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RESUMO

Determinar a capacidade de carga € uma etapa importante no desenvolvimento de
projetos de fundacdes, por este motivo a engenharia de fundacées vem evoluindo
constantemente em busca de novos elementos e métodos de calculo de fundacgéo. O
trabalho apresenta a modelagem e calculo de capacidade de carga de fundacdes
profundas feito no software PLAXIS 3D FOUNDATION® através de método de
elementos finitos. Obtendo graficos de carga versus recalque gerados pelo software
gue foram extrapolados valores de carga de ruptura aplicando método de Van Der
Veen. Também o célculo de capacidade de carga utilizando os principais métodos
semi-empiricos e valores de prova de carga experimental realizadas no campo.
Visando apresentar mais uma ferramenta dentre tantas metodologias para o calculo
da capacidade de carga e mostrar as ferramentas no software em estudo que
possibilitem esse célculo. Para isso foi modelado as fundagbes um edificio real ja
estudado por Soares (2004) em sua tese de doutorado. A partir da ponderacao entre
os resultados do software, da prova de carga e métodos semi-empiricos avaliar a
utilizacdo do PLAXIS 3D FOUNDATION® para tal fim. Os valores se mostraram
bastantes satisfatorio quando usado para estimar capacidade de carga, houve boa
concordancia entro todos os métodos e os recalques calculados dos elementos de
fundacbes estudado forneceram valores satisfatorios, na faixa esperada para o porte
do edificio e solo da regido configurando grande potencial de utilizacdo destes

programas no cotidiano da engenharia de fundacdes.

Palavras-chave: Capacidade de Carga; Van der Veen; Semi-empiricos; Modelagem;
PLAXIS 3D FOUNDATION®,



ABSTRACT

Determining the load capacity is an important step in the development of foundations
projects, for this reason foundation engineering has been constantly evolving in search
of new elements and methods of calculating foundation. The work presents the
modeling and calculation of load capacity of deep foundations made in the software
PLAXIS 3D FOUNDATION © through finite element method. By obtaining loading
versus repression graphs generated by the software we have extrapolated burst load
values applying Van Der Veen method. Also the calculation of load capacity using the
main semi-empirical methods and experimental load test values performed in the field.
Aiming to present another tool among many methodologies to calculate the load
capacity and show the tools in the software under study that make this calculation
possible. For this, the foundations were modeled a real building already studied by
Soares (2004) in his doctoral thesis. From the consideration of the software results,
the load test and semi-empirical methods evaluate the use of PLAXIS 3D
FOUNDATION © for this purpose. The values proved to be quite satisfactory when
used to estimate load capacity, there was good agreement among all the methods and
the calculated settlements of the foundation elements studied provided satisfactory
values, in the range expected for the building size and soil of the region, setting great
potential of use of these programs in the daily life of foundation engineering.

Key-words: Load capacity; Van der Veen; Semi-empirical, Modeling; PLAXIS 3D
FOUNDATION®,
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1 INTRODUCAO

A determinacado da capacidade de carga do sistema é uma etapa importante no
desenvolvimento de projetos de fundacgdes, por este motivo engenharia de fundacoes
vem evoluindo constantemente em busca de novos elementos e métodos de calculo
de fundacéo, que possuam alta produtividade, custos reduzidos, simplicidade de
execucao, elevada capacidade de carga e controle de qualidade durante a execucao
dos elementos da mesma, entre outros aspectos.

Toda edificacdo que se possa imaginar, independentemente de sua dimensao,
material, ou local de implantacéo, esta sujeita as acdes de vento, temperatura, carga
proveniente de seu peso préprio, cargas moveis e ainda acdes excepcionais como
sismos e colisdes. A existéncia dessas ac¢des produz esfor¢cos em toda a estrutura da
edificacdo, para que esta ndo deixe de apresentar condigcbes de utilizacdo, os
conjuntos de esforcos resultantes deverdo ser obrigatoriamente resistidos por cada
um dos elementos estruturais que a compde tais como: lajes, vigas, pilares e pela
fundacéao.

Os elementos da estrutura possuem um elevado grau de importancia para as
construcdes, entretanto, os elementos da fundacdo merecem destaque, pois eles sédo
responsaveis por receber e transmitir todos os esforcos da edificacdo para o
subsistema geotécnico (macico de solo) que esta situado sob a construcdo. Essa
transferéncia precisa distribuir as acbes com seguranca e de modo que nao cause
recalques diferenciais prejudiciais ao sistema estrutural, ou ruptura do solo.

No presente trabalho sera utilizado o programa PLAXIS 3D FOUNDATION®;
para calcular capacidade de carga atraves de métodos matematicos e
computacionais, empregado pelo software, com base no método dos elementos
finitos. Este programa sera utilizado n&o so para se atingir o objetivo geral do trabalho
bem os especificos de modo a explorar o potencial do mesmo para utilizacdo em
analises de projetos de fundagbes. Os valores calculados no programa serdo
comparados com valores de prova de carga reais e como metodos semi-impiricos

comumente usados.



15

1.1  Justificativa

No projeto de fundacdes as técnicas e 0s custos sdo fatores que devem ser
analisados previamente antes de sua implementacdo. Assim esse trabalho é
justificado pela necessidade de adotar uma simulacdo através do software PLAXIS
3D FOUNDATION®; como uma alternativa ao célculo da capacidade de carga em uma
obra de engenharia para que o projetista tenha condi¢cdes de avaliar quais sao as
solugdes apropriadas no dimensionamento das fundagdes, assegurando ao
empreendedor e construtor um dimensionamento econdmico, seguro e eficaz.
Podendo comparar valores experimentais amostrais com a simulacdo no software
garantindo maior confiabilidade da simulacdo. Importante ressaltar que se tendo em
vista estudos realizados com programas especificos como PLAXIS em andlise da
Interacdo Solo-Estrutura, muitas sao as observacdes que podem ser levadas em
consideracdo no desempenho do sistema estrutural como um todo.

Outro aspecto importante dotrabalho € analise bidimensional e tridimensional
das deformacgOes e estabilidade do solo, interacdo da estrutura do solo e fluxo de
adguas subterrdneas correlagcbes que serdo utilizadas no dimensionamento de

fundacdes aproximando ainda mais de uma situacéo real.

1.2 Motivacéao

Atualmente a engenharia conta com softwares especializados no
desenvolvimento de novos produtos e técnicas construtivas, auxiliando os
profissionais da area, na analise de sistemas complexos. Com a finalidade de simular
e discretizar em um modelo computacional, a partir de uma situacao real, utilizando
do alto poder de processamento dos computadores, para resolver questdes que vao
de otimizacdo a visualizacdo do comportamento das variaveis, podendo ser
determinado quais serdo mais relevantes para o fim que se deseja.

Portanto, a simulacdo e calculo da capacidade de carga através do software
permitira analise mais completa do comportamento e interagcdo da estrutura com o
solo e com as vizinhangas, possibilitando assim maior nimero de informagdes para

correta estimativa da capacidade de carga.
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1.3 Objetivos

1.3.1 Objetivo geral

O objetivo geral deste trabalho é realizar simulacao e célculo da capacidade de
carga do solo a partir do software PLAXIS 3D FOUNDATION® e verificar a

consisténcia dos resultados por outros meétodos.

1.3.2 Objetivos especificos

e Modelar blocos de fundacdes e estacas em trés dimensodes via PLAXIS 3D
FOUNDATIONS®;

e Fazer a simulacdo com as fases de construcéo e de carregamento e calcular a
capacidade de carga a partir do software e comparar com métodos conhecidos
e valores de provas de cargas;

e Elaboracao de graficos de capacidade de carga utilizando a ferramenta CURVE
do software.

e Auvaliar os resultados do PLAXIS 3D FOUNDATION®;
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2 REFERENCIAL TEORICO
2.1 Fundacoes

E importante uma revisdo sobre os conceitos e critérios de dimensionamento
relacionados com os tipos de fundagdes a serem estudadas no presente trabalho. O
objetivo €& fornecer uma visdo geral sobre engenharia de fundacdes e suas
peculiaridades.

