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ABSTRACT

When a physical system has many interacting constituents, many-body terms will arise in the
Hamiltonian, besides the usual two-body interactions. These terms are often ignored in numer-
ical studies due to their high computational cost. However, many-body terms are responsible
for important corrections in charged colloidal systems and promote structural changes in clus-
ters of Abrikosov vortices in superconductors. The main goal of this work is to determine the
effect the addition of a three-body term has on the properties of two-dimensional clusters of
classical interacting particles. In order to understand such effect, we carried out semi-analytical
calculations and numerical minimization of the system free energy, using a simulated annealing
scheme based on the Langevin dynamics. We considered 𝑁 particles (3 ≤ 𝑁 ≤ 50) confined
in a parabolic potential and interacting via a pair potential. We considered three of the most
studied pair potentials: logarithmic, Coulomb and Yukawa. The novelty in our study consisted
in the addition of a short-ranged Gaussian three-body interaction potential with tunable ampli-
tude. The obtained configurations were compared with the typical case in which the particles
interact only via a pair potential. In this last situation, we recover the typical concentric rings
of particles, widely found in the literature. With the addition of the three-body interaction, our
findings include changes in the ring occupation numbers and the emergence of a first-order
like transition associated with the bistability phenomenon due to the competition between
the two- and three-body potentials. This transition is accompanied by a sudden cluster com-
paction, especially in the 𝑁 > 20 range, for all two-body potentials, and a phase separation
effect starting around 𝑁 = 40, in which the initial single cluster was divided into smaller ones.
These results indicate that the three-body term in the interaction potential of many confined
particles can induce dramatic changes in the equilibrium configurations and, therefore, should
not be ignored in those particle systems.

Keywords: three-body interactions; classical clusters; charged colloids; superconducting vor-
tices.



RESUMO

Sistemas físicos com um grande número de componentes podem apresentar, além das inter-
ações usuais de dois corpos, contribuições de três, quatro ou mais corpos no Hamiltoniano.
Frequentemente, esses termos de muitos corpos são ignorados em estudos numéricos devido
ao alto custo de processamento que normalmente acarretam. No entanto, termos de muitos
corpos são responsáveis por diversas correções de interesse em colóides carregados e também
pela modificação estrutural de aglomerados de vórtices de Abrikosov em supercondutores.
O objetivo deste trabalho é determinar o efeito do termo de três corpos nas propriedades
de aglomerados bidimensionais de partículas clássicas interagentes. Para isso, realizamos es-
tudos semi-analíticos e a minimização numérica da energia livre do sistema, utilizando um
procedimento de recozimento (annealing) simulado baseado na dinâmica de Langevin. Foram
consideradas 𝑁 partículas (3 ≤ 𝑁 ≤ 50) confinadas em um potencial parabólico e interagindo
repulsivamente por meio de um potencial repulsivo de dois corpos. Alguns dos mais estudados
potenciais de dois corpos foram considerados: logarítmico, Coulomb e Yukawa. A novidade
deste trabalho consistiu em adicionar um potencial atrativo de três corpos Gaussiano de curto
alcance, com intensidade variável. Os resultados foram comparados com o caso típico, quando
as partículas interagem somente através do potencial de dois corpos. Nessa condição, obtive-
mos os típicos arranjos de partículas em anéis concêntricos, já amplamente registrados pela
literatura. Com a adição da interação de três corpos, nossos achados incluíram a modificação
dos números de ocupação dos anéis e o surgimento de uma transição do tipo primeira ordem
associado ao fenômeno de biestabilidade devido à competição entre os potenciais de dois e
três corpos. Essa transição foi acompanhada por uma abrupta compactação do sistema, espe-
cialmente para 𝑁 > 20, em todos os potenciais de dois corpos, e um efeito de separação de
fase a partir de 𝑁 = 40, em que o aglomerado único foi dividido em outros menores. Esses
resultados mostram que o termo de três corpos no potencial de interação de muitas partícu-
las confinadas pode produzir mudanças dramáticas nas configurações de equilíbrio. Portanto,
trata-se de contribuição que não deve ser ignorada nesses sistemas de partículas.

Palavras-chaves: interações de três corpos; agregados clássicos de partículas; colóides car-
regados; vórtices supercondutores.
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1 INTRODUCTION

A plethora of different interactions are established in the study of Physics. In the undergrad-
uate education, we usually discuss the so-called pairwise interactions, or two-body interactions,
such as the Coulomb potential for charged point particles. In such cases, the interactions are
evaluated for a pair of interacting entities. These contributions are added up to obtain the
total potential energy of the system. However, this is not a full description of many physical
systems. Sometimes the sum of all pairwise interactions is not equal to the total energy, espe-
cially in dense systems. Indeed, according to Louis (2002) we can not completely describe any
known material in nature only by using two-body potentials. For instance, even noble gases
require a three-body potential to describe triple-dipole interactions (AXILROD; TELLER, 1943).

If we consider a system of 𝑁 interacting particles, many-body (or non-additive) effects
may arise. Usually, we need to describe the Hamiltonian of such systems with a interaction
potential written as

𝑈({𝑟𝑖}) =
𝑁∑︁

𝑖<𝑗

𝑈2𝑏(𝑟𝑖𝑗) +
𝑁∑︁

𝑖<𝑗<𝑘

𝑈3𝑏(𝑟𝑖𝑗, 𝑟𝑗𝑘, 𝑟𝑖𝑘) +
𝑁∑︁

𝑖<𝑗<𝑘<𝑙

𝑈4𝑏(𝑟𝑖𝑗, 𝑟𝑗𝑘, 𝑟𝑘𝑙, 𝑟𝑖𝑙) + ... (1.1)

where 𝑟𝑖𝑗 is the distance between particles 𝑖 and 𝑗, 𝑈2𝑏 is a two-body interaction, 𝑈3𝑏 is a
three-body interaction, 𝑈4𝑏 is a four-body interaction and higher many-body terms are omitted.
The sum is made for all available pairs, trios and quartets of particles in the system.

For illustration purposes, Figure 1 compares the two- and three-body interactions among
a given (𝑖, 𝑗, 𝑘) triple of interacting particles. The two-body interactions are counted in pairs
(for example, between particles 𝑖 and 𝑗, separated by 𝑟𝑖𝑗). If we consider central potentials,
which are spherically symmetrical (or circularly symmetrical, for two-dimensional systems), the
three-body term in the Eq. 1.1 depends only on the relative distances between the particles
in a given triple, which are shown in Figure 1. The three-body interaction appears when the
three particles are within the range of the interaction, which happens especially when a large
density of particles are considered, since the average inter-particle distance becomes smaller.

The three-body potentials play an important role in different areas of Physics, such as in
the nuclear, atomic and condensed matter (GUO; GASPARIAN, 2018). For clarification purposes,
we make a distinction between effective and fundamental three-body forces. The Earth-Moon
system is an example of a system possessing tidal forces, which can be considered effective
three-body forces. This is the case if we consider that the bodies of water on the Earth surface
are under the main gravitational influence of the planet, however they are affected by the
movement of a nearby third body, the Moon. The effect is actually a result of the combination
of three gravitational two-body potentials, such as the first term of Equation 1.1, and not
a pure three-body potential (second term of Equation 1.1). For a given set of three bodies
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Figure 1 – Schematic comparison between two-body and three-body interactions in a given set of interacting
particles.

Source: The author (2020).

interacting gravitationally, this equates the following potential energy

𝒰 = −𝐺𝑚1𝑚2

|r1 − r2|
− 𝐺𝑚2𝑚3

|r3 − r2|
− 𝐺𝑚3𝑚1

|r3 − r1|
, (1.2)

where 𝐺 is the gravitational constant and 𝑚𝑖 and 𝑟𝑖 are the mass and position of the i-th
body.

In nuclear systems, on the other hand, there are models informing the presence of three-
body forces in the form of 𝑈3𝑏 (Equation 1.1). Primakoff and Holstein (1939) showed that
the description of nuclear systems only by using two-body potentials is a bad approximation.
In light nuclei, for example, considering the available scattering data, three-body interactions
may be responsible for up to one fifth of the binding energy (PIEPER; WIRINGA, 2001). One
of the first of these fundamental three-body nucleon potentials, 𝑉(3), was proposed by Fujita
and Miyazawa in 1957. It is such that 𝑉(3) = 𝑉 (123) + 𝑉 (231) + 𝑉 (312) and

𝑉 (𝑖𝑗𝑘) ∝ exp(−𝑟𝑖𝑗)
𝑟𝑖𝑗

exp(−𝑟𝑗𝑘)
𝑟𝑗𝑘

, (1.3)

where 𝑟𝑖𝑗 is the distance between two nucleons 𝑖 and 𝑗. 𝑉(3) is physically associated with a pion
exchange process: a initial particle emits a pion, which is scattered by a second particle and,
then, absorbed by a third (FUJITA; MIYAZAWA, 1957). The pion exchanges are the mechanism
behind the long-range parts of the nuclear strong force, which is further developed in Hammer,
Nogga and Schwenk (2013).

An important issue with potentials in the form of 𝑈3𝑏 is the computational cost which they
bring in numerical studies, since we need to account for all available trios of particles, which
grows much faster than the number of pairs when we increase the number of constituents.
Going beyond a mere small corrections of the energy, these potentials can actually cause
important changes in the properties of many systems. For example, it may generate new spatial
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patterns in superconducting vortices and change the boundaries of the colloidal crystals phase
diagram. In this work, we aim to investigate what structural changes that the addition of
a monotonic three-body potential can cause in particle arrangements of confined interacting
particles. These classical systems are important models for mesoscopic systems and are vastly
studied in the presence of two-body interacting potentials alone.

It has been verified by numerical studies that the presence of competing interactions in
these confined systems can generate a diversity of new complex spatial patterns. Usually,
these interactions are non-monotonic pair potentials, which are composed of an attractive
and a repulsive parts. This motivates us to investigate if a monotonic two-body repulsive
potential combined with a three-body attractive interaction can cause relevant effects as well.
In such situation, we performed Molecular Dynamics simulations and analytical calculations to
investigate changes in the equilibrium states of classical two-dimensional clusters of particles.

This dissertation is organized as follows. In chapter 2, we review some aspects of two-
dimensional confined clusters of particles and the presence of competing interactions as cause
for important structural changes in these systems. Also, the three-body interaction in charged
colloids suspensions and vortices in superconductor is approached. Chapter 3 summarizes the
numerical model we adopt to study classical two-dimensional clusters in the presence of a three-
body potential. In Chapter 4, we exhibit the results of our simulations, detecting important
changes in the shell structure and the appearance of a discontinuity in the energy first derivative
resembling a first-order transition and that is linked to a phase separation effect of the particle
clusters.
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2 A REVIEW ON CLASSICAL 2D CLUSTERS AND THREE-BODY INTERAC-
TIONS IN COLLOIDS AND VORTEX SYSTEMS

2.1 2D CLUSTERS OF PARTICLES WITH MONOTONIC PAIR INTERACTIONS

The confinement of classical interacting particles in two dimensions is a extensively studied
model for some mesoscopic systems. Cândido et al. (1998) and Jean, Even and Guthmann
(2001) indicate relevant examples of mesoscopic systems whose properties are assimilated by
these particle clusters: polymer colloids confined between glass plates, mesoscopic supercon-
ductors, confined ions cooled by laser traps and electrons confined in quantum dots. Jean, Even
and Guthmann (2001) point that experiments of mesoscopic systems leads to common diffi-
culties, such as the tuning of the number of interacting particles or the confinement amplitude.
These are examples of relevant parameters easily tuned by confined 2D clusters.

The main goals of such confined systems include the determination of the particle distribu-
tion in the ground-states and in the metastable states and the phase transitions the system may
undergo. J.J. Thomson initially studied theses systems in his classical model for the structure
of the atom (THOMSON, 1904). As he was unable to obtain analytical solutions for three-
dimensional atoms at the time, Thomson assumed electrons interacted via Coulomb potential
and were restricted to a plane. More specifically, they arranged themselves in concentric rings.
The Thomson procedure was based on adding particles in a ring as much as a stability criteria
allowed and then place the rest in the centre, in order to establish a shell structure. Since then,
many numerical and experimental studies were performed with modifications of this Thomson
problem, adopting a diversity of inter-particle and confinement potentials.

A simple experimental realization of such systems, the macroscopic Wigner islands1, can
be found in Jean, Even and Guthmann (2001). Using an easily tunable experimental setup,
composed essentially by charged steel balls, a metallic circular frame and loudspeakers, the
authors were able to reproduce a mesoscopic system which have a parabolic confinement
and logarithmic inter-particle interaction under a given temperature, simulated by mechanical
shaking. Figure 2 exhibits some of the equilibrium configurations obtained by Jean, Even and
Guthmann (2001), where we can observe the formation of concentric shells, with an increasing
number of rings as we increase the number of particles.

By using a similar procedure such as Thomson, Partoens and Peeters (1997) developed a
numerical study of "classical" two-dimensional atoms using Monte Carlo simulations, studying
how the particle shells are affected by a power law confinement and submitted to a repulsive
potential. The following dimensionless Hamiltonian described the system

𝐻 =
𝑁∑︁

𝑖=1
𝑟𝑛

𝑖 +
𝑁∑︁

𝑗>𝑖

1
|𝑟⃗𝑖 − 𝑟⃗𝑗|𝑛

′ . (2.1)

1 Confined clusters of 𝑁 of particles are the finite 𝑁 limit for the 2D Wigner crystal, which forms a triangular
lattice for 𝑁 → ∞.
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Figure 2 – Equilibrium configurations obtained for several number of confined particles by using the macro-
scopic Wigner islands setup.

