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ABSTRACT 

To meet growing market demands and remain competitive, modern production systems 

are widely adopting technological innovations, such as systems monitoring and machine 

connectivity, which leads a huge amount of data available about the health of the system. In 

this scenario, condition-based maintenance can be a powerful tool for industry competitiveness 

due to its ability to intervene in the system in real-time by its condition monitoring, enhancing 

the system availability, reliability, and cost when compared with time-based maintenance 

policy. However, the large amount, variety, and dimensionality of the data that comes from a 

production line create a problem with a large space of states, which is intractable with traditional 

maintenance models. To overcome this challenge, emerging tools and methodologies of the 

areas of Artificial Intelligence and Machine Learning are being used in the maintenance 

planning. Which Deep Reinforcement Learning (DRL) proved to be efficient for maintenance 

decision making based on multiple component conditions of a production line. Therefore, this 

work proposes two maintenance models: an opportunistic maintenance model considering 

production data to anticipate maintenance actions, and a DRL-based model to support the 

decision-maker in making optimal maintenance decisions in a serial production line based on 

system monitoring. The environment under study was a steelmaking production line. A 

simulation model was built to represent and simulate the behavior of the system. In the DRL 

model, two scenarios regarding distinct aspects of the system were investigated. A DRL 

framework was constructed for each scenario to learn through interaction between an agent and 

the simulated environment the optimal maintenance policy. Both models use as a decision 

criterion the minimization of the expected long-run cost rate. To evaluate the proposed models, 

a numerical case study was performed. The sensitivity analysis of the models was also 

performed to observe their behavior in the face of variations in the system parameters. As result, 

the models behave as expected and the proposed policies show a better result in terms of cost, 

system availability, and production in comparison with other time-based policies used in the 

steel context. 

 

Keywords: Deep Reinforcement Learning. Maintenance Models. Steel Production Line. 

 

 



 

 
 

RESUMO 

Para atender às crescentes demandas do mercado e se manterem competitivas, as 

empresas estão amplamente adotando inovações tecnológicas em seus sistemas produtivos, 

como sistemas de monitoramento e investindo na conectividade das máquinas, o que leva a um 

aumento da quantidade de dados disponíveis sobre o estado do sistema. Nesse cenário, a 

manutenção baseada na condição pode ser uma poderosa ferramenta para a competitividade das 

empresas devido à sua capacidade de intervir no sistema produtivo em tempo real por meio do 

monitoramento da condição de seus componentes, aumentando a disponibilidade, 

confiabilidade e reduzindo o custo operacional em comparação com as políticas de manutenção 

baseadas no tempo. No entanto, a grande quantidade, variedade e dimensionalidade dos dados 

provenientes de uma linha de produção criam um problema com um grande espaço de estados, 

sendo intratável com os tradicionais modelos de manutenção. Para superar esse desafio, 

ferramentas e metodologias da área da computação estão sendo utilizadas no planejamento da 

manutenção, das quais o Aprendizado por Reforço Profundo (DRL) provou ser eficiente para a 

tomada de decisão de manutenção com base nas condições de múltiplos componentes de uma 

linha de produção. Portanto, este trabalho propõe dois modelos de manutenção: um modelo de 

manutenção oportunista considerando a condição do sistema para antecipar as ações de 

manutenção e um modelo usando DRL para dar suporte na tomada de decisão de manutenção 

em uma linha de produção em série baseado no monitoramento do sistema. O sistema em estudo 

foi uma indústria siderúrgica. Um modelo de simulação foi construído para representar e 

simular o comportamento da linha produtiva. No modelo usando DRL, dois cenários relativos 

a aspectos distintos da linha foram investigados. Uma estrutura de DRL foi construída para cada 

cenário para aprender, por meio da interação entre um agente e o ambiente simulado, a política 

de manutenção ideal. Ambos os modelos utilizam como critério de decisão a minimização do 

custo esperado de manutenção no longo prazo. Para avaliar os modelos propostos, foi realizado 

um estudo de caso. A análise de sensibilidade dos modelos também foi realizada para observar 

seu comportamento frente às variações dos parâmetros do sistema. Como resultado, os modelos 

se comportam conforme o esperado e as políticas propostas apresentam um melhor desempenho 

em termos de custo, disponibilidade e produtividade em comparação com outras políticas 

baseadas no tempo adotadas no contexto siderúrgico. 

Palavras-chave: Aprendizado por Reforço. Modelos de Manutenção. Linha de Produção. 
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1 INTRODUCTION  

The machinery that makes up the manufacturing systems has an inevitable degradation 

process over time and usage, which emerges its need for maintenance actions (WANG; WANG; 

QI, 2014). The deterioration process of the machines is something commonly observed in 

practice and comes from different causes, such as fatigue and random shocks, directly 

impacting the machine's productivity and the quality of the final products, resorting to higher 

production costs (SORO; NOURELFATH; DAOUD, 2010; WANG; WANG; QI, 2014). The 

main goal of the maintenance is to ensure that the components of the production system 

maintain their functional capacity and prevent them from operating in an undesirable state 

(MOUBRAY, 1997). 

The costs related to the maintenance activity represent a large portion of the total cost of 

the industry and adopting an inadequate maintenance strategy causes serious financial impacts 

(MOBLEY, 1990; EDWARDS; HOLT; HARRIS, 2000; WANG, 2012). For the industry, the 

main important issue is to reduce maintenance costs and manage risks, and, at the same time, 

to increase reliability, availability, and security of the assets (ATAMURADOV et al., 2017). 

Therefore, a widely adopted strategy is preventive maintenance (PM), since its application is 

essential to guarantee reliable operation of the production system equipment and to reduce the 

life cycle cost of the assets (ZHANG; SI, 2020). 

Briefly, PM can be divided into two categories: maintenance based on time and 

maintenance based on condition (FITOUHI; NOURELFATH; GERSHWIN, 2017). Time-

based maintenance (TBM) schedules the maintenance actions based on the age of the 

component, while condition-based maintenance (CBM), also called predictive maintenance, 

takes maintenance decisions by monitoring the system condition, i.e., the maintenance action 

depends on the system state or the degradation level of the machine (FITOUHI; 

NOURELFATH; GERSHWIN, 2017; GARRAMIOLA, 2018; ZHANG; SI, 2020). In the last 

type, the system monitoring occurs through data collected from sensors that record various 

aspects of the equipment, such as vibration, temperature, fluid pressure, and the lubricant status. 

With the advancement of sensor technologies, advanced data collection techniques are 

being widely used to monitor the condition of the system, providing more information about 

the state of the system, which significantly stimulates the application and development of CBM 

(LIU et al., 2019; ZHANG; SI, 2020). With the increase in data availability, adopting CBM can 
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help planning maintenance activities more efficiently, reducing system downtime, and 

improving the production flow performance (NGUYEN; MEDJAHER, 2019). 

 As the information of the systems is becoming even more transparent and detailed, the 

ideal scenario would be to use all the necessary information of the machine and the system in 

the maintenance planning (HUANG; CHANG; ARINEZ, 2020). However, the large amount, 

variety, and dimensionality of the data create a problem with a large space of states, which is 

intractable with traditional maintenance models (WUEST et al., 2016). This availability of large 

amounts of data, which is often referred to as Big Data, can be even bigger when involves 

monitoring a multicomponent system, such as a serial production line, which is the most 

common type of system in the real life (WANG; WANG; QI, 2014; WUEST et al., 2016; 

ZHANG; SI, 2020).  Besides that, the dynamic behavior of a serial production line makes 

maintenance management even more complex due to the interdependence between the 

workstations. 

To overcome these challenges, promising results are found by adopting emerging tools 

and methodologies in the areas of Artificial Intelligence (AI) and Machine Learning (ML) in 

the development of intelligent systems for decision-making support in production and 

maintenance management (HUANG; CHANG; ARINEZ, 2020). In this scenario, DRL proved 

to be an efficient tool for maintenance decision making based on multiple component condition 

of a production line due to its ability to deal with dynamic environments subject to uncertainty 

and with a large number of space of states. (WANG; WANG; QI, 2014). DRL is an ML 

technique that combines Reinforcement Learning (RL), where an agent learns by trial and error 

how to interact with an environment, and Deep Neural Network to converge for a policy that 

maximizes a reward (MNIH et al., 2016; SAMMUT; WEBB, 2017). In the maintenance 

context, the reward could be a system performance indicator such as availability, reliability or 

cost. 

Regarding the existing production lines, due to the growing concern about environmental 

pollution and waste reduction, together with the steady growth in the global steel demand, the 

steel production line with the use of recycling has played an important role in global economic 

activity (ZHOU et al., 2016a). This sort of production line is composed of interconnected 

workstations that use metal scrap as a raw material for steelmaking. Before being used, the 

scrap is crushed in a shredding stage, where the shredder machine is the main equipment in this 

station. This step is crucial for this industry because reduces the line energy consumption, 
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increases steelmaking efficiency and plays an important role in the quality of the final product 

by removing impurity and non-metallic material (ZHOU et al., 2016b).  

Due to the high efforts involved in the grinding process, the shredder machine has an 

elevated deteriorate rate and needs frequents maintenance actions (ZHOU et al., 2016a). 

However, maintaining this equipment is a challenge. Due to its complex robust configuration, 

the high weight of the components, difficult access, and safety requirements, the maintenance 

activities on this equipment are time-consuming and require the complete stop of the entire 

workstation, which interrupts the supply of downstream processes causing loss of production 

(BRUSA; MORSUT; BOSSO, 2014). So, adopting an efficient maintenance policy regarding 

this machine brings advantages in the entire steelmaking process, which can be translated into 

a reduction in the total cost and, hence, gives the industry more competitiveness in the 

marketplace. 

Therefore, this work proposes to develop two different maintenance models, which 

includes a DRL approach to support the decision-maker in making optimal maintenance 

decisions, suggesting the best time to perform PM action in a recycling usage steel production 

line based on system monitoring, and an opportunistic policy that anticipate scheduled 

maintenance inspections based on system age and the monitored production level.  These 

approaches aim to improve the performance of a whole production line by suggesting the right 

moment to performing PM action in the shredder machine based on the state monitoring, 

reducing the expected maintenance long-run cost per unit of time. In the DRL model, two 

different scenarios were proposed considering distinct aspects of the production line under 

study. A case study was performed to evaluate the performance of the proposed maintenance 

models in comparison with time-based maintenance policies that can be found in the literature 

regarding the steel production line with recycling usage. Also, the sensitivity analysis of the 

models was performed to observe their behavior with variations of the system parameters. 

1.1 PROBLEM DESCRIPTION 

The current global increase in steel demand along with the need for reducing 

environmental pollution and resource-wasting made steel scrap an important resource for 

steelmaking (ZHOU et al., 2016a). According to the World Steel Association (2019), only in, 

2018 the worldwide steel production was 1,808.6 million tons, 4.6% higher than the previous 

year. With this constant expansion, the steel industry has a major role in global economic 
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activity. With the recycling appeal and the resource shortage, the usage of steel scrap has 

increased. Although some countries like China are largely using steel recycling, this process is 

relatively weak in other nationalities (ZHOU et al., 2016a). The main reason is the overall 

performance of the process, which can be enhanced by improving the recycling efficiency and 

decreasing the recycling cost (ZHOU et al., 2016b). For this purpose, adopting an optimal 

maintenance policy has an important role.   

Before being used, scrap must be shredded. The crushing stage is a crucial workstation in 

the steel production line that uses recycling, where the shredder machine is the main equipment 

(BRUSA; MORSUT; BOSSO, 2014). The shredder has a set of hammers that crushes the scrap. 

The objective of grinding is to turn the scrap into small and high-density pieces, so this crushed 

scrap is now used to meet the demand of the subsequent process (BRUSA; MORSUT; BOSSO, 

2014). It turns the removal of non-ferrous material easy and reduces the energy consumption 

of the rest of the production process. So, the crushing station operations and, consequently, the 

shredder operation plays a crucial role to ensure good performance in this kind of steel 

production line, since that it is responsible for the scrap size reduction and material separation, 

which is an important step to improve the quality of the final product and reduce the cost of 

steel production (ZHOU et al., 2016a). Moreover, its output is used as input for the steel line 

and it has a high-throughput process, hence unavailability or performance decreasing of this 

process promotes an overall impact. 

So, according to Zhou et al. (2016a), the shredder is the main equipment of the entire 

recycling usage steel production line, whose operation directly affects the line efficiency, 

energy consumption of the entire process and quality of the final product. Due to the high efforts 

involved in the grinding process, the hammers are progressively worn out, which leads to 

reduced efficiency in the shredding process and the necessity of a programmed stop to replace 

it. This PM intervention should be taken frequently to keep the degradation process under 

control, avoiding the breakdown of the shredder machine, which can stop the downstream 

process from interrupting the crushed scrap alimentation and, hence, promote several negative 

consequences. 

In the shredder context, the main challenge in its maintenance management is to define 

an optimal intervention frequency that provides good control of the degradation with the lowest 

quantity of interruptions. It is quite difficult because the shredder has a complex degradation 

process due to the high efforts demanding from its process, what require intensive PM actions 
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to avoid its failure, but its stoppage is undesirable due to the interconnection between the 

workstations. 

Besides that, due to its robust configuration, the elevated weight of the components, 

difficult access, and security requirement, considerable time is necessary to the complete stop 

of the machine in order to perform preventive and/or corrective actions. According to Zhou et 

al. (2016a), during these stops, the whole production process can be interrupted by hours or 

even days, causing significant production loss, in addition to the cost related to the involvement 

of maintenance staff and materials. Therefore, applying an inappropriate maintenance policy 

can lead to a negative impact on the productivity and efficiency of the machine. 

1.2 JUSTIFICATION AND RELEVANCE 

In the current industrial scenario, the modern production systems not only need to meet 

the growing requirement of the market to remain competitive, but also, they are demanded in 

terms of reliability and security, which make these systems increasingly complex and difficult 

to maintain the continuity of the operational state, especially due to their degradation processes 

that become stochastic (ASSAF et al., 2018; LIU et al., 2019). Thus, maintenance plays a 

fundamental role in the company competitiveness based on the cost, quality, and performance 

of the delivery of a product or service, since it supports to meet the needs for reliability, 

availability, and quality of equipment and products, as well as reducing costs associated with 

defects and equipment failures (SWANSON, 1997; PINTELON et al., 2000; AISSANI; 

BELDJILALI; TRENTESAUX, 2009). 

Machine maintenance is a complex issue as it relates to many other aspects of modern 

industrial practices and affects the economy of a manufacturing system in several ways 

(HUANG et al., 2019). About 15% to 40% of the total production cost is attributed to 

maintenance activities in a factory, where it is estimated that about 30% of this value results 

from inefficiencies in maintenance actions (MOBLEY, 1990; WANG, 2012). Therefore, 

financial gains can be acquired by optimizing maintenance tasks, which legitimize the current 

importance of developing methodologies to make maintenance actions more efficient (WANG, 

2002; AISSANI; BELDJILALI; TRENTESAUX, 2009). 

