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ABSTRACT

This thesis presents two independent themes with different background. The first theme presents a
new method for detecting spatial clusters, that is, a method for detecting regions with a high concen-
tration of spatial phenomena, compared to a expected number, given a random distribution of events.
The main contribution is to present a nonparametric method based on empirical likelihood functions,
as an alternative to traditional methods of using clusters (scan). In this way, no distribution family
is required for the variable of interest. To evaluate the method, simulation studies were carried out
considering the zero-inflated poisson model, comparing the results with the scan method proposed by
Kuldorff. The results show that the new method reduces the error probabilities of the type I for zero
inflated, with low power for cluster with less than 8 locations. A study was carried out for Measles
data in São Paulo, Brazil, which present a excess of zeros. Only the Kulldorff scanning method
identified the existence of a cluster, located and centered on the capital São Paulo. However, if a
cluster is identified by the Kulldorff method in the presence of inflated and when not confirmed by
the non-parametric approach, it is recommended that interpretations be performed with caution due
to a high probability type error associated with Kulldorff method when model is not well specified.
The second theme aims to present two new approaches to robust estimation for generalized additive
models of location, scale and shape - GAMLSS, which focus on contamination situations in the tails
of distributions. The main motivation is the scarcity of robust methods for GAMLSS models. The
thesis were subdivided into two topics. The first topic presents a proposal that seeks transformations
in order to limit the influence function associated with the probability distribution of interest, modify-
ing the logarithm structure of the likelihood function, using concepts of censorship. It also features:
the robust GAMLSS method proposed by Rigby et al. (2019), considering the gamma distribution,
presenting the bias corrections for the estimators; a modification of the method proposed by Rigby
et al. (2019), considering the weight of observations in the estimation; and, finally, a large simulation
study to evaluate the proposals, using the gamma distribution and contamination in the right tail of
the distribution. The second topic is based on a simple adaptive truncation, where observations identi-
fied as possible outliers are verified and, if necessary, removed by truncation of the response variable
distribution. The simulation studies used the gamma and beta distributions, left and right tail contam-
ination, and three distinct models: parametric models with and without covariates and non-parametric
models. The results show that, compared to existing methods in the literature, the truncated adaptive
method has a better performance with lower mean square error and lower variability in most simulated
scenarios. The overall performances of the proposals are illustrated through three applications: brain
image resonance data, using bivariate smoothing splines; extreme child poverty data; and data on
acute viral infection of the respiratory system. excess of zeros. Only the Kulldorff scanning method
identified the existence of a cluster, located and centered on the capital São Paulo. However, if a
cluster is identified by the Kulldorff method in the presence of inflated and when not confirmed by
the non-parametric approach, it is recommended that interpretations be performed with caution due
to a high probability type error associated with Kulldorff method when model is not well specified.

Keywords: beta distribution; gamma distribution; robust GAMLSS; spatial cluster.



RESUMO

Esta tese apresenta contribuições para três tópicos distintos sobre dois temas independentes. O
primeiro tema apresenta um novo método para detecção de clusters espaciais, ou seja, um método para
detecção de regiões com alta concentração de fenômenos espaciais, comparado com um número es-
perado, dada uma distribuição aleatória de eventos. A principal contribuição é apresentar um método
não paramétrico baseado nas funções de verossimilhança empírica, como alternativa para métodos
tradicionais de varredura de clusters (scan). Desta forma, nenhuma família de distribuição é exigida
para a variável de interesse. Os resultados mostram que o novo método reduz as probabilidades de
erro do tipo I para observações inflacionadas de zero, com baixo poder para cluster com menos de 8
localizações. Foi realizado um estudo para dados de Sarampo em São Paulo, Brasil, que apresentam
um excesso de zeros. Apenas o método scan de Kulldorff identificou a existência de um cluster, lo-
calizado e centrado na capital São Paulo. Entretanto, caso seja identificado um cluster pelo método
Kulldorff na presença de observações inflacionadas e quando não confirmado pela abordagem não
paramétrica, é recomendável que as interpretações sejam realizadas com cautela devido a alta prob-
abilidade do erro do tipo I associado ao método Kulldorff quando o modelo não é bem especificado.
O segundo tema tem como objetivo apresentar duas novas abordagens para estimação robusta para os
modelos GAMLSS, que focam em situações de contaminação nas caudas das distribuições, devido a
escassez de métodos. A tese apresenta diversas contribuições para este tema, que foram subdividi-
das em dois tópicos. O primeiro tópico apresenta uma proposta que busca transformações de modo
a limitar a função de influência associada a distribuição de probabilidade de interesse, modificando
a estrutura do logaritmo da função de verossimilhança utilizando conceitos de censura. Apresenta
ainda: o método robusto GAMLSS proposto por Rigby et al. (2019), considerando a distribuição
gama, apresentando as correções de viés para o estimadores; uma modificação do método proposto
por Rigby et al. (2019), considerando o peso das observações na estimação; e, por fim, um amplo
estudo de simulação para avaliação das propostas, utilizando a distribuição gama e contaminações
na cauda direita da distribuição. O segundo tópico baseia-se em um truncamento adaptativo simples,
onde observações identificadas como possíveis outliers são verificadas e, se necessário, removidas por
truncamento da distribuição da variável de resposta. Apresenta também uma proposta adaptativa para
definição da constante de sintonia, necessária para estimação do modelo. Além de propor uma nova
abordagem para modelagem robusta, comparamos com métodos disponíveis na literatura. Os estudos
de simulação utilizaram as distribuições gama e beta, contaminações na cauda esquerda e direita, e
três modelos distintos: modelos paramétricos sem e com covariáveis e modelos não paramétricos. Os
resultados mostram que o método adaptativo truncado apresenta melhor desempenho com menores
valores no erro quadrático médio e menor variabilidade na maioria dos cenários simulados. O de-
sempenho das propostas é ilustrado por meio de três aplicações: dados de ressonância de imagens
cerebrais, usando splines de suavização bivariadas; dados de extrema pobreza infantil; e a dados de
infecção viral aguda do sistema respiratório.

