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ABSTRACT

Image colorization consists in, given a grayscale image, generating a plausible color
version of this image, which can be performed as a manual/artistic proces{] but also as
a computer assisted or even fully automated process. Colorization is a underconstrained
problem, which requires extra information in order to provide a unique solution. This
dissertation focuses on exemplar-based colorization methods, in which the extra informa-
tion comes from a user-selected color reference image with similar semantic content to the
target. While the user selects the reference based on content similarity, the algorithms
estimate similarity based on local descriptors of image regions. This difference in abstrac-
tion between the user and algorithm perspective can lead to the algorithms not always
being able to transfer colors between semantic corresponding elements in the image pair,
specially in images in which the mapping between content/color and local descriptors
is complex. Most exemplar-based methods in the literature display successful examples
mostly limited to simple instances, such as landscapes, animals and simple buildings.
Based on this observation, in this research we propose a new exemplar-based method
that aims at generating plausible colorizations for a wider range of image pairs, including
images of higher complexity. To that end, the proposed method features a two-stage clas-
sification scheme that uses the available features in a more consistent manner and makes
the initial color assignments more robust. It also includes an edge-aware relabeling method
that enhances the spatial coherence and mitigates the impact of the multimodality, inher-
ent to the colorization problem, over the method’s colorized outputs. In this dissertation,
we present a broad review of the colorization literature introducing a taxonomy that cat-
egorizes colorization techniques based on the source of prior information used to guide
their color assignments. The proposed method pipeline is then described in details, and
its key modules are validated through experiments. Moreover, a comparative analysis is
performed which subjects the proposed and baseline methods to different source/target
pairs to visually assess and compare their results. Experimental results indicate that the
proposed method yields colorization results that are more coherent and of higher visual
quality compared to two state-of-the-art exemplar-based colorization algorithms, both in
simple and complex image sets. The results also indicate that exemplar-based methods can
achieve results of comparable visual aspect to those of modern deep learning approaches

while allowing more user control.

Key-words: Image Colorization. Exemplar-based. Image enhancement.

1 https://www.reddit.com/r/Colorization



RESUMO

A colorizacao de imagens consiste em, dada uma imagem em tons de cinza, gerar
uma versao colorida plausivel desta imagem, o que pode ser realizado como um processo
manual /artisticd] ou (semi-)automético. A colorizagdo é um problema subdeterminado,
sendo necessaria informacao extra para a obten¢ao de uma solugao tnica. Esta dissertacao
foca em métodos de colorizacao baseados em exemplo, nos quais a informacao extra vem
de uma imagem de referéncia colorida e de contetido similar, selecionada pelo usuario.
Enquanto a escolha da referéncia é baseada em similaridade de contetdo, o algoritmo
estima similaridades baseado em descritores locais. Esta diferenga de nivel de abstracao
faz com que tais métodos nem sempre sejam capazes de transferir cores entre elementos de
semantica correspondente no par de imagens, sobretudo em imagens onde o mapeamento
entre seméntica/cores e descritores locais é complexo. A maioria dos métodos baseados
em exemplo mostram resultados bem sucedidos em sua maioria limitados a imagens de
mapeamento simples como paisagens, animais e construgoes simples. Nesta pesquisa, um
método de colorizagdo baseado em exemplos é proposto, com objetivo de criar coloriza-
¢oes plausiveis para um conjunto mais abrangente de pares de imagens de entrada do
que os métodos existentes, especialmente imagens de maior complexidade. Para alcancar
este objetivo, o método proposto conta com um mecanismo de classificacao em duas eta-
pas, que faz uso do conjunto de caracteristicas extraidas das imagens de uma maneira
mais eficiente. O método ainda inclui um mecanismo de refinamento da classificacao ini-
cial baseado nas bordas da imagem original, proporcionando maior coeréncia espacial
ao resultado e ao mesmo tempo reduzindo o impacto da multimodalidade. Nesta disser-
tacao, apresentamos uma revisao abrangente da literatura em colorizagao, introduzindo
uma taxonomia unificada que categoriza as técnicas baseada na fonte de informacao a
priori utilizada para guiar a atribuicao de cores. O método proposto é descrito em de-
talhes e seus principais componentes sdo validados experimentalmente. Além disso, uma
analise experimental é realizada submetendo a técnica proposta e algoritmos selecionados
da literatura a diferentes pares de imagens para avaliar e comparar visualmente os seus
resultados. Os experimentos indicaram que o método proposto é capaz de gerar coloriza-
¢oes que sao mais coerentes e de maior qualidade visual, em imagens simples e complexas,
quando comparado com dois algoritmos baseados em exemplo do estado da arte. Os resul-
tados obtidos também indicam que métodos baseados em exemplo sao capazes de obter,
em certas instancias, resultados comparaveis aos dos novos algoritmos de aprendizagem

profunda, enquanto permitem maior controle do usudrio sobre o resultado.

Palavras-chaves: Colorizacao de Imagens. Métodos baseados em exemplo. Melhora-

mento de imagens.

2 https://www.reddit.com/r/Colorization
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1 INTRODUCTION

It is noticeable that colored pictures, photographs and images in general are more appeal-
ing to the human observer than grayscale ones, with humans being capable of discerning
thousands of color shades and intensities while only dozens of shades of gray (GONZALEZ;
WOODS, [2012)).

Apart from the visual appeal aspect, the human response to colors also occurs in a
cognitive level. The color content of an image is partly responsible for conveying informa-
tion, being color one of the characteristics we use to recognize, describe and discriminate
objects of interest (GORDON, 2004)). Psychological studies indicate that color plays an
important role in determining the gist of a scene from a quick observation, with the test
subjects being able to classify a scene both quicker and more accurately when the scene
is shown in its original colors compared to a gray version of itself or a fake color version
(GOFFAUX et al., [2005).

The first application of image colorization came from the film industry, where black-
and-white movies were colorized in a manual artistic process since the early 1900’s.
Computer-assisted colorization was introduced by Wilson Markle in the 70s also for the
colorization of movies and was even used in images of the Apollo space program (COLOR-
ING. .., 1986)). The colorization process at that point was as simple as assigning predefined
colors to gray intensities.

In the book by Gonzalez and Woods (GONZALEZ; WOODS, 2012) there is a section
that defines pseudocolor image processing as the process of assigning colors to gray values
based on a predefined criterion. Adding pseudocolors is useful for enhancing visualization
and interpretation of images, not only in the aforementioned case of movies, where the
objective is to mimic the actual colors of the original scene, but also in applications using
different imaging equipment, where the colors are artificially generated for enhancing
visual quality and interpretation, such as in scientific and medical imagery (MARTINEZ-
ESCOBAR; FOO; WINER), 2012)), thermal sensors (GU; HE; GU, |2017)), night-vision (ZHENG;
ESSOCK, 2008), radar (SONG; XU; JIN|, 2018), infra-red (HAMAM; DORDEK; COHEN| 2012)
and others.

Although the process of computer-assisted image colorization already existed in the
form of pseudocolor image processing, this research focuses on the colorization algorithms
that do not follow a predefined mapping from gray intensities to color values.

In 2002, inspired by the image analogies framework (HERTZMANN et al) 2001) and
the color transfer technique (REINHARD et al., 2001)), Welsh et al. (WELSH; ASHIKHMIN;
MUELLER), |2002) proposed the first automatic colorization technique that does not rely
on a predefined color mapping scheme. The algorithm receives a color source image and a

grayscale target image and, based on intensity and statistical similarities between source
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and target, performs the color transfer from the former to the latter without the need of

user assistance.

0
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Figure 1 — Number of Google Scholar results for "image colorization" filtered by year.
Until April 2018.

Since the pioneer work by Welsh, an increasing number of colorization methods have
been proposed (Figure . There are some reasons that might explain this research inter-
est. The most direct one is for the practical applications such as, colorizing old movies and
photographs, automatic colorization of cartoons and mangas and also image compression
(LEE et al}, |2013). Furthermore, colorization resembles other problems in image process-
ing /computer vision in which the goal is to predict values for each pixel of the input image
using the image itself as a source of information while maintaining spatial coherence, such
as predicting albedo, shading, depth and image denoising (DESHPANDE; ROCK; FORSYTH,
2015). Due to this shared structure, ideas and solution techniques might also be shared
between them. There are still frameworks (such as (FATTAL, 2009) and (HUA et al., 2014]))
that are directly applicable to colorization and other problems like detail enhancement,
smoothing, etc. This shows that there is an intersection between colorization and other

image processing problems that might be explored to create general solutions.

1.1 THE IMAGE COLORIZATION PROBLEM

The digital representation of a color image in most color systems consists of a matrix of 3
channels, with the color of a pixel being determined by the combination of the values of
these channels. Meanwhile, a grayscale image is a single channel matrix in which each pixel
consists of its intensity level. While the transformation of a color image to its grayscale
counterpart can be as simple as computing a dot product of each color pixel with a set of
values defined by convention, a single gray value can be mapped to many tuples, therefore
the mapping between gray pixel to color pixel is not injective.

It would be straightforward to define the image colorization problem as the problem

of finding the color image that generated its grayscale counterpart. In image compression,
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approaches that utilize colorization-based coding try to accomplish this, but they do it
by saving part of the color information from the original image during the compression
and then recolorizing the image based on this saved information during the decompression
((LEE et al., 2013), (BAIG; TORRESANI, 2017)). Without extra information, the colorization
becomes underconstrained and therefore there is not a unique solution to the problem. To
cope with this solution ambiguity, the colorization algorithms require prior information
in order to generate a unique colorization result. The relationship between the prior
information and the colorization methods will be addressed in the next chapter.

Provided the prior information, in image colorization the main objective is not nec-
essarily to recover the ground truth colors of a grayscale image (which might not
even exist) but to add colors to this gray image in a coherent manner.

There are two main aspects of this coherence that need to be addressed in order for
the colorizations to seem visually plausible, in other words, for the colorized images to not
look artificial. First, the colorization result must be semantically coherent. That means
that the colors added must look realistic according to our notions of a real image, for
example, if the clear sky is portrayed in an image, we expect the colors to be bluish
(or even reddish if there is a sunset), but not green. The same idea applies to known
objects or places. Second, the result must present spatial coherence, which means that
pixel colors should be consistent with colors on the surroundings of this pixel. In the case
of video colorization, there is also temporal coherence which means that the colorized
images should be consistent with their neighbor frames, but we are not covering video in

this dissertation.

1.2 PROBLEM STATEMENT AND RESEARCH OBJECTIVES

In this research we focus on exemplar-based colorization methods. In such methods, colors
are transferred to the specified grayscale target image from a user-selected color reference
image (see Section for more details). The reference image is required to present
similar semantic content to the target grayscale, so that the algorithm can explore these
similarities to guide the color transfer process.

It was observed during the review of the exemplar-based methods ((WELSH; ASHIKHMIN;
MUELLER}, 2002)), (IRONY; COHEN-OR; LISCHINSKI, 2005)), (CHARPIAT; HOFMANN; SCHOLKOPF,
2008), (BUGEAU; TA, 2012), (GUPTA et al), 2012), (PIERRE et al.,, 2014), (LI; LAI; ROSIN,
2017)) that the reported successful results of such methods seem to be tied to simple
imagery such as natural landscapes and images of single animals or buildings. These im-
ages are considered simple instances because the mapping between region colors and local
descriptors is more straightforward in these images and therefore easier for the algorithm
to grasp.

The observation of the scope limitation of the available exemplar-based methods leads

to the question of whether it is possible to successfully apply such methods to different and
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more complex types of input images. To assess this question, we propose a new exemplar-
based colorization method, designed to handle a broader set of input image pairs than
the existing exemplar-based techniques.

In order to evaluate the effectiveness of the proposed technique in dealing with this
wider scope of images, we subject the method along with two state-of-the-art exemplar-
based methods to a selected set of input image pairs and compare the results generated
by each. The selected pairs are composed of both images considered simple and complex.
The result assessment and comparative analysis are performed through visual inspection,
observing how well the algorithms are able to transfer colors between corresponding el-
ements of reference and target, if the transferred colors observe the original structure of
the gray image, if the output presents spatial coherence, among other aspects. By visually
examining the colorization generated by the proposed method we can assess whether an
exemplar-based technique is able to successfully work around the aforementioned limita-

tions.

1.3 DISSERTATION STRUCTURE

The remaining of this document is structured as follows. In Chapter [2, a broad litera-
ture review on digital image colorization is presented. The review features a proposed
unified taxonomy that categorizes each method according to their source of semantic
prior information and presents important algorithms from each category. The chapter
ends summarizing the presented review, discussing limitations of current methods and
research trends.

With the limitations of current methods considered in Chapter [2, in Chapter [3] we
describe the proposed colorization method. Each component in the method’s pipeline is
detailed, and the motivation behind the design decisions are explained.

Then, in Chapter[4] the experimental portion of this research is covered. The evaluation
method is described and experimental results are presented to both validate the proposed
method’s design and compare the final results to state-of-the-art methods.

Finally, Chapter [5| outlines the main points throughout this dissertation, including a
summarization of the conclusions derived from the experiments. The chapter ends with

possible directions for future works.
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2 LITERATURE REVIEW

Since the pioneering work by Welsh (WELSH; ASHIKHMIN; MUELLER, 2002)), many algo-
rithms have been proposed with the intent of tackling the colorization problem. Coloriza-
tion methods in the literature can vary greatly both in terms of how they approach the
problem, with different types of input information and theoretical frameworks, and in
terms of their solution techniques.

In this chapter, we present a review of the published research in image colorization,
tracing from the early stages to the most recent works, while also making an effort to

categorize the presented methods and point out research trends.

