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RESUMO

O kernel Linux é um componente central das aplicagoes de rede, estando presente na
maioria dos servidores em data centers. Com o tempo, a medida que servidores e placas de
rede evoluiram para atender tecnologias de rede com demandas de alto throughput e baixa
laténcia, o kernel tornou-se um gargalo, impedindo as aplicagoes de rede de utilizarem a
capacidade maxima do hardware. Nesse cendrio, diferentes frameworks de processamento
de pacotes surgiram para solucionar esse gargalo. Os dois principais sao o DPDK e XDP,
com propostas diferentes para atingir altas taxas de processamento. DPDK adota o by-
pass do kernel, excluindo-o do processamento e levando os pacotes para o user space.
Ja o XDP, por outro lado, processa os pacotes dentro do kernel, de forma antecipada
comparada ao processamento padrao. Em conjunto com isso, o paradigma de computagao
em nuvem, atualmente disponivel na maioria dos data centers, traz a virtualizacdo como
tecnologia fundamental. Com multiplas aplicag¢oes e sistemas sendo executados no mesmo
host, surge outro problema, o de competicao de recursos. Assim, essa dissertagao executa
experimentos que buscam avaliar como a presenca de um ambiente virtual de computacao
em nuvem pode interferir no desempenho de ambos DPDK e XDP. Os resultados mostram
que embora o processamento “dentro do kernel” traga mais seguranca e integracao com
sistema, essas exatas medidas de seguranca causam perda de desempenho ao XDP. Além
disso, o XDP também demonstra ser o mais afetado pela presenca do ambiente virtual,
considerando a taxa de throughput e também a perda de pacotes. Por outro lado, existe
um dilema ao utilizar o XDP, que nao somente é possivel alcancar maior seguranca, mas
também em relagao ao uso de recursos, ja que o DPDK aloca um nicleo de CPU completo
para utilizar no processamento de pacotes. Também, dependendo do processamento sendo
feito pelo framework, como quando depende de uso intenso de CPU, o DPDK oferece uma

perda consideravel de desempenho do throughput.

Palavras-chaves: DPDK; XDP; Kernel Linux; Processamento de Pacote de Rede; Kernel
Bypass.



ABSTRACT

The Linux kernel is at the heart of network applications, being present in most
servers across data centers. With time, as servers and network cards evolved to enable
high-throughput and low-latency network technologies, the kernel became a bottleneck,
preventing network applications from operating at maximum hardware capacities. In such
scenario, several “packet processing frameworks” emerged to solve this bottleneck. The
two main ones are DPDK and XDP, adopting different approaches to achieve high pro-
cessing rates. DPDK consists of bypassing the kernel and processing packets in user space.
XDP, in contrast, processes packets inside the kernel, at an early stage in the processing
path. Alongside this, the cloud computing paradigm, currently available in most data cen-
ters, brings virtualization as its most important technology and enabler. With multiple
applications and systems running in the same host, comes another concern, that of host
resource competition. Thus, this dissertation creates experiments that evaluate how the
presence of a cloud computing virtualization environment can interfere in both DPDK
and XDP’s performance. Results show that even though the in-kernel processing from
XDP may assure system security and integration, these exact security measures interfere
in throughput performance and packet loss. Also, XDP seems to be the most effected by
the presence of virtual environment. However, there is a trade-off when using XDP, not
only for the system security but for resource usage, since DPDK allocates full CPU core
utilization for packet processing. Also, depending on the processing tasks at hand, such
as those that require heavy CPU usage, DPDK does not offer an optimal throughput

performance.

Keywords: DPDK; XDP; Linux Kernel; Network Packet Processing; Kernel Bypass.
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1 INTRODUCTION

With the growth and popularity of the Internet, its services became critical to people’s
social and business activities. Alongside this, emerging technologies like 5G, 6G, Time
Sensitive Networks (TSN) for Industry and Entertainment, Network Function Virtual-
ization (NFV) and Software Defined Networks (SDN) enabled networks often demand
high-throughput and low-latency traffic processing to cope with their new services. To
keep up with these expectations, network hardware gained more processing power, with
the deployment of 40, 100 and even 200Gbps network cards in data centers, and also
the inclusion of Network Interface Card (NIC) with support for processing power, the
programmable NICs, often called SmartNICs (LIU et al., 2019).

However, high network performance does not rely only on hardware. The software
side, responsible for operating the hardware, is also critical. The GNU/Linux Operating
System (OS) is the most frequently used one in data centers (SURVEYS, 2021), making the
Linux Kernel a performance decisive component for servers, since it is responsible for the
interaction between hardware and user space applications. Regardless, the Linux Kernel is
general-purpose, supporting a wide range of protocols and drivers with diverse use-cases,
varying from Internet of Things (IoT) sensors, embedded devices, smartphones, access
points, switches, and data center servers. This broad coverage gives Linux a platform-
agnostic network processing that relies on costly packet copying among the different packet
buffering areas and operating system mode switching between user and privileged kernel
modes, as well as a full network and transport layer implementation. These and other
properties often translate to network overhead in data center environments (RIZZO, 2012)
(BELAY et al., 2014) (HOILAND-JORGENSEN et al., 2018), and pose a concern on the new
bandwidth and low delay requirements from the emerging technologies mentioned before
such as NFV.

Founded on these concerns, software frameworks, commonly referred to as packet pro-
cessors or packet processing frameworks, emerged in an attempt to enable fast network
processing in these OSs. They create new mechanisms to exchange packets between the
NIC and user space applications. Examples of these frameworks are Data Plane Devel-
opment Kit (DPDK) and eXpress Data Path (XDP). DPDK was one of the first packet
processors to implement a technique called kernel bypass. XDP emerged in response to
kernel bypass frameworks, proposing the in-kernel processing technique. Later chapters
will detail how each of them work and explain their main counter-points. Overall, these
frameworks aim at delivering packets to a user space application developed specifically to
interact with them, so instead of using ordinary OS system calls, the application uses the
framework’s API to exchange network packets. These network applications range from
firewalls, software routers, Deep Packet Inspection (DPI), Virtual Network Functions
(VNFs), and others.
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However, as these frameworks present different implementations on how to assess fast
packet processing, understanding their performance is critical to shape their deployment
on real data center environments. As a result, this research field attracted researchers to
experiment on with different application contexts and scenarios in order to assess their
main performance considerations.

The remainder of this chapter further details this research context along with the
motivation to this work. Also, it explains the objectives and relevant research questions,

as well as the methodology applied to conduct the research.

1.1 MOTIVATION

Cloud Computing is a predominant paradigm in current Data Centers. Approximately
81% of Information Technology (IT) organizations use cloud computing or have applica-
tions deployed in the cloud, according to a survey from IDG (IDG, 2020). A key technology
that enables Cloud Computing is Virtualization, which puts virtual environments at the
center of all these organization’s infrastructure.

Therefore, the context exposed at the beginning of this chapter becomes even more
critical: the overhead imposed by the kernel inside these Data Center servers degrades
network performance for all Virtual Machines (VMs), regardless of what application/ser-
vice they execute (Dantas et al., 2015) (Liu, 2010). This issue increases if the server executes
network applications like a firewall, checksum offloading or packet routing before sending
the packets to the VMs, since the processing of these packets involves kernel’s packet 1/0.

These conditions propose that if a sysadmin implemented a network application with
one of the packet processing frameworks mentioned before in a real Data Center envi-
ronment, it would likely be implemented in hypervisor servers, that host multiple VMs.
This means that this application would share the host resources with the VMs and its
load, which may in return degrade the framework’s performance. Currently there is a
lack of ground covered by publications and experiments that addresses the issue of how
these frameworks perform in the existence of a virtual environment, and also that com-
pares their performance as single packet processing frameworks. Moreover, as mentioned
earlier, understanding the performance of the packet processors is critical to shape their

deployment on real data center environments.

1.2 RESEARCH QUESTIONS

Considering the context exposed previously, this work seeks to answer the following

research questions:

o Is the performance of in-kernel processing approach proposed by frameworks like
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XDP surpassing the performance of kernel bypass technologies from frameworks
like DPDK?

o How is the virtual environment from cloud computing servers affecting the per-

formance of fast packet processing frameworks?

« Isa cloud computing data center with high disk I/0O usage like database or storage

VM servers affecting the performance of fast packet processing frameworks?

e Is a cloud computing data center with high network and CPU usage like VNFs
servers (running demanding application such as Distributed Denial-of-Service (DDoS)
protection, routing, DPI, Load Balancing) affecting the performance of fast packet

processing frameworks?

This research conducts experiments to address and answer these questions. The general

and specific objectives are addressed in the next section.

1.3 OBJECTIVES

Given the motivation described in the previous sections, the main objective of
this work is to evaluate DPDK and XDP’s performance when sharing host’s
resources within a Cloud Computing virtual environment. Moreover, there are

specific objectives of this work, namely:

o Build a packet processing architecture using DPDK and XDP that implements

packet processing features with different resource usage.

o Provide a report of issues and challenges found during the process of developing
applications that use DPDK and XDP as packet 1/0O.

o Update literature with experiments using newer versions of XDP, since most exper-

iments conducted by literature uses initial versions of XDP.

1.4 METHODOLOGY

The methodology applied in this work complies with the following phases:

o Theoretical study of the main concepts related to network packet processing and

data analysis.
e Literature review.

o Development of the packet processing architecture that implements packet process-
ing based on DPDK and XDP.
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o Definition of a testbed that simulates a cloud computing data center with storage

and database servers, VNFs and virtual environment.
o Execution of experiments and analysis of collected data.