Palavras-chave: aglomerados espaciais; distribuição beta; distribuição gama; GAMLSS robusto.
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1 INTRODUCTION

1.1 PRELIMINARY

In this work was study two independents topics with different goals and theoretical approaches.
Therefore, it is important to clarify the topics to be addressed, as well as to present the structure and
content of the next chapters.

The first theme is a non parametric propose for detection of spacial areas that has a higher con-
centration of events compared to the expected number given a random distribution of events. The
main contribution is to present a non parametric method based on empirical likelihood functions, as
an alternative to traditional methods of using clusters (scan). The second theme is robust models for
Generalized Additive Models for Location, Scale and Shape - GAMLSS, considering the presence of
outliers.

The second theme is based on recent publication of the book by Rigby et al. (2019) where an
alternative robust estimation method for GAMLSSs is presented. This alternative method seek trans-
formations in order to limit the influence function associated with the probability distribution of in-
terest. There are two main contributions in this theme, and they are presented in two chapters. In
the first one, the robust GAMLSS method proposed by Rigby et al. (2019), considering the gamma
distribution, presenting the bias corrections for the estimators; a modification in the method proposed
by Rigby et al. (2019); and an unprecedented robust proposal using the idea of censored variables is
presented. In addition, an extensive simulation study is carried out comparing the performance of the
existing proposals. The other chapter aiming to develop a new approach to robustness that relies on
a simple adaptive truncation approach where potential outlier contaminated observations are checked
and if necessary removed by truncating the distribution of the response variable. The adaptive term is
due to the fact that the choice of the tuning constant is performed automatically without the subjec-
tivity of the user’s choice. We show that this conceptual simple approach out performs the standard
approaches.

The work is organized as follows. In this chapter will be introduced the motivation of the themes
in the next section separately. Chapter 2 presents the non parametric Spatial Scan method and is or-
ganized as follows. Section 2 review the spatial scan statistic by Kulldorff and Section 2.1 presents
the spatial scan statistics based on empirical likelihood. Numerical studies with simulated data are re-
ported in Section 2.2. Section 2.3 shows the simulations results and Section 2.4 reports the application
for measles data in São Paulo, Brazil. Finally, Section 2.5 provides the final remarks.

Chapter 3 and 4 present robust fitting for genearlized additive models for location, scale and shape,
and they are organized as follows. Section 3.1 described briefly the methodology of classic regression.
Section 3.2 defines the GAMLSS model. Section 3.3 present some concepts of robust estimation.
Section 3.5 summarizes the robust GAMLSS model proposal by Aeberhard et al. (2021). Section 3.4
present the bases of the propose of robust fitting for a GAMLSS model, the robust fitting of a Gamma
distribution and the the modification of Rigby et al. (2019) proposal. Section 3.6 introduces a new
approach to robustness using censoring. Section 3.7 report simulation studies and Section 3.8 report
an application a real data. Finally, Section 3.9 provides the final remarks. Chapter 4 introduce a new
approach to robustness that relies on a truncation distribution. In Section 4.1 we present the motivation
for the study of robust estimator of GAMLSS models. Section 4.2 introduces the GAMLSS model.
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Section 4.3 discusses our robust proposal. Section 4.4 shown briefly reviews of outliers contamination
and Section 4.5 reports the results of a simulation study. Two examples are discussed in Section 4.6
while conclusions are found in Section 4.7. Chapter 5 present the concluding remarks.

1.2 MOIVATION

1.2.1 Spatial Scan Statistics Based on Empirical Likelihood

Spatial cluster is a spatial analysis and mapping technique interested in the identification of clus-
tering of spatial phenomena. A clustering can be defined as an area that has higher concentration of
events compared to the expected number given a random distribution of events. Spatial cluster detec-
tion studies are important surveillance procedures in public health to prioritize and optimize resources
to act against disease outbreaks. Others possibles applications are for instance: the spatial clustering
of trees is studied in forestry; Risks of forest fire; and in astronomy to detect particular kind of star.