Source: Jean, Even and Guthmann (2001).

Eq. 2.1 is a typical Hamiltonian in the study of confined particles. The first term is the
confinement potential, where a large 𝑛 (𝑛 ≈ 10) is associated with a hard-wall confinement.
The second term is the pair inter-particle potential, where |𝑟⃗𝑖−𝑟⃗𝑗| denotes the distance between
a pair of particles and 𝑛′ = 1 recovers the Coulomb potential expression. The literature uses
different confinement and inter-particle potentials for the confined systems. In this case, the
authors studied different cases of 𝑛 and 𝑛′ for 𝑁 interacting particles and reproduced the
typical shell structures. They detected that the maximum number of particles that each ring
supports increases with respect to the power law coefficient 𝑛 (Figure 3, left) and decreases
in relation to the inter-particle potential coefficient 𝑛′ (Figure 3, right). Also, it was found
that for the typical case of a parabolic confinement (𝑛 = 2) there are normal modes which
are independent of 𝑁 and whose values depend on the functional form of the inter-particle
potential. Finally, Partoens and Peeters were able to build a "classical" Mendeeleev table,
summarizing all the ring structure results they found for different 𝑁 , 𝑛 and 𝑛′.

The shell occupation and the structural form of confined two-dimensional particle clusters
can be modified by the variation of parameters of interest. Kong, Partoens and Peeters (2003)
numerically investigate a system with 𝑁 particles submitted to a parabolic confinement and
a screened Coulomb (Yukawa) inter-particle potential with the following dimensionless Hamil-
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Figure 3 – In the left, the maximum number of particles allowed in a ring according to different power law
coefficients (𝑛) of confining potentials. In the right, the same is evaluated for different inter-particle
potentials with power law coefficient 𝑛′. 𝑛 and 𝑛′ are observed in Eq. 2.1.

Source: Partoens and Peeters (1997).

tonian

𝐻 =
𝑁∑︁
𝑖

𝑟2
𝑖 +

𝑁∑︁
𝑗>𝑖

exp (−𝜅𝑟𝑖𝑗)
𝑟𝑖𝑗

, (2.2)

where 𝑟𝑖𝑗 is the distance between two given particles and 𝜅 is the screening parameter. Small
𝜅 (𝜅 < 1) defines a long-ranged repulsive inter-particle interaction, the opposite (short-ranged
interaction) occurring for 𝜅 ≈ 10.

With the variation of 𝜅, the authors observed small differences in the ring occupation
numbers for 𝑁 < 30 (small clusters), however for many values of 𝑁 the structures are not
sensitive to the value of 𝜅. Figure 4A shows the energy and appearance of the 𝑁 = 19 ground-
state as 𝜅 is increased. For a given range of 𝜅, the (1, 6, 12) configuration do not have the
lowest energy, but the (1, 7, 11) does. Also, the circular shells are replaced by an hexagonal
structure in the high-𝜅 limit. For increasing 𝜅, the energy decreases and so the configuration
radius. The particles, then, experience a smaller confinement energy in the central region,
forming the hexagonal pattern as observed in the correspondent infinite system.

For large 𝑁 , topological defects are detected and their position in the arrangement also
depends on 𝜅. For 𝑁 = 300, Figure 4B shows the Voronoi diagrams of 𝜅 = 0.25, 2.0 and
16.0 indicating the position of such defects (in dark grey color) in the configurations of Kong,
Partoens and Peeters (2003). The relative position of the defects is compared with other pure
inter-particle potentials, such as the logarithmic, dipole (∝ 1

𝑟3 ) and Coulomb. The melting
temperature of the system is also affected by the variation of 𝜅. For small clusters, in the
high-𝜅 limit the melting temperature 𝑇𝑚 decreases, while for a large cluster of particles it can
increase. Figure 4C shows such behavior of 𝑇𝑚 for 𝑁 = 19, 𝑁 = 20 and 𝑁 = 300.
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Figure 4 – A and B: structural changes due to variation of 𝜅 parameter for small and large clusters. C: Melting
temperature of particle clusters with respect to 𝜅.

A

B

C

Source: Kong, Partoens and Peeters (2003).

2.2 2D CLUSTERS OF PARTICLES WITH COMPETING INTERACTIONS

The clusters of particles which we exhibited so far have a pure monotonic repulsive inter-
particle potential (Coulomb and screened Coulomb/Yukawa). However, an interesting feature
of some physical systems is the presence of competing interactions of different scales in the
inter-particle potential. Examples of such systems are given by Liu, Chew and Yu (2008):
colloids with the addition of polymers (where an attractive force is induced by the polymers
and a repulsive one is due to charged colloidal particles) and magnetic materials (short-ranged
exchange and long-range dipole interactions).

Competing interactions give rise to important and rich spatial patterns in some model
systems beyond the domain of confined clusters. An example is found in the Molecular Dy-
namics study of Reichhardt and Bishop (2010), which uses a non-monotonic pair interaction
combining a long-range Coulomb and a short-range Yukawa terms. According to the density
and the temperature of the system, which are tunable, the authors are able to find multiple
arrangements in the infinite system, as shown in Figure 5: clumps of particles, stripes, bubbles
and an hexagonal lattice can be identified.
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Figure 5 – Variety of phases in a system with competing interactions. Each point represents a particle in the
simulation box.

Source: Reichhardt and Bishop (2010).

In confined systems, the competing interactions also play an important role in the parti-
cles self-assembly. Now we highlight one of the many recent works dealing with competing
interactions in confined clusters of particles. In 2008, Liu, Chew and Yu (2008) worked on a
two-dimensional parabolic confinement and the following non-monotonic inter-particle poten-
tial

𝑈𝑖𝑗 = 𝑞2 exp(−𝛼𝑟𝑖𝑗)
𝑟𝑖𝑗

−𝐵 exp(−𝛽𝑟𝑖𝑗), (2.3)

where 𝑞 is the particle charge and 𝑟𝑖𝑗 is the distance between two particles. The first term is a
repulsive screened Coulomb (Yukawa) potential, which recovers the Coulomb expression setting
𝛼 = 0. The second term is an attractive interaction. 𝛼 and 𝛽 are the parameters controlling
the screening length of both terms. 𝐵 is responsible for the strength of the attractive part.

In this work, Liu, Chew and Yu (2008) reproduce the typical shell structure of particles.
However, by varying 𝛼, 𝛽 and 𝐵, they also obtain a wide variety of complex configurations,
some of which can be seen in Figure 6 for 250 particles. Besides the traditional shell structure,
we highlight the formation of smaller clusters of particles (Figure 6, d1-d3), concentric stripes
(Figure 6, c2-c4) and void structures (Figure 6, b3-b4). According to the authors, these
patterns are a direct consequence of the competition "among the inter-particle repulsive and
attractive forces as well as the confinement force acting on the particles in minimizing the
total system energy" (LIU; CHEW; YU, 2008).

Another interesting and recent work by Xu et al. (2021) studies non-equilibrium patterns
in the dynamics of a system with logarithmic confinement and non-monotonic inter-particle
interaction. The correspondent two-body force is given by

𝐹 (𝑟𝑖𝑗) = 1
𝑟2

𝑖𝑗

−𝐵𝑒−𝐶𝑟𝑖𝑗 (2.4)

The first term corresponds to a Coulomb repulsion. 𝐵 controls the relative amplitude of
attraction to repulsive parts and 1/𝐶 is the screening length for the attraction term. The latter
can have multiple physical correspondents. For example, holes in layered transition metal oxides
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Figure 6 – Equilibrium configurations observed in the two-dimensional space parameter of 𝛼, 𝐵 for a confined
system with 250 particles and the competing inter-particle interactions of Eq. 2.3.

Source: Liu, Chew and Yu (2008).

interact via Coulomb repulsion and short-range exponential attractive terms. The authors also
explain that this model can be used to study colloids and charged-dust systems.

The confinement potential has the following form

𝑉 (𝑟) = −𝛽 𝑙𝑛(𝑅 − 𝑟), (2.5)

where 𝛽 is the confining potential strength and 𝑅 is the radius of confinement. The adopted
procedure is based on a quickly decrease of 𝛽, that is, a quench in the confining potential. This
produces a non-equilibrium state equivalent to a particle "explosion" which generate multiple
spatial patterns when the system reaches a new equilibrium. Figure 7 shows two cases for the
quickly decrease of 𝛽. At 𝑡 = 0, after a simulated annealing, an equilibrium configuration is
obtained. The confining potential amplitude is, then, suddenly decreased from 𝛽 = 15.1 to
𝛽 = 2.0 for 𝑅 = 50 (Figure 7, first row) and from 𝛽 = 15.1 to 𝛽 = 0.1 for 𝑅 = 65 (Figure
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7, second row). The authors observe the cluster expansion with a multi-step dynamics and
the changing of the shell structure into a stripe pattern or into small clusters organized in a
ringlike structure in the new equilibrium state.

Figure 7 – Quenching of the logarithmic confining potential in a particle cluster with competing two-body
interactions. At 𝑡 = 0, the sudden decrease of confinement strength 𝛽 occurs from 𝛽 = 15.1 to
𝛽 = 2.0 (first row) and confinement radius 𝑅 = 50. Second row show the same situation from
𝛽 = 15.1 to 𝛽 = 0.1 (second row).

t = 0 t = 2 t = 5 t = 200

t = 0 t = 3 t = 6 t = 200

Source: Xu et al. (2021).

2.3 THREE-BODY INTERACTIONS IN PHYSICAL SYSTEMS

2.3.1 Colloidal suspensions

A first example of the effect of the three-body potential is the colloidal suspensions. Colloids
were first systematically studied by Thomas Grahan in 1861. He observed a solution which
did not diffuse through a semipermeable membrane, as the component molecules (colloidal
particles) were too large for that (DHONT, 1996). Common colloidal particles range from 1𝑛𝑚
to 10𝜇𝑚 in size. Colloids are, then, suspensions or dispersions of a substance (dispersed phase)
in some other continuous phase, typically liquids. According to these phases, respectively,
we found multiple examples of known colloids (Figure 8), such as milk (liquid-liquid), liquid
aerosols (liquid-gas), gelatin (liquid-solid) and the whipped cream2 (gas-liquid).

Two interactions are always present among colloidal particles distanced by 𝑟, the hard-core
repulsion and the van der Waals attraction. The hard-core repulsion simply results from the fact
that two particles cannot overlap and it is modelled considering an infinite potential for 𝑟 ≤ 𝐷

2 Also known as the Chantilly cream.
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Figure 8 – Different examples of colloids: milk is an emulsion, sneezes and coughing contain aerosols, gelatin
is a known gel and Chantilly is a foam.

Source: From left to right: Pexels (2020), the American Centers for Disease Control and Prevention (CDC)
(2019), Wikimedia Commons (2019) and Cooking Classy (2019).

and zero for 𝑟 > 𝐷. The attractive van der Waals force has its origins in the attraction between
temporary molecule dipoles (MORBIDELLI; AROSIO, 2016) and, in the context of colloids, has
received a macroscopic approach by two works of Hamaker: Hamaker (1937) and Hamaker
(1938). The author wanted to evaluate the van der Waals interaction for two spherical colloidal
particles of radius 𝑎1 and 𝑎2. With a suitable integration of London’s dispersion equation

𝑉𝑣𝑤(𝑟) = −
∫︁

𝑉1
𝑑𝑣1

∫︁
𝑉2
𝑑𝑣2

𝑞2𝜆

𝑟6 , (2.6)

where 𝑞 is the particle charge, 𝜆 is the London-van der Waals constant, 𝑑𝑣𝑖 and 𝑉𝑖 is the
volume element and total volume of the i-th particle, it is possible to obtain

𝑉𝑣𝑤(𝑟) = −𝐴

6

[︃
2𝑎1𝑎2

𝑟2 − (𝑎1 + 𝑎2)2 + 2𝑎1𝑎2

𝑟2 − (𝑎1 − 𝑎2)2 + ln
(︃
𝑟2 − (𝑎1 + 𝑎2)2

𝑟2 − (𝑎1 − 𝑎2)2

)︃]︃
, (2.7)

where 𝐴 = 𝜋2𝑞2𝜆 is the Hamaker constant. 𝐴 is usually positive, meaning that van der Waals
force is attractive. This expression can be reduced at small 𝑟 (decaying with first power of
distance) or large 𝑟 (decaying with the sixth power, recovering typical van der Waals behavior).

Colloidal particles (the macroions) can also be charged, which happens because the particles
itself carry charged chemical groups or additional charged polymers are attached to their
surface, in order to stabilize the suspension (DHONT, 1996). This superficial charge distribution
attracts nearby microions of opposite charge in the electrolyte and establishes the formation
of a spherically symmetric ionic double layer around the colloidal particle (Figure 9, left).
These ionic distributions are responsible for the "screening" of the electrostatic interaction
between colloidal surface charges, which is described by a Yukawa-type (screened Coulomb)
𝑈𝑌 potential such that

𝑈𝑌 ∝ exp(−𝜅𝑟)
𝑟

(2.8)

where 𝜅−1 is the Debye–Hückel screening length, which is proportional to the double layer
width. Also, it is possible to add salt in the colloidal suspensions in order to control the 𝜅
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parameter and, then, the double layer width. Usually, when an electrolyte is present, the double
layer is smaller than the average interparticle distance (VERWEY, 1999).

