we can analyze these results from the analysis of the FMR spectrum. In addition, it also
covers the concepts of micromagnetic simulation and covers examples of these simulations
to obtain the FMR spectrum. Chapter 2 analyzes the equations that serve as a model for
our phenomenological description from basic principles of magnetism as the coherent rotation
model. Furthermore, it provides means to discuss the interaction between the studied column
arrangement based on its packing factor. Chapter 3 details the methodology to make the
structure simulations and how the structures were assembled in the files that are provided to
the simulation package. In addition, the parameters provided for the code are described, as
well as a bash script that was needed to simulate the resonance in the static phase simulation
could be inserted in the dynamic phase, giving rise to resonance. In Chapter 4, the results
obtained by simulation initially for a thin film are analyzed, according to the work in the litera-
ture (BAKER et al., 2017). After analyzing the obtained data and comparing it with the results
of the original paper, the results for singular squared pillars according to the adjustment made
by the Kittel equations are also verified. Finally, we studied the squared NPs array in a 3x3
arrangement to verify the influence of neighbors on the magnetic properties of this system
from the analysis of the packing factor. Chapter 5 concludes all the analysis and shows some
perspectives to better understand the results shown.
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2 FERROMAGNETIC RESONANCE AND SHAPE ANISOTROPY

Micromagnetic studies are motivated by the needing of reducing scales whether for use
in the human body or to remain more physical space for other components in a computer
and other applications. Nowadays technological companies are in search of reducing scales
in their processors. The new generation of chipsets from QualcommTM have transistors of 5
nm inter-distance. These chipsets consume less energy, permitting to have more transistors
in the system electronics and faster processing because reducing distances, reduces the elec-
tron traveling distance, which reduces the energy losses (MOORE, 2020; QUALCOMM, 2021).
Magnetic materials have large applicability. They are useful in technological and biomedical
applications (REICH et al., 2003). In other work, RUDI et al. described that paramagnetic beads
could be used for cell concentration and DNA purification (RUDI; LARSEN; JAKOBSEN, 1998).
Also, another utilization of micromagnetics is the magnetic recording based on properties such
as remanence magnetization (CULLITY; GRAHAM, 2011).

Magnetic materials have a high correlation between shape and magnetical properties as
coercivity and remanence (DÁVILA, 2019; GUERRA et al., 2021), therefore, geometry studies
using different types of ferromagnetic structures are useful and has been of great interest for
material science, physics, chemistry, geology, biology, and medicine (TEHRANI; KIM; YOON,
2014). Ferromagnetic systems present spontaneous magnetization due to parallel alignment of
spins. The ferromagnetic coupling originates from the spins of d-electrons. In recording media,
the objective is to fabricate high-permeability and low-coercivity magnetic materials capable of
operating at reasonably high frequencies, so the searching for materials with these properties
is essential. To obtain those properties, for example, parameters of the studied material must
be adjusted.

Nowadays, the difficulty of carrying out some experimental processes, e.g., lithography, and
the difficulty to find out analytical solutions for many micromagnetic systems because of its
exhausting calculus that can be complicated depending on the geometry. Another difficulting
factor is the resolution of LLG equation which is a partial differential equation and presents an
analytical solution just in a few cases, e.g. single domain rotation for one ellipsoid (STONER;

WOHLFARTH, 1948). The situations mentioned above make the use of micromagnetic simula-
tion essential. Micromagnetic simulations are much cheaper and can be reproduced in com-
puters based on their Random Access Memory (RAM) or Graphical Processing Unit (GPU).
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Simulations can take place using the finite element method FEM or the finite difference method
FDM. These methods have different applicability and depend on the physical parameters of in-
terest. There are many options for simulation packages, as shown in Table 1. Free open-source
packages are the most used to save costs. The main differences in the simulation packages
are in the fact that the research works with dedicated memory to the process with the aid
of GPU or with RAM, using RAM simulators packages makes the calculations up to 8 times
slower compared to GPU simulators (KAKAY; WESTPHAL; HERTEL, 2010).

Table 1 – Micromagnetic simulation softwares

Software Open source Method Source website
OOMMF Free FDM math.nist.gov/oommf/
Nmag Free FEM nmag.soton.ac.uk/nmag/
Magpar Free FEM magnet.atp.tuwien.ac.at/sc holz/magpar
Mumax Free FEM mumax.github.io/
Fidimag Free FDM computationalmodelling.github.io/fidimag/
LLG Simulator Paid FDM llgmicro.home.mindspring/
MicroMagus Paid FDM micromagus.de/

Source: Elaborated by the author (2021)

For FEM, the Nmag is mostly used (FISCHBACHER et al., 2007) since this software doesn’t
use GPU and is free of charge. For FDM, I highlight the OOMMF (DONAHUE; DONAHUE, 1999),
which has applications in FMR simulations and also in the characterization of magnetical
reversion in structures. The main difference between the two methods is their applicability in
geometries. FDM is more accurate for cubic structures while FEM works best for tetrahedral
structures. The magnetization in OOMMF is associated with the center of the cubic cells
while in Nmag is associated with the corners of the tetrahedral (MAHALINGAM; MANIKANDAN;

AROCKIARAJ, 2019). The main advantage of FDM is that the demagnetizing field can be
calculated directly via Fourier transform techniques but when the geometry presents a spherical
geometry, the system is represented spatially as a staircase pattern as it can be seen in Figure
2, i.e., reduced precision for spherical structures. In FEM, spherical and curved geometries are
spatially resolved more accurately, on the other hand, flat geometries (thin film) require more
memory to perform.
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Figure 2 – (left) Sphere discretized by FDM, (right) Sphere discretized by FEM.

Source: BOARDMAN (2005)

2.1 MICROMAGNETISM

To understand the dynamics of magnetization it is necessary to consider the interaction
energy between a magnetic moment 𝑚⃗ and magnetic field 𝐵⃗, as described in the literature
(GUIMARÃES; OLIVEIRA, 1998; REZENDE, 2020; KRONMÜLLER; PARKIN, 2007):

𝑈𝑖 = −𝑚⃗𝑖 · 𝐵⃗, (2.1)

where the magnetic moment can be defined by:

𝑚⃗𝑖 = −𝑔𝜇𝐵𝐽. (2.2)

Equation 2.1 means that the minimum energy is obtained for 𝑚⃗𝑖 and 𝐵⃗ aligned, while the
maximum will happen if the same vectors are anti-parallel. Equation 2.2 is the definition of the
magnetic moment that takes into account the total angular momentum ℎ̄𝐽 , which is the sum
of orbital ℎ̄𝐿⃗ and spin ℎ̄𝑆⃗ angular momenta (SAKURAI; COMMINS, 1995). The Bohr magneton
𝜇𝐵 and spectroscopic splitting factor 𝑔 are also included in its definition. If an external field is
applied to a magnetic sample, the moments experience a torque:

𝜏⃗ = 𝑚⃗𝑖 × 𝐵⃗, (2.3)

there is a correlation between magnetization and applied field, where the greater the angle
between the vectors, the larger the torque experienced by the magnetization. From Newton’s
2nd law of motion, it’s known that torque is generated by the derivative of angular momentum
in time:

𝑑(ℎ̄𝐽)
𝑑𝑡

= 𝜏⃗ = 𝑚⃗𝑖 × 𝐵⃗, (2.4)
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substituting 2.2 in 2.4 is found:

𝑑𝑚⃗𝑖

𝑑𝑡
= −𝛾𝑚⃗𝑖 × 𝐵⃗, (2.5)

where 𝛾 = 𝑔𝜇𝐵

ℎ̄
is the gyromagnetic ratio. As it is easier to work with macroscopic quantities,

it is defined the magnetization vector, which is the magnetic moment per unit of volume:

𝑀⃗ = 1
𝑉

∑︁
𝑖

𝑚⃗𝑖. (2.6)

After analyzing the contribution of each cell, the Equation 2.4 can be written as:

𝑑𝑀⃗

𝑑𝑡
= −𝛾𝑀⃗ × 𝐵⃗, (2.7)

using the relation 𝐵⃗ = 𝜇0(𝐻⃗ + 𝑀⃗) in the SI, where 𝐻⃗ is the magnetic field strength and 𝜇0

the magnetic permeability of the vacuum, it becomes to:

𝑑𝑀⃗

𝑑𝑡
= −𝛾𝜇0𝑀⃗ × (𝐻⃗ + 𝑀⃗),

since, the second term of the right side cancels itself because they are parallel (𝑀⃗ × 𝑀⃗ = 0),
we have:

𝑑𝑀⃗

𝑑𝑡
= −𝛾𝜇0𝑀⃗ × 𝐻⃗. (2.8)

This result is known as the Landau-Lifshtz equation and describes the change in magnetization
over time in the absence of damping (LANDAU; LIFSHITZ, 1992).

To create a more accurate system, it is necessary to make the system’s energy decrease over
time. Reproducing the work of Gilbert and replacing the previous field for 𝐻⃗ and a damping

field depending on magnetization, so that over time the system reaches equilibrium (GILBERT,
2004):

𝐻⃗ → 𝐻⃗ − 𝛼

𝛾𝜇0|𝑀⃗ |
𝑑𝑀⃗

𝑑𝑡
, (2.9)

where 𝛼 is the Gilbert damping constant and |𝑀⃗ | = 𝑀𝑆 is the saturation magnetization.
Substituting 2.9 into 2.8 we find:

𝑑𝑀⃗

𝑑𝑡
= −𝛾𝜇0𝑀⃗ × 𝐻⃗ + 𝛼

𝑀𝑆

𝑀⃗ × 𝑑𝑀⃗

𝑑𝑡
. (2.10)

To remove the dependence on the magnetization variation 𝑑𝑀⃗
𝑑𝑡

in Equation 2.10, it is used the
Equation 2.8, to get:

𝑑𝑀⃗

𝑑𝑡
= −𝛾𝜇0𝑀⃗ × 𝐻⃗ + 𝛼

𝑀𝑆

𝑀⃗ × 𝑀⃗ × 𝐻⃗. (2.11)
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Figure 3 – Torque components exerted on the magnetization 𝑀⃗ by rotational field 𝐻⃗ (left). Motion of 𝑀⃗ for
constant 𝐻⃗ using damping constant 𝛼 (right).