The theoretical study allows familiarization with the history of network packet pro-
cessing inside Linux and other frameworks, and also develops basic knowledge of data
analysis using basic statistical methods that a researcher may be unfamiliar with. During
literature review, it took place revision of the works that compare some packet processing
frameworks to understand where the state of the art currently stands when it comes to
packet processors evaluation especially in virtual environments, and also to understand

important metrics used to evaluate these frameworks.

1.5 STRUCTURE OF THE DISSERTATION

The remainder of the structure of this dissertation is: Chapter 2 presents the back-
ground concepts for this work. It describes the network path a packet traverses inside
the Linux Kernel as well as gives details of DPDK and XDP’s history and architecture.
Chapter 3 describes the state of the art through related works, discussing similar works
and the way they differ from the one presented here. Chapter 4 presents the testbed
scenario, the experimental design and the experiment itself, and discusses the obtained
results. Chapter 5 discusses the conclusions of this work as well as the main contribution

and future works.
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2 BACKGROUND

This chapter presents the main concepts needed to understand the work undertaken in
this research. First it describes in detail how the Linux Kernel processes network packets
inside a host, with packets flowing from the NIC to the user space application. It also
outlines how this processing can slow down network performance and become a bottleneck
in some scenarios. Next, it describes the DPDK framework, explaining its design principles
and benefits. Finally, it depicts the XDP framework, explaining the motivation behind its

development as well as shows how it works and details its components.

2.1 LINUX NETWORK PATH

When a packet reaches a host, the NIC receives it and its course across this host
begins. The NIC and its driver processes Layers 1 and 2. After receiving the raw packet
signals, transforming and placing them as packets inside the NIC memory, they are then
sent to the kernel for processing by upper layers (WU; CRAWFORD; BOWDEN, 2007). This
is done firstly by allocating the packet in system memory. To do this, the kernel uses
a circular queue of buffer descriptors known as ring buffers to manage incoming and
outgoing packets via a device driver (separate rings for incoming and outgoing packets)
in a First-In, First-Out (FIFO) manner. The buffer descriptors in the ring references a
memory slot, holding information like address space and length (RIZZO, 2012). These
memory slots are the socket buffers, used to allocate incoming packets, that are stored in
a previously allocated sk_buff struct data structure. Figure 1 illustrates the network
processing path, to ease understanding of this process.

When a packet arrives, the driver searches for slots marked as “ready” in the ring
buffer. Upfront, if no slots are ready, the NIC drops every new incoming packet, until
there are new “ready” slots available. Then the packet is copied to the sk_buff buffer
addressed in the ring via Direct Memory Access (DMA), the I/O mechanism that allows
hardware devices to transfer data to the memory system without the need of the system
processor. This mechanism depends on interrupt handling (CORBET; RUBINI; KROAH-
HARTMAN, 2005), therefore, after the packet is copied and made available to the kernel,
the NIC issues an interrupt to inform the CPU that the packet is ready. The CPU then
receives this packet by adding a reference of the NIC to its poll queue, making it accessible
via the poll method (WU; CRAWFORD; BOWDEN, 2007).

Afterwards, the packet is taken to the kernel protocol stack. Layers 3 and 4 process-
ing take place, running the implementation of protocols like IP, TCP, ICMP or UDP.
When such protocols are processed accordingly, the packet can be passed to user space.

First, the application process in user space issues a receive system call (e.g. recv()) in
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Figure 1 — Linux network packet processing path

advance, containing the appropriate data’s destination information like memory address
and number of bytes to be transferred. This information is usually supplied by an iovec
struct via system call to the socket’s data receiving process. Then, after the packet leaves
the network stack, it is sent to the socket receive queue, where it will be processed as a
network data: sometimes, different packets compose a single data that was fragmented
due to TCP’s fragmentation support, for example. This data is reassembled in the socket
receive queue. When data is ready, it is copied by the receive system call from the socket
receive queue through the iovec structure and is delivered to the user space process that

issued the system call.
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2.1.1 Performance issues

The Linux network path poses some issues related to performance, that can be critical
in scenarios like data centers, where frequent packets are received and transmitted. The
following main issues are discussed next.

As the kernel uses the sk_buff buffer to hold packets, its frequent allocation and
reallocation causes CPU stress. Studies conducted in (HAN et al., 2010) show that approx-
imately 5% of CPU cycles are spent to initialize sk_buff buffers, 8% are spent dealing
with allocation and reallocation and 50% is used to control requests for these memory
operations.

System calls can also delay packet processing and lower performance. First, a delay
is caused by the frequent mode switching between user and kernel-mode (TSUNA, 2010),
that happens every time a packet is sent to a user space process, for example. Addition-
ally, processor structures like L1 data and caches are occupied by kernel-mode state, and
the replacement to/from user-mode leaves a footprint in the form of processor state pol-
lution, that results in wasted CPU cycles and structures entries (SOARES; STUMM, 2010).
Furthermore, system calls can impact user-mode Instructions Per Cycle (IPC) due to the
mentioned processor state pollution and also processor pipeline flushing.

In addition, memory usage is also a problem inside Linux. Initially, the sk_buff buffer
can be considered too large, primarily because it carries information about different proto-
cols and their headers. This can become a bigger problem to certain applications that will
not need such protocols headers allocated in memory. Also, as explained before, a packet
goes through at least two copying processes inside the kernel. These copying mechanisms
also increase CPU processing and resource consumption, that decline performance. Stud-
ies carried out in (BRULIN; DUMAZET, 2017) show that depending on the buffer size, it is
possible to save up to 39% of system cycles when processing packets using mechanisms
that avoid copying buffers.

As Linux is a general purpose kernel, it must support as much layer 3 and 4 protocols
as possible, in order to maintain the most diverse types of scenarios/applications and
devices. This opposes having an efficient kernel, as such processing is often unnecessary to
certain user space applications (JEONG et al., 2014). Ultimately, the per-packet processing
is the main bottleneck issue, especially when dealing with small packets (HAN et al., 2010)
(RI1ZZO, 2012) (BELAY et al., 2014). Linux processes one packet at a time, meaning that
all of the additional overhead and resource usage discussed above are repeated for every
new packet, which can represent overkill in scenarios with high network load.

Under these conditions, different technologies emerged in an attempt to solve packet
processing issues. One of them is the Kernel Bypass. This mechanism determines that
the NIC is exposed to user space and then packet 1/0O is conducted directly between the

application and network card. Therefore, the kernel itself is bypassed and not used to
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exchange data. In addition, some processing preferences are taken to enable acceleration,

which brings some benefits. The main examples are:

o Pre-allocation of packet buffers during initialization, avoiding memory allocation

during execution of packet processing.

» Avoidance of packet copying, fixing the packet in a memory location accessible

throughout the whole processing path and user space application.
« Batching packets, processing multiple packets at a time.

« Simplified network stack, leaving Layers 3 and 4 processing to the user space appli-

cation.

o Stepping away from the kernel’s complexity and overhead like frequent mode switch-

ing, system calls and semantics like POSIX.

Some examples of frameworks that implement the Kernel Bypass mechanism are netmap
(R1ZZO, 2012), DPDK (FOUNDATION, 2018) and PF RING (NTOP, 2018). As for the
scope of this work, the DPDK framework will be detailed in the next section.

2.2 DPDK

The Data Plane Development Kit is a set of user space libraries and drivers created
to enable the Kernel network stack to bypass and achieve high packet processing rates. It
creates an Environment Abstraction Layer (EAL) that is responsible for interacting with
low-level resources like network cards and memory space, managing its components to
provide operations like memory management, time reference or atomic/lock operations.
The EAL main purpose is to offer a generic environment so that the user space programs
can interact with and do not worry about implementing such low-level features. The EAL
can be compared with the Kernel’s System Calls. DPDK also uses a run-to-completion
model to process packets, allocating all resources used during execution before the user
space application execution. It also gains access to network devices by polling instead of
using schedulers like Linux, avoiding interrupts and consequently removing the overhead
they impose (GROUP, 2017a). Figure 2 illustrates DPDK’s network processing path as
explained next.

DPDK mainly builds on top of the core components, a set of libraries providing the
components that enable the kernel bypass and packet processing. The first component is
the Ring Library, implemented in librte_ring. The Ring library provides a ring buffer
to manage packet buffer queues, storing the objects in a table, with a fixed maximum size
and a FIFO management. It is responsible for interacting with the packet buffers received

by the NIC. The ring also supports batch processing, allowing the enqueue and dequeue
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of multiple packets in a single procedure, which improves speed and cache misses (GROUP,
2017b).

The next component is the Memory Pool Manager, implemented in 1ibrte_mempool.
As the name implies it manages the memory pool, allocating in memory the pool of ob-
jects. It uses a ring as the mempool handler, to store free available objects. Those objects
are the third core component, the Network Packet Buffer Management, implemented
in librte_mbuf. This component coordinates the allocation of memory buffers used to
store a network packet, and they are stored in the memory pool.

DPDK also uses a special driver that runs in user space and maps the device’s memory
region into user space (GALLENM#LLER et al., 2015). When a packet arrives at the NIC, the
packet is initially mapped in the card’s memory region and the mempool consults which

mbuf object is free within the ring and stores the packet in the next available one. Next,
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the user space program can interact with the packet processing via the DPDK API. This
effectively implements a kernel bypass solution, where a user space framework directly
interacts with the network card and exposes network packets to the application.
However, moving away from the kernel also brings some concerns. The first is that
applications using kernel bypass have to re-implement components already provided by
Linux, such as device drivers, layer 3 and 4 protocols or routing tables, which creates a
security and isolation concerns:
This leads to a scenario where packet processing applications operate in a
completely separate environment, where familiar tooling and deployment
mechanisms supplied by the operating system cannot be used because of
the need for direct hardware access. This results in increased system com-
plexity and blurs security boundaries otherwise enforced by the operating
system kernel. The latter is in particular problematic as infrastructure
moves towards container-based workloads coupled with orchestration sys-
tems such as Docker or Kubernetes, where the kernel plays a dominant

role in resource abstraction and isolation (HOILAND-JORGENSEN et al.,
2018).

