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RESUMO 

 

Segundo Ausubel, a utilização de atividades experimentais é de grande importância 

didática, pois, a depender da forma como são aplicadas, torna o processo de 

aprendizagem significativo, além de estimular o interesse dos alunos e sua 

curiosidade, fazendo a ligação entre teoria e prática. Especificamente, experimentos 

na área de mecânica quântica quase sempre são de difícil realização, pois necessitam 

de ambientes controlados (vácuo, temperatura, etc.). Neste contexto, o presente 

trabalho traz um experimento simples que se baseia no estudo de sistemas em 

dimensões nanométrica, que é atualmente de grande interesse tanto para estudo em 

física básica, devido aos efeitos quânticos, quanto às áreas tecnológicas, no 

desenvolvimento de certos componentes. Em particular, no decorrer deste trabalho é 

apresentado um efeito quântico interessante, que é o comportamento da condutância 

elétrica quando dois fios metálicos são postos em contato, formando contatos de 

dimensões nanométricas. Nessas condições, a condutância passa a variar em 

múltiplos inteiros de um quantum. A observação desse fenômeno pode ser feita 

utilizando uma montagem experimental relativamente simples, necessitando apenas 

da construção de um circuito elétrico amplificador, fios metálicos, e de um osciloscópio 

digital. Assim, quando os fios são postos perpendicularmente em contato surge uma 

resistência elétrica que, a depender das dimensões do contato, está relacionada 

diretamente ao quantum de condutância. A tensão que surge entre esse resistor 

(devido ao contato entre os fios) pode ser amplificada, utilizando um amplificador 

operacional, e medida por meio do osciloscópio digital. O experimento foi realizado 

utilizando fios metálicos de cobre e tungstênio, com diâmetros de 0,20mm e 0,25mm, 

respectivamente. Os resultados mostraram que de fato a condutância é quantizada 

em múltiplos de um quantum, evidenciando o comportamento quântico no contato 

formado entre os fios. Todavia, apareceram patamares intermediários, que são 

devidos a impurezas da rede. No entanto, isso não foi detalhado ao longo do trabalho, 

mas serve como base para pesquisas futuras. Por fim, a partir dos resultados obtidos, 

foi encontrado o valor para a constante de Planck em diferentes casos, que se mostrou 

com boa concordância experimental.   

 

Palavras-chave: Experimentos em física. Condutância quântica. Efeitos quânticos.  

                             Formalismo de Landauer. 



 
 

ABSTRACT 

 

According to Ausubel, the use of experimental activities is of great didactic importance, 

since, depending on how they are applied, it makes the learning process meaningful, 

as well as stimulating students' interest and their curiosity, making the connection 

between theory and practice. Specifically, experiments in quantum mechanics are 

almost always difficult to perform because they require controlled environments 

(vacuum, temperature, etc.). In this context, the present work presents an experiment 

that is based on the study of systems in nanometric dimensions, which is currently of 

great interest both for study in basic physics, due to the quantum effects, as for the 

technological areas, in the development of certain components. In particular, in the 

course of this work an interesting quantum effect is presented, which is the behavior 

of the electrical conductance when two metallic wires are brought into contact, forming 

contacts of nanometric dimensions. Under these conditions, the conductance starts to 

vary in integer multiples of a quantum. The observation of this phenomenon can be 

done using a relatively simple experimental setup (making it feasible to use in the 

disciplines of Physics laboratories), requiring only the construction of an electric 

amplifier circuit, metallic wires, and a digital oscilloscope. Thus, when the wires are 

placed perpendicularly in contact, an electrical resistance arises that, depending on 

the dimensions of the contact, is directly related to the quantum of conductance. The 

voltage that arises between this resistor (due to the contact between the wires) can be 

amplified, using an operational amplifier, and measure by the digital oscilloscope. The 

experiment was carried out using copper and tungsten metal wires, with diameters of 

0.20mm and 0.25mm, respectively. The results showed that in fact the conductance is 

quantized in multiples of a quantum, evidencing the quantum behavior in the contact 

formed between the wires. However, intermediate levels appeared, which are due to 

impurities of the network. This was not detailed throughout the paper, but serves as a 

basis for future research. Finally, from the results obtained, the value for Planck's 

constant was found in different cases, with good experimental agreement. 

 

Keywords: Experiments in physics. Quantum conductance. Quantum effects.  

                    Formalism of Landauer. 
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1 INTRODUÇÃO 

 

 

No ensino de ciências, de uma forma geral, é interessante que o professor 

consiga trazer para aluno uma aprendizagem que seja de fato significativa, isto é, que 

o aluno consiga construir os novos conceitos em sua estrutura cognitiva baseados nos 

seus conhecimentos prévios. Contudo, a depender do conteúdo, se torna bastante 

complicado trazer isso à tona apenas por meio de aulas puramente expositivas.  

Geralmente a abordagem da Física está relacionada à mera aplicação de 

fórmulas e resolução de problemas que já estão prontos, fazendo com que os alunos 

não os criem nem os investiguem para resolvê-los (BORRAGINI, 2018). Sendo assim, 

torna-se difícil ocorrer uma aprendizagem significativa, os alunos simplesmente 

decoram tudo e alguns dias depois acabam por esquecer o que foi ensinado. 

Em alguns casos, torna-se mais difícil de ensinar alguns conceitos utilizando 

aulas puramente expositivas, como, por exemplo, ensinar o conceito de campo, de 

corrente elétrica, resistência elétrica, ou até mesmo conceitos de Mecânica Quântica. 

Portanto, cabe ao professor estimular os alunos através de materiais didáticos 

diferentes, como o uso de atividades experimentais.   

No que se refere a experimentos em Mecânica Quântica, sua maioria envolve 

medidas experimentais que necessitam de aparelhos bastante sensíveis, em 

condições especiais (como o alto-vácuo, baixa temperatura), por isso são geralmente 

de alto custo financeiro, trabalhosos e de difícil interpretação (RODRIGUES; 

UGARTE, 1999). 

Neste contexto, o experimento que propomos neste trabalho é baseado no 

trabalho de Costa-Krämer (Costa-Krämer, 1995), que utiliza a formação espontânea 

de estruturas nanométricas entre fios macroscópicos justapostos para analisar o 

comportamento da condutância elétrica. Classicamente, a condutância elétrica é 

diretamente proporcional a área da seção transversal e inversamente proporcional ao 

comprimento do fio. Mas o que aconteceria se diminuíssemos a área da seção 

transversal a níveis nanométricos? E se ao mesmo tempo o comprimento do fio fosse 

menor que o livre caminho médio dos elétrons, o que aconteceria com a condutância? 

A análise teórica feita via formalismo de Landauer mostra que a condutância passa a 

variar em etapas discretas, ao invés de contínuas (TOLLEY et al., 2013), tornando-se 

múltiplas de um quantum, o que foi comprovado experimentalmente. 
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Normalmente experimentos com nanofios são feitos usando outras técnicas 

experimentais bem mais sofisticadas do que as utilizadas neste trabalho, mas ainda 

assim os resultados obtidos são bastante semelhantes.  

O aparato experimental proposto é relativamente simples e de fácil aquisição, 

sendo composto de um pequeno circuito elétrico amplificador, fios (que são postos em 

contato) e um osciloscópio digital. Ao encostar dois fios perpendicularmente podemos 

fazer passar uma corrente elétrica e analisar o comportamento da resistência ao 

encostar e desencostar esses fios. A medida que as dimensões do contato formado 

entre os fios se tornam nanométricas, o comportamento ondulatório é o mais 

adequado para caracterizar o transporte de carga. Sendo assim, o nanocontato se 

comporta como um guia de onda, que tem influência direta na quantização da 

condutância (RODRIGUES; UGARTE, 1999) que passa a variar em múltiplos de um 

quantum, evidenciando o comportamento quântico.  

Os experimentos desenvolvidos e descritos neste trabalho seguem uma análise 

qualitativa e quantitativa da quantização da condutância em nanocontatos metálicos 

de cobre e tungstênio formados pela justaposição de dois fios. Este experimento foi 

utilizado para elaborar uma proposta de ensino partindo de concepções cognitivistas, 

como as de Ausubel, propondo um roteiro experimental que permita ao aluno uma 

atividade investigativa do fenômeno em questão. 

Pela praticidade e os bons resultados experimentais, além do grande potencial 

didático, o experimento proposto pode ser facilmente utilizado nas disciplinas de 

laboratórios didáticos de Física, facilitando que a aprendizagem seja significativa. 

De forma didática, os tópicos, que se seguem, podem ser brevemente 

resumidos da seguinte maneira: 

No tópico 2 são apresentados os objetivos gerais e específicos do trabalho. Na 

Fundamentação Teórica, inicialmente, no tópico 3.1 apresentamos uma breve 

discussão sobre a importância de experimentos para o ensino de Física, trazendo 

aspectos relevantes para o processo de ensino-aprendizagem. Logo após, no tópico 

3.2 é apresentado o marco teórico escolhido que embasa a estrutura pedagógica 

deste trabalho, que é a teoria da aprendizagem significativa de David Ausubel, onde 

é discutido os principais elementos que caracterizam uma aprendizagem significativa. 

No tópico 3.3 a importância das atividades experimentais para o ensino de Física à 

luz dessa teoria e 3.4 o papel do professor como mediador. Em seguida, no tópico 4.1 

é discutido a teoria da condução elétrica a partir do modelo de Drude, onde é usado a 
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aproximação do elétron não interagente e usado a teoria cinética dos gases para 

modelar o movimento dos elétrons em um fio. No tópico 4.2 é definida a condutividade 

elétrica e em seguida, no tópico 4.3, a condutância elétrica. No tópico 4.4, dando 

continuidade à teoria da condução elétrica, é usado o modelo de Sommerfeld, onde 

agora o elétron é considerado como uma onda de probabilidade. No 4.5, é abordado 

resumidamente a distribuição de Fermi-Dirac. No 4.7, discutido os conceitos relativos 

as correntes quânticas. No 4.8, abordado a condutância quântica, tanto em 1D, quanto 

em 3D, via formalismo de Landauer. Em seguida, são apresentados os limites 

clássico, semi-clássico e quântico para a condutância elétrica.  

Na Metodologia, é apresentado como foi obtido os resultados deste trabalho, 

como a obtenção das curvas de condutância e da constante de Planck. E, logo após, 

são apresentados os resultados obtidos no experimento.   

Por fim, as considerações finais, onde deixamos claro as contribuições 

relevantes deste trabalho.  
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2 OBJETIVOS  

 

 

 Classicamente se espera que a condutância varie linearmente com a seção 

transversal do fio e seja inversamente proporcional ao seu comprimento. Mas, e se 

diminuirmos a seção transversal cada vez mais, o que pode acontecer? Será que a 

condutância ainda irá depender diretamente de fatores geométricos, como a área e o 

comprimento?  

Nesta perspectiva, o objetivo geral deste trabalho é a construção de uma 

montagem experimental que permita a criação de contatos metálicos, onde 

fenômenos quânticos tornam-se preponderantes. Em particular, pretendemos 

observar a quantização da condutância utilizando fios metálicos justapostos, formando 

nanocontatos de dimensões da ordem do comprimento de onda dos elétrons na 

superfície de Fermi. Esse aparato experimental pode ser facilmente montado por 

estudantes de graduação, pois os materiais necessários são de fácil obtenção, 

podendo ser utilizado em laboratórios didáticos de Física. 

 Especificamente, pretendemos analisar a quantização da condutância em 

fios metálicos de cobre e tungstênio, onde esperamos observar os canais de 

condutância e assim fazer as devidas análises dos dados utilizando modelos físicos 

já existentes na literatura. Com isso, é possível obter também a constante de Planck, 

com certa precisão.  
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3 FUNDAMENTAÇÃO TEÓRICA: Ensino de Física e Aprendizagem Significativa 

Utilizando Atividades Experimentais 

 

 

3.1 EXPERIMENTAÇÃO E ENSINO DE FÍSICA 

 

 

 A Física é uma ciência essencialmente experimental, seja a partir de 

observações de fenômenos naturais ou da produção de experimentos controlados em 

laboratório. Estes experimentos são projetados para que certos fenômenos sejam 

observados sob condições controladas, de forma que seja possível, por exemplo, 

fazer testes e previsões teóricas.  

 Uma atividade experimental é, sem dúvida, uma importante ferramenta para 

o ensino de Física e de Ciências de uma forma geral. A atividade experimental é algo 

indispensável no ensino de Física e esse tipo de atividade pode ser orientada para a 

consecução de diferentes objetivos. Dentre os objetivos, pode-se tomar como 

essencial, que atividades experimentais fazem uma “ponte” entre o que está sendo 

visto em sala de aula, como modelos simplificados, com toda a complexidade do 

mundo real (LEIRIA; MATARUCO, 2015), e, segundo Araujo e Abib (2003, p. 176): 

 

[...] O uso de atividades experimentais como estratégia de ensino de Física 
tem sido apontado por professores e alunos como uma das maneiras mais 
frutíferas de se minimizar as dificuldades de aprender e de se ensinar Física 
de modo significativo e consistente. 

 

  Nos cursos de Física, boa parte das disciplinas estão voltadas a conteúdos 

da Física clássica, que tange com o mundo macroscópico. Dessa maneira, os 

estudantes assimilam melhor as ideias com coisas concretas. Assim, entender o 

mundo quântico se torna um grande desafio. Nesse momento, a realização de 

experimentos de Mecânica Quântica constitui-se um poderoso recurso instrucional e 

instrumental para possibilitar a visualização do que acontece na prática, além de 

despertar habilidades técnicas de investigação experimental. Portanto, a 

experimentação nesse sentido surge para estreitar o elo com a teoria e traz um caráter 

motivador ao aluno para o estudo da Física (ALVES, 2006), além de ser uma excelente 

ferramenta didática que diminui o nível de abstração dos conteúdos trabalhados pelos 
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professores em sala de aula. De acordo com as orientações currículares do estado da 

Bahia (2005 apud LEIRIA; MATARUCO, 2015, p. 32216): 

 

A experimentação é imprescindível durante a apresentação dos conteúdos 
das disciplinas da área de Ciências da Natureza e Matemática. No caso 
particular da Física, é um recurso utilizado para materializar um conceito, 
tornando-se um facilitador da abstração. 

 

 Convém ressaltar que a utilização de atividades experimentais servem para 

melhor desenvolver a compreensão de determindados conceitos, além de fazer o 

aluno sair da postura passiva e começar a perceber e agir sobre o seu objeto de 

estudo, relacionando-o com o acontecimento e buscando as causas dessa relação, 

procurando, portanto, uma explicação causal para o resultado de suas ações e/ou 

interações (AZEVEDO, 2004).  

 

 

3.2 APRENDIZAGEM SIGNIFICATIVA DE DAVID AUSUBEL 

 

 

Visto a importância da experimentação para o ensino de Física, vamos 

embasá-la segundo a teoria de David Ausubel. Psicólogo, sempre preocupado com o 

processo de aprendizagem humana, desenvolveu uma importante teoria da 

aprendizagem, denominada de Teoria da Aprendizagem Significativa (LEIRIA; 

MATARUCO, 2015). 

A teoria apresenta um enfoque cognitivista, pois se embasa em princípios 

organizacionais da cognição humana, buscando valorizar o conhecimento prévio do 

aluno e o entendimento das informações, para que as mesmas não sejam apenas 

memorizadas, mas se apoiem e interajam com os conhecimentos já existentes na 

estrutura cognitiva do indivíduo.  

Segundo Ausubel, os conhecimentos prévios que os alunos trazem em sua 

estrutura cognitiva devem ser valorizados pelos professores, pois servem como 

âncora para a formulação e construção de novos conhecimentos. Segundo ele, a 

aprendizagem pode ocorrer de duas maneiras: aprendizagem mecânica ou 

aprendizagem significativa.  
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A aprendizagem mecânica ocorre quando a mesma se dá apenas de forma 

arbitrária ou literal, com pouca ou nenhuma associação a conceitos previamente 

estabelicidos na estrutura cognitiva do sujeito. Nesse caso, não há interação dos 

novos conceitos com os previamentes estabelecidos e assim a aprendizagem é dita 

mecânica, não significativa, ou puramente automática (MOREIRA, 2012).   

No entanto, em alguns momentos esse tipo de aprenzidagem é inevitável, 

sendo necessária para estabelecer certos conceitos e servirem de base para a 

construção de novos conhecimentos.  

A aprendizagem significativa por sua vez, é um processo caracterizado pela 

construção de conhecimentos baseados no que o aluno já conhece. Os novos 

conhecimentos adquiridos interagem significativamente com os subsunçores, que o 

indivíduo possui. Assim, segundo Moreira (MOREIRA, 2012, p. 2, tradução nossa)1: 

 

Aprendizagem significativa é aquela em que ideias expressas 
simbolicamente interagem de maneira substantiva e não-arbitrária com aquilo 
que o aprendiz já sabe. Substantiva quer dizer não-literal, não ao pé-da-letra, 
e não-arbitrária significa que a interação não é com qualquer ideia prévia, 
mas sim com algum conhecimento especificamente relevante já existente na 
estrutura cognitiva do sujeito que aprende.  

 

Em suma, subsunçor pode ser entendido como um conhecimento específico 

que existe na estrutura cognitiva do indivíduo, que permite dar significado a novos 

conhecimentos, isto é, serve como ideia âncora para apoiar os conhecimentos que lhe 

são apresentados ou por ele descobertos (MOREIRA, 2012). 

Segundo Ausubel (1963, p. 58, apud MOREIRA; PALMERO; CABALLERO, 

1997, 2), a aprendizagem significativa é o mecanismo humano, por excelência, para 

adquirir e armazenar grande quantidade de ideias e informações, independente do 

campo de conhecimento. Por exemplo, os conhecimentos prévios sobre a 

fenomenologia da Lei de Ohm, condutância elétrica, resistência elétrica, corrente 

elétrica, entre outros, certamente servem de subsunçores para entender a 

quantização da condutância, dando-lhe mais estabilidade cognitiva e talvez maior 

clareza. O subsunçor quantização da condutância poderá servir de ideia-âncora para 

entender outros fenômenos semelhantes presentes na Física de uma modo geral.   

                                                             
1 Aprendizaje significativo es aquél en el que ideas expresadas simbólicamente interactúan de manera 
sustantiva y no arbitraria con lo que el aprendiz ya sabe. Sustantiva quiere decir no literal, que no es al 
pie de la letra, y no arbitraria significa que la interacción no se produce con cualquier idea previa, sino 
con algún conocimiento específicamente relevante ya existente en la estructura cognitiva del sujeto que 
aprende. 
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Progressivamente os subsunçores vão ficando mais estáveis e mais ricos em 

significados, podendo cada vez mais facilitar novas aprendizagens (MOREIRA, 2012). 

Como exemplo, poderíamos pensar no conceito de força. Qualquer criança tem esse 

conceito formado antes de chegar à escola, assimilando-o a esforço físico. Entretanto, 

mais adiante aprenderá que existem tipos de força na natureza, como a força 

eletromagnética, força gravitacional, e essas serão aprendidadas baseadas no 

subsunçor força. Então, esse subsunçor se tornou mais rico, com um maior 

significado, não apenas entendido como um esforço físico, mas também como atração 

devido a cargas elétricas de sinais opostos, a massa dos corpos, etc.   

Quando a modificação do subsunçor é bastante acentuada fala-se em 

subsunção derivativa (MOREIRA, 2012), quando apenas corrobora, reforça o 

subsunçor, usa-se o termo subsunção correlativa (MOREIRA, 2012). Por exemplo, 

quando um aluno de Física estuda a quantização da carga elétrica e posteriormente 

observa esses fenômeno de quantização na condutância, no momento angular, etc., 

certamente essa subsunção é correlativa. Em contrapartida, se o mesmo aluno estuda 

sobre energia potencial e cinética e confirma a conservação da energia mecânica, a 

subsunção é derivativa. Assim, um subsunçor pode ser ampliado, facilitando e 

auxiliando para que ocorra uma aprendizagem significativa.  