  

Source: YALÇIN (2013)

Both Expressions 2.10 and 2.11 are the Landau-Lifshtz-Gilbert equation, but in Equation 2.10,
the precession terms are uncoupled. This equation shows that the system loses energy until it
reaches the equilibrium state, where 𝑀⃗ is parallel to 𝐻⃗, as shown in Figure 3.

Micromagnetics is based on the idea of an effective field 𝐻⃗ acting on the macroscopic local
magnetization, defined as the negative variational derivative of the total Gibbs’ free energy,
𝐺, from the first law of thermodynamics (KARDAR, 2007), where S is the entropy, and T the
temperature of the system:

𝑑𝐺 = −𝑆𝑑𝑇 − 𝐵⃗ · 𝑑𝑀⃗. (2.12)

Considering the magnetic field from inside of structure, 𝐵⃗ = 𝜇0(𝐻⃗ + 𝑀⃗), the Equation
2.12 can be written, considering 𝑚⃗ = 𝑀⃗

𝑀𝑆
to be the normalized magnetization and fixing the

temperature then consider the effective field to be:

𝐻⃗ = − 1
𝜇0𝑀𝑆

𝛿𝐺

𝛿𝑚⃗
.

For the simulations we considered the exchange energy term, since it is a property each
ferromagnetic material, the demagnetizing term to account for the geometry structure, and
the Zeeman energy for the effect of applied field:

𝐺 = 𝐸𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + 𝐸𝑑𝑒𝑚𝑎𝑔 + 𝐸𝑍𝑒𝑒𝑚𝑎𝑛. (2.13)
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Figure 4 – Components of the external field 𝐻 in the coordinates of the magnetization 𝑀 .
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Source: Elaborated by the author (2021)

2.2 FERROMAGNETIC RESSONANCE

Almost every parameter of a ferromagnet can be obtained using ferromagnetic resonance
(YALÇIN, 2013). The spectroscopic splitting factor, anisotropy field, symmetry axis, and reso-
nance frequency could be obtainable from FMR spectra. By using the Equations 2.5 and 2.6,
we can obtain the Equation 2.8, which describes the magnetization behavior in a non-damping
medium. Using the spherical coordinate system (ARFKEN; WEBER, 1999) for the magnetization
and external field (Figure 4) and writing the 𝐻⃗ field components in the 𝑀⃗ system, it is found:

𝐻⃗𝑟 = 𝐻𝑥 sin 𝜃 cos 𝜑𝑥̂ + 𝐻𝑦 sin 𝜃 sin 𝜑𝑦 + 𝐻𝑧 cos 𝜃𝑧, (2.14)

𝐻⃗𝜃 = 𝐻𝑥 cos 𝜃 cos 𝜑𝑥̂ + 𝐻𝑦 cos 𝜃 sin 𝜑𝑦 −𝐻𝑧 sin 𝜃𝑧, (2.15)

𝐻⃗𝜑 = −𝐻𝑥 sin 𝜑𝑥̂ + 𝐻𝑦 cos 𝜑𝑦. (2.16)

Using the Equation 2.8 it is found:⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑀̇𝑥

𝑀̇𝑦

𝑀̇𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = −𝛾

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝑖̂ 𝑗̂ 𝑘

𝑀𝑥 𝑀𝑦 𝑀𝑧

𝐻𝑥 𝐻𝑦 𝐻𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (2.17)
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Using 𝑀̇𝑖 = 𝑑𝑀𝑖

𝑑𝑡
, Equation 2.17 can be rewritten as:

𝑀̇𝑥 = −𝛾(𝑀𝑦𝐻𝑧 −𝑀𝑧𝐻𝑦),

𝑀̇𝑦 = −𝛾(𝑀𝑧𝐻𝑥 −𝑀𝑥𝐻𝑧),

𝑀̇𝑧 = −𝛾(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥).

(2.18)

Writing 𝑀⃗ in spherical coordinates and remembering that |𝑀 | is constant, we obtain:

𝑟̇ = 0, (2.19)

𝜃 = 𝛾(𝐻𝑦 cos 𝜑−𝐻𝑥 sin 𝜑) = 𝛾𝐻𝜑, (2.20)

𝜑̇ = 𝛾

𝑠𝑖𝑛𝜃 cos 𝜑
(𝐻𝑧𝑠𝑖𝑛𝜃 cos 𝜑−𝐻𝑥𝑐𝑜𝑠𝜃 −𝐻𝜑 sin 𝜑 cos 𝜃) = − 𝛾

𝑠𝑖𝑛𝜃
𝐻𝜃. (2.21)

Now looking at the Gibbs free energy function divided by volume 𝑔(𝑀, 𝑇 ), it can be written:

𝑑𝑔 = 𝜕𝑔

𝜕𝑀
𝑑𝑀 + 𝜕𝑔

𝜕𝑇
𝑑𝑇,

where ( 𝜕𝑔
𝜕𝑀

)𝑇 = −𝐻𝑀 which is the field along the magnetization direction. The magnetization
has a dependence on 𝑀(𝜃, 𝜑) due to the coherent rotation model adopted. So the Gibbs Energy
can be written as 𝑔(𝑀(𝜃, 𝜑), 𝑇 ). By using the chain rule for partial derivative, we find:

𝜕𝑔

𝜕𝜃
= 𝜕2𝑔

𝜕𝜃2 𝛿𝜑 + 𝜕2𝑔

𝜕𝜃𝜕𝜑
𝛿𝜑,

𝜕𝑔

𝜕𝜑
= 𝜕2𝑔

𝜕𝜑2 𝛿𝜑 + 𝜕2𝑔

𝜕𝜃𝜕𝜑
𝛿𝜃.

(2.22)

In those equations it was used 𝜕𝑔
𝜕𝜑

= 𝑔𝜑 and 𝜕𝑔
𝜕𝜃

= 𝑔𝜃. Using the relations of spherical coordi-
nates, it can be written 𝑔𝜃

𝑀
= −𝐻𝜃 and 𝑔𝜑

𝑀𝑠𝑖𝑛𝜑
= −𝐻𝜑. In case of FMR, the magnetic moments

vary little as a function of the angles 𝜃 and 𝜑 when the field’s application angle is changed
(Subsection 2.2.1). Assuming that, it can be written 𝜃 → 𝛿𝜃 and 𝜑 → 𝛿𝜑 in Equations 2.20
and 2.21 and then it can be conclude that:

𝑑(𝛿𝜃)
𝑑𝑡

= 𝛾𝐻𝜑,

𝑑(𝛿𝜑)
𝑑𝑡

= −𝛾
𝐻𝜃

𝑠𝑖𝑛𝜃
.

(2.23)

In Equation 2.23 it is possible to put in the right side, the Equation 2.22 to find a system of
coupled equations. To solve this problem, harmonic solutions are proposed in literature where
𝜃 and 𝜑 have same frequency due to the coherent rotation.

𝛿𝜃 = 𝐴𝑒𝑖𝜔𝑡,

𝛿𝜑 = 𝐵𝑒𝑖𝜔𝑡.
(2.24)
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Substituting Equation 2.24 in 2.23, we find:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐵(𝑀𝑖𝜔 sin 𝜃

𝛾
)− 𝑔𝜃𝜑 = 𝐴𝑔𝜃𝜃,

𝐴(𝑀𝑖𝜔 sin 𝜃

𝛾
) + 𝑔𝜃𝜑 = −𝐵𝑔𝜑𝜑.

Solving the system of equations above, it can be found:

𝜔 = 𝛾

𝑀𝑠𝑖𝑛𝜃

√︁
𝑔𝜃𝜃𝑔𝜑𝜑 − 𝑔2

𝜃𝜑. (2.25)

Considering a uniaxial sample, the exchange therm of Equation 2.13 is null because in the
resonance all momenta are coupled. For the other contributions of the energy, it can be shown
that:

𝐺𝑑𝑒𝑚𝑎𝑔 = −𝑉

2 𝑀⃗𝑆

←→
𝑁 𝑀⃗𝑆, (2.26)

𝐺𝑍𝑒𝑒𝑚𝑎𝑛 = −𝑀⃗ · 𝐻⃗𝑉. (2.27)

Equations 2.26 and 2.27 can be written divided by 𝑉 to be used in Equation 2.25. The Equation
2.26 represents how the geometry affects the energetic equilibrium. The shape tensor ←→𝑁 can
be diagonalized by using of the demagnetizing factors1 and their values for high symmetry
geometries can be found in Figure 6 in SI and the magnetization must be written in spherical
coordinates. Executing this last procedure, it can be found:

𝑔𝑑𝑒𝑚𝑎𝑔 = −𝑀2
𝑆

2

(︂
sin 𝜃 cos 𝜑 sin 𝜃 sin 𝜑 cos 𝜃

)︂
⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑁𝑥 0 0

0 𝑁𝑦 0

0 0 𝑁𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
sin 𝜃 cos 𝜑

sin 𝜃 sin 𝜑

cos 𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (2.28)

In this work, it is studied isolated NPs in Figure 11 and NPs Array in Figure 12 layed in x
direction, so putting in the shape tensor 𝑁𝑥 = 0, 𝑁𝑦 = 1

2 and 𝑁𝑧 = 1
2 approximating for a

cylinder as the parameters of Figure 6. Solving the Equation 2.28 it can be found:

𝑔𝑑𝑒𝑚𝑎𝑔 = −𝑀2
𝑆

2 (sin2 𝜃 sin2 𝜑

2 + cos2 𝜃

2 ). (2.29)

Rewriting the above result as a function of the uniaxial anisotropy constant, where 𝐾1 = 𝐻𝐴𝑀𝑠

2 ,
where 𝐻𝐴 is the shape anisotropy field, which represents the hypothetical field that would be
able to set the magnetization perpendicular to the easy axis (KOOLS; MOREL, 2004; YALÇIN,
2013). Equation 2.29 can be written as:

𝑔𝑑𝑒𝑚𝑎𝑔 = 𝐻𝐴𝑀𝑆

2 (𝑠𝑖𝑛2𝜃 sin2 𝜑 + cos2 𝜃). (2.30)



27

Figure 5 – Axes-to-sample setup for FMR frequency calculation.
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Source: Elaborated by the author (2021)

Considering Figure 5, which represents how the 𝐻 field was applied to the sample. Looking
at the figure above, the Equation 2.27 can be determined in spherical coordinates:

𝑔𝑍𝑒𝑒𝑚𝑎𝑛 = −𝑀𝐻(𝑠𝑖𝑛𝜃 cos 𝜑 + sin 𝜃 sin 𝜑 + cos 𝜃)(𝑐𝑜𝑠𝜑𝐻 sin 𝜃𝐻 + sin 𝜑𝐻 sin 𝜃𝐻 + cos 𝜃𝐻).