A engenharia de fundacbes é a especialidade da engenharia que lida com o
projeto e a execucao de fundagbes. VELLOSO E LOPES, (2004) citam que este ramo
da engenharia requer conhecimento de geotecnia e calculo estrutural, pois envolve a
interacdo entre solo e estrutura. Os deslocamentos da fundacgéo séo a interface entre
duas é&reas. Recalques importantes dos apoios podem causar significativa
redistribuicdo dos esforcos internos, que deve ser avaliada pelo projetista estrutural,
na fase de projeto, para o adequado dimensionamento das pecas.

Segundo VELLOSO E LOPES (2004), os elementos necessarios ao
desenvolvimento de um projeto de fundag&o sao os seguintes:

a) Topografia da area

e Levantamento topografico (planialtimétrico).
e Dados sobre taludes e encostas no terreno (ou que possa atingir o
terreno).

e Dados sobre erosdes (ou evolugdes preocupantes na geomorfologia).

b) Dados Geoldgico-Geotécnico
e Investigacdo do subsolo (as vezes em 2 etapas: preliminar e
complementar).
e OQutros dados geologicos e geotécnicos (mapas, fotos aéreas e
levantamentos aerofotogramétricos, artigos sobre experiéncias

anteriores na area, etc).

C) Dados da Estrutura a Construir
e Tipo e uso que tera a nova obra;
e Sistema estrutural;

e Cargas (acOes nas fundacoes).
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d) Dados sobre construcdes vizinhas
e Numero de pavimentos, carga média por pavimento;
e Tipo de estrutura e fundacgoes;
e Desempenho das fundacoes;
e Existéncia de subsolo;
e Possiveis consequéncias de escavacgdo e vibragbes provocadas pela

nova obra.
2.2 Tipos de Fundagbes

As fundacdes sao classificadas em:

e Fundagdes superficiais (ou “direta” ou rasas) e
e Fundag0Oes profundas;

A distincdo entre estes dois tipos é feita segundo o critério de que uma fundacgéo
profunda € aquela que teria seu mecanismo de ruptura de base que ndo surgisse na
superficie do terreno. Como 0s mecanismos de ruptura de base atingem, acima da
mesma, tipicamente 2 vezes sua menor dimensao, a norma NBR 6122/2010 adotou
que as fundacgbes profundas sdo aquelas cujas bases estdo implantadas a uma
profundidade superior a 2 vezes sua menor dimensdo e pelo menos 3 m de
profundidade VELLOSO E LOPES, (2004).

2.3 Fundagbes Profundas

Elemento de fundacgéo que transmite a carga ao terreno pela base (resisténcia
de ponta), por sua superficie lateral (resisténcia de fuste) ou por uma combinacao das
duas, e que esta assente em profundidade superior ao dobro de sua menos dimenséao
em planta, e no minimo 3 metros, salvo justificativa. Neste tipo de fundacgéo incluem-
se as estacas, os tubuldes e os caixdes.

As estacas podem ser construidas in loco (escavadas) ou ainda podem ser pré-
fabricadas (pré-moldadas) e cravadas por percussao no solo. Conforme ALONSO
(1943) estacas sao elementos estruturais esbeltos que colocados no solo por

cravacao ou perfuracéo, tem a finalidade de transmitir cargas ao mesmo, seja por a
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resisténcia sob sua extremidade inferior (resisténcia de ponta), seja por resisténcia ao
longo do fuste (atrito lateral) ou por a combinacéo dos dois.

Elas podem ser confeccionadas por trés tipos de materiais basicamente,
madeira, aco ou metdlica e concreto armado, como pode ser visto na figura 1. As
estacas que foram executadas no estudo da tese em questao séo do tipo escavada,
onde a execucdo consiste em perfurar o solo inicialmente, mediante utilizacdo de
maquinas (perfuratriz), em seguida introduzindo a armadura com a posterior
concretagem através do tubo Tremonha (I > 1,50 m). Os didmetros e comprimentos

das estacas variaram de 0,30 m a 1,50 m, com 12 a 23 m de profundidade.

Figura 1 — Exemplos de funda¢des profundas
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FONTE: Hachich et al. (1998)

Onde as estacas (a) metdlicas, (b) pré-moldada de concreto vibrado, (c) pré-
moldada de concreto centrifugado, (d) tipo Franki e tipo Strauss, (e) tipo raiz, (f)

escavadas; tubuldes (g) a céu aberto, sem revestimento, (h) com revestimento de aco.

2.4 Blocos de Fundacéao

Em fundacgdes profundas quando determinado esfor¢co de um pilar solicita a
existéncia de mais de uma estaca é necessario construir um elemento de uni&o entre
as estacas e os pilares, este elemento € chamado de bloco de fundacdo. Os blocos
de fundagcbes podem possuir varios tipos de geometria em funcdo do numero de
estacas, da forma das estacas e do modo como séo organizadas (dispostas) no solo

em funcdo da carga aplicada, de acordo com RABELLO (1949) as geometrias e
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dimensdes dos blocos dependem, além da forma e das dimensdes do pilar, do nimero
de estacas e da forma como sao distribuidas sob o pilar.

Para que a transmisséo dos carregamentos dos pilares para as suas estacas
aconteca de maneira eficiente, é preciso que sejam construidas estacas do mesmo
tipo para um unico bloco, ou seja, hao variar as estacas no mesmo bloco (geometria
— didametro/lado, tipo, comprimento a depender da resisténcia do solo), assim, é
recomendado que este procedimento seja usado em todos os blocos de estacas das

fundacdes.

Figura 2 — Configura¢do em planta dos blocos sobre estacas
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2.5 Perdade Eficiéncia do Conjunto de Estacas

Quando se agrupa um numero grande de estacas para um unico bloco, porem
existe uma perda de eficiéncia da estaca em relagéo a sua quantidade no bloco, essa
perda de eficiéncia é medida de varias maneiras, o critério mais conhecido e usado é
o de Feld apud MORAES (1976) onde o acréscimo de uma estaca represente um
decréscimo de eficiéncia 1/16, independente da disposi¢éo delas.

De acordo com MORAES (1976) para estacas espacadas com menos de trés
vezes 0 seu proprio diametro, € necessario verificar a interferéncia dos bulbos de

pressdo nas estacas do mesmo bloco.
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Figura 3 — Esquema da perda de eficiéncia em conjunto de estacas
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2.6 Capacidade de Carga

Segundo VELLOSO, LOPES (2010) Considerando um exemplo simples de
uma sapata submetida a um carregamento crescente, medindo os valores de
deslocamento verticais, de acordo com o crescimento do carregamento, para
pequenos valores de carga o recalque se estabiliza e volta a sua condicéo original,
essa fase é denominada fase elastica.

Com o aumento do carregamento temos o inicio da fase plastica do material,
em uma terceira fase onde o material esta prestes a romper, temos um valor para o
carregamento que atingiu o limite de resisténcia do solo para aquela fundacéo, ou

seja, sua capacidade de carga ou suporte.
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Figura 4 — Comportamento de uma sapata sob carga vertical (Kézd 1970)
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O conceito sobre capacidade de carga € o mesmo para o caso das fundacdes
acima, onde sdo empregados 0os métodos empiricos e 0s estaticos, onde os métodos
estaticos séo divididos em: tedricos e semi empiricos.

Os métodos empiricos tém como base apenas a classificacdo das camadas
atravessadas obtidas via investigacbes geotécnicas e suas correlacdes, servindo
apenas estimativa de valores iniciais para os parametros do solo utilizado para
calculos da capacidade de carga deste para estacas e tubuldes.

Os métodos semi empiricos sdo muito usados quando a questéo é, calcular a
capacidade de carga. No Brasil através das investigacdes geotécnicas pode-se definir
o perfil do terreno onde sera assentada a estrutura sendo muito comum se realizar
ensaios de sondagem a percussao SPT (Standard Penetration Test), e uma vez
obtidas as informacdes deste tipo de ensaio, pode-se utilizar alguns dos métodos
tradicionais para se calcular a capacidade de carga do solo: Meyerhof (1956), Aoki-
Velloso (1975), Décourt e Quaresrna, (1978), e Teixeira (1996), Vorcaro-Velloso
(1999) e Velloso (1981).