Adopting an appropriate maintenance policy is essential to ensure uniform and efficient 

operation, but it is not trivial due to the complex and stochastic nature of modern manufacturing 

systems, becoming even more complicated when the components of the system have some 
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interdependence (DINH; DO; IUNG, 2020; HUANG; CHANG; ARINEZ, 2020). Furthermore, 

with the increasing requirements for reliability, availability, maintainability, and security of 

systems, traditional maintenance strategies are becoming less effective and obsolete 

(NGUYEN; MEDJAHER, 2019). To support decision-makers, equipment condition 

monitoring systems are being widely used, providing the ideal scenario for CBM application 

and development (ZOU et al., 2018; KUHNLE; JAKUBIK; LANZA, 2018; LIU et al., 2019). 

In recent decades, CBM has received increasing attention due to its ability to intervene in 

the system in real-time, showing advances in preventing system failures and reducing operating 

costs (LIU et al., 2019). Despite the growing interest and the advancement of CBM techniques, 

traditional TBM methods are still the most used practices by the industry (HASHEMIAM; 

BEAN, 2011; HUANG; CHANG; ARINEZ, 2020). This is due to the lack of processes and 

methodologies for the use of these technologies on the shop floor, making part of the industrial 

equipment not to benefit from the advantages of CBM (HASHEMIAN; BEAN, 2011; JIN et 

al., 2016). 

Even with the significant increase in data availability, only a small fraction is actually 

being used in the management and planning of activities linked to production in real-time (ZOU 

et al., 2018; STRICKER et al., 2018). Using the large amount, variety, and dimensionality of 

data that comes from the entire manufacturing production process creates a problem with a high 

number of state spaces, in which traditional TBM models are no longer applicable (WUEST et 

al., 2016). According to Stricker et al. (2018), a reduction of up to 25% in operating costs could 

be achieved through better exploration of system data in the planning and control of operational 

activities, which can help to obtain competitive production performance. 

Besides, another huge advantage of using data from sensors is to allow a quick response 

to environmental changes (ZOU et al., 2018). Response time is an increasingly important 

strategic performance measure for a company's competitiveness. Therefore, it is necessary to 

develop new data-driven methodologies based on the available sensor information to, through 

real-time identification of the system's performance status, facilitate the control and planning 

of maintenance activities (ZOU et al., 2018). For this propose, ML tools arise as a good solution, 

as they add flexibility and adaptability to CBM models dealing with dynamic and complex 

environments with a large number of state spaces (WUEST et al., 2016).  

Although they are the most common manufacturing systems in the industrial field, 

multicomponent systems such as a series production line are not well studied in maintenance 
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models, and most CBM application studies focus on single-component systems (WANG; 

WANG; IQ, 2014; ZHANG; SI, 2020). According to Zhang and Si (2020), CBM planning for 

systems with multiple components or units becomes even more challenging due to the possible 

interdependencies of the components. The study of these systems has gained a lot of attention, 

since real-world systems are usually complex and include multiple interacting components 

where these interdependencies can affect the general availability of the system and, 

consequently, its performance (ASSAF et al., 2018). 

Regarding the recycling usage production line, despite a lot of works recognize the 

shredder equipment as the most important asset of the entire line and its importance on the 

overall production cost and system availability, the majority of the works on this field aim to 

improve the shredding efficiency and reduce the expected maintenance long-run cost through a 

better understanding of its failure mechanisms and propose some design modification or 

structure optimization of the shredder hammers ( BRUSA; MORSUT; BOSSO, 2014; Zhou et 

al., 2015; Zhou et al., 2016a; Zhou et al., 2016b). Although adopting an efficiency maintenance 

policy can play an important role in this scenario, the maintenance schedule in shredder context 

is not well studied. 

Given the above, it is evident the importance of study the maintenance planning into the 

shredder context, and also developing a PM methodology using DRL to support the decision-

maker to make appropriate maintenance decisions in a multicomponent system based on its 

real-time monitoring information. The studied context was a recycling usage steelmaking 

production process, due to its importance in the current global scenarios. The inclusion of DRL 

in maintenance management aims to increase reliability levels of components and the system 

and reduce the influence of maintenance on the cost of the final product. The proposed 

maintenance models aim to suggest maintenance policies for the shredder machine to minimize 

the expected maintenance long-run cost per unit of time.  

1.3 OBJECTIVES 

This session presents the general and specific objectives of this study. 

1.3.1 General objective 

The general objective is to develop two models to provide better performance of 

steelmaking production lines that make use of scrap resulting from a recycled process. 
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1.3.2 Specific objectives  

To achieve the general objective, the following specific contributions were developed: 

• Conduct a literature review about maintenance and their policies, as well as about 

the DRL algorithms, to investigate the particularities of CBM in systems with 

multiple interdependent components and on the relevant aspects of maintenance 

policies using ML tools; 

• Build a simulation model to represent the dynamics of the studied environment 

and develop a DRL framework to suggest preventive maintenance policies for the 

simulated environment based on its monitoring conditions aiming to reduce the 

expected long-run cost per unit of time; 

• Propose two maintenance models considering different environmental 

assumptions to offer a more complete and realistic analysis about the problem 

under study; 

• Apply the proposed maintenance models in a case study to validate and optimize 

the DRL frameworks from interactions with the simulated environment; 

•  Assess the proposed maintenance models performance by comparisons with other 

commonly used maintenance policies to measure the benefits that these 

methodologies can bring for the system when it is adopted; 

• Perform sensitivity analysis on the models to understand their behavior when 

there is some variation in the system parameters. 

1.4 METHODOLOGY 

Regarding the approach, this work is classified as quantitative and qualitative. It is 

quantitative, as it answers research questions based on mathematical data and methods, and 

qualitative because it guides the researcher to determine analytical approaches, data collection, 

and research focus, enabling the generation of theories based on discoveries and understandings 

of reality (HABES et al., 2018). 

Regarding the objective, the research is classified as exploratory, as it aims to provide 

greater familiarity with a specific phenomenon or to acquire new perceptions, for example, in 

new contexts or to formulate more precise relationships (GIL, 2002; SCHOLTEN; BLOK; 

HAAR, 2015). 
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According to technical procedures, the work is constituted as bibliographic research and 

a case study. The bibliography review is a fundamental step for any scientific work, as it 

provides relevant and sometimes unknown information to the researcher. It implies the study 

of articles, theses, books, and other publications normally available in indexed databases. 

Taking into account that the effectiveness of the model in a real context will be verified, the 

work is also characterized as a case study, defined as an empirical study that investigates the 

phenomena in their real context (GIL, 2002). Finally, about nature, the research is classified as 

applied, as it focuses on solving practical problems in the real world (MARCONI; LAKATOS, 

2002). 

Concerning about the fundamental steps to develop the work, first of all, a literature 

review was carried out on the evolution of fundamental maintenance concepts and their policies, 

as well as on DRL algorithms (their characteristics and recent applicability). This stage of the 

research was essential for the work, because, in addition to acquiring fundamental concepts for 

the study, it was possible to identify gaps in the literature, which promotes a direction for this 

work. 

In sequence, the context under study was investigated. This step allowed to identify the 

real characteristics of the studied system to be taken into account and which other assumptions 

can be inferred about the system. 

Subsequently, the behavior of the system was modeled mathematically and a simulated 

environment was developed to represent the system under study. In this step, two maintenance 

models considering distinct environment assumptions were proposed. A DRL algorithm was 

built and trained directly with the simulated environment, in what is called online training, to 

generate the PM policies. Still at this step, improvements were made to the DRL framework 

and adjustments to the algorithm and model until the proposed methodology converged to 

maintenance policies with good performance. 

Both the DRL framework and simulation model was built in Python language. The 

artificial neural network used was provided through the high-level open-source library Keras, 

widely used for the creation and training of deep neural networks (GULLI; PAL, 2017). It is 

the most well-known Library, written in Python, for building neural networks and machine 

learning projects, offering modules such as optimizers, activation functions, neural layers, and 

cost function. 
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Finally, a case study was carried out seeking to validate and observe the behavior of the 

proposed models. A comparison among the proposed models and others time-based commonly 

used maintenance policies was performed to measure the benefit of their application. The 

sensitivity analysis of the models was performed to understand how the models behaves when 

some parameters of the system vary. 

1.5 WORK STRUCTURE 

This dissertation is composed of five sections: Introduction, Review of Literature and 

Theoretical Framework, Context under study and the proposed maintenance policies, Case 

study and Conclusion. 

The first section presents an introduction about the context of the development of the 

work and also describes the problem, highlighting both the justification and the relevance of 

the work existence, as well as addresses the purpose of the study through a general objective 

and its specific objectives. Furthermore, the methodology applied in the work is also explained. 

The second section brings the review of the literature and theoretical framework of the 

dissertation, presenting the major concepts used throughout the work as also the state of art. 

The third section addresses more details about the context under study. The operation of 

a recycling usage production line is detailed along with all aspects regarding the shredder 

process and its maintenance issues. After that, the problem investigated is simplified to be 

described as a mathematical problem and a simulation model regarding the described problem 

is built. The maintenance policies previously proposed for the shredder context were discussed 

and the maintenance models proposed by this work were presented. Then, a DRL framework is 

built to suggest the maintenance policies for the system. 

In the fourth section, the proposed maintenance models are applied to a numerical 

example. The usage of the DRL approach in the real-life system is explained and the 

performance of the proposed models is investigated when compared with other traditional time-

based policies commonly used in the same context. The sensitivity analysis of the proposed 

models was also performed to evaluate their behavior vis-à-vis some system parameter 

variations. 

Finally, in the fifth section, both the conclusion and researching finds are presented. 
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2 REVIEW OF LITERATURE AND THEORETICAL FRAMEWORK 

In this section, a review of the literature is provided. The main concepts, methodologies, 

and tools used in the dissertation are presented in detail for a better understanding of the work.  

2.1 REVIEW OF LITERATURE 

The technological innovation of Industry 4.0 created an industrial environment with a 

high degree of connectivity and automation of machines, resulting in greater complexity of 

machines and production systems (KUHNLE; JAKUBIK; LANZA, 2018). Still according to 

the authors, in this context, maintenance plays an important role in the efficient use of systems 

in terms of cost, reliability, and availability. 

Regarding the abstraction level, maintenance policies can be categorized into multi-

component or single-component policies (HUANG; CHANG; ARINEZ, 2020). Almost all 

existing CBM studies are directed to single-component systems, which often suggests that 

maintenance should be performed when the monitored system reaches a certain level of 

degradation, called the maintenance threshold (DIEULLE et al., 2003; CHEN et al., 2011; 

CHEN et al., 2015). Usually, the maintenance threshold is optimized along with some other 

decision variables, for example, the frequency of inspection to minimize the cost or to maximize 

availability criterion (GRALL; BÉRENGUER; DIEULLE, 2002; LIAO, ELSAYED; CHAN, 

2006). More practical issues have recently been considered in CBM planning, for instance, 

measurement accuracy, variation in the operational costs with the age and state of the system, 

and the presence of sensor deterioration (JONGE; TEUNTER; TINGA, 2017; LIU et al., 2017; 

LIU et al., 2019). 

Although an optimal solution for single-component systems can be obtained efficiently 

in the majority of the cases, the modern machinery and manufacturing systems are composed 

of several interdependent components or subsystems (DINH; DO; IUNG, 2020; ZHANG; SI, 

2020). The dependence between components, for instance, economic dependence, stochastic 

dependence, and structural dependence make CBM planning for systems with multiple 

components even more challenging. To consider stochastic dependencies, Rasmekomen, and 

Parlikad (2016) developed a CBM policy for systems with K components where the condition 

of one machine affects the degradation rates of the others. They have set K maintenance limits 

to perform preventive replacements. Do et al. (2019) proposed a CBM policy for a two-
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component system, establishing two thresholds for preventive replacement and two thresholds 

for opportunistic maintenance, considering both stochastic and economic dependencies.  

In a serial production line, a common practice is to use intermediate buffers to minimize 

the effect of interdependence between the workstation. In this context, Karamatsoukis and 

Kyriakidis (2010) proposed a CBM for a two-machine system with an intermediate buffer 

defining thresholds to trigger maintenance actions. Fitouhi, Nourelfath, and Gershwin (2017) 

studied the advantages of considering the effects of buffer in threshold planning in a similar 

two-machine system. 

In these works, as in most studies that consider CBM for multi-component systems, 

multiple maintenance thresholds are established. However, looking for optimal maintenance 

thresholds is often suitable for problems with a low state space, but becomes a challenge when 

the state space increases (ZHANG; SI, 2020). Besides, setting the maintenance thresholds is 

not a trivial task in practice, and may induce the adoption of a non-ideal maintenance policy 

(NGUYEN; MEDJAHER, 2019). 

To deal with environments with a large amount of state space, ML techniques were 

incorporated into CBM (STRICKER et al., 2018). RL algorithms have shown to be applicable 

for determining optimal policed for different manufacturing tasks in the flow line, including 

maintenance activity (WUEST et al., 2016). Aissani, Beldjilali, and Trentesaux (2009) 

developed a RL approach to schedule maintenance tasks into a petroleum production line. 

Wang, Wang, and Qi (2014) proposed a RL based maintenance policy for a flow line system 

with resource constraints that suggest performing maintenance activity based on the products 

reject rate and buffer level. Stricker et al., (2018) use RL for production planning in the 

semiconductor industry. Kuhnle, Jakubik, and Lanza (2018) developed a RL maintenance 

policy for a parallel production line fed by an initial buffer.  

RL has shown a lack of scalability when the dimension of the problems gets too high 

(ZHANG; SI, 2020). Besides, RL training was revealed to be time-consuming and required 

considerable data and memory to be trained efficiently (HUANG; CHANG; ARINEZ, 2020). 

To overcome this, Artificial Neural Networks (ANN) have been incorporated in the traditional 

RL algorithm to solve the scalability problem and reduce the computational effort (MNIH et 

al., 2016). This variation is called DRL, which has gained so much attention recently due to its 

greater scalability, an ideal characteristic to act on large-scale realistic problems, characterized 

by highly dimensional state-action spaces (ROCCHETTA et al., 2019). Huang, Chang and 
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Arinez (2020) proposed a DRL base maintenance policy to a serial production line considering 

the buffers level and the operational time of each machine. Zhang and Si (2020) developed a 

similar maintenance policy for a multicomponent system with risk dependence where a failure 

of one component means the failure of all system. 

Regarding the steel production line that uses scrap from a recycling process, as mentioned 

before, the maintenance schedule in the shredder context is not well studied. Araújo et al. (2018) 

analyzed the effect of replacing defective hammers during maintenance actions in a time-based 

maintenance policy for the shredder. Ferreira Neto et al. (2020a), proposed a time-based 

inspection policy for the shredder equipment where periodical inspections were suggested, but 

it would be anticipated when opportunity windows arise based on the operational time and the 

buffer level.  

These papers as well as most maintenance policies used in the shredder system presents 

time-based policies and do not explore the advantages of using information from system 

monitoring. Recently, Ferreira Neto et al. (2020b) suggest a maintenance policy based on the 

system monitoring in the steel production line context. They developed a DRL framework to 

suggest PM action for the shredder machine. The policies proposed by Ferreira Neto et al. 