(2.31)
From Figure 5 it can be found that 𝜃𝐻 = 𝜋

2 is the equilibrium angle and after some algebra,
the result can be found:

𝑔𝑍𝑒𝑒𝑚𝑎𝑛 = −𝑀𝐻 cos(𝜑− 𝜑𝐻). (2.32)

Since the Equations 2.30 and 2.31 are the only remaining energy terms, the Gibbs function
divided by volume can be written as:

𝑔 = 𝑀𝐻𝐴

2 𝑠𝑖𝑛2𝜑−𝑀𝐻 cos(𝜑− 𝜑𝐻). (2.33)

Now, using 𝑔𝜑 and 𝑔𝜃 from the Equation 2.33, from the magnetic field conditions 𝐻 in
equilibrium, it can be found that 𝑔𝜃 = 0 and 𝑔𝜑 = 0 therefore:

𝐻𝐴 sin(2𝜑) + 2𝐻𝑠𝑖𝑛(𝜑− 𝜑𝐻) = 0. (2.34)

The Equation 2.34 can be used to define the equilibrium condition for 𝜑𝐻 . Derivating this
equation again to achieve the components 𝑔𝜃𝜃, 𝑔𝜑𝜑 and 𝑔𝜃𝜑 using the condition of 𝜃𝐻 = 𝜋

2 it
1 𝑁𝑥 + 𝑁𝑦 + 𝑁𝑧 = 1 (𝑆𝐼)
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Figure 6 – Demagnetzation factors for FMR frequency (in SI) for simple forms and the arrow indicates the
direction of applied field.
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can be obtained:

𝑔𝜃𝜃 = 𝑀𝐻𝐴𝑐𝑜𝑠2𝜑 + 𝑀𝐻𝑐𝑜𝑠(𝜑− 𝜑𝐻), (2.35)

𝑔𝜃𝜑 = 0, (2.36)

𝑔𝜑𝜑 = 𝑀𝐻𝐴𝑐𝑜𝑠(2𝜑) + 𝑀𝐻𝑐𝑜𝑠(𝜑− 𝜑𝐻). (2.37)

Now finally setting the Equations 2.35 and 2.37 into Equation 2.26, and using the equilibrium
condition, we have:

𝜔2

𝛾2 = (𝐻𝐴 cos(2𝜑) + 𝐻 cos(𝜑− 𝜑𝐻))(𝐻𝐴 cos2 𝜑 + 𝐻𝑐𝑜𝑠(𝜑− 𝜑𝐻)). (2.38)

The above result was first deduced by Charles Kittel (KITTEL, 1947) and shows that FMR
frequencies depends on the sample format, the material used and the applied field. Figure 6
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indicates how the format influences the frequency in simple forms. In the case of a field parallel
to the sample, setting 𝜑 = 0 and 𝜑𝐻 = 0 it can be found:

𝜔

𝛾 ‖
= 𝐻𝐴 + 𝐻. (2.39)

For the perpendicular case, Equation 2.34 can be used to find that the equilibrium condition is
𝑠𝑖𝑛 𝜑 = 𝐻

𝐻𝐴
, where is known that 𝐻 < 𝐻𝐴 because −1 < 𝑠𝑖𝑛 𝜑 < 1. Applying this condition

in Equation 2.38:

𝜔2

𝛾2 = 𝐻𝐴(1− 2 𝐻

𝐻𝐴

+ 𝐻2

𝐻𝐴

)(𝐻𝐴(1− 𝐻2

𝐻2
𝐴

) + 𝐻2

𝐻𝐴

)

Equation 2.39 can be easily solved to find:

𝜔

𝛾 ⊥
=

√︁
𝐻2

𝐴 −𝐻2 𝑖𝑓 𝐻 < 𝐻𝐴. (2.40)

The other condition (𝐻 > 𝐻𝐴) cannot be used due to function 𝑠𝑖𝑛 𝜑 restriction. For the last
case using 𝜑 = 𝜑𝐻 = 𝜋

2 to get:

𝜔

𝛾 ⊥
=

√︁
𝐻(𝐻 −𝐻𝐴) 𝑖𝑓 𝐻 > 𝐻𝐴. (2.41)

Kittel’s equations have many applications in the literature. For example, in the work of Dao
et al. which calculated the dynamic susceptibility of patterned cobalt and Permalloy pillars
with a diameter of 50 nm and different pillar heights using micromagnetic simulations. The
resonance modes obtained from these simulations were compared to the results obtained from
an analytical solution (Equation 2.38) for spheroids (DAO et al., 2004). After that, Neudecker
et al. propose a experimental study comparing frequency, field and time domain ferromagnetic
resonance in four methods. This work used the equations described above to adjust the exper-
imental data and compare the results (NEUDECKER et al., 2006). Curiale et al. investigate the
dynamic response for magnetic nanoparticles by using Kittel’s equation and calculating the
magnetic susceptibilty (CURIALE et al., 2008). Raposo et al. experimentally investigate the FMR
in low interacting permalloy nanowire array and used the ferromagnetic resonance equations
to adjust his obtained data (RAPOSO et al., 2016). Yang et al. studied the static and dynamic
magnetization of gradient FeNi alloy nanowire by considering Kittel’s equation. In their study
was considered a hexagonal array of nanowires and the analyzed parameters considered was
the gradient FeNi and homogeneous FeNi alloy (YANG et al., 2016).

Similar treatments of simulated FMR were obtained by Wagner et al.. Using MuMax3 they
found the absorption spectra of permalloy and the excitation response from the sample. The
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work was performed by a mimic of the experimental conditions and after that, they proceed
to qualitatively study weakly nonlinear ferromagnetic resonance (WAGNER et al., 2021). Saave-
dra et al. studied the dynamic susceptibility (similar to Dao et al) of modulated permalloy
nanowires of 1-𝜇m long and 50 nm diameter using micromagnetic simulations. They investi-
gate how the modulus changes the nanowire susceptibility by analyzing the resonance modes
and the resonance frequencies (SAAVEDRA et al., 2019). Lenz et al. investigates the magneti-
zation dynamics of individual Fe-filled multiwall carbon-nanotubes, grown by chemical vapor
deposition and compared to their micromagnetic simulations. In their simulated analysis by
using Kittel’s equation, they found similar results to Figure 7 where the left side of the blue
line to the perpendicular field was attributed to unaligned modes, i.e., the external field is not
yet strong enough to pull the magnetization in its direction (LENZ et al., 2019).

Figure 7 – Frequency versus external magnetic field corresponding to a magnetic system with uniaxial sym-
metry.

Source: Elaborated by the author (2021)

Equation 2.39, means the parallel applied field (red line) and Equations 2.40 and 2.41 the
perpendicular applied field (blue line) in relation to the principal axis, which generates Figure
7. Piraux analyses different results in literature for experimental and simulated nanowire array
variating their porosity and showed the results of parallel and perpendicular field switching
their positions. His analysis was performed by using the equations for parallel (Equation 2.39)
and perpendicular (Equations 2.40 and 2.41) field (PIRAUX, 2020).



31

2.2.1 Micromagnetic simulation in FMR

Previously, it was shown that the LLG equation is not easily solved for a huge number
of systems. As a direct consequence, the complexity of common problems requires the use of
micromagnetic simulation packages. According to BAKER et al., there are three methods to
do the FMR micromagnetic simulation (BAKER et al., 2017):

1. For every frequency 𝜔, the micromagnetic simulator computes the time evolution of the
system’s magnetization after the transient dynamics have been damped and steady mag-
netization precession obtained. An application of a time-dependent periodic sinusoidal
magnetic microwave field of fixed frequency 𝜔 is needed to determine the magnetiza-
tion precession amplitude in response to the system. Just a micromagnetic simulation
software that supports a time-dependent external magnetic field can be used in this case.

2. Ringdown method (MCMICHAEL; STILES, 2005): this method consists of perturbing the
magnetic system from its equilibrium state using a short-duration and sufficiently soft
excitation, simulation, after those procedures, the magnetization dynamics is recorded.
The results from this first step are the variating time magnetization and performing the
Fourier transform in time it is possible to obtain the resonance frequencies, respectively
on the recorded data. This method permits to determine efficiently the eigenmodes of
the system and can be done using a script coupled with the OOMMF package.

3. Eigenvalue method (D’AQUINO et al., 2009): rather than simulating the time evolution
of the system’s magnetization as in methods 1 or 2, the problem is represented as an
eigenvalue problem, whose solutions provide the eigenvalues and the eigenvectors of the
system which are the frequencies and the mode shape respectively. This method requires
specific software that is not widely available.

The OOMMF package permits to the use of the second alternative. After running the
program, the magnetization data varying in time are taken, Figure 8a), and an FFT must be
performed, as Figure 8b) to obtain the maximum resonance frequency for each external field
applied. Subsequently, analyzing the frequency dependence with the field, to find 𝐻𝐴 and the
other parameters of Equation 2.39 for a parallel field and Equations 2.40 and 2.41 in case of a
perpendicular field. To acquire the data, some steps must be done to do the standard problem
and have some parameters to compare:
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Figure 8 – (a) Magnetization varying in time for Ni solid squared pillar and his (b) FFT curve.

  

Source: Elaborated by the author (2021)

• The initial magnetization configuration is obtained in the relaxation stage by simulating
the standard problem (BAKER et al., 2017). The relaxation stage is used to bring the
system into a precise. Starting from an initial uniform magnetization in the direction
perpendicular to the principal axis, the system moves to a “relaxed” state in an attempt
to reach a (local) energy minimum due to the high value of the damping coefficient. The
relaxed state is used as the initial configuration for the dynamical stage. This process is
used in all the geometry which is divided and each cell responds to the LLG equation
(Figure 9), paying attention that each cell has a size smaller than the material exchange
length. In general, the exchange length, Equation 2.42, is the important scale when
the dipolar magnetostatic interaction dominates over the magnetocrystalline anisotropy
(FREI; SHTRIKMAN; TREVES, 1957), which is the case of soft magnetic materials (ABO

et al., 2013).