No entanto, nem sempre é assim. Subsunçores podem funcionar como 

bloqueador, um obstáculo epistemológico, como afirma Gaston Bachelard 

(MOREIRA, 2012). Por exemplo, pensar na estrutura da matéria como esferas rígidas 

e maciças pode atrapalhar de certa maneira o entendimento de conceitos da Mecânica 

Quântica. Logo, nem sempre os conhecimentos prévios se tornam um mecânismo 

facilitador para a aprendizagem significativa (MOREIRA, 2012).  

É interessante esclarescer que a aprendizagem significativa não é sinônimo de 

aprendizagem “correta”, mas são mais resistentes a mudanças conceituias, visto que 

estão interligadas a outros conhecimentos na estrutura cognitiva, por isso sua 

importância. (MOREIRA, 2012)  

Em essência, são duas as condições para a aprendizagem significativa 

(MOREIRA, 2012): 1) o material de aprendizagem deve ser potencialmente 

significativo2 e 2) o aprendiz deve apresentar uma predisposição para aprender. A 

primeira condição implica que o material de aprendizagem, seja ele livros, aulas, 

                                                             
2 Potencialmente significativo, pois os significados estão nas pessoas e não nos materiais. Não existe 
livro significativo, nem experimento significativo, etc. (MOREIRA, 2012)  
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roteiros experimentais, etc., tenha significado lógico (ou seja, que se relacione aos 

conhecimentos prévios do indivíduo) e a segunda, que o aprendiz tenha em sua 

estrutura cognitiva ideias-âncora relevantes com as quais esse material possa ser 

relacionado. Isto é, o material deve ser relacionável a estrutura cognitiva e o aprendiz 

deve ter os subsunçores necessários para fazer esse relacionamento de forma não-

arbitrária e não-literal (MOREIRA, 2012).   

 

 

3.3 UTILIZAÇÃO DE ATIVIDADES EXPERIMENTAIS VIA TEORIA DE DAVID 

AUSUBEL  

 

 

Como podemos relacionar atividades experimentais a aprendizagem 

significativa? Muitos trabalhos sugerem que as atividades experimentais constituem 

um dos recursos mais significativos no Ensino de Física (BORRAGINI, 2008). Todavia, 

os roteiros que são utilizados nos laboratórios didáticos de física geralmente são 

caracterizados por uma aprendizagem mecanicista, servindo apenas como uma 

“receita de bolo”, ditando procedimentos para comprovações de Leis ou teorias 

previamente estudadas, mas sem nenhuma indagação instigante ou motivadora 

(BORRAGINI, 2008). Atividades que fomentem dúvidas, e discussões são as mais 

relevantes. Caso não seja dessa maneira, as atividades experimentais não irão 

garantir uma qualificação necessária e suficiente sobre método científico3 (LEIRIA; 

MATARUCO, 2015). Ausubel ainda deixa claro que não basta ter um laboratório com 

vários equipamentos e materiais de experimentação, pois mesmo com todo esse 

aparato não há nenhuma garantia de que as atividades experimentais irão 

proporcionar uma aprendizagem significativa (LEIRIA; MATARUCO, 2015).  

Para construir atividades experimentais que visem a aprendizagem 

significativa, pode-se desenvolver alguns questionamentos que servirão tanto como 

orientação durante o processo experimental, como oportunidade para os alunos 

testarem suas hipóteses (LEIRIA; MATARUCO, 2015).  

                                                             
3 Entende-se o método científico como um conjunto de orientações gerais que facilita ao cientista 
planejar sua investigação, formular suas hipóteses, realizar suas experiências e interpretar seus 
resultados, com objetivo de construir novos conhecimentos, ou mesmo ampliar os conhecimentos já 
existentes. Todavia, isso não quer dizer que sejam orientações infalíveis. O método científico pode ser 
aperfeiçoado. (GALLIANO, 1979) 
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Portanto, os experimentos devem ser realizados levando em consideração os 

conhecimentos prévios que os alunos possuem (seus subsunçores), fazendo-os 

questionar, discutir ideias e criar interações cognitivas entre os conceitos vistos no 

experimento com os que foram aprendidos em sala de aula. Assim, nos dizeres de 

Ausubel (ASUBEL, 1978, p. 4, apud MOREIRA, 1999, p. 163): “[...] o fator mais 

importante que influencia a aprendizagem é aquilo que o aluno já sabe. Descubra isso 

e ensine-o de acordo”. 

 

 

3.4 O PAPEL DO PROFESSOR COMO MEDIADOR DO CONHECIMENTO 

 

 

Dicussões sobre o processo de ensino-aprendizagem em Física é um assunto 

que vem sendo debatido desde o ano de 1970, quando houve o primeiro Simpósio 

Nacional de Ensino de Física (SNEF) que reuniu diversos pesquisadores da área na 

cidade de São Paulo (LEIRIA; MATARUCO, 2015). Desde esse ano, o tema ganha 

destaque em eventos nacionais sobre educação.  

Durantes esses anos, as pesquisas mostraram que a Física ainda continua com 

uma conotação empirista-indutivista, onde as atividades seguem o processo 

tradicional de ensino (LEIRIA; MATARUCO, 2015). Em oposição à forma tradicional 

de ensino, surgem conceitos como o de professor mediador. O professor mediador é 

aquele que participa efetivamente com o aluno na construção do conhecimento, não 

sendo apenas aquele professor tradicional, em que seu papel é apenas o de 

transmissor de informações contidas em livros didáticos. O professor mediador, 

ocupará um papel de intermediário entre os alunos e o conhecimento, orientado-o no 

processo de aprendizagem (BOPP, 2013). Este professor não considera o aluno 

apenas como uma tábula rasa (como tradicionalmente ocorre), mas sim que o aluno 

traz consigo conhecimentos prévios que podem ser potencializados (ou modificados) 

e aproveitados da melhor forma possível no desenvolvimento de novos 

conhecimentos.   

Além disso, o professor mediador, devido a diferenciação nas metodologias de 

ensino-aprendizagem usuais, pode estimular seus alunos para que os mesmos 

possam desenvolver maior capacidade crítica frente as questões propostas, além de 

propiciar certa autonomia ciêntifica e caráter motivador. Nesse sentido, Freire (1996, 
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p. 58, apud BOPP, 2013, p. 12) aponta que: “No fundo, o essencial nas relações entre 

o educador e o educando, entre autoridade e liberdades, entre pais, mães e filhas é a 

reivenção do ser humano no aprendizado de sua autonomia”.  

Portanto, na realização de atividades experimentais, é importante que o 

professor forneça certa autonomia cientifica ao aluno, e que participe das discussões 

relevantes sobre os experimentos, não fornecendo diretamente as respostas para as 

questões pertinentes, mas auxiliando o aluno na busca de soluções mais adequadas 

para elas.  
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4 FUNDAMENTAÇÃO TEÓRICA: Teoria da Condução Eletrônica e Quantização 

da Condutância 

 

 

4.1 MODELO DE DRUDE 

 

 

No final do século XIX, mais precisamente no ano de 1897, J.J Thomson 

mostrou que os raios que faziam cintilar a parede de vidro dos tubos de raios catódicos 

eram feixes de partículas com cargas negativas. Este descobrimento causou grande 

impacto nas teorias da época sobre a estrutura da matéria e sugeriu um novo 

mecanismo para a condução elétrica dos metais. Como os metais conduzem tão 

facilmente, era de se esperar que existissem partículas que pudessem se movimentar 

com relativa liberdade. (TIPLER; LLEWELLYN, 2010; PÉREZ, 2000)   

 Com essa descoberta, então, era possível admitir, por exemplo, que essas 

partículas poderiam ser elétrons livres. Assim, como o cobre conduz muito melhor que 

o silício, então o cobre teria muito mais elétrons livres por unidade de volume do que 

o silício. Enquanto que o quartzo, um isolante, teria uma quantidade ínfima de elétrons 

livres, quando comparado ao cobre. (ALCACÉR, 2013)  

 Algumas questões foram levantadas na época, como, por exemplo, de que 

modo era a relação entre temperatura e resistência elétrica. No cobre, ao aumentar a 

temperatura, era notado uma dificuldade maior para a condução elétrica. Será que o 

número de elétrons varia com a temperatura? Ou a velocidade que varia com a 

temperatura? Ou ambos? De que modo? (ALCACÉR, 2013)   

 Algumas respostas foram dadas pelo físico alemão Paul Karl Ludwig Drude, em 

1900. O seu modelo consistia em admitir que, num metal, alguns elétrons se 

libertavam dos átomos e ficavam “livres”, enquanto os íons ficavam fixos. A resistência 

elétrica seria devida a colisões entre os elétrons e os íons fixos. Nesse modelo, 

supõem-se desprezíveis as interações entre elétron-elétron e elétron-íon, a não ser 

durante uma “colisão”. Além disso, o tempo de uma colisão é também desprezível. 

Por esse motivo, esse modelo ficou conhecido como modelo do elétron livre, 

exemplificado na Fig. 1. (PÉREZ, 2000; ALCACÉR, 2013)    
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 Figura 1 – Trajetória dos elétrons de condução (bolinhas pretas) colidindo com os íons fixos 

da rede, sob ação de um campo elétrico E⃗⃗ , de acordo com o modelo de Drude. Também é representado 

o tempo médio entre as colisões, 𝜏. 

 

 Drude prediz que, quando os átomos dos elementos metálicos se unem para 

formar o metal, os elétrons fracamente ligados ao átomo, desligam-se e passam a se 

movimentar livremente através do metal. O metal é visualizado como um arranjo 

tridimensional de íons fixos e um grande número de elétrons livres, como um gás de 

elétrons. (PÉREZ, 2000) 

 Neste modelo foi aplicado a teoria cinética dos gases com algumas 

modificações. A utilização da teoria cinética dos gases para explicar propriedades 

eletrônicas dos sólidos foi razoável, visto que esta foi a primeira teoria microscópica 

da matéria a ter sucesso (PÉREZ, 2000). 

 As considerações básicas, nas quais fundamenta-se o modelo de Drude, são 

as seguintes (PÉREZ, 2000): 

1- Entre uma colisão e outra, as forças de interação entre o elétron-elétron e o 

elétron-íon são desconsideradas. Então, o elétron move-se livremente no 

interior do metal.  

2- As colisões ocorrem apenas entre o elétron e o íon da rede. Nessa colisão, há 

uma alteração abrupta da velocidade do elétron.  

3- O elétron colide aleatoriamente contra um íon em um dado instante, tendo 

viajado um tempo médio 𝜏 até sua próxima colisão.  
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4- O equilíbrio térmico do sistema é mantido por meio das colisões de elétrons 

com os íons. O equilíbrio é mantido da seguinte forma: imediatamente após 

cada colisão, o elétron movimenta-se em direção aleatória com uma velocidade 

que não tem relação nenhuma com a velocidade antes do choque, mas o 

módulo é apropriado à temperatura do lugar onde ocorreu a colisão. Quanto 

mais alta for a temperatura do lugar onde se dá a colisão, mais rapidamente se 

movimentará o elétron após o choque. 

 

Usando a relação entre a energia cinética média e a temperatura, pode-se 

encontrar a velocidade média dos elétrons da rede. Assim (PÉREZ, 2000) 

 

3

2
𝑘𝐵𝑇 =

1

2
𝑚 < 𝑣 >2. (4.1) 

 

Além disso, esse modelo fornece uma explicação plausível para a lei de 

Wiedemann e Franz, onde relaciona a condutividade térmica e a condutividade 

elétrica por meio da expressão (PÉREZ, 2000)  

 

𝜅

𝜎
=

3

2
(
𝑘𝐵

𝑒
)
2

𝑇. (4.2) 

 

 

4.2. CONDUTIVIDADE ELÉTRICA 

 

 

Ao aplicar um campo elétrico sobre um condutor os elétrons irão se mover com 

uma velocidade média aproximadamente constante, chamada de velocidade de deriva 

𝑣𝑑. Dado um fio com seção transversal 𝐴 e comprimento 𝐿 (Fig. 2) com 𝑛 elétrons por 

unidade de volume, então o número de elétrons no condutor será 𝑁 = 𝑛𝐴𝐿. Assim, 

pode-se obter que (HALLIDAY; RESNICK; WALKER, 1984) 

 

𝐽 = 𝑛𝑒𝑣𝑑, (4.3) 
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onde 𝑒 é a carga elétrica elementar e 𝐽  é o módulo do vetor densidade superficial de 

corrente elétrica, que se relaciona com a corrente elétrica 𝐼 por 𝐼 = ∮ 𝐽 ∙ 𝑑𝑆 
𝑆

. 

 

 

Figura 2 - Elétron se movendo em um fio condutor. 

 

Admitindo que, por ação de um campo elétrico, os elétrons se desloquem em 

um meio onde há colisões com os íons. Logo, o módulo da aceleração do elétron será 

(HALLIDAY; RESNICK; WALKER, 1984)  

 

𝑎 =
𝑒E

𝑚
, (4.4) 

 

onde E é o campo elétrico aplicado ao condutor e 𝑚 é a massa do elétron. Haverá um 

tempo médio entre as colisões, de modo que pode-se relacionar com a velocidade de 

deriva da seguinte maneira (HALLIDAY; RESNICK; WALKER, 1984) 

 

𝑣𝑑 = 𝑎𝜏 =
𝑒E

𝑚
𝜏. (4.5) 

 

Como o tempo 𝜏 entre as colisões é muito pequeno, essa velocidade é 

aproximadamente constante.  Mas usando a equação (4.5) em (4.3), tem-se  

 

𝐽 =
𝑛𝑒2𝜏

𝑚
E. (4.6) 

 

Assim, define-se 𝑗 = 𝜎E⃗⃗ , onde  a constante de proporcionalidade é denominada 

de condutividade elétrica; a relação inversa é a resistividade elétrica 𝜌. Portanto, 
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chega-se à conclusão que a condutividade elétrica pode ser escrita como (HALLIDAY; 

RESNICK; WALKER, 1984) 

 

𝜎 =
𝑛𝑒2𝜏

𝑚
. (4.7) 

 

 

4.3 CONDUTÂNCIA ELÉTRICA  

 

 

O transporte de corrente elétrica pode ser descrito pela Lei de Ohm, que 

relaciona a diferença de potencial ∆𝑉 aplicada entre os extremos de um condutor, com 

a corrente e a resistência elétrica, por meio de 𝑅 = ∆𝑉/𝐼. A resistência também pode 

ser definida através de parâmetros geométricos do sistema, 𝑅 = 𝜌
𝐿

𝐴
, sendo 𝜌 a 

resistividade, característica do material, 𝐴 é a seção transversal do fio e 𝐿 o seu 

comprimento. 

O inverso da resistência elétrica é a condutância elétrica. Para um fio metálico 

de seção transversal uniforme, com área 𝐴, e comprimento 𝐿, como o apresentado na 

Fig. 2, intuitivamente espera-se que a condutância cresça com o aumento da seção 

transversal do condutor e decresça com o aumento do seu comprimento. Estas 

relações são verificadas experimentalmente e definem uma grandeza física chamada 

de condutância, que pode ser expressa matematicamente da seguinte maneira 

(RODRIGUES, 1999) 

 

𝐺 ≡
𝐼

∆𝑉
=

𝜎𝐴

𝐿
, (4.8) 

 

com 𝜎 = 1/𝜌. Então, nota-se a dependência direta da condutância com propriedades 

geométricas do condutor, como área e comprimento.  

 Microscopicamente4, a Lei de Ohm (que caracteriza a resistência elétrica) tem 

origem nas colisões dos elétrons que transportam carga no condutor com os íons da 

                                                             
4 O embasamento microscópico da Lei de Ohm só foi dado alguns anos depois, a partir do modelo de 
Drude.  
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rede, no caso do modelo de Drude; ou no espalhamento sofrido por esses elétrons, 

no caso de modelos quânticos de condução eletrônica (RODRIGUES, 1999).  

A Lei de Ohm (que define a condutância elétrica) funciona muito bem para fios 

macroscópicos, mas o que esperar quando suas dimensões forem reduzidas para 

valores da ordem de nanômetro? Será que a condutância ainda irá variar 

continuamente? É exatamente isto que será abordado nas seções seguintes. Mas, 

para as abordagens quânticas do fenômeno da condução eletrônica, é necessário o 

estudo de modelos quânticos, como o modelo de Sommerfeld, apresentado a seguir.  

 

 

4.4 MODELO DE SOMMERFELD 

 

 

 Lorentz trabalhou no refinamento do modelo de Drude, mas ainda assim o 

modelo era caracterizado pela presença de elétrons livres como esferas rígidas 

idênticas. No entanto, esse tratamento não é o mais apropriado. (PÉREZ, 2000; 

FIGUEIREDO, 2002-2006)  

 O modelo que explica melhor a condução elétrica é o de Sommerfeld, onde 

agora é abordado utilizando a física quântica. As principais diferenças do modelo 

quântico em relação ao modelo clássico, é que agora passamos a considerar 

particularidades estatísticas dos objetos quânticos, em particular dos férmions, classe 

de partículas que engloba os elétrons. Os férmions são partículas que apresentam 

spin semi-inteiro e que satisfazem o princípio da exclusão de Pauli. A teoria de 

Sommerfeld também possui aproximações, mas explica bem a condução elétrica 

utilizando um pouco mais de rigor (FIGUEIREDO, 2002-2006; BARRETO, 2015). 

Por questões de simplicidade, é analisado o comportamento no estado 

fundamental (i.e. 𝑇 = 0)5 do gás de elétrons. Mesmo à temperatura ambiente, muitas 

das propriedades eletrônicas de um metal quase não diferem de seus valores a 𝑇 =

0. (ASHCROFT, 2011) 

São calculadas as propriedades do estado fundamental de 𝑁 elétrons 

confinados a um volume V. Adotando o modelo do elétron não interagente (elétron 

livre). Pode-se determinar o estado fundamental do sistema de 𝑁 elétrons, 

                                                             
5 É adotada, ao longo do trabalho, a unidade de temperatura em Kelvin.  
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determinado-se inicialmente os níveis de energia de um único elétron no volume V, e, 

em seguida, preenchendo-se estes níveis de acordo com o princípio da exclusão de 

Pauli. (ASHCROFT, 2011)  

Um único elétron pode ser descrito por uma função de onda 𝜓(𝑟 ) e a 

especificação de qual das duas possíveis orientação possui seu spin. Como o elétron 

considerado não sofre nenhuma interação, a função de onda associada ao nível de 

energia 𝐸 satisfaz a equação de Schrödinger independente do tempo (ASHCROFT, 

2011; KITTEL, 2006)  

 

−
ℏ2

2𝑚
𝛻2𝜓(𝑟 ) = 𝐸𝜓(𝑟 ). (4.9) 

 

O próximo passo é a escolha das condições de contorno que a equação (4.9) 

deve satisfazer. Umas das possibilidades é impor 𝜓(𝑟 ) = 0 nas extremidades de um 

cubo de volume V. Porém, isto parece insatisfatório, pois leva a soluções de ondas 

estacionárias, o que no caso da condução elétrica não parece muito interessante6. 

Uma escolha mais adequada ao problema em questão é imaginar cada face do cubo 

unindo-se a face oposta, de forma que o elétron que chega à superfície não seja por 

ela refletido. No entanto, topologicamente, é praticamente impossível visualizar isso. 