Also, the kernel offers security mechanisms to protect the OS, like protected memory
region, process isolation and controlled hardware 1/O. Using a kernel bypass solution
discards all of these mechanisms, leaving the application in charge of re-implementing

them, which cannot always be reliable or bug free.

2.3 XDP

As discussed previously, kernel bypass solutions raise security concerns as they discard
the kernel and its protection features. The XDP framework brings back packet processing
to the kernel, instead of removing network control from the kernel, and it can be presented
as a new kernel hook that provides programmable packet processing inside the kernel.

XDP uses the extended Berkeley Packet Filter (eBPF) infrastructure to leverage its
secure and fast processing environment inside the kernel. This infrastructure is the foun-
dation of XDP, and constitutes one of the main components responsible to enable the
XDP system. It consists of some important elements like the eBPF virtual machine,
eBPF maps, and the eBPF verifier. To better organize the description of how these
components work, eBPF will be detailed in the next section, along with its elements,
followed by the XDP structure.

2.3.1 eBPF

eBPF is the rework of the Berkeley Packet Filter (BPF), created in 1992, that provided
a native way to inject bytecode from user space into the kernel, to perform network filtering

tasks. It attached itself in a socket and filtered every incoming packet from there. With
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time, the rework of BPF began and in around 2014, eBPF surfaced, turning BPF into
the classic Berkeley Packet Filter (¢cBPF) (MONNET, 2016).

In general, eBPF is a safe kernel environment, that allows user space code to be
executed inside the kernel. This is done executing a register-based virtual machine inside
the kernel, with Just-In-Time (JIT) compilation and an in-kernel verifier that checks user
space code’s security, to ensure it will not harm the kernel. It also provides structures to
allow communication between user space and the program inside the kernel, as will be
described next.

The eBPF virtual machine is a register-based instruction set architecture (ISA), that
mimics native hardware instruction set. This allows the creation of function calls that
receive parameters through registers, and is able to map an eBPF function to a specific
hardware instruction, reducing overhead (VIEIRA et al., 2020). This VM is the environ-
ment where the dynamic translation (JIT) and loading happens, allowing the user space
program to be executed.

Nevertheless, in order to be executed in kernel space, the program must be secure and
pose no harm to the kernel. To ensure this, the kernel has only one way to receive eBPF
programs, that is through the bpf () system call. This system call passes the program to
the eBPF verifier, that is responsible for inspecting the program’s byte code in search
for possible properties that could damage the kernel (HOILAND-JORGENSEN et al., 2018).
To do this, the verifier first creates a Directed Acyclic Graph (DAG) of the programs
instructions. This graph is used to analyse the program’s steps to ensure it has no cycles,
meaning it performs no backward jumps or undefined size loops. This is useful to analyse
the program bounds, looking for unverified loops or unsupported /unreachable instruction
calls. Initially, the verifier didn’t allow loops to protect the kernel from programs that
could never terminate, or that would take too much time or processing resources. How-
ever, recent updates added support for bounded loops (RYBCZY#SKA, 2019). The verifier
analyses the size of the program by its instruction number, and with this update this in-
struction limitation is increased, from 4096 to one million instructions. This enabled the
verifier to check for bounded loops by simulating all iterations as a collection of states,
directly allowing defined-size loops to be inserted in the program. Lastly, the verifier in-
spects all possible paths of instruction calls, to ensure every memory access is safe and
limited to the program’s local variables. This also forces the program to perform bound
checking when accessing packet bytes, to guarantee that the memory access is performed
in checked addresses.

In addition to this, eBPF programs cannot use the system’s default memory storage.
To achieve such feature, eBPF Maps are available. Maps are key-value stores, defined
during program loading with fixed sized values. Theses stores allow user-defined data
structures to be loaded into the kernel, and are available to be accessed by user space

programs or other eBPF programs (VIEIRA et al., 2020). This means it can also behave as
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a way for multiple eBPF programs to communicate between each other or between eBPF
and user space programs. This specific functionality can enable a chain of programs, that
each can be triggered according to the change of an specific value in a Map (HOILAND-
JORGENSEN et al., 2018).

2.3.2 XDP driver hook

An XDP program is executed by a hook in the device driver, triggered by the event of
a new packet issued by the network card. This means that an XDP program is executed
in an early point, right after the packet is received by the NIC, even before the sk_buff
allocation.

An XDP program starts with an input context object in the form of a struct xdp_md
structure, that contains different pointers to different parts of the raw packet. These parts
are the beginning and the end of a packet, pointed by the data and data_end pointers.
Theses pointers serve especially security purposes, following the same disposition of eBPF
for bounding all memory operations to ensure they are made in fixed and known memory
area. The third pointer data_meta holds a free memory address that can be used to
exchange packet metadata. With this context object, the program can parse packet data,
read metadata fields and also add metadata to the packet, adding or removing content or
headers to the packet data (VIEIRA et al., 2020).

An XDP program can also access kernel functions through helper functions, that enable
the program to use specific kernel functionalities like check-summing or routing table look-
ups. This is useful especially when such functionalities are needed but parsing the packet
by the normal network stack is not an option. Figure 3 summarizes the explained XDP’s
network processing path.

After executing all possible packet processing operations, the XDP program must
return an integer value. Four different values are available, each of them representing a
different code that will define what will happen to the packet after it leaves XDP:

XDP_DROP, this will make XDP drop the packet;

o XDP_PASS, sends the packet to the kernel network stack, to be processed as it would

normally be;

e XDP_TX, causes the packet to be re-transmitted out via the same network interface

it came from,;

o XDP_REDIRECT, allows the packet to be redirected to other locations. This code needs

other parameters to indicate the target destination of redirection, which can be:
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Figure 3 — XDP network packet processing path

— Network interface: re-transmitting the packet to a different network interface
from what it came from. This includes virtual interfaces connected to virtual

machines in user space;

— CPU: passes the packet for further processing on another CPU, to achieve

load balancing for example;

— User space: redirects the packet directly to user space to be used by other
application, through the new AF_XDP socket family. This approach can be com-
pared to a kernel bypass, as it avoids the standard kernel stack and most generic

packet processing, and delivers the packet to user space.

Alongside this standard packet processing, XDP supports the offloading of applications
to a programmable NICs. In other words, XDP can send the user space application to a
specific NICs, and it will run inside the network card. This is only possible when using
programmable NICs, which are specific network devices with powerful processing units
like CPU and memory (LIU et al., 2019), often referred to as “SmartNICs”. To execute
an application inside the NIC via XDP, it cannot require kernel helper functions and it

needs to be able to operate outside the host, this way XDP acts as an enabler to send the
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application to the network interface through its device driver.

This functionality can enhance packet processing by mainly two ways. First, it can
achieve high throughput performance since it is using dedicated hardware to process only
network packets (Hohlfeld et al., 2019) (LIU et al., 2019). Second, as the NIC is responsible for
packet processing, it frees the host’s resources and enables it to dedicate processing power
to other tasks (Miano et al., 2019). Such functionality may be critical to cloud computing
environments, that need to process the highest amount of packets while retaining host

resources to the cloud applications.
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3 RELATED WORK

This chapter surveys the state-of-the-art in performance evaluation of packet process-
ing frameworks, more specifically the ones including XDP and/or DPDK. In the remainder
of this chapter, the works surveyed contribute in some ways to this dissertation, either as
an insight for the experiments and methodology adopted or as a theoretical reference.

The work made in (GALLENM{LLER et al., 2015) evaluates the performance of three
packet processors that adopt the kernel bypass techniques, DPDK, PF__RING and netmap.
The experiments measure the achievable throughput by the frameworks in packets per
second (pps) metric. Their work first evaluates each framework’s throughput when exe-
cuting tasks with variable CPU load in each processed packet. Results show that with
tasks that consume around 100 CPU cycles, netmap looses throughput performance from
14.88Mpps — their NIC line-rate — to around 11Mpps. This performance loss only happens
with DPDK and PF_RING with tasks of 150 CPU cycles. Their work also evaluates the
influence of batch sizes in throughput performance, and DPDK shows that with CPU
tasks of up to 150 CPU cycles, a batch size of either 8 or 32 packets results in the same
line-rate throughput. Only when performing tasks from 150 until 400 CPU cycles the big-
ger batch size offers a higher throughput, despite the difference between the two batches
is around 1Mpps. From 400 CPU cycles and up, the two batch sizes perform equally at a
low throughput of around 6.5Mpps or less.

The authors also perform an evaluation of how the batch size influences the latency
in each processed packet. With small batch sizes of 8 packets, higher latency occurs of
around 130us with DPDK since it processes only 8 packets per API call. With batches of
16, the latency is as little as 10us. Further increasing the batch size causes an interesting
trade-off, it consequently increases the latency, since the time a packet spends queued is
higher, as it has to wait for new packets to arrive and fill the batch size. So a batch size
of 256 packets has a latency of 40us.