Figure 9 – In the left, the double layer formed around charged colloidal particles. In the right, the plot of the
DLVO potential (green solid curve), a sum of the van der Waals (red curve) and the double layer
Yukawa (blue curve) interactions.

Source: Wikimedia Commons (2012) and Trefalt and Borkovec (2014), respectively.

The combination of interactions 2.7 and 2.8 is known as the DLVO3 theory, a standard
description of charged-stabilized colloidal suspensions. In stable colloids, the particles remain
dispersed and do not aggregate or sediment. The DLVO potential, which is a result of the
combinations of Eqs. 2.7 and 2.8, is shown in the right part of Figure 9.

It is known that colloidal systems can undertake phase transitions (for instance, they can
crystallize and melt (DHONT, 1996)) and, as expected from Section 2.3.2 considerations, the
role of inter-particle interaction is important in defining the phase diagram of such systems
(IACOVELLA et al., 2010). In a numerical study with the use of the Poisson-Boltzmann model,
Dobnikar et al. (2003) observed the existence of many-body interactions that can change the
melting point of colloidal crystals.

The approach of Dobnikar et al. (2003) was based on the evaluation of an effective pair
potential, 𝑈𝑒𝑓𝑓 . In general, effective potentials are used to bypass the manipulation of many-
body terms, although they lead to some thermodynamic inconsistencies in some calculations
(LOUIS, 2002). According to Dobnikar et al. (2003), it can be shown that there is a unique
mapping between 𝑈𝑒𝑓𝑓 (𝑟, 𝜌) and the pair correlation function of a liquid, 𝑔(𝑟), at density 𝜌
of the colloidal system. 𝑔(𝑟) informs how the density varies along the distance 𝑟 with respect
to some reference particle. In other words, we can interpret how the density varies along
the system only by using 𝑈𝑒𝑓𝑓 . The special point is that the dependence on 𝜌 arises due to
many-body interactions in the system, since a true pair potential (𝑈2𝑏) alone cannot account
for all these contributions. Thus, if any dependence on the density 𝜌 is detected in 𝑈𝑒𝑓𝑓 , a
3 DLVO stands for the works of (Boris) Derjaguin and (Lev) Landau, (Evert) Verwey and (Theodoor) Over-

beek.
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difference is established between 𝑈𝑒𝑓𝑓 and 𝑈2𝑏, reveling the existence of many-body terms in
the Hamiltonian.

Dobnikar et al. (2003) noticed that there is a discrepancy (Figure 10, left) between 𝑈𝑒𝑓𝑓 and
the DLVO potential in high density, low-salt suspensions. The low-salt condition corresponds to
the case in which 𝑑𝑚𝜅 ≈ 1, where 𝑑𝑚 corresponds to the average separation between colloidal
particles and, thus, the ionic double layer extends itself at this same order of length. The
different behavior observed is a faster decay of 𝑈𝑒𝑓𝑓 in comparison to the Yukawa potential
which, according to the authors, is motivated by the presence of many-body forces. This
deviation was not observed in the high-salt regime, where the behavior follows the typical
Yukawa interaction (solid line, Figure 10, left).

Dobnikar et al. (2003) wanted to translate this shift in the behavior of 𝑈𝑒𝑓𝑓 into a pure
Yukawa system, so they model this deviation as a truncation in the Yukawa pair potential. A
smaller cutoff distance better replicates the low-salt regime. Physically, this truncation corre-
sponds to the breaking of bonds between the colloidal particles and its neighbors. Considering
this representation, they observed the melting of the colloidal crystal at lower temperatures, as
they truncate the potential at smaller distances (Figure 10, right), namely for a cutoff ranging
from 3.07 to 1.35 units of length. The latter value corresponds to a region between the first
and second neighbor shells.

Figure 10 – Left: Effective force curves in colloidal crystals with different salt concentrations (dotted lines). A
difference in the behavior is observed in the low-salt regime (𝑑𝑚𝜅 ≈ 1), where the force decays
faster than the Yukawa interaction in the DLVO theory (solid line). Right: Change in colloidal
crystal melting line when a truncated Yukawa potential is adopted. Each line of numerical data
indicate the distance for truncation and 𝜆 ∝ 𝜅−1.

Source: Dobnikar et al. (2003).

The specific many-body contributions to the colloidal crystals were not possible to be
determined by Dobnikar et al. (2003). In the following year, however, Dobnikar et al. (2004)
directly measured three-body interactions in systems with 3 colloids and find it to be attractive
and with range comparable to the Yukawa potential. The authors used an optical tweezer trap,
inserting each particle at a time in the arrangement, in order to evaluate the particle position
distributions, the pair potential and, then, the three-body contributions. The difference between
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the total energy and the sum of pairwise interactions (Yukawa potential) for the trio is shown
in the right part of Figure 11. The positive values observed especially around the colloidal
particles correspond to the manifestation of an attractive three-body contribution which is
responsible for lowering the total interaction energy.

Also, the authors explained the mechanism of this nonpairwise interaction in low-salt, high
density colloids. In this regime, the double layer of Figure 9 extends over a wide distance in
the suspension, affecting the local ionic distribution and the electrostatic interaction between
colloids. We can consider the interaction of colloids, say A and B, which are sufficiently far
apart. Under the influence of a nearby third colloidal particle C, the ionic clouds may interact
with each other, disturbing the pair repulsion. Then, the interaction between A and B becomes
dependent on the position of C, which gives rise to the three-body contribution.

Figure 11 – In the left, experimental setup of three trapped (by means of optical tweezers) silica particles of
990 𝑛𝑚 suspended in water. Particles are distanced by 𝑟 = 2.5 𝜇𝑚 and 𝑑 = 1.6 𝜇𝑚. In the right,
a heat map of the difference between total electrostatic energy and the sum of three pairwise
interactions (Yukawa potential). Positive difference values indicate the presence of an attractive
three-body energy term, especially in the red areas. Horizontal and vertical directions indicate y
and x axes, respectively.

Source: Dobnikar et al. (2004).

One last point should be made to address the usefulness of colloidal suspensions in the
direct measure of these many-body effects. Tuning two- and three-body interactions separately
is an experimental challenge (BUCHLER; MICHELI; ZOLLER, 2007), especially in nuclear and
atomic systems, where positional information is usually not accessible. Colloids, however, allow
us at least to turn the three-body interaction off simply by the addition of salt, as has been
observed in the behavior of low- and high-salt suspensions (DOBNIKAR et al., 2003). This
allows us to qualify the colloids as ideal systems to study the influence of these non-linear
contributions in the behavior of interacting physical constituents.
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2.3.2 Vortices in superconductors

Another system of interest for three-body interactions are the magnetic vortices in super-
conductors. The superconductivity was discovered by Kamerlingh Onnes around 1911, when
he verify the abrupt disappearance of resistivity (perfect electrical conduction) in some metals
in very low temperatures and below critical values of an external magnetic field (TINKHAM,
1996). Vortices arise in a superconductor as normal (non-superconducting) regions which may
appear inside the sample, where superconducting currents circulate around to establish a sep-
aration between normal and superconducting region (KITTEL, 1996). Inside the vortices, a
quantized magnetic flux is established.

In the context of the Ginzburg-Landau (GL) phenomenological theory, an important clas-
sification associated to single-band superconductors employs the GL parameter 𝜅 = 𝜆

𝜉
, a ratio

between the penetration length 𝜆 and the coherence length 𝜉 of the superconductor. The
former is a measure of the usual magnetic field penetration inside the superconductor and the
latter is the typical length in which the order parameter (𝜓) varies. |𝜓|2 is directly associated
with the density of superconducting electrons (TINKHAM, 1996).

Type-1 (type-2) superconductors exhibit a ratio such that 𝜅 < 1√
2 (> 1√

2). This classi-
fication is associated with differences in their magnetic response and vortex states. Usually,
through the mechanism of the Meissner effect, an external magnetic field 𝐻 is expelled from
the inside of a superconductor sample. If 𝐻 reaches a value above 𝐻𝑐1 (Figure 12), it pene-
trates the superconductor and then superconductivity in type-1 systems is destroyed. Vortex
state is not stable in type-1 system, but it is shown that vortex-vortex interaction in type-1
slabs would be attractive at small distances between the vortices, as described by calculations
in Kramer (1971). According to Gladilin et al. (2015), as a result of such attraction, vortices
can often merge into a multiquanta domain of many shapes.

In type-2 superconductors, for 𝐻𝑐1 < 𝐻 < 𝐻𝑐2
4 (Figure 12), 𝐻 can partially penetrate

the sample by means of singly-quantized magnetic flux, the vortices, still maintaining a su-
perconducting region around them. Vortex-vortex interaction is known to be purely repulsive
in type-2 superconductors. Thus, they pack and organize themselves in a stable hexagonal
(Abrikosov) lattice inside the sample (Figure 13), and can also be found as liquid and as a
glass (LING et al., 2001).

Also, with a modification in the GL free energy, several works also consider multicom-
ponent superconductors, which goes beyond the GL parameter categorization, as they are
formed by electrons from different energy bands (EDSTROM, 2012). In particular, there is a
current discussion on two-component superconductors, formed by a type-1 and a type-2 sys-
tems, allowing non-monotonic two-body vortex competing interactions: short-range repulsive,
but long-range attractive. The competition of such interactions of different ranges results in
structural changes in the equilibrium configurations of the vortex state, when compared to
4 𝐻𝑐1 and 𝐻𝑐2 are known as the first and second critical fields. (TINKHAM, 1996)
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Figure 12 – Examples of magnetization curves for type-1, type-2 and type-1.5 superconductors.

Source: Carlström, Garaud and Babaev (2011).

Figure 13 – Left: representation of superconductor vortices organized in a triangular lattice for temperature
𝑇 = 0. Right: scanning-tunneling-microscope observation of the hexagonal vortex lattice in a
type-2 superconductor (𝑁𝑏𝑆𝑒2) at low temperature (1.1 𝐾).

Source: Silva (2003) and Hess et al. (1989), respectively.

single-component materials. This class of superconductors was first described experimentally
in Moshchalkov et al. (2009). The authors obtain, through Bitter decoration technique, surpris-
ing stripe and gossamerlike vortex structures in a MgB2 superconductor sample. The results,
which are shown in Figure 14, are confirmed by molecular dynamic simulations and compared
with a typical vortex lattice in a NbSe2 type-2 superconductor (Figure 14, b and d).

A few years ago, it has been discussed by numerical studies (CARLSTRÖM; GARAUD; BABAEV,
2011) that nonpairwise interactions also appear in type-1.5 systems and are relevant to the
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Figure 14 – Bitter decoration images of type-1.5 𝑀𝑔𝐵2 superconductor sample (a), showing a stripe vortex
pattern, and the vortex lattice (b) of a 𝑁𝑏𝑆𝑒2 type-2 superconductor. The samples were submitted
to a 5𝑂𝑒 magnetic field. (c) and (d) show Molecular Dynamics simulation reproduce such results.

Source: Moshchalkov et al. (2009).

formation of highly disordered vortex states which could not be formed only by considering
the sum of two-body intervortex forces. Figure 15 shows the influence of the three-body
interaction in multivortex structures in a Josephson-coupled multilayer of type-1 and type-
2 superconductors. In this case, the stripelike configuration (Fig. 15, center), with a strong
coupling enabled, is not accessible by the non-monotonic two-body interaction alone, which
is axial-symmetric. In fact, the final state is the result of repulsive multibody forces among
vortices. Carlström, Garaud and Babaev (2011) also detect the breaking of the large cluster
into smaller clusters, when considering a diluted initial cluster configuration of 30 vortices (Fig
15, right). During the energy minimization process, if only two-body forces were considered,
the initial cluster would contract in order to minimize the energy. However, due to many-body
forces, it expands and then breaks into smaller clusters.

In Edström (2013), a numerical study is also carried out for type-1, type-2 and type-1.5
superconductors by the minimization of the GL free energy. A scheme of two or three vortices
in fixed positions is used in order to obtain the energy map when an extra vortex is added to
the system afterwards. This method does not account for small vortex-vortex distances. The
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Figure 15 – Magnetic flux density of the ground state of different vortex equilibrium configurations in type-1.5
superconductor. In the left, system has a weak three-body interaction. Center and right: a strong
three-body interaction (strong coupling). In the center, stripe-like configuration. In the right, small
clusters obtained after the breaking of an initial dilute vortex cluster.

Source: Carlström, Garaud and Babaev (2011).

author used a free energy density of a two-component superconductor (type 1.5), excluding
the second condensate term to consider one-component superconductors (for types 1 and 2).
The main finding is a mismatch between the total interaction energy and the sum of the
pairwise interactions. According to the author, this indicates the appearance of many-body
forces, which he associates to three- and four-body terms.

Figure 16 exhibits the energy results, which indicate a repulsive three-body interaction
for types 1 and 1.5 (Figure 16a,c) and a attractive one for type-2 (Figure 16b), which is
compatible with observations in Carlström, Garaud and Babaev (2011). Except for a small
region in type-1 (Figure 16a), three-body interaction is more significant than four-body’s, but
both are relevant in comparison with the pairwise interaction.