Os métodos utilizados nesse estudo serao descritos abaixo:
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2.6.1 Método Aoki-Velloso (1975)

Segundo VELLOSO e LOPES (2010) este método foi desenvolvido através de
comparativos de resultados de prova de carga em estacas e ensaios de SPT, porém
este método pode ser usado, tanto com valores de SPT e CPT.

A equacdao para o calculo da capacidade de carga para SPT e CPT é dada por:

k*N

N
+XxU*xAl*xaxk*—

Onde:

A é o valor de area da ponta da estaca;

k e a sao valores retirados da tabela 1 que dependem unicamente do tipo do
solo;

F1 e F2 séo fatores de correlacao entre SPT e CTP

Estes dependem do tipo de estaca que esta sendo utilizada, N é o valor do
namero de golpes (indice de resisténcia a penetracdo) do ensaio SPT, U e perimetro
da seccéao transversal da estaca e a distancia entre as camadas do solo.

As Tabelas 1 e 2 apresentam, respectivamente, os valores dos coeficientes k e

a e Fatores F1 e F2, utilizados no mesmo aqui mostrado.



Tabela 1- Coeficientes K e a

Tipo de Solo K(Kgf/cm?) a (%)

Areia 7,3 2,1

Areia Siltosa 6,8 2,3

Areia Silteargilosa 6,3 2,4

Areia Argilossiltosa 5,7 2,9

Areia Argilosa 5,4 2,8

Silte Arenosa 5,0 3

Silte 4.8 3,2

Silte Argiloarenoso 4 3,3

Silte Argiloso 3,2 3,6

Argila Arenosa 4.4 3,2

Argila Arenossiltosa 3 4,1

Argila Siltoarenosa 3,3 4,1

Argila Siltosa 2,6 4,5

Argila 2,5 5,5

FONTE: Velloso e Lopes, (2010)
Tabela 2— Fatores F1 e F2

Tipo de estaca F1 F2
Franki de fuste apiolado 2,3 0,0
Franki de fuste vibrado 2,3 3,2
Metalica 1,75 3,5
Pré-moldada de concreto cravada a percussao 2,5 3,5
Pré-moldada de concreto cravada por prensagem 1,2 2,3
Escavada com lama betonitica 3,5 4,5
Raiz 2,2 2,4
Strauss 4,2 3,9
Hélice continua 3,0 3,8

FONTE: Velloso e Lopes, (2010)

24
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2.6.2 Método Teixeira (1996)

O método de Teixeira diz que a capacidade de carga de uma estaca a
compressédo pode ser estimada por dois parametros a e (3, onde a é um parametro
que depende do tipo do solo que a estaca esta em contato, e B € em funcéo do tipo
de estaca.

A equacdo utilizada para o célculo da capacidade de carga é dada por:

Qult =axNy,* A, +Ux* N *L

Onde:

Ab é a area da base da estaca;

Nb € o valor médio no intervalo de 4 diametros acima da ponta da estaca e 1
didmetro a baixo;

NL valor médio do indice de resisténcia a penetracdo ao longo do fuste da
estaca,

L é o comprimento da estaca;

U é o perimetro da secc¢do transversal da estaca.

A tabela 3 apresenta os parametros necessarios com dados de entrada para o

Método em estudo.

Tabela 3 — ParAmetros a e

Solo Tipo de Estaca* | v
Argila siltosa 11 10 10 10
Silte argiloso 16 12 11 11
Argila arenosa 21 16 13 14
Valores de a (Tf/m2) em Silte arenoso 26 21 16 16
funcao do tipo de solo Areia argilosa 30 24 20 19
(4<N<40) Areia Siltosa 36 30 24 22
Areia 40 34 27 26
Areia com pedregulhos 44 38 31 29
Valores de {3 (tf/m?) em fungao do tipo de estaca 04 0504 0,6
Tipo de estaca:l — Estacas pré-moldadas de concreto e perfil metdlicos; Il - Estaca tipo Franki; Il —

Estacas escavadas a céu aberto; IV — Estacas-raiz
FONTE: Velloso e Lopes, (2010)
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2.6.3 Método Descourt — Quaresma (1978 e 1986)

Este método é fundamentado no coeficiente C (Décourt e Quaresma, 1986) que
associado a valore do Nspt obtém o valor de tensdo de ponta para estacas, para

resisténcia lateral é utilizado a expressao abaixo:

Nméd
TLult = 3 +1

Com a resisténcia de ponta:

Qpult = C*N

Onde:

Ab € a area da base da estaca,;

N é o niumero do Nspt médio entre o Nspt de ponta, o valor acima e o valor abaixo;

Nmed € 0 nimero do Nspt médio entre os valores de Nspt ao logo do fuste, se
esse valor for menor que 3 ele tem que ser considerado 3 e se for maior que 50, tem
gue ser considerado 50;

U perimetro da estaca;

| comprimento da estaca;

Fp fator de seguranca para resisténcia de ponta igual a 1,3;

Fifator de seguranca para resisténcia lateral igual a 4,0;
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Tabela 4 — Valores de C para estacas escavadas (Décourt, 1986)

Tipo de Solo C (tf/m?)
Argilas 10
Siltes argilosos (alteracao de rocha) 12
Siltes arenosos (alteracao de rocha) 14
Areias 20

FONTE: Velloso e Lopes, (2010)

2.6.4 Método Velloso (1981)

Velloso (1981) para o calculo da capacidade de carga, usa parametros
denominados a, b, a’ e b’ obtidos através de correlacdes entre valores de SPT e CPT,

obtendo as expressdes para resisténcia lateral de de ponta:

Quuie = U o0 * A x 2Tt * Al;

Qp,ult =Ap*axf* Qp,uit
Expressdes para calculo com valores de SPT:

— b
Qp,ult =ax*xN

— A br
Ty = a *N

Onde:

U é o perimetro do fuste;

A area da base (Bb didmetro da base);

a fator de execugédo de estaca (1 para estacas cravadas e 0,5 para estacas
escavadas);

A fator de carregamento (1 para estacas comprimidas e 0,7 para estacas
tracionadas);

[ fator de dimenséo da base (1,016*0,04*B, em centimetros);

Os valores de a, b, a’ e b’ estio listados na tabela a baixo:
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Tabela 5 — Valores aproximados de a, b, a', b' (Velloso, 1981)

Tipo de Solo Ponta Atrito
a(tf/m2) b a’ (tf/m2) b’
Areias sedimentares submersas @ 60 1 0,50 1
Argilas sedimentares submersas () 25 1 0,63 1
Solos residuais de gnaisse arenossiltosos submersos @ 50 1 0,85 1
Solos residuais de gnaisse siltearenosos submersos 400 1@ 0,80 1@
474 0,96@ 1,21@ 0,74®
() Dados obtidos na obra da Refinaria Duque de Caxias (RJ); ?@ Dados obtidos na obra de ACO-

MINAS (MG)
FONTE: Velloso e Lopes, (2010)

2.7 Método de Van Der Veen (1953)

Alonso (2010) Ao realizar uma prova de carga onde ndo se caracterize a
pressdo ou carga de ruptura do solo, tendo-se uma curva onde ndo se atingiu a carga
de ruptura, pode se estimar essa carga, ajustando uma equacao matematica a curva.
Ou seja, de modo a extrapolar esse o valor de ruptura.

Soares (2004), ressalta a existéncia de diversos métodos de extrapolacdo e
alerta para os cuidados na utilizacdo destes em virtude de obtencéo de valores irreais
para a carga ultima da fundacéo. Isto € extremamente dependente da forma da curva
carga x recalque e quando ja é clara a plastificacdo do solo. Varios métodos foram
propostos na literatura para condi¢des especificas de solos, mas o que se observa é
a utilizacdo destes métodos indiscriminadamente. No entanto, em nivel nacional, o
método de Van der Veen (1953) continua sendo o que tem sido mais usado em provas
de carga.