2.1 CLASSIFICATION OF COLORIZATION TECHNIQUES

As mentioned in Chapter [T}, colorization techniques require a source of prior information
to resolve the ambiguity inherent to the problem. According to the source of prior infor-
mation, colorization techniques were originally classified in most of the literature into two
major groups: scribble-based and exemplar-based methods.

In scribble-based methods, the prior is composed of color annotations (scribbles) drawn
by the user directly onto the target grayscale image. The algorithm is then responsible
for propagating this color scribbles to the rest of the image in a coherent manner in order
to complete the colorization. On the other hand, in exemplar-based methods, the prior
comes in the form of a color image (or set of images) with similar semantic content to the
target image. The algorithm is responsible for transferring the color from the reference
(source) image to the grayscale (target) image.

Since the introduction of methods that utilize datasets of images for colorization,
the aforementioned two classes does not cover the whole spectrum of techniques. The
taxonomies presented in the current literature vary among papers, so we introduce our
own working classification in this review in order to avoid any confusion. The classification

is presented in Figure [2]

Prior source

user-provided ‘ learned
scribbles image keyword Learning-based
Scribble-based Exemplar-based Web-based

Figure 2 — Classification of colorization techniques according to the source of semantic
prior information.



15

The main classification criterion we use is the type of semantic prior information used
by the algorithm. In this context, semantic information means information related to the
interpretation of the scene (scene understanding). The semantic prior can be provided by
the user in different ways (left branch in Figure [2)) or automatically learned from data
(right branch). We classify the algorithms, as shown in the figure, according to the way
the semantic information is conveyed to them. This also happens to be a measure of the
amount of user interaction required from each algorithm category.

In the remainder of this chapter, we will cover each algorithm category by presenting

the most important research exemplars.

2.1.1 Scribble-based methods

In scribble-based methods, as previously described, the user “paints" the desired colors
directly onto portions of the target image and the algorithm then propagate the colors to
the rest of the image to complete the colorization. The process is illustrated in Figure [3]
On the left side the input gray image is shown with overlaid user scribbles, on the right

the output of the scribble-based colorization algorithm is shown.

N 1

Figure 3 — Example of Scribble-based colorization (Source: (LEVIN; LISCHINSKI; WEISS,

2004))

Since the user provides the colors directly onto the image, the semantic aspect of the
colorization (discussed in Section is handled by the user during the color casting
and placement. Also, as the input is provided manually, it requires a certain degree of
knowledge from the user about the algorithm behavior and in many cases becomes an
iterative process of drawing inputs, evaluating the colorization result and repeating until
it meets the desired goal.

In their seminal work, Levin et al. (LEVIN; LISCHINSKI; WEISS, |2004) proposed the first

scribble-based colorization method. The algorithm is based on the premise that nearby
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pixels on the image that have similar gray levels should also have similar colors. They
translate this premise into a global optimization problem that minimizes the difference
between a pixel chrominance and the weighted average of its neighbors. The optimization
variables are the pixels intensities in each chrominance channel and the weights are a
function of the difference of the pixel intensity values. The user scribbles are used as
constraints so the algorithm changes the chrominance values around the image while
also preserving the initial color assignments. Due to the nature of the cost function that
minimizes differences around neighborhoods, this method introduced the idea of spatial
coherence, which was not present in the previous works.

While Levin’s algorithm enforces similar colors for similar intensities, boundary re-
gions, which present abrupt intensity changes, tend to become blurred due to different
colors propagating and interlacing to the same area, generating color bleeding artifacts.
This usually requires extra effort from the user to carefully place scribbles around complex
boundaries. Huang et al. (HUANG et al.,; 2005) proposed an enhancement of the previous
technique by generating an edge map from the gray image and integrating this edge-map
into the color propagation step in order to avoid blurring around the edge regions.

To overcome the computational cost of the global optimization used in the color
propagation techniques, Yatziv et al. (YATZIV; SAPIRO, [2006) proposed an scribble-based
method that is solved iteratively. Each pixel is considered as a structure that contains its
gray intensity value along with a list of chrominances. The list of chrominances of each
pixel is filled iteratively by sharing colors of linked pixels in a process that resembles a
graph search. With the lists of chrominances of each pixel, the final colors are determined
by applying a color blending technique. The visual comparison shown in the paper indi-
cates that they achieve result of quality similar to their predecessor but in only a small
fraction of the time.

Another drawback of the aforementioned works is that they rely on low-level similarity
(pixels distances and intensity differences) to perform the color propagation. Therefore, in
image regions that are rich in details, these techniques require many scribbles to provide
the desired results. To overcome this issue Qu et al. (QU; WONG; HENG, 2006), Luan et al.
(LUAN et al}, 2007), and Sheng et al. (SHENG et al., 2011) designed similarity metrics that
utilize image pattern continuity to increment the low-level similarity during propagation.

Qu dealt with manga colorization, which possess many strokes and drawing techniques
(such as hatching and screening). Such techniques generate many intensity discontinuities
which would require an unmanageable amount of scribbles from the previous techniques.
The algorithm utilizes a Gabor filter bank to generate pattern/texture features and prop-
agate colors inside regions with similar patterns according to a clustering of these features.
Sheng also used Gabor filter banks for texture description in colorization. The algorithm
generates a rotational invariant feature by adapting the Gabor filter banks and then for

each pixel, it computes the interimage neighborhood which consists of the pixels neigh-
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bors in the texture feature space. The algorithm then performs color transfer/propagation
through an optimization similar to the one in (LEVIN; LISCHINSKI; WEISS, 2004) using the
more general interimage neighborhood instead of the pixel neighborhood. The technique
was applied both to drawings and natural images and also supports exemplar-based col-
orization.

Luan, on the other hand, targeted natural images, which are characterized by “rich
and inhomogeneous texture distributions” The technique is divided in two steps: color
labeling and color mapping. The user first draw scribbles in order to group similar regions
in the image. Since the technique analyzes texture similarities in a non-local fashion, the
user does not need to cover the entire image with scribbles, having only to cover a small
subset of each region of interest. The color labeling step group similar regions throughout
the whole image, it does so through the optimization of an energy-based cost function that
is composed of an intensity continuity term and a texture similarity term. For each pixel,
the weights of each cost term are determined by the smoothness of the region around the
pixel, which favors the intensity term for pixels within smooth regions and the texture
term in non-smooth regions. Then, in the mapping step, the user selects a few pixels
from each region to assign colors and the remaining pixels in each region are colorized by
linear interpolation based on their intensity levels and the color of the reference pixels. A
post-processing step applies color blending to make the color transition more natural in
boundary regions.

Balinski et al. (BALINSKY; MOHAMMAD, 2009) used a Bayesian analysis to tackle the
colorization problem. The authors decided to study the distribution of the response to
the low-pass neighborhood filter proposed in (LEVIN; LISCHINSKI; WEISS, 2004) applied
to the chrominance channels of natural images and found empirically that they belong
to a heavy-tailed non-gaussian distribution. They proceed to use the filter response as
a regularization term in the Bayesian setting which yields a generally non-convex opti-
mization problem that is the generalization of the cost proposed in (LEVIN; LISCHINSKI;
WEISS, [2004). To convexify the problem the authors opt for the L' norm and solve it
through a linear program. The results are visually similar to Levin’s when the inputs
are scribbles, but when the inputs become sparse (color pixel seeds) they produce more
vivid colors with more well defined boundaries than the L? counterpart. One drawback of
the approach is the optimization technique for the L' norm which is significantly slower

compared to least squares closed-form solution.

2.1.2 Exemplar-based methods

In exemplar-based methods, the user provides a color source image with similar content
to the gray target image as prior information. The algorithms then explore pattern sim-

ilarities between the images to transfer colors from source to target, as shown in Figure

4
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Figure 4 — Example of Exemplar-based colorization (Source: (WELSH; ASHIKHMIN;
MUELLER}, 2002))

The semantic coherence is again of user responsibility, this time through the choice
of the reference image. Since the user does not work directly onto the target image, the
approach is more automated than the scribble-based counterpart, but, the result quality
becomes limited by the availability of the source images.

To assign colors for each target pixel, the majority of the exemplar-based algorithms
make use of pixel neighborhoods, because single pixel values do not carry enough informa-
tion. Instead of using pixel neighborhoods to propagate input colors (as the algorithms in
, these methods use them to build local descriptions of the pixel for further match-

ing between source and target. These exemplar-based methods are part of the patch-based

image processing techniques (BUGEAU, 2018)). Patch-based techniques rely on the princi-

ple of self-similarity which states that natural images present some level of predictability
or redundancy within themselves (HYVARINEN; HURRL; HOYER), [2009). Exemplar-based

methods extrapolate this concept by expecting the redundancy to be present not only
within an image but also between images of similar content as well.
In the pioneer work by Welsh et al. (WELSH; ASHIKHMIN; MUELLER), [2002) a simple

exemplar-method that leverages on simple neighborhood statistics is proposed. First, the

images undergo pre-processing which consists of color space transform (RGB to Lab) and
luminance remapping, so that the luminance channels of both images become comparable.
Following the pre-processing, source sampling is performed to reduce the computational
cost of the following steps. Then, for each pixel in the target and for all samples in the
source image a feature vector of two dimensions is computed composed of the luminance
of the pixel and the standard deviation of the window centered at the pixel. For each
target pixel, the algorithm assigns the color of the source sample that is the closest in
feature space to the target. The presented results are satisfactory on very simple images,
and the authors claim that the method works well on scenes where the images are divided
into luminance clusters or have distinct textures.The authors also propose a workaround
for more difficult scenes by asking the user to place rectangles (called swatches) in both
source and target to confine the color transfer to the pixels that belong to the swatches and
then transferring for the remaining of the target based on the already colorized swatches.

One of the main drawback of Welsh’s work is that it uses a greedy approach to col-

orize each pixel with its nearest neighbor in feature space and therefore does not encourage
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spatial coherence in the target image. Irony et al. (IRONY; COHEN-OR; LISCHINSKI, 2005)
took advantage of scribble-based techniques’ strengths to enforce spatial coherence in
an exemplar-based framework. The premise of their work is that good pixel/neighbor-
hood matches between two images are not enough for a successful colorization, because
matching images might come from different contexts and therefore possess different colors.
Instead of relying only on low level information such as intensity and neighborhood statis-
tics, the algorithm requires a partially segmented source image as input. The algorithm
extracts local features using a windowed dct and performs custom-tailored dimensionality
reduction to generate a low-dimensional space where it performs a classification of each
target pixel to one of the source segmented regions. To enforce spatial coherence, the
method includes an image space voting technique that assigns confidence levels to the
labeling of pixels based on its accordance with neighborhood labels. Finally it transfer
colors to pixels based on a weighted average of predictions from the pixel neighborhood,
but instead of assigning the pixel colors directly, it assigns only for those with high confi-
dence and uses them as input micro-scribbles to colorize with the algorithm from (LEVIN;
LISCHINSKI; WEISS, [2004)).

In (CHARPIAT; HOFMANN; SCHOLKOPF, [2008) the authors state that choosing colors
based solely on the local description of pixels is prone to error because different color
regions might present similar local description (multimodality) in a source image. Instead
of deciding pixel colors at the local level, their model first estimates the probabilities of
each color for each pixel and then performs the color decisions in a global level based on
these probabilities. The algorithm first discretizes the source image color space, creating
classes to represent color ranges, favoring regions with more density of observations. It
also generates a local descriptor for each pixel composed of dense surf, intensity value,
and windowed standard deviation and Laplacian. Then, based on the observations (pixels)
from the color source, it computes for each pixel an estimate of the conditional probability
distribution of color given descriptor using Parzen windows. The prior distribution of
descriptors is also computed based on the observations. For the final color assignment,
it applies graph-cuts to optimize an energy cost that maximizes the posterior of the
aforementioned probabilities with a dedicated term for spatial coherence.

Gupta et al. (GUPTA et al., 2012)) explored superpixel resolution to speed up a complex
colorization pipeline and encourage spatial coherence. In the first step, both source and
target images are segmented into superpixels through a geometric-flow based algorithm.
Then each superpixel is assigned a feature vector containing average intensity, standard
deviation, Gabor and surf features. To reduce computational cost, the feature matching is
computed in a cascade fashion that iteratively prunes the search space using each feature
separately and then the final matching utilizes the whole set of features to transfer color to
the pixel at the center of each superpixel (micro-scribbles) from their corresponding near-

est neighbors. The color of the remaining pixels are obtained using (LEVIN; LISCHINSKI;
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WEISS, 2004) to propagate the assigned micro-scribbles (such as in (IRONY; COHEN-OR;
LISCHINSKI, 2005))). The final step consists of a color reassignment that segments the im-
age once again, in a coarser scale, and analyzes the clustering of superpixel colors within
each new segment. It considers that dense clusters represent high confidence color as-
signments and performs color reassignment otherwise. Visual comparisons indicate that
this algorithm outperforms (WELSH; ASHIKHMIN; MUELLER,, 2002), (IRONY; COHEN-OR;
LISCHINSKI, 2005) and (CHARPIAT; HOFMANN; SCHOLKOPF, 2008) with a considerable
improvement over them in the presented scenes.