𝑙𝑒𝑥 =
√︃

2𝐴

𝜇0𝑀𝑆
2 . (2.42)

• Besides being reproducible, the field must be sufficiently large to disturb the magneti-
zation dynamics, but small enough so the system remains in the linear regime. This is
achieved by changing the direction of the bias field, as a simple practical approach that
does not require time-dependent applied fields. Foreseen that most of the simulations
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tools, even the ones that do not support variating time external fields, are able to excite
the system in this manner because the stages of magnetization (relaxation and dynamic)
have the information of the variation in time.

• Computation time: In micromagnetic simulations, the computational time depends mainly
on the number of cells in the discretized problem, which depends on the mesh size, ge-
ometry, and the adopted procedure to magnetization dynamic evolution (Evolver).

• Verification of results: Ideally, results should be verified against other methods of ob-
taining them. In this work, the results are verified with the paper (BAKER et al., 2017)
that guarantees us confidence in the outcome.

Figure 9 – Representation of discretization of a magnetic sample in a mesh of individual cells of volume
Δ𝑉 = Δ𝑥Δ𝑦Δ𝑧 (left). Each cell has uniform magnetization 𝑀⃗(right).
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2.3 SHAPE ANISOTROPY IN MAGNETIC STRUCTURES

In this section, we study how the shape anisotropy field works for different structures.
As Kools et al. and Yalccin et al. already explained, the anisotropy field is a hypothetical
field capable to align the magnetization perpendicular to the easy axis (KOOLS; MOREL, 2004;
YALÇIN, 2013). For different structures, the shape anisotropy field can be calculated differently
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from the procedure in Section 2.2. Investigations done by Encinas-Oropesa et al. showed that
𝐻𝐴 can be written as (ENCINAS-OROPESA et al., 2001):

𝐻𝐴 = 2𝜋𝑀𝑆(1− 3𝑃 ) in (Centimetre–Gram–Second system of units (CGS)), (2.43)

where 𝑃 represents packing factor, which can be defined as:

𝑃 = Area of array component
Area of array region

According to Encinas-Oropesa et al., the Equation 2.43 reaches the limit of singular nanowire
when 𝑃 → 0 and when the array approaches to the point of looking like a continuous film
𝑃 → 1 (ENCINAS-OROPESA et al., 2001). The same authors have taken into consideration
the dependence of the magnetic properties on the packing factor 𝑃 . For 𝑃 < 1

3 , the system
presents a unidirectional magnetic anisotropy (parallel to the wire axis) changing to the ease
plane magnetic anisotropy (perpendicular to the wires) for 𝑃 > 1

3 .

Figure 10 – Coordinate system for an array of nanowires.

Source: YALÇIN (2013)

Looking Figure 10 and using the definition of the packing factor, it can be easily used the
area of one triangular region of the hexagonal array which is 𝐴𝑟𝑒𝑔𝑖𝑜𝑛 =

√
3𝑟2

4 where
√

3
4 comes
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out from one side of the equilateral triangle formed by 3 pillars (YALÇIN, 2013). After using
all these principles, it can be found:

𝑃 = 𝜋𝑑2

2
√

3𝑟2
. (2.44)

In this work, we simulate the squared NPs array. Examining this system, because of different
geometry, it is not possible to use Equations 2.43 and 2.44. It is necessary to find another
relation for the packing factor. For generic kind of structure, the adopted procedure was related
by Hernandez et al. by using the generalized equation (HERNÁNDEZ; REZENDE; AZEVEDO,
2008):

𝐻𝐴 = 2𝜋𝑀𝑆(𝛼− 𝛽𝑃 ) in (CGS). (2.45)

In Equation 2.45, 𝛼 and 𝛽 are phenomenological constants that can be determined for any
structure by graphical adjustment. For the NPs array the area can be simplified because of its
geometry and it can be used to determine the constants of Equation 2.45:

𝑃 = 𝐷2

𝑎2 , (2.46)

𝑃 * = (𝐷 − 𝑑)2

𝑎2 , (2.47)

where Equation 2.46 is used to analyze the influence of squared NPs doesn’t taking into
account the hollowed space, in Equation 2.47 the hollowed space are considered. For these
two models, there are some differences to be observed. Considering solid pillar array, there
is dipolar interaction between each squared NP’s. When the hollow space is considered more
dipolar interaction are added due to the inner edges.

For the pillar array systems, 𝐷 represents the side distance of one squared pillar and 𝑎

represents the center to center distance in Equation 2.46 this distance is described in the
literature as very important because it alters the magnetic response of the system, due to the
alteration of the packing factor 𝑃 (FUENTES et al., 2017). The only difference for Equation
2.47 is that it takes into account the effects of the hole in structure centers. As it can be
seen in literature, in this kind of structure, a hole in the center changes the magnetization
dynamics (GUERRA et al., 2021). In our approximation using Equation 2.45 𝛼 ̸= 1 due to the
pillar height 𝐿 are not much bigger than 𝐷. In our studies, 𝐿 = 120 𝑛𝑚 and 𝐷 = 30 𝑛𝑚.
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3 METHODOLOGY

The methodology, was based on Baker et al procedure for standard model simulation of
FMR (BAKER et al., 2017), which was described in Section 2.2.1. In this dissertation, different
types of squared NPs with greater axis length were considered 𝐿 = 120 nm. The analysis
starting point was considering the isolated kind with side dimension of 30 nm. This singular
NP was simulated with no cavity, see Figure 11a), hollowed with 10 nm, see Figure 11b), and
20 nm, see Figure 11c), in this work (SILVA; GUERRA; PADRÓN-HERNÁNDEZ, 2021).

Figure 11 – Definition of NPs a) solid and hollow with b) d = 10 nm and c) d = 20 nm.
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After the isolated NP, the next step was to simulate nanopillar arrays. The simulation was
done varying its cavity, as done in the previous example (Figure 11), but now varying either
the distance between each pillar (Figure 12), which changed the dipolar interaction.

In all the FMR simulations, the parameters were: 𝛾 = 2.211 × 105 mA−1s−1 and 𝛼 = 1

in the equilibrium condition and 𝛼 = 0.008 in the dynamical phase. These parameters can be
found from Equation 2.11. The material chosen for the procedures was Nickel because it has
a small magnetocrystalline anisotropy. Thus, the magnetic response must be dominated by
the shape anisotropy(EAGLETON; SEARSON, 2004). In this case, the saturation magnetization
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Figure 12 – Geometry of 3x3 nanopillar array.
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is 𝑀𝑆 = 490 kA/m, and for the exchange stiffness constant, 𝐴 = 9× 10−12 J/m. The volume
of each cubic cell from the mesh was 5× 5× 5 nm3, so each edge of the cell is 5 nm, which is
less than the value of Ni exchange length 𝑙𝑒𝑥 ≈ 7.72 nm. This value can be calculated using
Equation 2.47.

The system came to energetic equilibrium under a static magnetic field acting, with 𝛼 = 1.
During the relaxation process, the field applied had an angle of 88.8∘ in the y-direction. This
process remained for 5 ns, then the dynamic process was started, with 𝛼 = 0.008 and an
angle of 90∘ for the rest of the simulation (20 ns). The external field was applied from 20 to
400 𝑘𝐴/𝑚 and every magnetic response was recorded in an OpenDocument Text File format
(ODT) file and later post-processed by using FFT and fit adjustments based on Encinas-
Oropesa et al (ENCINAS-OROPESA et al., 2001). To calculate all the simulation in the present
work it was used a Central Processing Unit (CPU) Intel(R) Core(TM) i5-7200U CPU @ 2.50
GHz with 8 GB of RAM.
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3.1 OBJECT ORIENTED MICROMAGNETIC FRAMEWORK (OOMMF)

The OOMMF package, is a micromagnetic simulator developed by National Institute of
Standards and Technology (NIST) (DONAHUE; DONAHUE, 1999). Its code, was written in
C++ (STROUSTRUP, 2000) and TCL/TK (OUSTERHOUT; JONES, 2009). It can be used in
many Operational System (OS) such as: Unix, Windows NT (64 bits) and Windows 9x (32
bits). It was not structured in a single program, but a collection that are useful depending on
the simulation applicability. Each program works in specified tasks as part of a micromagnetic
simulation system and can be chosen in Graphical User Interface (GUI) or by specific commands
using the Terminal.

Figure 13 – OOMMF Graphical User Interface launcher.
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An advantage of this modular architecture is that each program can be improved or replaced
without having to redesign the system as a whole. The Oxs tool is mainly written in C++ and
the other tools besides GUI are written in TCL/TK. The code can be modified at 3 different
levels:

• At the first level, individual programs interact through defined protocols over a network
device. They can be connected in different procedures from the user interface GUI, as
seen in Figure 13.

• The secondary level of modification is through the use of the TCL/TK script. Some
modules allow TCL/TK scripts to be imported and run and high-level scripts are relatively
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easy to modify or replace, see Figure 16.

• At the last level, the C++ code itself can be modified as seen in Figures 14 and 15.

Oxs (OOMMF eXtensible Solver) is the extensible micromagnetic calculation engine, effi-
cient of solving problems written in a three-dimensional mesh of rectangular cells that contain
the three-dimensional magnetization spin. There are two interfaces assigned to Oxs: the inter-
active interface (Oxsii), in Figure 13, which can be controlled through a GUI, and the batch
mode (Boxsi), which is used via the Terminal command line, which is "apt" for using shell
scripts.

The problem definition in Oxs is achieved from input files in ".MIF" format. A simulation in
Oxs is done as a collection of Oxs_Ext entry parameters (Oxs extensions). These parameters
are defined through specific blocks in the input Memory Initialization File (MIF) file. The
Oxs_Ext parameters available in OOMMF can be organized into Atlases, Grids, Energies,
Evolvers, Drivers, Scalar Field Objects, Vector Field Objects, and glsMIF Support Classes:

• Atlases: The simulation geometry is specified in Oxs through the atlas, which divides the
domain into one or more separated subsets called regions. The available atlas types are
Oxs_BoxAtlas, Oxs_ImageAtlas, Oxs_MultiAtlas, Oxs_ScriptAtlas, and Oxs_EllipsoidAtlas.
The most used atlas is Oxs_BoxAtlas for simple rectangular geometries. Oxs_ImageAtlas
is used to input geometries through images and is limited to the case of two dimensions.
In Oxs_ScriptAtlas, the geometry is defined using TCL scripts.