Mas, em um caso unidimensional, pode-se imaginar que liga-se as extremidades de 

um fio de comprimento 𝐿, formando uma circunferência. Assim, tem-se 𝜓(𝑥 + 𝐿) =

𝜓(𝑥), e a generalização ao cubo tridimensional é dada por (ASHCROFT, 2011; 

KITTEL, 2006) 

 

𝜓(𝑥, 𝑦, 𝑧 + 𝐿) = 𝜓(𝑥, 𝑦, 𝑧) 

𝜓(𝑥, 𝑦 + 𝐿, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) 

𝜓(𝑥 + 𝐿, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧) 

 

(4.10) 

 A equação (4.10) é conhecida como condição de contorno de Born-Von 

Karman7 (ou condição de contorno periódica). (ASHCROFT, 2011)   

                                                             
6 A análise aqui feita está considerando que o elétron possui apenas energia cinética, não havendo 
qualquer potencial aplicado ao mesmo.  
7  Caso impuséssemos condições com 𝜓 se anulando nas faces do cubo, como no caso do potencial 
infinito, os autoestados seriam estacionários, e 𝑗  se anularia (ASHCROFT, 2011). Além disso, pode-se 
aplicar essa condição de contorno, pois em geral estudamos sistemas muito grandes, em comparação 
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 Pode-se verificar que uma solução da equação (4.9), ainda sem considerar as 

condições de contorno é (ASHCROFT, 2011) 

 

𝜓(𝑟 ) =
1

√V
𝑒𝑖𝑘⃗ ∙𝑟  , (4.11) 

 

onde 𝑘 pode ser positivo ou negativo, dependendo em que sentido o elétron se move. 

A energia desse elétron será (ASHCROFT, 2011) 

 

𝐸(𝑘⃗ ) =
ℏ2𝑘⃗ 2

2𝑚
. (4.12) 

 

 A normalização da função de onda da equação (4.11) foi obtida tornando a 

probabilidade de encontrar o elétron no volume V igual a um, ou seja: 

 

∫ |𝜓(𝑟 )|2 𝑑3𝑟 = 1. (4.13) 

 

 Na mecânica quântica associamos para qualquer observável 𝐴 (como por 

exemplo, a posição, o momento linear, o momento angular, a energia, etc.) um 

operador correspondente escrito como Â. Um exemplo de um operador simples e 

importante é o operador momento linear, dado por 
ℏ

𝑖

𝜕

𝜕𝑟 
. Assim, ao aplicá-lo na função 

de onda quântica, tem-se a instrução de derivá-la com relação as suas coordenadas 

e, posteriormente, multiplicá-la por ℏ/𝑖. 

 O significado do vetor de onda 𝑘⃗  é dado ao aplicar o operador momento na 

função de onda da equação (4.11) 

 

ℏ

𝑖

𝜕

𝜕𝑟 
𝑒𝑖𝑘⃗ ∙𝑟 = ℏ𝑘⃗ 𝑒𝑖𝑘⃗ ∙𝑟 . (4.14) 

 

Assim, 𝜓(𝑟 ) é um autoestado (pois a equação 4.14 é uma equação de 

autovalores e autovetores/autoestados) do operador momento com autovalor 𝑝 = ℏ𝑘⃗ , 

                                                             
com as dimensões quânticas, o que faz os efeitos que as bordas exercem naquilo que está no interior 
desses sistemas serem irrelevantes.   
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com velocidade 𝑣 = ℏ𝑘⃗ /𝑚. Em vista disso, a energia pode ser escrita na forma 

clássica como sendo (ASHCROFT, 2011; KITTEL, 2006) 

 

𝐸 =
𝑝2

2𝑚
=

1

2
𝑚𝑣2. (4.15) 

 

A primeira condição de contorno da equação (4.10) diz que 

 

1

√𝑉
𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧(𝑧+𝐿)) =

1

√𝑉
𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧);         ⟹       𝑒𝑖𝑘𝑧𝐿 = 1. (4.16) 

 

Isto impõe a 𝑘⃗  a condição de que somente certos valores discretos sejam permitidos. 

Pode-se usar relações análogas para as direções 𝑦 e 𝑧. Então,  

 

𝑒𝑖𝑘𝑥𝐿 = 𝑒𝑖𝑘𝑦𝐿 = 𝑒𝑖𝑘𝑧𝐿 = 1 , (4.17) 

 

como 𝑒𝑤 = 1 somente se 𝑤 = 2𝜋𝑖𝑛, onde 𝑛 um número inteiro8, as componentes do 

vetor de onda devem ser da forma 

 

𝑘𝑥 =
2𝜋𝑛𝑥

𝐿
; 𝑘𝑦 =

2𝜋𝑛𝑦

𝐿
;  𝑘𝑧 =

2𝜋𝑛𝑧

𝐿
. (4.18) 

 

 Como foi considerado que os elétrons são livres, isto é, não interagentes, pode-

se construir o estado fundamental de 𝑁 elétrons, colocando-se elétrons nos níveis 

permitidos de energia obtidos a partir de (4.15) e respeitando o princípio da exclusão 

de Pauli. (ASHCROFT, 2011) 

Macroscopicamente, o número de elétrons com que lida-se em um metal é 

muito grande, da ordem de 1023 por 𝑐𝑚3. Logo, a densidade de pontos 𝑘 permitidos 

é grande o suficiente de modo que os níveis ocupados podem ser representados como 

pontos no interior de uma esfera9 no espaço dos vetores de onda com raio 𝑘𝐹, como 

mostra a Fig. 3. Esta esfera é conhecida como esfera de Fermi. Sua superfície, onde 

                                                             
8 A palavra inteiro se refere a números positivos, zero, ou negativo. 
9 Se ela não fosse uma esfera, não seria o estado fundamental, já que poder-se-ia, então, construir um 
estado de menor energia movimentando os elétrons em níveis mais distantes de 𝑘 = 0 para os níveis 
não ocupados próximos a origem. (ASHCROFT, 2011) 
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estão localizados os elétrons de maior energia é a superfície de Fermi, e os elétrons 

aí localizados têm a energia de Fermi (𝐸𝐹) e vetor de onda com módulo igual a 𝑘⃗ 𝐹 

(vetor de onda de Fermi). Ou seja, a energia de Fermi é a energia do nível mais alto 

ocupado no estado fundamental (estado de menor energia do sistema) de um sistema 

de 𝑁 elétrons (ASHCROFT, 2011; KITTEL, 2006; OLIVEIRA; JESUS, 2005). 

Portanto, em 𝑇 = 0, o sistema ocupará certos níveis de energia, limitados pela 

superfície de Fermi com energia de Fermi 𝐸𝐹 . 

 

 

 

Figura 3 - A região cinza (esfera de Fermi) representa os vetores de onda ocupados no gás de 

elétrons livres. Os elétrons mais energéticos, localizados na superfícies de Fermi, têm energia 𝐸𝐹 =

ℏ𝑘𝐹
2/2𝑚 e vetor de onda de módulo 𝑘𝐹.  

 

 De acordo com equação (4.18), existe um vetor de onda permitido, ou seja, um 

conjunto de valores dos números quânticos 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 para cada elemento de volume 

(
2𝜋

𝐿
)
3

do espaço 𝑘 (que caracteriza um orbital). Assim para acomodar 𝑁 elétrons (o 

que representa uma densidade eletrônica 𝑛 = 𝑁/V) em uma esfera de volume V =

4

3
𝜋𝑘𝐹

3 o número total de orbitais deve ser (ASHCROFT, 2011; KITTEL, 2006) 

 

𝑁 = 2
4𝜋𝑘𝐹

3/3

(2𝜋/𝐿)3
=

𝐿3𝑘𝐹
3

3𝜋2
=

V

3𝜋2
𝑘𝐹

3 , (4.19) 
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onde o fator 2 aparece porque existem dois valores permitidos para o número quântico 

de spin (±ℏ/2), para cada valor permitido de 𝑘⃗ . Então, de acordo com a equação 

(4.19), temos: 

 

𝑘𝐹 = (
3𝜋2𝑁

V
)

1
3

,  (4.20) 

 

um valor que depende apenas da concentração de partículas.  

O estado fundamental do gás de férmions, ou seja, o seu estado de menor 

energia, é obtido distribuindo-se 𝑁 elétrons nos diversos estados relativos a 𝑘, em 

ordem crescente de energia, obedecendo-se ao princípio da exclusão. Por exemplo, 

o estado de menor energia é o ponto 𝑘 = 0, onde pode-se colocar dois elétrons. 

Depois tem-se 6 estados com a mesma energia 𝐸1, correspondendo a (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧) =

(±1, 0, 0), (0,±1, 0), (0,0 ± 1) onde pode-se colocar 12 elétrons, e assim 

sucessivamente. (OLIVEIRA; JESUS, 2005)  

 A partir da magnitude do vetor de onda de Fermi 𝑘𝐹, a velocidade, a energia e 

a temperatura de Fermi podem escritas como (ASHCROFT, 2011)  

 

𝑣𝐹 =
ℏ

𝑚
(
3𝜋2𝑁

V
)

1
3

 

𝐸𝐹 = 
ℏ2

2𝑚
(
3𝜋2𝑁

V
)

2
3

 

𝑇𝐹 =
𝐸𝐹

𝐾𝐵
. 

 

(4.21) 

Abaixo segue o valor desses parâmetros para alguns metais (ASHCROFT, 

2011; KITTEL, 2006; OLIVEIRA; JESUS, 2005; LEMELL et al., 2009)     
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Elemento 𝐸𝐹  (𝑒𝑉) 𝑇𝐹 (104𝐾) 𝐾𝐹 (108𝑐𝑚−1) 𝑣𝐹 (108𝑐𝑚/𝑠) 

Li 4,74 5,51 1,12 1,29 

Na 3,24 3,77 0,92 1,07 

Au 5,53 6,42 1,21 1,40 

Ag 5,49 6,38 1,20 1,39 

Cu 7,00 8,16 1,36 1,57 

W 9,75 11,31 1,60 1,85 

 

Tabela 1 -  Energias de Fermi, temperaturas de Fermi, vetores de onda de Fermi e velocidades 

de Fermi para alguns metais à temperatura ambiente. 

 

É interessante destacar que essa temperatura não é a temperatura do gás 

ideal, mas sim um parâmetro com dimensão de temperatura que representa a energia 

(cinética) dos elétrons mais energéticos do sistema a 𝑇 = 0.  

 Ainda pode-se obter a energia total do gás, ou energia interna, do estado 

fundamental do gás de férmions, somando as energias possíveis de 0 a 𝑘𝐹, obtendo 

(ASHCROFT, 2011; OLIVEIRA; JESUS, 2005) 

 

𝒰 =
3

5
𝑁𝐸𝐹 .  (4.22) 

 

 Então, em 𝑇 = 0 a energia do gás é uma fração da energia de Fermi. Nota-se 

o constraste com o gás ideal clássico, para o qual 𝒰 =
3

2
𝑁𝐾𝐵𝑇 e, obviamente, 𝒰 = 0 

para 𝑇 = 0. Isto é, classicamente todos os elétrons estariam parados a 𝑇 = 0, mas 

não quanticamente10 (estariam todos em um mesmo estado, totalmente degenerado). 

(ASHCROFT, 2011; OLIVEIRA; JESUS, 2005)  

 Além disso, é possível mostrar um resultado interessante, que é o fato da 

pressão exercida por um gás de férmions a 𝑇 = 0 ser diferente de zero. (SALINAS, 

2005)  

 

 

4.5 DISTRIBUIÇÃO DE FERMI-DIRAC  

                                                             
10 Isso é válido apenas para férmions.  
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Foi apresentado no modelo de Sommerfeld que os elétrons se distribuem de 

acordo com o princípio da exclusão de Pauli: 1 elétron com dado spin por estado, de 

um mínimo de energia 𝐸 = 0 até 𝐸 = 𝐸𝐹, para a análise feita à 𝑇 = 0𝐾. Tal distribuição 

eletrônica é particularmente simples, e pode ser representada por uma função 𝑃(𝐸) 

cuja a forma é mostrada na Fig. 4. Pode-se considerar 𝑃(𝐸) como a probabilidade de 

que um dado estado com energia 𝐸 esteja ocupado. (OLIVEIRA; JESUS, 2005) 

  

 

Figura 4 – (a) Função de distribuição de Fermi-Dirac para 𝑇 = 0𝐾. (b) Função de distribuição 

de Fermi-Dirac para 0 < 𝑇 < 𝑇𝐹 . 

 

Nota-se da Fig. 4(b) que somente elétrons que estejam com energia da ordem 

de 𝐾𝐵𝑇 em torno de 𝐸𝐹  poderão ser termicamente promovidos para níveis mais altos 

de energia. Isso significa dizer que a Fig. 4(b) só será modificada significativamente 

em torno de 𝐸𝐹. A Física Estatística nos mostra que a função distribuição 𝑃(𝐸) é dada 

por (OLIVEIRA; JESUS, 2005) 

 

𝑃(𝐸) =
1

𝑒(𝐸−𝜇(𝑇))/𝐾𝐵𝑇 + 1
,  (4.23) 

 

onde 𝜇(𝑇) é o potencial químico. Para 𝑇 = 0𝐾, temos 𝜇(𝑇 = 0) = 𝐸𝐹 , e 𝑃(𝐸) modela 

a curva da Fig. 4(a). Pode-se mostrar que para 𝑇 da ordem da temperatura ambiente, 

𝜇(𝑇) é aproximadamente igual a energia de Fermi, diferindo da mesma em apenas 

cerca de 0,01% (ALCACÉR, 2013). Portanto, em geral, para os estudos da condução 
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elétrica em metais é razoável estudar apenas o comportamento dos elétrons à 𝑇 =

0𝐾. 

 

 

4.6 CONDUTIVIDADE ELÉTRICA VIA MODELO DE SOMMERFELD  

 

 

 Para compreender-se o mecanismo da corrente elétrica em metais, serão 

combinados resultados clássicos com quânticos. Pode-se relacionar o momento de 

um elétron livre ao vetor de onda por meio da equação 𝑚𝑣 = ℏ𝑘⃗ . Na presença de um 

campo elétrico E⃗⃗  a força 𝐹  exercida sobre o elétron é −𝑒E⃗⃗  e, portanto, de acordo com 

a segunda Lei de Newton, tem-se (KITTEL, 2006) 

 

𝐹 = 𝑚𝑑𝑣 /𝑑𝑡 = ℏ𝑑𝑘⃗ /𝑑𝑡 = −𝑒E⃗⃗ .  (4.24) 

 

 Na presença de um campo elétrico constante E⃗⃗  e considerando que não há 

interferência de outra natureza, a esfera de Fermi (Fig. 3) move-se de maneira 

uniforme no espaço 𝑘. Rearranjando a equação (4.24) e integrando, obtém-se 

(KITTEL, 2006) 

 

𝑘⃗ (𝑡) − 𝑘⃗ (𝑡 = 0) = −𝑒E⃗⃗ 𝑡/ℏ. (4.25) 

 

 Assim, a esfera será deslocada no sentido oposto ao campo elétrico aplicado, 

Fig. 5, de modo que (KITTEL, 2006) 

 

𝛿𝑘⃗ = −𝑒E⃗⃗ 𝑡/ℏ. (4.26) 
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Figura 5 - A esfera de Fermi contém os orbitais ocupados do espaço 𝑘⃗  no estado fundamental 

de um gás de elétrons. O momento linear total é zero, pois para cada estado k⃗  ocupado existe um 

correspondente −𝑘⃗  também ocupado, o que torna ∑ 𝑘⃗ = 0 e consequentemente uma corrente elétrica 

nula. Sob a influência de uma força 𝐹  agindo durante um intervalo de tempo 𝑡, os vetores de onda de 

todos os orbitais aumentam de 𝛿𝑘⃗ = 𝐹 𝑡/ℏ. Isto equivale a deslocar de 𝛿𝑘⃗  toda a esfera de Fermi. O 

momento linear total dos elétrons passa a ser 𝑁ℏ𝛿𝑘⃗ . 

 

 Por causa do espalhamento das ondas devido as impurezas, imperfeições da 

rede cristalina e fônons, a esfera será mantida num estado estacionário no campo 

elétrico (o cálculo exato mostra que, se o cristal for perfeitamente ordenado, 𝜏 = ∞ , 

isto é, não há espalhamento das ondas, a não ser nas condições mencionadas). Se o 

tempo entre um espalhamento do elétron e outro é 𝜏, o deslocamento da esfera de 

Fermi é dado pela equação (4.26). A velocidade correspondente é 𝑣 = 𝑣 𝐹 = 𝛿𝑘⃗ /𝑚 =

−𝑒E⃗⃗ 𝜏/𝑚 (o deslocamento é o mesmo para todos os elétrons, inclusive para os da 

superfície de Fermi). Se na presença de um campo elétrico constante E⃗⃗  existem 𝑛 

elétrons de carga 𝑞 = −𝑒 por unidade de volume, a densidade de corrente elétrica é 

dada por (KITTEL, 2006) 

 

𝑗 = 𝑛𝑞𝑣 𝐹 = 𝑛𝑒2𝜏E⃗⃗ /𝑚. (4.27) 

 

Além disso, pode-se também obter uma expressão mais exata para a 

condutividade elétrica, que se relaciona diretamente com condutância elétrica. 

 Mesmo sendo um modelo semi-clássico, conseguiu explicar quase todas as 

propriedades básicas dos metais, incluindo a variação linear do calor específico a 

volume constante com a temperatura. Em 1928, Bloch usou a mecânica quântica de 
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Heisenberg-Born-Jordan-Schorodinger para entender os metais, que possibilitou a 

distinção entre condutores, isolantes e semicondutores. (SALINAS, 2005; BASSALO, 

1993) 

 

 

4.7 CORRENTES QUÂNTICAS 

 

 

Esta seção se iniciará discutindo-se conceitos relacionados a probabilidades. 

Quanticamente, a corrente de probabilidade 𝒥 é definida como (BROCKS, 2005; 

GRIFFITHS, 2011) 

 

𝒥(𝑥, 𝑡) =
𝑖ℏ

2𝑚
(ψ(𝑥, 𝑡)

𝜕ψ∗(𝑥, 𝑡)

𝜕𝑥
− ψ∗(𝑥, 𝑡)

𝜕ψ(𝑥, 𝑡)

𝜕𝑥
). (4.28) 

 

Pode-se mostrar que a taxa temporal com que a probabilidade varia é (BROCKS, 

2005; GRIFFITHS, 2011) 

 

𝑑𝑃𝑎𝑏

𝑑𝑡
= 𝒥(𝑎, 𝑡) − 𝒥(𝑏, 𝑡). (4.29) 

 

Que descreve a variação da probabilidade no intervalo 𝑎 < 𝑥 < 𝑏, no instante de 

tempo 𝑡, onde a probabilidade nesse intervalo é obtida da seguinte maneira 

(BROCKS, 2005; GRIFFITHS, 2011) 

 

𝑃𝑎𝑏 = ∫|ψ(𝑥, 𝑡)|2𝑑𝑡.