The developers of XDP wrote the research paper in (HOILAND-JORGENSEN et al., 2018),
describing the framework’s details followed by a performance evaluation. Their paper ex-
plains how XDP works, shows its interaction with eBPF and the rest of the kernel. After-
words, they conduct different experiments to directly compare XDP and DPDK. The first
experiments test performance with packet size of 1500 bytes, and both frameworks could
process the packets at line-rate. Then, they perform experiments with minimum-sized
packets of 64 bytes. The study starts by comparing the throughput (packets per second)
of both frameworks with no processing tasks and an increasing number of CPU cores.
DPDK performs better than XDP in all cases, but XDP has an increase of performance
as the CPU cores increase. These measurements do not include any host resource usage
like CPU or memory. The authors also run experiments measuring the CPU usage with

a growing offered load, where DPDK is always consuming 100% while XDP scales CPU
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usage accordingly to the offered packet load. The experiments also run packet forwarding
tasks, which also do not perform host resource usage but impose latency for the packet
processing. In these experiment, XDP outperforms DPDK only when it forwards packets
to the same NIC and DPDK to a different NIC. When both forward to different NICs,
DPDK shows a better throughput performance and a lower latency in forwarding.

The research study described in (KOURTIS et al., 2015) focuses on the NFV context.
It provides experiments that compare the performance of a DPI VNF with a normal
DPI program in user space, while alternating between the utilization of DPDK and the
ordinary Linux kernel network stack. Their work focuses on benchmarking how virtual
network functions differ from bare-metal network programs in terms of performance. They
do not attempt to investigate if the independent virtual environment influences DPDK,
instead they use DPDK to test if it can improve the VNF’s performance as much as it
improves the bare-metal program.

The results from their work show that DPDK achieves the 10Gbps NIC line-rate
in bare-metal environment, while the standard Linux kernel maximum throughput is at
1Gbps. When using virtualization, the standard Linux kernel stays at 1Gbps throughput
and gains more instability, creating a variable throughput ranging from 1000Mbits/s to
600Mbits/s. DPDK also looses stability and does not achieve line-rate, with approximately
19% throughput performance degradation when compared to the bare-metal correspond-
ing experiment.

The work in (Hohlfeld et al., 2019) focuses on evaluating performance of different execu-
tion points of XDP, including, at user space with AF_XDP, the standard XDP at the device
driver and special ofloading to SmartNICs. Note that all previous works that studied XDP
use the standard device driver. The first executed experiments evaluate processing tasks
with no resource usage, like (HOILAND-JORGENSEN et al., 2018). The results show that the
standard device driver XDP can only achieve line-rate throughput when using multiple
cores. The NIC XDP always achieves line-rate since it has separate processing functional-
ities, and the user space XDP never achieves line-rate, but its performance scales linearly
with the presence of more CPU cores, as expected. When processing packets with tasks
that perform CPU usage, the NIC offloading has the worst performance as the CPU from
the network card is not as powerful as the ones in the host.

Their work also measures response time from each execution point. When using XDP
at the NIC, response time is close to zero with a maximum of 16us at any incoming packet
rate. When using XDP at the device driver or user space, the response time is around
0.3ms with an incoming packet rate of 100pps, since the interrupt delivery dominated
CPU processing. With a higher packet rate of 1Mpps, CPU changes to polling mode
and the response time decreases to around 0.05ms. The authors also analyse response
time when the processing tasks perform memory access, where the NIC offloading again

presents the smaller response time of 0.02ms with an incoming packet rate of 2Mpps, and
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0.9ms when the packet rate is 14Mpps. The device driver execution point comes in second
place, with 0.04ms and 1.5ms with the same corresponding incoming packet rate.

They also perform experiments on a VM, but at a point of view from inside the
virtual machine, with additional execution points: at the VM user space with AF_XDP, at
the VM device driver, at the host device driver and at the physical NIC. It is important
to notice that although this work performs experiments with a virtual machine, it does
not consist of a cloud computing environment. This is because it focuses only on one VM
execution and testing XDP’s performance inside this VM. It does not create a virtual
environment, with multiple VM execution with different types and intensity of resource
usage, as encountered in real cloud computing environments. Results with 4 CPU cores
show that XDP inside the VM at user space and device driver has a similar performance
with a mean throughput of 874kpps and 921kpps, respectively. Throughput in the host
device driver stays at line-rate in this same scenario, along with the NIC. Their work also
studies the VM and host CPU usage. Results show that when the processing task has no
resource usage, the host CPU usage is not affected with whether XDP is executed at the
VM user space or at the VM device driver. But when the processing task performs CPU
usage, the host decreases CPU usage when XDP execution point changes from the VM
user space to the VM device driver.

The research paper in (SCHOLZ et al., 2018) evaluates the possibility of enhanced packet
filtering inside the kernel. It does this by evaluating firewall rules inside XDP followed
by the evaluation of socket filtering with eBPF and systemd init daemon. To align to
this dissertation’s objective, only the first evaluation part of their work is discussed. It is
worth noting that the experiments executed in their work used an initial and experimental
version of XDP. This version considered the JIT compiler experimental and therefore
had it disabled by default. The evaluation first analyses a sample XDP application that
forwards packets or drops them, depending on the packet rule. The evaluation tests three
types of incoming packets where XDP drops either 10, 50 or 90% of the packets. Results
show that the throughput performance is better in the case of 90% of packets to drop, with
a 7.2Mpps throughput. This occurs due to the additional processing needed to forward
packets, that is not the case when dropping them. They follow with measuring the CPU
utilization and conclude that when offering a 10Mpps incoming packet rate, XDP uses
approximately 60% of CPU load only for packet processing with eBPF-related functions.
Finally, they perform latency measurement, with results showing a median latency of
around 50us with an incoming packet rate from 1 to 6Mpps. When the offered rate is
closer to TMpps — the maximum throughput XDP could process in their experiments —
the latency increases to 1000us.

Based on the showed literature, Table 1 summarizes the characteristics of each work
in perspective to this dissertation’s contribution. It is noticeable that no previous work

exposes both frameworks to a virtual environment as seen in cloud computing, as well as
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none takes into account the amount of dropped packets as a response metric. It’s worth
mentioning that packet loss is a critical metric in a Cloud Computing scenario. Therefore,
is should be part of such experimental evaluation to better represent this scenario. Also,

most of the reviewed works do not use in the same experiment scenario together the
DPDK and XDP frameworks.
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4 EXPERIMENTAL EVALUATION

This chapter presents how the experiments were designed, implemented and executed.
First, it details the packet processing architecture designed to conduct experiments with
DPDK and XDP, followed by the explanation of the testbed configuration along with
the Design of Experiment (DoE) created and the execution steps. Then, it presents the

results obtained, followed by the discussion and evaluation of these results.

4.1 THE PPVE PACKET PROCESSING ARCHITECTURE

The development of a packet processing architecture is a central part of this work since
the main goal is the evaluation of DPDK and XDP. An existing architecture that uses
these two frameworks in a manner that fits our testbed scenario and research environment
is difficult to locate in the literature. There are some related simple tools built as a proof-
of-concept with simple packet processing tasks as well as other far too complex production
level applications with different layers of configurations not compatible with our scope.
This led to the creation of the Packet Processing under Virtual Environments (PPVE)
architecture, a packet processing architecture that uses DPDK or XDP to process packets
under different host resource usage modes.

PPVE processes packets with different tasks that perform different types and intensity
of hardware resource usage. The idea is to emulate a typical and a more realistic data
center environment. For example, it is feasible that in these real environments, packet
processing frameworks perform resource intense tasks like DDoS protection (Miano et al.,
2019), load-balancing or deep packet inspection (TU; YOO; HONG, 2019). Hence, when
assessing an experiment that simulates such case, it is desirable that the frameworks
also perform heavy-loaded tasks. These tasks are configured as parameters parsed when
starting PPVE, along with the framework it will use. Figure 4 illustrates the PPVE
architecture.

The first parameter defined is the framework used, which determines the selected
technology either DPDK or XDP. This loads one of the frameworks in the OS and starts
receiving packets from the NIC. Then, the “PPVE Mode” configures the type of resource
usage being either CPU or memory access. This means that the PPVE architecture will
process each received packet while performing tasks that consume either CPU or memory
resources. These represent the resources most commonly used when running packet pro-
cessing frameworks inside dedicated servers (Hohlfeld et al., 2019) (Miano et al., 2019) (TU;
YOO; HONG, 2019) (GALLENMULLER et al., 2015). Finally, the “PPVE Stress Level” defines
the intensity of each resource usage, being either “High” or “Low”. These values are an

abstraction of real intensity values explained in the remainder of this section. Each stress
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Figure 4 — The PPVE architecture

level regards the intensity of the chosen PPVE Mode. Hence, for example, if the PPVE
mode is CPU and the Stress Level is High, it means that for each packet received by the
PPVE architecture, the architecture performs a heavy-loaded CPU processing task.

The CPU PPVE Mode (often referred simply as CPU Mode), performs CPU usage
by running checksum validation for each packet received. Checksum validation refers to
the validation of the Checksum field! in [Pv4 Headers. This field contains a checksum of
the IPv4 header and every network node that receives the IP packet can (re)calculate the
header checksum and compares it with the one available in the checksum field, to validate
its integrity. In other words, the CPU Mode calculates the received packet’s IPv4 header
checksum for every packet received, therefore performing CPU usage. Checksum calcula-
tion is not applicable to every type of CPU processing, but it serves as a representative
measure for processing power usage and complexity. The Stress Level abstraction for the
CPU mode simply repeats the checksum calculation for each packet to consume more
CPU and simulate heavy-loaded CPU tasks. The “Low” stress level for the CPU mode
runs one checksum calculation per packet, and the “High” stress level runs ten checksum
calculations per packet.

The memory mode simulates a traditional firewall rule: it holds an IP list of allowed
IP addresses and for every new packet, PPVE retrieves its source IP and searches for it
in the allowed IP address list. This operation performs memory access because the IP
list is an in-memory hashmap list, which means that consulting an IP on the list triggers
memory access and reading. The Stress Level abstraction in this mode acts by changing
the size of the IP list, so the “Low” level uses a 512KiB list whereas the “High” level uses

L https://datatracker.ietf.org/doc/html/rfc1812#section-4.2.2.5
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only a 16MiB list. Table 2 summarizes the PPVE modes, stress levels and their tasks.