A equacdo matematica para extrapolacdo da curva Carga x Recalque é:

Q=0Qr*(1—e ®?)
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Onde:

Q — Carga experimental obtida da prova de carga obtida do trecho conhecido;
Qr — Carga de ruptura estimada para extrapolacao;

r — recalques medidos na prova de carga;

a - coeficiente angular que depende da forma da curva extrapolada;

b coeficiente linear que depende da forma da curva extrapolada;

Como a equacéo tem trés (a Qr e b) incognitas a solucdo é obtida através de

tentativas, portanto a Equacédo pode ser reescrita como:

Q
* b=-In(1-—
ax*r+ n( Q)

r

Sendo as variaveis as mesmas descritas anteriormente.

O processo de calculo consiste em estimar varios valores de Qr, construir
diversas curvas Carga x Recalque para cada valor de Qr, observar qual das curvas
mais se assemelha com uma reta, ou seja, fazendo-se uma regresséo linear e
verificando-se aquela que fornece um coeficiente de determinacdo R2 mais préximo
de 1 (um), logo os valores de a e b presentes na reta, podemos elaborar a curva de
extrapolacéo.

De posse das variaveis em estudo (Qr, a e b), estima-se se valores de recalque
e calcula-se varios valores Q para construir o grafico que representa a curva de

extrapolacdo da prova de carga experimental que ndo atingiu a ruptura.

2.8 Provade Carga em Estacas

Segundo Soares (2004) para melhor compreender o comportamento de
fundacdes superficiais e profundas submetidas a carregamentos (vertical ou horizontal
— tracdo ou compressao) e sujeitas a deslocamentos (rotagbes e translacbes) séo
realizadas provas de carga, que fornecem 0 comportamento carga versus

deslocamento vertical no topo das fundacdes. No caso de fundacdes profundas, é
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comum o0 emprego de provas de carga estatica e dinamica para verificacdo da
capacidade de carga e avaliacdo da contribuicdo da ponta e fuste das fundacoes.
Ainda Soares (2004) afirma que deve-se considerar a velocidade de aplicacéo
de carga no ensaio (lenta ou rapida) e, ultimamente, as condi¢des de inundacéo para
simulacdo de comportamento de solos colapsiveis. O ensaio possui critérios de
parada de execucado, sendo que um deles é verificacdo da estabilizacdo de recalques
doze horas apds o Ultimo estagio de carregamento. A Figura 5 apresenta uma
montagem tipica de prova de carga em fundacbes profundas com presenca do

sistema de ancoragem utilizado.

Figura 5 — Montagem tipica de prova de carga em funda¢des profundas.

FONTE: Soares, (2004)

A ABNT (Associacdo Brasileira de Normas Técnicas) possui normas para
especificar os procedimentos e métodos de ensaios a serem utilizados tanto em
provas de carga sobre placa (ABNT NBR-6489, 1984), como para fundacbes
profundas (ABNT NBR 12131, 1992). Através de provas de carga se tem um melhor
controle na verificacdo da capacidade de carga, sendo ainda a melhor maneira de se

comprovar a resisténcia ultima de uma fundacéo profunda afirma Soares (2004) apud
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Alonso, (1991). Contudo, a resisténcia limite nem sempre é atingida, e nestes casos
torna-se necessario utilizar métodos de extrapolacdo da curva carga versus recalque.

Cada vez mais as provas de carga séo realizadas com monitoramento através
de instrumentacao eletrénica em pontos caracteristicos (topo, fuste e ponta) de forma
a se verificar como esta ocorrendo a transferéncia de carga axial ao longo do
comprimento da fundagdo. Assim, torna-se possivel separar as contribuicbes em
termos de resisténcia lateral (atrito mobilizado no contato solo-fundacgéo) e em termos
de resisténcia de ponta.

2.9 PLAXIS 3D FOUNDATION

O PLAXIS 3D FOUNDATION € um programa PLAXIS tridimensional,
desenvolvido para andlise de construcbes de fundacdes, incluindo fundacbes de
plataformas e estruturas offshore. Faz parte da gama de produtos PLAXIS, um
conjunto de programas de elementos finitos que sdo usados em todo o mundo para
engenharia e projeto geotécnico.

O desenvolvimento do PLAXIS comecou em 1987 na Universidade de
Tecnologia de Delft como uma iniciativa do Ministério Holandés de Obras Publicas e
Gestdo da Agua. O objetivo inicial era desenvolver um cédigo de elemento finito 2D
facil de usar para a analise de aterros sobre solos moles das terras baixas da Holanda.
Nos anos seguintes, o PLAXIS foi ampliado para cobrir a maioria das outras areas da
engenharia geotécnica. Por causa do crescimento continuo atividades, a empresa
PLAXIS (PLAXIS bv) foi formada em 1993.

Em 1998, o programa PLAXIS 2D de deformacédo e andlise de tensdo para
Windows foi langado. Posteriormente um nucleo de calculo para calculos 3D de
elementos finitos foi desenvolvido, resultou no langcamento do programa PLAXIS 3D
TUNNEL em 2001.

PLAXIS 3D FOUNDATION é o segundo programa PLAXIS tridimensional e foi
desenvolvido em cooperagdo com a TNO-Diana bv.
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O software € dividido em trés partes: Input, Output e Curve. Esta divisao é
normalmente feita em programas baseados no Método dos Elementos Finitos (MEF).
No Input, é feito toda a modelagem do problema em estudo (pré-processamento) e
também é responsavel pelo processamento, no Output obtém-se todas as partes de
visualizacado de resultados (pés-processamento) e no Curve se obtém a construcéo
de graficos oriundos dos resultados que para o presente estudo sera de fundamental
importancia, pois através da curva Carga x Recalque serd possivel estimar a
capacidade de carga. Na Figura 6, € mostrado a interface grafica do PLAXIS 3D
FOUNDATION (Input), figura 7 a interface do (Output) e na figura 8 a ferramenta
(Curve).

Figura 6 — Interface grafica (Input) do PLAXIS 3D FOUNDATION
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Figura 7 — Interface gréfica (Output) do PLAXIS 3D FOUNDATION
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Figura 8 — Interface grafica (Curve) do PLAXIS 3D FOUNDATION

ﬁ.”; Plaxis 3D Foundation 1.2 Curves - [Piler,PF3 - Chart 1] - TCC_2 ROGERIO.PF3
[

2@ File Edit View Format Window Help MENU PRINCIPAL

ME e an aoeE@
i \‘ | MENU OPGCOES DE GRAFICOS Chart1
y (m)

0,000

Se3

-0,010

0015

0,020

0,025

0,030

-0,035

0
Loading (%) I GRAFICO l

FONTE: Autor (2018)



34

2.9.1 Método Dos Elementos Finitos Tridimensionais — Programa PLAXIS 3D
FOUNDATION®

Segundo Soares (2004) os problemas de engenharia geralmente sdo regidos
por equacdes diferenciais (eliptica, parabdlica ou hiperbdlica) e através dos métodos
numericos é possivel resolver as incégnitas destas equacfes. Em problemas de
engenharia geotécnica o primeiro método numérico utilizado foi o método das
diferencas finitas (MDF), onde a solugéo era obtida nos pontos de intersecédo da malha
utilizada para discretizar o problema em estudo. A desvantagem estava exatamente
na discretizacdo, pois para obter a solucdo em outro ponto uma nova malha era
necessaria. O MDF é um método eficiente quando se quer obter a solucéo
considerando a evolugdo no tempo. O método dos elementos finitos (MEF) surgiu
como uma solucdo melhor para a discretizacdo dos problemas e baseia-se no
principio da parcializacdo do caso em estudo em partes menores (elementos 2D e
3D).

Ainda segundo Soares (2004) a versdo bidimensional utiliza elementos
triangulares de 6 e 15 nos e a tridimensional utiliza elementos tipo cunha com 15 ndés
visto na figura 9. A verséo 3D trabalha com a criacdo de fatias 3D modeladas a partir
de planos frontal, intermediarios e posterior visto na figura 10.