𝑏

𝑎

 (4.30) 

 

Supondo uma partícula de carga 𝑞, quanticamente pode-se definir a carga 

esperada em um intervalo (𝑎, 𝑏) no instante de tempo 𝑡, como (BROCKS, 2005) 

 

𝑄𝑎𝑏(𝑡) = 𝑞𝑃𝑎𝑏(𝑡). (4.31) 
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onde 𝑄𝑎𝑏(𝑡) pode ser entendido como a quantidade de carga elétrica que se encontra 

no intervalo (𝑎, 𝑏), no instante de tempo 𝑡. Pode-se entender esta relação por meio de 

um exemplo:  Supondo que haja um feixe de partículas que emita 10.000 partículas 

com carga 𝑞 por segundo.  Observa-se quantas partículas, num total de 10.000, está 

no intervalo (𝑎, 𝑏), no instante 𝑡 = 1𝑠.  Se desse conjunto de partículas forem 

observadas apenas 100 partículas no intervalo (𝑎, 𝑏) em 𝑡 = 1𝑠, então 𝑄𝑎𝑏 = 𝑞
100

10.000
=

0,01𝑞. Isto não quer dizer que em cada observação foi encontrada uma partícula de 

carga 0,01𝑞, mas que de total de 10.000 partículas isto equivale a 0,01𝑞 de carga no 

intervalo (𝑎, 𝑏) no tempo 𝑡 = 1𝑠. Esse exemplo também poderia ser feito lançando 

uma partícula 10.000 vezes, ao invés de lançar um feixe com 10.000 partículas apenas 

uma vez. Além disso, como 𝐽 tem unidade de probabilidade por segundo, então pode-

se definir a corrente elétrica como (BROCKS, 2005) 

 

𝐼(𝑥, 𝑡) = 𝑞𝒥(𝑥, 𝑡), (4.32) 

 

ou seja, se a corrente de probabilidade aumentar em uma região, então quer dizer que 

há uma maior probabilidade de encontrar a partícula em um intervalo (𝑎, 𝑏) em certo 

instante 𝑡; sendo esta maior, então a carga nesta região também será maior e, por 

conseguinte, a corrente elétrica aumenta. A taxa de variação temporal é obtida 

tomando a diferença da corrente elétrica que entra menos a corrente elétrica que sai, 

ou seja (BROCKS, 2005)  

 

𝑑𝑄𝑎𝑏(𝑡)

𝑑𝑡
= 𝐼(𝑎, 𝑡) − 𝐼(𝑏, 𝑡). (4.33) 

 

Considere agora o caso de estados estacionários. Um estado estacionário é 

descrito por (BROCKS, 2005; GRIFFITHS, 2011) 

 

𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝑒−
𝑖𝐸
ℏ

𝑡 , (4.34) 

 

onde a probabilidade de encontrar a partícula no intervalo 𝑎 < 𝑥 < 𝑏 não varia com o 

tempo, isto é (GRIFFITHS, 2011)  
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𝑑𝑃𝑎𝑏

𝑑𝑡
= 0. (4.35) 

 

E ainda pode-se mostrar também que 𝒥(𝑥, 𝑡) = 𝒥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒. Então, a 

corrente de probabilidade independe da posição e do tempo. Como exemplo, 

considera-se o caso da partícula livre unidimensional se movendo no sentido 𝑥 

positivo 

 

𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 . (4.36) 

 

No entanto a normalização desta função leva a uma divergência. Mas ela pode servir 

de base para uma combinação linear, que vai caracterizar um pacote de onda, que é 

a maneira mais adequada de descrever uma partícula livre. Entretanto, no caso em 

questão (da onda plana), a única maneira de satisfazer a condição de normalização 

seria fazer 𝐴 = 0. Esta dificuldade surge porque a situação de uma partícula livre em 

uma região infinita é de fato não-física. Experimentos reais são sempre realizados em 

locais com extensão finita. Em sistemas unidimensionais, isto significa impor que a 

função de onda deva ser normalizada em uma “caixa” de comprimento 𝐿. Assim, a 

probabilidade de encontrar uma partícula no intervalo (𝑎, 𝑏) pode ser obtida usando a 

equação (4.30) 

 

𝑃𝑎𝑏 = |𝐴|2(𝑏 − 𝑎) = 𝜌(𝑏 − 𝑎), (4.37) 

 

onde |𝐴|2 = 𝜌 é a densidade de probabilidade, que pode ser interpretada como a 

probabilidade por unidade de comprimento, ou, em outras palavras, representa a 

probabilidade de encontrar a partícula em certo intervalo por unidade de comprimento. 

Partindo da definição de corrente de probabilidade11, obtém-se  

 

𝒥 =
ℏ𝑘

𝑚
𝜌. (4.38) 

 

                                                             
11  A corrente de probabilidade para uma partícula livre ainda é bem definida quando se usa ondas 
planas. Logo, pode-se utilizá-las para o estudo dos coeficientes de transmissão e reflexão. (BROCKS, 
2005)  
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Usando a relação de de Broglie, o momento pode ser escrito como 𝑝 = ℏ𝑘, e 

assim a velocidade da partícula pode ser expressa por (TOLLEY, 2013; BROCKS, 

2005; GRIFFITHS, 2011) 

 

𝑣 =
ℏ𝑘

𝑚
=

𝑝

𝑚
. (4.39) 

 

Então, a equação (4.38) se torna 

 

𝒥 = 𝑣𝜌, (4.40) 

 

Logo, a corrente elétrica pode ser expressa como (BROCKS, 2005) 

 

𝐼 = 𝑞𝒥 = 𝑞𝑣𝜌, (4.41) 

 

que é a definição usual de corrente elétrica. A diferença está no significado da 

densidade 𝜌. Enquanto usualmente esta é definida como número de partículas por 

unidade de comprimento; quanticamente é definida como uma densidade de 

probabilidade, isto é, a probabilidade de encontrar a partícula em determinada região 

por unidade de comprimento. Para o caso de estados estacionários, a velocidade e a 

densidade são constantes, o que implica em uma corrente elétrica constante 

(BROCKS, 2005).  

 Para um caso mais geral de uma partícula livre, que é quando há reflexões da 

função de onda, tem-se que a função de onda dessa partícula é (BROCKS, 2005; 

GRIFFITHS, 2011) 

 

𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 , (4.42) 

 

sendo 𝐴 e 𝐵 constantes determinadas pelas condições de contorno do problema. A 

partir da equação (4.28) e usando a função de onda da equação (4.42), a corrente de 

probabilidade 𝒥 se torna (BROCKS, 2005) 

 

𝒥 =
ℏ𝑘

𝑚
|𝐴|2 −

ℏ𝑘

𝑚
|𝐵|2, (4.43) 
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que é interpretado como uma corrente de probabilidade para a esquerda menos uma 

corrente de probabilidade para a direita, onde 𝐴 representa a onda incidente e 𝐵 

representa a onda refletida, Fig. 6. Assim, pode-se escrever esta corrente como 

(BROCKS, 2005) 

 

𝒥 = 𝒥𝑖𝑛 − 𝒥ℛ . (4.44) 

 

 

Figura 6 -  Ilustração de um espalhamento unidimensional. No lado esquerdo há um potencial 

constante 𝒱𝐿. Na região do meio é onde ocorre o espalhamento da onda. Na região direita o potencial 

é novamente constante 𝒱𝑅. É mostrado as três ondas: no lado esquerdo a onda incidente, com 

amplitude 𝐴 e a refletida, com amplitude 𝐵. Do lado direito a onda transmitida, com amplitude 𝐹. 

 

O coeficiente de reflexão ℛ, que representa a probabilidade da onda incidente 

ser refletida, é expresso como (BROCKS, 2005; GRIFFITHS, 2011) 

 

ℛ =
𝒥𝑅

𝒥𝑖𝑛
=

|𝐵|2

|𝐴|2
. (4.45) 

 

Considerando o problema de espalhamento da Fig. 6. Na região da esquerda, 

assume-se o potencial12 constante igual a 𝒱𝐿 e na região direita assume-se o potencial 

                                                             
12  Não confundir o potencial elétrico 𝑉 com o volume V, nem tão pouco com a energia potencial 𝒱 =
−𝑒∆𝑉, geralmente denominado apenas de potencial.  
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𝒱𝑅. Logo, a solução da região da esquerda é dada pela equação (4.42), com 𝑘 

substituído por 𝑘𝐿 (BROCKS, 2005; GRIFFITHS, 2011) 

 

𝑘𝐿 =
√2𝑚(𝐸 − 𝒱𝐿)

ℏ
. (4.46) 

 

Na região da direita, a solução para onda transmitida, supondo que não há 

novos espalhamentos, é dada por (BROCKS, 2005; GRIFFITHS, 2011) 

 

 

𝜓(𝑥) = 𝐹𝑒𝑖𝑘𝑅𝑥 , 𝑐𝑜𝑚 𝑘𝑅 =
√2𝑚(𝐸 − 𝒱𝑅)

ℏ
. (4.47) 

 

Agora, calcular-se-á as correntes de probabilidade relativas a cada onda. 

Primeiro, para a onda transmitida, tem-se (BROCKS, 2005) 

 

𝒥𝑇 =
ℏ𝑘𝑅

𝑚
|𝐹|2, (4.48) 

 

que é obtida a partir da equação (4.43) tomando 𝐵 = 0 e substituindo 𝐴 por 𝐹. 

Analogamente a definição do coeficiente de reflexão ℛ, pode-se definir também o 

coeficiente de transmissão 𝒯 como sendo a razão entre as correntes de probabilidade 

transmitida e incidente, isto é (BROCKS, 2005; GRIFFITHS, 2011) 

 

𝒯 =
𝒥𝒯

𝒥𝑖𝑛
=

𝑣𝑅

𝑣𝐿

|𝐹|2

|𝐴|2
, (4.49) 

 

onde foi feita a substituição de 
ℏ𝑘𝑅

𝑚
 por 𝑣𝑅 e 

ℏ𝑘𝐿

𝑚
 por 𝑣𝐿, advinda da equação (4.39). A 

corrente de probabilidade de transmissão 𝒥𝑇 também pode ser escrita como 

(BROCKS, 2005; GRIFFITHS, 2011) 

 

𝒥𝒯 = 𝒥𝑖𝑛 − 𝒥ℛ   ⟹   𝒥𝑖𝑛 = 𝒥ℛ + 𝒥𝒯 . (4.50) 
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Esta equação representa a conservação da corrente de probabilidade. Dividindo 

ambos os lados por 𝒥𝑖𝑛, obtém-se 

  

1 = ℛ + 𝒯. (4.51) 

 

 

4.8 CONDUTÂNCIA QUÂNTICA 

 

 

4.8.1 Junção Túnel 

  

Uma junção túnel é constituída por um metal com uma junção de um material 

isolante com espessura de poucos nanômetros, Fig. 7. A área que realiza estudos é 

chamada de Nanoeletrônica, que faz uso do comportamento das ondas de matéria 

para determinados fins. (BROCKS, 2005) 

 

 

Figura 7 – Representação de uma junção túnel. As esferas amarelas representam o metal e 

as esfera azuis representam o isolante. As ondas de matéria no metal são refletidas e/ou transmitidas 

devido ao isolante. Fonte: (BROCKS, 2005, p. 6)  

 

Pode-se montar um esquema simplificado para o estudo de uma junção de 

Túnel. Os elétrons de valência de um metal experimentam um potencial coulombiano 

relativamente fraco, de modo que pode-se aproximar o potencial do material como 

sendo constante (BROCKS, 2005). Esse potencial depende do tipo do átomo do qual 

o material é composto. Assim, representa-se o potencial na região do meio como uma 
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barreira de potencial constante e no metal também como constante, mas com valor 

diferente Fig. 8.  

 

 

Figura 8 – Aproximação simplificada do potencial da junção Túnel. O potencial no metal da 

região da esquerda é mantido a um valor constante de 𝒱L e o potencial do metal na região da direita é 

mantido a um valor constante de 𝒱 = 𝒱R. O potencial na região do meio é constante de valor 𝒱0. A onda 

incidente tem amplitude 𝐴, a onda refletida tem amplitude 𝐵 e a onda transmitida tem amplitude 𝐹. 

 

No entanto, se na região esquerda aplicar-se um potencial menor que 𝒱𝐿, então 

o potencial desta região irá diminuir por um valor 𝒱𝐿 − ∆𝒱, Fig. 9. 

 

 
Figura 9 – Potencial da junção Túnel quando há uma diferença de potencial aplicada entre as 

regiões da esquerda e da direita. 
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Se a queda de tensão for muito pequena, isto é, ∆𝒱 ≪ 𝒱0 − 𝒱𝐿, então ainda 

será possível utilizar o coeficiente de transmissão calculado para a barreira quadrada 

(BROCKS, 2005). 

 

 

4.8.2 A Fórmula de Landauer 

 

 

De acordo com a equação (4.49), pode-se escrever a corrente de probabilidade 

transmitida como sendo 

 

𝒥𝒯 = 𝒥𝑖𝑛𝑡𝒯,  (4.52) 

 

E usando a definição de corrente elétrica 𝐼 = 𝑞𝒥, a equação (4.52) torna-se 

 

𝐼𝒯 = 𝐼𝑖𝑛𝒯, (4.53) 

 

onde a corrente elétrica incidente é 𝐼𝑖𝑛 = −𝑒𝑣𝜌, que advém da equação (4.41) com 

𝑞 = −𝑒. 

  Supondo-se que a temperatura é 𝑇 = 0𝐾. Assim, para uma diferença de 

potencial ∆𝑉, o produto 𝑣𝜌 pode ser escrito como, (BROCKS, 2005)  

 

𝑣𝜌 =
∆𝒱

𝜋ℏ
= −

𝑒∆𝑉

𝜋ℏ
. (4.54) 

 

Que será demonstrado mais adiante. Logo, a corrente transmitida é (BROCKS, 2005) 

 

𝐼𝒯 =
𝑒2

𝜋ℏ
∆𝑉𝒯. (4.55) 

 

Portanto, usando a definição de condutância elétrica, obtemos (BROCKS, 2005) 
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𝐺 =
𝐼𝒯
∆𝑉

=
𝑒2

𝜋ℏ
𝒯 =

2𝑒2

ℎ
𝒯, (4.56) 

 

𝐺 =
2𝑒2

ℎ
𝒯. (4.57) 

 

Como 𝒯 é um parâmetro adimensional, o termo 2𝑒2/ℎ tem dimensão de 

condutância, medida em Siemens. A equação (4.57) é conhecida como fórmula de 

Landauer. No problema em questão, essa equação só se torna válida para um sistema 

unidimensional e com baixa temperatura, mas que pode ser generalizada (BROCKS, 

2005).  

 

 

4.8.3 Derivação da Fórmula de Landauer em 1D 

 

 

As regiões da esquerda e da direita de uma junção de túnel, Fig. 7, consistem 

de fios metálicos. Esses fios são considerados muito longos em comparação com a 

região central (que geralmente é muito pequena). Pode-se modelar o potencial de um 

fio metálico como ilustrado na Fig. 10. 

 

 

Figura 10 – Ilustração do potencial de um fio longo à 𝑇 = 0𝐾, onde as extremidades do fio são 

demarcadas por –𝐿/2 e 𝐿/2. Como o fio é muito longo, o espectro de energia é aproximadamente 

contínuo. EF marca o nível de energia de Fermi. 
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onde potencial é constante dentro dos fios e possui degraus nas extremidades do fio 

que mantém os elétrons ligados. Os níveis de energia desses elétrons são dados por13 

(BROCKS, 2005) 

 

 

𝐸𝑛 =
ℏ𝑘𝑛

2

2𝑚
=

𝑛2𝜋2ℏ2

2𝑚𝐿2
.  (4.58) 

 

onde 𝑘𝑛 = 𝜋𝑛/𝐿 é o número de onda e 𝐿 o comprimento do fio.  

O espaçamento entre os níveis 𝐸𝑛 − 𝐸𝑛−1 é inversamente proporcional a 𝐿2. Isto 

é, se 𝐿 é muito grande, o espaçamento entre os níveis de energia se aproxima de um 

contínuo.  

As funções de onda são dadas por (BROCKS, 2005) 

 

𝜓𝑛(𝑥) = √
2

𝐿
𝑠𝑒𝑛𝑘𝑛𝑥 =

1

𝑖√2𝐿
(𝑒𝑖𝑘𝑛𝑥 − 𝑒−𝑖𝑘𝑛𝑥), (4.59) 

 

que corresponde a ondas estacionárias. No entanto, interessa-nos apenas o termo 

1

𝑖√2𝐿
𝑒𝑖𝑘𝑛𝑥 que pode ser representada como uma onda que caminha para a direita, 

bastando para isso acrescentar o termo 𝑒−𝑖𝜔𝑡 . Assim, a probabilidade por unidade de 

comprimento é 

 

𝜌 = |
1

𝑖√2𝐿
|
2

=
1

2𝐿
.  (4.60) 

 

Estudar-se-á a barreira de potencial representada na Fig. 11, que foi 

preenchida com estados ocupados pelos elétrons à 𝑇 = 0𝐾. Todo o desenvolvimento 

para chegar na fórmula de Landauer da maneira que será trabalhada mais adiante, é 

válido apenas quando o comprimento da constrição é menor que o livre caminho 

médio do elétron, o que implica em dizer que há conservação de energia quando o 

                                                             
13  Que é a energia de um poço de potencial infinito. Podemos utilizar esta expressão pois um poço 
finito muito largo e profundo possui, com muito boa aproximação, os mesmos níveis de energia do poço 
infinito. (BROCKS, 2005)  
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elétron sai da região da esquerda para a região da direita por meio da constrição. Ou 

seja, se o elétron da esquerda possuir, por exemplo, 5eV de energia, então o mesmo 

ocupará um estado na região da direita para esta energia específica, não podendo se 

alocar em outro estado. Caso fosse considerado dissipação de energia ao longo da 

constrição, deveria ser usado, como modelo teórico, múltiplas barreiras de potencial.  

 

 

Figura 11 – Potencial da junção Túnel à 𝑇 = 0𝐾 com os estados preenchidos até o nível de 

Fermi. Como os elétrons estão “livres” para se movimentar dentro do metal, estes níveis foram 

preenchidos acima da linha que representa o potencial. Além disso, estamos considerando a situação 

com 𝑇 = 0𝐾, o gás de elétron (o metal) possui estados completamente preenchidos, impossibilitando a 

passagem de elétrons de um lado para o outro. O princípio da exclusão limita a quantidade em apenas 

dois elétrons por estado. 

 

No entanto, ao aplicar uma diferença de energia potencial ∆𝒱 = −𝑒∆𝑉, haverá 

um desbalanceamento na energia. A diferença de potencial faz com que a energia da 

região direita seja reduzida como um todo, surgindo agora estados que podem ser 

ocupados por elétrons da região da esquerda, Fig. 12.  
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Figura 12 – Junção Túnel sob aplicação de uma diferença de potencial. Note que agora há 

estados desocupados, de modo que os elétrons da região esquerda podem agora atravessar a barreira 

e ocupar esses estados.  

 

Do lado esquerdo, Fig. 12, apenas elétrons com energia 𝐸𝐹 − ∆𝒱 < 𝐸 < 𝐸𝐹 

podem atravessar a barreira para ocupar os níveis. Então, a corrente incidente terá 

contribuição para todos os elétrons com energia nessa faixa. Além disso, deve-se 

levar em consideração que em cada nível de energia 𝑛 há dois elétrons com spins 

opostos. Então deve-se multiplicar o valor da corrente elétrica (expressa na equação 

4.41) por um fator 2. Logo, somando sobre todos os estados disponíveis, tem-se 

(BROCKS, 2005)  

 

𝐼𝑖𝑛 = −2𝑒𝜌 ∑ 𝑣𝑛

𝐸𝐹−∆𝒱<𝐸𝑛<𝐸𝐹

. (4.61) 

 

Pode-se usar um truque para transformar o somatório em uma integral, da seguinte 

maneira (BROCKS, 2005) 

 

∑𝑣𝑛 =
𝐿

𝜋
∑𝑣𝑛

𝐿

𝜋
. (4.62) 

 

Como 𝑘𝑛 = 𝜋𝑛/𝐿, então ∆𝑘 = 𝑘𝑛 − 𝑘𝑛−1 =
𝜋

𝐿
. Logo, a equação (4.62) se torna 

 

∑𝑣𝑛 =
𝐿

𝜋
∑𝑣𝑛∆𝑘, (4.63) 
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e como 𝐿 é grande,  

 

∑𝑣𝑛 ≈
𝐿

𝜋
∫𝑣𝑑𝑘. (4.64) 

 

Os limites de integração devem corresponder a 𝐸𝐹 − ∆𝒱 e 𝐸𝐹, para o limite 

inferior e superior, respectivamente. Pode-se transformar a integral da equação (4.64) 

de uma integração em 𝑑𝑘 para um integração em 𝑑𝐸. Da equação (4.39) tem-se que 

 

𝑣 =
ℏ𝑘

𝑚
=

1

ℏ

ℏ2𝑘

𝑚
=

1

ℏ

𝑑 (
ℏ2𝑘2

2𝑚 )

𝑑𝑘
=

1

ℏ

𝑑𝐸

𝑑𝑘
. 