In a series of works, Bugeau and Pierre et al. applied the primal-dual algorithm (CHAM-
BOLLE; POCK, 2011)) to solve the colorization problem in a variational framework (POPURI,
2010). In (BUGEAU; TA| 2012), the authors start by extracting local features from each
pixel in the image (variance, amplitude spectrum of dft and luminance histogram were
used). For each feature a simple distance is designed, and the combination of these dis-
tances generates a metric in feature space. This metric is used to select, for each pixel,
a group of source candidates (closest in feature space) and then the median of the can-
didates chrominance is used for color transfer. As the chrominance candidates set is two
dimensional, the median of the set is defined as the element that is projected to the median
of the first component of the pca of the set. To enforce spatial coherence a post processing
step is proposed with an optimization based on tv regularization. Then, in (BUGEAU; TA;
PAPADAKIS, 2014) the proposed method utilizes the same feature extraction and candi-
date selection steps, but the color selection and tv regularization are performed in a single
optimization which makes the process more reliable since the coherence constraints are
enforced during the color assignment itself. The results in both papers show good level of
spatial coherence, but the generated color images seem washed-out presenting desaturat-
ed/bland colors. These bland colors seem to be a byproduct of the regularization which
leads to a tradeoff between spatial coherence and color diversity. In (PIERRE et al., |2014])
the authors suggest that better color consistency can be achieved by working directly in
the RGB color space as opposed to the vast majority of the related research. The au-
thors formulate an optimization problem over the RGB space and therefore colors are
assigned directly onto the three RGB channels. The algorithm presented an improvement
over (BUGEAU; TA; PAPADAKIS, 2014) and provide better visual results than (WELSH;
ASHIKHMIN; MUELLER], 2002), (IRONY; COHEN-OR; LISCHINSKI, 2005) and (CHARPIAT;
HOFMANN; SCHOLKOPF), |2008)) in the presented images. But in comparison with (GUPTA
et al) 2012)), Gupta’s work still presented more vivid and overall better colorizations. Fi-
nally in (PIERRE et al}, 2015)) the authors design a model that couples the channels in the
YUV color space and provide an optimization algorithm with proof of convergence. The
model supports the use of different priors (examples and scribbles) and works particularly
well with images that present thin structures outperforming (GUPTA et al., 2012) in this

regard.
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More recently, Li et al. (LI; LAT; ROSIN, 2017)) focused on local feature selection to
enhance colorization results. The paper proposes an automatic feature selection method
that uses intensity features for uniform regions and texture features for regions considered
non-uniform. One of the main contributions is the automatic classification of image regions
(superpixels) that first estimates the probability of each region belonging to one of the
two classes using a Bayesian inference scheme and then solving the classification problem
through the optimization of a mrf cost function. The cost considers not only the isolated
probability of a superpixel belonging to a certain class, but also the interactions with
the superpixel’s neighborhood labels to enforce spatial coherence. To further guarantee
consistency, the image is segmented into superpixels in a coarser scale and region labels are
reassigned according to majority voting. The same author went in a different direction
in (LI et al., 2017)), posing the colorization as a dictionary-based sparse representation
problem. The images are first segmented into superpixels and each superpixel has a feature
vector assigned to it that combines low (intensity related), mid (DAISY descriptor) and
high level (saliency detection) features. The set of features of the reference image is used
as the dictionary and the chrominance transfer becomes an instance of sparse matching.
The authors also include a locality consistent regularization term in the cost that favor
target superpixels that are close both in feature and image space to have similar dictionary

representations, hence promoting spatial coherence during the matching itself.

2.1.3 Web-based methods

Web-based methods are similar to exemplar-based methods in the sense that they also use
example images to perform the colorization. But, instead of relying on images provided
directly by the user, the web-based methods leverage on the large amount of images
available on the internet to reduce user interaction. The user provides an input to an
internet search (usually a keyword) and the system chooses among the set of results
the ones that are adequate to be source images for the target at hand. The semantic
information provided by the user is the search input and there is no need for image
selection, therefore, this class of algorithms are more independent than the previous, but
at the same time, the step of source selection/filtering can be quite expensive.

In (LIU et al., 2008)) the authors propose a system that works very well with images of
famous monuments and places or rigid structures/buildings. They focus on how to solve
the illumination inconsistency between source and target that might occur when multiple
shots of a same scene are taken under different conditions. To achieve a colorization that
is invariant to illumination changes, the authors use multiple internet images to generate
what they call the intrinsic reflectance image. The set of images from the search results
are registered to the target by matching sift features and, depending on the matching
error, the registration is carried via global alignment or triangle-based warping. From the

set of registered images it is possible to perform illumination /reflectance decompositions
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(for color and gray versions) and therefore generate illumination-independent images. The
color transfer is performed directly from color reflectance to target reflectance on pixels
with small registration errors and used as color seeds (micro-scribbles) to the algorithm in
(LEVIN; LISCHINSKI; WEISS, [2004)). Due to the robustness provided by the multiple images,
the algorithm outperforms other exemplar-based methods in scenes of famous locations,
but, due to the requirement of registered versions of the same image, it should only work
in these scenarios.

Morimoto et al. (MORIMOTO; TAGUCHI; NAEMURA| 2009) utilizes a very large scale
search to provide an entirely automatic colorization approach. Their approach is different
in the sense that it does not utilize any source from the user, instead it gathers a very
large set of images (1 million) from the web and filters to 100 results based on global
image descriptors (ssd of the gist scene descriptors). Based on the filtered results, the
algorithm produces multiple colorized images utilizing an algorithm very similar to Welsh’s
to produce each individual result. The algorithm seems very dependent upon the gist
matching and considerably expensive to compute in such a high volume of images, while
only presenting a single result.

Chia et al. (CHIA et all |2011) proposed a system that generates multiple candidate
colorizations for a given target. First, the algorithm requires the user input which consists
in the target image with segmentation of important foreground objects and semantic labels
for each segmented object. The first step of the algorithm consists of downloading a set of
images from the internet for each foreground object (approximately 30 thousand) using the
provided labels and then utilizing saliency detection to obtain the foreground elements
from each search results. It then applies contour consistency to filter objects from the
search according to shape similarity compared to the target objects. For object selection,
the foreground objects undergo feature extraction utilizing intensity, Gabor wavelets and
sift features and the background are compared in terms of their gist descriptors. The best
internet references are used to provide diverse colorization possibilities for the foreground
objects. Color assignment is carried in superpixel level through global optimization of an
energy function that accounts both the distance in feature space and the smoothness of the
colorization result using the belief propagation framework. The results are compared to
(WELSH; ASHIKHMIN; MUELLER, 2002), (CHARPIAT; HOFMANN; SCHOLKOPF, 2008) and
(TAL JIA; TANG, [2005) and show more convincing colorizations confirmed by a user study
with the results being labeled as real in up to around 66% of cases. The downsides are the
need of object segmentation and, although not discussed in the paper, there is probably
a high computational cost involved.

Wang et al. (WANG et al), 2012)) proposed a system for affective image colorization in
which the user provides an affective word that is used for the selection of color themes
based on art theories. Initially, the target image is semi-automatically segmented by a

graph-cut technique and, such as in (CHIA et al}, 2011), the user provides labels for fore-
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ground objects and the results are filtered according to saliency detection and contour
consistency. Color themes are mapped to affective words through a coordinate system us-
ing the lasso regression framework (O’DONOVAN; AGARWALA; HERTZMANN, [2011)). Then
an energy-based optimization cost is designed to select the best reference object for each
target object according to both the consistency with the target and consistency with the
given emotion defined by the word. After source selection, the color transfer is performed

as another energy-based optimization.

2.1.4 Learning-based methods

The last class of methods are the learning-based in which the user provides the colorization
model with a dataset of color images for training. Once the model is trained, it is capable
of colorizing a previously unseen image, in most cases without requiring any additional
information. Although the web-based methods also utilize large sets of data, in learning-
based methods the whole set of inputs is used to perform an offline, one time training
step, in contrast to web-based which perform a new web search plus filtering for every
new input image.

But, the main difference that sets this class of methods apart from the aforementioned
classes is that the semantic information does not come from the user, which allows the
methods to be completely automatic.

In (CHENG; YANG; SHENG), [2015)), Cheng et al. proposed the first deep learning al-
gorithm for image colorization. The authors argue that high-level understanding of an
image can be useful to perform low-level vision tasks therefore they propose a feature
descriptor that includes semantics into the colorization. The approach utilizes a deep
neural network that takes as input feature vectors and output the chrominance values (in
YUV color space) for each pixel. The feature vector structure is composed of three parts:
low-level (intensity window around pixel), medium-level (DAISY descriptor), high-level
(semantic label obtained by a scene parsing algorithm). During the training stage, training
pairs composed of the feature vector and the chrominance of a pixel are fed to the network
that utilizes a least squares regression framework that compares predicted chrominance
output with the ground-truth. After the training stage is completed, the feature vectors of
each target pixel can be fed to the network which in turn outputs the initial chrominance
values. The initial chrominance values are refined by applying a joint bilateral filtering to
remove artifacts and guarantee spatial coherence. The results shown in the paper, even
for training on a relatively small set (around 2.7k images), indicate that the algorithm is
able to outperform the state of the art algorithm from Gupta et al. (GUPTA et all 2012])
both visually and in terms of target image psnr, at least in the chosen set of examples.

Although (CHENG; YANG; SHENG, 2015) features a learning-based approach, it still
works with a small training set that does not contemplate a diverse set of scenes. In the
concurrent works presented in (IIZUKA; SIMO-SERRA; ISHIKAWA| 2016)), (LARSSON; MAIRE;
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SHAKHNAROVICH, 2016) and (ZHANG; ISOLA; EFROS, [2016), the authors make use of cnn
and manage to scale the training to the order of millions of images.

In (TIZUKA; SIMO-SERRA; ISHIKAWA, [2016)), Tizuka et al. utilized a cnn that combines
both local information obtained from image patches with global priors obtained from the
image as a whole. Although they also consider the features as blocks of low, medium and
high level, unlike the work in (CHENG; YANG; SHENG) 2015)), there are no hand-crafted fea-
ture descriptors. The network weights themselves are interpreted as a volume of features,
as if each layer of the network sees a filtered version of the image. The proposed architec-
ture contains two branches, one for obtaining the global level features and other to fuse
this global information with the remaining features and then generating the output. The
high level (global) features act as semantic priors that indicate the type of image (indoor
vs. outdoor, day vs. night, etc.) so that the local features chooses colors more appropriate
to the scene being colorized. The training is performed using the back-propagation algo-
rithm with a simple mse cost function. To improve the final results, the authors train a
small scene classification network jointly with the full colorization network, the errors of
the classification net are backpropagated to the global features network to help guiding its
optimization. After training on a dataset of about 2.5 million images, the algorithm is able
to colorize (in less than a second) a very diverse set of images, including even indoor im-
ages, images containing people and legacy grayscale images which were not much explored
in previous works. In the user study, the output of the model is considered “natural” by
the user in more than 90% of the images.

Larsson et al. (LARSSON; MAIRE; SHAKHNAROVICH, 2016) proposed another fully au-
tomatic system with two design considerations in mind: the need to include semantic
information in the pipeline and the need to model the multimodality. To tackle the mul-
timodality, instead of designing a loss function based on color differences, the authors
estimate color distributions for each pixel (such as the idea in (CHARPIAT; HOFMANN;
SCHOLKOPF, 2008))) and utilize a kl loss function to compare the estimated distribution
against the ground-truth, which consists of the distribution of the window around the
pixel. To generate the final color from the histogram predictions, the authors propose
different inference mechanisms and state that for the Lab color space the best qualitative
and quantitative results are achieved through computing expectations weighted by the
histogram values. The authors propose a benchmark for future research using learning-
based methods. It is composed of 10k images from the ImageNet dataset (DENG et al.,
2009)) with a balanced representation for the set categories and evaluation through rmse
and psnr.

Zhang et al. (ZHANG; ISOLA; EFROS, 2016|) proposed a system that focuses on achiev-
ing colorizations that are visually plausible but at the same time present diverse and
vivid colors. The authors argue that the colorizations from previous learning-based works

look desaturated because of their use of standard L? regression loss functions that lead to
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conservative predictions (as pointed out in (CHARPIAT; HOFMANN; SCHOLKOPF, 2008))),
so, in order to produce more vivid colorizations, the authors propose a classification loss
that compares color probabilities using cross entropy. The authors presented empirical
evidence that the distribution of colors in natural images is highly biased towards de-
saturated colors and so they proposed a class rebalancing scheme to encourage colorful
colorizations. After training on over a million images, the authors performed a large scale
user study using the Amazon Mechanical Turk and show that the method is able to fool
humans in a Turing-like test on 32% of trials.

Deshpande et al. (DESHPANDE et al), [2016]) also targeted the multimodality of col-
orization but with the intent of creating multiple coherent colorizations for the same gray
image. The authors propose to learn the conditional distribution of chrominances given
a gray image so sampling this distribution would allow to obtain different colorizations.
Given the large amount of combinations of colors and images the distribution becomes
too scattered and therefore it is necessary to find a low dimensional representation of
the chrominance space. The authors propose the use of vae to obtain a smooth low-
dimensional (encoded) representation of the chrominance span and an efficient decoder
that generates a plausible colorization for any given point in this low-dimensional space.
The decoder loss function is designed to enforce spatial and semantic coherence as well as
colorfulness as in (ZHANG; ISOLA; EFROS| 2016). To model the conditional probability of
an element of the low-dimensional subspace given the gray image, the system uses a mdn
since it allows for the output vector to take many values given the same image, providing
the desired diversity. The results show that the algorithm is able to produce multiple
plausible results which might be useful to present options for posterior user evaluation.