Table 2 — Meaning of the PPVE Stress level for each PPVE Mode

PPVE Mode PPVE Stress level Meaning on the experiment

CPU Low 1 Checksum calc.
High 10 Checksum calc.
Low Hashmap list size of 512KiB
Memory
High Hashmap list size of 16MiB

The PPVE source code is available in the remote SourceHut git repository? and li-
censed as GPLv3+.

42 TESTBED

As stated in previous chapters, the basic goal of this research is to evaluate and
compare the performance of XDP and DPDK packet processors when inserted in a virtual
environment. To assess this goal, this research assembled a testbed along with the DoE,
basing the execution of the experiments. This is detailed in the remainder of this section.

The testbed adopts a P2P topology, with two servers directly connected to each other.
The first server, called PPVE Server (PS), is the Device under Test (DuT) and is re-
sponsible for the execution of the PPVE architecture. The other server is the Sender
Server (SS), which sends a burst of packets to PS, where PPVE processes them. Figure
5 illustrates this testbed scenario.

In order to simulate a more realistic Cloud Computing scenario and to expose DPDK
and XDP to this scenario, the PPVE Server runs a virtual environment with Kernel-
based Virtual Machine (KVM) VMs. This environment focuses in simulating different data
center cases in-line with the scope of this research, like database, storage or VNF servers.
Hence, the virtual environment may host from 0 to 128 VMs, and each of them executes a
workload to stress the server and compete for hardware resources. This workload simulates
the mentioned data center server cases, and as so varies between disk 1/O, CPU and
Network. Its important to remind that the PPVE architecture runs directly on the server,
and not inside the VMs, as the goal of the experiments is to expose both DPDK and XDP
to resource competition with the virtual environment.

The Sender Server uses the MoonGen?® (EMMERICH et al., 2015a) packet generator to
create and send the burst of packets to PS. MoonGen is a software developed specifi-
cally for academic and industrial experimentation testbeds that need to generate burst

of network packets. It can send packets at line-rate on 10Gbps NICs, and it allows the

2 https://git.sr.ht /~eduardofreitas/ppve
3 https://github.com/emmericp/MoonGen/commit /525d9917c98a4760db72bb733cf6ad30550d6669
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Figure 5 — Experiment’s testbed

customization of packets from different protocols such as 1Pv4, IPv6, ICMP, TCP and
UDP.
Table 3 specifies the configuration setup of both hosts and the version of the software

used.

Table 3 — Testbed Hardware and Software Specification

Component Specification

Processor Intel Xeon Bronze 3204
RAM 64GiB
HD Dell BOSS VD
NIC Intel Ethernet Controller X540-AT?2
OS GNU/Linux Ubuntu 20.04.2 LTS
Kernel Linux 5.4.0-70-generic
KVM Version 2.11.1
DPDK Version 20.11.1
MoonGen git commit 525d991

4.3 EXPERIMENTAL DESIGN

The experimental design or DoE, as stated in (NIST/SEMATECH, 2012), is an effec-
tive way to plan the experiments that will be executed, so that analysing the responses

can provide solid conclusions. The design of experiments conducted in this work follows
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a Comparative Experiment that compares DPDK and XDP’s performance against
adverse conditions detailed next. This comparison is the main goal of the DoE.

The experiment considers a total of seven variables. Five are controllable input factors
and the other two are the responses, in other words, the data produced by the experiment.

The input factors and their levels are summarized in Table 4 and described next:

« PPVE Mode, which is the mode in which the PPVE architecture will run, as

explained in Section 4.1. It alternates between “CPU” and “Memory”.

« PPVE Stress Level is the intensity level of the PPVE Mode resource execution,

as detailed Section 4.1. Its levels are “high” and “low”.

« VM Load is the workload executed inside the VMs and varies between CPU, I/O
and Network.

e VM Number is the number of VMs running and performing the resource workload,
ranging between 0, 8, 32 and 128. This number of VMs starts as 0 serving as the
baseline for the experiments, where the frameworks could perform with free resources
and no competition. The successive number of VMs follows the notation of 2", where
n is an odd number starting from 3. The option of n = 1 is discarded since it
represents a small number of VMs (only 2) and would not serve the scope of the

experiments. Finally, the maximum of 128 VMs is due to hardware limitations.

« Packet Size is the size of all packets sent from SS to PPVE, and varies between
64 and 1500 Bytes. It is the norm to usually test packet processing frameworks
with small sized packets since the goal is to assess the higher amount of processed
packets as possible, as shown in works like (R1ZZO, 2012), (HOILAND-JORGENSEN
et al.,, 2018), (HAN et al., 2010) or (JEONG et al., 2014). However, since the goal is
to simulate a real Cloud Computing environment, that is not at all dominated by

small sized packets, the case for bigger packets of 1500 Bytes becomes valid.
As for the responses, the collected metrics are:

o Throughput of Packets Processed per Second, denoted in unit of Mega pack-
ets per second (Mpps), is the throughput of packets that PPVE processes in each

experiment.

« Total number of Packets dropped by the NIC, represented in packets (pkts)

unit, is the total amount of packets that the NIC driver dropped in each experiment.

With the variables explained before, the DoE categorizes as a mixed-level full fac-
torial design. This is the result of having a different number of levels for the factors and

also running all available factor combinations in the experiment.
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Table 4 — DoE’s Factors and Levels

Factor Levels
PPVE Mode | CPU | Memory
PPVE Stress | Low High
Packet Size 64 1500

VM Load | CPU | Network | I/O
VM Number 0 8 32 | 128

When calculating the combination of all factors, a total of 96 runs is necessary for each
packet processor framework. To enhance data reliability, each run replicates 30 times, re-
sulting in 2880 runs for each framework. The execution of the experiment is also separated
in a randomized block design especially to avoid external influences that may interfere in
the responses in similar factors. Two blocks separate the execution based on the packet
size, the first block executes all combinations with packets of 1500 Bytes whereas the
second one uses packets of 64 Bytes.

The packet burst lasts 30s, meaning that after PS assembles the virtual environment
and starts PPVE, SS starts MoonGen and sends the burst of packets for 30s at the a
rate of 10Gbps, the maximum capacity of the network card. This results in a total of
26000000 packets (26Mpkts) sent when the packets are 1500 bytes long, and 420000000
packets (420Mpkts) when they are 64 bytes long.

As mentioned in Section 2.2, DPDK can process packets through batches, meaning it
can use one API call to the NIC to receive multiple packets. This feature is not optional
and programming any application that will use DPDK must include a batch size. To decide
which batch size to use in PPVE for the experiments, a simple experiment evaluates the
influence of the batch size in the throughput performance. The experiment runs within
the same testbed using the “Low” Stress Level and small packets with 10 replications.
The goal is to understand the impact of using the two batch sizes of 4 and 32 packets. The
4 packet batch size is the minimal size available for the testbed’s network device driver,
and the 32 batch size refers to reported related work, that shows that this size offers the
highest performance (GALLENMiLLER et al., 2015), even though the difference may not
be excessive. Figure 6 displays the results from this test. The difference in batch size has
no direct influence in the throughput performance, as it is visible how the median values
remain constant around 14.20Mpps. The scatter plot helps visualizing each experiment
response. It is noticeable that in cases with more VMs, there is higher variation, creating
some data responses below 14.20Mpps, but not enough to influence the overall median
value. These results are inline with mentioned related work that performed batch size
comparisons with DPDK and other packet processors and evaluated that there is little
difference between batch sizes when analysing throughput performance. Note that this

difference may be higher when analysing other network metrics such as latency. Because
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of this, to better match the features from XDP and create more comparable experiments,
the experiments run with 4 packets batch size in DPDK in all experiments. Also, both

framework runs with no feature tuning, such as memory reservation or multiple CPU

allocation.
Comparing batch size influence on DPDK performance
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Figure 6 — Box plot of the DPDK throughput by the number of VMs with an overlaid scatter plot. This
plot compares two distinct batch sizes to evaluate its influence on throughput performance

4.4 RESULTS

This section presents the results collected from the experiments described in the pre-
vious one. Based on the research questions this work seeks to answer, the presentation
of the results is divided in two parts. The first one compares the two frameworks with
no virtual environment, regarding only the performance for each PPVE mode and stress
level. The second part of the results explores the performance of both frameworks with
the virtual environment under different VM loads. To further clarify the observed results,
Table 5 presents the NIC line-rate throughput in millions of packets per second, which
represents the theoretical expected throughput for the packet processing frameworks, i.e.,
if they process every received packet at NIC line-rate. In other words, the values in Table

5 act as a baseline and provide upper bounds and guidelines for comparison.
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Table 5 — Description of expected line-rate throughput

Expected line-rate

Paiczlzet PECkf;afllZ; :: throughput for each
S phys Y framework
64 Bytes 84 Bytes 14,880Mpps
1500 Bytes 1520 Bytes 0,822Mpps

4.4.1 Frameworks comparison

As this first part deals with a scenario with no VMs, it starts by describing experi-
ments with a large packet size of 1500B, as the expected throughput is different than when
using small packets of 64B. Figure 7 shows a box plot of the throughput of each packet
processing framework according to the PPVE Modes and Stress Levels. The achieved
throughput in any case provides little variation, as ensured by the standard deviation
of 0.00007Mpps, calculated from the throughput considering all the samples displayed in
the box plot. Also, the throughput around 0.82Mpps is close to the expected line-rate,
showing a satisfactory result. These results are expected as they represent the “best”
scenario for both frameworks, since there is no background VM executing any resource
load or overhead and the packet size of 1500B provides a low rate of incoming packets,
which enables an achievable high packet rate. This experiment helps concluding that both
frameworks have a similar near line-rate performance when receiving big packets of 1500
bytes and have no virtual environment execution. This conclusion also considers both

when the framework performs CPU or memory usage.