Nestes planos séo desenhados todos os detalhes da geometria do problema a
ser analisado e, posteriormente, na fase de célculo, é permitida a selecdo das
geometrias que serdo consideradas na analise.

Segundo o manual do programa a convencao de sinal e a geracdo de um
modelo de elemento finito tridimensional (3D) no PLAXIS baseia-se na criagdo de um
modelo de geometria.

A geometria modelo envolve uma composigéo de planos de trabalho (planos x
z) e furos. Um plano de trabalho é uma seccao transversal horizontal a um nivel

vertical especifico (nivel y) em que as estruturas e cargas sao definidas (Figura 11).
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Figura 9 — Tipo de elementos 2D/3D e pontos de tensdo do PLAXIS.

Pontos de tensdo

RAWEAY

Triangulo 6 n6s Triangulo 15 nos Cunha 15 nés

FONTE: Soares (2004)

Figura 10 — Modelagem tridimensional no PLAXIS.
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Figura 11 — Sistema de coordenadas, exemplo de plano de trabalho e indicacdo de tensdes positivas.
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3 METODOLOGIA
3.1 Consideracfes gerais

O presente trabalho consiste em estimativa da capacidade de carga de um dos
elementos de fundacdo de um edificio real estudado por Soares (2004) em sua tese
de doutorado onde o mesmo usou o PLAXIS 3D TUNNEL. Neste sera o software
PLAXIS 3D FOUNDATION® fazendo uso de uma de suas ferramentas, a CURVE e os
dados gerados serdo extrapolados pelo método de Van Der Veen para determinagéo
da carga de ruptura.

A simulacdo no software busca se aproximar ao maximo da situacao real de
construcédo, levando em consideracao as fases construtivas, modelagem de blocos e
estacas, fases de carregamento de 25%, 50%, 75% e 100% da construcdo e os
parametros do solo obtidos através de ensaios e sondagens.

Para avaliar os valores de capacidade de carga resultantes da simulacao sera
feito o célculo da capacidade de carga do sistema solo-estaca para mesmo elemento
de fundacgdo utilizando métodos semi-empiricos mais difundidos nacionalmente:
Velloso (1981); Aoki-Velloso(1975); Descourt-Quaresma (1978); Teixeira (1996).

Ainda para dar mais respaldo a valores simulados sera feita comparacédo com
valores de prova de carga instrumentada realizada no mesmo elemento de fundacéo
em estudo. A prova de carga (PC2) disponibilizada por Soares (2004) avaliada pelo

mesmo como a mais criteriosa realizada na obra.

3.2 Edificio a ser modelado as fundacdes — Confort Flat Taguatinga

O edificio do presente estudo € um edificio do tipo comercial que se encontra
localizado no Setor Hoteleiro de Taguatinga, Distrito Federal na época do estudo de
Soares (2004) se chamava confort Flat Taguatinga, hoje se chama Park Inn (Figura
13) O mesmo é constituido por dois subsolos (2 garagens), um pavimento térreo, um
mezanino, primeiro pavimento, sete pavimentos-tipo (2-8), nono pavimento, uma
cobertura e atico, conforme se pode verificar na Figura 12. As etapas de infraestrutura
e superestrutura da obra foram iniciadas no 2.° semestre de 2001, e o edificio foi

concluido no 2.° semestre de 2003
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Figura 12 — Vista dos pavimentos do Edificio comercial Confort Flat (Atualmente Park Inn).
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Figura 13 — Vista do Edificio Confort Flat (atualmente Park Inn). Construido pela Antares Engenharia.
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Segundo Soares (2004) O edificio apresenta um total de 88 pilares sendo 29
pilares pertencentes a sua projecdo e 59 pilares correspondentes ao avanco das
garagens para os lados da projecéao do edificio, onde se encontram as cortinas de
contencéo. As lajes dos dois subsolos foram do tipo macica e nos pavimentos até o
9° piso as lajes séo nervuradas e com protensdo. Na cobertura e atico as lajes voltam
a ser macicas. Assim como no primeiro edificio, existe a presenca de vigas de
transicdo de grandes dimensdes. A Figura 14 apresenta um croqui com a projecao do

edificio e a projecdo do avanc¢o do estacionamento.

Figura 14 — Viséo geral do contorno do edificio e garagem.
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FONTE: Soares (2004)

A figura 15 mostra a planta de fundac¢des, sendo destacado (em vermelho) os
pilares e suas respectivas fundacdes que foram objetos de estudo na tese de Soares
(2004) e faz parte deste estudo.
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Figura 15 — Planta de fundagéo do edificio Confort Flat Taguatinga (atualmente Park Inn).
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FONTE: Soares (2004)

3.3 Procedimentos de modelagem e calculo no PLAXIS 3D FOUNDATION®

O processo de modelagem foi realizado em uma sequéncia que devem ser

seguidas criteriosamente, pois do contrario o programa pode apresentar erros na fase

de célculo, interrompendo o processo e impossibilitando a obtencdo de qualquer

resultado. A segui segue as etapas da modelagem resumidamente:

Ao iniciar o programa €é necessario nomear o projeto e definir as
unidades que irdo ser trabalhadas;

Definir as dimensfes da area a ser modeladas com seus respectivos
afastamentos;
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e Criacao de todos os matérias como: solo, concreto da fundacéo, paredes
de contencéo;

e Determinagao dos “Workplanes” ou plano de trabalho onde sera criado
um novo plano quando houver uma descontinuidade;

e Criacdo do “Borehole” ou “furo” onde poderemos determinar o nivel
d’agua e as camadas de solo e matéria que compde cada plano de
trabalho;

e Desenhar através de ferramentas especificas a geometria de cada
elemento a ser estudado, Ex.: Pilar, estaca, blocos, paredes e etc.

e Visualizacdo previa da modelagem em 3D para verificar se a mesma
esta seguindo o desejado;

e Geracao da malha 2D;

e Geracao da malha 3D;

e Insercdo das fases de célculo, definindo uma sequéncia logica de
escavacao, construcdo e carregamentos.

e Determinacdo dos pontos a serem analisados na ferramenta “Curve”
para que seja possivel gerar graficos.

e Iniciar os calculos e em seguida apés o processamento se abrira a janela
“Output” e “Curve” caso queira. Do contrario o programa apresentara

uma mensagem de erro.

3.4 Métodos semi-empiricos

Os resultados dos métodos semi-empiricos serdo gerados com auxilio da
planilha automéatica disponibilizada pelo Prof. Gérson Jacques Miranda dos Anjos
(UFPA), onde para o calculo da carga admissivel em estacas é realizado entrando-se
com dados dos valores de Nspt de cada camada, diametro da estaca, profundidade e

escolhendo o tipo da estaca, a Figura 16, mostra a interface da planilha.



41

Figura 16 —Interface da planilha de calculo de carga admissivel de estaca.
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4 RESULTADOS E DISCUSSOES

Nesta etapa serdo apresentados os resultados bem como as modelagens
realizadas no software em estudo, explicitando os principais resultados das analises
e se alcancou os objetivos. Finalizando com a comparacdo desses valores com

valores de reais de prova de carga e outros métodos.

4.1 Modelagem no PLAXIS 3D FOUNDATION®

O PLAXIS 3D FOUNDATION tem se mostrado uma ferramenta poderosa para
analise geotécnica de fundacgfes rasas, profundas, aterros, muros de contencao,
tuneis entre outras. Ele combina procedimentos de entrada gréfica, que permitem ao

usuario gerar modelos de elementos finitos complexos. Um de seus aspectos
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relevantes e a possibilidade de se aproximar ao maximo da situacdo real a ser
analisada.

Para isso uma série de funcionalidades e parametros a serem atribuidas antes
de realizar a modelagem propriamente dita, sendo necessério saber previamente, as
unidades, as grandezas fisicas e as vetoriais para simular as condi¢cdes dos
problemas que sera estudado. Todas estas questdes sdo comentadas e explicadas

nos tépicos a seguir.