(2020a) and Ferreira Neto et al. (2020b) are directly related to this dissertation. In this work, 

besides a deeper analysis of the policies proposed by Ferreira Neto et al. (2020a) and Ferreira 

Neto et al. (2020b), different scenarios covering distinct assumptions of the environment were 

analyzed, and also more realistic aspects of the maintenance problem were covered, resulting 

in maintenance policies and analysis closer to reality.  

2.2 THEORETICAL FRAMEWORK  

The main concepts, methodologies, and tools used in the dissertation are presented here. 

2.2.1 Maintenance  

Maintenance can be defined as a class of activities that can restore a failed or deteriorated 

asset to its functional state to carry out the designated function (DHILLON, 2002). Thus, 

maintenance aims to ensure that the components of the productive system maintain their 

functional operation capacity, seeking to increase the availability of the system at the lowest 

possible cost (MOUBRAY, 2000). This class of activities is the key to ensure a highly reliable 
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operation of modern engineering assets and to reduce the asset's life cycle cost (ZHANG; SI, 

2020). 

The maintenance function influences the availability of the manufacturing system and its 

rate of resource utilization (AISSANI; BELDJILALI; TRENTESAUX, 2009). According to 

the authors, the objective of maintenance management is to avoid components/system failures 

and maximize the availability of the installation at low maintenance cost. Maintenance activity 

affects the economy of a manufacturing system in several ways. About 15% to 40% of the total 

production cost is attributed to maintenance activities in a factory (WANG, 2012). Therefore, 

a good maintenance policy is fundamental to guarantee a uniform and efficient production 

operation (HUANG; CHANG; ARINEZ, 2020). 

A maintenance action that reacts to a random machine failure is known as corrective 

maintenance (CM). The consequences of random machine failures are often unpredictable and 

even catastrophic in some situations (WANG, 2002). To reduce these random failures, PM is 

applied. In PM, activities are carried out proactively, even if the equipment is not defective, to 

keep it at the desired level of reliability (HUANG; CHANG; ARINEZ, 2020). However, there 

is a trade-off when making preventive actions. If actions are not taken on time, the system 

would be interrupted by random failures more often, which could lead to significant production 

losses. On the other hand, if the actions were very frequent, the costs caused by them may far 

outweigh the benefits that preventive maintenance could bring, since some actions would be 

unnecessary (HUANG; CHANG; ARINEZ, 2020). 

The CM policy conditions the execution of an intervention on the device to the occurrence 

of a failure. This maintenance policy is generally used when the effort to prevent the machine 

or system failure is higher than its impact. 

The PM policy is indicated for equipment whose cost involved in correcting its failure 

exceeds the costs recorded for preventive actions, such as inspections, repairs or preventive 

replacements. PM can be defined as any maintenance action that precedes the degradation of 

the quality of products and equipment (CAVALCANTE; ALMEIDA, 2007). Therefore, its 

application has the objective of increasing the useful life of the components, providing long-

term benefits. Thus, as the systems become more complex, this approach tends to be more 

appropriate, since it significantly reduces interruptions in the production line, which are high-

cost events. 
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Based on the maintenance decision criterion, PM can be divided into two types: TBM and 

CBM (ZHANG; SI, 2020). TBM policy monitors the equipment's lifetime, deciding about when 

is the best time to perform actions based on this parameter. Only aspects inherent to the 

equipment's reliability are considered in the maintenance schedule, e.g., MTBF and MTTR, 

disregarding any external aspect that may eventually influence in reducing the component's 

useful life. The CBM, also called predictive maintenance, presents the proposal to monitor the 

state of the equipment, making the decision on when to perform its actions based no longer on 

time, but on the state of the equipment. Some practices, such as continuous monitoring of 

equipment and/or inspections, are carried out to control, measure, and evaluate some parameters 

of the system, thus observing its state. 

Despite the popular belief that adopting a PM policy is sufficient to safeguard the proper 

functioning of the machines, this statement is not confirmed and eventually, some CM actions 

can be necessary (NAKAJIMA, 1989).  

With the technological advances of the sensors, more information about the degradation 

of the system can now be accessed, which provides a great basis for the use of CBM. This 

technique has evolved over the years from the use of visual inspections, which is the oldest 

method and still one of the most powerful and widely used, to automated methods that use 

advanced signal processing techniques based on pattern recognition, including, for example, 

neural networks and ML (HASHEMIAM; BEAN, 2011). 

The idea behind it is that as the equipment starts to fail, it can display signals that can be 

detected. CBM aims to identify the beginning of degradations and failures of the equipment, 

hence avoid its failure. This maintenance practice, due to its ability to predict future failures, 

can avoid unnecessary replacement of equipment, save costs, and improve safety, in addition 

to reducing downtime and planning effort for maintenance activities (HASHEMIAM; BEAN, 

2011; KUHNLE; JAKUBIK; LANZA, 2018). 

2.2.2 Machine learning 

Due to the increasing data availability, ML algorithms have recently gained a lot of 

importance. ML is a subset of AI that allows a computer to learn about past experiences and 

improve its behavior when performing a given task. They are considered algorithms that are 

not programmed explicitly with an exact deterministic procedure (STRICKER et al., 2018). 

According to Samuel (1959), its real objective is to allow computers to solve problems without 
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being specifically programmed to do so. To Alpaydin (2010) the goal of certain ML techniques 

is to detect certain patterns or regularities that describe relations. ML field leads a variety of 

different sub-domains, algorithms, theories, and application possibilities. Today, ML is already 

widely applied in different manufacturing areas, for example, optimization, control, and 

problem-solving (WUEST et al., 2016). 

According to Stricker et al (2018), ML algorithms are called data-based approaches 

because input training data directly affects their performance. Although it can be classified in 

different ways depending on the author, the most accepted ML classification is: supervised 

learning, unsupervised learning and RL (WUEST et al., 2016; SUTTON; BARTO, 2018). This 

classification distinguished the ML by the kind of feedback, the representation of learned 

knowledge, and the availability of prior knowledge (STRICKER et al., 2018). 

In supervised learning, a set of labeled data is available, both input and output. Thus, the 

machine receives the data previously selected and categorized so that the machine will learn 

from the interactions between the expected inputs and outputs. Sutton and Barton (2012) 

summarize supervised ML as an apprenticeship based on examples provided by an experienced 

external supervisor. The learning process occurs with the machine checking its output with the 

correct answer (label) provided by a teacher and making the correct adjustments. 

In unsupervised learning, data is not labeled, that is, there is no feedback from an 

experienced external teacher. The purpose of the machine is to identify clusters in the existing 

data set. Thus, while supervised learning focuses on classification due to known labels coming 

from the teacher, unsupervised learning aims to discover unknown classes of items by grouping 

(WUEST et al., 2016). Basically, in unsupervised learning, the machine tries to learn some 

patterns without an identified output or feedback. 

RL is a method of learning by trial and error. It consists of one or more decision entities 

called agents interacting with an environment, where they learn to choose ideal actions that 

maximize rewards or minimize losses for systems (ZHANG; SI, 2020). It is characterized by a 

sequential decision-making process. The agent chooses actions based on the observed states of 

the environment, and each action results in a reward, as well as the induction of a next state of 

the environment (SUTTON; BARTO, 2018). Different from the previous ones, in RL an agent 

has to find which actions cause the best results in the environment by interaction instead of 

being told, i.e., without labeled data indicating which action is good or bad (WUEST et al., 

2016).  Through its learning process, an agent learns an action policy that maximizes the 
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expected accumulative reward. RL was developed aiming to imitate the learning process of 

human beings. 

2.2.3 Reinforcement Learning 

As said before, RL is a learning algorithm where an agent learns with trial and error by 

interactions with the environment which action should be performed in each state to maximize 

the future reward, considering the environmental uncertainties (ROCHETTA et al., 2019). In a 

simple way, the agents perform action into the environment and receive a feedback signal about 

how good the actions were, so they decided whether or not this action should be added to their 

repertoire. 

 The reasons that make this method attractive include: a trial-and-error learning process 

by interactions with the dynamic environment, convergence to a stationary policy and model-

free learning without transition probabilities (WANG; WANG; QI, 2016). Also, its learning 

technique makes RL appropriate for generating on-line solutions, i.e., give solutions in real-

time (WUEST et al., 2016). In addition, due to its adaptability to dynamic systems, RL is 

appropriated to solve many of the manufacturing problems (WANG; WANG; QI, 2016).  

Besides that, due to their immanent flexibility and performance in learning strategies for real 

(or simulated) systems, RL algorithms are suitable to find optimal maintenance schedules in 

the context of a stochastic production environment (KUHNLE; JAKUBIK; LANZA, 2018).  

RL algorithms are robust and accessible, their lack of scalability prevents them from 

being applied to solve a series of real-world problems with a large scope of action (HUANG; 

CHANG; ARINEZ, 2020). To overcome this, a DRL method emerges to provide to reinforce 

RL, through the integration of Deep Learning (DL), scalability, and efficiency to deal with 

practical decision-making problems (ARULKUMARAN et al., 2017). 

2.2.3. Deep Reinforcement Learning 

 DRL is an integration of RL and DL that provides a powerful approach and 

representation learning properties, which significantly facilitates computing speed and is, 

therefore, suitable for problems with high-dimensional state space. 

The majority of the RL algorithm relies on an intensive tabular memory (ROCHETTA et 

al., 2019). This RL algorithms create a state-action value function, which associate each state 

with a correspondent action. In the learning process, these values are stored in a memory table 

and with each interaction with the environment, these values are updated until the agent finds 
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an optimal policy. When the problem has a high dimension space states, the tabular method 

needs a huge memory and becomes computational burdensome besides needs a lot of data to 

fulfill efficiently the memory table (HUANG; CHANG; ARINEZ, 2020; ZHANG; SI, 2020).  

Therefore, most applications of the traditional RL algorithms have been restricted to problems 

with low-dimensional state spaces, e.g., a single-component system (ZHANG; SI, 2020). 

The DRL uses some regression tools available in the DL to replace the tabular 

representation of the traditional RL algorithms and, hence, adapt this method to deal with large 

state spaces (ROCHETTA et al., 2019). So, The RL capability to deal with real-problems has 

been increased with the help of deep neural networks. 

DL is a branch of machine learning based on deep neural networks that have shown great 

success in several applications in recent years, mainly to solve problems involving high-

dimensional data (HELBING; RITTER, 2018). In terms of structure, DL is a kind of ANN that 

process the data through multiple layers toward highly non-linear and complex feature 

representations (WUEST et al., 2016; WANG; WANG, 2018). DL is mainly used by the 

computer vision and language processing areas, it offers great potential to also boost data-driven 

manufacturing applications (WUEST et al, 2016). It uses the same principle of the ANN, but 

the difference is that ANN is designed by developers and the DL learned from data through a 

self-learning procedure (WANG; WANG,2018). Therefore, it can offer a more suitable and 

convenient way of treating the feature extraction problems and requires a large set of data for 

the training. 

So, the DRL uses DL to trains a deep neural network that will replace the tabular matrix 

used in traditional RL algorithms. The deep neural network conveys an approximate value that 

would be provided if a tabular method was used but requiring less memory and computing 

effort. 

 

 

 

 

 

 

 

 



29 
 

 
 

3 CONTEXT UNDER STUDY AND PROPOSED MAINTENANCE POLICY 

In this section, the operation of the context under study will be detailed. A simplification 

of the system will be presented, along with its mathematical modeling and simulation model. 

The proposed maintenance models will be presented, then, a DRL framework will be developed 

to provide a maintenance policy for each case. 

3.1 SYSTEM DESCRIPTION 

A steel production line that uses a recycling process as an input consists of several 

interconnected workstations and could be seen as a multi-component system with potential 

interactions among them. The steelmaking process begins when the metallic material to be 

fragmented is placed on the shredder's feed chute to be subjected to several collisions. This 

conveyor belt feeds the shredder with a large variety of shredding material composed 

predominantly of steel such as cars, motors, and fridges, where they are transformed into small 

dimension crushed scrap (SANDER; BERNOTAT, 2004). The collisions between the shredder 

hammers and the scrap create micro-cracks into the material and rupture the scrap by the 

shearing process. It is also common to press the scrap before the shredder feed in order to reduce 

its volume, avoiding material jams, thus ensuring that the fragmentation process occurs more 

effectively. The shredding process occurs until the scrap size is reduced to match a required 

granulometry to pass through the grid located at the bottom of the equipment (KIRCHNER; 

TIMMEL; SCHUBERT, 1999).   

The resulting fragments are moved through a conveyor belt to the magnetic separators 

where the non-ferrous material is removed. After that, the crushed scrap is stocked in an 

intermediate buffer. The Electric Arc Furnace (EAF) pulls material from the buffer to perform 

the melting process. The EAF is also responsible for the primary refining of the material. The 

liquid steel resulted in this process is poured into a pan and moved to a treatment plant where 

the secondary refining will be executed. The last station is responsible for the continuous 

casting and its output is the final product.  

Due to the workstation interdependence, shredder stoppages interrupt the flow of crushed 

scrap, which can starve the entire plant. When this happens, the industry can feed the EAF with 

unprocessed scrap which increases substantially the production cost and impact the quality of 

the final product. To reduce the interdependence between the shredding station and the 

remaining downstream processes, an intermediate buffer is used. The buffer station can enhance 
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a serial production line performance by minimizing the effect of workstation stoppages 

(AMEEN et al., 2018). The buffer can keep supplying the production line when the shredder 

undergoes maintenance activities until its content has been consumed.  

On the other hand, a trade-off emerges between the increase of line efficiency and cost 

due to the material storage (GROOVER, 2015). According to Gan et al (2013), to maintain a 

production line operating with a good efficiency level, a large capacity buffer is needed to deal 

with a high frequency of PM. However, when the maintenance frequency is low, it is also 

necessary to deal with the possible increase in random failures. Hence, buffer management rise 

as an important issue to be considered in the maintenance planning in order to minimize the 

impacts of these interventions on the overall line efficiency (SCHOUTEN; VANNESTE, 1995; 

CHEUNG; HAUSMANN, 1997; DELLAGI; KHATAB, 2014). 

Regarding the shredder, this machine consists of a set of fixed hammers distributed in a 

horizontal rotor, whose rotation converts kinetic energy to achieve a strong impact and 

comminute the metallic scrap to be feed into the EAF (BRUSA; MORSUT; BOSSO, 2014; 

ZHOU et al., 2016b). The operating principle is based on a sharp reduction in the size of scrap 

through successive impacts between the hammers and the material caused by high rotor rotation 

speeds and the centrifugal inertial force present in the fragmentation elements. The shredding 

process demands a complex and huge effort that is mainly supported by the hammers (ZHOU 

et al., 2016b). The different efforts that rise with the impact between the hammers and the scrap, 

which is composed of a diversity of metallic materials, make the hammers the most damaged 

component of the shredder. 