• Meshes: Simulation discretization is defined. There must be only one mesh declared by
the MIF file. The only default mesh available is the Oxs_RectangularMesh. This is the
reason to call OOMMF of a FDM simulator.

• Energies: In this part, the energy terms of the simulation are defined. Energy terms
must be declared separately in a specific block, independently, i.e., those values are not
allowed to be declared inside another Oxs_Ext object. The number of energy terms that
can be declared within a MIF file is unlimited. In OOMMF, Magnetocrystalline Energy,
Exchange Energy, Magnetostatic Energy, and Zeeman Energy terms are available.

• Evolvers: They are responsible for updating the magnetization configuration from one
iteration to the next. There are two types of Evolvers; Time evolvers, to study the
dynamics of LLG equation, and minimization evolvers, which locate local minima on
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the energy surface using straight-line minimization techniques. Evolvers are controlled
by Drivers and must match the appropriate Driver type, e.g. Weather Evolvers must be
linked with Weather Drivers.

• Drivers: It was seen that Evolvers moves the simulation in individual steps forwardly, the
Drivers coordinate Evolver’s action in the simulation entirely, by grouping the iterations
into tasks, steps, and runs. Tasks are the first level of iterations completed without in-
fluencing the user interface response. Steps are made after one cell interacts with the
neighbor in the mesh governed by the glsLLG equation described in the MIF archive; in
particular, there is no anticipation for the problem parameters to change discontinuously
within a step. The run is the succession of all stages in the problem. The Drivers detect
when stages and runs end, taking considering the criteria defined in the problem descrip-
tion in the MIF. In Oxs there are two types of Drivers, Time Drivers, and Minimization
Drivers.

• Field Objects return values (scalar or vector) as a function of position. These are often
used as objects within specific blocks of other Oxs_Ext objects. They are used to ini-
tialize spatially variable quantities, acting like degree material parameters being initial
magnetization settings.

• Support Classes for MIF: There is the Oxs_LabelValue object. The string for a specific
block of Oxs_LabelValue objects is an arbitrary TCL/TK list of element pairs. The first
element of each pair is interpreted as a label, the second as the value. You can use, for
example, an Oxs_LabelValue object to keep common values in any block of an Oxs_Ext
in different files.

3.1.1 Micromagnetic simulation code

The FMR simulations were generated from the codes below, which are second level, they
are defined from a script based on TCL/TK. For the simulation to each field, we use cycles
using the Evolver and the minimization driver Figure 14. A simulation of the magnetization
dynamics was also carried out using the Evolver and Time Driver. In Figure 14, the simulation
for a single Nanopillar or an array of NPs is chosen by setting i and j to be lesser than one,
lesser than two for a 2x2 array, and lesser than three for a 3x3 NPs array. This sample was
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Figure 14 – Fragment of nickel nanopillar simulation code in static regime.
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Figure 15 – Fragment of nickel nanopillar simulation code in dynamic regime.
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simulated for the parallel case. To simulate the perpendicular example, it must transfer all the
data from xrange to zrange inside Oxs_Multiatlas and vice-versa in the geometry definition
and base region.

In Figure 15, there are some aspects to compare from Figure 14. From the beginning,
the field is now aligned with the easy axis. The second change is that the damping factor 𝛼

is reduced to obtain the dynamic stage. The third alteration is to change the time because
dynamic simulation remains for 20 ns and receives the first stage from the end of the static
simulation. After that, it is necessary to save the output data to find all the futher values of
interest.

3.2 FMR SIMULATION ITINERARY

All the simulations are performed using a bash script command, after setting up the
OOMMF code (Figure 14 and 15), the OOMMF package does not support two codes running
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at the same time because after a code run in Boxsi all data is deleted, so it is required to use
the two codes from Subsection 3.1.1 in a script, as seen in Figure 16.

3.2.1 Bash Script to execute static and dynamic codes in sequence

This script (Figure 16) was run in Linux terminal. The OOMMF codes and the script were
in the same folder and the results were generated in one subfolder. When starting to run the
simulation, it generates the number of cells which will be calculated for the magnetization.
Computational time is proportional to the number of cells as seen in Table 2 the cavities do
not eliminate the computation of each cell inside the cavity, so the hollowed structures have
the same time to compute as the solid ones. The only thing that changes the number of cells
is the change in the inter-pillar distance as it can be seen in Table 3.

Table 2 – Number of Cells for a Single Pillar

Single Pillar Number of cells Spatial arrangement of cells
Solid 864 6 x 6 x 24 cells
10 nm Hollow 864 6 x 6 x 24 cells
20 nm Hollow 864 6 x 6 x 24 cells

Source: Elaborated by the author (2021)

Table 3 – Number of Cells for a Pillar Array

Pillar Array
Interpillar Distance Sollid, 10 nm and 20 nm Hollow
5 nm 9600 cells arranged in 20 x 20 x 24 format
10 nm 11616 cells arranged in 22 x 22 x 24 format
20 nm 16224 cells arranged in 26 x 26 x 24 format
50 nm 34656 cells arranged in 38 x 38 x 24 format

Source: Elaborated by the author (2021)
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Figure 16 – Fragment of FMR script simulation
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Reading Figure 16, it can be seen that the relaxation stage (static, 𝛼 = 1.0) is coupled
with dynamic stage (𝛼 = 0.008). The same script was used for the perpendicular and parallel
cases and for all NPs kinds.

3.2.2 Post-processing of simulated data

After the script completes all the procedures, It generate a .txt file contains the variables
as a function of time, 𝑚𝑥, 𝑚𝑦, and 𝑚𝑧. This archive is essential to carry out the analysis of the
magnetization curve x time through an FFT. After doing the transformation for each parallel
field into a specific type of structure (e.g. individual solid nanopillar or nanopillar array), the
perpendicular field is obtained by performing the same job. After that, it is joined in a file each
frequency value for the absorption peaks, see Figure 8b) and make a field x frequency graph.
After this step, it is analyzed the saturation magnetization field from which can be determined
by 𝐻𝐴. Furthermore, by the (DEMAND et al., 2002) Equations 2.39, 2.40, 2.41, 2.45, 2.46 and
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2.47, we can determine other parameters of the unitary nanopillar or nanopillar array.
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4 RESULTS

The results shown below are based on a comparative analysis of the FMR methodology
using the OOMMF for thin films, according to Baker et al (BAKER et al., 2017). After un-
derstanding that results are similar that of Baker et al., the same analysis is applied to a
square nanopillar geometry using different material parameters from the aforementioned pa-
per, because at this point, the material is changed from permalloy to nickel. The nanopillars,
as explained in Chapter 3, are built singularly or in arrays and with or without internal cavity
of different sizes, in addition to varying the distances between the pillars for the case of arrays.

4.1 THIN FILM

Starting the results by analysing the work described by Baker et al. To validate the cal-
culations with those presented by other research groups, the parameters used in the standard
problem simulation were repeated, including the application field and the magnetic response
seen in Figures 18 and 19.

Figure 17 – Thin film geometry and application of 𝐻⃗ field with 35.56∘ in the steady phase and 35∘ in dynamic
stage with respect to the x-axis.

  

Source: BAKER et al. (2017)

The main differences to what was explained at the beginning of the previous chapter,
besides the structure (see Figure 17) are the saturation magnetization, which is 800 𝑘𝐴/𝑚 for
Permalloy (and 490 𝑘𝐴/𝑚 for Nickel) and the exchange stiffness constant that has the value
of 1.3x10−11 𝐽/𝑚. This implies that the sample needs a smaller applied field to saturate when
replacing Py by Ni. Furthermore, the reduction of the exchange constant (from 1.3x10−11 to
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9x10−12 𝐽/𝑚) implies a reduction in the structure interactions.

Figure 18 – a) 𝑚𝑦(𝑡) component of magnetization and b) power spectrum obtained using Fourier transform
from the same region.

  

Source: BAKER et al. (2017)

Comparing Figures 18a) and 19a), many similarities in the magnetization behavior can
be seen, thus proving the effectiveness of the work initially carried out. However, looking at
Figures 18b) and 19b), it is noticed different peak intensities. This refers to the method used
by the previously mentioned article (BAKER et al., 2017), which calculates the spectral density
smoothed out, where the work carried out in this dissertation was done by calculating only
the spectral density by FFT analysis. As the only interest is where the absorption peaks occur,
this difference in methodology does not jeopardize what was measured, because, as it can
be seen Figures 18b) and 19b) have the primary and secondary peaks in the same position
(≈ 8.5 GHz and ≈ 11.3 GHz respectively), which confirms the effectiveness of this work,
giving us a yardstick to look back in the problems that will be covered later in this chapter.

In the work of Silva et al, was considered different types of squared NPs with 𝐿 = 120

nm (SILVA; GUERRA; PADRÓN-HERNÁNDEZ, 2021). First, they considered the isolated kind with
side dimension of 30 nm. These NPs were simulated with no cavity, see Figure 11a), 10 nm
hollowed, see Figure 11b) and 20 nm, see Figure 11c) in their cavity.
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Figure 19 – Reproduction of thin film (BAKER et al., 2017) a) 𝑀𝑦(𝑡) component of magnetization and b) FFT
from the same region.

  

Source: Elaborated by the author (2021)

4.2 ISOLATED NI NANOPILLAR RESULTS

Starting to work with the single nanopillars, see Figure 11, it was performed the entire
procedure described in Chapter 3 and generated the magnetization curves as a function of
time, subsequently it was calculated the Fourier transform of each curve, as in the example
of Figure 20. After got each FFT from parallel and perpendicular situations, as previously
described, it was recorded all points of primary peak and secondary peak, see Figure 20b)
after the analysis, it was plotted the data of frequency 𝑓 versus applied field 𝐻 similar to
Figure 7 for both peaks (primary and secondary) to find the shape anisotropy field 𝐻𝐴.
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Figure 20 – Isolated nanopillar with 𝑑 = 20 nm a) 𝑚𝑦(𝑡) magnetization component and b) power spectrum
obtained using Fourier transform from the same region indicated with primary and secondary peaks
with 340 kA/m perpendicular applied field.