Zhang and Zhu et al. (ZHANG et al., [2017) proposed a deep learning approach for user
guided colorization where the system takes as input from the user sparse color annotations
over the target image and generates a complete colorization. Unlike the propagation algo-
rithms discussed in Section [2.1.1] this system end-to-end learns the mapping between gray
image plus color seeds to fully colorized images without relying on hand-crafted rules for
the propagation. Since the user is able to directly resolve the color ambiguities by placing
the color seeds, the system does not need to account for multimodality and therefore a
simple regression loss is applied, the authors choose the L' norm. To be able to generate a
large scale training (over a million images) without requiring user provided color seeds for
these many images, the authors simulate user inputs by sampling the original color image
and providing the sampled colors as seeds. To evaluate the propagation of samples, the
authors utilize the psnr and show that for a few seeds the algorithm outperforms (LEVIN;
LISCHINSKI; WEISS, 2004), but once the number of seeds grows to a few hundreds both
algorithms perform the same which indicates that as the number of seeds grow the mid
to high level information learned by the model becomes less important and the low-level

optimization from (LEVIN; LISCHINSKI; WEISS, 2004) becomes enough to solve the prob-
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lem. The system is equipped with an user interface that provides color suggestions in real
time and it is reported that users are able to produce realistic colorizations in less than a

minute.

2.2 DISCUSSION

In the early colorization methods, we notice a trade-off between the quality of results
and the amount of user input required by the algorithms. Scribble-based techniques
demonstrated more potential to generate the most realistic colorizations compared to
the exemplar-based methods provided that the user has knowledge about the process and
iterate until achieving the desired results. However, the more automatic approaches are
interesting due to their potential to create results with less user effort and for a deeper
understanding of the problem intricacies, which can be translated to similar problems.

It seems that the main research interest in the subject headed towards more automatic
data driven approaches, a phenomenon we can observe also in many other computer vision
research topics as well. Initially with the web-based approaches that leveraged on the easy
access to large set of images on the web, to the current state-of-the-art learning-based
methods that take advantage of the high computational power and large image datasets
available to train their cnns. cnns in particular seem to be the current research focus,
specially because for the colorization setting, they require little to no data pre-processing
while allowing for fully automatic algorithms that do not require hand-crafted filters or
descriptors.

The presented literature review indicated that semantic prior information is key for
colorization. In scribble-based methods, since the user is responsible for providing colors
directly onto the target, the algorithms can rely solely on low level image features (such
as intensity and simple statistics) to propagate the user scribbles. On the other hand, for
the remaining classes, the color information comes from example images and therefore the
most robust algorithms seem to be the ones that are able to extract and integrate image
features of different levels. The learning-based methods for example have no user-provided
semantic information and therefore need to extract high level information during training
in order to present convincing results. Some learning methods even include a dedicated
network to extract high level information to pass to the colorization main network. The
capacity of extracting high level information allows for successful colorization instances in
complex scenery including artificial objects, buildings and people. The surveyed exemplar-
based algorithms on the other hand, do not incorporate high level information into their
pipelines. Since the user selects reference images based on content similarity and the
algorithm measure similarities based on local descriptors of low to medium level, the
algorithms might not be able to transfer colors correctly between elements of similar

content if the intensity and texture information is not enough to discriminate these image
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elements. This might be one of the reasons for the results presented by these algorithms
being mostly on simple images such as nature landscapes and animals.

Regarding the multimodality, since similar local descriptions of pixels might come
from regions of different semantics and colors, the correct matching of the local descrip-
tors in exemplar-based methods is not enough for an accurate color assignment. This
issue might go unnoticed if the selected input pair does not possess distinct regions with
similar descriptions, but otherwise, color assignments based solely on local decisions are
prone to errors. Since learning-based methods need solutions that scale for large datasets
with images of different characteristics, explicit treatment of the multimodality is required
and was included in the most successful methods. However, even though the multimodal-
ity issue was initially presented in an exemplar-based framework (CHARPIAT; HOFMANN;
SCHOLKOPF, 2008]), the later representatives of this class did not directly targeted this
issue in their pipeline, relying on color post-processing to rectify initial errors. This might
be another reason for most of the favorable results of the surveyed exemplar-based algo-
rithms to be on simple images.

As for result evaluation of image colorization methods, since the colorization objective
consists of generating a plausible color version of a grayscale image and not necessarily
recover original colors, comparisons with ground-truth most often not considered. For the
majority of works in the literature, the evaluation is performed through visual inspection.
The visual evaluation allows to assess the result images coherence and overall quality,
however, it is a subjective criterion that depends on the observer’s judgment. To enhance
the results analysis, some works in the literature elaborate user studies which consists
in visual inspection performed by a group of users with the intent of deriving statistics,
making the result less subjective.

Based on the observation of the limitation of the available exemplar-based meth-
ods and its possible causes discussed in this section, in the next chapter we propose a
new exemplar-based technique. This technique aims at generating plausible results for a
broader set of input images by designing modules that deal with the limitation of local

descriptor representations.

2.2.1 Exemplar-based methods and Scene Complexity

Exemplar-based methods are characterized by transferring color from an user-selected
color reference image (source) to the target gray image. The algorithms compute local
descriptors for each pixel on both source and target images and then based on distances
between the source and target descriptors transfers colors from the former to the latter.

While the algorithms utilize local descriptors to establish relationships between
source and target elements, the user selects the reference based on semantic content
similarity. This difference in how the user and the algorithm perceive the image similar-

ities can lead to unexpected results.
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First, if the elements of similar semantics from source and target generate dissimilar
local descriptions, it is hard for the algorithm to correctly associate the corresponding
elements of these images. We call this the semantic multirepresentability issue. Second, if
elements of similar local descriptors in the source image possess distinct colors, even if the
algorithm is able to correctly match target to source descriptors, the color assignments will
be misguided. This phenomenon was already observed (IRONY; COHEN-OR; LISCHINSKI,
2005) and defined as the multimodality effect (CHARPIAT; HOFMANN; SCHOLKOPF, 2008).
Therefore, our notion of complexity of an input pair is related to the disposition of the
image elements (pixels/superpixels) in the descriptor space.

Visual characteristics of the images in the input pairs may trigger the aforementioned
issues or present other challenges to colorization algorithms. For instance, low resolution
or blur in the images can cause the local descriptors to not be able to create distinctive
representations and therefore can cause both of the above issues. Color imbalances in the
source can introduce bias in the target color assignments while too many colors in the
source can make the descriptor space too cluttered.

To be able to create plausible colorization for more complex input pairs, the method
must include robustness elements that account for the possibility of local classification/-

color assignment errors due to local descriptor limitations.



29

3 PROPOSED METHOD

As discussed in Section [2.2] most exemplar-based methods in the literature seem to have
their successful colorizations limited to simple input images, such as natural landscapes
and animals. These images are considered simple because they are usually divided into
regions of distinct textures and these regions usually possess different color tones. The
presence of these clearly distinguishable regions causes the mapping between colors and
local descriptions of pixels to be easier for the algorithm to establish.

With that in mind, we propose an exemplar-based method that aims at generating
plausible colorizations for a broader set of input images. The method works at superpixel
level which enhance the coherence of mappings, and combines different features to create
a descriptor space in which metrics are more distinctive. It also introduces a two-stage
classification which improves the accuracy of target superpixels color labeling, and an
edge-aware relabeling scheme that enforces spatial coherence while respecting the original
image structure.

The remaining of this chapter is organized as follows. In Section [2.2.1], we explain the
complexities faced by the exemplar-based methods in general. Then in Section we
present our method pipeline, describing each of its modules in details. Finally Section

presents some afterthoughts on the implementation of the method.

3.1 METHOD PIPELINE

Figure [5[shows a simplified abstraction of the proposed method’s pipeline. In the following

subsections, we detail each step in this pipeline.

3.1.1 Image Preprocessing

The method starts with a preprocessing stage that prepares the input images to the fol-
lowing stages of the algorithm. The preprocessing consists of a color space transformation
and a histogram manipulation step.

In exemplar-based colorization, the methods rely on transferring only the color infor-
mation from the source image to combine with an already existing luminance channel at
the target image. Therefore, the source image should be transformed to a color space in
which intensity and color (chrominance) information are decorrelated so the algorithm
can perform the transfer operations in the chrominance channels without affecting the in-
tensities. In (REINHARD; CUNNINGHAM; POULI, 2013), the Lab color space presented the
smallest channels covariances amongst the surveyed spaces, and therefore it is a suitable
choice for the proposed method. The proposed algorithm then starts by transforming the

input source image from the conventional RGB representation to the Lab color space.
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The following stages of the method rely on comparing intensity values from both
images, therefore their intensity distributions need to be somewhat similar. As stated in
(HERTZMANN et al, |2001)), the use of histogram matching (GONZALEZ; WOODS, [2012)) to
match the target image histogram to the source causes undesirable effects over the target.
Therefore, the proposed method utilizes the simple linear mapping from (HERTZMANN et
all 2001) which manipulates the intensity levels of the target image so that mean and
variances of its distributions match the source.

After going through this preconditioning stage, the images have comparable intensities,

which allows for consistent comparisons in the following stages.

3.1.2 Superpixel Segmentation

Superpixel segmentation is a technique that oversegments an image into non-overlapping
structures called superpizels. These superpixels are groups of contiguous image pixels
that share similar characteristics, which in our application are intensity values. The idea
of superpixel segmentation was introduced in (REN; MALIK, 2003)) as a preprocessing step
for image segmentation in a split-and-merge framework.

Due to its characteristics, the use of superpixel segmentation fits well in the colorization
task. First, the superpixels can speed-up the algorithm since it reduces the number of
elements for the subsequent algorithm steps, particularly for the computation of the metric
space which involves computing pairwise distances between these elements. The exemplar-
based algorithms that do not use superpixels rely on random sampling of source pixels
to be able to execute in reasonable time. Beyond the performance aspect, there is also a
quality improvement to superpixels. Since they group similar pixels into regions, the use
of superpixels in itself enforces spatial coherence on the colorization result.

Figure [0] shows the result of performing superpixel segmentation using the turbopizels
algorithm (LEVINSHTEIN et al), |2009), which is the algorithm featured in the method
pipeline as well as in other exemplar-based techniques ((GUPTA et all 2012), (LI; LA
ROSIN, 2017)), (LI et al., |2017))). This algorithm tries to generate superpixels that preserve
the original image structure while maintaining similar size and shape.

After segmenting both source and target images into superpixels, the subsequent steps
in the pipeline are carried at superpixel level. One disadvantage of using superpixel seg-
mentation is the necessity of adapting subsequent steps in the pipeline that were originally

designed for pixel granularity.

3.1.3 Color Clustering and Source Labeling

The proposed method is based on statistical classification, therefore, each target super-
pixel, instead of being matched to its closest source superpixel, will be classified into one

of the available color classes. Therefore, the method starts by generating this set of classes.
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Figure 6 — Example of superpixel segmentation with around 3000 superpixels.

In (TRONY; COHEN-OR; LISCHINSKI, 2005) the authors also used a classification frame-

work in which the classes are defined by requiring the user to provide a partially segmented
source image, in which each segment is roughly uniform in color and texture. To reduce
the need of user interaction, in this work we opt for a straightforward automatic source
label assignment similar to (CHARPIAT; HOFMANN; SCHOLKOPF, [2008)).

Initially, the source image pixels are clustered according to their chrominance values

(ab channels of the Lab image) using the k-means algorithm, so that each pixel receives
a cluster label. After assigning a label to each pixel through clustering, the label of each
superpixel is defined as the mode of the labels within the superpixel. Since the superpixel
segmentation has structure awareness, usually the pixels contained within a superpixel
share the same label and the mode frequently represents the vast majority if not the full
set.

Figure [7] illustrates the label assignment described above. Each pixel in color image
on the left is divided between four clusters based on their chrominance generating the
middle image. Then the mode is applied in each superpixel to generate the superpixel
labels (right side image). The superpixel labels are the output of this stage, as illustrated
in Figure

3.1.4 Feature Extraction and Superpixel Descriptors

Exemplar-based methods in general rely on local descriptor similarities to transfer colors,
so, the choice of the features that compose the final descriptor plays an important role in
the colorization. As the user selects the reference image based on semantic content, ideally
the features would be able to translate different semantics into distinct descriptors so the
algorithm would be able to match elements by semantic content. Since semantics-based

instance segmentation is far from a closed problem, the algorithms rely on simpler local
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Figure 7 — Color image (left), initially clustered by chrominance at pixel level (middle)
and final superpixel labels assigned by pixel label mode (right).

descriptors to compute pixel /superpixel similarities.

The review carried in Chapter 2)indicated that feature extraction for image colorization
is not a consensus with authors exploring different combinations of features including: raw
pixel values and statistics, dct, dft spectrum amplitude, Gabor filter banks, dense sift /surf,
Ibp, and others. To use these well known features in the context of colorization, which
requires that each pixel receives its own description, features that were originally designed
for keypoints (such as sift) should be computed for each pixel instead (dense), while the
ones that were originally global (e.g. dft), should be computed in patches around each
pixel. The design of feature extraction at superpixel level requires further considerations.

In designing our feature set from the features presented in the literature, we tried to
create a concise set in which each feature complements the others while trying to encom-

pass information of low, medium and high level. The proposed feature set is composed
of:

o Intensity: Raw pixel values from the gray images.

Image Gradient: hog from gray images.

Gabor filters: Feature volume generated by the responses of the gray images to
a filter bank composed of Gabor filters of varying orientations and scales
FARROKHNIA, 1991]).

Dense SIFT: The dense version of the scale-invariant feature transform (LOWE

2004).

« Saliency map: Saliency likelihood of each superpixel in the image (YANG et al., [2013)).

Raw pixel values are the most straightforward description of pixels. Since isolated
pixels do not carry enough information, intensity-based features are built from statistics
(mean, standard deviation) over patches centered on each pixel. Since we work at su-

perpixel level, we adapt the intensity-based features to use the superpixel region itself
instead of a generic rectangular window around pixels, such as in 2017). Our
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Figure 8 — Real part of the Gabor filter functions with varying wavelenghts (rows) and
orientations (columns).

intensity-based superpixel feature is composed of the mean and standard deviation of the
pixel values within the superpixel as well as a normalized histogram of these values.