According to Brusa, Morsut, and Bosso (2014), the extremely bad conditions that 

hammers are subjected to during their operations induces their failure quite easily. The 

repetitive high-speed impact with steel composed material in addition to the possible presence 

of aggressive elements such as sand, pieces of wood, roots, and stone, highly affects the 

hammers causing it to wear out until its failure. This continuous friction between the hammers 

and scrap causes fatigue, thermo-mechanical fatigue, abrasion and other degradations processes 

in the hammer (BRUSA; MORSUT; BOSSO, 2014). This degradation process can be even 

more aggressive when the shredder is fed with largely heterogeneous material sources, i.e., 

metal objects coming from very different items, from a car to a steel pipe, for example (ZHOU 

et al., 2015). 
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According to Zhou et al. (2016a), the hammers degradation impact its operational ability 

to shred the scrap, and hence impact in the total production capacity of the shredder machine. 

Hammers degradations and failures decrease the shredder facility to shear the scrap leading to 

a productivity reduction. Consequently, the integrity of the hammers is directly related to the 

shredder production. For these characteristics, the hammers can be considered as the critical 

component in shredder operation. Worn hammers can be seen in Figure 1. 

Figure 1 - Worn hammer 

 

Source: Zhou et al. (2016a) 

 Various types of failure coexist in a hammer, such as wear, breakage, and fracture, where 

the wear failure is more noticeable than other types of failure (ZHOU et al. 2016b). When the 

wear on the hammer is enough, a breakage occurs. Figure 2 shows failed hammers damaged at 

various degree. The aspects related to failures and imminent failures can be identified by 

inspection or monitoring operation. During a machine inspection, the wear and tear of the 

hammers can be detected by mass reduction, deformation, and change of the edge cutting shape. 

These anomalies mean that an imminent hammer failure is coming. The hammer containing 

these anomalies can be characterized as a defective hammer. This characteristic allows the 

failure process to be described as following the delay time concept, where the component can 

visit three states: good, defective, and failed (CHRISTER, 1999). As the cutting ability of the 

hammer depends on its state, a good and defective state hammer remains operational while a 

failed hammer is unable to carry out its function and impacts the overall equipment production 

capacity. During the system stoppages, when a hammer containing anomalies is identified, its 

replacement is performed. Also, other PM actions such as re-tightening, adjustments, and 

cleaning are also executed during this time. 
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Figure 2 – Failed hammers with severe wear out process 

 

Source: Zhou et al. (2016b) 

In this work, maintenance models that consider the monitoring condition of the system 

and the level of the buffer are applied to a steel production line to determine the optimal time 

for PM activity on the shredder machine. 

3.2 SYSTEM SIMPLIFICATION AND GENERAL ASSUMPTIONS 

By the analysis of the system under study, it can be described as a steel production line 

composed of two workstations with an intermediate finite buffer (FERREIRA NETO et al., 

2020a). The first station is a crushing stage where the shredder machine processes the scrap and 

transfer the crushed scrap for the buffer with a production rate 𝑃. The intermediate buffer has 

a fixed capacity 𝐾. It is assumed that this station is fed by an unimitated scrap stock, i.e., it 

never starves. The second station regards the remaining necessary processes to transform the 

crushed scrap into a steel product. This station pulls the material from the buffer with constant 

demand 𝑑.  

The shredder machine is equipment composed of n identical hammers that operate in 

parallel and deteriorate with time. The deterioration process of the hammers follows the delay 

time concept (CHRISTER, 1999), where the hammer can be found in three states: good, 

defective and failed. It is assumed that each hammer in a good and defective state contribute 

for the shredder productivity. When a hammer fails the shredder productivity 𝑃 decreases. 

Therefore, 𝑃 is variable over the time and the instantaneous productivity of the shredder at time 
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𝑡 is defined as 𝑃𝑡 = 𝑁𝑃𝑖, where 𝑃𝑖 is the individual productivity of each hammer and 𝑁 is the 

quantity of good and defective hammers at that instant 𝑡. 

Another issue related to the shredder operations is its failure. Although a parallel system 

fails only if all its components fail, the failure process of the shredder is considered as 𝑘 out of 

𝑛, i.e., if the quantity of failed hammers reaches 𝑘, the equipment fails. This failure process 

regards the practical operation of the equipment under study. When the number of failed 

hammers reaches a certain number, the decrease in productivity is so significant that keeping 

the system working is not feasible anymore. 

After the crushing process, the processed scrap is stocked on the subsequent buffer, which 

has a finite and known capacity K, and the rest of the steel production line is fed by this buffer. 

The remaining stations of the production line form the second workstation. As stated before, 

this station needs to be supplied with a constant demand 𝑑 to keep working at its full capacity. 

This demand is lower than the initial productivity of the shredder (𝑃𝑡=0  >  𝑑), so it allows the 

load of the buffer. A simplification of the system under study is illustrated in the Figure 3. 

Figure 3 - The System under study 

 

Source: the author (2020) 

The loading and unloading of the buffer occur because of the difference between the 

shredder productivity 𝑃 and the demand 𝑑. The variation of 𝑃 over time and stations stoppages 

due to maintenance action or breakouts cause mass variation in the buffer, which can be positive 

when 𝑃 > 𝑑, or negative when 𝑑 > 𝑃. The reason for the existence of the buffer is to keep 

feeding the second station with 𝑑 when 𝑃 < 𝑑, reducing the impact of the shredder stoppages 

into the production line. Figure 4 illustrates the buffer mass variation over time. 
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Figure 4 - Buffer level over time 

 

Source: Van der Duyn Schouten and Vanneste (1995) 

The instantaneous variation rate of the buffer content is P-d. During the shredder station 

stoppages, this rate is −𝑑. In Figure 4, when the buffer level is lower than zero means that 

unmet demand occurred. An unmet demand happens when the current volume of the buffer 

along with 𝑃 do not meet 𝑑 over a certain period of time. As a consequence, the second station 

starves and hence the line ceases its production. Thus, the amount that would be produced when 

the line was unavailable is the unmet demand. 

The following assumptions about the system under study are made in this study: 

1) The shredder is composed of 𝑛 identical components; 

2) The shredder fails if 𝑘-out-of-𝑛 components fail, where 0 ≤ 𝑘 < 𝑛; 

3) When shredder fails, the entire station stops its operation and the CM 

must be conducted; 

4) The hammers failure follows the delay time concept; 

5) The delay time and the time until the arrival of defect follow probability 

distributions 𝐹𝑥 and 𝐹ℎ, respectively, and are statistically independent and the same for 

all hammers; 

6) The hammers operate and fail independently of each other; 

7) Each hammer has the same fixed and constant individual productivity 𝑃𝑖; 

8) To reduce random failures, the system can be turned off to receive a PM; 

9) The duration of PM is constant and known (𝑇𝑃); 
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10) The duration of CM on equipment takes the time 𝑇𝑃 plus one extra time 

that follows a probability distribution 𝐹𝑐.  

11) During PM and CM, the failed and defective hammers are replaced; 

12) After replacement, the hammer returns to a state as good as new; 

13) Both PM and CM are perfect, i.e., do not exist misclassification or 

defect/fail induction; 

14) The demand of the production line 𝑑 is known and constant; 

15) The shredder productivity 𝑃 varies over the time. At time 𝑡, its 

productivity is 𝑃𝑡, where 0 ≤ 𝑃𝑡 ≤ 𝑛𝑃𝑖; 

16) The buffer has a finite capacity 𝐾. The buffer levels are changing with 

the dynamic of the system. The buffer level at time 𝑡 is 𝑏𝑡, where 0 ≤ 𝑏𝑡 ≤ 𝐾; 

3.3 NOTATION 

The notation used in this work is presented in Table 1. 

Table 1 - Notation 

𝑋, 𝐹𝑋 Component age at defect arrival (non-negative random variable) and its 

cumulative distribution function  

𝐻, 𝐹𝐻 Delay-time (time from the arrival of the defect to the failure) and 

𝑓𝐻 , 𝐹𝐻, 𝑅𝐻 Density probability function, cumulative distribution function and reliability 

function of  𝐻 

     
𝐾   Buffer capacity 

𝑛 The total amount of hammers 

𝑘 The number of failed hammers to the shredder failure 

𝑁𝑟(𝑡) Cumulative quantity of replaced hammers up to time 𝑡 

𝐷(𝑡) Cumulative amount of unmet demand up to time 𝑡 

𝐶𝑀(𝑡), 𝑃𝑀(𝑡) Total CM and PM activities carried out up to time 𝑡 

𝐶(𝑡, 𝜋) Total maintenance cost up to time 𝑡 

𝑐𝑙,  𝑐𝑓,  𝑐𝒔, 𝑐𝑖, 𝑐𝑟 Cost of unmet demand, failure, storage, intervention and replacement, 

respectively 

𝑇𝑐, 𝑇𝑃, TTR Duration of CM, PM, and the total duration of the maintenance actions, 

respectively 

𝐹𝑐 Cumulative distribution function for the extra time in the CM 
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𝑑 Constant demand of the production line 

𝑃 Shredder productivity 

𝑏(𝑡) Buffer level at time 𝑡 

𝑃𝑖 The individual productivity of each hammer 

𝜋 PM policy 

𝜃 Parameters for neural network 

𝜀 parameter for -greedy exploration in RL 

𝛾 discount factor 

𝑄(𝑠, 𝑎) Q-value 

𝑄(𝑠, 𝑎, 𝜃) Q-value approximated by neural network 𝜃 

𝑆𝑡 System state at time 𝑡 

𝑅𝑡 Reward received at time 𝑡 

𝑎𝑡 Maintenance action decision taken at time 𝑡 

Source: This research (2020) 

3.4 SYSTEM MODELING  

Although the described system in this work really exists in real life, the steel production 

line system studied here was implemented as a simulation model. A discrete event simulation 

model was implemented to simulate the operation of the system under study. The shredder was 

modelled as a multi-component system composed of 𝑛 identical hammers working in parallel. 

Due to its operational characteristics, the degradation process of each hammer was assumed to 

follow the delay time concept (CHRISTER, 1999), in which the hammers can be in three states: 

good, defective, and failed. The time until the defect arrival is X. The hammer stays operating 

in the defective state until it fails. The time from the arrival of the defect until the failure is 

called delay time (H). These times are assumed to be two statistically independent variables 

that follow the probability distributions 𝐹𝑥 and 𝐹ℎ, respectively. 

The simulation model starts running with all hammers as good as new, the production 

rate 𝑃𝑡=0 > 𝑑 and with 𝑏𝑡=0 = 0. The operation of the system causes the load and unload of the 

buffer. Hence, the system operation has some costs such as cost per unit stored in the buffer 

(𝑐𝒔) and cost per unmet unit (𝑐𝑙), when it happens.  

During the maintenance action, the defective and failed hammers are replaced at a 

replacement cost 𝑐𝑟 per hammer. Any shredder stoppage incurs a fixed cost 𝑐𝑖 related to the 

maintenance staff and necessary materials.  The duration of maintenance action (TTR) varies 



37 
 

 
 

depending on the level of the damage. Because it is a planned activity, the duration of a PM 

action is assumed to be constant and equal to 𝑇𝑃. When k-out-of-n hammers fail, then the 

shredder also fails and the CM should start immediately. The duration of the CM (𝑇𝑐) varies 

depending on the damage degree caused. It is assumed that the CM activity takes the time of 

PM activity plus the extra time that follows 𝐹𝑐, where 𝑇𝑐 > 𝑇𝑃.  

Each interaction of the simulation model counts one-unit time regard to the system 

operation or TTR when some maintenance action happens. To simulate the system, the 

simulation model runs during T interactions, where the system behavior is observed. The 

equations to calculate the operation cost at each operation time t and maintenance cost can be 

found below. 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 𝑡 = 𝑐𝑠𝑏𝑡 + 𝑐𝑙𝐷𝑡       (3.1) 

𝑈𝑛𝑚𝑒𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 𝐷𝑡 = {
      𝑑 − 𝑃𝑡 − 𝑏𝑡,          𝑖𝑓 𝑑 > 𝑃𝑡

  0,                                 𝑖𝑓 𝑑 ≤ 𝑃𝑡
     (3.2) 

𝑃𝑀 𝑐𝑜𝑠𝑡 = 𝑐𝑖 + 𝑐𝑠 ∫ 𝑏(𝑡)
𝑇𝑝

𝑜
𝑑𝑡 + 𝑐𝑙 ∫ 𝐷(𝑡)

𝑇𝑝

0
𝑑𝑡 + 𝑐𝑟𝑁𝑟     (3.3) 

𝐶𝑀 𝑐𝑜𝑠𝑡 = 𝑐𝑖 + 𝑐𝑠 ∫ 𝑏(𝑡)
𝑇𝑓

𝑜
𝑑𝑡 + 𝑐𝑙 ∫ 𝐷(𝑡)

𝑇𝑓

0
𝑑𝑡 + 𝑐𝑟𝑁𝑟 + 𝑐𝑓    (3.4) 

The simulation model developed to simulate the dynamic and behaviors of the system is 

described in Figure 5. 

Figure 5 - Simulation model algorithm  

Simulation model:  

1: input parameters: 𝑐𝑙,  𝑐𝑓,  𝑐𝒔, 𝑐𝑖, 𝑐𝑟, 𝑛, 𝐾, 𝑑, 𝑃𝑖, 𝐹𝑐, 𝑇𝑃, 𝐹𝑥, 𝐹ℎ, 𝑘  

2: generate values of X and H for each hammer by Monte Carlo Method using 𝐹𝑥 and 𝐹ℎ  

3: 𝑏0 ← 0   

4: for 𝑡 = 0,1, … , 𝑇 do  

5:  check the operation time of each hammer  

6:  evaluate the condition of each hammer    

7:  if N ≥ k do  

8:   calculate the production rate 𝑃𝑡  

9:   perform buffer mass analysis, i.e., calculate 𝑏𝑡 and 𝐷𝑡 using Eq. (3.2)  

10:   calculate the operational cost using Eq. (3.1)  

11:   if preventive maintenance is trigger do  

12:    generate new values of X and H for defective and failed hammers   

13:    perform buffer mass analysis during 𝑇𝑃  

14:    calculate the maintenance cost per Eq. (3.3)  

15:   end if  

16:  else   

17:   generate news values of X and H for defective and failed hammers   

18:   gauge the duration of the corrective maintenance by Monte Carlo Method using 𝐹𝑐   
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19:   perform buffer mass analysis during 𝑇𝑐  

20:   calculate the maintenance cost using Eq. (3.4)  

21:  end if   

22:  compute the interaction cost  

23  store interaction cost  

24: return cost per unit of time  

Source: This research (2020) 

3.5 PROPOSED OPPORTUNISTIC MAINTENANCE POLICY 

The opportunistic maintenance policy is a kind of a PM policy that allows PM activities, 

such as preventive inspections and replacements, to be carried out before the scheduled time 

when an opportunity maintenance window appears. Performing maintenance actions during the 

opportunity window could bring some benefits such as a lower maintenance activity price and 

reduction in the maintenance duration, which can lead to a long-term advantage. 