(4.65) 

 

Logo, a integral da equação (4.64) pode ser expressa como (BROCKS, 2005) 

 

∫ 𝑣𝑑𝑘

𝐸𝐹

𝐸𝐹−∆𝒱

= ∫
1

ℏ

𝑑𝐸

𝑑𝑘
𝑑𝑘

𝐸𝐹

𝐸𝐹−∆𝒱

= ∫
1

ℏ
𝑑𝐸

𝐸𝐹

𝐸𝐹−∆𝒱

=
1

ℏ
[𝐸𝐹 − (𝐸𝐹 − ∆𝒱)] =

1

ℏ
∆𝒱, (4.66) 

 

 

∑ 𝑣𝑛

𝐸𝐹−∆𝒱<𝐸𝑛<𝐸𝐹

≈
𝐿

𝜋
(
1

ℏ
∆𝒱).  (4.67) 

 

Usando as informações da equação (4.67) e (4.60), então a equação (4.61) se torna  

 

𝐼𝑖𝑛 = −2𝑒𝜌 ∑ 𝑣𝑛

𝐸𝐹−∆𝒱<𝐸𝑛<𝐸𝐹

≈ −2𝑒 (
1

2𝐿
)(

𝐿

𝜋

1

ℏ
∆𝒱) = −

𝑒∆𝒱

𝜋ℏ
. (4.68) 

 

Logo, a corrente elétrica na região da direita da Fig. 12 (corrente transmitida) é dada 

por 

 

𝐼𝒯 = −(
𝑒∆𝒱

𝜋ℏ
)𝒯 = −

2𝑒

ℎ
(−𝑒∆𝑉)𝒯 =

2𝑒2

ℎ
∆𝑉𝒯 = 𝐺∆𝑉,   (𝑄. 𝐸.𝐷)   (4.69) 
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onde 𝒯 é a probabilidade de transmissão para um elétron com energia 𝐸. Desta forma 

chegando-se a equação de Landauer.  

 

 

4.8.4 Derivação da Fórmula de Landauer em 3D 

 

 

Para construção da fórmula de Landauer em três dimensões, começar-se-á 

com uma generalização da Fig. 8. Um exemplo é mostrado na Fig. 13. Tal esquema 

representa o potencial de uma junção túnel, discutida na seção 4.8.1.  

 

 

Figura 13 – Generalização da barreira quadrada. Nas regiões da esquerda e da direita o 

potencial é constante. Na região do meio o potencial também é constante. É representado as ondas 

incidente, refletida e transmitida. 

 

A equação de Schrödinger é (BROCKS, 2005; GRIFFITHS, 2011) 

 

−
ℏ2

2𝑚
𝛻2𝜓(𝑟 ) + 𝒱𝜓(𝑟 ) = 𝐸𝜓(𝑟 ), (4.70) 

 

𝐸𝜓(𝑟 ) +
ℏ2

2𝑚
𝛻2𝜓(𝑟 ) − 𝒱𝜓(𝑟 ) = 0. (4.71) 
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Usando o Laplaciano em coordenadas cartesianas, podemos fazer o seguinte: 

 

𝜓(𝑥, 𝑦, 𝑧) +
ℏ2

2𝑚
(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
)𝜓(𝑥, 𝑦, 𝑧) − 𝒱𝜓(𝑥, 𝑦, 𝑧) = 0,  (4.72) 

 

𝜓 [𝐸 +
ℏ2

2𝑚
(

𝜕

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
) − 𝒱]𝜓(𝑥, 𝑦, 𝑧) = 0. (4.73) 

 

Em uma junção de túnel, a dimensão do dispositivo da junção é geralmente muito 

menor do que as dimensões paralelas as suas interfaces, Fig. 14. Assim, pode-se 

considerar essas dimensões infinitas, quando comparadas a dimensão do dispositivo 

através da junção (BROCKS, 2005). Logo, 𝒱 = 𝒱(𝑥) e pode-se escrever a equação 

(4.73) como 

 

 

Figura 14 - Ilustração da junção de túnel. Pode-se notar que a dimensão do dispositivo da 

junção na direção 𝑥 é menor que as dimensões na direção 𝑦̂ e na direção 𝑧̂. 

 

[𝐸 + {
ℏ2

2𝑚

𝜕2

𝜕𝑥2
− 𝒱(𝑥)} +

ℏ2

2𝑚

𝜕2

𝜕𝑦2
+

ℏ2

2𝑚

𝜕2

𝜕𝑧2
] 𝜓(𝑥, 𝑦, 𝑧) = 0, (4.74) 

 

e, supondo soluções do tipo 𝜓(𝑥, 𝑦, 𝑧) = 𝜑(𝑥)𝜓(𝑦)𝜓(𝑧), obtém-se (BROCKS, 2005) 
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[𝐸 + {
ℏ2

2𝑚

𝜕2

𝜕𝑥2
− 𝒱(𝑥)} +

ℏ2

2𝑚

𝜕2

𝜕𝑦2
+

ℏ2

2𝑚

𝜕2

𝜕𝑧2
] 𝜑(𝑥)𝜓(𝑦)𝜓(𝑧) = 0,  (4.75) 

 

e as soluções são (BROCKS, 2005) 

 

𝜓(𝑥, 𝑦, 𝑧) = 𝜑(𝑥)𝑒±𝑖𝑘𝑦𝑦𝑒±𝑖𝑘𝑧𝑧 = 𝜑(𝑥)𝑒±𝑖𝑘⃗ ||∙𝑟 , (4.76) 

 

onde 𝑒±𝑖𝑘⃗ ||∙𝑟  descreve uma partícula livre na direção paralela à barreira. Não é possível 

utilizar para a equação (4.76) as condições de contorno periódicas, pois a geometria 

do problema da junção túnel não permite e também porque está sendo levado em 

consideração limites quânticos da junção.  

A função 𝜑(𝑥) é obtida substituindo a equação (4.76) na equação (4.75) 

 

𝐸𝜑(𝑥) + {
ℏ2

2𝑚

𝑑2

𝑑𝑥2
− (𝑥)}𝜑(𝑥) − 𝜑(𝑥)

ℏ2

2𝑚
𝑘𝑦

2 − 𝜑(𝑥)
ℏ2

2𝑚
𝑘𝑧

2  = 0, (4.77) 

 

𝐸 [(𝐸 −
ℏ2

2𝑚
𝑘𝑦

2 −
ℏ2

2𝑚
𝑘𝑧

2) + {
ℏ2

2𝑚

𝑑2

𝑑𝑥2
− 𝒱(𝑥)}]𝜑(𝑥) = 0,  (4.78) 

 

[𝐸 −
ℏ2

2𝑚
(𝑘𝑦

2 + 𝑘𝑧
2) + {

ℏ2

2𝑚

𝑑2

𝑑𝑥2
− 𝒱(𝑥)}]𝜑(𝑥) = 0, (4.79) 

 

[𝐸 −
ℏ2

2𝑚
𝑘||

2 + {
ℏ2

2𝑚

𝑑2

𝑑𝑥2
− 𝒱(𝑥)}]𝜑(𝑥) = 0, (4.80) 

 

[𝐸𝑥 + {
ℏ2

2𝑚

𝑑2

𝑑𝑥2
− 𝒱(𝑥)}]𝜑(𝑥) = 0, (4.81) 

 

com energia 

 

𝐸𝑥 = 𝐸 −
ℏ2

2𝑚
𝑘||

2 , (4.82) 
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onde 𝐸𝑥 a princípio pode assumir um contínuo de valores (RODRIGUES; UGARTE, 

1999; BROCKS, 2005). Como a energia 𝐸 do sistema é fixa, então os níveis de energia 

transversais, relacionado a 𝑘||, definem os modos do sistema. Visto isso, analisar-se-

á o problema de dispersão da onda no plano (𝑘𝑥 , 𝑘||), Fig. 15.  

 

 

Figura 15 - Dispersão de uma barreira quadrada no plano (𝑘𝑥 , 𝑘||). Fonte: (BROCKS, 2005, p. 6)  

 

Analisando as regiões separadamente, obtém-se (BROCKS, 2005) 

 

𝜓𝑘||
(𝑟 ) = {

𝐴 [𝑒𝑖𝑘⃗ ∙𝑟 + 𝑟𝑘||
(𝐸)𝑒𝑖𝑘⃗ ′∙𝑟 ] ; 𝑟  𝑛𝑎 𝑟𝑒𝑔𝑖ã𝑜 𝑒𝑠𝑞𝑢𝑒𝑟𝑑𝑎

𝐴 [𝑡𝑘||
(𝐸)𝑒𝑖𝑘⃗ ∙𝑟 ] ; 𝑟  𝑛𝑎 𝑟𝑒𝑔𝑖ã𝑜 𝑑𝑖𝑟𝑒𝑖𝑡𝑎

 (4.83) 

 

onde 𝑘⃗ ′ = (−𝑘𝑥 , 𝑘||). A amplitude da onda transmitida é 𝐴𝑡𝑘||
(𝐸) e representa uma 

fração da amplitude da onda incidente, isto é, se a probabilidade da onda transmitida 

for de 100%, então |𝑡𝑘||
(𝐸)|2 = 1  e a amplitude da onda transmitida é 𝐴. A corrente 

de probabilidade definida na equação (4.28) se torna um vetor, dado por (BROCKS, 

2005) 

 

𝒥 (𝑟 , 𝑡) =
𝑖ℏ

2𝑚
[ψ(𝑟 , 𝑡)∇ψ∗(𝑟 , 𝑡) − ψ∗(𝑟 , 𝑡)∇ψ(𝑟 , 𝑡)]  (4.84) 

 

No entanto, para a maioria dos problemas, está-se interessado na corrente apenas na 

direção 𝑥̂. Assim,  
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𝒥𝑥 =
𝑖ℏ

2𝑚
[ψ(𝑥, 𝑦, 𝑧)

𝜕ψ∗(𝑥, 𝑦, 𝑧)

𝜕𝑥
− ψ∗(𝑥, 𝑦, 𝑧)

𝜕ψ(𝑥, 𝑦, 𝑧)

𝜕𝑥
]. (4.85) 

 

Usando a equação (4.83) na região da onda transmitida na equação (4.85), obtém-se 

a seguinte expressão para a corrente de probabilidade transmitida para um único 

modo 𝑘||  

 

𝒥𝑇,𝑘||
= |𝐴|2 |𝑡𝑘||

(𝐸)|
2 ℏ𝑘𝑥

𝑚
= 𝜌 |𝑡𝑘||

(𝐸)|
2

𝑣𝑥 . (4.86) 

 

Daqui em diante o raciocínio é semelhante ao da seção 4.8.3. Aplicando uma 

diferença de potencial ∆𝒱 = −𝑒∆𝑉, a componente 𝑥 da densidade de corrente elétrica 

𝐽 transmitida se torna14   

 

𝐽𝑇 = −2𝑒𝜌 ∑ |𝑡𝑘||
(𝐸)|

2

𝐸𝐹−∆𝒱<𝐸𝑘<𝐸𝐹

𝑣𝑥 , (4.87) 

 

isso quer dizer que entre as regiões esquerda e direita, a corrente transmitida é 

transportada por todos os modos transversais que têm energia 𝐸𝑘 no intervalo entre 

𝐸𝐹 − ∆𝒱 e 𝐸𝐹. 

 Da equação (4.60) foi visto que 𝜌 =
1

2𝐿
. No caso tridimensional, usando 

estados normalizados, temos 𝜌 =
1

2𝐿3. Pode-se escrever ∑ = ∑ ∑ ,𝑘𝑥𝑘||𝐸𝐹−∆𝒱<𝐸𝑘<𝐸𝐹
 onde 

é preciso somar apenas os estados com energia no intervalo indicado. (BROCKS, 

2005) 

 Portanto, a equação (4.87) pode ser escrita como  

 

𝐽𝑇 =
−𝑒

𝐿3
∑∑|𝑡𝑘||

(𝐸)|
2

𝑘𝑥

𝑣𝑥 ,

𝑘||

 (4.88) 

 

da equação (4.65) foi visto que 𝑣𝑥 =
1

ℏ

𝑑𝐸𝑥

𝑑𝑘𝑥
. Usando mesmo truque da equação (4.62), 

(4.63) e (4.64), tem-se que  

                                                             
14 O fator 2 ao princípio da exclusão de Pauli, isto é, em cada estado podemos ter 2 elétrons com a 
mesma energia, mas com spins em sentidos opostos.  
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𝐽𝑇 =
−𝑒

𝐿3
∑∑|𝑡𝑘||

(𝐸)|
2

𝑘𝑥

𝑣𝑥 ≈
−𝑒

𝐿3

𝑘||

∑
𝐿

𝜋
∫ |𝑡𝑘||

(𝐸)|
2

𝑣𝑥𝑑𝑘𝑥

𝑘||

, (4.89) 

 

𝐽𝑇 =
−𝑒

𝐿2

1

𝜋
∑∫|𝑡𝑘||

(𝐸)|
2 1

ℏ

𝑑𝐸𝑥

𝑑𝑘𝑥
𝑘||

𝑑𝑘𝑥 =
−𝑒

𝐿2

1

𝜋ℏ
∑∫ |𝑡𝑘||

(𝐸)|
2

𝑑𝐸𝑥

𝐸𝐹−
ℏ2

2𝑚
𝑘||

2

𝐸𝐹−∆𝒱−
ℏ2

2𝑚
𝑘||

2
𝑘||

, (4.90) 

 

onde os limites de integração diferem da equação (4.66), pois a energia 𝐸𝑥 é reduzida 

por um fator 
ℏ2

2𝑚
𝑘||

2, advindo da equação (4.82). Ainda pode-se escrever a equação 

(4.90) como  

 

𝐽𝑇 =
−𝑒

𝐿2

1

𝜋ℏ
∑∫ |𝑡𝑘||

(𝐸𝑥 +
ℏ2

2𝑚
𝑘||

2)|

2

𝑑𝐸𝑥

𝐸𝐹−
ℏ2

2𝑚
𝑘||

2

𝐸𝐹−∆𝒱−
ℏ2

2𝑚
𝑘||

2
𝑘||

=
−𝑒

𝐿2

∆𝒱

𝜋ℏ
∑|𝑡𝑘||

(𝐸)|
2

,

𝑘||

 (4.91) 

 

onde 𝑡𝑘||
(𝐸𝐹 −

ℏ2

2𝑚
𝑘||

2) e 𝑡𝑘||
(𝐸𝐹 − ∆𝒱 −

ℏ2

2𝑚
𝑘||

2) não diferem muito, visto que ∆𝒱 é 

pequeno, quando comparado a 𝐸𝐹 −
ℏ2

2𝑚
𝑘||

2. ∆𝑉 obtido experimentalmente vale 

aproximadamente 0.01𝑉, o que leva ∆𝒱 = 𝑒∆𝑉~10−21𝐽𝑜𝑢𝑙𝑒, o termo 
ℏ2

2𝑚
𝑘||

2~10−26𝐽𝑜𝑢𝑙𝑒 

e 𝐸𝐹 = 7𝑒𝑉~10−18𝐽𝑜𝑢𝑙𝑒 para o cobre (
ℏ2

2𝑚
𝑘||

2 é desprezível frente a 𝐸𝐹). Ou seja, ∆𝒱 é 

três ordens de grandeza menor que 𝐸𝐹.  

 A corrente transmitida, considerando uma junção quadrada, Fig. 16, é dada por 
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Figura 16 - Junção túnel quadrada. Representação da densidade de corrente elétrica 𝐽 .  

 

𝐼𝒯 = ∫𝐽 ∙ 𝑑𝑆 = 𝐽𝒯𝐿2, (4.92) 

 

a condutância elétrica 𝐺 =
𝐼𝒯

∆𝑉
= −

𝑒𝐽𝒯𝐿2

∆𝒱
 se torna, usando a equação (4.91) e a equação 

(4.92)  

 

𝐺 = −
𝑒𝐼𝒯
∆𝒱

= −
𝑒 [

−𝑒
𝐿2

∆𝒱
𝜋ℏ

∑ |𝑡𝑘||
(𝐸)|

2

𝑘||
] 𝐿2

∆𝒱
, 

(4.93) 

 

𝐺 =
2𝑒2

ℎ
∑|𝑡𝑘||

(𝐸)|
2

𝑘||

.  (4.94) 

 

 A expressão (4.94) é a fórmula de Landauer, com a transmissão total 𝒯 =

∑ |𝑡𝑘||
(𝐸)|

2

𝑘||
 para dois reservatório com o sistema à 𝑇 = 0𝐾, exibida como uma soma 

sobre as transmissões dos modos transversais individuais 𝑘|| (BROCKS, 2005). 

 

 

4.8.5 Transporte de Carga em um Fio com Constrição  
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A maneira como foi derivada a expressão (4.94) significa que pode ser 

facilmente generalizado para qualquer sistema onde o Hamiltoniano é separável em 

um termo que dependa apenas de 𝑥 e um termo que dependa apenas de 𝑦 e 𝑧 

(BROCKS, 2005). Por exemplo, as funções de onda do fio mostrado na Fig. 18 pode 

ser escrita como 

 

𝜓(𝑥, 𝑟 ⊥) = 𝜑(𝑥)𝜂𝑛⃗ (𝑟 ⊥), (4.95) 

 

onde 𝑛⃗  é um conjunto de dois números quânticos que rotulam os modos do sistema. 

A condutância deste fio quântico pode ser expressa como a soma das transmissões 

dos modos individuais (BROCKS, 2005)  

 

𝐺 =
2𝑒2

ℎ
∑|𝑡𝑛⃗ (𝐸)|2

𝑛⃗ 

. (4.96) 

 

Supondo o limite balístico, onde  |𝑡𝑛⃗ (𝐸)|2 = 1, que representa a probabilidade de 

transmissão relacionada com cada modo transversal 𝑛⃗ . Então, expressão (4.96) se 

torna (RODRIGUES; UGARTE, 1999; BROCKS, 2005; PAREDES, 2010; DAVIDSON, 

2007; DAMYANOV et al., 2007)      

 

𝐺𝑏𝑎𝑙 =
2𝑒2

ℎ
∑1

𝑛⃗ 

=
2𝑒2

ℎ
𝑛 = 𝑛𝐺0, 𝑛 = 1,2,3… (4.97) 

 

onde 𝐺0 ≡ 2𝑒2/ℎ ≈ 7,48 𝑥 10−5𝑆 é o quantum de condutância e 𝑛 é o número de 

modos transversais suportados pelo fio; 𝐺𝑏𝑎𝑙 é chamada de condutância balística. 

Note que 𝑛 é um número inteiro.  

 Em um fio real sempre contém impurezas e imperfeições (defeitos de rede, 

limites de grão, átomos de impureza, etc.) e a dispersão desses defeitos domina a 

condutância. Mas, em fios finos e pequenos esses efeitos são amenizados e pode-se 

medir a quantização da condutância. (BROCKS, 2005)  

 Analisar-se-á agora os três limites para a condutância elétrica 𝐺, o limte 

clássico, semi-clássico e quântico.  
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4.8.5.1 Limite Clássico  

 

 

Na Fig. 17 é representado os três casos limites. O primeiro deles é quando 𝐿, 

𝐿𝑥 , 𝐿𝑦>>𝑙. Nessas condições, haverá uma grande quantidade de espalhamento antes 

do elétron chegar ao fim da constrição, de modo que deve-se tratar os portadores de 

carga como partículas.  

Como o fio é metálico, não haverá acumulo de cargas em qualquer lugar da 

constrição. Então, usando as equações de Maxwell, temos (AGRAÏT; YEYATI; 

RUITENBEECK, 2003) 

 

∇⃗⃗ ∙ E⃗⃗ =
𝜌

𝜀0
= 0. (4.98) 

 

Sendo 𝑞E = 𝐹, 𝑞𝑉 = 𝒱, 𝐹 = −∇⃗⃗ 𝒱, implica em  E⃗⃗ = −∇⃗⃗ 𝑉. Assim,  

 

∇⃗⃗ ∙ E⃗⃗ = (∇⃗⃗ )∇⃗⃗ 𝑉 = ∇2𝑉 = 0. (4.99) 

 

Que é a equação de Laplace. Resolvendo-a para um fio com constrição hiperbólica 

utilizando as coordenadas adequadas, obtém-se a seguinte expressão para a 

condutância elétrica (AGRAÏT; YEYATI; RUITENBEECK, 2003) 

 

𝐺 =
𝑤

𝐿
𝜎, (4.100) 

 

com 𝜎 sendo a condutividade do material, mostrando que a condutância é uma função 

suave do diâmetro da constrição 𝑤, como esperado classicamente.  