Besides considering the intensity levels, it might be useful to examine the local changes
in these intensity values using the image gradient. Since an image is a discrete-valued func-
tion, the image gradient might be estimated using finite difference operators along the
image coordinates. The gradient-based superpixel feature proposed in this work estimates
the consonance in the directions of gradient vectors within a superpixel, based on the
premise that similar regions should have similar gradient patterns. The algorithm com-
putes the hog for each superpixel and then the ratio of the number of directions in the
largest bin from the total. This quantity varies from 1/nBins, if directions are uniformly
distributed to 1, if vectors share the same directions within the superpixel. In order to be
rotation invariant, the ratio considers the direction distribution, not the actual direction
values.

After analyzing intensity and its local variations, the next feature considers patterns
of local repetitions in the images, called tertures in image processing literature. These
patterns might be identified through the images responses to periodical functions, which
leads to the use of spectral features. Since textures occur in regions of the image, the fea-
ture must be able to analyze frequency content throughout the whole image providing re-
sponses in a local level. Gabor filters are designed for that specific task. A two-dimensional
Gabor function is composed of a Gaussian envelope, which provides the desired locality,
modulated by a sinusoidal plane wave of some frequency and orientation, which provides
the frequency content analysis. The feature is built from the image responses to a filter
bank (Figure [§)) composed of Gabor filters of varying scales (frequencies) and orientations.
The response generates a volume in which each depth layer contains the response to each
filter. The superpixel feature consists of the vector generated by taking the mean of Ga-
bor vectors from pixels within the same superpixel. For more details on space-frequency
analysis in image processing, see (HYVARINEN; HURRIL; HOYER), 2009)

The sift feature is included because of its strong description capability. The sift presents

characteristics that makes it view-invariant and these properties might be useful for the
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Figure 9 — Saliency map generated for the castle image.

colorization, specially when there are matching objects in the image pair. The algorithm
utilizes the mean of the dense descriptor vectors within each superpixel to form the
superpixel descriptor, as we did with the Gabor feature

The last feature of the set is based on saliency maps. Saliency detection aims at
identifying the most important and informative parts of a scene. The premise we follow
is that salient foreground objects from the source image are probably good references
for foreground elements on the target, so the proposed technique includes these saliency
maps with the intent of mimicking a semantic-based high-level feature. Saliency detection
was successfully applied as high level feature for colorization in a recent exemplar-based
method (LI; LAT; ROSIN, [2017). The saliency map is built by assigning a saliency likelihood
to each superpixel in both images, using the algorithm in (YANG et al, 2013) (as shown
in Figure E[) which was the same used in the colorization method (LI; LAT; ROSIN, [2017)).

After computing all the features, the local descriptor of each superpixel is formed as an
heterogeneous vector composed of the concatenation of all these features. The distances
between these vectors are used in the following stage to determine target superpixel

neighborhoods and then assign classes to them.

3.1.5 Target Classification

The previous section described how to compute local descriptors for each superpixel from
both source and target images. The distances between these descriptors (source and tar-
get) should be used as a similarity measure for the upcoming color transfer. The proposed
method relies on statistical classification as an intermediate step before color transfer, in
which first we transfer labels from source to target and then, these labels are used to
guide the color assignments.

We decided to avoid direct one-to-one matching because it does not provide robustness
to possible noise in the feature space. By noise in this context, we mean the presence of
descriptors with labels/colors in disagreement with its neighbors in feature space, which

is not uncommon, specially due to the multimodality. We expect the method to initially
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reduce the effect of noise by the use of majority voting based classification.

The classification scheme proposed in this work is performed as a two-step process
that initially transfer labels from source to target and then refines the label assignments
within the target based on self similarity. The proposed scheme tries to incorporate the
most from the available information, including both descriptor distances (3.1.5.1) and

distances between color clusters defined in Section B.1.3]

3.1.5.1 Metric Space Construction

In order to determine the neighborhoods of each target superpixel, first we need to define
distances in the feature space. Due to the heterogeneous nature of the descriptors defined
in [3.1.4] these distances cannot be calculated as simple euclidean distances between the
feature vectors.

In order to have more control over the influence of each feature separately, we decided
to compute the distances from each feature separately and then combine these distances
with adjustable weights. The pairwise distances matrices are based on absolute differ-
ence for scalar features, euclidean distance for vectors and match distance (described in
(RUBNER; TOMASL GUIBAS, 2000))) for the histogram.

One major advantage of computing these distances separately is that we can perform
minmax normalization over each distance matrix separately and according to the actual
computed boundaries (relative extrema) instead of according to the absolute extrema. Take
for instance a feature vector which have N dimensions with each dimension normalized
to the [0, 1] range. If we were to normalize the distances between such vectors according
to their absolute limits, we would divide each distance by V/N because of the set absolute
extrema (distance between vectors of all ones and all zeros). But since there is a high
probability of the set absolute extrema not being present in the sample set, the distances
computed for this feature end up losing their relative influence when compared to a scalar
feature which does not go through the normalization. Once the distances are computed
separately, we are able to normalize the distances by performing minmax using the mini-
mum and maximum sample distances and therefore guarantee that every distance falls in
the [0, 1] range. Repeating this procedure for all features allows the algorithm to control
feature influence directly through the assigned weights.

The combined pairwise distance matrix is formed by the linear combination of each
separate pairwise matrix multiplied by its assign scalar weight. The nearest neighbors of

each superpixel can be found by sorting each row of the combined matrix.

3.1.5.2 Class Prediction

The classification of each target superpixel relies on the feature space distances computed

in the previous step. To make full use of the aforementioned distances, instead of using
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the standard majority voting knn, in the classification of superpixels the contribution of
each of its neighbors is weighted by the inverse of theirs distance to that superpixel.

Although the knn could also be used in a regression framework instead of classification,
the literature advises against regression in colorization due to its averaging effect which
causes the final colorization result to be bland as discussed in (CHARPIAT; HOFMANN;
SCHOLKOPF, 2008), (LARSSON; MAIRE; SHAKHNAROVICH, 2016), (ZHANG; ISOLA; EFROS,
2016)).

Since the method generates classes automatically by color clustering (Section , if
the source image presents an uneven distribution of colors (a particular color is abundant
in the scene), the defined classes become unbalanced. Class imbalance is a problem for the
knn because the feature space is populated with an uneven number of samples and thefore
the classification might become biased. We could verify the effect of class imbalance in
our early prototypes which generated colorizations dominated by the source abundant
colors. To overcome the imbalance issue, the proposed method includes a modified knn
similar to the knne shown in (SIERRA et al.,, |2011)). The method consists of the weighted
knn described above, but instead of looking for the k nearest neighbors of an instance, it
actually considers the k nearest neighbors from each class (with the total neighborhood
size of k times the number of classes).

The classification rule followed by the proposed method can be summarized in Equa-

tion Bl N
C A
Vie {l,...,Nsp}, Ui =y=1..Nc ZP(Q | 2:)C(y | 7), (3.1)

j=1
where §; represents the predicted class/label (from the set of N available classes defined
in for the target superpixel x;. The terms P and C are respectively the estimated
posterior probability of classes given observations and the misclassification cost. Instead
of assigning labels with highest posterior probability (as in a naive bayesian setting), this
equation assigns the label of the class that provides the safest choice. By safest we mean
taking into account the costs of all the possible wrong outcomes associated with a label
if assigning this label (misclassification costs).

Although the classification could be performed by taking into account only the prob-
abilities, the misclassification costs allow for better use of chrominance information avail-
able from the source image. Once the classes are generated by clustering , naturally
there will be classes closer/more distant to each other in terms of chrominance values. For
instance, we want the algorithm to penalize more the misclassification of blue to red or
yellow than one of blue to purple. The misclassification cost matrix is built so that each

element (u,v) is the cost/penalty of predicting class u when the actual class would be v:
Clu|v) = [ — ol

The penalty is basically the euclidean distance between the centroids of each class in

chrominance space (p). Since the distance is a commutative operation, the generated
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matrix is originally symmetrical. Euclidean distances in the Lab color space mimic our
perception of colors differences, so the use of this distance fits the colorization goal. The
cost matrix is normalized so that each row/column sums to one in order to avoid intro-
ducing bias into Equation (3.1}

The estimated posterior probability of a class given an instance (or score of the class)
is computed using the the full neighborhoods of each instance. The score of a class consists
of the ratio of the sum of weights of the nearest neighbors from this class to the sum of

weights of all nearest neighbors (from all classes).
P(j | 2) = S
ZiEU(ac) W(Z)
The full neighborhood of each observation (n(z)) is composed of the union of the k

(3.2)

closest superpixels from each class (n;(z)). The weights W (i) are given by the inverse of

the distances described in B.1.5.1]

3.1.5.3 Two-Stage Classification

So far we described how to transfer labels from source to target superpixels based on
the feature space distances between them. Although the described process is already a
classification in itself, the proposed method actually performs a two-stage classification.

As previously discussed in Section[2.2.1] the input pair with similar semantics might be
originated from different imaging conditions such as different camera, resolution, lighting,
etc, which may cause the descriptors of similar elements to be distinct.

The proposed strategy to handle this multirepresentability issue is based on the premise
that elements of similar content should generate similar descriptors at least within the
same image (self similarity principle (BUGEAU, [2018))). The strategy consists of an initial
inter-image label assignment stage followed by a intra-image label refinement stage and
we expect to achieve a higher level of target classification coherence after this refinement.

Both classification stages are based on the prediction scheme described in the past
section , but in each stage we apply a different set of feature weights for the
metric space construction . In the first stage (inter-image), the method transfers
labels from source to target superpixels. Since this initial mapping is expected to be
more difficult due to the presented reasons, the method emphasizes (weight-wise) the sift
feature, since we expect this feature to be more robust due its highly descriptive nature.
The saliency-based feature is also considered since it can facilitate the mappings for image
pairs that contain noticeable elements. Then, the second stage (intra-image) performs a
relabeling of each superpixel in a process inspired by the Leave-one-out cross-validation
scheme. The new label of each target superpixel is defined by the prediction method in
[3.1.5.2] but instead of using the source labels as reference, this step uses the target labels

from the first stage as the reference. In other words, the neighborhoods of each target
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superpixel from Equation are generated by the target superpixels, but of course not
counting the instance in its own relabeling. In this stage, the method emphasizes the
texture-based features, since they can reliably identify similar regions within the image.

The output of the “Target Classification” block in Figure [5| illustrates the result of the
classification process. The algorithm transfers the labels from source superpixels (repre-

sented by the four colors) to the target superpixels.

3.1.6 Edge-Aware Relabeling

In the previous section, we described how the proposed method performs the local pre-
diction of classes for each superpixel. Even though the method has a robust classification
scheme, the literature review indicated that, as robust as the matching/classification tech-
nique might be, errors at local level are bound to happen, due to noise in feature space
and multimodality.

Most exemplar-based algorithms rely on the post-processing of the colorized image to
correct the errors from the local color assignment and to enforce spatial coherence. The
post-processing techniques usually include some filtering or regularization of the chromi-
nance channels, which can cause loss in image contrast, specially around boundaries.

Instead of post-processing the already colorized image, we propose a simple yet ef-
fective heuristic that performs a relabeling of the locally assigned labels by taking into
account the location of edges on the original grayscale image. The premise is that texture-
rich regions have more potential to be classified correctly by the local predictions while
regions that lack texture possess less distinctive descriptions and therefore are more prone
to wrong local labeling. The relabeling technique aims to improve the robustness on the
smooth regions by aggregating superpixels that are confined within the same image bound-
aries, changing the classification from a local level to a cluster level. These clusters are
formed by applying the Canny edge detector to the image and uniting superpixels based

on the absence of edges between them.

Edge-Aware Clustering

The algorithm first determines each superpixel spatial neighbors (not to be confused with
feature space neighbors) by applying morphological operations to the superpixels masks.
Each superpixel region is dilated and the overlapping regions determine the neighborhood.

The neighbors lists along with the Canny edge binary image and the superpixels cen-
troids coordinates are used to create the clusters by performing a connected component
labeling process at superpixel scale through a simple graph traversal algorithm, consider-
ing each superpixel as a vertex and the lists of neighbors as connections. The pseudocode
of the clustering algorithm is shown in Algorithm [1]

The algorithm starts with all the superpixels as free elements. Then, it creates a new

cluster by picking the first element in the free list and performing an expansion (Ezpand-
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Algoritmo 1: Edge-Aware Clustering.
inputs : cannyFEdges: the Canny edge binary image
centrsSPs: The superpixels centroids coordinates
NeighborsLists: the lists of superpixels spatial neighbors

output: clusters: the edge-aware clusters

1 Function EdgeAwareClustering(cannyFEdges, centrsSPs, NeighborsLists):

2 freeSPs < {1,...,centrsSPs}

3 clustersList < ()

4 141

5 while freeSPs is not empty do

6 clustersList(i) < freeSPs(1)

7 freeSPs < freeSPs \ freeSPs(1)
8

9 ExpandCluster(clustersList(7), NeighborsLists, freeSPs, centrsSPs, cannyEdges)
10 1=1+1

11 end

12

13 Function ExpandCluster(cluster, NeighborsLists, freeSPs, centrsSPs, cannyFEdges):
14 1=1

15 for every SP; in cluster do

16 neighborhood <— NeighborsLists(SP;) N freeSPs

17 clusterNeighbors <— checkPathEdges(neighborhood, centrsSPs, cannyMask)
18

19 cluster < cluster U clusterNeighbors

20 freeSPs < freeSPs \ clusterNeighbors

21 end

Cluster function) from this first element. The expansion is performed by continuously
adding to the cluster the neighbor superpixels of each of its elements that do not have
an edge in between. The function checkPathEdges is responsible for evaluating if two su-
perpixels have an edge element in between them. The expansion process of a cluster ends
when there are no more superpixels that can be reached without going through an edge.
Then, the whole cycle of creating and expanding a new cluster repeats until there are no
more free superpixels, in other words, superpixels without a cluster index.