Figure 16 – Contribution of two-, three- and four-body terms in the energy as a function of R (in units of√
2𝜉1, where 𝜉1 is the coherence length of one of the condensates in the absence of coupling) of

a single-component superconductor of types 1 and 2 and a two-component 1.5 sample.

Source: Edström (2013).

Section 2.3.1 and this one show that the presence of many-body contributions to charged
colloids and vortex systems are important and lead to results which cannot be explained only
by using pair interactions, even if we are considering non-monotonic pair potentials.
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3 METHODOLOGY

In this chapter, we provide details of the theoretical model and numerical methods used in
this work.

3.1 INTERACTION POTENTIALS AND THE CONFINEMENT

The two-dimensional particle system we study is composed of 𝑁 point-like particles sub-
mitted to competing inter-particle interactions: a repulsive two-body potential 𝑈2𝑏 and an
attractive three-body potential 𝑈3𝑏, both depending only on the distances between the parti-
cles involved. The system is confined through an harmonic confinement potential 𝑈𝑐𝑜𝑛𝑓 , used
to assemble particles in a limited region of two-dimensional space and has the form

𝑈𝑐𝑜𝑛𝑓 = 𝑘0

𝑁∑︁
𝑖

𝑟2
𝑖 , (3.1)

where 𝑘0 is a constant which determines the confinement strength and 𝑟𝑖 is the radial
position of the i-th particle.

We adopt different functional forms for the 𝑈2𝑏 potential: a logarithmic, a Coulomb-like
and a Yukawa-like interaction. The Coulomb potential describes systems of charged parti-
cles. The Yukawa potential, which is basically the Coulomb interaction with the addition of
an exponential decay term, was already mentioned in Chapter 2. It appears when charged
spherical colloids are in suspension and interacting repulsively with each other. Logarithmic
potential is associated, for example, with the interaction of magnetic vortices (separated by a
distance 𝑟 << 𝜆𝐿)1 in superconducting samples (TINKHAM, 1996), in which the interaction is
proportional to log(1

𝑟
) = − log(𝑟) at small distances.

The functional forms of 𝑈2𝑏 are, then, the following

𝑈2𝑏(𝑟𝑖𝑗) = 𝑘2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
𝑁∑︁

𝑖=1

𝑁∑︁
𝑗=𝑖+1

log(𝑟𝑖𝑗) , if logarithmic

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

1
𝑟𝑖𝑗

, if Coulomb-like

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

1
𝑟𝑖𝑗

exp
(︂

−𝑟𝑖𝑗

𝜆

)︂
, if Yukawa-like

(3.2)

where 𝑟𝑖 is the position vector of i-th particle, 𝑟𝑖𝑗 = |𝑟𝑖 − 𝑟𝑗| is the distance between i-th
and j-th particles and 𝑘2 > 0 is a constant. The sum is made for all possible pairs of particles
in a given 𝑁 . The potential profiles are plotted in Figure 17, alongside the two-body forces,
1 𝜆𝐿 is the London penetration depth, a measure indicating the magnetic field penetration inside a super-

conductor sample.
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obtained from 𝑈2𝑏 using the identity 𝐹 2𝑏 = −∇𝑈2𝑏. We observe, in the right plot, the different
ranges in the two-body forces.

Figure 17 – Functional forms of 𝑈2𝑏 potential (left) and correspondent two-body forces (right). In this case,
𝑘2 = 𝜆 = 1.0.
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Source: The author (2020).

The three-body interaction is the main ingredient for the phenomena discussed. It emerges
as three particles (and not a pair of them) are close enough to each other, if we consider
distance-dependent potentials. In order to use a monotonic potential for three-body interaction
(the same case for 𝑈2𝑏), we chose a Gaussian exponential form for 𝑈3𝑏 as follows

𝑈3𝑏(𝑟𝑖𝑗, 𝑟𝑖𝑘, 𝑟𝑗𝑘) = −𝑘3

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝑁∑︁
𝑘=𝑗+1

exp
(︃

−
𝑟2

𝑖𝑗 + 𝑟2
𝑖𝑘 + 𝑟2

𝑗𝑘

2𝜉2

)︃
, (3.3)

where 𝑘3 is our main parameter controlling the strength of the three-body interaction, 𝜉 is
the Gaussian width (set to unity throughout this work) and the sum is made for all possible
trios of (𝑖, 𝑗, 𝑘) particles. Figure 18 shows plots for several values of 𝑘3 and 𝜉, where we note
a negative potential growing monotonically towards zero as 𝑅 =

√︁
𝑟2

𝑖𝑗 + 𝑟2
𝑖𝑘 + 𝑟2

𝑗𝑘 grows for a
given (𝑖, 𝑗, 𝑘) trio.

In order to perform the simulations of confined particles, we can write the potential energy
(𝑈 = 𝑈𝑐𝑜𝑛𝑓 + 𝑈2𝑏 + 𝑈3𝑏) in a dimensionless form for each type of 𝑈2𝑏. The potential energy
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Figure 18 – Three-body potential profiles for several values of 𝑘3 and 𝜉. 𝑟𝑜 is the unit of length.

Source: The author (2020).

Figure 19 – In the left, trio of interacting particles submitted to 𝑈3𝑏. Particles are close enough to interact
if all interparticle distances (𝑟𝑖𝑗 , 𝑟𝑖𝑘 and 𝑟𝑗𝑘) are equal or smaller than 𝑅3𝑏. In the right, the
N-dependent relation of possible pairs and trios to be formed among particles, indicating the
computational cost of the three-body interaction.
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can be initially written as

𝑈(𝑟𝑖𝑗, 𝑟𝑖𝑘, 𝑟𝑗𝑘) = 𝑘0

𝑁∑︁
𝑖

𝑟2
𝑖 +𝑘2

𝑁∑︁
(𝑖,𝑗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− log(𝑟𝑖𝑗)

1
𝑟𝑖𝑗

1
𝑟𝑖𝑗

exp (−𝑟𝑖𝑗)

−𝑘3

𝑁∑︁
(𝑖,𝑗,𝑘)

exp
(︃

−
𝑟2

𝑖𝑗 + 𝑟2
𝑖𝑘 + 𝑟2

𝑗𝑘

2𝜉2

)︃
(3.4)
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Considering Partoens and Peeters (1997) and taking the three-body potential into account,
we can adopt the following units

𝑟𝑜 =
(︃
𝑘2

𝑘𝑜

)︃(2+𝑛)−1

(3.5)

𝐸𝑜 = [(𝑘2)2(𝑘0)𝑛](2+𝑛)−1 (3.6)

𝐹𝑜 = [(𝑘2)(𝑘0)1+𝑛](2+𝑛)−1 (3.7)

for position coordinates, energy and force, respectively. Here, 𝑛 is the power associated with the
𝑈2𝑏 potential: 𝑛 = 0 is the case for logarithmic and 𝑛 = 1, Coulomb and Yukawa potentials.
With these, we have the potential energy in the dimensionless form of

𝑈(𝑟𝑖𝑗, 𝑟𝑖𝑘, 𝑟𝑗𝑘) =
𝑁∑︁
𝑖

𝑟2
𝑖 +

𝑁∑︁
(𝑖,𝑗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− log(𝑟𝑖𝑗)

1
𝑟𝑖𝑗

1
𝑟𝑖𝑗

exp
(︂

−𝑟𝑖𝑗

𝜆

)︂ − 𝑘3

𝑁∑︁
(𝑖,𝑗,𝑘)

exp
(︃

−
𝑟2

𝑖𝑗 + 𝑟2
𝑖𝑘 + 𝑟2

𝑗𝑘

2𝜉2

)︃
(3.8)

Since we are considering damped dynamics in our simulations, there is no kinetic energy
in the system for 𝑡 >> 0, so the potential energy (Eq. 3.8) is the only contribution in the
Hamiltonian.

We can also adopt a numerical cutoff to avoid unnecessary calculations involving 𝑈3𝑏.
Figure 19 illustrates the case: if each particle in a given trio is simultaneously separated from
each other by a distance smaller than 𝑅3𝑏, then they define a trio that interact via 𝑈3𝑏 and that
will be considered in the algorithm. We adopt 𝑅3𝑏 = 4 𝑟𝑜, which is a reasonable value since
three particles equally distanced by this amount results in an extremely small contribution of
𝑈3𝑏 to the total potential energy (Eq. 3.8): approximately 4 × 10−11𝐸𝑜, considering 𝑘3 = 1.0
and 𝜉 = 1.0. In the case of the three-body interaction, setting a cutoff radius is specially
important, as the number of possible trios grows much faster in relation to 𝑁 than pairs
do, as the right part of Figure 19 shows. Each trio represents an extra iteration step to be
considered in the algorithm, so the appropriate use of 𝑅3𝑏 contributes to save computational
time.

3.2 MOLECULAR DYNAMICS AND THE LANGEVIN EQUATION

We make use of the molecular dynamics (MD) algorithm to simulate and obtain equilibrium
arrangements in two dimensions, revealing us some dynamical properties of the system (ALLEN,
2004). MD is a "microscopic" approach based on the solving of the system’s equations of
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motion. This is fundamentally the Newton’s second law (𝐹 = 𝑚𝑎) for a classical system. The
resultant force 𝐹 has several sources in our case: the interaction potentials, 𝑈2𝑏 and 𝑈3𝑏, and
the confinement potential 𝑈𝑐𝑜𝑛𝑓 . Thus, for the i-th particle, MD intends to solve

𝑚
𝑑𝑣𝑖

𝑑𝑡
= 𝐹 𝑖 = −∇𝑖𝑈

𝑚
𝑑𝑣𝑖

𝑑𝑡
= −∇𝑈𝑐𝑜𝑛𝑓 (𝑟𝑖) −

𝑁∑︁
𝑗,𝑘

[ ∇𝑈2𝑏(𝑟𝑖𝑗) + ∇𝑈3𝑏(𝑟𝑖𝑗, 𝑟𝑖𝑘, 𝑟𝑗𝑘)] (3.9)

where 𝑣𝑖 is the velocity vector and ∇ is the gradient, both corresponding to the i-th particle.
However, this picture is still incomplete. To consider the particle’s thermal motion we make

use of the Langevin equation. It consists in a small modification of Newton’s second law by
adding a frictional (viscous) force proportional to 𝑣 and a stochastic term 𝛾𝑖(𝑇, 𝑡). In this
case, the particle dynamics is defined by

𝑚
𝑑𝑣𝑖

𝑑𝑡
= −𝜂𝑣𝑖 + 𝛾𝑖(𝑇, 𝑡) − ∇𝑈𝑐𝑜𝑛𝑓 (𝑟𝑖) −

𝑁∑︁
𝑗,𝑘

[ ∇𝑈2𝑏(𝑟𝑖𝑗) + ∇𝑈3𝑏(𝑟𝑖𝑗, 𝑟𝑖𝑘, 𝑟𝑗𝑘)] , (3.10)

where 𝜂 is the damping coefficient and 𝑇 is the temperature. As the thermal fluctuations are
represented in the form of a stochastic term, it is required to be a Gaussian process with

⟨𝛾𝑖(𝑡)⟩𝛾 = 0, (3.11)

the brackets indicating an average with respect to all realizations of 𝛾𝑖 (i.e., with respect to
the 𝛾𝑖 ensemble).

Also, for each particle, we desire the "kicks" offered by the 𝛾𝑖(𝑇, 𝑡) in the system to be
uncorrelated in time and in different directions. Thus, considering Kardar (2007), the following
identity is invoked

⟨𝛾𝑖,𝛼(𝑡),𝛾𝑗,𝛽(𝑡′)⟩ = 𝜂2𝐷𝛿𝑖,𝑗𝛿𝛼,𝛽𝛿(𝑡− 𝑡′) = 2𝜂𝑘𝐵𝑇𝛿𝑖,𝑗𝛿𝛼,𝛽 𝛿(𝑡− 𝑡′). (3.12)

𝛼, 𝛽 are the cartesian components of the force vector, 𝛿𝑖,𝑗 is the Kronecker delta, 𝛿(𝑡− 𝑡′) is
the Dirac’s delta function and 𝐷 is the diffusion coefficient. In the Langevin dynamics, the
expression for 𝐷 is given by the Einstein-Smoluchowski relation

𝐷 = 2𝑘𝐵𝑇

𝜂
, (3.13)

which connects microscopic properties of the particle diffusion with macroscopic quantities
such as the viscosity (DAINTITH, 2008). The relation 3.12 is the autocorrelation function
of 𝛾𝑖(𝑇, 𝑡). It is a manifestation of the fluctuation-dissipation theorem, which associates a
dissipating energy process with a reverse one linked to thermal fluctuations (KUBO, 1966). The
simplest example is when a Brownian particle is submitted to the impacts of the surrounding
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molecules, which act as a random driving force and also establishes a frictional (viscous) force
when the system is submitted to some external excitation. Eq. 3.10 brings these two extra
contributions to our system.