  

Source: Elaborated by the author (2021)

𝜔

𝛾 ‖
= [𝐻𝐴 + 𝐻] (4.1)

𝜔

𝛾 ⊥
=

√︁
𝐻𝐴

2 −𝐻2 , 𝐻 < |𝐻𝐴| (4.2)

𝜔

𝛾 ⊥
=

√︁
(𝐻 −𝐻𝐴)𝐻 , 𝐻 > |𝐻𝐴| (4.3)

Using the Equations 4.1, 4.2, 4.3 as described in literature for nanowires (DEMAND et al.,
2002; YALÇIN, 2013) in CGS notation, the results in SI have been already shown in Chapter 2,
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equations 4.1, 4.2 and 4.3 looks equal to Equations 2.39, 2.40 and 2.41 because the conversion
factor to CGS is implicit in the value of 𝐻𝐴. It can be made a numerical adjustment and get
the parameters from those equations. For the adjustment, the theoretical graph shows the
behavior of a system with uniaxial anisotropy (Figure 7).

After that, Figure 21a), shows how the frequency varies according to the field, allowing to
find the minimum point of this curve, which is where the applied field response of the magnetic
moments is minimal, as the frequency approaches zero. In Figure 22a), it was observed a graph
similar to the one described above, for the analysis of the frequency variation for the second
peak of each applied field. Also, it can be seen in Figure 23 the magnetization hysteresis loop,
which is another way to find the 𝐻𝐴, as done by (ENCINAS-OROPESA et al., 2001). In this case,
it can be found by looking at the perpendicular remanence point to find the shape anisotropy
field.

Comparing all simulation figures for the primary peak, it is found that there are some
differences between those and the theoretical graph. In fact, the adjustment does not fit exactly
with the theoretical prediction for all the data. This problem gets worse for the secondary peak.
Equations 4.1, 4.2 and 4.3 were used in several systems and there are always divergences
between the model and the results obtained experimentally and numerically (YALÇIN, 2013;
DEMAND et al., 2002).

The divergences most often are due to inhomogeneity of magnetization in very low fields,
which lead to the formation of domains. Another possibility is the occurrence of lower-order
energetic terms that present symmetry different from the uniaxial one (CHEN; BRUG; GOLDFARB,
1991). Each system has characteristics that depends on the geometry or on greater complexities
that can be introduced due to dipolar interactions, as in nanowire arrays in alumina membranes.
Working with this experiment, Vázquez et al conclude the ratio diameter of nanowires to
distance between them is very important to determine the coercivity and remanence values. In
fact, both parameters decrease by increasing that ratio as a consequence of the strengthening
of the magnetostatic interaction (VÁZQUEZ et al., 2004). Also the Measurements of FMR have
allowed them to confirm that arrays with higher ordering present larger non-homogeneity in the
diameter of the wires. The effects of changes in the resonance field, due to shape effects, have
been frequently reported and for nanometric objects, it has great effects due to the intensity of
dipolar interactions (SAAVEDRA et al., 2019; RAPOSO et al., 2016; ZHANG; DIVAN; WANG, 2011;
OTÁLORA et al., 2017; LANDEROS; ESCRIG; SALCEDO, 2007).
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4.2.1 Solid case for nanopillar

For solid pillar, it can be found from the fitting adjustment of the red lines using Equation
4.1 of Figure 21a) and Figure 22a) that for parallel FMR, 𝐻𝐴 = 97.2 kA/m, for primary peak
and 𝐻𝐴 = 222.5 kA/m for secondary peak, respectively. Looking for the perpendicular FMR
of structure, it is found by adjustment made using Equations 4.2 and 4.3: 𝐻𝐴 = 175 kA/m,
for primary peak and 𝐻𝐴 = 247.5 kA/m for secondary peak. These can be seen from the blue
lines of Figure 21a) and Figure 22a). Comparing to Figure 23a), for the perpendicular case, it
is found that the results are equivalent, and the sample gets saturated as it says in the FMR
simulation primary peak.

4.2.2 Solid pillar with hole of d = 10 nm

For the pillar with 10 nm hollow, it can be seen that for parallel FMR, 𝐻𝐴 = 116.4 kA/m,
for primary peak and 𝐻𝐴 = 220 kA/m for secondary peak. It can be seen from the red lines
of Figure 21b) and Figure 22b). Looking for the perpendicular FMR of structure, it is found:
𝐻𝐴 = 195 kA/m, for primary peak and 𝐻𝐴 = 235 kA/m for secondary peak. It can be
seen from the blue lines of Figure 21b) and Figure 22b). Comparing to Figure 23b), for the
perpendicular case, it is found that the results are equivalent, and the sample gets saturated
as it says in the FMR simulation primary peak.

4.2.3 Solid pillar with hole of d = 20 nm

For the pillar with 20 nm hollow, it can be seen that for parallel FMR, 𝐻𝐴 = 144.5 kA/m,
for primary peak and 𝐻𝐴 = 226.9 kA/m for secondary peak. It can be seen from the red
lines of Figure 21c) and Figure 22c). Looking for the perpendicular FMR of structure, it is
found: 𝐻𝐴 = 251 kA/m, for primary peak and 𝐻𝐴 = 219 kA/m for secondary peak. It can
be seen from the blue lines of Figure 21c) and Figure 22c). Compare to Figure 23c), for the
perpendicular case, it is found equivalent results and the sample gets saturated as it says in
the FMR simulation primary peak (BERTOTTI, 1998).

Was mentioned at the beginning of this section that in systems with weak uniaxial anisotropy,
there may be divergences in the results in relation to the model of Equations 4.1, 4.2 and 4.3.
In the case of square nanopillars, there are several factors that can be responsible for this
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Figure 21 – Frequency versus external magnetic field of the main peak at ferromagnetic resonance for isolated:
a) Solid nanopillar (NP) b) hollow NP with 10 nm cavity c) hollow NP with 20 nm cavity.

  

Source: Elaborated by the author (2021)
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Figure 22 – Frequency versus external magnetic field of the secondary peak at ferromagnetic resonance for
isolated: a) Solid nanopillar (NP) b) hollow NP with 10 nm cavity c) hollow NP with 20 nm cavity.

  

Source: Elaborated by the author (2021)
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fact because there are divergences due to magnetization inhomogeneity in very low fields,
leading to domains formation besides the possible occurrence of lower-order energetic terms
presenting different uniaxial symmetry. The saturation magnetization (𝑀𝑆 = 490 kA/m) for
Ni combined with the low (𝐿/𝐷 = 4) aspect ratio provide a very low anisotropy field value
if originated by shape effects. Furthermore, square geometry with many straight edges offers
difficult conditions to saturate the NPs.

The adjustment with Equations 4.1, 4.2 and 4.3 from referring data of main peak with
perpendicular field, Figure 21 (blue line), return values 𝐻𝐴 = 175, 195 and 251 kA/m, for
𝑑 = 0, 10 and 20 nm, respectively. As the cavity size increases, the adjustment for a smaller
field than 𝐻𝐴 offers a better fit. This happens because of the increase of anisotropy along the
axis of symmetry with 𝑑 (ZÉLIS et al., 2017). Analyzing referring data from the main peak with
the parallel field, Figure 22 (red line), return values of 𝐻𝐴 = 97.2, 116.4 and 144.5 kA/m, for
𝑑 = 0, 10 and 20 nm, respectively. The increase in 𝑑 makes closer the internal and external
faces of the hollow NPs and for distances of the order of 10 nm, the dipole interactions
are significant. In arrays of nickel nanowires deposited on alumina membranes, these inter-
wire distances have an order of 20 nm and it is experimentally verified a noteworthy dipole
interaction (HUANG et al., 2018; FUENTES et al., 2017).

The model for dipole energy in square pillars with a low aspect ratio between its longitudi-
nal and lateral dimensions presents more corrections. However, this is a system with uniaxial
anisotropy in the first order (HERNÁNDEZ, 2009). In this case, uniaxial anisotropy in a perpen-
dicular field leads to larger divergences for all values of 𝑑. Thus, it is possible to associate the
secondary resonance peak with regions near the corner edges existing in this geometry. Due
to this evidence, it was decided to turn attention to the curve that shows the configuration of
the parallel field (red line) in Figure 22. Fitting this data with the uniaxial symmetry model
(Equations 4.1, 4.2 and 4.3) returns an anisotropy field value that is very close for all 𝑑 val-
ues. The values seen in Subsections 4.2.1, 4.2.2 and 4.2.3 for 𝐻𝐴 are 225.5, 220 and 226.9
respectively.

This significant result shows that the signal from the secondary peak comes from a NP
region whose local field does not change with 𝑑 considerably (HAN et al., 2003). Taking into
account the numerical errors from calculations and from fittings the values are constant. A
secondary signal was detected in the FMR standard problem paper for thin film geometry; in
this case, the secondary signal originates in the corners (BAKER et al., 2017). In nanopillars, the
secondary signal has the behavior of a uniaxial contribution according to the curves presented in
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Figure 22. The only alternative is a signal coming from the region of the longitudinal (parallel)
sharp edges. This secondary peak signal comes from a region whose anisotropy generates weak
magnetization along the pillar no mattering the cavity’s existence and its size. Moreover, the
first signal approximation came from this characteristic is reinforced by having a signal with a
perpendicular field which, up to a certain approximation, has the characteristics of the branches
of the frequency curve versus field for this type of symmetry (SHARMA; BASU; KUANR, 2019;
ZHANG et al., 2019; JAIMES et al., 2021; HUSSAIN; COTTAM, 2021). The adjustments in Figure
22 shows as the cavity size increases, the uniaxial characteristic of this peak becomes more
observable. The reason is that increasing the size of the orifice the inner longitudinal edges
move apart. Additionally, the curve in Figure 22a) presents a less strong behavior because in
this case, it has only four edges, while for columns with orifice it has eight longitudinal edges.
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Figure 23 – Hysteresis cycle for: a) Solid nanopillar (NP). b) Hollow NP with 10 nm cavity. c) Hollow NP with
20 nm cavity.

  

Source: Elaborated by the author (2021)
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4.3 3X3 NI NANOPILLARS ARRAY

Expanding the work, some behaviors of nanopillars array constructed according to the
Chapter 3 were also analyzed. This time, changing the internal hole with 𝑑 = 0, 10, and 20
nm, and also the distance from the center of one column to the next, being: 𝑎 = 35, 40, 50,
and 80 nm.