 

 

4.8.5.2 Limite Semi-clássico 
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           Adotando-se o limite tal que 𝐿 < 𝑙, sendo 𝑙 o livre caminho médio do elétron. 

Neste caso, o elétron não sofrerá uma grande quantidade de espalhamentos 

consecutivos, mas passará quase que sem ser espalhado, sendo acelerado até o fim 

da constrição. Tal situação é referida como transporte balístico e foi observado pela 

primeira vez por Sharvin (AGRAÏT; YEYATI; RUITENBEECK, 2003). Para modelar o 

comportamento dos elétrons neste limite requer uma mistura de conceitos de 

mecânica quântica e mecânica clássica e é, portanto, chamado de limite semiclássico. 

A condutância neste limite é conhecida como a condutância de Sharvin e é dada por 

(AGRAÏT; YEYATI; RUITENBEECK, 2003) 

 

𝐺 = (
2𝑒2

ℎ
)(

𝑘𝐹𝑤

4
)
2

, (4.101) 

 

onde ℎ é a constante de Planck e 𝑘𝐹 é o vetor de onda de Fermi. A condutância de a 

constrição neste limite é independente do material e aumenta quadraticamente com a 

seção transversal do fio.  

 

 

4.8.5.3 Limite Quântico (nanofios) 

 

 

             Um nanofio é considerado um fio que existe em uma escala de 10𝑛𝑚. Os 

nanofios metálicos não ocorrem na natureza, no entanto os nanofios moleculares sim, 

sendo a mais comum de todas as ocorrências o DNA, que é uma cadeia orgânica de 

moléculas na escala 𝑛𝑚 (DAVIDSON, 2007). Existem muitos métodos diferentes para 

a criação de nanofios, como, por exemplo, litografia por feixe de elétrons; epitaxia com 

feixe molecular, etc. (DAVIDSON, 2007).  

 A expressão para a condutância quântica pode ser obtida de diversas formas, 

uma delas é utilizando o formalismo de Landauer-Büttiker (AGRAÏT; YEYATI; 

RUITENBEECK, 2003; RODRIGUES; UGARTE, 1999; PAREDES, 2010), o mesmo 

utilizado no desenvolvimento teórico deste trabalho. Nessa descrição, considera-se 

um fio com diâmetro da ordem do comprimento de onda de de Broglie para os elétrons 

na superfície de Fermi 𝜆𝐹 (alguns nanômetros para o Cu, Au, W, etc.), a condutância 
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pode ser interpretada como a probabilidade de transmissão dos elétrons. E se também 

considerar-se que o comprimento do condutor é menor que o livre caminho médio dos 

elétrons (𝐿 < 𝑙), ou seja, o elétron atravessa a constrição, em média, sem sofrer 

espalhamentos (balístico), o coeficiente de transmissão 𝒯 = 1 e assim pode-se usar 

a equação (4.97). 

Portanto, neste limite, a condutância deixa de variar continuamente e passar a 

variar em múltiplos inteiros de 𝐺0. Além disso, não há qualquer dependência com a 

geometria nem com o material em questão, ao contrário do observado 

macroscopicamente. Na Fig. 17 pode-se ver um comparativo entre a condutância no 

limite clássico e quântico.  

 

 

Figura 17 - Comparação qualitativa da dependência da condutância da seção transversal na 

descrição clássica (linha tracejada) e quântica (linha preenchida). Fonte: (RODRIGUES; UGARTE, 

1999)  

 

Nota-se da Fig. 17 que a condutância clássica varia linearmente com a variação 

da seção transversal do fio. Na descrição quântica, pode-se observar o quantum de 

condutância, ou os chamados “canais” de condutância. Cada degrau é relativo a um 

valor de 𝑛. Para o nível do degrau 1, tem-se 𝑛 = 1; para o nível do degrau 2, tem-se 

𝑛 = 2 e assim por diante. Da Fig.18, pode-se observar os três casos limites para um 

fio retangular.  
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Figura 18 - Ilustração para os diferentes regimes de condução. (a) no regime difusivo, os 

elétrons se espalham muitas vezes enquanto estão na constrição. (b) no regime balístico podemos 

considerar não havendo espalhamento e o elétron é acelerado livremente. (c) a largura da constrição 

torna-se semelhante ao comprimento de onda de de Broglie dos elétrons na superfície de Fermi. Neste 

caso forma-se ondas estacionárias na direção transversal a corrente, o que limita o número de canais 

de condução.  

 

 Para ter-se uma ideia de como se comporta os estados do sistema quando o 

diâmetro de um fio é da ordem do comprimento de onda de de Broglie na superfície 

de Fermi, analisar-se a seguir um fio retangular, de acordo com a Fig. 19 
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Figura 19 – Representação de um fio retangular com dimensões transversais (𝐿𝑥 , 𝐿𝑦) 

quantizadas. Ao lado direito do fio, tem-se as sub-bandas de energia do sistema, considerando o limite 

em que a energia varia continuamente em 𝑧, o que significa dizer que 𝐿𝑧 >> 𝐿𝑥 , 𝐿𝑦. Fonte: (BALDO, 

2011, p. 62) 

 

Considerando que o potencial na lateral é infinito, tem-se que  

 

𝐸 =
ℏ2

2𝑚
(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2), (4.102) 

 

𝑘𝑥 =
𝑛𝑥𝜋

𝐿𝑥
;  𝑘𝑦 =

𝑛𝑦𝜋

𝐿𝑦
; 𝑘𝑧 =

𝑛𝑧𝜋

𝐿𝑧
. (4.103) 

 

A superfície de Fermi é obtida fazendo 𝐸 = 𝐸𝐹 =
ℏ2𝑘𝐹

2

2𝑚
. Ao considerar que em 𝑧 

a energia varia continuamente15, i.e. 𝐿𝑧 >> 𝐿𝑥 , 𝐿𝑦, e que apenas 𝑘𝑥 e 𝑘𝑦 contribuem 

para a energia de Fermi, tem-se 

 

ℏ2

2𝑚
(𝑘𝑥

2 + 𝑘𝑦
2) =

ℏ2𝑘𝐹
2

2𝑚
, (4.104) 

 

𝑘𝑥
2 + 𝑘𝑦

2 = 𝑘𝐹
2,  (4.105) 

 

                                                             
15 A existência de degenerescência nos modos transversais faz com haja canais com larguras maiores 
que outros, como pode-se notar na Fig. 17. Isso pode ser explicado pelo fato de haver mais estados 
que podem ocupar os níveis de energia transversais.  
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que é uma circunferência de raio 𝑘𝐹
2 no espaço recíproco (espaço 𝑘). Neste espaço, o 

eixo 𝑘𝑥 está espaçado em múltiplos inteiros de 𝜋/𝐿𝑥 e ao longo do eixo 𝑘𝑦, em 

múltiplos inteiros de 𝜋/𝐿𝑦. Assim, o número de modos transversais 𝑛 disponíveis para 

o sistema é (DAVIDSON, 2007) 

 

𝑛 =
1

4

𝜋𝑘𝐹
2

𝜋
𝐿𝑥

𝜋
𝐿𝑦 

 
=

𝐿𝑥𝐿𝑦𝑘𝐹
2

4𝜋
.  (4.106) 

 

𝑛 =
1

4

𝜋𝑘𝐹
2

𝜋
𝐿𝑥

𝜋
𝐿𝑦 

 
=

𝐿𝑥𝐿𝑦𝑘𝐹
2

4𝜋
. (4.107) 

 

 E, se 𝐿𝑥 = 𝐿𝑦, o comprimento 𝐿 pode ser escrito como  

 

𝐿 = 𝑛
2√𝜋

𝑘𝐹
. (4.108) 

 

Nota-se que ao aumentar as dimensões transversais do fio, os números de 

estados para o sistema aumentam. Ou seja, o número de estados disponíveis para o 

sistema são determinados por 𝐿. Para o cobre, por exemplo, 𝑘𝐹 = 1,36 x 10−10𝑚−1, o 

que leva a 𝐿1 ≈ 0,26𝑛𝑚, sendo 𝐿1 é o comprimento para 𝑛 = 1. Já para o tungstênio, 

𝑘𝐹 = 1,60 x 10−10𝑚−1, o que leva a 𝐿1 ≈ 0,22𝑛𝑚. 

No caso de contatos metálicos justapostos oscilando, há, a cada instante, o 

aparecimento e desaparecimento de vários modos transversais (devido mudanças 

nas dimensões do contato), que limitam a condutância em múltiplos inteiros de 𝐺0 ≡

2𝑒2/ℎ. Se o nanocontato for modelado como retangular, os estados ocupados nessa 

região podem ser obtidos analogamente ao desenvolvimento anterior que resultou na 

equação (4.108), isto é, considerando que apenas os modos transversais contribuem 

para a energia de Fermi. Portanto, conclui-se que os primeiros canais de condutância 

estão relacionados a contatos com dimensões nanométricas. 
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5 METODOLOGIA  

 

 

Para construção do aparato experimental para medida da condutância quântica 

foi utilizado equipamentos de baixo custo. A parte experimental é composta dos 

seguintes passos: construção de um circuito, montagem do aparato experimental e 

processo de medição. O esquema do circuito elétrico, baseado na referência 

(DAMYANOV et al., 2015), pode ser observado na figura a seguir: 

 

 

Figura 20 - Circuito elétrico amplificador de sinal para medida da condutância quântica.  

 

 Quando os fios estão em contato formam um quantum de condutância e eles 

podem ser apresentados como um resistor 𝑟𝑛. Nesse caso, a Fig. 20 mostra o 

esquema de um amplificador inversor, que mede a tensão de entrada 𝑈𝑖𝑛 do divisor 

de tensão formado por 𝑅1 e 𝑅2. Para os valores de 𝑅1 = 10 𝛺 e 𝑅2 =  302 𝛺 a queda 

de tensão devido ao divisor é de aproximadamente 0,096 𝑉. O valor de 𝑅1  e 𝑅2 é 

escolhido de forma que a tensão de entrada do divisor 𝑈𝑖𝑛 seja menor que a tensão 

máxima de saída do amplificador inversor (que é, no nosso caso, 9𝑉 que representa 

a tensão de saturação), dividida pelo seu ganho 𝒢𝑛, ou seja 

 

𝒢𝑛𝑈𝑖𝑛  < 9, (5.1) 

 

𝒢𝑛

3𝑅1

𝑅1  +  𝑅2
 < 9, (5.2) 
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3𝑅1

𝑅1  + 𝑅2
 <

9

𝒢𝑛
. (5.3) 

 

 Com a obtenção de uma expressão para o ganho 𝒢𝑛 e pode-se saber para a 

tensão de entrada utilizada, quantos canais de condutância é possível obter 

experimentalmente.  

 A corrente elétrica 𝐼 que percorre o nanocontato, representado pelo resistor 

𝑟𝑛 é dada por 

  

𝐼 =
𝑈𝑖𝑛 − 𝐴−

𝑟𝑛
, (5.4) 

 

que é a mesma corrente que percorre o resistor 𝑅𝑓, pois a impedância de entrada de 

um amplificador operacional é muito alta. Assim, a tensão 𝑈𝑥 entre os terminais do 

resistor 𝑅𝑓 (tensão entre os pontos B e C) se torna  

 

𝑈𝑥 = 𝑅𝑓𝐼 = 𝑅𝑓

𝑈𝑖𝑛 − 𝐴−

𝑟𝑛
. (5.5) 

 

 A impedância de entra do amplificador operacional é extremamente alta, o 

que faz com que a corrente elétrica 𝐼𝑎𝑚𝑝 que passa por ele seja aproximadamente 

nula. Então pode-se escrever a tensão no amplificador como 

 

𝐴− − 𝐴+ = 𝐼𝑎𝑚𝑝𝑟𝑎𝑚𝑝 ≈ 0  ⟹    𝐴− ≈ 𝐴+ = 0, (5.6) 

 

pois 𝐴+ está aterrado. Logo, a equação (5.5) se torna  

 

𝑈𝑥 = 𝑅𝑓𝐼 = 𝑅𝑓

𝑈𝑖𝑛

𝑟𝑛
. (5.7) 

 

O ganho 𝒢 de um amplificador é dado por  
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𝒢 =
𝑈𝑜𝑢𝑡

𝑈𝑖𝑛𝑡
, (5.8) 

 

considerando que 𝑈𝑜𝑢𝑡 = −𝑈𝑥 e usando a equação (5.7) em (5.8), obtém-se para o 

ganho a seguinte expressão  

 

𝒢𝑛 = −
𝑅𝑓

𝑟𝑛
=

𝑈𝑜𝑢𝑡

𝑈𝑖𝑛𝑡
. (5.9) 

 

 Portanto, o ganho do amplificador é controlado modificando as resistências 

de 𝑅𝑓 e/ou 𝑟𝑛.  

 Pode-se calcular o valor de 𝑟𝑛 e assim saber o ganho para cada valor de 𝑛. 

Sabe-se, da primeira Lei de Ohm, que a tensão elétrica 𝑈 = 𝑅𝐼 e a condutância elétrica 

é 𝐺 = 𝐼/𝑈. Logo, concluímos que 𝑅 = 1/𝐺. Portanto, a resistência 𝑟𝑛 pode ser escrita 

como 

 

𝑟𝑛 =
1

𝐺
, (5.10) 

 

Mas, como a condutância elétrica é 𝐺 =
2𝑒2

ℎ
𝑛, implica que  

 

𝑟𝑛 =
ℎ

𝑛2𝑒2
. (5.11) 

 

 Utilizando o valor de ℎ = 6,626 x 10−34𝐽𝑠 e 𝑒 = 1,602 x 10−19 obtidos da 

referência (EISBERG; RESNICK, 1979), obtém-se a seguinte tabela para os cinco 

primeiros valores da resistência 𝑟𝑛 e o ganho 𝒢 associado a cada uma delas 
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𝑟𝑛[𝐾𝛺] 𝒢 

𝑟1 = 12,9 −3,64 

𝑟2 = 6,45 −7,28 

𝑟3 = 4,30 −11,0 

𝑟4 = 3,23 −14,56 

𝑟5 = 2,58 −18,20 

 

Tabela 2 - Valores para a resistência no nanocontato e os valores do ganho associado a cada 

valor da resistência. 

 

 É possível obter a constante de Planck, bastando isolar ℎ na equação (5.11) 

 

ℎ = 2𝑛𝑒2𝑟𝑛 , (5.12) 

 

e, usando a equação (5.9), tem-se então  

 

ℎ = −2𝑒2𝑅𝑓𝑛
𝑈𝑖𝑛

𝑈𝑜𝑢𝑡
. (5.13) 

 

 Assim, para medir a constante de Planck basta conhecer a tensão de saída 

e também qual o valor de 𝑛 relativo aquela tensão.  

 As tensões de saída foram observadas em um osciloscópio digital. 

Conhecendo a tensão de entrada e o ganho para cada 𝑛, é possível saber se a tensão 

de saída observada é relativa a algum canal de condutância. Por exemplo, digamos 

que você ao fazer a medida observe no osciloscópio o seguinte, Fig. 21: 
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Figura 21 - Ilustração de uma possível medida no osciloscópio. 

 

 Ao tirar uma média na região onde há um provável canal de condutância (isso 

pode ser feito em um software de análise de dados), você percebeu que o valor médio 

da tensão de saída foi de −0,3552. Para saber se fato este patamar está no canal 1, 

basta dividir o valor da tensão de saída pelo tensão de entrada que é de 0,096𝑉. Neste 

exemplo, obtemos 𝒢 = −3,7. Portanto, o patamar está bem próximo do canal 1. E 

assim por diante, até que seja analisado cada degrau, prováveis canais de 

condutância. 

 Atendo-se agora a atenção para a montagem da parte mecânica e elétrica do 

aparato experimental. 

 As partes elétricas são mostradas na Fig. 22. Utilizamos duas pilhas alcalinas 

de 1,5𝑉 em série, ou seja, os 3𝑉 que aparecem no circuito da Fig. 20. O amplificador 

operacional utilizado foi o TL071, pois dos que foram testados este foi o que tinha 

melhor tempo de resposta. Para a alimentação do amplificador foi utilizado duas 

baterias alcalinas de 9𝑉. Além disso, utilizou-se três resistores, um de 10𝛺 e outros 

dois em paralelo de 604𝛺, gerando uma resistência equivalente de 302𝛺; três 

conectores BNC, onde dois deles foram usados para conectar os cabos relativos ao 

nanocontato e o outro foi utilizado para conectar o cabo de saída para o osciloscópio. 

Também se usou uma chave para ligar e desligar o circuito. Foi feita uma caixa 

metálica, que serviu como uma gaiola de Faraday para suprimir a interferência 

eletromagnética do ambiente (esta caixa é de extrema importância, visto que as 

medidas feitas são de tensões muito pequenas e as interferências externas são 

bastantes significativas).  
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Figura 22 - Parte elétrica do aparato experimental. 

 

 As partes mecânicas do processo de medição foram feitas de duas formas 

diferentes. A seguir serão apresentadas cada uma delas: 

 Metodologia 1 – Primeiro foi utilizado fios de cobre de 0,20mm e depois fios 

de tungstênio de 0,25mm. Os fios de cobre (e posteriormente o de tungstênio) foram 

postos perpendicularmente em contato de modo que sempre fosse possível observar 

uma oscilação de um fio em relação ao outro. A saída do circuito foi conectada ao 

osciloscópio. As medidas foram feitas de uma e uma, deixando a função single do 

osciloscópio ativada. Cada medida foi salva em um pendrive para posterior análise 

em um software de análise de dados. A Fig. 23 ilustra a situação 
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Figura 23 - Medida da condutância quântica. Metodologia 1. 

 

 Para realizar as medidas, conectou-se um cabo BNC a uma das entradas do 

osciloscópio e na extremidade dos outros dois cabos soldou-se os fios de cobre (você 

pode usar um conector BNC e soldar os fios na ponta do conector). Após isso, ligou-

se o interruptor para alimentar o amplificador operacional e o circuito começou a 

funcionar. Em seguida, definiu-se a escala de tempo do osciloscópio de 5,000𝜇𝑠 e a 

escala de tensão em 1,00𝑉 por divisão. Colocando-se os fios em contato, deve-se 

observar algo parecido com a Fig. 24.  

   

 

 

Figura 24 - Oscilação dos fios justapostos fazendo e desfazendo nanocontatos. A observação 

é feita em um osciloscópio digital com a função single ainda desligada. 
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 Após isso, liga-se a função single do osciloscópio. Esta função mostra apenas 

uma medida por vez na tela. As medidas foram salvas quando era observado 

visualmente algum canal de condutância, como os da Fig. 25, Fig. 26 e Fig. 27. 

  

 

Figura 25 - Possíveis canais de condutância observados na tela do osciloscópio. 

 

 

Figura 26 - Possíveis canais de condutância observados na tela do osciloscópio. Aqui há, 

aparentemente, mais canais, mas com alguns não estão formando degraus tão perfeitos. 
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Figura 27 - Possíveis canais de condutância observados na tela do osciloscópio. Aqui, pode 

ser observado mais aparentemente as oscilações devido ao setting time do amplificado operacional.  

 

 Pode-se notar que nem sempre aparece degraus perfeitos, isto é, bem 

planos. Isso pode ser explicado pelo tempo de resposta do amplificador, o setting time, 

que é o tempo em que a saída do amplificador demora para se estabilizar no valor 

desejado numa transição. Isso explica o fato de também observa-se valores positivos 

de tensão, como os da Fig. 25 e Fig. 27. Ao observar degraus comos os das figuras 

citadas, a medida era então salva para posterior análise.  