Scenarios with packet size of 1500B and 0 VMs
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Figure 7 — Experiments comparing the throughput of frameworks according to the modes and stress levels
when using big packets. The dashed line indicates the NIC line-rate
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However, the case for small packets draws a different picture as demonstrated by the
results displayed in Figure 8. The PPVE stress level emerges as an important factor
when it comes to the achievable throughput. In both frameworks, the stress level of the
memory mode causes little impact in the median throughput. But when analysing the
stress level of the CPU mode in both frameworks, it translates to a direct performance loss.
Considering the median, when both frameworks perform memory reading tasks, the size
of the memory list has no impact on the throughput performance, maintaining the same
median and overall spread. On the other hand, when performing tasks with CPU usage,
DPDK’s performance drops 24.8% when increasing from low to a high stress level and
as much as 57.8% when using XDP. This mainly happens because the DPDK’s standard
behaviour consumes 100% of one CPU core with busy polling for packet processing, while
XDP scales its CPU consumption according to the received packet rate. Also, even though
DPDK has the mentioned CPU resource usage, it is visible that its performance suffers
if the processing requires heavier CPU usage. This would require tuning more CPU cores
for both frameworks to enhance its performance, which may not be ideal if it is running
in a production environment dedicated for server applications. This helps inferring that
the usage of host memory should not interfere in both frameworks performance, if there
is no virtual environment execution. On the other hand, the usage of host CPU causes an

impact on both frameworks throughput, when performing intense CPU usage.

Scenarios with packet size of 64B and 0 VMs
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Figure 8 — Point plot representing the median with the standard deviation range. A scatter plot is also
displayed in the background to help understand the spreading of the data. The dashed line
indicates the NIC line-rate. This scenario compares the throughput of frameworks according
to the modes and stress levels when using small packets

Moreover, DPDK’s throughput performance is better in all cases. It exhibits less vari-
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ation and can achieve near line-rate performance in some scenarios, while XDP fails in
doing so. This suggests that although the in-kernel packet processing approach may assure
system security and integration, the processing performance may still suffer from these
same security measures.

Alongside these measures, the in-kernel processing requires using the standard kernel
network driver. This driver runs in kernel space with all the security and isolation features
discussed in Chapter 2, which can translate to processing degradation. As discussed in
that chapter, whenever the driver ring buffer queue is full and has no empty slots available,
it causes the NIC to drop new incoming packets until the queue finds new space left. The
experiment also measures the total amount of packets sent, packets received by PPVE and
also the amount of packets dropped by the network driver and calculated the percentage
of dropped packets. Figure 9 shows this percentage according to the PPVE mode and
stress level for each framework when using small packets. As observed in the bar plot,
DPDK drops less packets than XDP in any case. DPDK uses special network drivers
that run in user space, which translates to greater memory space management. Also, as
it supports batch processing, the user space driver is able to retrieve more packets from
the queue at once, which again improves performance. However, DPDK is not always
safe from dropping packets, which is the case when performing a high stress level on
CPU mode, when it drops approximately 25% of received packets. In all other cases, the
drop percentage is approximately 0.003%, small enough to make it difficult to see in the
plot.As for the XDP drop percentage, there is a performance tendency similar to the one
in Figure 8. One may observe that when increasing stress level on CPU mode the drop
percentage also increases, dropping around 78% of the packets when changing from a low
to a high stress level. On the other hand, when increasing the stress level on the memory
mode, the drop percentage stays constant around 42%. This brings the conclusion that
the increasing CPU usage leads to a higher packet dropping regardless of the framework
used. However, the increase of memory access and reading does not increase the packet
dropping in any framework. But, it is important to highlight that XDP does drop more
packets than DPDK in any of the applied resource usage.

On the other hand, when using 1500B packets, this percentage is lower in all cases.
Because of this, this case is displayed in Table 6 rather than in graphics, to ease visual-
ization. DPDK drops no packets while XDP drops some packets. The drop rate remains
nonetheless low in this scenario, being comparable to the ones from DPDK when using
the memory mode with 64B packets. As the packet size is bigger, the incoming packet
rate is lower, allowing the ring buffer queue to fill less often, thus lowering the percentage

of dropped packets.
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Scenarios with packet size of 64B and 0 VMs
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Figure 9 — Bar plot representing the mean with the standard deviation range. This scenario compares
the NIC packet drop percentage for each framework according to the modes and stress levels

when using small packets

Table 6 — This scenario compares the NIC packet drop percentage according to the modes and stress

levels when using big packets

Framework PPVE Mode Stress Level

Packets dropped by NIC (%)

Min. Median Max. Std. Dev.
L . . . .
PV — w0 o0 00 00
DPDK ig . . . .
Low 0.0 0.0 0.0 0.0
Memory -
High 0.0 0.0 0.0 0.0
L . . .52 1
ol o v e
XDP ig . . . :
Low 0.0 0.004  0.558 0.170
Memory
High 0.0 0.009  0.545 0.166

4.4.2 \Virtual Environment Exploration

This second part of the results analyses the framework’s performance when subjected

to the increase in the number of VMs. The study often separates these results according to

the type of resource load performed by the VMs while it maintains the previous separation
following the size of packets. To begin with, Table 7 shows the throughput of DPDK for

each VM number and PPVE mode. It is straight forward to see that almost no variation

takes place in any case. There is a presence of constant central values and standard

deviations. This scenario includes both stress levels in all samples, which helps infer how
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little variation each case has. This scenario helps conclude that when using DPDK to
receive large packets of 1500 bytes, whether the framework performs CPU or memory

usage tasks, the virtual environment causes no throughput performance degradation.

Table 7 — This scenario compares the throughput of DPDK according to the VM number and PPVE
mode used, considering all stress levels and receiving 1500 bytes packets

Number Throughput (Mpps)
of VMs  Min. Median Max. Mean Std. Dev.

0 0.8201 0.8203 0.8203 0.8202  0.0001
8 0.8201 0.8203 0.8203 0.8202  0.0001

Framework Mode

CPU
32 0.8201 0.8201 0.8203 0.8202  0.0001
DPDK 128 0.8201 0.8201 0.8203 0.8202  0.0001
0 0.8201 0.8203 0.8203 0.8202  0.0001
0.8201 0.8203 0.8203 0.8202  0.0001
Memory

32 0.8182 0.8203 0.8203 0.8202  0.0002
128 0.8201 0.8203 0.8203 0.8202  0.0001

A different case emerges when using XDP. Figure 10 shows the same scenario but
with the adoption of the XDP framework when using a high stress level. There is a data
concentration in the scenario with no VMs where the values are all concentrated near line-
rate. But, with the presence of the virtual environment these results become unstable,
spreading the concentration of the data away from the line-rate with also the presence
of low value outliers. XDP deals better with the VM network load than with CPU or
especially 1/0. It spreads the data with lower throughput values whilst the network load
concentrates these at a higher rate. This scenario also contributes to the results seen
previously where the CPU mode imposes a higher performance drop than the memory
mode and where the throughput is less unstable and more values stay near the line-rate.
It also differs with the results from (HOILAND-JORGENSEN et al., 2018), extending the
experiments that show a line-rate performance with 1500 bytes packets with a half-idle
CPU. Summarizing these results yields the conclusion that XDP’s throughput suffers from
the presence of a virtual environment when it processes 1500B packets. When performing
CPU usage, this degradation is higher than when performing memory usage, even though
the memory access also decreases the throughput performance.

Figure 11 shows the median of the throughput along with the standard deviation of
both DPDK and XDP when using memory mode with 64B packets. In the case of 0 and
8 VMs, it is noticeable how concentrated the data is when using DPDK, independently
of the applied load type. Yet, when the VM number increases to 32 and 128, this concen-
tration decreases lightly, creating some outliers with smaller throughput, but not enough
to increase the standard deviation, except for one outlier in the I/O load with 32 VMs.

This is an indication that the virtual environment interferes with DPDK’s performance
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in this scenario when it implements host memory usage, but does not cause an intense

interference, enabling the concentration of the throughput to still remain near line-rate.

Scenarios using XDP with Memory Mode with High Stress Level
receiving 1500B packets
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Figure 10 — Experiments comparing the throughput of XDP according to the number of VMs based on
the load type. The dashed line indicates the NIC line-rate

Scenarios with Memory Mode receiving 64B packets
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Figure 11 — Point plot representing the median with the standard deviation range. A scatter plot is
also displayed in the background to help visualize the spreading of the data. The dashed
line indicates the NIC line-rate. This scenario displays the throughput of both frameworks
according to the number of VMs based on the load type



45

But, this is not the case when using XDP. No sample could achieve the NIC line-rate
or any close value. The throughput performance is variable, creating a higher standard
deviation of 0.59Mpps for both stress level and VM numbers, whereas for DPDK this
variation is 0.04Mpps. As for the median throughput, not only it is overall lower when
using XDP, but the virtual environment causes an interference in the processing perfor-
mance especially when conducting network load. This differs from the scenarios using
1500B packets, where the network load would perform the least impact among the other
loads. When employing CPU load, there is an interesting small performance boost ob-
served when increasing from 0 to 8 VMs. This happens due to the CPU wake-up time
for interrupt delivery and response. With a low CPU usage, as in the case for 0 VM, the
CPU stays in interrupt-based mode, which represents a significant overhead in response
time and therefore in the per packet processing time. When the CPU load increases to 8
VMs load, the CPU switches to polling mode and delivers a better per packet processing
performance. This result aligns with the ones in (EMMERICH et al., 2015b). In summary,
these results converge with the ones observed previously, showing that the memory us-
age in both frameworks does not interfere in the throughput performance. They also
complement the previous result, showing that the memory usage causes no performance
interference even in the presence of a virtual environment, when using DPDK. Also, the
results indicate that when using XDP with memory usage, the virtual environment does
interfere in the throughput performance.