4.1.1 DimensoOes do terreno

Ao iniciar novo projeto o primeiro passo a se executar é definir os parametros
de gravidade local e a densidade da agua, em 9,8m/s2 e 10 kN/m3, respectivamente,
em seguida escolhe-se as unidades de forca (kN), de comprimento (m) e de tempo
(dia) a serem trabalhadas, e por fim as dimensdes de x e y do terreno que foram 61m
na direcdo x e 45m na direcdo y, a Figura 17 mostra a interface do programa com

todos os parametros adotados.

Figura 17 — Interface da escolha dos parametros e dimensoes.
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FONTE: Autor (2018)

4.1.2 Caracteristicas dos materiais

Nesta etapa séo inseridos os parametros de peso especifico do solo saturado

(Y'sat) € ndo saturado (Yun), médulo de elasticidade (Eref), coeficiente de poisson (v),
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angulo de atrito (¢) e a coeséo do solo (c), também €& possivel mudar o modelo do
material, neste trabalho apenas foi usado o modelo de Mohr-Coulomb, mudar o tipo
de material, condicbes de carregamento drenado, ndo drenado para as camadas de
solo e material ndo poroso (concreto) para os blocos, estacas e muros de contencao.

O acesso ao menu de aplicacdo de materiais deve ser feito clicando no icone
“Marerials” no Menu Principal e em seguida “Soil and Interfaces” na barra de
ferramentas.

Todos os parédmetros do solo e concreto foram extraidos da modelagem
realizada por Soares (2004) na sua tese, através de sondagem SPT que estdo
presentes no (ANEXO A) deste trabalho. O concreto usado nas fundacfes tem
resisténcia caracteristica (fck) de 30 MPa e modulo de elasticidade (E) de 3,13 GPa,
esses valores foram aplicados nos blocos de fundacdo, estacas e paredes de
contencao.

Os dados do solo modelado segundo Soares (2004) apresentam trés camadas:
camada 1 de argila siltosa, camada 2 de areia argilosa e camada 3 silte arenoso,
nestas camadas seus parametros e profundidades estédo presentes na Tabela 6 e a

Figura 18 mostra como eles séo inseridos nos programas.

Tabela 6 - Parametros do solo

Prof. (m) @' (°) ¢ (kPa) E (KN/m?d) 1  Ysar (kKN/m3) Yun(KN/M3)  Ngp

Camadal 0-5 27 10 60000 0,3 17 16 0-3
Camada?2 3-134 25 15 120000 0,3 16,5 16 5-20
Camada3 13,4-40 27 5 240000 0,3 18 16,5 20-50

FONTE: Soares (2004)



Figura 18 — Interface de aplicacédo dos pardmetros do solo, estacas e blocos.
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4.1.3 Geometria da modelagem

A modelagem da geometria das paredes de contencéo e blocos de fundacao
foram feitos com a ferramenta de pontos e retas, ja para as estacas foram inseridas
na opc¢ao “pile”na Barra de Ferramentas geométricas em seguida selecionado a o tipo
“Massive circular pile” e o diametro (Figura 19).

Os carregamentos unitarios foram inseridos no centro dos blocos menores e
um carregamento distribuido ao longo de toda a superficie do bloco maior, devido
sobre este bloco existirem 12 pilares distribuidos de acordo com o projeto estrutural,

a Figura 20 mostra detalhadamente da modelagem geométrica.

Figura 19 — Interface para criagdo de estacas.
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FONTE: Autor (2018)
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Figura 20 — Modelagem geométrica sobre planos horizontais.
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FONTE: Autor (2018)

4.1.4 Criagdo das Camadas do solo e malha 2D e 3D

A criacdo das camadas do solo feita pelo “Borehole” ou furo na barra de
ferramentas geométricas, na figura 21. E inserido todas as camadas de solo com suas
respectivas extensodes e o nivel d’agua. As camadas 1, 2 e 3 foram inseridas de cima
para baixo e o nivel d’agua na cota -12m.



Figura 21 — Camadas do solo inseridas no borehole.
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FONTE: Autor (2018)

a7

Criacdo dos planos de trabalho ao longo da profundidade, estes planos

funcionam para limitar zonas homogénea de mesmas caracteristicas, vao até uma

nova zona com diferentes caracteristicas da anterior, seja adicionada a exemplo da

regido que limita o fim do bloco de coroamento ao inicio da estaca. Para cria-los é

preciso acessar a ferramenta “workplanes”na Barra de Ferramentas. Os planos foram

criados usando as cotas de projeto da profundidade das estacas da obra, as estacas

dos blocos triangulares e dos quadrados menores possuem diametro de 1,30 m a 1,50

m e comprimento de 12,00 m a 14,00 m atingindo as cotas -22,00 m e -24,00 m, no

bloco maior os diametros sao 1,30 m e os comprimentos das estacas variam de 10,00
m a 24,00 m chegando a cotas de -20,00 m e -34,00 m. (Figura 22).
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Figura 22 — Workplanes
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FONTE: Autor (2018)

ApOs inserir 0s “workplanes”,“borehole” e aplicar as propriedades do material
nos muros de contencgéo foram criadas as malhas 2D e 3D com malha pouco refinada
(discretizagao grosseira dos elementos finitos), pois para uma malha muito refinada
iria requerer um computador com alto poder de processamento, visto que nesse
trabalho foi utilizado um computador comum, o que poderia tornar o trabalho
demorado ou impraticavel. Mesmo assim essa limitacdo ndo impede a obtencdo de
resultados satisfatorio.

Para a criacdo das malhas basta clicar em “Generate mesh 2D”(na barra de
ferramentas geométricas), na janela que abrira e clicar em “Update”, desde modo foi
realizado o mesmo procedimento para a malha 3D clicando em “Generate mesh3D”.

A Figura 22 mostra as malhas 2D e 3D que foram criadas.

Figura 23 — Malha 2D e 3D.

FONTE: Autor (2018
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415 Fases de Calculo

Geradas as malhas 2D e 3D, na barra de ferramentas geométricas, clica-se em
“Calculation” e em seguida “Phases” para criar as fases, essas representando o
processo construtivo de como a obra foi executada, tornando a modelagem mais
proxima da realidade.

Nesta modelagem foram criadas nove fases, sendo a O a fase inicial, de 1 a 4
fases de escavacdo do solo até -7,00 m a cada 1,75m, fase 5 criacdo de estacas e
blocos, as fases de 6 a 9 corresponde aos carregamentos que simulam a sequéncia
construtiva de 25%, 50%, 75% e 100% até atingir a sua carga plena.

Essas fases podem ser consultadas separadamente no OUTPUT, ou seja, é
possivel observar o que acontece nas fases de escavacédo, na construcdo dos blocos
e estacas, e nos diferentes carregamentos separadamente, a Figura 24 mostra a

interface de criacdo de fases.

Figura 24 — Interface de organizagdo das fases de calculo.
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FONTE: Autor (2018)
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4.1.6 Criacédo das fundacdes e carregamentos

2

Nesta etapa para criacdo das fundacdes € necessario selecionar o “workplane’
desejado e clicar sobre a &rea desenhada do elemento de fundacdo. Uma janela se
abre para a sele¢do do material. Vista da Figura 25, as denominagdes “soil above”
gue se refere ao solo que esta acima e “soil below” para 0s que estao abaixo. Desta
maneira € possivel modificar o material desse solo clicando e selecionando os
matérias definidos na opg&o materiais feita anteriormente. Para estacas e blocos esse
solo é trocado para o concreto e para as areas de escavacao basta desmarcar opcao
e 0 solo na regido desmarcada deixa de existir.

Lembrando que essas operacdes devem ser feita em suas respectivas fases,
Ou Sseja, em escavacao se retira o solo, em estacas e blocos trocasse o material para
concreto e na fase de carregamento sdo inseridos os tipos de carregamentos nos
locais especificos.

A modelagem deve seguir criteriosamente as fases construtivas, pois uma
inversdo de qualquer uma delas ocorrera erro na modelagem e nenhum resultado €

obtido.

Figura 25 — Interface de organizagdo das fases de célculo.
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FONTE: Autor (2018)
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Figura 26 — Solo escavado e carregamentos.