 Metodologia 2 - Foi utilizado os mesmo fios e o mesmo circuito elétrico 

apresentado anteriormente. A diferença foi na parte mecânica. A oscilação não foi 

mais manual, foi utilizado um micromotor vibracall de telefone celular. Para o 

funcionamento do micromotor a alimentação com uma pilha comum pode ser utilizada, 

mas utilizou-se uma das saídas de um Arduíno. Um dos terminais do micromotor foi 

conectado na saída PWM do Arduíno e o outro terminal foi conectado ao terra (GND). 

A função PWM, por meio do duty cycle, controla a tensão média de saída. Foi dessa 

forma que foi controlada a vibração do micromotor.  

 O micromotor foi fixado com fita adesiva e em cima dele foi fixado um dos fios 

(um de pedaço menor) e outro fio, de tamanho maior, ficou livre para oscilar, Fig. 28. 

Toda essa parte mecânica foi colocada em uma caixa metálica para redução de 
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interferências externas, Fig. 29. Daqui em diante o procedimento foi igual ao da 

Metodologia 1. Tentou-se também utilizar um piezoelétrico para fazer os fios 

oscilarem, mas deixou-se de lado, pois o micromotor vibracall apresentou melhor 

eficácia e facilidade para as medições.  

 

 

Figura 28 – Medida da condutância quântica. Metodologia 2. 

 

 

Figura 29 – Parte mecânica da medida de condutância quântica. Na figura podemos ver 

também um protoboard, que foi utilizado, a priori, para reduzir a vibração do micromotor, mas, por fim, 

foi mantida apenas a função PWM do arduíno. 
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 Alguns cuidados devem ser tomados, como, por exemplo, não fazer muita 

pressão ao encostar os fios, pois isto desfaz os nanocontatos, passando a ter um 

contato macroscópico; tentar manter os fios o mais perpendicular possível; não tocar 

nos fios, para não interferir no circuito; e ter bastante cuidado para não amassar os 

fios. 

 No geral, foram feitas em torno de 800 medidas para cada fio. Esse total de 

medidas foi dividido utilizando as duas metodologias. Essa grande quantidade foi 

necessária, pois nem sempre o que era observado visualmente era de fato um canal 

de condutância, sendo necessário a construção de histogramas globais.  

 Todos os dados foram salvos e analisados. As curvas que se apresentavam 

muito fora do esperado (não formando patamares bem definidos) eram descartadas. 

As outras curvas foram salvas em tabelas para posterior análise.  

 Para o cálculo da constante de Planck foi utilizada a fórmula (5.13) 

substituindo 𝑈𝑜𝑢𝑡 por 𝑈̅𝑜𝑢𝑡, onde 𝑈̅𝑜𝑢𝑡 é uma tensão média de saída, advinda da média 

aritmética dos patamares observados para determinado canal.   

 As incertezas foram calculadas da seguinte maneira: considerando uma 

medida 𝑓, onde 𝑓 = 𝑓(𝑎1, 𝑎2, 𝑎3, 𝑎𝑛  . . . ), e ∆𝑎𝑛 é a incerteza de 𝑎𝑛, a incerteza de 𝑓, 

∆𝑓, é dada por (RECKTENWALD, 2006; ARRAS, 1998) 

 

∆𝑓 = √(
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Para a constante de Plack, sendo ℎ = −2𝑒2𝑅𝑓𝑛𝑈𝑖𝑛/𝑈𝑜𝑢𝑡, isto é, ℎ =

ℎ(𝑈𝑖𝑛 , 𝑅𝑓, 𝑈𝑜𝑢𝑡), com 𝑒 = 1,602 x 10−19 uma constante (EISBERG; RESNICK, 1979), a 

incerteza ∆ℎ é dada por  
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com ∆𝑅𝑓 = 0,05𝛺; a tensão de saída é obtida por (LEÃO, [201?]) ∆𝑈𝑜𝑢𝑡 =

√𝜎𝑈𝑜𝑢𝑡

2 + ∆𝑈𝑜𝑢𝑡,𝑖𝑛𝑡𝑟𝑢.
2 , sendo 𝜎𝑈𝑜𝑢𝑡

 a incerteza da média e ∆𝑈𝑜𝑢𝑡,𝑖𝑛𝑠𝑡𝑟𝑢. a incerteza 

instrumental da medida de tensão, que é ∆𝑈𝑜𝑢𝑡,𝑖𝑛𝑠𝑡𝑟𝑢. = 0,01𝑉. A incerteza da tensão 
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de entrada é ∆𝑈𝑖𝑛 = √(
3

𝑅1+𝑅2
)
2
(∆𝑅1)2 + (−

3𝑅1

(𝑅1+𝑅2)2
)
2
(∆𝑅2)2, onde ∆𝑅1 = 0,05𝛺 e 

∆𝑅2 = 0,01𝛺 (que é a incerteza do resistor em paralelo). 

Foi construído um roteiro experimental, onde pode ser usado em disciplinas de 

Laboratório de Física. Este roteiro pode ser visto no APÊNDICE C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 

 

6 RESULTADOS 

 

 

Todos os dados obtidos (tabelas, gráficos, histogramas) estão apresentados 

nesta seção. Inicialmente é apresentado os resultados para a quantização da 

condutância para fios de cobre com diâmetro de 0,20mm. Em seguida, o histograma 

global, onde são representados o acúmulo das contagens obtidas em cada curva de 

uma série de medidas (sob mesmas condições experimentais). Logo após, uma tabela 

com a obtenção experimental da constante de Planck. Os resultados para os fios de 

tungstênio com diâmetro de 0,25mm seguiram o mesmo procedimento.  

Na Fig. 30 e na Fig. 31 são apresentados os resultados para a quantização da 

condutância para o cobre.  

 

 

Figura 30 – Medidas típicas de condutância quântica para o cobre. 
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Figura 31 – Mais algumas medidas típicas de condutância quântica para o cobre. 

 

A análise dos resultados experimentais apresenta uma grande dificuldade: as 

curvas para a condutância quântica não são repetidas. Isso é justificado pela forma 

como a medida é realizada. Como não temos o controle da dinâmica de variação da 

área de contato dos fios, é interessante montar histogramas globais, onde são 

representados o acúmulo das contagens obtidas para cada curva. Com esses 

histogramas pode-se apresentar o comportamento geral da condutância dos 

nanocondutores. Pode-se observar na Fig. 32 o histograma para o cobre.  
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Figura 32 - Representação na forma de histograma das curvas de condutância para o cobre, 

num total de 525 patamares de condutância analisados. 

 

A partir do histograma foi calculado a constante de Planck (e a partir dela a 

condutância quântica) para os primeiros cinco canais de condutância. Essas medidas 

foram feitas considerando uma tensão média de saída, onde a média foi feita sobre 

todos os valores relativos a cada canal. Na Tabela 3 pode-se observar os valores 

obtidos para o cobre. 

 

Tabela 3 – Valores da tensão média de saída para o cobre para cada canal de condutância 𝒏, 

os valores experimentais relativos a condutância quântica e valores obtidos para a constante de Planck 

𝒉 acompanhado do erro relativo, utilizando para 𝒉 o valor de referência 6,626 𝑥 10−34 𝐽𝑠 e 𝑒 = 

1.602 𝑥 10−19.  

 

𝑈𝑜𝑢𝑡  [𝑽] Canal (𝒏) Condutância [𝟏𝟎−𝟓𝑺] 𝒉[𝟏𝟎−𝟑𝟒 𝑱 𝒔] Erro relativo (%) 

−0,37 ± 0,04 1 7,7 ± 0,9 6,3 ± 0,7 4,9 

−0,71 ± 0,04 2 15,5 ± 0,2 6,5 ± 0,4 1,9 

−1,06 ± 0,04 3 23,24 ± 0,08 6,54 ± 0,3 1,3 

−1,42 ± 0,04 4 30,99 ± 0,07 6,53 ± 0,2 1,4 

−1,77 ± 0,04 5 38,73 ± 0,06 6,55 ± 0,2 1,1 
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Na Fig. 33 é apresentado os resultados para o fio de tungstênio, de diâmetro 

0,25mm.  

 

 

 
 

 
Figura 33 – Medidas típicas de condutância quântica para fios de tungstênio. 
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O histograma global para o tungstênio é apresentado na Fig. 34 

 

 

Figura 34 - Representação na forma de histograma das curvas de condutância para o 

tungstênio, num total de 526 patamares de condutância analisados. 

 

 E na Tabela 4 os valores obtidos para a constante de Planck para os primeiros 

cinco canais de condutância utilizando fios de tungstênio 

 

Tabela 4 – Valores da tensão média de saída para o tungstênio para cada canal de condutância 

𝒏, os valores experimentais relativos a condutância quântica e valores obtidos para a constante de 

Planck 𝒉 acompanhado do erro relativo, utilizando para 𝒉 o valor de referência 6,626 𝑥 10−34 𝐽𝑠 e 𝑒 = 

1.602 𝑥 10−19.  

 

 

𝑈𝑜𝑢𝑡  [𝑽] Canal (𝒏) Condutância [𝟏𝟎−𝟓𝑺] 𝒉[𝟏𝟎−𝟑𝟒 𝑱 𝒔] Erro relativo (%) 

−0,37 ± 0,05 1 7,7 ± 0,3 6,3 ± 0,8 4,9 

−0,71 ± 0,04 2 15,5 ± 0,1 6,6 ± 0,4 0,4 

−1,06 ± 0,05 3 23,24 ± 0,08 6,57 ± 0,3 0,8 

−1,42 ± 0,04 4 30,99 ± 0,07 6,55 ± 0,2 1,1 

−1,79 ± 0,04 5 38,73 ± 0,06 6,49 ± 0,1 2,0 
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7 DISCUSSÕES  

 

 

7.1 MEDIDAS DE CONDUTÂNCIA  

 

 

 A quantização da condutância é observada quando o diâmetro do contato entre 

os fios é aproximadamente da ordem do comprimento de onda dos elétrons na 

superfície de Fermi (que são os que participam diretamente da condução elétrica), 

que é da ordem de nanômetros. A condutância observada está relacionada ao número 

de canais ocupados abaixo do nível de Fermi. O número de canais abaixo desse nível 

é dado pela seção transversal da nanoestrutura (RODRIGUES; UGARTE, 1999; 

RODRIGUES, 1999). Ao variar o contato entre os fios, constrói-se e desconstrói-se 

nanocontatos, mudando assim o número de canais ocupados e com isso mede-se os 

saltos abruptos na condutância (no nosso caso na tensão de saída observada no 

osciloscópio). Ao encostar os fios há inicialmente a construção de nanocontatos, que 

desaparecem quando a pressão entre os fios aumenta, aumentado a área de contato. 

Quando os fios vão desencostando há a desconstrução dos canais de condutância, 

isto é, a condutância diminui em patamares abruptos, até se anular, quando os fios 

não estão mais em contato, Fig. 35. O limite quântico e clássico aparecem e 

desaparecem a todo momento, pois não temos controle direto do diâmetro do contato 

entre os fios.  

 

 

Figura 35 - Construção e desconstrução dos canais de condutância até chegar ao nível clássico. 

Temos a vista lateral e superior dos fios superpostos perpendicularmente.  
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 Então, durante o processo de medição pode-se obter em uma medida tensões 

de saída relativas também a uma possível condutância clássica, que é quando o 

diâmetro do contato entre os fios se torna macroscópico. 

 

 

7.2 DESEMPENHO DO APARATO EXPERIMENTAL 

 

 

 A preparação do aparato experimental se mostrou bastante simples, 

consistindo apenas na montagem de um circuito elétrico e na justaposição entre dois 

fios metálicos, não necessitando de nenhum ambiente especial (como vácuo, 

temperatura controlada, etc.). As caixas metálicas serviram apenas como “ajuste fino”, 

para redução de ruídos. Os cuidados foram basicamente não criar dobras nos fios 

(que no caso do fio de cobre foi preciso um cuidado maior, visto que ele é mais 

maleável que o tungstênio) e mantê-los sempre o mais perpendicular possível para a 

criação de nanocontatos. No circuito elétrico foram utilizadas pilhas, pois, desta forma, 

há menores ruídos quando comparados a ligação direta em uma rede elétrica por meio 

de alguma fonte de alimentação.  

 O circuito elétrico montado fornece valores de tensão de saída simétrica 

próxima a ±9𝑉 (que foi a alimentação utilizada no amplificador). Da forma que o 

circuito foi montado, como já visto, o ganho é negativo, tornando possível a obtenção 

de pelo menos os 25 primeiros canais de condutância. Canais maiores que esses 

ultrapassam a tensão de saturação do amplificador.  

Deve-se escolher um amplificador operacional com pequeno tempo de resposta 

quando comparado a frequência de construção e quebra dos canais de condutância. 

O TL071 é relativamente eficiente nesse processo de medição, mas ainda é possível 

perceber oscilações nas tensões de saída, como as observadas na Fig. 27. O controle 

do número de canais de condutância a serem observados pode ser controlado 

alterando os resistores do divisor de tensão.  

 Quanto as observações das curvas de condutância no osciloscópio, estas 

aparecem bem nítidas, apesar de algumas vezes serem mascaradas pelas oscilações 

devido o tempo de resposta do amplificador. É preciso certa paciência para armazenar 
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os dados, visto que foi feito uma medida por vez, utilizando a função single do 

osciloscópio. 

 A justaposição dos fios de forma manual se mostrou relativamente eficiente, 

mas a pressão exercida ao coloca-los em contato acaba gerando altos canais de 

condutância e o controle mecânico da oscilação se torna bastante difícil. No entanto, 

a utilização do processo de medida dessa maneira serve como uma análise a priori 

para aquisição de dados. Já a utilização do micromotor vibracall para a oscilação dos 

fios se mostrou mais prática que o procedimento manual, pois tínhamos um certo 

controle da oscilação. Reduzindo a vibração do micromotor (mudando a tensão 

aplicada aos terminais do mesmo, por meio da função PWM) foi possível obter os 

primeiros canais de condutância, tanto para o cobre, quanto para o tungstênio.   

 Em resumo, apesar de não haver o controle direto da dinâmica de construção 

e desconstrução de canais de condutância, o aparato experimental desenvolvido gera 

nanocontatos de forma bastante simples e eficiente, onde é possível medir a 

quantização da condutância com a justaposição perpendicular de fios metálicos 

macroscópicos. Além disso, como é utilizado materiais de baixo custo financeiro para 

sua construção, torna-se mais viável a aquisição e utilização deste aparato nas 

disciplinas de laboratório didático de Física. 

 

 

7.3 CURVAS MEDIDAS 

 

 

Nas curvas de condutância (relacionadas a tensão de saída), foi possível 

observar patamares que correspondem a múltiplos inteiros de 𝐺0, como as da Fig. 30 

e Fig. 31 para o cobre; e como as da Fig. 33, para o tungstênio.  As curvas com 

patamares decrescentes com o tempo correspondem a construção de canais de 

condutância, isto é, ao aumento do contato entre os fios metálicos. Já as curvas com 

patamares crescentes correspondem a desconstrução de canais de condutância, isto 

é, ao afastamento entre fios.  

Pode-se observar também que nas curvas apresentadas que os patamares não 

são sequenciais. Isso pode ser explicado pelo tempo de aquisição das medidas do 

osciloscópio. Ao receber um sinal (devido ao contato entre os fios), um patamar é 

apresentado na tela, no entanto, como o contato ocorre em uma alta frequência (não 
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tivemos controle direto sobre), não dá tempo do osciloscópio receber o sinal relativo 

ao contato do canal subsequente, apresentando assim os patamares não sequenciais. 

Mas, apesar disso, os patamares são espaçados de forma coerente com o esperado 

teoricamente. Por exemplo, há um espaçamento maior entre os canais 17 e 7; e um 

espaçamento menor entre os canais 3 e 4, no primeiro gráfico da Fig. 30. Pode-se 

perceber também patamares unitários.  

Nas curvas analisadas, as vezes se tornava difícil perceber patamares bem 

regulares, devido as oscilações causadas pelo tempo de resposta do amplificador 

operacional TL071.    

Notou-se que os patamares apresentados estão bem rentes as linhas de 

referências horizontais (caracterizada por múltiplos inteiros de 𝐺0), o que implica bons 

resultados para a quantização da condutância, que se assemelha aos patamares da 

Fig. 17. No entanto, alguns saltos não são tão abruptos, o que possivelmente tem a 

ver com as oscilações (do tipo senoidal) devido ao setting time do amplificador. Além 

disso, é possível notar patamares mais largos que outros, o que pode ser explicado 

devido a degenerescência na energia do sistema, o que permite o alargamento dos 

patamares, fazendo com que outros elétrons (com estados quânticos diferentes, mas 

com mesma energia transversal), ocupem os níveis de energia transversais permitidos 

ao longo do nanocontato. Outra possível explicação é que, como não se tem o controle 

da dinâmica de variação da seção transversal, nem o tempo em que os fios ficam em 

contato, nem do tempo de aquisição das medidas, há contatos que passam mais 

tempo que outros durantes as medidas.  

Como não há controle da dinâmica da seção transversal dos nanocontatos 

formado pelos fios, ocorre curvas diferentes em cada medida feita e por isso os perfis 

das curvas de condutância não são idênticos. A solução geralmente empregada na 

literatura (RODRIGUES; UGARTE, 1999) é a utilização de histogramas globais, como 

os apresentados nas Fig. 32 e Fig. 34. Com estes histogramas podemos representar 

o comportamento geral da condutância. Do ponto de vista estrutural, pode-se 

considerar que a utilização desses histogramas como uma média do caminho adotado 

para a reestruturação do fio, que reflete na condutância (RODRIGUES; UGARTE, 

1999). A Fig. 32 mostra o histograma global obtido para o cobre, num total de 525 

patamares analisados, onde pode-se nitidamente notar que há grandes 

concentrações (formando picos) em 𝐺 ≅ 2𝐺0, 𝐺 ≅ 3𝐺0, 𝐺 ≅ 4𝐺0, 𝐺 ≅ 5𝐺0, 𝐺 ≅ 6𝐺0, 𝐺 ≅

7𝐺0, quando comparados aos outros valores observados. Não se observou pico 
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acentuado em 𝐺 ≅ 1𝐺0, devido a maleabilidade do fio de cobre utilizado, o que o 

tornou com bastante dobras e possivelmente dificultou a obtenção do canal 1, pois o 

diâmetro da área de contato entre os fios foi provavelmente maior que a área relativa 

a este canal. Analogamente, pode-se observar as concentrações da condutância no 

histograma global para o tungstênio, Fig. 34, num total de 526 patamares analisados. 

Neste, notamos picos acentuados em 𝐺 ≅ 1𝐺0, 𝐺 ≅ 2𝐺0 e 𝐺 ≅ 3𝐺0, o que mostra que 

com o tungstênio16 é bem mais fácil conseguir os primeiros canais de condutância, 

provavelmente pelo fato dele ser menos maleável que o cobre, ou mesmo pela forma 

como justapomos os fios. Este perfil apresentando picos próximos aos múltiplos 

inteiros de 𝐺0 é considerado a verificação da quantização da condutância 

(RODRIGUES; UGARTE, 1999). 

No modelo teórico usado e discutido de forma detalhada no desenvolvimento 

teórico, os saltos abruptos no valor da condutância são provocados pela ocupação de 

modos de transmissão dos elétrons através do nanocontato, cujo o número varia 

devido à mudança na seção transversal (RODRIGUES; UGARTE, 1999). Há assim 

dois fenômenos que ocorrem simultaneamente: rearranjos estruturais (mudança da 

seção transversal); e propriedades eletrônicas (guia de ondas – comportamento 

ondulatório dos elétrons). Mas, como esses dois fenômenos ocorrem 

simultaneamente no experimento, torna-se difícil descobrir qual o responsável pelos 

patamares e saltos observados na condutância (RODRIGUES; UGARTE, 1999). 

Contudo as mudanças próximas aos valores esperados da condutância demonstram 

um claro comportamento quântico.  