Regarding the steel production line, the proposed opportunistic maintenance policy for 

the shredder machine recommends when the shredder should be inspected based on its 

operational time and monitored buffer level. The policy suggests periodical inspections to 

occurs in time 𝑇, but it could be anticipated when the system has already worked 𝑡𝑚𝑖𝑛 time after 

the last maintenance action and the buffer level has reached a minimal level 𝑏𝑚𝑖𝑛.  Let 𝑡 be the 

instantaneous operational time of the shredder and  𝑏𝑡 be the instantaneous buffer level at time  

𝑡, so Ferreira Neto et al. (2020a) suggest to perform the inspection when one of the listed criteria 

is reached: 

i. 𝑡 = 𝑇 

ii. 𝑡 ≥ 𝑡 𝑚𝑖𝑛  𝑎𝑛𝑑 𝑏𝑚𝑖𝑛 ≤ 𝑏𝑡 < 𝐾 

iii. 𝑏𝑡 = 𝐾 

iv. 𝑏𝑡 = 0 

The time counting 𝑡 should be restarted after any maintenance intervention and the 

beginning of the count coincides with the beginning of the shredder operation. The system is 

scheduled to be inspected in each 𝑇 time. However, an opportunity to anticipate the inspection 

arises when the operating time 𝑡 exceeds 𝑡 𝑚𝑖𝑛 and the buffer level 𝑏𝑡 is between 𝑏𝑚𝑖𝑛 ≤ 𝑏𝑡 ≤

𝐾. Therefore, besides the periodical inspection time 𝑇, the policy has two more decision 

variables: 𝑡 𝑚𝑖𝑛and 𝑏𝑚𝑖𝑛. Another condition that makes this anticipation possible occurs when 

the buffer is completely full or completely empty.  
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Thus, an inspection is plausible to be performed at any time when a criterion is met or 

when a failure occurs. During the maintenance interventions, both defective and failed hammers 

are replaced. According to Ferreira Neto et al. (2020a), the idea behind this maintenance 

strategy is to use this opportunity window to capture the dynamic of the system and to suggest 

an optimal time for the inspection, providing fewer interruptions, and enhance productivity and 

efficiency of the rest of the production line. 

Although the opportunistic policy appears to be complex, the control variables are simple 

to monitor, and the production line performance is expected to be improved. The accumulated 

cost of an operational cycle can be calculated using the equations 3.1, 3.2, 3.3 and 3.4.  The 

policy performance is positively influenced by how well the decision variables were chosen. 

Figure 6 shows the algorithm that was built to measure the expected long-term cost of a given 

opportunistic policy represented by a combination of decision variables (𝑇, 𝑡𝑚𝑖𝑛, 𝑏𝑚𝑖𝑛). 

Figure 6 - Opportunistic maintenance algorithm 

Opportunistic maintenance algorithm:  

1: input parameters: (𝑇, 𝑡𝑚𝑖𝑛, 𝑏𝑚𝑖𝑛) values, stopping criterion and number of simulations   

2: while stopping criterion is not reached do  

3:  run the simulation model in Figure 5  

4:  if failure occurs before reach any criteria do  

5:   observe the interaction cost  

6:   calculate the 𝐶∞ which is the cost per unit of time  

7:  else   

8:   detect which criterion was reached first  

9:   trigger preventive maintenance in the simulation model at the time the criterion was 

met 

 

10:   compute the interaction cost  

11:   calculate the 𝐶∞  

12:  end if   

13  store 𝐶∞ of this interaction  

14: end while  

15 𝐶∞ of the evaluated policy is the average of all 𝐶∞ found  

16: return 𝐶∞  

 

Source: This research (2020) 

The algorithm described in Figure 6 considers two-stop criteria: one for convergence and 

the other for the quantity of interaction. In the first interaction, the algorithm considers all 

hammers as good as new. After that, the state of the hammer at the beginning of the next 
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interaction will be decided by the dynamic of the system. The convergence criteria compare the 

𝐶∞ of two consecutive interactions. If the difference is less than or equal predefined value, the 

algorithm considers that convergence occurs and assigns the value of 𝐶∞  to this policy.  About 

the number of interactions, a certain amount of interaction is simulated, if there is no 

convergence, the algorithm considers the last value of 𝐶∞ found to this policy. In order to reduce 

the effect of the variations between each simulation, the algorithm performs a certain number 

of simulations chosen by the user and takes the average value of 𝐶∞ as the final result of the 

evaluated policy. 

Besides what was previously discussed, this policy generalized multiple special cases to 

use, such as: time-based inspection policy (𝑡 𝑚𝑖𝑛 ≥ 𝑇 𝑜𝑟 𝑏𝑚𝑖𝑛 ≥ 𝐾), corrective maintenance 

policy (when 𝑇 and 𝑡 𝑚𝑖𝑛 go to infinity) and buffer-level-based policy (when 𝑇 goes to infinity 

and 𝑡 𝑚𝑖𝑛 = 0). This flexibility of the model allows to suggest the manager to use the 

opportunities only if they provide better results in terms of costs per unit of time. Some of the 

most common policies used in the context of the shredder, which are special cases of the 

proposed opportunistic policy, will be briefly commented below. 

3.5.1 Time-based maintenance policy 

According to Araújo et al. (2018) and Ferreira Neto et al. (2020a), regarding the shredder 

machine, the steel industry extensively adopts this sort of maintenance strategy. The machine 

is subjected to a periodic PM activity in each T time. During this activity, the state of the 

hammers is not verified and only the failed hammers will be replaced. Therefore, the 

maintenance decisions are only based on the operational time of the equipment and do not take 

account the effect of the defective hammers in the shredder productivity in the future. 

3.5.2 Time-based inspection policy 

A time-based inspection policy is a type of CBM policy where the equipment or system 

is turned off to be inspected when reaches a certain operational time. During the check 

procedure, some degradation parameters are measured. The set of maintenance actions to be 

performed depends on its current degradation states. 

Regarding the shredder context, Araújo et al. (2018) suggest to scheduling periodical 

inspections to verify the state of the hammers. Following the inspections result, the authors 

recommend to replace both failed and defective hammers. The replacement of defective 
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components is very frequent in practical contexts, because the defective state indicates an 

imminent failure, and in the shredder case a reduction of its productivity rate. Araújo et al. 

(2018) conclude that the replacement recommendation of the defective hammers, and not only 

the failed components as suggested by the traditional time-based maintenance policy, has 

positive effects in terms of the expected cost rate in the long run. According to the authors, 

defect detection tends to reduce the number of failed components in an operational cycle, 

contributing to maintaining good levels of equipment productivity. 

3.6 PROPOSED DRL MAINTENANCE POLICY 

This work proposes to develop a DRL approach to find the best maintenance planning 

based on the system features. In the system under study, the first station processes the scrap 

stored in the previous stock and produces with a production rate of 𝑃 the crushed scrap that 

feeds the intermediate buffer. Due to stoppages, breakouts and decreases in the 𝑃 of the 

shredder, the buffer level can be found in the range 0 ≤ 𝑏 ≤ 𝐾. When the buffer is full (𝑏 = 𝐾) 

the first station stays idle until the buffer level decreases enough to make possible its operation. 

This situation raises some opportunity to perform maintenance actions in this station. When the 

buffer is empty (𝑏 = 0) or its level plus 𝑃 do not meet 𝑑 (𝑏 + 𝑃 < 𝑑) the second station is said 

to be starved. This causes a loss of production in the form of unmet demands. The costs 

regarding to the unmet demands are a significant portion of the overall maintenance cost. 

The focus of this study is to propose PM models for the crushing station to indicate what 

is the best time to perform PM actions in the shredder machine aiming to minimize the long-

run maintenance cost per unit of time. The models do not define actions for the second station, 

but its costs, e.g., unmet demand, are computed into the analysis. 

Let 𝜋 denotes the PM policy for the shredder. This policy indicates when the shredder 

should be turned off to receive PM. Let 𝐶(𝑡, 𝜋) indicate all costs related to the maintenance 

activities until the time 𝑡 when the system follows the PM 𝜋. 

𝐶(𝑡, 𝜋) = 𝑐𝑙 ∫ 𝐷(𝑡)
𝑡

0
𝑑𝑡 + 𝑐𝑠 ∫ 𝑏(𝑡)

𝑡

0
𝑑𝑡 + 𝑐𝑟 𝑁𝑟(𝑡) + 𝑐𝑖 𝑃𝑀(𝑡) + (𝑐𝑓 + 𝑐𝑖)𝐶𝑀(𝑡)  (3.5) 

where  ∫ 𝐷(𝑡)
𝑡

0
𝑑𝑡 and ∫ 𝑏(𝑡)

𝑡

0
𝑑𝑡 are respectively the accumulative unmet demand and 

buffer level up to time 𝑡. 𝑁𝑟(𝑡), 𝑃𝑀(𝑡), and 𝐶𝑀(𝑡) are the number of hammers replaced, PM 

and CM performed up to time 𝑡, respectively. Thus, an optimal preventive policy 𝜋∗aims to 

minimize the long-run maintenance cost rate, i.e., maintenance cost per unit of time. 
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𝜋∗ = 𝑎𝑟𝑔 min
𝜋

{ lim
𝑡→∞

𝐶(𝑡;𝜋)

𝑡
}         (3.6) 

In order to find the optimal policy 𝜋∗, a DRL algorithm was built. The agent must learn 

during the interaction with the environment when the PM action must be performed based on 

the system's monitoring parameters. So, through the simulation model, the agent interacts 

directly with de production system environment to learn the optimal policy. The learning 

process happens with the agent taking actions 𝑎𝑡 in the environment that leads its current state 

𝑆𝑡 to a new state 𝑆𝑡+1 and receive a reward 𝑅𝑡+1 depending on the desirability of the action. 

Thus, the agent learns the optimal policy that maximizes the reward function. 

Regarding the DRL model, two scenarios are considered. Both scenarios are proposed 

based on the system modeling and general assumptions describe in sections 3.2 and 3.4 and 

have the same maintenance goal defined in Eq. 3.6. However, each scenario presents news 

assumptions covering different aspects of the environment regarding the second station as 

detailed below. 

3.6.1 Scenario 1 

Scenario 1 makes the assumption that the second station does not deteriorate over time. 

In other words, the station that is composed for the remaining process in the steel production 

line after the shredder stage does not stop its operation neither for maintenance action nor for 

random failures, only when it is starving. In this case, 𝑑 always has a fixed and positive value 

that does not vary over time. That is, the buffer is always pulled for a constant and fixed demand 

𝑑 that does not cease. This assumption was made for the policies proposed for Araújo et al. 

(2018) and Ferreira Neto et al. (2020a), and it also applies to the opportunistic maintenance 

policy proposed in this work. 

The algorithm of the simulation model presented in Figure 5 already covers the 

environment assumption assumed in the scenario 1 along with the general assumptions and 

system modeling described in sections 3.2 and 3.4. 

Although the focus of the study is the development of maintenance policies for the 

shredder and maintenance actions are not suggested for the remaining processes of the 

production line, the exclusion of any interruption of the second station can lead to inaccurate 

analysis. Therefore, a second scenario was proposed. 
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3.6.1 Scenario 2 

In scenario 2, the second station deteriorates over time which leads to random stops. This 

station is composed of several interconnected operational units and any known interruptions in 

these units leads to a stop of the entire station for maintenance actions. During the stoppages, 

the station stays idle and the demand 𝑑 goes to 0. Therefore, the demand 𝑑 varies over time, but 

in a binary way. When the second station is operating, the demand 𝑑 is constant and known, 

and when the station is inoperative it is zero. Thus, in scenario 2, 𝑑 is a function of time and 

represents the operation state of the second station.  

The cost of the maintenance actions in the second station is not computed into the model. 

So, the costs taking into account in the maintenance models are the same and can be computed 

by the Eq. 3.5. Although the second station idleness eventually leads to an interruption of the 

steel production, the model only considers an unmet demand when this interruption occurs due 

to shortages of raw material that come from the buffer. Hence, the unmet demand can be 

calculated using the Eq. 3.2, considering the instantaneous demand value at time 𝑡, i.e., 𝑑𝑡. 

The following assumptions about of the system under study are made in this scenario: 

1) The second station deterioration process is assumed to follow a known probability 

distribution 𝐹𝑑; 

2) Any stop at the second station is considered constant, known, and equal to 𝑇𝑑; 

3) During the stoppages, the demand 𝑑 is equal to 0. 

4) The demand 𝑑 in the time 𝑡 is 𝑑𝑡. 

These new assumptions require a few modifications in the simulation model described in 

Figure 5. Let 𝑌 be the time when the second station suffers a breakdown. This time following 

the probability distribution 𝐹𝑑. So, the simulation model algorithm used in scenario 2 is 

presented in Figure 7. 

Figure 7 - Simulation model algorithm for sscenario 2 

Simulation model:  

1: input parameters: 𝑐𝑙,  𝑐𝑓,  𝑐𝒔, 𝑐𝑖, 𝑐𝑟, 𝑛, 𝐾, 𝑑, 𝑃𝑖, 𝐹𝑐, 𝑇𝑃, 𝐹𝑥, 𝐹ℎ, 𝑘, 𝑇𝑑, 𝐹𝑑  

2: generate values of X and H for each hammer by Monte Carlo Method using 𝐹𝑥 and 𝐹ℎ  

3: 𝑏0 ← 0   

4: for 𝑡 = 0,1, … , 𝑇 do  

5:  check the operation time of each hammer  

6: 

7: 

 evaluate the condition of each hammer 

every 𝑡 step, 𝑑𝑡 is set with the return of the Function 𝑑(𝑡) in Figure 8 

 

8:  if N ≥ k do  
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9:   calculate the production rate 𝑃𝑡  

10:   perform buffer mass analysis, i.e., calculate 𝑏𝑡 and 𝐷𝑡 using Eq. (3.2)  

11:   calculate the operational cost per Eq. (3.1)  

12:   if preventive maintenance is trigger do  

13:    generate new values of X and H for defective and failed hammers   

14:    perform buffer mass analysis during 𝑇𝑃  

15:    calculate the maintenance cost using Eq. (3.3)  

16:   end if  

17:  else   

18:   generate new values of X and H for defective and failed hammers   

19:   gauge the duration of the corrective maintenance by Monte Carlo Method using 𝐹𝑐   

20:   perform buffer mass analysis during 𝑇𝑐  

21:   calculate the maintenance cost using Eq. (3.4)  

22:  end if   

23  compute the interaction cost  

24:  store interaction cost  

25: return cost per unit of time  

Source: This research (2020) 

The algorithm works closer to the former, but now the instantaneous value of 𝑑𝑡 is 

measured every 𝑡 time through a function presented in Figure 8. 

Figure 8 - Function to calculate demand d 

Function d ( ) algorithm: 

1: input parameters: 𝑇𝑑, 𝐹𝑑, 𝑑, 𝑡 

2: generate value of Y by Monte Carlo Method using 𝐹𝑑  

3: if 𝑌 < 𝑡 

4:  𝑑𝑡 ← 𝑑 

5: else 

6:  if 𝑌 + 𝑇𝑑 < 𝑡 

7:    𝑑𝑡 ← 0 

8:  else 

9:   𝑑𝑡 ← 𝑑 

10:   update the value of Y 

11:  end if 

12: end if 

13: return 𝑑𝑡  

Source: This research (2020) 

Before applying a DRL algorithm to obtain the 𝜋∗ PM policy for both scenarios, the 

problem will first be modelled as a Markov Decision Problem (MDP), which is the most 
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common framework to RL techniques. Each scenario has its proper MDP formulation that 

covers its assumptions. 