It is possible (and common in texture-rich regions) that clusters are formed by single
superpixels, in which case the original label stays unchanged. The result of this spatial
clustering technique is shown in Figure It is noticeable that texture-rich regions form
many small clusters while smooth regions group up which is the desired outcome.

The function checkPathFEdges is as a simple heuristic that verifies if there are any active
pixels in the edge mask within the rectangle formed by centroids of the two superpixels
being evaluated. The function purposefully overestimates the presence of edges because
regions merged incorrectly might generate rough colorization errors, while if regions that

could be merged are kept separated, the result at most remains the same.
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Figure 10 — Edge-Aware clustering of target image. Texture-rich (trees area) regions cre-
ate many clusters while smooth regions (sky) tend to form large bundles.
(Repeated colors that are not contiguous are not from the same cluster.)

Once the edge-aware clusters are defined, the relabeling process consists of simply
assigning to all the superpixels within a cluster the label mode of that cluster. The Figure[5]

illustrates how the relabeling is able to change the original label assignment of superpixels.

3.1.7 Chrominance Transfer

The final step of the proposed colorization method consists in transferring colors from
source to target based on the target final labels and again on their local descriptors. The
colors are transferred only between source superpixels that share the same label as the
target.

For each target superpixel, the algorithm initially selects the source superpixels that
have the same label as the target. Then, from this subset, the algorithm chooses the
source elements that are closest to the target in feature space (nearest neighbors). From
these nearest neighbors, the algorithm extracts the median of their chrominance, which
is composed of the median values of each chrominance channel (ab from Lab) within
this nearest neighbors set. Again the method relies on multiple neighbors to enhance
robustness.

The median chrominance values are transferred only to the centroid of their corre-
sponding target superpixels (as the micro-scribbles in (IRONY; COHEN-OR; LISCHINSKI,
2005) and (GUPTA et al), 2012)). The colors are then propagated from the micro-scribbles
to the whole image using Levin’s algorithm (LEVIN; LISCHINSKI; WEISS, 2004), which was
described in the review [2.1.1] The use of this scribble-based technique also enforces spatial

coherence.

The color propagation yields the fully colorized output image, illustrated at the pipeline
end in Figure
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3.2 DESIGN AND IMPLEMENTATION CONSIDERATIONS

During the design and implementation cycle, different approaches were explored until
the proposed method reached the configuration described in this chapter. Although the
key design decisions will be further explored in Chapter [4] there are other aspects worth
mentioning.

Regarding the feature set, different features from the literature were tested. The use
of window-based features (i.e. features that are functions of a rectangular windows around
the pixel of interest) revealed that they deteriorate the matches around image edges,
generating halos, which gets worse as the window size increases. Although this haloing
effect gets attenuated by the use of superpixels, a local texture feature that uses a window
of decreasing weights (such as the Gabor filter) shown to be more robust.

Still on feature set design, both the feature choice and weights have an impact over
the final result. Initially, we wanted to evaluate the impact of feature choices in the
arrangement of the feature space using data complexity measures such as overlapping,
but this task has proven to be very difficult.

About the superpixel segmentation, it is indeed an advantageous approach, both in
terms of cost, reducing the search space of classification in orders of magnitude without the
need of random sampling, and also providing robustness to the colorization by enforcing

spatial coherence.
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4 EXPERIMENTS AND EVALUATION

After presenting the proposed model and its characteristics in Chapter [3| we move on to
describe the experimental part of this research.

The experiments in this chapter are intended to verify the design decisions and the
claims made in the previous chapter and also compare the proposed method with state
of the art algorithms. More specifically, we want to verify if the proposed method is in
fact able to handle a broader set of input image pairs when compared to the literature
exemplar-based methods.

The reported results from exemplar-based methods in the literature feature almost
exclusively simple scenery composed mostly of landscapes. By submitting the literature
algorithms to other kinds of images, limitations in terms of supported scenes become
apparent. The images that are more difficult for the exemplar-based algorithms are images
where regions of similar local descriptions appear in different regions of the reference
image, which might have different semantics and therefore different colors (IRONY; COHEN-
OR; LISCHINSKI, 2005)). This characteristic might be present in almost any image that is
not a simple landscape, such as: faces, object-centered images, colorful images, cluttered
scenes, among others.

We expect the proposed algorithm to generate better results in scenes of higher com-

plexity because of the the designed decisions described in the previous chapter, especially:

o The use of multiple neighbor classification instead of matching that enhances ro-

bustness to feature/descriptor space noise.

o The two-pass classification scheme that allows for a more systematic use of the

feature set.

o The edge-aware clustering heuristic that combines local decisions into region-based

decisions.

4.1 EXPERIMENTAL PROTOCOL AND EVALUATION

The proposed method prototype and all its variants were implemented as MATLAB
scripts, the source code is available at Github E] In the comparisons carried in Section
the results of the baseline methods were generated using the authors’ own MATLAB im-
plementations (also available online) with their respective default parameters. Execution
time was not considered in the comparisons because the published code for the baseline
methods were not optimized for time efficiency and therefore the comparison would be

unfair.

L https://github.com/saulo-p/ImageColorization



44

The main result evaluation method used in this document is wvisual inspection. Al-
though visual criteria are subjective, evaluating image colorizations by comparing to
ground truth is not a valid option, first because the color ground-truth might not be
available, and also because it does not fit the goal of colorization as discussed in Sec-
tion [I.1] Through visual inspection we assess the visual quality of the output images and
also evaluate local details of the result. Moreover, for the evaluation of exemplar-based
methods, it is important to assess how much of the source image “appearance” is actually
transferred to the target instead of analyzing the output by itself and this can be best
achieved through visual assessment.

Each image in this chapter is embedded in the document with its original resolution,

so, for detailed inspection, the reader can zoom-in until desired size is achieved.

4.2 METHOD DESIGN DECISIONS

In this section we evaluate the impact of key design decisions on the proposed method
by visually comparing partial results generated by method variants. The partial result
images are formed by assigning each superpixel entire region with a single color from its
closest superpixel in feature space.

As the entire superpixel receives a single color, without any smoothing on region
transitions, the partial result images present block artifacts. However, the colorization

quality of the partial result images is not important for the analysis in this section.

4.2.1 Single-Stage vs. Two-Stage Classification

As mentioned in Section the proposed method performs the feature space connec-
tions in two steps. Although this choice has a valid reasoning, it is important to verify its
practical impact over our classification and colorization scheme.

We observed in the experiments that the two-stage classification have a positive impact
over the colorization results in most cases. Figure [11| shows examples in which the two-
stage method contributes for a more consistent partial result. We compare single-stage
variants using matching and classification with the proposed two-stage classification.

The overall impression from Figure[11]is that the matching variant generates the worst
results, as we would expect. The presence of noise in the feature space and/or similarities
between descriptors penalizes the approach that assigns colors based on a single neighbor.
This behavior is clearly illustrated in the first row of the figure, that contains the balloon
image which is a hard colorization image due to the absence of textures that makes the
local descriptors of both sky and balloon similar. The consequence is the matching-based
approach making wrong color assignments of superpixels scattered over the image. This

phenomenon also happen in the second row (zoom in for details).
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Figure 11 — Partial results comparing variants of the proposed method.

Single-Stage Single-Stage Two-Stage
Matching Classification Classification
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Figure 12 — Left and right are respectively the first and second stages of the proposed
method classification.

The single-stage classification variant does not generate as many scattered errors as the
matching due to the knn being more robust to the feature space noise. But the two-stage
approach can improve the results even further.

The flower image (row 3) is a good example of a successful use of the proposed two-
stage method. Apart from the other errors, we want to draw attention to the flower on
the top right corner. None of the single-stage variants in Figure [I1] is able to correctly
assign colors to the corner flower despite correctly assigning to the one in the center. In
the first stage of the two (Figure , which focus on surf and the saliency-based feature,
the corner flower is not correctly classified, in the second stage, the algorithm refines the
initial classification based mostly on textures, therefore, due to the texture similarities
between the flowers within the same image, it is able to relabel the corner flower region to
its correct class. The method achieves the improvement without resorting on a different
feature set, changing only the weights in each stage.

Other images from Figure 11| present other minor improvements. These improvements
are usually in the direction of causing the result image regions with similar content to

present similar colors.

4.2.2 Local decision x Edge-Aware

Another aspect of the proposed method that deserves evaluation is the edge-aware label
refinement described in Section [3.1.6] This particular step is expected to enhance the
colorization on smooth regions of the image, where there are no much texture information
to serve as clue, while not changing assignments in texture rich regions, where the local
descriptors are expected to perform well already. The images in Figure [I3] show the color
labels of the superpixels before and after the edge-aware relabeling.

The three first rows of Figure [13|show a recurrent error in classification that happens
around image boundaries. Even though the superpixel segmentation mostly respect the

original structure of the image, the boundary regions in natural images are usually regions
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Figure 13 — Edge-Aware Relabeling results.

Before After

of smooth transitions of intensity levels. The transitional pixel values cause the superpixel
classification around these areas to be more chaotic. The edge-aware relabeling leverages
on the fact that most of the superpixels are in plane (not transitional) regions and therefore
the majority voting should be able to rectify the boundaries misclassifications.

The image in the fourth row illustrates another advantage of this approach. The local
descriptors of sky and road on the source image are similar, and therefore the classification
of the road in the target image oscillates between these classes. Due to the clear edges on
the road, the algorithm is able to group the whole portion in a single cluster and then
assign its majority class (road color), generating the more coherent result. In the fifth
row, a similar relabeling effect happens in which incorrect gray colors get removed both
on the sky and grass (bottom left). The sky regions between the trees were not connected
to the main sky cluster and ended up with a different color. These examples indicate that

the edge-aware approach is a possible workaround for the multimodality issue that does
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not require global optimization (which can lead to bland colorizations).

Although this relabeling step clearly enhances the results in most cases, the strategy
can also backfire. The figure in the last row shows an instance in which the relabeling
is not a good approach. Due to the lack of closed boundaries in the blurred regions of
the image (background), the edge-aware clusters formed are not faithful to the original
image structure which causes the most abundant class (sky color) to take over other image

regions that were not originally connected.

4.3 PROPOSED METHOD VS EXEMPLAR-BASED

After evaluating the key modules of the proposed method in isolation, in this section we
move on to assess the technique’s final results by comparing it with baseline methods
from the literature.

We chose to evaluate the proposed method in comparison with the methods (GUPTA et
al., 2012) and (PIERRE et al., 2016)) (which is a MATLAB tool that implements (PIERRE et
al., 2015)) because they are both fairly recent, report interesting results and their authors
made the source codes available online.

We divide the test images into different sets according to the complexity of their

depicted scenes.

4.3.1 Simple scenery

The set of images used for evaluation in the baseline work (GUPTA et al., 2012) is composed
mainly of simple images, which is a good starting point for the analysis. We consider these
images to be simple because texture differences are well correlated with color differences,
therefore the local descriptors should be able to discriminate colors fairly well.

The images in Figures [14] and [15] indicate the proposed method results are at least
as good as those of the baseline in this class of images. The exemplar-based algorithms
generate acceptable to good colorizations for both subsets, with the method (PTERRE et
al., [2016)) having some issues with the second subset.

First, in the landscape subset, the rich textures and absence of salient objects can
cause minor mistakes in color assignment to pass unnoticed by the observer. However,
careful visual inspection (zooming in the images) reveals mistakes from the methods.

Since the exemplar-based methods do not possess any level of scene understanding,
these algorithms usually make semantic mistakes such as using different colors for the
same scene elements (leaves of the same tree in rows 1, 2 and 5 of Figure or the
reflections of water that are not consistent with the scene (as in rows 2 and 5 of the same
figure).

For the superpixel based approaches (proposed method and baseline (GUPTA et all,

2012)) small elements and fine image details can cause flaws in the colorization. Whenever
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Figure 14 — Simple images (nature landscapes).

(PIERRE et all  (GUPTA et al
2016 2012

Source Target Proposed
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Figure 15 — Simple images (misc).

(PIERRE et al,  (GUPTA et al.,

2016)) 2012)

Source Target Proposed
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the superpixel scale is coarser than some image details or fine structures, these regions
might be “miscolorized” since the colors in these techniques are assigned at superpixel
scale. The small trees in the fourth, fifth and sixth rows from Figure illustrate how
the bleeding artifacts arise around the finely detailed areas.

The proposed algorithm generated better results compared to the baseline when re-
quired to discriminate colors at regions of smooth transitions as shown in the third row
from Figure [14] (top of the mountain) and also in the third row from Figure (15| (at the
lion’s back). This phenomenon also occurred at the cloud regions in images 4 from Figure
and 2 from Figure[15] Not only the colors around boundaries are more often predicted
correctly, the boundaries themselves are more well defined (as in the fourth row from
Figure , on the top of the castle and around the tree boundaries).

The beach image (last row) is another example of how the proposed technique can
generate better results. The baseline (PIERRE et al) [2016) have issues to discriminate
between textures of the seashore and trees, while the method (GUPTA et al., 2012) again
misses the smooth transition and merged sand to water and clouds to sky. The proposed
algorithm, despite a few local green spots in the clouds, generated the best result correctly
transferring color between corresponding regions while also exploring the different color
tones for the water.