L = v"
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Figura 27 — Estacas e Blocos modelados.
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FONTE: Autor (2018)

ApOs todos os blocos e estacas, 0s carregamentos unitarios preestabelecidos
sdo mudados pelos carregamentos reais de cada fase da obra, o carregamento é
crescente para 25%, 50%, 75% e 100% de construcao da obra, a Figura 27 mostra 0s
carregamentos que cada pilar descarrega nos blocos com as estacas ja modeladas,

a tabela 7 mostra os valores desses carregamentos para cada pilar.
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Tabela 7 — Carregamento dos pilares nos blocos.

Pilar/Porcentagem 100% 75% 50% 25% Unidade
Pilar 24 10516 7887 5258 2629 KN

Pilar 26 11149 8362 5575 2787 kN

Pilar 27 11661 8746 5831 2915 KN

Pilar 28 10638 7979 5319 2660 KN

Pilar 45 10787 8090 5394 2697 KN

Pilar 48 12188 9141 6094 3047 kN
Bloco Maior 200 150 100 50 kN/m?

FONTE: Soares (2004)

4.2  Gréficos de capacidade de carga gerados pelo CURVE

Executado os célculos, no Output no PLAXIS 3D FOUNDATION® resultados
obtidos e utilizado a ferramenta Curve com pontos definidos jA na modelagem para o
P24 como pode ser visto na Figura 28. Foram gerados graficos de carga x recalque
para cada uma das trés estacas desse bloco, estacas A, B e C. Esses graficos podem

ser vistos na Figuras 29.

Figura 28 — Pontos A,B e C definidos no P24.

FONTE: Autor (2018)



Figura 29 — Grafico gerados no Curve para P24.
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FONTE: Autor (2018)
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Como o carregamento de 100% de construcao da obra néo foi suficiente para
atingir a carga de ruptura, sera necessario entdo utilizar o método de Van Der Veen
para estimar essa carga. Isso foi feito exportando os valores para o Excel e aplicando
0 método.

Um fator importante observado foi que as estacas de um mesmo bloco
possuem valores de tenséo e deformacéo diferentes, devido a influéncia das tensdes
exercidas pelos outros elementos de fundacdo presentes, estacas mais proxima ao
bloco maior apresentam maior deformacdo e menor tensédo, e as estacas mais
distantes tém menor deformacéo e maior tensdo, o que pode ser observado pela
interferéncia dos elementos de fundacdes proximos mostrado na Figura 30, as regidoes
de isovalores de deformagéo.

Figura 30 — Isovalores de deformacéo

FONTE: Autor (2018)
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4.3 Extrapolacdo de Van Der Veen para modelagem PLAXIS 3D
FOUNDATION®

Apébs importados os valores obtidos no software PLAXIS 3D FOUNDATION®
foi criado novamente o gréfico Carga x Recalque para que assim fosse possivel fazer

a extrapolacédo. (Tabela 8).

Tabela 8 — Valores importados do software

PLAXIS 3D
Carga |Recalque
(KN) (mm)

0 0
919,61| 1,505041
1366,10| 2,003362

1789,64| 2,507805
2189,21| 3,017445
2578,57| 3,52951
2944,42| 4,049891
3111,32| 4,314984
3429,13| 4,850288
3505,33| 4,992659

FONTE: Autor (2018)

O processo sugerido por Van Der Veen (1953), arbitram-se varios valores para

a carga de ruptura Qr. Para cada um desse valores arbitrados, é conhecido os
diversos valores da Q da tabela acima, calcula-se entdo o valor —In(1 — Q/Qr) como

pode se visto na tabela 9.



Tabela 9 — Valores de estimados para aplicacdo do método.

Carga

-Ing1:QQr)

Recalque

(KN)

5500

6000

7000

8000

9000

10000

(mm)

0,00 0

0 0

0

0

0

0

919,61

0,182963| 0,1663

71| 0,140841

0,122112

0,107784

0,096468

1,505041

1366,10

0,285526| 0,258

36| 0,217108

0,187248

0,164625

0,146888

2,003362

1789,64

0,39362| 0,3542

12| 0,295262

0,253223

0,221706

0,197189

2,507805

2189,21

0,50756| 0,4539

22| 0,375048

0,319724

0,278716

0,247078

3,017445

2578,57

0,632674

0,5617

0,459446

0,389081

0,337583

0,298213

3,52951

2944,42

0,766467

0,674789

0,545815

0,458948

0,396244

0,348766

4,049891

3111,32

0,834006

0,730959

0,58784

0,492519

0,424192

0,372705

4,314984

3429,13

0,976779

0,847515

0,673101

0,559738

0,479673

0,419939

4,850288

3505,33

1,014269

0,877603

0,694671

0,576549

0,493446

0,431603

4,992659

FONTE: Autor (2018)
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A partir dos valores da tabela 9 é criado o grafico de Van Der Veen (Figura 31)

onde para carga de ruptura tem-se uma curva e dessas curvas a que mais se

assemelha com uma reta, ou seja, fazendo-se uma regressao linear e verificando-se

aguela que fornece um coeficiente de determinacdo R2 mais proximo de 1 (um), logo

os valores de a e b presentes na reta, podemos elaborar a curva de extrapolacao

(Tabela 10).
Figura 31 — Gréfico de Van Der Veen do P24-A
Grafico de Van Der Veen
X =-In(1-s/sr)
0 0,2 0.4 , 0.8 1 1,2
0
1 A \
2 N SIS
g \\
é 3 \
]
5 =8 693X T UH3 N, ~=. *
Y 2 goslg y|=7.5641% + 06 v =6.4205% + 0,56
y 4 Rz= 09842 RZ= 0 9858
——5500 —=— 6000 7000
8000 ——9000 —e— 10000

FONTE: Autor (2018)
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Tabela 10 — Valores coeficientes da extrapolacao.

Linhas de Tendéncia Parametros

2
aor (KN) |coef. ang.|coef. lin. |R o b

5500 4,984 0,45 0,9803| 0,200642| -0,09029
6000 5,731 0,45 0,9755| 0,17449| -0,07852
7000 6,420 0,56 0,9858| 0,155763| -0,08723
8000 7,564 0,60 0,9842| 0,132203| -0,07932
9000 8,693 0,63 0,9818| 0,115035| -0,07247
10000 10,201 0,34 10,9825/ 0,09803| -0,03333

FONTE: Autor (2018)

De posse das variaveis em estudo (Qr,a e b ), estima-se se valores de recalque
e calcula-se varios valores Q para construir o grafico que representa a curva de
extrapolacdo da prova de carga experimental que ndo atingiu a ruptura. Como pode

ser visto para as estacas A, B e C do bloco de fundacao P-24. (Figuras 32,33 e 34).

Figura 32 — Extrapolacéo de Van Der Veen no PLAXIS 3D FOUNDATION (P24-A).
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FONTE: Autor (2018)
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Figura 33 — Extrapolagéo de Van Der Veen no PLAXIS 3D FOUNDATION (P24-B)

Figura 34 — Extrapolacéo de Van Der Veen no PLAXIS 3D FOUNDATION (P24-C)
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FONTE: Autor (2018)

6000

6000

7000

7000

8000

8000

58



59

As extrapolacfes por Van der Veen resultaram em cargas de ruptura descritas
no quadro resumo na Tabela 11. De posse desses valores calculou-se a tensao,
dividindo o valor de carga pela area da estaca, em seguida levando em consideracao
o critério de Feld apud MORAES (1976) para perda de eficiéncia para um grupo de

estacas, obteve-se a tensdo para um grupo de trés estacas.

Tabela 11 — Quadro resumo das cargas de ruptura.