3.7 MDP FORMULATION 

MDP is a discrete-time stochastic process which holds the Markov propriety that model 

the sequential decision making in uncertain environments (PUTERMAN, 2014). In MDP there 

are five components: system state 𝑠𝑡, decision action 𝑎𝑡, stochastic state transition, reward 

discount factor 𝛾 and instant reward function 𝑟𝑡. In the current study, the stochastic state 

transition is driven by uncertainties of the environment and by the actions, instead of having a 

fixed probability transition matrix.  

At a discrete-time 𝑡, the system state 𝑠𝑡 is observed, and following some rule, an action 

𝑎𝑡 is selected to be performed in the environment. In the context under study, this action is to 

decide if a PM should be carried out or not. After taking the action, a reward 𝑟(𝑠𝑡,𝑎𝑡) is received, 

which reflects how good the action choice 𝑎𝑡 was for the state 𝑠𝑡. Let 𝑅𝑡 be the accumulative 

reward, as described below.  

𝑅𝑡 = 𝑟𝑡 + ∑ 𝛾𝑖∞
𝑖=0 𝑟(𝑠𝑡+𝑖,𝑎𝑡+𝑖)         (3.7) 

The discount factor 𝛾 is used to consider both the future reward and the immediate reward. 

It is also widely used to guarantee the convergence of the reward summation (ZHANG; SI, 

2020). So, the goal is to find the  𝜋∗ that maximize the expected 𝑅𝑡, i.e. 

𝜋∗ = arg max
𝜋

{𝐸𝜋[𝑅𝑡]|𝑠 = 𝑠𝑡}        (3.8) 

In order to formulate the MDP, the system state 𝑠𝑡, action 𝑎𝑡, and reward function 𝑟(𝑠𝑡,𝑎𝑡) 

should be defined for each scenario. 

3.7.1 State definition 

The state definition is an important step in the MDP formulation since through the 

observation of the state space the agent will learn the environment behavior and choose the 

optimal action. Thereby, the system state 𝑠𝑡 should comprehend both the machine-level and 

system-level information (HUANG; CHANG; ARINEZ, 2020).   

For scenario 1, the instantaneous productivity rate of the shredder 𝑃𝑡 and the 

instantaneous buffer level 𝑏𝑡 fully describe the system dynamically. Through the observation 

of 𝑃𝑡, the agent can understand the shredder's deterioration process, and observing 𝑏𝑡 it can 
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cognize the dynamic between the two stations. For this reason, the state considered for scenario 

1(𝑠𝑡
1) is defined as: 

𝑠𝑡
1 = [𝑃𝑡, 𝑏𝑡]            (3.9) 

For scenario 2, adding the instantaneous demand 𝑑𝑡 allows the agent to recognize when 

the second station is operational or not. Hence, the state considered for scenario 2 (𝑠𝑡
2) is defined 

as: 

𝑠𝑡
2 = [𝑃𝑡, 𝑏𝑡, 𝑑𝑡]                    (3.10) 

All the selected variable to determine the system states can be directly observed or 

tracked. 𝑃𝑡  and 𝑑𝑡 could be measured through a flowmeter placed in the downstream of the 

shredder and the buffer, respectively, and 𝑏𝑡 by a level meter. 

3.7.2 Action definition 

The action 𝑎𝑡 performed in the environment decides whether or not to turn off the 

shredder and initiate a PM. Consequently, the 𝑎𝑡 for each scenario will be the same and is 

defined as: 

𝑎𝑡 = {
      0,          𝑙𝑒𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠ℎ𝑟𝑒𝑑𝑑𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔

1, 𝑡𝑢𝑟𝑛 𝑜𝑓𝑓 𝑡ℎ𝑒 𝑠ℎ𝑟𝑒𝑑𝑑𝑒𝑟 𝑓𝑜𝑟 𝑃𝑀
                (3.11) 

When the shredder fails, the CM is immediately triggered. This kind of maintenance 

activity is not under the control of the agent, as it is only a consequence of random failures.  

3.7.3 Reward function definition 

Since the goal of the agent is to maximize the expected cumulative reward 𝑅𝑡 defined in 

Eq. 3.7, the reward function 𝑟𝑡 should be aligned with the maintenance goal. It should be 

formulated as a stepwise of the objective function, so the agent can learn a satisfactory 𝜋∗ to 

achieve the problem purpose. Thus, the 𝑟𝑡 must include maintenance cost and operational cost 

related to the maintenance activity such as unmet demand and storage cost in the buffer. 

Because both scenarios compute the same maintenance and operational cost, the 𝑟𝑡 is the same 

for both and is defined as: 

𝑟𝑡 = −𝑐𝑙 𝐷(𝑡) − 𝑐𝑠𝑏(𝑡) − 𝑐𝑟 𝑁𝑟(𝑡) − 𝑐𝑖 𝑃𝑀(𝑡) − (𝑐𝑓 + 𝑐𝑖)𝐶𝑀(𝑡)              (3.12) 

where𝑐𝑟 𝑁𝑟(𝑡), 𝑐𝑖 𝑃𝑀(𝑡) , and (𝑐𝑓 + 𝑐𝑖)𝐶𝑀(𝑡) are the cost of the hammer’s replacement, 

PM actions and CM actions at time 𝑡 respectively, and 𝑐𝑙 𝐷(𝑡) and 𝑐𝑠𝑏(𝑡) are the cost of unmet 

demand and storage during a time step, respectively. In order to find the optimal policy that 
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minimizes the overall maintenance cost, the reward function is negative. So, when the 

accumulative reward 𝑅𝑡 is maximized, the long-term maintenance cost will be minimized. 

3.8 DRL FRAMEWORK 

Although exact approaches can handle with a serial production line with two stations and 

an intermediate buffer such as Dynamic Programming, there are some points that make a RL 

approach ideal for the maintenance problem under study. Most RL algorithms are model-free, 

which means that to converge to an optimal policy its learning process does not necessarily 

needs the system transitions probabilities (WANG; WANG; QI, 2014; HUANG; CHANG; 

ARINEZ, 2020). Besides, its agent training process is through the sampling of state and action 

space transitions coming from either experiments or simulation environments (HUANG; 

CHANG; ARINEZ, 2020). So, it is appropriated to be used in the simulation models developed 

in this work. Lastly, RL is well-suited for the determination the optimal time to maintenance 

action, because of its ability to manage the benefit of the long-term reward (KUHNLE; 

JAKUBIK; LANZA, 2018). PM increase the short-term cost, but it decreases the long-term cost 

by reduction of the unavailability and failure probability of the system. 

A lot of algorithms have been proposed to obtain the optimal policy 𝜋∗, among which Q-

learning is the most well-known RL algorithm (AISSANI; BELDJILALI; TRENTESAUX, 

2009; SUTTON; BARTO, 2018). The traditional Q-learning method, initially formulated by 

Watkins (1989), is a tabular method that creates a table called Q-table where the optimal state-

action value function Q is initiated, stored and updated (WATKINS, DAYAN, 1992). In this 

method, the expected reward 𝑅𝑡 that an action 𝑎𝑡 has taken in state 𝑠𝑡 following the policy 𝜋 is 

called Q -value and is presented below. 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]                  (3.13) 

The 𝑄-values are updated after each epoch following the equation below. 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎))              (3.14) 

The 𝛼 is the step length taken to update the estimation of 𝑄(𝑠, 𝑎). It can be understood as 

a learning rate. The goal now is to find the optimal 𝜋∗ that maximize the Q-value, as described 

in the equation below. 

𝑄𝜋∗(𝑠, 𝑎) = 𝐸𝜋∗[𝑅𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]                  (3.15) 
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The Q-learning algorithm is shown in Figure 9. The 𝜀-greedy is responsible for a key 

component of the learning process of the RL that is the balance between the exploration and 

exploitation phase. It decides which phase will be executed in each time step t. 

Figure 9 - Q-learning algorithm 

Q-learning algorithm:  

1: input parameters: 𝛾,  𝜀, 𝛼  

2: Initialize 𝑄(𝑠, 𝑎) table arbitrarily  

3: observe 𝑠0  

4: for 𝑡 = 0,1, . . , 𝑇  

5:  draw a random number 𝜉~ Uniform (0,1)  

6:  if  𝜉 > 𝜀 do  

7:   choose the action which has the highest Q-value in the Q-table, i.e., 𝑎𝑡 = arg max
𝑎

𝑄(𝑠, 𝑎)  

8:  else   

9:    choose any action 𝑎𝑡 at random  

10:  end if   

11:  take action 𝑎𝑡, observe 𝑟𝑡 and 𝑠𝑡+1  

12:  𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎))  

13 return 𝑄(𝑠, 𝑎)   

Source: This research (2020) 

This method is widely used due to the simplicity of its formulation, robustness, and the 

ease in which parameters can be adjusted (SUTTON; BARTO, 2018). However, this tabular 

method ends up using a large table to record the Q-values. The problem is not only its lack of 

scalability to high-dimensional problems but the time and data required to fill the table 

accurately (HUANG; CHANG; ARINEZ, 2020; ZHANG; SI, 2020). To overcome these 

challenges, DRL algorithms have been developed during recent years. The DRL algorithms 

combine the RL with deep neural network to provide a powerful approximation of the Q-value, 

which significantly reduces computer efforts (ROCHETTA et al., 2019). These algorithms train 

a neural network 𝜃 to approximate the Q-values, i.e. 

𝑄𝜋∗(𝑠, 𝑎, 𝜃) ≈ 𝑄𝜋∗(𝑠, 𝑎)                   (3.16) 

In order to obtain the optimal 𝜋∗, the neural network parameter 𝜃 is updated with the 

interaction, instead of filling the Q table. The DRL variant most used of the Q-learning is the 

Deep Q Learning (DQN). The DQN training process uses a single neural network to provide an 

approximation of the Q-value (MNIH et al., 2016). However, it has presented an over-

estimation of its approximation. The Double Deep Q Learning (DDQN) introduced for Hasselt 



49 
 

 
 

et al. (2016) relieve this effect by using two neural networks: the online network 𝜃 and the 

target network 𝜃−. The 𝜃 is used to select the action and the 𝜃− to evaluate the policy 𝜋.   

In this work, a DDQN algorithm was used to solve the problem under study by obtaining 

the optimal policy 𝜋∗ that suggests whether or not maintenance action should be performed in 

the shredder at each time by solving the MDP problem for each scenario. The DDQN algorithm 

used is detailed in Figure 10. 

Figure 10 - DDQN algorithm 

 DDQN Algorithm:  

1: input parameters: 𝛾,  𝜀, 𝐶, 𝑁𝑚𝑒𝑚, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, 𝑚  

2: build a neural network 𝜃  

3: create a replay memory M with capacity 𝑁𝑚𝑒𝑚  

4: for 𝑡 = 0,1, . . , 𝑇  

5:  every 𝐶 steps, set 𝜃− ← 𝜃  

6:  while 𝑡 < 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 do  

5:   draw a random number 𝜉~ Uniform (0,1)  

7:   if  𝜉 > 𝜀 do  

8:    select  𝑎𝑡 = arg max
𝑎

𝑄(𝑠, 𝑎, 𝜃)  

9:   else   

10:     choose any action 𝑎𝑡 at random  

11:   end if   

12:   input action 𝑎𝑡 into the simulation model   

13:   run the simulation model for one-time step  

14:   observe 𝑠𝑡   

15:   calculate 𝑟𝑡  

16:   observe 𝑠𝑡+1  

17:   store transition sample (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in replay memory M  

18:  end while  

19:  sample a minibatch of size m of transitions (𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠𝑗+1) from M   

20:  
set 𝑦𝑗 = 𝑟𝑗 + 𝛾𝑄 (𝑠𝑗+1, 𝑎𝑟𝑔 max

𝑎𝑗+1

𝑄(𝑠𝑗+1, 𝑎, 𝜃); 𝜃−) 
 

21:  perform a gradient descent step on  (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗 , 𝜃))²  

22: return 𝜃   

Source: This research (2020) 

The two important concepts used in DDQN are the experience replay memory 𝑀 and the 

target network 𝜃−. The experience replay memory 𝑀 is a set of past experiences that works as 

a data set for the 𝜃 training. During the training process, new data of the system are added in 𝑀 

and sample mini-batches with size 𝑚 are randomly withdrawn for the neural network training. 
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It helps to stabilize the learning process by reducing correlation among the training data and 

enhances the training performance by enabling a batch training (ZHANG; SI, 2020). About the 

target network, while the neural network 𝜃 is updated with gradient descent, the target network 

𝜃− stays fixed and after C steps is updated as a copy of the 𝜃 (HASSELT et al., 2016). Let 𝜃𝑗  

be the neural network 𝜃 at time j, the updated neural network of the next time step 𝜃𝑗+1 is 

obtained through the gradient descent process described below. 

𝜃𝑗+1 = 𝜃𝑗 + 𝛼 (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗 , 𝜃𝑗)) ∇𝜃𝑗
𝑄(𝑠𝑗, 𝑎𝑗 , 𝜃𝑗)                (3.17) 

The delay between 𝜃 and 𝜃− helps to overcome the overestimation problem (HUANG; 

CHANG; ARINEZ, 2020). The 𝜃− is also used to generate the targets 𝑦𝑗 that going to be used 

to update the 𝜃 at the time j.  

𝑦𝑗 = 𝑄(𝑠𝑗 , 𝑎𝑗) + 𝛾𝑄 (𝑠𝑗+1, 𝑎𝑟𝑔 max
𝑎𝑗+1

𝑄(𝑠𝑗+1, 𝑎𝑗+1, 𝜃𝑗); 𝜃𝑗
−)               (3.18) 

The neural network architecture used is composed of several fully connected layers as 

illustrated in Figure 11. The input layer receives the system state and the output layer convey 

the approximate Q-value of each maintenance action. 

Figure 11 - Neural Network architecture 

.  

Source: This research (2020) 
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4 CASE STUDY 

Intending to analyse the performance and behavior of the proposed PM policies, a 

numerical case study was conducted. Two steps are required, that is to obtain the value of the 

parameters of the system and the hyperparameters of the neural network used in the DDQN 

algorithm. 

The operational and maintenance parameters of the system are shown in Table 2. Despite 

the PM policies be inspired in a real Brazilian steel production line, the system parameters 

described in this section are only illustrative. However, the chosen values keep the proportion 

found in the real life.  

Regarding the degradation process of the hammers, a Weibull distribution with scale and 

shape parameter 𝜂1 = 120 and 𝛽1 = 3 was used to describe the time until the defect arrival 

probability distribution. Another Weibull distribution with scale and shape parameters 𝜂2 = 30 

and 𝛽2 = 1 was used to describe the delay time probability distribution. To indicate when an 

interruption of the second station occurs, an Exponential distribution with parameter 𝜆 =

1/168 was considered, that is a mean of 168 hours, i.e., one week. The costs have been defined 

without a monetary term, but using a unit of reference (un.). Regarding to the distribution 

probability of extra time of the CM duration, a Weibull distribution with scale and shape 

parameter 𝜂3 = 7 and 𝛽1 = 3 were defined. 