On the other hand, when DPDK performs tasks that require CPU usage, which is the
case for the PPVE CPU mode, the virtual environment has a direct impact on throughput.
Figure 12 displays such scenario, but only when performing a high stress level. The first
observation is that the throughput has a higher variation in the presence of VMs, creating
a wider standard deviation and outliers. The virtual environment makes the framework’s
performance unstable, which leads to such behaviour. Also, the overall throughput de-
creases with the insertion of VMs. The I/O load type is the first one to drop with the
presence of the virtual environment, when using 8 VMs, keeping a “constant” drop along
with the CPU load, as opposed to the network load that causes a considerable perfor-
mance drop only when using 32 and especially 128 VMs. The network load drops from
10.7Mpps with 0 VMs to 9.8Mpps with 128 VMs, considering the median of these cases. As
the network load competes for resources from the same NIC, more VMs sending packets
creates an overhead that causes this performance loss of approximately 8%. This scenario
demonstrates that when using DPDK to perform intense CPU tasks, the presence of a
virtual environment populated by network load causes the throughput performance to
drop consistently when using higher number of VMs. Also, when the VMs perform CPU
or 1/0 load, the throughput drops smoothly as the number of VMs increase.

However, when performing CPU mode with low stress level, the amount of VMs creates

almost no throughput interference. This result is visible in Table 8. The results barely
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Scenarios using DPDK with CPU Mode

receiving 64B packets
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Figure 12 — Point plot representing the median with the standard deviation range. A scatter plot is also
displayed in the background to help visualize the spreading of the data. The dashed line
indicates the NIC line-rate. This scenario displays the throughput of DPDK according to the

number of VMs based on the load type

Table 8 — This scenario compares the throughput of DPDK according to the VM number when using
CPU mode with low stress level. All VM load types are included each VM number

Framework Mode Number Throughput (Mpps)
of VMs  Min. Median Max. Mean Std. Dev.
0 14.202 14.203 14.205 14.204 0.001
DPDK CPU 8 14.203 14.205 14.205 14.204 0.001
32 14.185 14.205 14.205 14.204 0.003
128 14.196 14.203 14.205 14.203 0.002

change the median or the mean, affecting only the third decimal place. The standard

deviation is also minimal especially when compared to the ones in scenarios with high

stress level. Some outliers appear when using 32 and 128 VMs, which indicates a virtual

environment interference, but a small one, since the median is constant and only the

standard deviation increases from 0.001 to 0.002Mpps. These results from Table 8 and

Figure 12 support the ones seen in Section 4.4.1. They confirm the fact that higher

CPU usage is critical to the DPDK’s performance, and now it is visible that the virtual
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environment causes a performance degradation as well, intensified by heavier CPU usage.

As for the XDP framework, the CPU usage is more critical, as depicted in Figure 13.
It is obvious how the increase of the CPU usage influences XDP’s throughput, creating
an overall drop of 57.85% considering the median. The heavier CPU usage by XDP is
responsible for a higher performance degradation than the virtual environment, although
the VMs are not free from causing an impact. The CPU VM load is the least impacting
load from the virtual environment in this scenario, with a constant throughput value along
the number of VMs. The network load though, has a higher interference, as expected,
especially when using 128 VMs in both stress levels. This result demonstrates how much
the CPU usage by the XDP framework impacts the throughput performance, and also
that when combining this with the virtual environment, the throughput can decrease even
further.

Scenarios using XDP with CPU Mode receiving 64B packets
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Figure 13 — Point plot representing the median with the standard deviation range. A scatter plot is also
displayed in the background to help visualize the spreading of the data. The dashed line
indicates the NIC line-rate. This scenario displays the throughput of XDP according to the
number of VMs based on the load type

As for the case of packet dropping by the network card’s driver, mentioned earlier
when analysing the first part of the results, the virtual environment also increases the
percentage of packets dropped, as illustrated in Figure 14. Recall the conclusion made in
the first part of this chapter, where the packet size is a major factor when considering
this response variable. This happens because it is directly related to the incoming packet
rate that is responsible for the higher number of packets that fill the network driver
buffer queue. But, it is possible to conclude that when processing packets of 1500B, the
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virtual environment lightly increases the packet drop percentage especially with the XDP
framework. Also, when using the CPU mode with DPDK, the virtual environment imposes

a higher drop percentage.

Scenarios with all VM load type and High Stress Level
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Figure 14 — Bar plot representing the mean with the standard deviation range. Each mean is labeled
with its percentage value to ease the visualization of small values. This scenario compares
the NIC packet drop percentage based on each VM number when using stress level 2, for
each framework according to the packet size and PPVE mode

Alongside the presence of the virtual environment, the CPU mode again plays an
important role in decreasing the performance of both frameworks and even more with
XDP: when performing memory mode, XDP has a drop percentage mean of approximately
41.77% and when performing CPU mode this percentage reaches 79.03%, both when using
no VMs. When deploying 128 VMs, XDP drops 79.23% of the packets sent. An analogous
behaviour happens with DPDK, which drops no packets when using the memory mode
but drops 24.87% when using CPU mode. With these results, it is possible to conclude
that the virtual environment affects the NIC’s driver packet drop rate, increasing the
packet drop count in both frameworks but even more so in the case of DPDK. Also, the
CPU usage by both frameworks is a major factor that contributes to increasing the packet
drop rate, even more for the VMs. Additionally, the packet size influences this response,
leading to a higher drop percentage when receiving small packets to process.

Calculating confidence intervals enables the usage of the range of values for comparison

between the scenarios with the most highlighted setup. This is possible using bootstrap
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re-sampling with 1000 iterations to create a bootstrap distribution of the mean. Bootstrap
is a statistical procedure based on randomly re-sampling with replacement the existing
data set and calculating certain statistical measures for each new sample, in this case,
the mean. The re-sampling process repeats n times creating a new normal distribution
that is obtained from the original data set. The bootstrap procedure is well established
in statistics (EFRON; TIBSHIRANI, 1994) (HESTERBERG, 2011), because it does not cre-
ate new data nor substitutes the original data set during data analysis. Instead it uses
the re-sample means to estimate how the original sample mean varies, since it uses ran-
dom sampling. This new data set is used to calculate the confidence interval with 95%

confidence level, illustrated in Tables 9 and 10.

Table 9 — Confidence Intervals for the throughput mean (in Mpps) with confidence level of 95%. Scenarios
including CPU mode with low stress level

Conf. Interv. Mean
0 VMs 128 VMs 0 VMs 128 VMs

Framework

DPDK (14.2039, 14.2039) (14.2033, 14.2033) 14.2039  14.2033
XDP (6.9896, 6.9951) (6.9016, 6.9063) 6.9924 6.9040

Table 10 — Confidence Intervals for the throughput mean (in Mpps) with confidence level of 95%. Sce-
narios including CPU mode with high stress level

Conf. Interv. Mean
0 VMs 128 VMs 0 VMs 128 VMs

Framework

DPDK (10.6774, 10.6795)  (10.3330, 10.3384) 10.6785  10.3357
XDP (2.9807, 2.9814) (2.9517, 2.9526) 2.9810 2.9522

Comparing the scenarios using the CPU mode is more interesting since it appears to
draw the biggest impacts in different scenarios. Table 9 shows the results for 0 and 128 VMs
for each framework, when using the low stress level. It is possible to conclude according to
the obtained confidence interval that the interference created by the virtual environment
when using DPDK is minimal, changing only the forth decimal place. However, for the
XDP framework this interference is higher, dropping from a range between 6.99 and
TMpps to 6.90 and 6.91Mpps. When performing high stress level, illustrated in Table 10,
the scenario inverts from 0 to 128 VMs, where DPDK’s performance degrades more than
that of XDP. However, it is clear that the XDP’s throughput performance is lower than
DPDK’s in all scenarios. The virtual environment’s impact reflects only at decimal values,
while the increasing CPU usage — assured by the stress level — drops the throughput by

an overall general value of 4Mpps.
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4.4.3 Discussion

In summary, this work performed experiments that compared XDP and DPDK packet
processors under a standard configuration and no feature tuning like CPU pinning or
memory reservation. The experiments programmed each framework to execute a different
type of host resource usage named “mode”, varying from CPU or memory, each of them
with a different usage intensity that called “stress level”. Alongside, each experiment
contains a different number of running VMs to impose additional host resource usage.
Each VM executes a resource load varying between CPU, I/O or network, called “VM
load”. Each packet processor receives a burst of packets at NIC line-rate, varying each burst
with two packet sizes, 64B or 1500B. The measured results are the achieved throughput
and packet loss for each experiment scenario.

In the scenarios with no virtual environment execution, DPDK outperformed XDP
regardless of the CPU or memory resource usage, but only when using small sized packets.
This result is in accordance with those reported by the work in (HOTLAND-JORGENSEN et
al., 2018). This is an expected result, due to the standard behaviour of DPDK to process
packets in user space with custom drivers and full CPU single-core usage. However, when
each framework receives big sized packets of 1500B, both frameworks achieve an equivalent
throughput performance. The higher packet size consequently reduces the packet rate,
which explains the fact that both frameworks achieved a similar result.