We adopt a simplified version of the Langevin dynamics which is called Brownian dynamics
(BD). BD can be considered an overdamped Langevin dynamics, in which the inertia term in
Eq. 3.10 is small in comparison to the damping force (i.e., the acceleration is negligible). It
means that Eq. 3.10 can be approximately written as

𝜂
𝑑𝑟𝑖

𝑑𝑡
≈ 𝛾𝑖(𝑇, 𝑡) − ∇𝑈𝑐𝑜𝑛𝑓 (𝑟𝑖) −

𝑁∑︁
𝑗,𝑘

[ ∇𝑈2𝑏(𝑟𝑖𝑗) + ∇𝑈3𝑏(𝑟𝑖𝑗, 𝑟𝑖𝑘, 𝑟𝑗𝑘)], (3.14)

where the identity 𝑣𝑖 = 𝑑𝑟𝑖

𝑑𝑡
was used and 𝑟𝑖 = (𝑥𝑖, 𝑦𝑖).

3.3 NUMERICAL INTEGRATION

Our intention is to integrate Eq. 3.14 in order to obtain the position coordinates (𝑥𝑖, 𝑦𝑖)
of all particles at each time. Thus, we need to numerically integrate the Langevin equation.
The procedure is described in Kardar (2007) and Tome and Oliveira (2014) through a finite
difference method. This is a simple method which combines the Euler integration method for
the deterministic component of the force (𝐹 ) and uses a first-order approximation for the
stochastic term. This is known as the Euler-Maruyama method. The 𝑥 component of this
approximation is given by

𝜂[𝑥𝑖(𝑡𝑛+1) − 𝑥𝑖(𝑡𝑛)] = 𝐹𝑖,𝑥(𝑡𝑛)Δ𝑡+ 𝜂𝑢𝑥(𝑡𝑛)
√
𝐷Δ𝑡

𝑥𝑖(𝑡𝑛+1) = 𝑥𝑖(𝑡𝑛) + 1
𝜂
𝐹𝑖,𝑥(𝑡𝑛)Δ𝑡+ 𝑢𝑥(𝑡𝑛)

√
𝐷Δ𝑡 (3.15)

where 𝐹𝑖,𝑥(𝑡𝑛) is the x component of −∇𝑈 for the particle i, 𝑢𝑥(𝑡𝑛) is a Gaussian random
variable (with zero mean and unit variance), Δ𝑡 = 0.001 (in units of 𝜂 𝑟2

𝑜/𝐸𝑜) is the time step
and 𝜂 = 1.0. An expression, similar to Eq. 3.15, is also assumed for 𝑦 component and the two
expressions are used to obtain particle positions with time.

3.4 SIMULATED ANNEALING AND OPTIMIZATIONS

We start the simulation by a random sorting of particles in a squared region, whose size
is determined by a reference from 𝑘3 = 0 case, which indicates a region of side

√
2𝑁 . This

value guarantees a density of 2
𝜋

particles per area unit at 𝑡 = 0.
A simulated annealing (SA) is used in our simulations in order to obtain our equilibrium

arrangements and avoid metastable configurations. This procedure is based on the slowly
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decrease of a high initial temperature (𝑇 ) of the system in order to obtain a local minimum of
the system at 𝑇 = 0. The use of the SA is required to overcome the energy barrier between
the close metastable states and get as closer as possible to the global minimum of the system
for a given pair of 𝑁 ,𝑘3.

The initial temperature 𝑇0 (in units of 𝐸0/𝑘𝐵, where 𝑘𝐵 is the Boltzmann constant) is
controlled by the parameter 𝐷 ∝ 𝑇 (Eq. 3.15). 𝑇0 is such that the system is virtually a
"liquid", when particles are accessing all the sorting region. In order to reach 𝑇 = 0, we
adopt a temperature reduction function which decays exponentially. A linear function was also
tested, but adopted only for the case of a few particles. Starting with 𝑘𝐵𝑇 = 8𝐸0, we let the
particles interact for 105 Δ𝑡. After that, there is a decrease in 𝑇 by a factor of Δ𝑇 = 0.9,
along another time interval of 105 Δ𝑡. This is repeated for 80 temperature steps, until the
reaching of a temperature value very close to 𝑇 = 0, after which we set 𝑇 = 0 and the
equilibrium arrangement is finally obtained. Figure 20 shows the temperature function with
the exponential decay.

Figure 20 – Temperature decrease curve in our simulated annealing. In the left, the full exponential decrease
curve from 𝑘𝐵𝑇 = 8.0 𝐸0 in 𝑡 = 0. In the inset, last 40 steps in the temperature decrease with
log scale in 𝑦 axis.
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Due to the three-body interaction, code optimization is essential to save computational
time. Besides the cutoff radius used to 𝑈3𝑏 potentials, we make use of several strategies. One
of these avoids extra iterations in the algorithm as we use Newton’s third law in the (𝑖, 𝑗)
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particles loop through the identity

𝐹 2𝑏(𝑖; 𝑗) = −𝐹 2𝑏(𝑗; 𝑖) (3.16)

where 𝐹 2𝑏(𝑖; 𝑗) is the two-body force (due to the j-th particle). In the case of the three-
body potential 𝑈3𝑏 = 𝑈3𝑏(𝑟𝑖, 𝑟𝑗, 𝑟𝑘) we obtain an expression to simplify the three-body force
calculations. Consider a trio of particles labeled by (𝑖, 𝑗, 𝑘). The three-body force of the i-th
particle due to the j-th and k-th particles is given by

𝐹 3𝑏(𝑖; 𝑗, 𝑘) = −∇𝑖 𝑈3𝑏 = −𝜕𝑈3𝑏

𝜕𝑥𝑖

𝑥̂ − 𝜕𝑈3𝑏

𝜕𝑦𝑖

𝑦 (3.17)

Working, for instance, with the x-component of Equation 3.17 and using the fact that
𝑈3𝑏 = 𝑈3𝑏(𝑟𝑖𝑗, 𝑟𝑗𝑘, 𝑟𝑖𝑘), we apply the chain rule for partial derivatives

𝐹 3𝑏(𝑖; 𝑗, 𝑘)𝑥 = −
(︃
𝜕𝑥𝑖𝑗

𝜕𝑥𝑖

𝜕𝑈3𝑏

𝜕𝑥𝑖𝑗

+ 𝜕𝑥𝑗𝑘

𝜕𝑥𝑖

𝜕𝑈3𝑏

𝜕𝑥𝑗𝑘

+ 𝜕𝑥𝑖𝑘

𝜕𝑥𝑖

𝜕𝑈3𝑏

𝜕𝑥𝑖𝑘

)︃

= −
(︃
𝜕𝑈3𝑏

𝜕𝑥𝑖𝑗

+ 𝜕𝑈3𝑏

𝜕𝑥𝑖𝑘

)︃ (3.18)

Similarly for the three-body forces for the j- and k-th particles, we have the following
relations

𝐹 3𝑏(𝑗; 𝑖, 𝑘)𝑥 = 𝜕𝑈3𝑏

𝜕𝑥𝑖𝑗

− 𝜕𝑈3𝑏

𝜕𝑥𝑗𝑘

𝐹 3𝑏(𝑘; 𝑖, 𝑗)𝑥 = 𝜕𝑈3𝑏

𝜕𝑥𝑖𝑘

+ 𝜕𝑈3𝑏

𝜕𝑥𝑗𝑘

(3.19)

Therefore, combining 3.18 and 3.19 we obtain

𝐹 3𝑏(𝑖; 𝑗, 𝑘)𝑥 = −[𝐹 3𝑏(𝑗; 𝑖, 𝑘)𝑥 + 𝐹 3𝑏(𝑘; 𝑖, 𝑗)𝑥], (3.20)

with a similar relation for the y-component. In this way, we can calculate only two of the three
forces involved in a given particle trio. Equation 3.20 indicates that the sum of all three-body
forces in the system is zero, which is similar to the two-body force case.

Also, we want to avoid, as much as we can, multiple calculations in the three-body inter-
action loop (the innermost loop in the algorithm), since it is computationally more expensive.
Thus, we use lookup tables to storage a priori values of some function (exponentials, for ex-
ample) in order to retrieve the value from the memory and not to perform the operation inside
the loop (HALL; MCNAMEE, 1997).
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4 TRAPPED PARTICLES: CONFINEMENT IN A PARABOLIC POTENTIAL

In this chapter, we present numerical and analytical results on the equibrium configuration
of many particles confined to a parabolic potential 𝑈𝑐𝑜𝑛𝑓 (parabolic "trap") and interacting via
two-body and three-body potentials. We will discuss the relevance of the three-body interaction
to the system self-organization and the appearance of a first-order phase transition associated
with a dramatic change in the particle density and in the system structure.

4.1 TWO-BODY INTERACTING PARTICLES REVISITED

We turn our attention to the confinement of particles in a parabolic potential with only
the two-body interaction (𝑘3 = 0). This is a well-known system in the literature, so we can
understand how the system arrangements are related to 𝑁 and compare our simulation results
with the available literature. In this situation, the particles were submitted to the repulsive 𝑈2𝑏

(logarithmic, Coulomb-like or Yukawa-like) and the confinement potentials. Simulations were
implemented for 3 ≤ 𝑁 ≤ 50 and some dozens of them were run per 𝑁, 𝑘3. The energies were
compared and the lowest energy arrangement was selected.

In order to avoid metastable states as much as possible, each simulation was carried out
with the use of a simulated annealing to achieve the system equilibrium, as described in the
Methodology chapter. We followed the procedure adopted in the Chapter 3, unless stated
otherwise. As pointed out by Bedanov and Peeters (1994), as 𝑁 increases, there are much
more metastable configurations close to the global minimum, making it difficult to determine
precisely the ground state. For this reason, we do not claim the obtained configurations are
all ground states of the system, but the lowest energy metastable configurations we were able
to find.

Now we describe our findings of this section. For all functional forms of 𝑈2𝑏, the equilibrium
disposition was a single circular cluster of particles, organized in several concentric rings1

composed of different number of particles. The equilibrium state is described by the label
(𝑛1, 𝑛2, 𝑛3, ...), where 𝑛𝑖 designates the occupation number of the i-th shell. Essentially, the
cluster is formed due to the combined presence of the aggregation offered by 𝑈𝑐𝑜𝑛𝑓 and the
mutual particle repulsion caused by 𝑈2𝑏 in the process of energy minimization. The repulsive
interaction tries to form an hexagonal lattice in the infinite system, but the circularly symmetric
harmonic confinement imposes the circular cluster formation (BEDANOV; PEETERS, 1994).

For a few particles (𝑁 ≤ 8 for the Coulomb and Yukawa potentials and 𝑁 ≤ 9 for the
logarithmic one), we observed the formation of regular polygons. For 6 ≤ 𝑁 ≤ 9, a central
particle was found in the center of the polygon. Figure 21 shows such arrangements for 𝑘2 and
𝑘0 set to unity.
1 In this work, a ring (or a shell) refers to two or more particles with the same radial position. A central

particle is counted as a shell.



40

Figure 21 – Lowest energy arrangements for small values of 𝑁 and 𝑘3 = 0.0. From 𝑁 = 4 to 𝑁 = 8, the
configurations were the same for all 𝑈2𝑏 potentials. For Yukawa potential, 𝜆 = 1.0. Simulation
boxes shown have dimensions of 1.7𝑟𝑜 ×1.7 𝑟𝑜. Dotted circles have unity radius, except for 𝑁 = 9
(radius 1.5 𝑟𝑜).
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As we increase𝑁 , additional particles can populate the shells and, eventually, more rings are
formed. Evidently, they also become more populated. Several cases are shown in Figure 22 also
for 𝑘2 and 𝑘0 set to unity. The arrangements are very similar for all 𝑈2𝑏 potentials, however
there are small distinctions between them, with some fluctuations between the equilibrium
states, which can be attributed to differences in the potential forms. Consider, for instance,
the Yukawa potential. It has a shorter interaction range and a harder repulsive core (LAI; I,
1999), so the system "squeezes" a bit more than in the logarithmic case and a higher density
is observed. Thus, we can observe deviations both in the arrangements size and in the ring
occupation numbers, which is especially clear for 𝑁 = 46. As already mentioned, adding
particles to the system also implies more metastable states close to the global minimum, so
the deviations in the ring occupation numbers should be more apparent for greater 𝑁 .

As a consistency test for the simulation set in this section, we compared the results to
some known references, such as Bedanov and Peeters (1994), Kong, Partoens and Peeters
(2003) (based on Monte Carlo technique), Lai and I (1999) and Cheung, Choi and Hui (1997)
(based on molecular dynamics simulation) for each 𝑈2𝑏 potential.

A summary of the observed equilibrium configurations for 𝑁 > 9 follows. Two rings were
observed for 10 ≤ 𝑁 ≤ 16 (logarithmic) and for 10 ≤ 𝑁 ≤ 15 (Coulomb and Yukawa).
Three rings for 17 ≤ 𝑁 ≤ 33 (logarithmic), 16 ≤ 𝑁 ≤ 31 (Coulomb) and 16 ≤ 𝑁 ≤ 30
(Yukawa). Four rings appeared for all remaining values until 𝑁 = 50, except for an extra
central particle for 𝑁 = 50 in the Yukawa-like potential case. Except for only a few cases



41

Figure 22 – Lowest energy arrangements for several values of 10 ≤ 𝑁 ≤ 50 range and 𝑘3 = 0.0. For Yukawa
potential, 𝜆 = 1.0. Square boxes have the same sides in units of 𝑟𝑜 for each 𝑁 and shell numbers
are indicated on the top of each.
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in which metastable energies were too close to each other, energy values and equilibrium
arrangements were consistent with the references.