Table 2 - System parameters 

System parameters 

Parameter Value Unit 
𝑛 20 component 
𝑘 10 component 
𝐾 1000 ton 
𝑃𝑖 1 ton/h 
𝑑 15 ton/h 
𝑐𝑖 50 un. 
𝑐𝑓 3000 un. 
𝑐𝑙 100 un. /ton 
𝑐𝑟 230 un. /component 
𝑐𝑠 0.01 un. /ton.h 
𝑇𝑃 10 hours 
𝑇𝑑 12 hours 

Source: This research (2020) 
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The architecture of the neural network was almost the same for both scenarios analysed. 

It has three fully connected hidden layers, the first has 1200 neurons, the second 300 neurons 

and the third has 100 neurons. The size of the input layer and the output layer are equal to the 

size of the system states and actions state, respectively. For scenario 1, it has 2 neurons in both 

the input and output layer, and in scenario 2 it has 3 neurons in the input layer and 2 neurons in 

the output layer. The replay memory used has a capacity 𝑁𝑚𝑒𝑚 = 2000 interacitons, and batch 

size used to train the neural network is 𝑚 = 150 . The target neural network 𝜃− is updated with 

a copy of the 𝜃 after 𝐶 = 10 steps, and the discount factor used was 𝛾 =0.9. The 𝜀-greedy starts 

set to be 1 but is reduced through a decay rate of 0.99994 until 0.05 where it stays fixed until 

the end of the training process. Regarding the gradient descent, the optimizer Adam (KINGMA 

et al., 2014) was used. Both the simulation models and the DDQN algorithm was implemented 

in Python. The neural network was implemented using the open-source library Keras (GULLI; 

PAL, 2017). 

4.1 OBTAINING THE PROPOSED DRL MAINTENANCE POLICY 

In order to obtain one PM policy, first, the appropriate simulation model of the steel 

production line was used to perform an offline training of the neural network parameters 𝜃1, for 

scenario 1, and 𝜃2, for scenario 2, using the DDQN algorithm described in Figure 10. The 

training process of both scenarios ran 50000 interactions, each interaction contained 1000-time 

steps, and lasted approximately 40 hours each. The behavior of the cumulative reward collected 

by the agent during each interaction in the training process for both scenarios are shown in 

Figure 12 and Figure 13.  
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Figure 12- Training accumulative reward of scenario 1 

 

Source: This research (2020) 

Figure 13- Training accumulative reward of scenario 2 

 

Source: This research (2020) 

Although the training reward has some peaks and valleys, the accumulative reward shows 

some convergence, which means that the agent is learning an optimal PM policy. The cost per 

unit of time during each interaction of the training process is shown in Figure 14 and 15. 
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Figure 14 - Cost per unit of time during the training process of scenario 1 

 

Source: This research (2020) 

Figure 15- Cost per unit of time during the training process of scenario 2 

 

Source: This research (2020) 

The DRL-based PM policy for the shredder is obtained through the trained neural 

networks 𝜃 which are ready to be used in online maintenance decision making, i.e., to be applied 

in the real shredder system.  This trained neural network 𝜃 is actually the DRL maintenance 

policy, and the procedure for its usage in real life is detailed in Fig 16.  
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Figure 16 - Real life procedure 

Real Life Procedure:  

1: input parameters: real-time states 𝑠𝑡  

2: observe 𝑠𝑡  

3: run a forward propagation in neural network 𝜃 to get 𝑄(𝑠𝑡, 𝑎; 𝜃)  

4: find the optimal 𝑎𝑡 = arg max
𝑎

𝑄(𝑠𝑡, 𝑎, 𝜃)  

5: return PM decision 𝑎𝑡  

Source: The Author (2020) 

Note that now there is no fixed time to perform PM action. Instead, the maintenance 

decision will be taken according to the real-time condition monitoring of the steel production 

line. At each time t, the neural network 𝜃 will receive as input the system state which represents 

its condition monitoring. Based on its values, the maintenance decision is taken. Thus, do not 

have a scheduled time for performing PM action, and the decision of intervene in the system is 

made in real-time. 

Although the training process of the neural network 𝜃 is quite burdensome computation, 

the decision-making process through the proposed PM policies uses only a forward signal 

propagation in the neural network 𝜃. Hence, it could be applied in real life context. 

4.2 RESULTS AND ANALYSIS 

In order to evaluate its performance, the proposed maintenance models were compared 

with three different policies, including the time-based maintenance policy, and time-based 

inspection policy, all presented in section 3.5. The third policy used in the comparison was a 

CM policy where the system runs until its failure. No PM actions are carried out, only CM 

actions. During the CM activity, both defective and failed hammers must be replaced. This 

policy is used as a baseline to measure the benefits of applying any PM policy in the system. 

To optimize the decision variables of the opportunistic policy and the PM policies used 

in the comparison and to find the maintenance policies that lead to a good performance of the 

line, the simulation model described in Figure 5 was defined as an objective function and the 

minimization method Differential Evolution (STORN; PRICE, 1997) was applied. Specially 

for the opportunistic policy, the minimization method was applied into the algorithm described 

in Figure 6. The maintenance policies obtained through the optimization are shown in Table 3. 
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Table 3 - Optimal maintenance policies 

Optimal Maintenance Policies  

 Time-based maintenance 

policy 

Time-based 

inspection policy  
Opportunistic Inspections Policy 

Decision 

variables 
T = 49.53 hours T = 34.61 hours 

T = 46.15 hours,  

𝑡𝑚𝑖𝑛 = 12.30 hours,  

𝑏𝑚𝑖𝑛= 227.24 ton. 

Source: This research (2020) 

To measure the performance of the proposed DRL-based PM policy, the trained neural 

network 𝜃 was applied in the real-life procedure described in Figure 16, considering the 

assumptions of scenario 1 and using the simulation model to simulate the behavior and 

uncertainties of the environment in study. Different from the previous policies, the proposed 

DRL-based policy does not have a fixed/scheduled time for PM action. Instead, the trained 

neural network receives the monitored states of the system as inputs and takes the maintenance 

decisions in real-time, intervening in the system based on its monitoring conditions. The results 

are shown in Table 4. 

Table 4 - Policies comparison 

Policies comparison 

 

Time-based 

maintenance 

policy 

Time-based 

inspection 

policy 

Opportunistic 

Policy 
CM Policy 

Proposed 

DRL Policy 

Scenario 1 

Cost per unit 

of time 

90.9963 un. 

/hours 

33.9732 un. 

/hours 

31.2646 

 un. /hours 

106.7412 un. 

/hours 

29.5718 un. 

/hours 

Unmet 

demand per 

unit of time 

0.6314 ton. 

/hours 

0.0166 

ton. /hours 

0.0012  

ton. /hours 

0.5545 ton. 

/hours 

0.0 

ton. /hours 

Shredder 

availability  
0.8261 0.7758 0.7895 0.8646 0.8202 

CM per unit 

of time 

0.00090 

CM/hours 

0.0 

CM/hours 

0.0 

CM/hours 

0.0080 

CM/hours 

0.0 

CM/hours 

Source: This research (2020) 
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It is important to keep in mind that both the CM policy and the DRL policy do not have 

a time T as a decision variable. In corrective maintenance strategy, the maintenance action is 

performed only when the system fails, which means that the decision-maker keeps the system 

running until it breaks and then performs CM actions. And in DRL policy, maintenance 

decision-making is an online decision. The variables that represent the condition of the system 

are tracked by online monitoring and based on their instantaneous values the policy suggests 

that the PM's action should be performed or not.   

Before doing a numerical analysis of the benefit of adopting the DRL policy, it is 

important to highlight another advantage. Unlike the other analyzed approaches that use the 

system data only to optimize the maintenance policy, the DRL method is constantly observing 

the data and making decisions based on it. This gives the policy more flexibility to deal with 

changes in the environment or modification of processes. This is aligned with the recent 

paradigm of industry 4.0, where to meet the trend of mass customization frequent changes on 

the operation parameters are likely to occur. Since the DRL policy learns about system 

dynamics rather than simple prior planning, when a change occurs, the agent can handle it by 

making an online decision and minimizing any impact on overall system performance and 

productivity. 

Regarding the numerical comparison among the policies, the results found show that all 

four PM policies outperform the CM strategy in terms of the expected long-term maintenance 

cost per unit of time, which means that they are all effective PM policies. Looking into the 

comparison between the time-based policies, some important points can be observed. First, 

time-based inspection policy shows a better performance than time-based maintenance policy, 

confirming that including the replacement of the defective hammers into the maintenance 

activities, which can increase the short-term cost, has a positive effect on the expected long-

term cost rate. The reason is that identifying and replacing defective hammers tends to reduce 

the average number of hammers that fails during shredder operations, which helps to keep 

productivity at a good level, reducing unmet demands and preventing random failures. 

It is an important finding because time-based maintenance policy is the current practice 

of the company that inspired this study. So, the replacement of the defectives hammers can 

reduce approximately 62.3% of the expected maintenance cost rate, along with a reduction in 

the expected unmet demand per unit of time and the shredder failure rate. Therefore, this 
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highlights that the maintenance activities to be performed during the intervention are just as 

important as when the maintenance activities are scheduled to be performed.  

Looking at the suggested time for the execution of the maintenance actions, the time-

based inspection policy anticipates the PM intervention compared to the time-based 

maintenance policy. This is expected because the system will be inspected earlier to identify 

defective hammers and therefore to prevent failures. 

The opportunistic policy works better than the time-based inspection policy. Although 

the policy has a scheduled time to perform PM actions, this can be anticipated based on the 

monitored variable. The monitored variable chosen was the buffer level, so the policy monitors 

it online and, based on its instantaneous value, chooses whether the inspection should be 

anticipated or not. Thus, taking the buffer level into consideration to anticipate inspections, the 

policy can capture some aspects of the dynamic of the system, which leads to a better 

performance than policies only based in operational time.  When the policy suggests that the 

inspection should be anticipated, this event is called an opportunity window and represents an 

opportunity to gain more benefits if the decision maker chooses to anticipate the inspection. 

About the scheduled time for the periodic inspection in the opportunistic policy, it is 

closer to the time-based maintenance policy. Due to the opportunity window that allows 

anticipation of the maintenance activities when recognizing a better time to do so, the periodic 

inspections do not need to be taken early as happens in the time-based inspection policy. This 

characteristic leads to a reduction of 7.98% in comparison with time-based inspection policy, 

and 65.64% in comparison with time-based maintenance policy. 

Looking at the proposed DRL-based maintenance policy applied into the scenario 1, it 

has shown the best results of all policies analyzed. By the system monitoring, the agent can 

learn about the behavior of the system and intervene in it in real-time, giving suggestions about 

the best time to act, aiming to achieve the lowest long-run maintenance cost. As result, a 

reduction in the expected maintenance cost per unit of time in comparison of all other PM 

policies was acquired, and the found values were: 67.5% in comparison with time-based 

maintenance policy, the current company policy; 13% in comparison with time-based 

inspection policy, and 5.41% in comparison with the opportunistic policy. 

As the unmet demand and the failure event are highly expensive, the proposed PM policy 

makes a huge effort to avoid this situation. The unmet demand is strongly related to the 

production line availability. In scenario 1, when an unmet demand occurs, it means the second 
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station stays idle. It leads to a shortage of final products for the clients, bringing several 

negatives impacts for the company.  

Still discussing the unmet demand, an interesting point can be observed. Although there 

is a reduction in cost, using a CM strategy shows better performance than time-based 

maintenance policy in terms of unmet demand. It demonstrates that a maintenance policy should 

be adopted regarding the system performance indicator that wants to be enhanced and 

emphasizes the importance of choosing the right maintenance strategy to be adopted. 

The shredder availability means the percentage of the operational time that the equipment 

has worked. Although the time-based inspection policy and the opportunistic strategy has 

shown significant cost savings compared to the CM strategy and the company's current strategy 

(time-based maintenance policy), these strategies have shown a reduction in the equipment 

availability. It means that the cost-saving was acquired by increasing PM actions in order to 

identify the defects in an initial stage and perform preventive substitution of the defective and 

failed hammers. In the DRL model, the cost-saving was achieved without the need for too much 

PM activities. It is the consequence of the policy's ability to intervene in real-time. By the 

system monitoring, the policy can obtain a better use of the equipment without letting it fail. 

In order to observe the behavior of the DRL-based maintenance policy applied in scenario 

l for different cases in which there is variation in some input parameters, a sensitivity analysis 

was performed. The results are presented in Table 5, in which case 1 represents the reference 

case with the parameter values adopted in the case study. In the other rows, the results for the 

other cases are presented and the parameters with values altered are highlighted in grey. 

Table 5 - Sensitivity analysis for the DRL-based policy applied in the scenario 1 

 Input parameters 

Proposed  

DRL-based 

policy 

Case 
𝑇𝑝 

(h) 

𝜂1  

(h)  

𝜂2  

(h))  

𝜂3  

(h)  

d      

(ton/h) 

𝑃𝑖    

(ton/h) 
n k 

K    

(un.) 

𝐶𝑙      

(un./ton) 

𝐶𝑓    

(un.)  

𝐶𝑖    

(un.)  

𝐶𝑟 (un./ 

compon

ent)  

𝐶𝑠    

(un./to

n.h)  

𝐶∞ (un./h)  

 

1 10 120 30 7 15 1 20 10 1000 100 3000 50 230 0.01 29.57180  

2 10 120 30 7 15 1 20 10 1000 100 3000 50 230 0.001 25.50350  

3 10 120 30 7 15 1 20 10 1000 100 3000 50 230 0.1 37.26747  

4 10 120 30 7 15 1 20 10 1000 100 3000 50 130 0.01 14.64471  

5 10 120 30 7 15 1 20 10 1000 100 3000 50 330 0.01 35.28628  

6 10 120 30 7 15 1 20 10 1000 100 3000 25 230 0.01 26.22503  

7 10 120 30 7 15 1 20 10 1000 100 3000 100 230 0.01 30.47137  
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8 10 120 30 7 15 1 20 10 1000 10 3000 50 230 0.01 29.32967  

9 10 120 30 7 15 1 20 10 1000 1000 3000 50 230 0.01 30.01399  

10 10 120 30 7 13 1 20 10 1000 100 3000 50 230 0.01 24.29561  

11 10 120 30 7 17 1 20 10 1000 100 3000 50 230 0.01 132.86285  

12 10 120 30 4 15 1 20 10 1000 100 3000 50 230 0.01 29.11888  

13 10 120 30 10 15 1 20 10 1000 100 3000 50 230 0.01 29.79620  

14 8 120 30 7 15 1 20 10 1000 100 3000 50 230 0.01 27.27031  

15 12 120 30 7 15 1 20 10 1000 100 3000 50 230 0.01 30.14386  

Source: This research (2020) 

In each row, the neural network 𝜃1 was trained using the new parameters of the system, 

keeping the neural network architecture and the hyperparameters used in the reference case 

unaltered. Analyzing the results obtained from the sensitivity analysis, it is found that DRL-

based policy behaves as expected.  