PLAXIS 3D FOUNDATION

P24 Carga Carga87%* Tenséo

(kN) (kN) (kN/m?2)

Estaca A 6928,62 6027,89 3914,21
Estaca B 6940,07 6037,86 3920,69
Estaca C 6947,63 6044,43 3924,95

*valor de perda de eficiéncia em conjunto de estacas para blocos triangulares
FONTE: Autor (2018)

4.4  Célculo dos métodos semi-empiricos

Os calculos semi-empiricos foram realizados com auxilio de uma planilha
automatica disponibilizada pelo Prof. Gérson Jacques Miranda dos Anjos (UFPA),
onde para o calculo da carga admissivel em estacas é realizado entrando-se com
dados dos valores de Nspt disponibilizado por Soares(2004) realizado no local da obra
(Anexo A) para cada camada, diametro da estaca estudada do P24 que € de 1400mm,
profundidade de 13,4m (usado 14m pois a planilha sé recebe valores inteiros) e
escolhendo o tipo da estaca escavada sem revestimento, a Figura 34, mostra a

organizacao da planilha usada.



Figura 35 — Resultado dos métodos semi-empiricos (P24-A).
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Figura 36 — Graficos dos resultados métodos semi-empiricos (P24-A).
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Tabela 12 — Quadro resumo resultados métodos semi-empiricos (P24-A)

Método Capacidade de Carga Carga Admissivel da
Total da Estaca (kN) estaca (kN)
Velloso 8801,0 3520,0
Aoki-Velloso 11280,0 5640,0
Decoourt-Quaresma 11438,0 4482,0
Texeira 11831,0 5040,0
Alonso 11759,0 5788,0
Média dos Processos 11022,0 4894,0

FONTE: Autor (2018)

4.5 Provade Carga Instrumentada

Segundo Soares (2004) foram realizas nesta obra duas provas de carga (PC1)
e PC2) estaticas em estacas do tipo escavada. Os procedimentos para a execugao
dos ensaios seguiram a Norma Brasileira ABNT NBR 12131 (1992), realizando-se o
ensaio lento em ambas estacas. A Figura 35 apresenta a localizacdo das duas provas

de carga na planta de fundacdes da obra.

Figura 37 — Localizacéo das provas de carga PC1 e PC2.
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A prova de carga (PC2) que coincide com o objeto desse estudo modelado no
PLAXIS 3D FOUNDATION identificada na modelagem como (P24-A). Segundo
Soares (2004) foi realizada numa estaca com comprimento de 13,40 m, onde foi
utilizado um macaco de menor escala (500 kN) e célula de carga de 1000 kN. Com
incrementos de carga foram de 200 kN. Também néo foi atingida a ruptura e o valor
extrapolado foi de 3618 kN. A Figura 38 e 39 apresenta os resultados das duas provas
de carga em termos de curvas carga versus recalgue e a mesma curva para (PC2)

respectivamente, disponibilizados por Soares (2004).

Figura 38 — Resultados das provas de carga PC1 e PC2.
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FONTE: Soares (2004)
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Figura 39 — Resultados das provas de carga PC2.
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4.6 Comparacéo dos resultados

Os resultados graficos, carga x recalque, comparativo entre a valores obtidos
na modelagem tridimensional e prova de carga pode ser vistos na Figura 40. Mostra
uma razoavel concordancia indicando que os valores do PLAXIS 3D FOUNDATION®
foram superestimados mais ndo tanto quanto os resultados dos métodos semi-
empiricos, como pode ser visto na Figura 41. Ou seja, os valores de capacidade de
carga da modelagem se mantiveram na faixa intermediaria.

Diversos fatores podem causar essa diferenca de resultados, uma dela esta
relacionada aos parametros do solo inseridos na modelagem e a discretiza¢éao do solo
modelado. Soares (2004) em sua tese afirma que € necessario uma retro-analise de
modo que novos modulos de elasticidade para as camadas de solo levassem se
aproximar o maximo possivel da curva experimental da prova de carga e com relacéo
a coesao e ao angulo de atrito, verifica-se pouca influéncia destes no final das curvas

retro-analisadas em relacdo a curva experimental.
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Figura 40 — Gréfico comparativo de prova de carga com estaca P24-A
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Figura 41 — Gréfico comparativo das capacidades de cargas calculadas.
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A diferenca em relac&o a prova de carga com os valores obtidos no PLAXIS 3D
FOUNDATION foi de 3310,68 kN em quanto a dos métodos semi-empiricos a
diferenca foi de 7404,00 kN, ou seja, o software se aproximou mais dos valores
experimentais de prova de carga.

Essa diferenca de valores entre os métodos ainda é reduzida quando
analisadas em termos da carga admissivel empregando fator de seguranca para cada
respectivo método. Aplicando os fatores de seguranca minimos estabelecidos pela
norma ABNT NBR 6122/1996 - Projeto e execucdo de fundacdes que estabelece
Fs=2,0 para estacas e tubulées sem prova de carga, Fs=1,6 para estacas com prova
de carga. Para os métodos semi-empiricos na planilha de célculo adotado o fator de
seguranca de Fs=2,25. Como podem ser vistos na Figura 42.

Agora a diferenca em relacdo a prova de carga com os valores obtidos no
PLAXIS 3D FOUNDATION aplicando fator de seguranca foi de 604,05 kN em quanto
a dos métodos semi-empiricos também com fatores de seguranca a diferenca foi de
1276 kN, portanto, o software ainda continua ainda mais proximos dos valores

experimentais de prova de carga.

Figura 42 — Gréafico comparativo das capacidades de cargas calculadas com fator de seguranca.
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5 CONCLUSOES

E importante analise de varios métodos de determinacio da capacidade de
carga de uma fundacao, seja ela superficial ou profunda. E ter a disposicéo varios
métodos para calculo de capacidade garante maior confiabilidade no
dimensionamento, pois podemos fazer a comparacdo entre eles e verificar com
facilidade qualquer discrepancia.

O PLAXIS 3D FOUNDATION® se mostrou bastante satisfatério quando usado
para estimar capacidade de carga, houve boa concordancia entre as curvas
experimental/numérica que poderiam ser ainda melhores se o modelo fosse calibrado
com retro analises dos parametros do solo. Os recalques calculados dos elementos
de fundacgbes estudado forneceram valores satisfatérios, na faixa esperada para o
porte do edificio e solo da regiéo.

O programa em relacdo aos métodos semi-empiricos conseguiu valores mais
préximos dos dados experimentais da prova de carga, isso devido ao método de
elementos finitos (MEF) implementado no software, o uso adequado dessa ferramenta
e da precisdo nos dados de entrada, pode produzir resultados bastante aceitaveis
para o uso pratico de problemas de engenharia geotécnica. A simulacdo do
comportamento do solo permite um melhor entendimento do problema pelo
engenheiro, permitindo-lhe quantificar os efeitos das propriedades do material e as
condi¢cbes de carregamento (interno e externo).

Seria interessante que a utilizacdo de softwares como os estudado aqui,
poderia constituir uma boa opcédo para estudos em universidades em disciplinas na
graduacdo como solos, fundacfes, outra da area de geotecnia ou estruturas, pois o
aluno pode ter um pouco mais de sensibilidade no estudo de interacdo solo-estrutura
(ISE).
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6 SUGESTOES PARA PESQUISAS FUTURAS

A fim de continuar este trabalho, a mesma analise desse estudo poderia ser
feita a modelagem no PLAXIS 3D FOUNDATION® para elementos de fundacdes
isoladamente e comparar com valores da modelagem completa, como o0 caso
estudado, para verificar o grau de influéncia das fundacdes adjacentes nos resultados
de capacidade de carga. E comparar esses valores com os resultados da prova de
carga (PC1) para verificar se sao razoaveis.

Também, como proposta para futuros trabalhos, recomenda-se um estudo da
influéncia dos parametros do solo, através do programa PLAXIS 3D FOUNDATION®,

na Interacdo-Solo-Estrutura.
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ANEXO A - Sondagem SPT

Figura 43 - Boletim de sondagem SPT -01(Confort Flat).

SPT-01
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FONTE: Soares (2004)




Figura 44 - Boletim de sondagem SPT -02 (Confort Flat).
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FONTE: Soares (2004)
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Figura 45 - Boletim de sondagem SPT -03 (Confort Flat).
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Figura 46 - Boletim de sondagem SPT -04 (Confort Flat).
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Figura 47 - Boletim de sondagem SPT -05 (Confort Flat).
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