We also observed some "magic" configurations, for example the (1,6,12) at 𝑁 = 19 for
Coulomb and Yukawa and (1,6,12,18) at 𝑁 = 37 for logarithmic potentials. They are marked
in bold in Figure 22. According to works such as Bedanov and Peeters (1994) and Schweigert
and Peeters (1995), these configurations are more stable than others against intershell rotation.
The commensurability between different shells (the population of a shell being proportional to
the population of another) and a high number of sixfold-coordinated particles (resembling an
hexagonal lattice, except maybe for some defects in the boundary) are two special properties
of these arrangements. In particular, for a uniform magic structure the difference between
occupation number of these adjacent shells should be 6 (LAI; I, 1999).

As we use classical interactions in the Hamiltonian, in this work we approach the Thomson
problem by studying "classical atoms". Similarly as Thomson, we can also summarize our results
in a "classical" periodic table, which exhibits all the shell structures we found for the different
𝑈2𝑏 in 3 ≤ 𝑁 ≤ 50 range. This is found in the Appendix A. An interesting feature is invoked
by Lai and I (1999), which indicate that these "classical atoms" have different occupation
number in the shells as 𝑁 increases. We also observe this feature in our ring numbers for all
𝑈2𝑏 potentials. In this context, the system allows new electrons to occupy also the inner shells,
which is not the case in usual quantum atoms. This also occurs in three-dimensional classical
systems, as registered in the shell configurations of Hasse and Avilov (1991), for example.

In the next section, we turn the three-body interaction on and focus on the influence of
𝑈3𝑏 in the particle arrangements.

4.2 𝑘3 ̸= 0: SYSTEM COMPACTION AND TRANSITIONS

4.2.1 𝑁 = 3: a prelude to the Gaussian three-body interaction

For 𝑘3 ̸= 0, we begin our investigation by the simplest possible case for the three-body
interaction to appear, 𝑁 = 3. In the following, we adopt 𝑘2 and 𝑘0 unitary. By means of
a preliminary analytical study, Figure 23 gives us some hints on the energy behavior. We
proceeded by fixing two particles in symmetrical positions with respect to the y-direction. It
was followed by an evaluation of the potential energy 𝑈(𝑥, 𝑦) landscape for which a third
particle would be submitted if placed in (𝑥, 𝑦).

The Figure 23 shows the heat map for 𝑈 , which is composed of

• a fixed parabolic confinement potential 𝑈𝑐𝑜𝑛𝑓 ;

• a fixed two-body repulsive logarithmic potential 𝑈2𝑏 (the map is quite similar for the
alternative functional forms); and
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• a three-body attractive Gaussian potential 𝑈3𝑏, whose strength (𝑘3) is a variable param-
eter.

Figure 23 – Potential energy heat map as seen by a third particle, considering the logarithmic two-body
interaction. We used 𝜉3𝑏 = 𝑟𝑜 and the fixed particles positioned in (-0.3,0.0) and (0.3,0.0). The
color bar indicates energy values in units of 𝐸𝑜 and the square box has side of 1.0 𝑟𝑜. The white
crosses indicate local minima.
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The case for 𝑘3 = 0.0 (left, Fig.23) refers to the absence of the three-body interaction,
in which 𝑈𝑐𝑜𝑛𝑓 is the only aggregating potential and the system experiences a larger repul-
sion region due to 𝑈2𝑏 than in 𝑘3 ̸= 0.0 situation. As we increase the absolute value of 𝑘3,
an attractive potential (𝑈3𝑏) comes in and a vertical region along the two fixed particles is
promoted to lower energy. Red areas indicate regions with lower energies, so a third particle
would prefer to occupy such locations if added to the system. The white crosses in Figure 23
(right) indicate the local minima of 𝑈(𝑥, 𝑦). The minima migrate to smaller radial positions
as we increase 𝑘3. That considered, a question on the system arrangement arises: if placed
to freely interact with each other, what disposition would the three particles form after reach
equilibrium? In what follows, we describe the semi-analytical study adopted in order to find it.

Considering Figure 23, an educated guess is that the particles can arrange themselves in
the vertices of an equilateral triangle or even in a triplet, as shown in Figure 24. The distances
between the particles can be simply described by functions of one parameter, 𝐿. Thus, for both
configurations, we parameterized all the potentials (Eq. 3.8) by 𝐿. In this way, we obtain the
potential energy of the system for each candidate configuration and check, through numerical
simulations, which one is thermodynamically favourable. An analog of this procedure is used
for several values of 𝑁 in a following section.

This study is inspired by considerations in Sellin and Babaev (2013), which verify the
influence of non-pairwise interactions in the ground state of three particles as the cause for
structural changes in a given particle system. Depending on the ground state arrangement for
𝑁 = 3, we predict the tendency of particles to arrange themselves into hexagonal symmetric
structures (if a triangular ground state is the case) or into stripe-like configurations in systems
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with many particles (if the triplet state is favourable). Thus, we want to check whether there
is a change in the ground state caused by the introduction of the three-body interaction. Due
to the small number of particles, we can fundamentally associate our configuration as a global
minimum for 𝑁 = 3.

Figure 24 – Proposed arrangements for particle positions for N=3, in the presence of a Gaussian three-body
interaction. Left: equilateral triangle. Right: an equally distanced triplet.

Source: The author (2020).

The expressions for the potential energy adopting the logarithmic two-body interaction
are, then,

𝑈𝑒𝑞. 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = 𝐿2 − 3 log𝐿− 𝑘3 exp
(︃

−3𝐿2

2

)︃
(4.1)

and
𝑈𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 2𝐿2 − (2 log𝐿+ log 2𝐿) − 𝑘3 exp(−3𝐿2), (4.2)

where 𝑈𝑐𝑜𝑛𝑓 , 𝑈2𝑏 and 𝑈3𝑏 are represented by each term in both equations, respectively.
Eqs. 4.1 and 4.2 are plotted in Figure 25A and 25B, respectively. In both cases, 𝑈𝑐𝑜𝑛𝑓 and

𝑈2𝑏 are fixed. For the pair of solutions, the plotted curves for different 𝑘3 indicate a deeper
potential well in the region around the minima for greater 𝑘3, which is associated with a system
compaction. This is expected, as the attractive nature of the three-body interaction pull the
particles close together. In particular, the triangular arrangement exhibited the smallest energy
values.

We confirm such behavior by using the minimization process for 𝑈 in an almost continuous
range of 𝑘3. The potential minima, obtained for specific values of 𝐿 (𝐿𝑚𝑖𝑛) at each 𝑘3, are
shown in Figure 25C. We observe that the three-body interaction favors the equilateral triangle
disposition, for which corresponds the lowest energy values in all the range considered. A similar
result is also found for Yukawa and Coulomb cases. The numerical simulations corroborate our
analysis: only the triangle configuration was observed in the complete range of 𝑘3 considered.
Figure 25D displays the results and the expected compaction the system undergoes for greater
𝑘3.

In the next section, we exhibit our findings for small values of 𝑁 .
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Figure 25 – In A and B, the parameterized potential energy 𝑈 (considering a fixed two-body logarithmic
interaction and 𝜉3𝑏 = 1√

2 𝑟𝑜) for the equilateral triangle and triplet cases, respectively. 𝑈 minima
are shown in C, according to the 𝑈3𝑏 amplitude and indicate the equilateral triangle as the favoured
arrangement. Correspondingly, simulation results are shown in D, where circles indicate particle
positions.
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4.2.2 𝑁 ≤ 8

For a small number of particles (4 ≤ 𝑁 ≤ 8), we observed, through a semi-analytical
study and MD simulations, that the introduction of a three-body interaction compacted the
particle cluster in a similar way as we observed for 𝑁 = 3, however with distinct behaviors for
the different two-body potentials and with the existence of an special transition.

We conducted a semi-analytical study which adopts some equilibrium configuration ansätze
for the system, such as

• 𝑁 = 4: a square (4);
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• 𝑁 = 5: a square plus one central particle (1,4) or a pentagon (5);

• 𝑁 = 6: a pentagon plus one central particle (1,5) or an hexagon (6);

• 𝑁 = 7: an hexagon plus one central particle (1,6) or an heptagon (7); and

• 𝑁 = 8: an heptagon plus one central particle (1,7) or an octagon (8).

Just as in Section 4.2, we compared this small set of configurations of 𝑁 = 5, 6, 7, 8 to
find which choice minimizes 𝑈 . In the case of 𝑁 = 4, no other configuration is found rather
than the square one. We selected such polygon arrangements because we can parameterize
𝑈 in terms of only one variable (the side of the polygon) and since we can expect that the
polygonal structure found for 𝑘3 = 0 and 𝑁 ≤ 8 will stand for 𝑘3 ̸= 0. This study is relevant
because we compare it to our MD simulation results and it is useful because the expressions
of 𝑈 for 𝑁 ≤ 8 is still not cumbersome.

Figure 26 shows the energy profiles for small 𝑁 after a numerical minimization of 𝑈 .
The solid curves shows the system local minima, without distinguishing the equilibrium con-
figurations for each 𝑁 . The effects of 𝑈3𝑏 on these configurations will be discussed further
below.

As we increase 𝑘3, Coulomb and Yukawa cases show a smooth decrease in energy, which will
be associated to a soft decrease in the polygon size. The behavior in the logarithmic potential
is quite different, especially for 𝑁 = 6, 7, 8, when we observe a sharp "knee" in the energy
curve (grey dotted lines), indicating the presence of a sudden transition in the system. The
region around this knee is associated with an abrupt contraction in the cluster size. Figure 26D
confirms the existence of a discontinuous derivative of the energy plot for the logarithmic case.
This discontinuity of 𝑑𝑈

𝑑𝑘3
resembles a first order phase transition in the system (KOCH, 1984),

in which the first derivative of a function suffers a discontinuity in relation to some parameter.
According to Figure 26D, the amplitude of such discontinuity is dependent on the number 𝑁
of particles. Then, it is dependent on the three-body interaction strength as it grows when
more particles are available to interact. It is important to consider that the Coulomb potential
also exhibits such discontinuity, but only for greater 𝑁 , as we shall see in the next section.
Above 𝑘3 = 2.0, for all cases of 𝑁 ≤ 8 the system continued to monotonically decrease in
energy with no further discontinuities.

The appearance of a first-order transition in physical systems is associated with the phe-
nomenon of bistability, i.e., the presence of two local minima (metastable equilibrium points)
in the potential energy (KOCH, 1984). Figure 27 illustrates such phenomenon in our potential
energy for two values of 𝑁 . In what follows, we explain the motivation for this effect. For small
values of 𝑘3, the parabolic potential 𝑈𝑐𝑜𝑛𝑓 is the main responsible for the cluster cohesion:
a single equilibrium point is assigned to the system, around 𝐿 = 1.2 for 𝑁 = 7 (Figure 27,
left). However, considering the attractive nature of 𝑈3𝑏, as we increase its amplitude we reach
a region where 𝑈3𝑏 becomes relevant and two minima are defined in the system (𝐿 ≈ 0.5 and
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Figure 26 – Numerical study for the few-particles case. A, B and C show the energy dependence on 𝑘3. We
adopt 𝜉 = 𝑟𝑜. D, E and F exhibit the energy derivatives with respect to 𝑘3 indicating an abrupt
transition in the logarithmic case. Triangles indicate energy results from MD simulation.
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𝐿 ≈ 1.1). Another increase in 𝑘3 induces the dominance of 𝑈3𝑏 over 𝑈𝑐𝑜𝑛𝑓 and the three-body
interaction determines the cluster cohesion as the system (now smaller in size) reaches again
a unique equilibrium point (𝐿 ≈ 0.5). A similar situation occurs for 𝑁 = 8 (Figure 27, right).

The importance of the transition region can be visualized with a simple study: turning off
the parabolic confinement and observing the behavior of the particle configuration afterwards.
Figure 28 shows the case for 𝑁 = 8 and the logarithmic two-body potential. It can be seen
that in the region of 𝑘3 before the transition (for instance, 𝑘3 = 0.62), the absence of the
confinement prevents the system to hold the polygon structure together and the particles
repel each other to the infinity, since the attractive three-body potential is still not strong.
This is shown in the first row of Figure 28. However, when we choose a value of 𝑘3 beyond
the transition region (𝑘3 = 0.74), the confinement shutdown does not affect dramatically the
configuration, only by a small displacement in particle positions. In this case, shown in the
second row of Figure 28, only 𝑈2𝑏 and 𝑈3𝑏 potentials are fundamentally involved in the cluster
cohesion, since 𝑈𝑐𝑜𝑛𝑓 is now negligible in comparison to 𝑈3𝑏.