From the sensitivity analysis, it could be noticed that variations in 𝐶𝑠 generate impacts on 

the maintenance policy performance. Reductions on 𝐶𝑠 make the scrap storage more appealing. 

The agent can store more crushed scrap without additional cost, which helps to supply the 

production line efficiently when the shredder productivity is reduced or during the system 

shutdowns. Hence, the PM actions do not need to be taken often, reducing the downtime and 

contributing to a smaller 𝐶∞ (case 2). On the contrary, increasing the Cs makes scrap storage 

very expensive. Thus, storing less scrap becomes more advantageous. Therefore, the system is 

interrupted more frequently for PM actions, resulting in a higher 𝐶∞ (case 3). 

During the maintenance interventions, both defected and failed hammers are replaced. 

When 𝐶𝑟 is decreased, the replacement of the hammers can be intensified, avoiding drawbacks 

such as shredder productivity reduction and failures with no significant extra cost associated. 

The intensification of the hammer’s substitutions can lead to an identification of the anomalies 

in the hammer in their initial stage, bringing, even more, the benefit of the preventive strategies. 

This contributes to preventing the occurrence of failures and unmet demands, reducing the 𝐶∞ 

(case 4). In the opposite sense, when 𝐶𝑟 is increased, the better use of the component lifetime 

is more attractive because its replacement is more expensive. For that, the frequency of the PM 

halts needs to be reduced. To bear with this, more scrap should be stored. As result, 𝐶∞rises 

(case 5). 
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Variations in 𝐶𝑖 do not alter dramatically the agent behavior. As a unit cost that is taken 

into account once the system is turned off, small variations in 𝐶𝑖 are not able to make 

interventions more attractive but it impacts the expected long-term cost (cases 6-7). 

The unmet demand and the failure event are very critical for the system, promoting a high 

influence on the value of 𝐶∞. Thus, these scenarios are immensely unwanted and, consequently, 

the agent learns to refrain from them, making sure that they will not occur. Hence, fluctuation 

on 𝐶𝑙 (cases 8-9) and 𝜂3 (cases 12-13), which is strictly related to the average duration of CM 

actions, did not exert a notable effect on policy performance. 

As expected, the difference between the shredder production rate and the demand dictates 

the behavior of the agent. It means the buffer storage rate (𝑃 − 𝑑). Regarding the system, the 

higher this rate is, the faster the buffer fills and the better the production line performs. As a 

result, 𝐶∞ is lower (case 10). And the inverse occurs when this rate decreases (case 11). 

Analyzing the variation of the storage rate by assuming different values of 𝑑, when 𝑑 increases 

(case 11), filling the buffer becomes more time-consuming. Also, more scrap is required to keep 

the production line working when the system is shutdown. Besides that, a small number of 

failed hammers are necessary to reduce the shredder productivity below 𝑑. As a consequence, 

the possibility of unmet demands gets higher, and the production line performance decline. 

However, when 𝑑 decreases (case 10), filling the buffer becomes easier while there is a 

lower demand to supply. In this scenario, the agent can perform PM actions more frequently, 

which increases the reliability of the shredder, stores less scrap, and reduces storage costs, 

reducing 𝐶∞. 

Finally, reducing 𝑇𝑃 (case 14) means an enhancement of maintenance efficiency. The 

agent can inspect more often and reduces scrap stock, which provides lower 𝐶∞. But when 𝑇𝑃 

increases (case 15), the agent needs to store more scrap, increasing 𝐶∞. 

Table 6 compares the proposed DRL-based policy applied in scenario 1 with other PM 

policies along all the cases exhibited in the sensitivity analysis. The comparison was made by 

searching the optimum for each policy in all cases analyzed in Table 5. In this study, an analysis 

of 𝐶∞ is the most interesting, as it can compare the economic benefits of these competing 

policies. The far-right column in table 6 shows the expected savings with the adoption of the 

proposed DRL approach instead of the opportunistic policy, which is the policy that presented 

the best results among the analyzed PM policies.  
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Table 6 - Policies performance comparison 

 
Optimized policy 

  

 Opportunistic Policy 
Time-based 

inspection policy 

Time-based 

maintenance policy 

Proposed 

DRL-based 

policy 

Economy 

Case 
T 𝑡𝑚𝑖𝑛 𝑏𝑚𝑖𝑛 

(ton.) 

𝐶∞ 

(un./h)  

T 𝐶∞ 

(un./h)  

T 
𝐶∞ (un./h)  𝐶∞ (un./h)  %  

(h) (h) (h) (h) 

1 46.15 12.23 227.24 31.26 34.60 33.97 49.53 90.25 29.57 5.41% 

2 46.25 26.56 278.07 29.83 39.77 30.50 50.80 89.34 25.50 14.51% 

3 42.63 11.88 183.44 42.11 33.96 47.31 46.99 98.11 37.27 11.50% 

4 42.41 7.88 218.20 18.77 34.64 20.43 48.74 79.59 14.64 21.98% 

5 46.44 22.79 236.66 43.48 35.00 46.00 50.17 99.55 35.29 18.85% 

6 41.96 3.40 201.04 30.67 33.93 32.61 48.93 89.55 26.23 14.48% 

7 46.90 15.77 233.37 32.28 35.44 34.45 50.40 90.46 30.47 5.60% 

8 49.68 26.80 170.72 30.83 35.15 31.93 50.28 34.09 29.33 4.85% 

9 40.41 1.01 248.23 31.64 34.53 36.95 48.40 654.74 30.01 5.13% 

10 41.57 16.14 131.47 28.22 29.34 33.85 36.33 32.53 24.30 13.92% 

11 63.58 10.52 679.45 155.81 59.33 157.14 60.44 268.33 132.86 14.73% 

12 47.10 6.81 241.88 30.99 35.15 33.18 53.05 85.92 29.12 6.04% 

13 45.51 17.29 216.74 31.27 34.97 34.40 49.18 93.53 29.80 4.73% 

14 42.96 11.99 153.40 30.42 31.47 33.62 46.16 40.53 27.27 10.35% 

15 50.98 16.57 334.19 31.60 47.43 34.93 54.10 133.75 30.14 4.62% 

 

Source: This research (2020) 

Note that proposed DRL policy provides smaller 𝐶∞ for all cases analyzed. It outperforms 

the opportunistic policy, especially when there is variation in the replacement and storage price, 

and in the dynamic of the environment represented by the storage rate. The saving can reach 

21.98%, which is close to the maximum expected cost reduction of 25% stated by Stricker et 

al. (2018). Due to the ability of the agent to make maintenance decisions in real-time based on 

the system monitoring conditions.  

Another point is that the opportunistic policy performed better than the time-based 

inspection policy, which in turn outperformed the time-based maintenance policy in all cases 

analyzed. This can be interpreted as an evolution of the PM strategies available in the context 

of the shredder, in which the DRL approach is the most advanced. 

Regarding scenario 2, considering that the second station stoppages create some 

opportunities. The stoppages have a constant and known duration, not necessarily generating 
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unmet demand. In scenario 2, like scenario 1, an unmet demand is considered only when the 

production rate of the shredder together with the buffer content is not sufficient to fully supply 

the second demand. 

The second station stoppages, considered in scenario 2, represent events that require a 

decision for the agent. The agent must choose, according to the long-term expected reward, 

between the two options. The first is to take advantage of the stoppage to schedule a shredder 

inspection and increase system reliability. And the second is to keep the system running to 

accumulate more scrap to address the reduced productivity of shredder and shutdowns. 

Either way, the performance of the production line can be improved. This was confirmed 

through the 𝐶∞ obtained in the case study, which was 26,8591 units. / hours. This value 

represents a 9.17% reduction in comparison to the 𝐶∞ obtained in scenario 1. The improvement 

in the maintenance policy performance depends on the frequency and duration of the second 

station stoppages as demonstrated in Table 7.  

Table 7 - Sensitivity analysis DRL-based policy for scenario 2 

 

Proposed DRL-based policy for 

scenario 2 

case  𝑇𝑑 λ 𝐶∞ (un./h)  

1 12 1/168 26.8591 

2 6 1/168 27.9396 

3 18 1/168 24.1398 

4 12 1/24 19.5794 

5 12 1/336 28.6982 

Source: This research (2020) 

As expected, considering the same costs of scenario 1 and the unmet demands only 

happen when station one stops supplying station two, the longer the production line stays 

stopped, the lower the 𝐶∞ (case 2). That is because this downtime can be considered a window 

of opportunity for the agent. The longer the window, the more advantages can be taken, either 

by performing more PM actions or filling the buffer, hence the greater the savings (case 2).  On 

the other hand, the shorter the window, the performance of the model in scenario 2 approaches 

the results obtained when applied in scenario 1 (case 3).  
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Similar behavior is expected for variations in λ. For smaller values of λ (case 5), second 

station failures are less frequent. Consequently, the windows of opportunity will be scarce. On 

the opposite, the station will be stopped very often (case 4).  

Another analysis that could be done is to evaluate the performance of the proposed DRL-

based policy for scenario 2 with the results found in scenario 1. Again, the comparison between 

the scenarios assesses the 𝐶∞ for each case analyzed in Table 5. The analysis can be found in 

Table 8, where the Reduction column shows the savings in a percentage of scenario 2 when 

compared to scenario 1. 

Table 8 - Comparison between scenarios 

 Scenario 1 Scenario 2 
 

Case 𝐶∞ (un./h)  𝐶∞ (un./h)  Reduction 

 

1 29.57180 26.85914 9.17%  

2 25.50350 22.43941 12.01%  

3 37.26747 38.89481 -4.37%  

4 14.64471 14.09188 3.77%  

5 35.28628 33.98269 3.69%  

6 26.22503 23.29694 11.17%  

7 30.47137 27.55145 9.58%  

8 29.32967 26.80519 8.61%  

9 30.01399 26.88811 10.41%  

10 24.29561 22.64059 6.81%  

11 132.86285 28.67133 78.42%  

12 29.11888 26.40559 9.32%  

13 29.79620 26.86813 9.83%  

14 27.27031 26.49750 2.83%  

15 30.14386 26.91908 10.70%  

Source: This research (2020) 

An interesting point can be observed in case 3, when the storage cost is high. In this case, 

the DRL-based policy applied in scenario 1 has presented a better performance than policy 

applied in scenario 2. It happens because during the window of opportunity that emerges when 

the second station stops, either when performing a PM action or when letting the system work, 

the buffer is not required to supply any demand. Therefore, the accumulated quantity of crushed 
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scrap in the long run increases, hence the 𝐶∞ too. Except for this case, in all others, the 

maintenance model applied in scenario 2 outperforms the model of scenario 1, especially in 

case 11 where the saving reaches 78.49%. It has shown that consider scenario 2 is more 

indicated when the difference between the shredder productivity and the demand is small.  
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5 CONCLUSIONS 

With the growing availability of system data that comes from the sensors distributed 

into the modern production systems, some challenges arise in the management and control of 

the production. In maintenance management, the question to be answered is how to explore the 

system data potential to better plan the maintenance activities and enhance the availability and 

reliability of the system, at the same time reducing the maintenance cost. While the large 

amount of data represents some opportunities to improve the system performance, it creates a 

high dimension space state problem that cannot be solved with the traditional maintenance 

strategies. In this context, emerging AI and ML tools, such as DRL, have proved to be efficient 

in dealing with dynamic environment subject to uncertainties, such as a serial production line, 

and have the ability to solve problems with a high dimension that results from these types of 

environments. 

Therefore, this dissertation proposes maintenance policies that, through system 

monitoring, suggest the best time to perform PM activities to minimize the long-term 

maintenance cost rate. The context under study was a steel production line. The proposed PM 

policies focus on the shredder, machine which impacts the entire production line, and monitor 

some system conditions such as the shredder productivity, the buffer level, and the production 

line demand. A simulation model was built to simulate the system's dynamic and thus be used 

in the development of the PM policies. To assess the performance of the proposed policies and 

their behavior, comparisons were made with other maintenance policies used in the same 

context, and sensitivity analyses were carried out. 

To summarise, the proposed DRL approach outperforms all other PM policies 

available in the shredder context. It has shown cost reduction without unmet demand and failure 

event. By understanding the dynamics of the system, the proposed policy intervenes in the 

system in real-time when necessary based on their real-time states. Hence, the frequency of PM 

interventions is maximized, resulting in an increase in the equipment availability without failure 

events and unmet demands along with a reduction in cost. Besides, the proposed DRL policy 

are easy to be used, since the monitored variables are simple to be observed and tackled.  

Regarding the scenarios analyzed, in scenario 1 a DRL methodology in the shredder 

context was used and its result was compared with the already existed PM policies, using the 

same assumptions of the latter. As result, the proposed DRL-based policy has shown the best 
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performance among all evaluated policies. The reduction in the expected long-run maintenance 

cost per unit of time was up to 67.5%. Besides, other benefits have been observed. The 

availability of the shredder and the production line, which could be measured through the 

quantity of the unmet demand, was enhanced.  

About scenario 2, it aims to consider more realistic assumptions about the environment 

under study. Considering the breakdown of the production line, the agent can use this 

opportunity to either increase the system reliability by performing more PM actions or store 

more scrap to bear with shredder productivity reduction and shutdown, which helps to increase 

the system performance. 

Thus, the results found in both models validate the use of the DRL methodology in a 

real-life context, such as production lines, and the proposed opportunistic strategy that considers 

a system monitoring parameter to anticipate maintenance actions to improve the performance 

of the system. 

In conclusion, the proposed DRL approach has shown cost reduction with an increase 

in system reliability and availability. Therefore, integrating emergent tools from AI and ML 

areas, such as DRL, can help maintenance management and provide competitiveness for the 

company. 

5.1 SUGGESTIONS FOR FUTURE RESEARCH 

To deepen what was studied by this work, several ideas for future research can be 

explored. Concerning the system under study, a good point to be analyzed would be to consider 

the costs associated with the second station. In the present work, the maintenance cost and the 

unmet demand due to the stoppages at this station, which represent the remaining steel 

production processes, are not computed in the simulation model. However, to get closer to 

reality and provide more realistic results for the decision-maker, these aspects must be 

considered. Besides, considering them in addition to providing more realistic characteristics, it 

would be interesting to assess how the model would learn to intervene in the system with the 

new behavior. 

About the AI and ML tools, some points appear here. Although the DRL algorithm used 

has shown good results, there are no instructions in the literature on which ML algorithm to use 

for a particular need. Thus, testing other algorithms for the under study context and evaluating 

their performance would be interesting. Another point is to combine DRL with some ML 
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forecasting tools. The forecasting tool can be used to predict the machine's remaining useful 

life and reliability in real-time. Integrating this into the proposed PM policy can lead to better 

results. Finally, the performance of the maintenance policy is strongly influenced by the 

structure of the neural network and its hypermeters. Different combinations can be tested, 

instead of using the same for both scenarios. 
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