For hollow structures (spherical shell, nanotubes, etc.) a new complexity is inserted due to
the magnetic moment confinement (LANDEROS; ESCRIG; SALCEDO, 2007; SALINAS; RESTREPO;

IGLESIAS, 2020; ESCRIG et al., 2007). In literature, few works are dealing with the properties
of hollow square magnetic nanopillars (NPs). Recently a study about the static magnetic
properties of these structures was reported and the cavity effects were found to be significant
(GUERRA et al., 2021). Due to the valuable information that dynamic studies offer, specifically
FMR, it is of great relevance to have literature analysis on NPs array because it can be used
to understand the interactions between neighbors nanopillars. For simplicity, this time the
complexity introduced by the cavity in hollow structures and also when they are in arrays a
few nanometers apart, this time it will be presented a study by FMR of hollow nickel nanopillars
with a square base disposed in an array. The signal was obtained from micromagnetic simulation
through a standard problem reported in literature (BAKER et al., 2017).

Observing that results of the secondary peaks in Section 4.2 were not as coherent accord-
ing to the Equations used (4.1, 4.2 and 4.3), it was decided to observe only the results of the
primary peaks in this secondary geometry analysis. At FFT, some small peaks can be observed,
but the main one is that it represents the ferromagnetic resonance (main FMR mode), just
as measurements performed in laboratories using Electron Paramagnetic Resonance (EPR)
equipment (HERNÁNDEZ; REZENDE; AZEVEDO, 2008), where measurements obtained from fer-
romagnetic nanowire arrays give detailed information on the size of the nanowires. The spectra
can be used to calculate the interwire magnetic interactions quite accurately (YALÇIN et al.,
2004). Another method to observe the signal of primary resonance peaks is by strip-line us-
ing Vector Network Analyzer (VNA) which is an instrument developed for characterization of
electrical devices by sending an electromagnetic wave. The transmitance and reflectance are
used for FMR experiments. The models of VNA have frequency ranging from 0 to 100 GHz.
Thus, it can serve as a microwave bridge to extract FMR parameters at a very broad frequency
band (KRAUS et al., 2011; SAAVEDRA et al., 2019; YALÇIN, 2013).

Before the discussion of the results, it is important to recall the behavior of the FMR
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frequency with the external magnetic field for a system with uniaxial anisotropy. The theoretical
dependence for field parallel to the easy axis is affected by the anisotropy field, 𝐻𝐴, according
to Equation 4.1 (YALÇIN, 2013; DEMAND et al., 2002; CHEN; BRUG; GOLDFARB, 1991). For the
axis perpendicular field, the dependence is not linear in low fields and there is branching with
an intercept at the field 𝐻𝐴, (Equations 4.2 and 4.3) on frequencies.

Figure 24 – Nanopillar array with 𝑑 = 20 nm and 𝑎 − 𝐷 = 50 nm a) 𝑀𝑦(𝑡) magnetization component and
b) FFT showing maxima absorption frequencies from the same region indicated with primary and
secondary peaks with 340 kA/m perpendicular field

  

Source: Elaborated by the author (2021)



59

These divergences occur because FMR calculations are performed with the assumption
of homogeneous magnetization as it can be seen by Equation 2.22. In low external fields,
this condition is not met for most systems. Another possibility of deviations from theoretical
behavior occurs when the system to be analyzed has other orders of anisotropy that can
manifest in certain situations (CHEN; BRUG; GOLDFARB, 1991). One of the possibilities of uni-
axial anisotropy is due to the shape of the objects, shape anisotropy. For arrays of nanowires
packed in alumina membranes, this effect is predominant, which is combined with an additional
term due to interactions between nanowires typically spaced a few nanometers apart (DEMAND

et al., 2002; SAAVEDRA et al., 2019; RAPOSO et al., 2016; ZHANG; DIVAN; WANG, 2011; OTÁLORA

et al., 2017; LANDEROS; ESCRIG; SALCEDO, 2007).
The studied system in this stage has, in principle, the same behavior as nanowires in

alumina membranes. On the other hand, there are two fundamental differences: one due to
the square shape of the Ni pillars studied here and the other due to the square arrangement of
the sample, different from the hexagonal arrangement of the aforementioned nanowires. Even
so, it is possible, in principle, to use the Kittel’s equations. As mentioned before, an FMR
simulation was conducted in an array of Ni columns with distance 𝑎 = 35, 40, 50, and 80 nm
from center to center. There was a cavity in the center of each squared pillar just as proceeded
in Section 4.2.

4.3.1 3x3 Ni solid pillar array

For solid pillar, it can be seen that for parallel FMR, 𝐻𝐴 = 39.07 𝑘𝐴/𝑚, for 𝑎−𝐷 = 5 nm
in Figure 25a) according to the adjustment made from Equation 4.1. Looking for 𝑎−𝐷 = 10

nm parallel FMR of structure, it was found 𝐻𝐴 = 50.98 𝑘𝐴/𝑚 in Figure 25b). For 𝑎−𝐷 = 20

nm parallel FMR of structure, it was detected 𝐻𝐴 = 65.68 𝑘𝐴/𝑚 in Figure 25c) and lastly
for 𝑎−𝐷 = 50 nm parallel FMR of structure, it was discovered 𝐻𝐴 = 83.67 𝑘𝐴/𝑚 in Figure
25d).

The width of the pillars was 30 nm and for the longest distance (𝑎 = 80 nm) it is expected
that the effects of the elongated shape of the pillars will manifest, as shown in Figure 25d).
The graphs in Figure 25 show the dependence of the resonance frequency with the external
field for the arrangement of hollow columns in a perpendicular field and parallel to the central
axis of the columns. The curves show how the effects of uniaxial anisotropy decrease as the
distance (𝑎−𝐷) between the pillars decreases.
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The curves in Figure 25a), are confused showing a low uniaxial character for 𝑎 − 𝐷 = 5

nm. It may also have to do with the fact that structure in Figure 12 for 𝑎 − 𝐷 = 5 nm
and 𝑎 − 𝐷 = 10 nm has a complete array length of 100 nm and 110 nm respectively as
the columns are solid, in this case, it approaches to a situation where there is an isotropic
structure, approximately a cube, mainly because the height of the pillars is 120 nm. At this
distance, the pillars are very close together and tend to form a compact structure. As 𝑎−𝐷

increases its value, the nanopillars are increasingly farther apart and the interactions between
them diminished, making the predominance of the uniaxial character more evident, Figure 25.

This effect has been observed in nanowires deposited on polycarbonate membranes and
also on alumina membranes. In the case of alumina membranes, there is a critical packing
value in which the anisotropy is zero and takes place in packing approximately equal to 30%
(DEMAND et al., 2002; SAAVEDRA et al., 2019; RAPOSO et al., 2016; ZHANG; DIVAN; WANG, 2011;
OTÁLORA et al., 2017; LANDEROS; ESCRIG; SALCEDO, 2007).

Figure 25 – Frequency versus external magnetic field corresponding to a magnetic solid nanopillar array with
uni-axial symmetry.

  

Source: Elaborated by the author (2021)
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4.3.2 3x3 Ni hollowed with 𝑑 = 10 nm pillar array

For the pillar with 10 nm hollow, it can be seen that for parallel FMR, 𝐻𝐴 = 46.22 𝑘𝐴/𝑚,
for 𝑎 − 𝐷 = 5 nm in Figure 26a) according to the adjustment made from Equation 4.1.
Looking for 𝑎 − 𝐷 = 10 nm parallel FMR of structure, it was found 𝐻𝐴 = 66.46 𝑘𝐴/𝑚 in
Figure 26b). For 𝑎−𝐷 = 20 nm parallel FMR of structure, it was detected 𝐻𝐴 = 84.57 𝑘𝐴/𝑚

in Figure 26c) and lastly for 𝑎−𝐷 = 50 nm parallel FMR of structure, it was discovered 𝐻𝐴

= 105.97 𝑘𝐴/𝑚 in Figure 26d).
The curves in Figure 26 show the resonance frequency dependence for hollow columns with

cavity 𝑑 = 10 nm. Comparing the curves with those shown in Figure 25, it is quite evident
that there is an increase in the anisotropy field at all 𝑎−𝐷 distances studied here. Fits with
Equations 4.1, 4.2 and 4.3 were performed on all curves and the anisotropy field obtained
values will be discussed very shortly. The cavity effect is shown to be beneficial to increase the
anisotropy of the set, thus the columns with 𝑎−𝐷 = 80 nm show a very marked dependence
and are comparable with those presented by other studies on cylindrical geometries (DEMAND

et al., 2002; SAAVEDRA et al., 2019; RAPOSO et al., 2016).

4.3.3 3x3 Ni hollowed with 𝑑 = 20 nm pillar array

For the pillar with 20 nm hollow, it can be seen that for parallel FMR, 𝐻𝐴 = 94.20 𝑘𝐴/𝑚,
for 𝑎−𝐷 = 5 nm in Figure 27a) according to the adjustment made from Equation 4.1. Looking
for 𝑎 − 𝐷 = 10 nm parallel FMR of structure, it was found 𝐻𝐴 = 108.05 𝑘𝐴/𝑚 in Figure
27b). For 𝑎−𝐷 = 20 nm parallel FMR of structure, it was detected 𝐻𝐴 = 119.57 𝑘𝐴/𝑚 in
Figure 27c) and in the last case analyzed for 𝑎−𝐷 = 50 nm parallel FMR of structure, it was
discovered 𝐻𝐴 = 134.78 𝑘𝐴/𝑚 in Figure 27d).

In an attempt to make the cavity effects in the columns well established and using the
same distances between them in the arrangement, it was used 𝑑 = 20 nm to further enhance
the shape anisotropy effects. The curves in Figure 27 shows for all distances 𝑎−𝐷 a remark-
able characteristic behavior of uniaxial anisotropy. Was verified according to the equations
mentioned above the fits of this equation with the curves in Figure 25 for solid pillar array
(𝑑 = 0 nm) showing anisotropy fields ranging from 𝐻𝐴 = 39 𝑘𝐴/𝑚 to 𝐻𝐴 = 84 𝑘𝐴/𝑚 as the
distance 𝑎−𝐷 increases from 5 to 50 nm. The increase due to hollow cavity effects with 𝑑 =
10 nm is evidenced by the 𝐻𝐴 values from fitting of data corresponding to Figure 26, ranging
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Figure 26 – Frequency versus external magnetic field corresponding to a magnetic nanopillar array hollowed
with 𝐷 = 10 nm in uniaxial symmetry.