The results might also differ considerably between the algorithms (or even between
executions of the same algorithm with different parameters) while still presenting similar
levels of plausibility as in the first row of Figure with the different sky colors or in
Figure [15] second row with the building colors.

The results from the proposed method and the baseline (GUPTA et al,, 2012) are in
general better than (PIERRE et al., 2016|). The partial results from method (PIERRE et al.,
2016) reveal that in many instances (such as the mountain top, the lion’s skin and the
castle walls) the initial colorization consists of pixels that have correct color assignments
mixed with pixels with mistaken assignments in same regions. The use of superpixels by
the proposed method and (GUPTA et al., 2012)) enforces spatial coherence and instead of
generating a colorization that looks like a blending of different colors, utilizes a single

color for each superpixel region.

4.3.2 Complex scenery

Beyond local mistakes in some instances, the proposed method and the baseline (GUPTA
et al., 2012) seem to be able to achieve fairly successful colorizations of the simple scenes.
In this section, though, we aim to expose the exemplar-based algorithms to a set of more
complex scenes.

The Figure |16 displays some selected complex source/target pairs and the respective

results from each one of the methods. The fact that the result images are usually worse
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if compared to the results of the previous section indicates that these indeed are more
complex images.

First, in the baby image (second row), the presence of background blur that causes
textures to be lost summed with different background colors confuses the color assignments
to the point the baseline (GUPTA et al., 2012) mainly uses a single color for the entire image.
The proposed method and the baseline (PIERRE et al., [2016]) are able to partially identify
the image regions but the overall results are still very poor. Images with too many colors,
as the fruits in row 7 are also very difficult instances since the many color options available
for each pixel/superpixel makes so that the chances of correctly assigning colors naturally
decline.

Moving on to the cases of relative success, the image of the climber (first row) exhibits
color imbalance. The shirt in the source image has a distinct color that covers only a
small portion of the image. Since both the proposed method and (PTERRE et al., |2016])
are able to correctly identify the shirt region, the local description of the region must be
distinctive enough. Therefore, the method (GUPTA et al., 2012)) not assigning the correct
shirt color might be due to its post-processing that distrusts the color assignments of
small regions surrounded by a different color. The edge-aware relabeling scheme of the
proposed method on the other hand maintains small regions colors as long as they have
clear boundaries and therefore can be considered an improvement over the baseline in this
sense.

The image of the beer in the fourth row is another instance of small region color
transfers. The proposed method was the only that transferred the blue color from the
chessboard pattern from source to target. The use of color clustering for source labeling
(see combined with the knne classification guarantees that even colors from small
regions in the source will be considered during the target label assignment and therefore
can be present in the output. On the other hand, small blue spots are present in random
areas in the output image, which suggest that our approach might benefit from some sort
of tuning to achieve a better balance, but this was not addressed in this research.

The cars images (rows 5 and 6) are examples that put emphasis on foreground ele-
ments. The candidate selection from (PIERRE et al., |2016|) is not able to correctly transfer
the colors of the image elements in none of the two images, which might be due to the
feature set employed. While at the fifth row both the proposed method and (GUPTA et
all 2012)) generate decent colorizations, at the sixth row, the background blur on both
source and target images makes the matching/classification of superpixels more chal-
lenging, which causes the method (GUPTA et al., 2012)) to miscolorize the car while the
proposed method assigns the car colors to some background superpixels. The proposed
method correctly transferred the colors between the major elements at the cost of a few
local errors.

Another instance of background blur occur in the butterfly image (fourth row), again
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Figure 16 — Complex scenery.

(PIERRE et al,  (GUPTA et al

2016)) 2012)

Source Target Proposed
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Figure 17 — Complex scenery (continued).

Source Target dPIElgé%lEé[et al"’ dGUlgglA;[t al'l’ Proposed
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causing complications in discriminating between the blurred background and smooth parts
of the foreground (butterfly wings). The result from (PIERRE et al., [2016) presents the color
blending effect discussed in the previous section, while the method (GUPTA et al., 2012)
assigns the background colors to the majority of the butterfly wing. The proposed method
was able to transfer the wings color mostly correctly at the cost of some inconsistency
with the flower colors.

As previously discussed in Section the road image in the seventh row illustrates
how the edge-aware relabeling serves as a workaround for the multimodality problem.
The proposed method was able to correctly transfer colors between corresponding image
elements of source and target. The robust classification of the proposed method is able
to correctly classify (at local level) the majority of superpixels within the road region.
Then, the edge-aware relabeling rectifies the local mistakes by incorporating labels from
the whole road portion. By improving the spatial coherence at the road area, the method
also improves the result in a semantic level, assigning the correct colors to the road while
respecting the original image boundaries.

The toddler walking on the beach (row 8) is another complex instance that includes
small image details and similar descriptors. The baseline (GUPTA et al, 2012)) again showed
issues with smooth transitions from sand to water (same as shown in Section and
assigned the sand color for the majority of the water region. The proposed method on
the other hand was mostly affected by the intensity changes in the halo that surrounds
the image, causing wrong color assignments in the image borders. Other than that, the
proposed method result is better than the baseline results, correctly transferring the colors
between the background regions while also being able correctly assign colors to the small
details of the bikini and purse.

In the second part of Figure we present more results on complex scenes. In the
cactus image, the baseline (GUPTA et al, 2012)) actually presented the best results while the
proposed method made mistakes with the blue color around the image. In the motocross
image, the proposed technique generated the overall best result, specially at the motorbike
details, but none of the methods was able to transfer the shirt colors from the source.
In the park image, the proposed technique was slightly better at discerning between the
colors of trees and buildings and was considerably better at transferring the yellow tones
to the buildings facing the sun. The smoke image again showcases how the proposed
method is better at dealing with smooth transitions, as was the case with the clouds.

Though not always realistic, the proposed method generates less failed colorization
and most of the errors are local (not generalized), the impression from Figure [16|is that
the proposed method generates results of better visual quality compared to the baseline

exemplar-based methods.
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Figure 18 — Learning-based colorization results.

4.4 COMPLEX SCENES VS LEARNING-BASED

To better situate the proposed method within the bigger picture of colorization algorithms,
in this section we present the results of a recent learning-based method. The purpose of
this section is to assess whether a recent learning-based method also has difficulties with
complex images as the exemplar-based ones, and how its results compare to the results
presented by the proposed technique. The output images in this section were generated
using as input simple and complex images from previous sections colorized by Zhang’s
algorithm (ZHANG; ISOLA; EFROS, [2016). The results are presented in Figure

First, since the learning-based methods do not rely on user input, there is no user
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control over the output images and therefore no guarantee of similarity between the
colorized images from the previous section and the ones in this section. Furthermore,
the absence of a context reference for the target gray image can make it hard for this
algorithm to identify the correct semantic of specific image elements. For example, the
climber shirt in the second row gets “ignored” within the mountain color and the paved
roads from both the red car image (third row) and the mountain image (last row) which
receives the colors of dirt roads.

Regarding the visual quality of the output images, the learning-based method seems
to also have difficulties with the complex images. The presence of blur makes it difficult
to identify details within the blurred area and therefore the algorithm assigns a single
color to the whole area disregarding the different elements within it, such as the park
area (third row) and the toddler on the beach (fourth row). Also, separated elements of
same semantics not necessarily share similar colors as observed under the biker left arm
(third row) and between the columns of the Parthenon (fourth row) which should share
the sky colors. Results might also lack in spatial coherence as the blue stains in both the
red car (fourth row) and red balloon (second row). Finally, the colorizations in Figure
show problems around object boundaries, with the colors bleeding through the object
boundaries to neighbor regions as in the top of all the mountains in the first row, the tree

tops in the second row, the cactus in the third row and others.

4.5 DISCUSSION

The results and analysis presented in this chapter indicate that the proposed method is
a viable option for colorization which generates plausible results for simple image pairs
while being able to target image pairs that present complex traits with moderate success.

Our technique shows improvements over previous exemplar-based methods in terms
of visual quality of the outputs and also in terms of being capable of transferring colors
between corresponding elements of source/target pairs, particularly small elements and
details.

The results indicated that the classification based approach is a better option, not only
because of its impact over the initial color assignment, but also because it enables the key
modules of the method pipeline, the two-stage classification and the edge-aware relabeling.
The employment of these modules culminate with the proposed method presenting results
that are visually better compared to its exemplar-based counterparts.

Although not explored in this chapter, different ratios of feature weights lead to dif-
ferent colorization results. Since the goal of this chapter was to compare the proposed
method with baseline methods in a general sense. However, in order to explore these
methods to their full potential, it might necessary to tune the weights according to the

image pair at hand.
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Finally, the results generated by a recent learning-based algorithm (ZHANG; ISOLA;
EFROS, 2016)) for our input images confirmed that the colorization of the selected complex
images is a difficult problem even for an algorithm of a different class. The proposed
method was capable of generating comparable results to the ones by the learning-based
method while allowing for some user control over the output results and showing more

well defined color assignments around object boundaries/edges.

4.5.1 Limitations

The method is designed for the scope of natural images, therefore drawings and synthetic
(computer generated) images in general are not expected to work properly because they
lack the characteristics of natural images that are explored by the feature extraction.

The superpixel segmentation employed in the proposed method is sensitive to image
scale in different ways. Images that are too small cause the applied superpixel segmen-
tation to be highly non-uniform in shape and can compromise the maintenance of the
original image structure. Also, the superpixels are not able to capture small image details
leading to bleeding artifacts as mentioned in Section and previously reported in
(GUPTA et al., [2012).

Finally, as for the exemplar-based methods in general, the proposed method relies on

the availability of source color images with similar content to the gray target.
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5 CONCLUSION

In this dissertation, we presented a comprehensive review of the image colorization lit-
erature, ranging from the pioneering works to the most recent ones. A taxonomy was
introduced that categorizes the reviewed algorithms based on the source of prior infor-
mation used to guide their color assignments. The review included representatives from
all categories and examined how the later works built upon the previous and on which
aspects they aimed to improve them. The review showed that image colorization is an
active research topic having many papers being published in recent years.

The review process showed that most of the exemplar-based methods in the literature
have their successful result examples largely oriented to simple source/target pairs, such
as landscapes, animals and simple buildings. Such images are characterized by a straight-
forward mapping between colors and local descriptions. Based on this observation, an
exemplar-based colorization method was proposed in this work with the intent of gener-
ating plausible colorizations for a broader set of input pairs, including images that possess
complexity traits such as color imbalances, colorfulness, blurred regions, multimodality,
and so on.

The proposed method makes use of superpixel segmentation, which provides a faster
execution as well as a greater coherence, and combines low, medium and high level features
to create a superpixel local descriptor space in which metrics are more distinctive. It
also features a two-stage cost-based classification which improves the accuracy of target
superpixels, while also taking into account the color imbalances in the source image.
Lastly, an edge-aware relabeling scheme that enforces spatial coherence while respecting
the original image edge structure is also included in the proposed pipeline.

Experiments were performed to validate the design decisions from the proposed method
and compare the colorization results to two baseline algorithms from the literature. The
comparative analysis was performed subjecting the methods to selected simple and com-
plex source/target pairs to visually assess and compare their colorization results. Experi-
mental results showed that the modules that comprise the proposed pipeline have positive
impact when analyzed in isolation. Moreover, result images from the proposed method
showed more visual quality than the baseline methods, both within the simple images
set, in which the color assignments around boundaries were improved and on the complex
images, in which the proposed method transferred colors between corresponding image
elements more successfully. Thus, the experimental analysis indicates that incorporating
into the pipeline modules that enhance robustness to local descriptors limitations allows
exemplar-based methods to handle complex image pairs with relative success and rep-
resent an improvement over previous methods. The experimental analysis also featured

results from a state-of-the-art learning-based algorithm to provide a better sense of how
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the proposed method results compare to the modern deep learning approaches. These
results indicate that exemplar-based methods can, to some extent, generate comparable
results while allowing for user control over the final result.

As for future work, a few directions could be followed. The definition of a feature
set is still a point of no consensus, as different methods in the literature apply different
combinations of known computer vision features. A possible line of investigation may
involve an experimental analysis on feature set design for image colorization considering
data complexity measures in the generated feature space to determine whether there
are features more suited for certain types of images. Developing techniques to perform
automatic feature selection or feature weight optimization within a predefined set would
also be an interesting contribution. Local descriptor synthesis techniques (such as (AL-
SAHAF et al., 2015)) could also be explored in the context of colorization. Finally, to
enhance our experimental analysis, it would be beneficial to perform a user study to
evaluate our results, both in comparison to real images, to assess the naturalness of the
proposed method outputs, and in comparison with the baseline results to have a less

subjective mean of comparison.



61

REFERENCES

AL-SAHAF, H.; ZHANG, M.; JOHNSTON, M.; VERMA, B. Image descriptor: A genetic
programming approach to multiclass texture classification. In: IEEE. Evolutionary
Computation (CEC), 2015 IEEE Congress on. [S.1.], 2015. p. 2460-2467.

BAIG, M. H.; TORRESANI, L. Multiple hypothesis colorization and its application to
image compression. Computer Vision and Image Understanding, Elsevier, v. 164, p.
111-123, 2017.

BALINSKY, A.; MOHAMMAD, N. Colorization of natural images via | 1 optimization.
In: IEEE. Applications of Computer Vision (WACYV), 2009 Workshop on. [S.1.], 2009.
p. 1-6.

BUGEAU, A. Patch-based models for image post-production. Phd Thesis (PhD Thesis)
— Université de Bordeaux, 2018.