We also observe the appearance of different metastable configurations for the same value of
𝑘3 in the bistability region. Metastable states are found throughout the 𝑘3 domain for different
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Figure 27 – Bistability identified (dotted line) in the potential energy for 𝑁 = 7 (left) around 𝑘3 = 0.72 and
𝑁 = 8 (right) around 𝑘3 = 0.64. 𝑈2𝑏 is the logarithmic potential and 𝜉3𝑏 = 𝑟𝑜.
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Figure 28 – Particle configuration after turning off the parabolic confinement at 𝑡 = 0. 𝑈2𝑏 is the logarithmic
potential. In the first row, for 𝑘3 = 0.62 (before the transition), the particle cluster loses the
cohesion after 𝑡 > 0 and the system is no longer stable. For 𝑘3 = 0.74, the cluster remains stable
for 𝑡 > 0. In the latter case, only the competing interparticle potentials (𝑈2𝑏 and 𝑈3𝑏) ensure the
cluster cohesion. Box sides are 1.6 and 5.2 𝑟𝑜 in the first and second rows.
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𝑁 and usually correspond to local minima very close with respect to size and energy. However,
in the region of bistability, they can be associated to very different local minima (for instance,
the two minima observed in Figure 27). Figure 29 shows examples for 𝑁 = 7 and 𝑁 = 8. The
value of 𝑘3 is such that bistability can be verified. In the first row, two configurations (both
an hexagon with a central particle) are detected in the simulations with very different size and
energy, which is associated to the two minima in different values of 𝐿 (Figure 27, left). In the
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case of 𝑁 = 8, we also detect a third (2, 6) configuration (metastable), which has an energy
very close to the (1, 7) arrangement in the middle (Figure 29, second row). For both rows of
Figure 29, the configurations in the right are the equilibrium states.

Figure 29 – Different metastable configurations for the same value of 𝑘3 in the region of the potential bista-
bility. Cases are shown for 𝑁 = 7 and 𝑁 = 8 and the logarithmic two-body potential.

Source: The author (2021).

The introduction of 𝑈3𝑏 make the system compacts as we increase 𝑘3. Figure 30 shows
an example of the system compaction for 𝑁 = 7. Yukawa-like 𝑈2𝑏 (Figure 30, first row)
is associated with a smooth cluster contraction, while we confirm the existence of an abrupt
compaction in the logarithmic case due to the transition around 𝑘3,𝑡 = 0.72 (Figure 30, second
row).

Another effect due to the three-body potential is observed. In general, our semi-analytical
study showed an agreement with the 𝑘3 = 0 case (listed in the Appendix A) in respect to the
ring occupation numbers. However, in the parameter region around the energy discontinuity
we detected some deviations in the shell numbers. With the further increase of 𝑘3, after the
discontinuity, the equilibrium configuration goes back to the arrangement listed in the Appendix
A. Figure 31 exhibits the cases in which the ring numbers suffered such deviations, which are
highlighted in red colors. With the use of the logarithmic two-body potential, for 0.76 ≤
𝑘3 ≤ 0.99 and 𝑁 = 5, the (1, 4) configuration becomes more favourable than the pentagon
(Fig. 31, first row) and around 𝑘3 = 0.67 in 𝑁 = 8 (not shown), the (2, 6) configuration
becomes more favourable than the (1, 7). (2, 6) is a configuration which we did not considered
in our analytical study. As the energy difference between these states is too small, we cannot
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Figure 30 – Different types of cluster compaction observed for Yukawa (smoothly) and logarithmic (abruptly)
𝑈2𝑏 potential with the introduction of the three-body interaction. We adopt 𝜉 = 𝑟𝑜.
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perceive any deviations between analytical and numerical energies in Figure 26 for 𝑁 = 8.
Also for Yukawa and Coulomb potentials (Fig. 31, second and third rows), 𝑁 = 8 case
showed a transition from (2, 6) to (1, 7) shell configuration, although in different 𝑘3 ranges:
0.42 ≤ 𝑘3 ≤ 0.58 and 0.48 ≤ 𝑘3 ≤ 0.87, respectively. In all the cases, the density quickly
grows around the energy discontinuity region, pushing particles to inner shells and changing
the configurations found for 𝑘3 = 0.

Essentially, the three-body interaction affected the cluster size (increasing density) and
caused small disturbances in the shell structure when a few particles are interacting. If we
consider there are not many trios of particles available for small values of 𝑁 , the influence
of 𝑈3𝑏 is still limited and, then, we can not observe major disturbances in the structure. The
three-body potential, however, introduced the bistability in the system, which is associated
with some interesting effects for greater 𝑁 . In the next section, we will discuss our findings
when more particles are considered in the interaction.

4.2.3 9 ≤ 𝑁 ≤ 20

Tables 1, 2 and 3 indicate how the configurations changed for 9 ≤ 𝑁 ≤ 20 as we introduced
𝑈3𝑏 in the interaction potential. In Table 1, we do not observe many differences in the shell
occupation numbers for the logarithmic potential, except for deviations observed for a few
values of 𝑘3 for 𝑁 = 9, 10, 12, 15, 16, 17 and 20. The first-order like transition the system
undergoes, which we detected around 0.60 ≤ 𝑘3,𝑡 ≤ 0.66, is even sharper in comparison with
the few particles case (4 ≤ 𝑁 ≤ 8). Bold text indicates the compacted clusters after the
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Figure 31 – Deviations observed in the shell occupation numbers of some configurations. Red particles belong
to a new arrangement compared to 𝑈3𝑏 = 0 case.
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transition in Table 1. The transition from the initial cluster to these smaller arrangements is
shown in Figure 32, which highlights the sudden compaction at 𝑘3 = 𝑘3,𝑡 = 0.6 for 𝑁 = 15
and 𝑁 = 19. Outside the transition vicinity, the system do not show great changes in size.

Tables 2 and 3 exhibit the equilibrium configurations for Coulomb and Yukawa potentials.
The results indicate a well-defined distinction between logarithmic and Coulomb/Yukawa be-
havior with respect to the effect of the three-body interaction in the shell structure. As occurred
in the Subsection 4.2.2, the cluster compaction around the transition is smoother, especially
for Yukawa potential, and starts earlier than logarithmic case: 0.36 ≤ 𝑘3,𝑡 ≤ 0.44 for Coulomb
and 0.24 ≤ 𝑘3,𝑡 ≤ 0.36 for Yukawa, considering 14 ≤ 𝑁 ≤ 20.

The cluster compaction in this case does not happen sharply as in the logarithmic case
(see Figure 33, left), so we cannot estimate a standard transition point 𝑘3,𝑡 only by looking
at the configurations. Hence, in the search for a standard point to represent the compaction,
we select the point of maximum curvature (absolute value) in 𝑈(𝑘3) curve: | 𝑑2𝑈

(𝑑𝑘3)2 |, which
has a peak in the middle region of the cluster compaction. This is shown by a dotted line in
Figure 33, center and right. Looking at Tables 2 and 3 we can observe that particles arrange
themselves in inner configurations specially in the transition region, according to the definition
shown in the Figure 33. For example, the equilibrium configuration for 𝑁 = 20 for the Yukawa
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Figure 32 – Sudden cluster compaction identified at 𝑘3 = 0.6 for 𝑁 = 15 and 𝑁 = 19 in the presence of
the logarithmic 𝑈2𝑏 potential. Simulation boxes have dimensions in 𝑟𝑜. For each row, the last two
boxes have different scale.
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potential goes from (1, 7, 12) at 𝑘3 = 0.0, to (2, 7, 11) at 𝑘3 = 0.12 and, then, to (2, 8, 10)
at 𝑘3 = 0.2, the latter occurring around the region of transition (Table 3).

Figure 33 – Energy (𝑈/𝑁) curves for specific 𝑁 for all 𝑈2𝑏 potentials. Center and right: energy and its first
and second order derivatives plots to determine a standard point
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Figure 34 shows how the system evolves for increasing 𝑘3 in the Coulomb and Yukawa
cases. For these two forms of 𝑈2𝑏, compaction is accompanied by many changes in the shell
occupation numbers. We verify the particle migration to inner shells, especially in the vicinity of
the transition. These new arrangements, however, did not stand thermodynamically favorable
for 𝑘3 >> 𝑘3,𝑡, since we observe many of the preceding configurations becoming again the
equilibrium states for 𝑘3 > 0.6 (Tables 2 and 3).
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Table 1 – Equilibrium configurations for 9 ≤ 𝑁 ≤ 20, logarithmic potential. Bold text indicates compacted cluster after the transition. Colors indicate different shell
occupation numbers.

𝑘3

N 0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.52 0.56 0.60 0.62 0.64 0.66 0.68 0.70 0.72

9 1,8 1,8 1,8 1,8 1,8 1,8 1,8 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7
10 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 3,7 3,7 3,7 3,7 3,7 2,8 2,8 2,8
11 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8
12 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 4,8 3,9 3,9 3,9 3,9 3,9
13 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9
14 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10
15 4,11 4,11 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10 5,10
16 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11 5,11
17 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11 1,6,10 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11 1,5,11
18 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11
19 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12 1,6,12
20 1,6,13 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12 1,7,12

Source: The author (2021).
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Table 2 – Equilibrium configurations for 9 ≤ 𝑁 ≤ 20, Coulomb potential. Bold text indicate compacted cluster after the transition, according to the criteria exhibited in
Figure 33. Colors indicates different shell occupation numbers.

𝑘3

N 0.00 0.04 0.16 0.20 0.28 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.52 0.56 0.68 0.72

9 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7
10 2,8 2,8 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7
11 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8
12 3,9 3,9 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8
13 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 5,8 5,8 4,9 4,9 4,9 4,9 4,9
14 4,10 4,10 4,10 5,9 5,9 5,9 5,9 5,9 5,9 1,5,8 1,5,8 1,5,8 5,9 5,9 5,9 5,9 5,9 5,9
15 5,10 5,10 5,10 5,10 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 5,10
16 1,5,10 1,5,10 1,5,10 1,5,10 1,5,10 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,5,10 1,5,10 1,5,10 1,5,10
17 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10
18 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,7,10 1,7,10 1,7,10 1,7,10 1,7,10 1,7,10 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11
19 1,6,12 1,6,12 1,7,11 1,7,11 1,7,11 1,7,11 2,7,10 2,7,10 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11
20 1,7,12 1,7,12 1,7,12 1,7,12 2,7,11 2,7,11 2,8,10 2,7,11 2,7,11 2,7,11 2,7,11 2,7,11 2,7,11 2,7,11 2,7,11 1,7,12 1,7,12 1,7,12

Source: The author (2021).
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Table 3 – Equilibrium configurations for 9 ≤ 𝑁 ≤ 20, Yukawa potential. Bold text indicates compacted cluster after the transition, according to the criteria exhibited in
Figure 33. Colors indicate different shell occupation numbers.

𝑘3

N 0.00 0.04 0.08 0.12 0.16 0.20 0.22 0.24 0.26 0.28 0.32 0.36 0.40 0.44 0.48 0.60 0.64 0.72

9 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7
10 2,8 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7
11 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8 3,8
12 3,9 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8
13 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9
14 4,10 4,10 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9 5,9
15 5,10 5,10 5,10 5,10 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 1,5,9 5,10 5,10
16 1,5,10 1,5,10 1,5,10 1,5,10 1,5,10 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,6,9 1,5,10 1,5,10 1,5,10 1,5,10 1,5,10
17 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10 1,6,10
18 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,7,10 1,7,10 1,7,10 1,7,10 1,7,10 1,7,10 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11 1,6,11
19 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 2,7,10 2,7,10 2,7,10 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11 1,7,11
20 1,7,12 1,7,12 1,7,12 2,7,11 2,7,11 2,8,10 2,8,10 2,8,10 2,8,10 2,7,11 2,7,11 2,7,11 2,7,11 2,7,11 1,7,12 1,7,12 1,7,12 1,7,12

Source: The author (2021).
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Figure 34 – Equilibrium arrangements obtained with tunable three-body interaction for Coulomb and Yukawa
potentials. Different background colors indicate different shell occupation numbers. Simulation
boxes have dimensions in terms of 𝑟𝑜.
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It is also possible to check how each metastable arrangement behaves with the introduction
of the three-body potential for 9 ≤ 𝑁 ≤ 20. This requires a small modification in the
simulation procedure. For a given 𝑁 , we proceed by starting the simulation at some point
of the 𝑘3 range (0.01 ≤ 𝑘3 ≤ 0.8) with the use of simulated annealing, obtaining an initial
equilibrium arrangement for such point. Then, we vary 𝑘3 in steps of 0.01, with no thermal
noise. Our goal is to find the energy 𝐸𝑐𝑜𝑛𝑓𝑖𝑔.(𝑈/𝑁) of such metastable states, understand how
they behave in the transition and compare the results with the energies (𝐸𝑟𝑒𝑓.) found for the
configurations of Tables 1, 2 and 3.