  

Source: Elaborated by the author (2021)

from 46 𝑘𝐴/𝑚 to 106 𝑘𝐴/𝑚 for the columns with 𝑎 − 𝐷 = 5 nm to 50 nm, respectively.
The highest values for anisotropy field between 94 𝑘𝐴/𝑚 and 135 𝑘𝐴/𝑚 were obtained from
the curve data fits in Figure 27 in 𝑑 = 20 nm cavity. For comparative purposes, it can be
mentioned these values are compatible with those obtained in Ni nanowires with a diameter
of 30 nm (HERNÁNDEZ; REZENDE; AZEVEDO, 2008).

In studies with ferromagnetic nanowires, it is very common to use an expression that shows
the dependence of the anisotropy field on the distance between the wires when hexagonally
packed (LANDEROS; ESCRIG; SALCEDO, 2007). For this specific case, it is common to use
𝐻𝐴 = 𝑀𝑆[1 − 3𝑃 ], where 𝑃 represents a geometric packing factor that depends on the
diameter of the nanowires and the distance between them (ENCINAS-OROPESA et al., 2001).

For the case of square nanopillars presented here, it is pertinent to expect some cause-
effect relationship between 𝐻𝐴 and 𝑑 to occur, but it was encountered two typical problems.
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Figure 27 – Frequency versus external magnetic field corresponding to a magnetic nanopillar array hollow with
𝐷 = 20 nm in uniaxial symmetry.

  

Source: Elaborated by the author (2021)

The first, due to the shape of the pillars, which is not ellipsoidal, as used in the model to
obtain the ratio of 𝐻𝐴 to 𝑃 . Along with this, it is normal to expect other effects due to
the arrangement, in this case, squared, occur. Therefore, it was obtained by evaluating the
dependence of the anisotropy field 𝐻𝐴 with geometric characteristics that somehow represent
the wires packing factor. Specifically, it was decided to use a generic expression proposed in
literature (HERNÁNDEZ; REZENDE; AZEVEDO, 2008). In this case, the anisotropy field would
be 𝐻𝐴 = 𝑀𝑆[𝛼 − 𝛽𝑃 ], where the value of 𝛼 comes from the dipole interactions within the
columns and 𝛽 reflects the dipole interactions between the columns of the array.

The next problem in the case of hollow pillars is to understand what the 𝑃 factor would
be actually, because in the case of collecting only the term 𝑃 = 𝐷2

𝑎2 it is evaluated the filling
of the column as a whole, see Figure 12. On the other hand, the real filling factor for the
hollow pillars must be estimated with the removal of the cavity volume, i.e. 𝑃 * = (𝐷2−𝑑2)

𝑎2 in
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Figure 12. Because it has an initial study here in which it assesses behaviors, it is used both
definitions, as shown in Figure 28 and 29. Those Figures shows the dependence of the 𝐻𝐴

anisotropy field with the packaging factor evaluated in the two ways mentioned here to find a
better description.

Comparing the two analysis form, it can be made the graphs one below the other in Figure
28 and 29, with Figures 28a) and 29d) for 𝑑 = 0 nm (solid pillars). In them, it can be seen
that packing is the same, and the dependence on 𝐻𝐴 has the same tendency as it would
for nanowires with a negative derivative because the increase in 𝑃 leads to a critical value at
which the anisotropy disappears. The critical value is obtained when 𝐻𝐴 = 0, which represents
an isotropic system. The curves in Figure 28b) and 29e) shows 𝐻𝐴 as a function of 𝑃 and
𝑃 * packing for 𝑑 = 10 nm. In them, it only has a change in the derivative of the curves, but
compared with the curves for 𝑑 = 0 it is possible to verify an increase in the standard deviation
in relation to the straight line.

This deviation (Table 4) is even greater for the curves in Figures 28c) and 29f), where the
𝐻𝐴 values are presented as a function of 𝑃 and 𝑃 * for 𝑑 = 20 nm. Even with this gradual
increase in deviation, it is possible to verify a good linear behavior of the anisotropy field
for both ways of seeing the nanopillar packing. The two forms of analysis lead to relatively
different results when fitting the curves. Thus, in order to be able to separate each shape
well, it was adjusted the curves 𝐻𝐴 = 𝑀𝑆[𝛼 − 𝛽𝑃 ] for Figures 28a), 28b) and 28c). For
Figures 29d), 29e) and 29f), the adjustment coefficients is called by different letters, i.e.
𝐻𝐴 = 𝑀𝑆[𝛼* − 𝛽*𝑃 *]. The results of adjustment can be found in Table 4. These values
corroborates with literature results which shows that 𝛽* grows up as critical value decreases
(Cavity size increases) (LANDEROS; ESCRIG; SALCEDO, 2007).

Table 4 – Fitting of adjustment data from Pillar Array as function of 𝑑

𝛼 value 𝛼* value 𝛽 value 𝛽* value
Sollid 𝑑 = 0 nm 0.191± 0.002 0.191± 0.002 0.152± 0.005 0.152± 0.005
𝑑 = 10 nm hollow 0.245± 0.003 0.244± 0.003 0.200± 0.005 0.45± 0.01
𝑑 = 20 nm hollow 0.294± 0.002 0.298± 0.007 0.140± 0.004 1.3± 0.1

Source: Elaborated by the author (2021)

Thus, values of 𝛼 and 𝛼
𝛽

can be obtained represented in Figure 30a) and 30b) and values
for 𝛼* and 𝛼*

𝛽* are shown in Figures 30b) and 30d), all those parameters as a function of the
hollow cavity size of the columns. The curves for 𝛼 and 𝛼* are important because this parameter
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Figure 28 – Ni squared nanopillar shape anisotropy field versus packing factor 𝑃 = 𝐷2

𝑎2

  

Source: Elaborated by the author (2021)
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Figure 29 – Ni squared nanopillar shape anisotropy field versus packing factor 𝑃 * = 𝐷2−𝑑2

𝑎2

  

Source: Elaborated by the author (2021)
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has information on internal interactions in the pillars according to the proposed model and
literature proposal (HERNÁNDEZ; REZENDE; AZEVEDO, 2008). The most representative is that
these values, see Table 4, do not depend on how the packaging was chosen (𝑃 or 𝑃 *).
These values can be used to estimate values of demagnetizing factor parallel to the nanopillar
(HERNÁNDEZ; REZENDE; AZEVEDO, 2008).

Figure 30 – Ni squared nanopillar array coefficient adjustments for packing factor 𝑃 and 𝑃 *

  

Source: Elaborated by the author (2021)

The values of 𝑃𝐶 = 𝛼
𝛽

and 𝑃 *
𝐶 = 𝛼*

𝛽* are important; 𝑃𝐶 and 𝑃 *
𝐶 are the critical packing for

which the disappearance of the anisotropy occurs, that is, 𝐻𝐴 = 0. This critical value has been
reported in several ways for nanowires, as it depends on how it is viewed as perfect cylinder,
ellipsoid chain, etc (VÁZQUEZ et al., 2004). In the case of nanopillars, there is no difference
and everything starts with the way the packing is seen. In a critical look at the curves in
Figures 30b) and 30d) it can be seen totally different behaviors as the value of 𝑑 changes. On
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the other hand, the 𝑃𝐶 value for 𝛼
𝛽

is noteworthy, as it is greater than 1, The choice of this
parameter is even worse for 𝑑 = 20 nm, because assuming it the system does not consider the
cavity, approaching this result to that of an isotropic thin film. Therefore, it is not possible to
calculate the anisotropy 𝐻𝐴 in this case. Analysing the perpendicular results, it was observed
divergences in the results of 𝐻𝐴 analysing with Equations 4.2 and 4.3 which leads us to the
idea that the perpendicular field model in square nanowire arrays still needs adjustments to
its proposal. This could be associated with the aspect ratio of the length 𝐿 of the pillars and
3𝐷, which would be the extension of the arrangement for 𝑃 = 1 (HERNÁNDEZ; REZENDE;

AZEVEDO, 2008). Even thus, it is striking and everything suggests that the most appropriate
way to choose the packing in hollow columns is represented by 𝑃 *.
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5 CONCLUSION

After analyzing the studies with FMR in singular nanopillar and nanopillar array it follows:
Isolated nanopillar:

1. The dipole effects due to the interaction between the internal and external faces are
reverted in the increase of the predominant uniaxial anisotropy field.

2. Analysing the singular nanopillar primary peak results, it is found uniaxial anisotropy in
the first order and comes from the longitudinal edges.

3. Uniaxial anisotropy in a perpendicular field leads to larger divergences for all values of 𝑑

due to higher symmetry in the principal axis.

4. The value of shape anisotropy field 𝐻𝐴 gets better as 𝑑 increases for primary and
secondary peaks for parallel and perpendicular fields.

5. Graphical analysis shows that primary peaks have more precise values than the secondary
peaks, because the last can not be clearly identified as 𝑑 decreases.

Nanopillar Array:

1. It can be seen an increase in anisotropy as the size of the hollow cavity increases inside
the column and it is still possible to verify the reduction of this phenomenon as the
distance between the columns in the arrangement decreases.

2. The perpendicular Kittel’s equations for FMR were not useful to characterize the results
to analyze the results for shape anisotropy field 𝐻𝐴.

3. In parallel analysis it was found that 𝛽* and 𝛼* grow up as the cavity size increases, here
these phenomenological constants are obtained from the adjustment of 𝐻𝐴 variating
with packing factor considering the cavity of each nanopillar inside the array.

4. The results for 𝐻𝐴 decreases as the packing factor increases, as expected by literature,
because with great packing factors the geometry loses anisotropy.

5. Graphical analysis shows that 𝐷2−𝑑2

𝑎2 presents better description for 𝐻𝐴 analysing the
results for 𝛼

𝛽
against 𝛼*

𝛽* .
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6 OUTLOOK

The work presented is the beginning of new activities that will be done by the magnetic
measurements research group. The next steps to upgrade the work presented here will be:

1. Map the FMR signal to analyze signal locations and verify that magnetic resonant signal
comes from the side edges for singular nanopillars and nanopillar array.

2. Propose a model to adjust the shape anisotropy field 𝐻𝐴 when the geometry is affected
by the perpendicular field.

3. Use micromagnetic simulation results to simulate Magnetic Force Microscopy (MFM)
images and improve understanding of different reversal modes compared to real images.

4. By using lithography, build similar structures and compare the results with which was
obtained.

5. Study other cubic structures by using FMR simulations and to find a better model of
packing factor.
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