Experimentalmente (utilizando a técnica Break Junction) já foi verificado que a 

interpretação da quantização da condutância pode ser explicada devido a 

propriedades eletrônicas. Certos formatos da seção transversal permitem que alguns 

níveis sejam degenerados. Quando a energia de um desses níveis se torna maior ou 

menor que a energia de Fermi deve-se observar patamares na condutância, isto é, a 

condutância dada por múltiplos inteiros de 𝐺0. (RODRIGUES; UGARTE, 1999)  

Pode-se observar nos histogramas que nem todos os valores estão exatamente 

concentrados nos respectivos canais, aparecendo em posições intermediárias, cujo 

                                                             

16 Para obtenção dos primeiros canais de condutância ambos os metais possuem dimensões de 
nanocontato bem próximas, como apresentado em (4.108). Então, provavelmente a facilidade de obter 
os primeiros canais para o tungstênio não pode ter sido pelo motivo das dimensões do nanocontato ser 
muito maior que as dimensões do nanocontato dos fios de cobre.    
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perfil é semelhante aos múltiplos inteiros de 𝐺0. Resultados como estes já foram 

obtidos em outros experimentos de condutância. A justificativa para esses patamares 

intermediários é atribuída a impurezas (RODRIGUES, 1999; RODRIGUES; UGARTE, 

1999; CHEN et al., 2009; CHU; SORBELLO, 1989). Todavia não ficam claros os 

critérios adotados para considerar uma determinada medida como influenciada por 

impurezas (RODRIGUES, 1999). Entretanto, predições teóricas (RODRIGUES, 1999; 

CHEN et al., 2009; CHU; SORBELLO, 1989) apontam que, a depender do tamanho, 

essas impurezas destroem a quantização da condutância e assim não poderiam gerar 

patamares deslocados múltiplos de 𝐺0.  
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8 CONCLUSÕES E PERSPECTIVAS 

 

 

A partir do formalismo de Landauer conclui-se que, para um transporte quântico 

balístico e com seção transversal com diâmetro da ordem de nanômetro, a 

condutância é quantizada em múltiplos inteiros de 𝐺0. A partir disso, com o 

experimento proposto foi possível obter a constante de Planck com boa aproximação 

e mostrar o caráter quântico da condutância elétrica em nanocondutores metálicos de 

cobre e tungstênio por meio de análises de curvas de condutância e histogramas 

globais e constatar boa concordância dos resultados experimentais com o que é 

esperado teoricamente.  

Partindo da Teoria da Aprendizagem Significativa de Ausubel, pode-se dizer 

que atividades experimentais podem ser um material potencialmente significativo, 

saindo do mecanicismo no qual as atividades são geralmente propostas. Baseado 

nisso, o roteiro desenvolvido traz essa característica, de ser potencialmente 

significativo, fazendo com que o aluno não apenas realize o experimento como uma 

“receita de bolo”, mas que o mesmo também faça questionamentos acerca do 

experimento, discuta com os colegas e faça comparações entre o que foi visto em sala 

de aula com as atividades práticas realizadas, além de ir em busca para resposta de 

certas questões propostas. Nesse contexto, o professor passa a ser mediador do 

conhecimento, mas, simultaneamente, permitindo ao aluno certa autonomia científica, 

considerando os conhecimentos prévios que ele possui.  

No que se refere ao experimento, a montagem experimental consistiu 

basicamente na construção de um circuito elétrico amplificador, onde os materiais 

necessários são de fácil aquisição e baixo custo (totalizando R$ 136,00 gastos), mas 

com resultados análogos aos obtidos com técnicas sofisticadas e de alto custo de 

implementação e operação, possibilitando sua utilização em laboratórios didáticos de 

Física.  

Por fim, destaco um resultado interessante, e já observado em outros 

experimentos que envolveram análises da condutância a nível quântico, que é o 

aparecimento de alguns patamares em níveis intermediários, isto é, múltiplos não 

inteiros de 𝐺0, o que estimula novos experimentos e estudos sobre as propriedades 

de sistemas nanométricos. 
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9 ATIVIDADES PARALELAS DESENVOLVIDAS 

 

 

Para o estudo da condutância foi necessário, como já apresentado, a 

construção de um circuito elétrico amplificador. Este circuito foi montado na eletrônica 

no Departamento de Física da UFPE-RECIFE. Na montagem do circuito elétrico (em 

uma placa de cobre-circuito impresso) pude aprender bastante coisa. Abaixo segue 

algumas fotos.  

 

 

 

Figura 36 - Montagem do circuito elétrico impresso. 

 

É válido destacar também a leitura de vários artigos envolvendo assuntos 

inerente a pesquisa.  
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APÊNDICE A 

FOTOS DO EXPERIMENTO 

 

 

 

 

Figura 37 - Fotos do experimento. Podemos ver a caixa do circuito elétrico, a caixa onde os fios 

ficavam oscilando junto com o micromotor. A última foto é a montagem experimental completa. 
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APENDICE B 

PROGRAMA PARA CONTROLE DO PWM 

 

 
Figura 38 - Diagrama de Blocos no software LabVIEW. 

 

 
Figura 39 - Painel Frontal do programa e ilustração da tensão de saída usando o PWM. O Duty 

Cycle pode ser variado de 0 a 1, sendo 1 representando (100%) o valor da tensão de saída máxima, 

que é 5𝑉. 
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APÊNDICE C 

ROTEIRO EXPERIMENTAL PARA MEDIDA DA QUANTIZAÇÃO DA 

CONDUTÂNCIA 

 

A ideia deste roteiro é que o professor siga os passos da Introdução Teórica, onde 

são apresentados alguns conceitos que provavelmente os alunos já conhecem, como 

a Lei de Ohm e sistemas quânticos básicos, para assim poder introduzir como a 

condutância elétrica pode ser expressa em fios com dimensões nanométricas.   

 

Introdução Teórica 

 

Como já conhecido, o transporte de corrente elétrica pode ser descrito pela Lei 

de Ohm que relaciona a diferença de potencial ∆𝑉 aplicado entre os extremos de um 

condutor, com a corrente e a resistência, por meio de 𝑅 = ∆𝑉/𝐼, onde 𝐴 é seção 

transversal do fio, 𝐿 o comprimento. A resistência também pode ser definida por meio 

de parâmetros geométricos do sistema, 𝑅 = 𝜌
𝐿

𝐴
, sendo 𝜌 a resistividade, característica 

do material.  

 

 

Figura 1 - Elétron em um fio condutor de seção transversal uniforme A e comprimento L. 
 

Se considerarmos um fio metálico de seção transversal uniforme, com área 𝐴, 

e comprimento 𝐿, como o apresentado na Fig. 1, intuitivamente esperamos que a 

condutância cresça com o aumento da seção transversal do condutor e decresça com 

o aumento do seu comprimento. Estas relações são verificadas experimentalmente e 

definem uma grandeza física chamada de condutância, que pode ser expressa 

matematicamente da seguinte maneira[1,2]: 
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𝐺 ≡
𝐼

∆𝑉
=

𝜎𝐴

𝐿
, 1 

 

com 𝜎 = 1/𝜌. Então, podemos notar a dependência direta da condutância com 

propriedades geométricas do condutor, como área e comprimento.  

 Da interpretação dada para a Lei de Ohm, a relação entre corrente e tensão 

tem origem das colisões dos elétrons que transportam carga no condutor com os íons 

da rede, no caso do modelo de Drude; ou no espalhamento sofrido por esses elétrons, 

no caso de modelos quânticos de condução eletrônica[2].  

A Lei de Ohm (que define a condutância elétrica) funciona muito bem para fios 

macroscópicos, mas o que esperar ao diminuir suas dimensões para valores da ordem 

do nanômetro? Será que a condutância ainda irá variar continuamente?  

Antes de responder esta pergunta, é interessante relembrar algumas 

características de sistemas quânticos. Para isso, vamos nos ater a um sistema simples 

de um elétron confinado em um fio unidimensional.  

Resolver problemas em mecânica quântica gira em torno de encontrar o estado 

do sistema, que pode ser caracterizado pela função de onda quântica. No problema 

em questão, encontrando a função de onda e utilizando as condições de contorno, 

obtemos que a energia do sistema pode ser escrita como 𝐸𝑛 = 𝑛2 ℏ2𝜋2

2𝑚𝐿2 ≡ 𝑛2𝐸0, onde 

podemos perceber que o sistema não varia sua energia continuamente, mas em 

múltiplos inteiros de um quantum, 𝐸0. Além disso, note que a medida que 𝐿 aumenta, 

os níveis de energia se tornam cada vez mais próximos, tendendo ao caso onde a 

energia varia continuamente. Entretanto, para 𝐿 suficientemente pequeno, os níveis 

ficam bem espaçados. Analogamente, a condutância elétrica varia em níveis (ou 

modos) que dependem de múltiplos inteiros de um quantum. Isso se torna válido para 

certas dimensões do fio.  Assim, tratando o elétron como uma onda, a partir do 

formalismo de Landauer, a condutância 𝐺 é escrita como[1,2,3,4,5] 

 

𝐺 = 𝐺0 ∑|𝑇𝑛|
2

𝑛=1

, 2 

 

onde 
2𝑒2

ℎ
≡ 𝐺0 é o quantum de condutância, |𝑇𝑛|

2 representa a probabilidade de 

transmissão e 𝑛 o número de estados transversais. 
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Podemos estudar a condutância fazendo uma constrição em um fio, como 

representado na Figura 2. Se considerarmos 𝐴 da ordem de nanômetros e o 

comprimento da constrição for tal que 𝐿 < 𝑙, sendo 𝑙 o livre caminho médio do elétron, 

então a probabilidade de transmissão é aproximadamente 1, visto que neste limite não 

haverá espalhamento dos elétrons, e assim a condutância se torna[1,2,3,4,5] 

 

𝐺𝑏𝑎𝑙 = 𝐺0 ∑ 1 = 𝑛𝐺0

𝑛=1

, 𝑛 = 1,2,3… 3 

 

𝑛 é o número de modos transversais suportados pelo fio; 𝐺𝑏𝑎𝑙 é chamada de 

condutância balística. Note que 𝑛 é um número inteiro. 

 Em um fio real sempre contém impurezas e imperfeições (defeitos de rede, 

limites de grão, átomos de impureza, etc.) e a dispersão desses defeitos domina a 

condutância. Mas, em fios finos e pequenos (limite quântico) esses feitos são 

amenizados e podemos medir a quantização da condutância. [3] 

 

 

Figura 2 - Constrição em um fio. (a) Limite clássico, onde A não é da ordem de nanômetro e L 

é muito maior que o livre caminho médio dos elétrons na superfície de Fermi. (b) Limite quântico, onde 

a área é da ordem do comprimento de onda de Fermi, e L é menor que o livre caminho médio. [6] 

 

É possível criar nanocontatos utilizando dois fios metálicos perpendicularmente 

justapostos, formando contatos de dimensões nanométricas. Nessas condições, a 

condutância passa a variar não mais depende de propriedades geométricas do 

material, mas sim em patamares e saltos abruptos múltiplos de 𝐺0. A observação 
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desse fenômeno pode ser feita utilizando uma montagem experimental relativamente 

simples, necessitando apenas a construção de um circuito elétrico amplificador (que 

será fornecido previamente). Assim, quando os fios são postos perpendicularmente 

em contato surge uma resistência elétrica que, a depender das dimensões do contato, 

está relacionada diretamente ao quantum de condutância. A tensão que surge entre 

esse resistor (devido ao contato entre os fios) pode ser amplificada utilizando um 

amplificador operacional e assim medida por meio de um osciloscópio digital. O 

circuito elétrico está ilustrado na Fig. 3.  

 

 

Figura 3 - Circuito elétrico amplificador de sinal para medida da condutância quântica. [8] 

 

Quando os fios estão em contato formam um quantum de condutância e eles podem 

ser apresentados como um resistor 𝑟𝑛. Nesse caso, a Fig. 3 mostra o esquema de um 

amplificador inversor, que mede a tensão de entrada 𝑈𝑖𝑛 do divisor de tensão formado 

por 𝑅1 e 𝑅2. Para os valores de 𝑅1 = 10 𝛺 e 𝑅2 =  302 𝛺 a queda de tensão devido ao 

divisor é de aproximadamente 0,096 𝑉. O valor de 𝑅1  e 𝑅2 é escolhido de forma que 

a tensão de entrada do divisor 𝑈𝑖𝑛 seja menor que a tensão máxima de saída do 

amplificador inversor (que é, no nosso caso, 9𝑉 que representa a tensão de 

saturação), dividida pelo seu ganho 𝒢𝑛, ou seja, 
3𝑅1

𝑅1 + 𝑅2
 <

9

𝒢𝑛
, onde o ganho pode ser 

expresso como 

 

𝒢𝑛 = −
𝑅𝑓

𝑟𝑛
=

𝑈𝑜𝑢𝑡

𝑈𝑖𝑛𝑡
.  4 
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 Podemos calcular o valor de 𝑟𝑛 e assim saber o ganho para cada valor de 𝑛. 

Sabemos, da primeira Lei de Ohm, que a tensão elétrica 𝑈 = 𝑅𝐼 e a condutância 

elétrica é 𝐺 = 𝐼/𝑈. Logo, concluímos que 𝑅 = 1/𝐺. Portanto, a resistência 𝑟𝑛 pode ser 

escrita como 

 

𝑟𝑛 =
1

𝐺
,   5 

 

Mas, como  a condutância elétrica é 𝐺 =
2𝑒2

ℎ
𝑛. Assim, substituindo na expressão (4), 

usando (3) e isolando ℎ, obtemos[5]  

 

ℎ = −2𝑒2𝑅𝑓𝑛
𝑈𝑖𝑛

𝑈𝑜𝑢𝑡
.  6 

 

 Assim, para medir a constante de Planck basta conhecer a tensão de saída 

e também qual o valor de 𝑛 relativo aquela tensão, que pode ser medido fazendo 𝒢𝑛 =

𝑈𝑜𝑢𝑡/𝑈𝑖𝑛𝑡 e comparando com o valor para do ganho para cada 𝑟𝑛, que pode ser 

encontrado teoricamente usando a equação (4).  

 

Roteiro do Experimento 

 

1. Objetivos  

 

O objetivo geral deste trabalho é a construção de uma montagem experimental que 

permita a criação de contatos metálicos de dimensões nanométricas, onde fenômenos 

quânticos tornam-se dominantes. Em particular, observar a quantização da 

condutância utilizando fios metálicos justapostos, formando nanocontatos da ordem 

do comprimento de onda dos elétrons na superfície de Fermi. 

 

2. Material Utilizado 

 

Circuito elétrico amplificador para medida de condutância, multímetro, três cabos 

BNC, Arduíno, micromotor vibracall, fita adesiva para fixar o micromotor, fios para 
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fazer as ligações, caixa metálica para amenizar os ruídos, pedaços de fios metálicos 

bem finos, ferro de solda e osciloscópio digital.   

 

3. Procedimento Experimental – Medida das Curvas de Condutância 

 

Primeiramente faça a checagem da tensão de saída no circuito elétrico e verifique se 

ela está em torno de 0,096𝑉. Conecte uma extremidade do cabo BNC na saída do 

circuito e a outra extremidade conecte ao osciloscópio. Deixe em 1𝑉 ou 2𝑉 por divisão 

e a escala de tempo com 5𝜇𝑠. Conecte os outros dois cabos BNC no circuito elétrico 

e encoste as pontas dos cabos. No osciloscópio deverá aparecer uma tensão negativa 

de aproximadamente −9𝑉. Caso isso não ocorra, verifique se há algum problema no 

circuito ou no osciloscópio. Feito isso, solde os pedaços de algum tipo de fio metálico 

(pode ser de cobre) nas extremidades dos cabos BNC, de acordo com a Fig. 4.  

 

 

Figura 4 - Fio metálico soldado em um conector BNC, 

 onde o mesmo está conectado ao cabo BNC. 

 

 Após ter feitos as devidas verificações, com os dois cabos BNC conectados ao 

circuito e o outro cabo BNC conectado ao osciloscópio e com a função single ligada, 

podemos começar as medidas:  
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1. Manualmente, encoste e desencoste os fios metálicos de forma 

perpendicular, sem fazer muita pressão e verifique os patamares na tela do 

osciloscópio. É preciso ir fazendo esse processo várias vezes, até um número 

considerável de medidas. Faça isso em torno de 200 vezes e salve cada medida em 

um pendrive para posterior análise.  

2. Repita o processo utilizando agora o micromotor vibracall. Para tal, fixe com 

fita adesiva o micromotor em uma superfície rígida não condutora e ligue o terminal 

positivo na porta PWM do Arduíno e o outro terminal na porta GND. Com o motor 

fixado, utilize um programa para controlar a função PWM e deixe o Duty cycle em 

70%. Com fita adesiva, fixe um dos pedaços do fio metálico (de preferência o pedaço 

menor) em cima do micromotor. Após isso, com cuidado para não amassar os fios, 

deixe o outro fio levemente encostado ao fio fixado no micromotor, veja a Fig. 5. Vá 

pressionando sequencialmente o botão single e pare de pressionar quando observar 

patamares na tela do osciloscópio. Salve as medidas escolhidas para posterior 

análise.  

 

 

Figura 5 - Setup experimental para medida de condutância quântica. 

 

3. Determine a que canal pertence cada patamar observado utilizando as 

relações (2), (3) e (4). Crie linhas horizontais que servirão de referência para cada 

canal. 
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4. Com as medidas salvas, abra cada arquivo em um software, como o Origin, 

por exemplo. Verifique em quais dos métodos se obteve melhor os primeiros 3 canais 

de condutância e justifique o possível motivo para isso. Quais as condições para que 

a condutância tenda ao limite clássico? Além disso, as quantidades de medidas 

realizadas foram suficientes para as análises? Se não, a que você atribui este fato?  

 5. Faça uma média em cada patamar e salve os valores em uma tabela. Com 

isso, monte um histograma e deixe o bin em 0.1. Fixe linhas verticais que representem 

a tensão relativa a cada canal. Os picos observados no histograma estão 

concentrados em nos respectivos canais, há picos intermediários. Se sim, a que você 

atribuiria esses picos intermediários?  

6. Houve mudanças abruptas nas curvas de condutância ou foram passagens 

mais suaves entre os patamares? Como você explicaria isso? 

7. Do conjunto de todas, selecione as curvas relativas aos canais 1, 2, 3, 4 e 5. 

Selecione apenas os patamares que estejam mais rentes as linhas horizontais, 

desconsideres os intermediários. Faça uma média do total de medidas para cada 

canal e salve em uma tabela, tanto o valor médio quanto o desvio padrão.  

 8. Calcule a incerteza para a tensão de entrada 𝑈𝑖𝑛 utilizando o seguinte: 

considerando uma medida 𝑓, onde 𝑓 = 𝑓(𝑎1, 𝑎2, 𝑎3, 𝑎𝑛 . . . ), e ∆𝑎𝑛 é a incerteza de 𝑎𝑛, 

a incerteza de 𝑓, ∆𝑓, é dada por[7,8]  

 

∆𝑓 = √(
𝜕𝑓

𝜕𝑎1
)
2

(∆𝑎1)2 + (
𝜕𝑓

𝜕𝑎2
)
2

(∆𝑎2)2 + (
𝜕𝑓

𝜕𝑎3
)
2

(∆𝑎3)2 + ⋯+ (
𝜕𝑓

𝜕𝑎𝑛
)
2

(∆𝑎𝑛)2, (3.5.7) 

 

e se 𝑎𝑛 for uma medida estatística, então sua incerteza é dada por ∆𝑎𝑛 =

√𝜎𝑎̅𝑛

2 + ∆𝑎𝑛,𝑖𝑛𝑡𝑟𝑢.
2 , onde ∆𝑎𝑛,𝑖𝑛𝑠𝑡𝑟𝑢. é a incerteza instrumental.  

9. Calcule a constante de Planck utilizando a equação (5) bem como a incerteza 

associada, utilizando (6). Salve os valores em uma tabela e calcule o erro relativo. 
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