The results also point to the fact that throughput for both frameworks is highly
impacted under heavy CPU usage. Heavier CPU tasks impose a throughput decrease of
approximately 24.8% when compared to the throughput under lighter tasks when using
DPDK. The same situation happens with XDP but with an approximate and larger
57.8% performance decrease. This is not the same for memory usage, that maintains a
certain “constant” performance as the memory usage increases. These results shed light
on how the CPU usage is critical to the packet processors. When performing heavy CPU
usage during packet processing, the time processing of a single packet not only delays the
processing of the following new packets, affecting the throughput, but also reflects on the
network card buffer queue, that fills quicker and therefore drops more packets.

The virtual environment also has a considerable performance impact, but only across
some specific cases. When XDP receives 1500B packets, the virtual environment has a
direct performance impact, destabilizing the concentration and values of the throughput
and increasing the NIC packet drop count. DPDK’s throughput in this same scenario is
not affected by the VMs as much as the NIC packet drop count, that also increases as the
number of VMs increases. This is explained again by the standard configuration of DPDK
of fully consuming one CPU core for packet processing. Also, joining this feature with the
low packet rate provided by the big packet size, the virtual environment does not impose

a throughput constraint, allowing DPDK to stay in near line-rate packet processing.
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An analogous situation happens with small sized packets. The virtual environment
drops XDP’s throughput especially when using the VM network load. However, this im-
pact is not as intense as expected, especially when compared with the impact that heavy
CPU usage imposes. This raises the conclusion that the framework’s task may be more
critical than the execution of a virtual environment. Heavy CPU usage degrades XDP’s
performance greater than a virtual environment with 128 VMs executing network load,
for example.

When using DPDK, this tendency is similar only when it uses heavy CPU tasks. The
performance decrease for scenarios with 0 and 128 VMs is larger than when using XDP,
even though the throughput values themselves are higher with DPDK. When DPDK
performs memory or lightweight CPU tasks, the virtual environment causes almost no
impact on the throughput, only creating outliers on the analyzed samples. This yields to
the conclusion that only in some scenarios the virtual environment affects the throughput
performance sufficiently to cause actual performance loss.

The obtained results shed light on how both framework’s features can impact their
performance. XDP brings packet processing inside the kernel, maintaining its security
and isolation measures. This includes also the usage of the standard kernel device drivers,
that are not developed with highest performance in mind, as the results of the NIC packet
drop show, for example. The DPDK approach with user space packet processing and a
custom device driver presents a higher performance with less packet loss. Also, user space
processing brings less restrictions towards memory and CPU operations, which also leads
to higher throughput performance in most cases.

However, XDP also has multiple advantages. The same fact that it processes pack-
ets inside the kernel brings higher security to the host system and network cards as a
whole. Along with the standard kernel procedures, the eBPF binary compiler and verifier
performs greater byte code checks and verification to ensure kernel and host safety. A
misguided programmer can develop an application that uses DPDK that can crash the
operating system and misconfigure the NIC, which cannot happen when using XDP, since
the eBPF environment verifies the program before execution and the XDP API executes
inside the kernel.

Also, DPDK requires by default the full CPU core usage with busy polling, even if
it is processing no packets. XDP on the other hand, escalates the CPU usage according
to the incoming packet rate, so if there is no packet to process or that there is a low
incoming rate, XDP’s CPU usage is also low. This consequently frees host resource usage,

that grows accordingly with the processing need.
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5 CONCLUSION

The network packet processing capacity on GNU/Linux operating systems became an
important factor to deal with on data centers, especially for cloud computing environ-
ments, over the recent years. With the advance of network cards and CPU processing
power, the Linux kernel turned into a notable bottleneck in network processing, espe-
cially considering the emerging technologies like TSN, SDN, 5G and 6G and their new
requirements for high-throughput and low-latency packet processing. In this context, new
software solutions surfaced in an attempt to enhance packet processing under these re-
cent systems. DPDK and XDP are two of these solutions, and represent the main ones.
Each one applies a different method to enhance packet processing performance. DPDK
uses the kernel bypass, that consists of eliminating the kernel from the network path and
processing packets in user space. XDP, on the other hand, processes packets inside the
kernel, at an early point right after the NIC receives them.

These frameworks can provide a great performance boost to cloud computing data
centers, as the servers used there are mainly composed of multiple virtual machines that
demand equal high packet processing with minimal interference. However, the same VMs
that would require such high packet processing could end up limiting this packet process-
ing capacity depending on the load it imposes on the host. The current state-of-the-art
literature lacks experiments that expose the usage of these frameworks in such an envi-
ronment and evaluate this behaviour.

This dissertation presents experiments aiming to evaluate how a virtual environment
may interfere with DPDK and XDP performance, considering the throughput and the
dropped packets count as the two main metrics. It also provides an initial comparison of
DPDK and XDP when subjected to different work loads with the presence of no virtual
environment.

In cases when there is no virtual environment and the framework should process
large sized TP packets, both XDP and DPDK can perform near line-rate throughput
performance, exhibit a low packet loss, and are possible choices for implementation. If
host CPU consumption is a constraint, XDP may be preferred since it escalates the CPU
usage according to the incoming packet rate. However, if the framework should process
mainly small sized packets, DPDK may be a better option since it can achieve near line-
rate performance and low packet loss, with the trade-off of full CPU core consumption.

But, if a virtual environment is present when the framework should process mainly
large size packets, the resource usage from the VMs degrades XDP’s throughput perfor-
mance. In this case DPDK stands out, especially if the packet processing tasks require
intense host CPU usage.

As in the cases when the framework should process small packets, the packet processing

task should receive attention. If the task requires intense host memory access and reading,
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both DPDK and XDP are not affected by it. However, DPDK should be preferred since
the presence of the virtual environment does not affect its throughput performance as
much as it affects that of XDP. On the other hand, if the task requires heavy CPU usage,
the virtual environment affects both frameworks. In such case, XDP should be considered
instead while using its feature to offload tasks to the network card and use the dedicated
NIC hardware to process packets.

Heavier CPU tasks in combination with an intense virtual environment causes DPDK
to loose more throughput performance than XDP, even though DPDK still achieves a
higher throughput. The same goes to packet dropping by the network driver. But, increas-
ing further the number of VMs may cause DPDK throughput performance to decrease
even more, which turns the offloading option of XDP as a valuable one, for both freeing
resources for the VMs and for increasing packet processing throughput. Another way to
increase packet processing when the framework task requires heavier CPU usage is tuning
more CPU cores to enhance its performance. However, as mentioned previously, this may
not be an ideal option if it is running in a production environment dedicated for cloud
applications, as the framework will use more CPU cores that could instead be used by
the VMs.

If packet loss is a constraint, XDP should be avoided since it uses the standard Linux

network device driver, that causes higher packet loss than when using DPDK.

5.1 CONTRIBUTIONS AND TAKEAWAYS

Taking into consideration the questions this research seeks to answer, referenced in
Section 1.2, and the results achieved by the experiments, this work counts with the fol-

lowing contributions and takeaways:

o Is the performance of in-kernel processing approach proposed by frameworks like

XDP surpassing the performance of kernel bypass technologies from frameworks

like DPDK?

— In most cases, this is not the case. When the framework should process big
packets as in 1500 bytes in a bare-metal environment, both DPDK and XDP

perform similarly.

o Is the virtual environment from cloud computing servers affecting the perfor-

mance of fast packet processing frameworks?

— When using XDP, then the answer is affirmative. With DPDK| it is only when
processing tasks with high CPU usage and small packet sizes.

« Isa cloud computing data center with high disk I/O usage like database or storage

VM servers affecting the performance of fast packet processing frameworks?
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— For both frameworks, no. However, DPDK can achieve higher throughput per-

formance especially in environments with higher number of VMs.

o Is a data center with high network and CPU usage like VNFs servers (run-
ning services such as DDoS protection, routing, DPI, Load Balancing) affecting the

performance of fast packet processing frameworks?

— Yes, especially with high network load. A higher VM number results in higher
throughput degradation in DPDK than in XDP, even though DPDK can still

achieve higher throughput performance.

o Also, the PPVE architecture is available to the community, with a modular structure
that allows the possibility of its expansion to other packet processors as well as

inserting different packet processing tasks with different resource usage levels.

5.2 DIFFICULTIES AND LIMITATIONS OF WORK

The accomplishment of this study came with some difficulties and consequently lim-
itations associated to it. The time necessary to complete each experiment as a whole is
considerably long, regarding the available time to complete this work. The main reason
is due to the virtual environment initialization and termination. To avoid disturbance
from different VMs resource loads from one experiment to another that could potentially
interfere in results from different experiments, the experiment destroys all VMs when it
finishes and start fresh new VMs at the next run. This causes a significant delay before
and after each run, especially with the 128 VMs scenarios. This created a time constraint
that ended up limiting the amount of different variables and responses this work could
implement in each experiment. A specific and direct example is higher stress levels like
100 checksums calculations and 512MiB list size for both frameworks, that could not be
applicable in the available time.

Also, the development of the PPVE architecture required a significant amount of
research and tests needed to familiarize with both frameworks development environment,

as well as to ensure compatibility for comparison of the functions and processing tasks.

5.3 FUTURE WORKS

As future works, it is intended to further explore the frameworks performance, with
different response metrics as well as resource usage. First, evaluating resource utilization
by both frameworks, such as memory consumption and CPU usage. As stated before,
XDP offers a scalable CPU usage, as opposed to the DPDK approach of busy polling. As

a result, evaluating the throughput achieved by these frameworks for different incoming
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packet rates can show how the resource usage of each of these behave according to the VM
resource load. Works considering new network metrics such as, mainly, packet latency are
also considered in future works. Furthermore, to assess the possible performance gain, ex-
periments whit frameworks tuning, like memory space reservation and CPU cores pinning

are intended.
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