BUGEAU, A.; TA, V.-T. Patch-based image colorization. In: IEEE. Pattern Recognition
(ICPR), 2012 21st International Conference on. [S.1.], 2012. p. 3058-3061.

BUGEAU, A.; TA, V.-T.; PAPADAKIS, N. Variational exemplar-based image
colorization. IEFEE Transactions on Image Processing, IEEE, v. 23, n. 1, p. 298-307,
2014.

CHAMBOLLE, A.; POCK, T. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, Springer,
v. 40, n. 1, p. 120-145, 2011.

CHARPIAT, G.; HOFMANN, M.; SCHOLKOPF, B. Automatic image colorization via
multimodal predictions. In: SPRINGER. European conference on computer vision. [S.1.],
2008. p. 126-139.

CHENG, Z.; YANG, Q.; SHENG, B. Deep colorization. In: Proceedings of the IEEE
International Conference on Computer Vision. [S.1.: s.n.], 2015. p. 415-423.

CHIA, A. Y.-S.; ZHUO, S.; GUPTA, R. K.; TAI, Y.-W.; CHO, S.-Y.; TAN, P; LIN, S.
Semantic colorization with internet images. In: ACM. ACM Transactions on Graphics
(TOG). [S.1], 2011. v. 30, n. 6, p. 156.

COLORING Old Movies: Foes See Red, Backers See Green. 1986. Chicago
Tribune <http://articles.chicagotribune.com/1986-08-29/entertainment /8603050091
1_wilson-markle-constance-bennett-laurel-and-hardy-movie>. [Online; accessed
05-April-2018].

DENG, J.; DONG, W.; SOCHER, R.; LI, L.-J.; LI, K.; FEI-FEI, L. ImageNet: A
Large-Scale Hierarchical Image Database. In: Computer Vision and Pattern Recognition.
[S.1.: s.n.], 2009.

DESHPANDE, A.; LU, J.; YEH, M.-C.; FORSYTH, D. A. Learning diverse image
colorization. CoRR, abs/1612.01958, v. 1, 2016.


http://articles.chicagotribune.com/1986-08-29/entertainment/8603050091_1_wilson-markle-constance-bennett-laurel-and-hardy-movie
http://articles.chicagotribune.com/1986-08-29/entertainment/8603050091_1_wilson-markle-constance-bennett-laurel-and-hardy-movie

62

DESHPANDE, A.; ROCK, J.; FORSYTH, D. Learning large-scale automatic image
colorization. In: Proceedings of the IEEE International Conference on Computer Vision.
[S.1.: s.n.], 2015. p. 567-575.

FATTAL, R. Edge-avoiding wavelets and their applications. ACM Transactions on
Graphics (TOG), ACM, v. 28, n. 3, p. 22, 2009.

GOFFAUX, V.; JACQUES, C.; MOURAUX, A.; OLIVA, A.; SCHYNS, P.; ROSSION,
B. Diagnostic colours contribute to the early stages of scene categorization: Behavioural

and neurophysiological evidence. Visual Cognition, Taylor & Francis, v. 12, n. 6, p.
878-892, 2005.

GONZALEZ, R. C.; WOODS, R. E. Digital image processing. [S.l.]: Upper Saddle River,
NJ: Prentice Hall, 2012.

GORDON, 1. E. Theories of visual perception. [S.l.]: Psychology Press, 2004.

GU, X.; HE, M.; GU, X. Thermal image colorization using markov decision processes.
Memetic Computing, Springer, v. 9, n. 1, p. 15-22, 2017.

GUPTA, R. K.; CHIA, A. Y.-S.; RAJAN, D.; NG, E. S.; ZHIYONG, H. Image
colorization using similar images. In: ACM. Proceedings of the 20th ACM international
conference on Multimedia. [S.1.], 2012. p. 369-378.

HAMAM, T.; DORDEK, Y.; COHEN, D. Single-band infrared texture-based image
colorization. In: IEEE. Electrical & Electronics Engineers in Israel (IEEEI), 2012 IEEE
27th Convention of. [S.1.], 2012. p. 1-5.

HERTZMANN, A.; JACOBS, C. E.; OLIVER, N.; CURLESS, B.; SALESIN, D. H.
Image analogies. In: ACM. Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. [S.1.], 2001. p. 327-340.

HUA, M.; BIE, X.; ZHANG, M.; WANG, W. Edge-aware gradient domain optimization
framework for image filtering by local propagation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. [S.1.: s.n.], 2014. p. 2838-2845.

HUANG, Y.-C.; TUNG, Y.-S.; CHEN, J.-C.; WANG, S.-W.; WU, J.-L. An adaptive
edge detection based colorization algorithm and its applications. In: ACM. Proceedings
of the 13th annual ACM international conference on Multimedia. [S.1.], 2005. p. 351-354.

HYVARINEN, A.; HURRI, J.; HOYER, P. O. Natural image statistics: a probabilistic
approach to early computational vision. [S.1.]: Springer, 2009.

IIZUKA, S.; SIMO-SERRA, E.; ISHIKAWA, H. Let there be color!: joint end-to-end
learning of global and local image priors for automatic image colorization with
simultaneous classification. ACM Transactions on Graphics (TOG), ACM, v. 35, n. 4,
p- 110, 2016.

IRONY, R.; COHEN-OR, D.; LISCHINSKI, D. Colorization by example. In: CITESEER.
Rendering Techniques. [S.1.], 2005. p. 201-210.

JAIN, A. K.; FARROKHNIA, F. Unsupervised texture segmentation using gabor filters.
Pattern recognition, Elsevier, v. 24, n. 12, p. 1167-1186, 1991.



63

LARSSON, G.; MAIRE, M.; SHAKHNAROVICH, G. Learning representations for
automatic colorization. In: SPRINGER. Furopean Conference on Computer Vision.
[S.1], 2016. p. 577-593.

LEE, S.; PARK, S.-W.; OH, P.; KANG, M. G. Colorization-based compression using
optimization. IEEE Transactions on Image Processing, IEEE, v. 22, n. 7, p. 262726306,
2013.

LEVIN, A.; LISCHINSKI, D.; WEISS, Y. Colorization using optimization. In: ACM.
ACM Transactions on Graphics (ToG). [S.1.], 2004. v. 23, n. 3, p. 689-694.

LEVINSHTEIN, A.; STERE, A.; KUTULAKOS, K. N.; FLEET, D. J.; DICKINSON,
S. J.; SIDDIQI, K. Turbopixels: Fast superpixels using geometric flows. IEEE transactions
on pattern analysis and machine intelligence, IEEE, v. 31, n. 12, p. 2290-2297, 2009.

LI, B.; LAI Y.-K.; ROSIN, P. L. Example-based image colorization via automatic
feature selection and fusion. Neurocomputing, Elsevier, v. 266, p. 687-698, 2017.

LI, B.; ZHAO, F.; SU, Z.; LIANG, X.; LAI, Y.-K.; ROSIN, P. L. Example-based image
colorization using locality consistent sparse representation. IEEE Transactions on Image
Processing, IEEE, v. 26, n. 11, p. 5188-5202, 2017.

LIU, X.: WAN, L.: QU, Y.; WONG, T--T.; LIN, S.; LEUNG, C.-S.: HENG, P-A.
Intrinsic colorization. In: ACM. ACM Transactions on Graphics (TOG). [S.1.], 2008.
v. 27, n. 5, p. 152.

LOWE, D. G. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, Springer, v. 60, n. 2, p. 91-110, 2004.

LUAN, Q.; WEN, F.; COHEN-OR, D.; LIANG, L.; XU, Y.-Q.; SHUM, H.-Y. Natural
image colorization. In: EUROGRAPHICS ASSOCIATION. Proceedings of the 18th
Eurographics conference on Rendering Techniques. [S.1.], 2007. p. 309-320.

MARTINEZ-ESCOBAR, M.; FOO, J. L.; WINER, E. Colorization of ct images to
improve tissue contrast for tumor segmentation. Computers in biology and medicine,
Elsevier, v. 42, n. 12, p. 1170-1178, 2012.

MORIMOTO, Y.; TAGUCHI, Y.; NAEMURA, T. Automatic colorization of grayscale
images using multiple images on the web. In: ACM. SIGGRAPH’09: Posters. [S.1.], 2009.
p- 32.

O’DONOVAN;, P.; AGARWALA, A.; HERTZMANN, A. Color compatibility from large
datasets. In: ACM. ACM Transactions on Graphics (TOG). [S.1], 2011. v. 30, n. 4, p. 63.

PIERRE, F.; AUJOL, J.-F.; BUGEAU, A.; PAPADAKIS, N.; TA, V.-T. Exemplar-based
colorization in rgb color space. In: IEEE. Image Processing (ICIP), 2014 IEEE
International Conference on. [S.1.], 2014. p. 625-629.

PIERRE, F.; AUJOL, J.-F.; BUGEAU, A.; PAPADAKIS, N.; TA, V.-T. Luminance-
chrominance model for image colorization. SIAM Journal on Imaging Sciences, STAM,
v. 8, n. 1, p. 536-563, 2015.

PIERRE, F.; AUJOL, J.-F.; BUGEAU, A.; TA, V.-T. Colociel. Solution for Image
Colorization. [S.1.], 2016.



64

POPURI, K. Introduction to variational methods in imaging. In: . [S.L: s.n.], 2010.

QU, Y.; WONG, T.-T.; HENG, P.-A. Manga colorization. In: ACM. ACM Transactions
on Graphics (TOG). [S.1.], 2006. v. 25, n. 3, p. 1214-1220.

REINHARD, E.; ADHIKHMIN, M.; GOOCH, B.; SHIRLEY, P. Color transfer between
images. IEEE Computer graphics and applications, IEEE, v. 21, n. 5, p. 34-41, 2001.

REINHARD, E.; CUNNINGHAM, D. W.; POULI, T. Image statistics in visual
computing. [S.l.]: AK Peters/CRC Press, 2013.

REN, X.; MALIK, J. Learning a classification model for segmentation. In: IEEE. null.
[S.L], 2003. p. 10.

RUBNER, Y.; TOMASI, C.; GUIBAS, L. J. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, Springer, v. 40, n. 2, p. 99-121,
2000.

SHENG, B.; SUN, H.; CHEN, S.; LIU, X.; WU, E. Colorization using the rotation-
invariant feature space. IEEE computer graphics and applications, IEEE, v. 31, n. 2, p.
24-35, 2011.

SIERRA, B.; LAZKANO, E.; IRIGOIEN, I.; JAUREGI, E.; MENDIALDUA, I. K
nearest neighbor equality: giving equal chance to all existing classes. Information
Sciences, Elsevier, v. 181, n. 23, p. 5158-5168, 2011.

SONG, Q.; XU, F.; JIN, Y.-Q. Radar image colorization: Converting single-polarization
to fully polarimetric using deep neural networks. IEFE Access, IEEE, v. 6, p. 1647-1661,
2018.

TAIL Y.-W.; JIA, J.; TANG, C.-K. Local color transfer via probabilistic segmentation by
expectation-maximization. In: IEEE. Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on. [S.1.], 2005. v. 1, p. 747-754.

WANG, X.-H.; JIA, J.; LIAO, H.-Y.; CAI, L.-H. Affective image colorization. Journal of
Computer Science and Technology, Springer, v. 27, n. 6, p. 1119-1128, 2012.

WELSH, T.; ASHIKHMIN, M.; MUELLER, K. Transferring color to greyscale images.
In: ACM. ACM Transactions on Graphics (TOG). [S.1.], 2002. v. 21, n. 3, p. 277-280.

YANG, C.; ZHANG, L.; LU, H.; RUAN, X.; YANG, M.-H. Saliency detection via
graph-based manifold ranking. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. [S.1.: s.n.], 2013. p. 3166-3173.

YATZIV, L.; SAPIRO, G. Fast image and video colorization using chrominance blending.
IEEFE transactions on image processing, IEEE, v. 15, n. 5, p. 1120-1129, 2006.

ZHANG, R.; ISOLA, P.; EFROS, A. A. Colorful image colorization. In: SPRINGER.
European Conference on Computer Vision. [S.1.], 2016. p. 649-666.

ZHANG, R.; ZHU, J.-Y.; ISOLA, P.; GENG, X.; LIN, A. S.; YU, T.; EFROS, A. A.
Real-time user-guided image colorization with learned deep priors. arXiv preprint
arXiv:1705.02999, 2017.



65

ZHENG, Y.; ESSOCK, E. A. A local-coloring method for night-vision colorization
utilizing image analysis and fusion. Information Fusion, Elsevier, v. 9, n. 2, p. 186-199,
2008.



	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Contents
	Introduction
	The Image Colorization Problem
	Problem Statement and Research Objectives
	Dissertation Structure

	Literature Review
	Classification of Colorization Techniques
	Scribble-based methods
	Exemplar-based methods
	Web-based methods
	Learning-based methods

	Discussion
	Exemplar-based methods and Scene Complexity


	Proposed Method
	Method Pipeline
	Image Preprocessing
	Superpixel Segmentation
	Color Clustering and Source Labeling
	Feature Extraction and Superpixel Descriptors
	Target Classification
	Metric Space Construction
	Class Prediction
	Two-Stage Classification

	Edge-Aware Relabeling
	Chrominance Transfer

	Design and Implementation considerations

	Experiments and Evaluation
	Experimental Protocol and Evaluation
	Method Design Decisions
	Single-Stage vs. Two-Stage Classification
	Local decision x Edge-Aware

	Proposed Method vs Exemplar-based
	Simple scenery
	Complex scenery

	Complex Scenes vs Learning-based
	Discussion
	Limitations


	Conclusion
	References