Figure 35 shows the energy difference 𝐸𝑐𝑜𝑛𝑓𝑖𝑔. −𝐸𝑟𝑒𝑓. for Coulomb and Yukawa potentials.
Note that a zero energy difference indicates the equilibrium configuration for a given 𝑘3.
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The plots suggest that around the transition (𝑘3 = 𝑘3,𝑡, grey dotted line) we observe the
greatest changes in the shell occupation numbers, when some configurations are temporarily
promoted to lower energy. Such arrangements contain more particles in the inner rings: for
Coulomb potential and 𝑁 = 20, (1, 7, 12) goes to (2, 7, 11) and (2, 8, 10) around 𝑘3 = 0.3,
for example. After the transition, for 𝑘3 >> 𝑘3,𝑡, the configurations goes back to the shell
occupation numbers of 𝑘3 = 0 case. When we vary 𝑘3 with no thermal noise, the particles stay
in positions slightly different than the local minima obtained in Tables 1, 2 and 3, so small
oscillations above zero in the energy curve can be observed (Figure 35, 𝑁 = 20, 𝑘3 ≥ 0.6,
for example). This small study confirms that the transition is a special region in the system,
where the inner configurations take place for 9 ≤ 𝑁 ≤ 20

Figure 35 – Energy difference between a given arrangement (obtained by the variation of 𝑘3 in steps of 0.01
with 𝑇 = 0), 𝐸𝑐𝑜𝑛𝑓𝑖𝑔., and the equilibrium state obtained by the simulated annealing, 𝐸𝑟𝑒𝑓..
Dotted grey lines show the cluster transition. Broken lines indicate not detected configurations for
a given range of 𝑘3.
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4.2.4 21 ≤ 𝑁 ≤ 50

As we add more particles in the system, the Coulomb and Yukawa clusters continued to
show changes in the shell numbers in comparison with their 𝑈3𝑏 = 0 counterparts and the
cluster compaction becomes sharper for both potentials and occurs for decreasing values of
𝑘3,𝑡. For these two potentials, we present simulation results up to 𝑁 = 50 in Figure 36. We
continue to observe the cluster compaction with no other structure arising. In this case, for
𝑘3 > 0.5 and 𝑁 > 24 the simulation did not converge numerically for Δ𝑡 = 0.001. The reason
for this incident may be associated with the typical time scale associated to both potentials
in high-𝑘3 regime, since the particles self-assembly into a cluster very rapidly, implying a
numerical imprecision. Changing our Δ𝑡 by half or by a fourth allowed us to obtain results
for 25 ≤ 𝑁 ≤ 50, however still incomplete for 𝑘3 > 0.5 and 𝑁 > 40. This is indicated in
Figure 36 by the white region. To complete the diagram in our range of 𝑁 and 𝑘3, it would
be necessary to use lower values of Δ𝑡 or maybe change the method of integration.

Figure 36 – Equilibrium configurations for 21 ≤ 𝑁 ≤ 50, Coulomb and Yukawa potentials. White region
indicates no data.
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In the logarithmic potential case, we were able to obtain full results up to 𝑁 = 50 and we
observe a interesting effect. Until 𝑁 = 22, we only notice the cluster compaction (Figure 37,
first row) which accompanies the first-order transition. Starting from 𝑁 = 23 at 𝑘3 (1+) = 0.57,
this same transition is associated with the breaking of the initial cluster and the establishment
of a new smaller cluster with some particles around it as the equilibrium state. An example
of such configuration is shown in the second row of Figure 37, in which the (2, 9, 14) cluster
turns into a (1, 7, 12) cluster and five surrounding particles (𝑘3 (1+) = 0.59). From 𝑁 = 23 to
𝑁 = 50 this rearrangement occurred for 0.55 ≤ 𝑘3 (1+) ≤ 0.58. Until 𝑁 = 38 this was the
only structural change observed as we increase 𝑘3 in our range. These results are summarized
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in the phase diagram of Figure 38, which is a product of around 100 annealing procedures for
each 𝑁, 𝑘3 pair.

For 𝑁 = 39, a second change is observed at 𝑘3 (2+) = 0.83 (Figure 38), when two smaller
clusters (plus surrounding particles) define the equilibrium arrangement. In the third row of Fig-
ure 37 we show this two-cluster configuration for 𝑁 = 40. In this case, the initial (1, 7, 14, 18)
cluster changes into a smaller (1, 6, 12) plus 21 particles forming a semicircular pattern at
𝑘3 (1+) = 0.57. Afterwards, at 𝑘3 (2+) = 0.83, two small clusters (3, 9 and 1, 7, 13), plus 7
surrounding particles, are obtained. The fourth row shows a very similar situation for 𝑁 = 45.
This two-cluster configuration appears for smaller values of the 𝑈3𝑏 amplitude as we increase
𝑁 , reaching the minimum of 𝑘3 (2+) = 0.68 for 𝑁 = 50.

The competition between 𝑈2𝑏 and 𝑈3𝑏 defines our results. The appearance of these smaller
clusters reflects the high intensity of 𝑈3𝑏, which quickly pull near particles together during the
system thermalization to form the smaller clusters, leaving some particles in the circular edge
defined by 𝑈𝑐𝑜𝑛𝑓 (Figure 37, 𝑁 = 25). The role of the 𝑈2𝑏 long-range potential is to repel
some surrounding particles outside the smaller cluster (23 ≤ 𝑁 ≤ 38). Also due to 𝑈2𝑏, the
two clusters repels each other for 39 ≤ 𝑁 ≤ 50, 𝑘3 ≥ 𝑘3 (2+). A three-cluster formation is also
observed in some of the annealing samples, however only as a metastable configuration. We
expect it to appear as equilibrium arrangement for even greater values of 𝑁 , as the two-cluster
configurations appear firstly as metastable states for 𝑘3 < 𝑘3 (2+) and then, after 𝑘3 = 𝑘3 (2+),
become the equilibrium state.

We note that the increase of 𝑁 dramatically increases the number of metastable states
with very close energies, once we have many distinct ways of arrange the particles with one
or two clusters and the surrounding particles. This is confirmed by Figure 39, which shows a
few energy profiles for 20 ≤ 𝑁 ≤ 50. We note that, as we increase the number of particles,
we obtain a rougher energy landscape after the transition (Figure 39, second row). This is the
outcome of many metastable states becoming accessible and energetically very close to each
other. The results of Figure 38 are not at risk, since we detect energy deviations only with
respect to similar configurations. In order to obtain a smoother energy curve, more samples in
the annealing ensemble are required. This is expected because we verify that a small number
of samples also produce a noisy energy curve for 𝑁 < 40. However, increasing the number of
annealing samples softens the curves.
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Figure 37 – Some equilibrium configurations for 𝑁 > 21 in the logarithmic 𝑈2𝑏 potential situation. Respectively
for each row, 𝑁 = 22, 𝑁 = 25, 𝑁 = 40 and 𝑁 = 45 are exhibited. 𝑁 = 25 and 𝑁 = 40, 45 cases
show the breaking of the initial cluster into one or two smaller clusters, respectively. In the first
row, three last columns are in different scale. Red squares show details of the smaller clusters.
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Figure 38 – Diagram of equilibrium states for the logarithmic potential and 9 ≤ 𝑁 ≤ 50.
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Figure 39 – Potential energy for some cases of 20 ≤ 𝑁 ≤ 50 for the logarithmic potential. Background colors
indicate configuration according to Figure 38.
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5 CONCLUSION

In this dissertation we studied the influence of the three-body interaction in the structure
of two-dimensional particle clusters. Many numerical studies indicate structural changes in sys-
tems of superconductor vortices and important corrections in the charged colloids interaction
due to three-body contributions. We investigated whether any structural change is detected
for a system of 3 ≤ 𝑁 ≤ 50 particles confined by a parabolic potential when, besides the two-
body purely repulsive potential, a three-body attractive potential is considered. We made use
of Molecular Dynamics simulations and analytical calculations to obtain and compare stable
and metastable particle configurations.

The results in the presence of typical repulsive two-body potentials only, when a structure
of concentric shells is observed, were reproduced. When an attractive short-ranged three-body
Gaussian potential is added, we also obtained the shell structure, however there were changes
in the ring occupation numbers, even for 𝑁 < 20. The main results include the emergence of a
first-order transition associated with a cluster collapse into a smaller single cluster or into one
or two smaller clusters with surrounding particles in a circular shape. These findings indicate
the important role of the three-body interaction in the self-assembly of these particle clusters,
since we obtain structural changes which resembles those obtained by two-body competing
interactions, but only using monotonic two- and three-body competing potentials. A limitation
of our work, which is possibly associated to the fast particle dynamics under a strong three-
body potential, was the numerical imprecision of the simulation time step, which was not
adequate to obtain convergence for Coulomb and Yukawa potentials for 𝑁 > 30.

For future works, we expect to explore the influence of the Gaussian three-body interaction
for a large number of confined particles (𝑁 > 50) and the influence of this and other functional
forms of monotonic three-body potentials in the phase space of unconfined systems with
periodic boundary conditions. The latter is motivated by rich phase diagrams recently obtained
when one adopts competing two-body interactions.
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APPENDIX A – EQUILIBRIUM CONFIGURATIONS FOR 𝑘3 = 0

Logarithmic Coulomb Yukawa

N shells 𝑈/𝑁 shells 𝑈/𝑁 shells 𝑈/𝑁

3 3 0.297 3 1.310 3 0.700
4 4 0.273 4 1.836 4 0.953
5 5 0.195 5 2.339 5 1.197
6 1,5 0.073 1,5 2.805 1,5 1.410
7 1,6 -0.107 1,6 3.239 1,6 1.603
8 1,7 -0.314 1,7 3.669 1,7 1.799
9 1,8 -0.546 2,7 4.088 2,7 1.987
10 2,8 -0.810 2,8 4.485 2,8 2.161
11 3,8 -1.099 3,8 4.865 3,8 2.320
12 3,9 -1.415 3,9 5.239 3,9 2.480
13 4,9 -1.747 4,9 5.601 4,9 2.630
14 4,10 -2.102 4,10 5.959 4,10 2.781
15 4,11 -2.471 5,10 6.308 5,10 2.924
16 5,11 -2.857 1,5,10 6.650 1,5,10 3.063
17 1,5,11 -3.260 1,6,10 6.983 1,6,10 3.196
18 1,6,11 -3.678 1,6,11 7.308 1,6,11 3.326
19 1,6,12 -4.111 1,6,12 7.632 1,7,11 3.457
20 1,6,13 -4.555 1,7,12 7.950 1,7,12 3.583
21 1,7,13 -5.013 1,7,13 8.266 2,7,12 3.710
22 1,7,14 -5.480 2,8,12 1.981 2,8,12 3.830
23 1,8,14 -5.959 2,8,13 8.879 3,8,12 3.948
24 2,8,14 -6.451 3,8,13 9.176 3,8,13 4.062
25 3,8,14 -6.952 3,9,13 9.471 3,9,13 4.175
26 3,9,14 -7.464 3,9,14 9.763 4,9,13 4.287
27 3,9,15 -7.986 4,9,14 10.051 4,9,14 4.396
28 4,9,15 -8.515 4,10,14 10.336 4,10,14 4.504
29 4,10,15 -9.056 4,10,15 10.618 5,10,14 4.611
30 4,10,16 -9.603 5,10,15 10.897 5,10,15 4.717
31 4,10,17 -10.159 5,11,15 11.174 1,6,10,14 4.820
32 4,11,17 -10.722 1,5,11,15 11.447 1,6,11,14 4.920
33 5,11,17 -11.295 1,6,11,15 11.716 1,6,11,15 5.018
34 1,5,11,17 -11.874 1,6,12,15 11.983 1,6,12,15 5.116
35 1,6,11,17 -12.462 1,6,12,16 12.247 1,6,12,16 5.213
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36 1,6,12,17 -13.057 1,6,12,17 12.511 1,7,12,16 5.310
37 1,6,12,18 -13.658 1,7,12,17 12.772 1,7,13,16 5.406
38 1,6,12,19 -14.266 1,7,13,17 13.030 2,8,13,15 5.501
39 1,7,13,18 -14.880 2,8,12,17 13.288 2,8,13,16 5.593
40 1,7,13,19 -15.501 2,8,13,17 13.542 2,8,14,16 5.685
41 1,7,13,20 -16.128 2,8,14,17 13.794 3,8,14,16 5.775
42 1,7,14,20 -16.760 3,8,14,17 14.044 3,9,14,16 5.864
43 2,8,14,19 -17.399 3,9,14,17 14.291 3,9,14,17 5.952
44 2,8,14,20 -18.045 3,9,14,18 14.538 3,9,15,17 6.040
45 3,8,14,20 -18.695 3,9,15,18 14.782 4,10,14,17 6.126
46 3,9,14,20 -19.351 3,9,15,19 15.025 4,10,15,17 6.212
47 3,9,15,20 -20.013 4,10,15,18 15.266 4,10,15,18 6.297
48 3,9,15,21 -20.680 4,10,15,19 15.506 4,10,16,18 6.381
49 3,9,15,22 -21.352 4,10,16,19 15.744 4,10,16,19 6.465
50 4,10,15,21 -22.029 4,10,16,20 15.981 1,6,11,16,16 6.547


	Title page
	Agradecimentos
	Abstract
	Resumo
	List of Figures
	Listing
	List of Tables
	Contents
	INTRODUCTION
	A REVIEW ON CLASSICAL 2D CLUSTERS AND THREE-BODY INTERACTIONS IN COLLOIDS AND VORTEX SYSTEMS
	2D clusters of particles with monotonic pair interactions
	2D clusters of particles with competing interactions
	THREE-BODY INTERACTIONS IN PHYSICAL SYSTEMS
	Colloidal suspensions
	Vortices in superconductors


	METHODOLOGY
	INTERACTION POTENTIALS AND THE CONFINEMENT
	MOLECULAR DYNAMICS AND THE LANGEVIN EQUATION
	NUMERICAL INTEGRATION
	SIMULATED ANNEALING AND OPTIMIZATIONS

	Trapped particles: confinement in a parabolic potential
	Two-body interacting particles revisited
	k3: system compaction and transitions
	N3: a prelude to the Gaussian three-body interaction
	N8
	N9
	N9


	Conclusion
	References
	Equilibrium configurations for k3=0