The use of spatial statistics for disease cluster has received considerable attention in the literature,
and a large number of method have been proposed to test the presence of spatial cluster and identify
their location. The first method proposed in the literature Besag and Newell (1991); Cuzick and
Edwards (1990) can define a cluster by overlapping circles, however, most tests suffer from multiple
testing problems due to one or two unknown parameters that must be set prior to their applications.
The spatial scan statistics Kulldorff (1997); Kulldorff and Nagarwalla (1995), Tango’s test Tango
(1995, 2000) were the first methods able to control properly for the type I error.

The spatial scan statistics method identifies the most likely spatial cluster potentially violating the
null hypothesis of no clustering. Power comparisons studies of disease clustering tests Kulldorff et al.
(2003) show that the scan statistic has been the most powerful for detecting localized clusters.

Some review papers such as Fritz et al. (2013), Moore and Carpenter (1999), Chung et al. (2004),
Elliott and Wartenberg (2004), Páez and Scott (2004), Kulldorff et al. (2003), Ozonoff et al. (2005),
Aamodt et al. (2006), Duczmal et al. (2011) and Yao et al. (2011) report to innovations, method
comparisons, practical issues and are beneficial for promoting knowledge transfer among users and
developers in the use of spatial statistics for disease clusters. In addition, some modification of spatial
scan statistics have been proposed: Jung (2009) proposed a multivariate adjustment, Loh and Zhu
(2007) accommodated correlation, Zhang and Lin (2009) proposed a log-linear modeling, Zhang
et al. (2012) presented a model to take into account overdispersion data and Cançado et al. (2011)
accommodated zero inflation data. In all these cases, the tests are based on likelihood methods and a
family of distribution has to be assumed. However, real data may present substantial departure from
the underlying process assumed. One of the possible departures, for instance, is the zero inflated data
that may produce biased inference (Gómez-Rubio and López-Quílez (2010) and Loh and Zhu (2007))
and the violation of the Poisson assumption, in the spatial scan statistic can cause excessive type I
error probabilities.

This work proposes a non parametric scan method for cluster detection in any family distribution
of data, based on empirical likelihood. The main contribution of this method applied in scan statistic
is to be able to deal with the presence of overdispersion, zero inflated and other characteristics, that
usually occur in real data. The results about this topic has been submitted and accepted for publication
in Journal Communication in Statistics - Simulation and Computation. The paper can be accessed in
https://doi.org/10.1080/03610918.2021.1949470.

1.2.2 A New Approach to Robust Regression Using Censoring

Regression analysis is one of the most popular and powerful statistical techniques that allows ex-
ploring and inferring the relationship betweens response variable with specific explanatory variables.
The use of regression models is based on classic assumptions about normality, constant variance and
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no correlation between the errors terms. The linearity of the relationship between response variable
and the explanatory variables is unrealistic in many real situations. Generalized Linear Models - GLM
and Generalized Additive models - GAM were introduced by Nelder and Wedderburn (1972a) and
Hastie and Tibshirani (1990a), respectively, to solve some of the limitations of the standard linear
model. Nevertheless, the GLM and GAM models assume that the response variable belongs to the
exponential family. The increasing complexity, have demanded from researchers the development of
even more sophisticated statistical methods capable of describing with greater degree of adequacy the
interrelationships between variables. Therefore, Rigby and Stasinopoulos (2005) proposed a class of
regression models called generalized additive models for location, scale and shape - GAMLSS. It is
a univariate statistical modeling technique that allows to fit a wide family of continuous and discrete
distributions for the response variable, using parametric and/or non parametric functions, of all pa-
rameters of the distribution of the response variable in relation to the explanatory variables. In the
GAMLSS, the assumption that the distribution of the response variable belongs to the exponential
family is not required, and different additive terms can be included in the predictor for each param-
eter distribution, which gives flexibility to the model. The generalized additive models for location,
scale and shape is a more general class of regression models whose particular cases are the linear
regression models, GLM and GAM. The GAMLSS is being widely applied in several fields: Smith
et al. (2019)(Modeling spatio-temporal with GAMLSS), De Bastiani et al. (2018) (modelling and
fitting of Gaussian Markov random field spatial components), Ramires et al. (2019) (semiparametric
Weibull cure rate model), De Castro et al. (2010) (survival models for clinical studies), Glasbey and
Khondoker (2009) (normalizing cDNA microarray), Rudge and Gilchrist (2005) (health impact of
temperatures in dwellings) WHO (2006, 2007, 2009) (construction of the growth curves used by the
World Health Organization) and Hossain et al. (2016) (uses a pulmonary index for the diagnosis of
airway obstruction).

Deviations from the model can also occur for GAMLSS. The nature of possible deviations in
the GAMLSS class of models are close to what one can see in the regression setting: outliers in
the response (producing large residuals). To this end, robust regression is an alternative when data
are contaminated with outliers or influential observations. In this sense, the evidence available in
the literature, indicate that very little has been accomplished in terms of robust GAMLSS models.
Aeberhard et al. (2021) propose a general approach to achieve robustness in fitting GAMLSS by lim-
iting the contribution of observations with low log-likelihood values. This contribution is based on
divergence measure approach of Eguchi and Kano (2001) that use a log logistic function that can be
interpreted as a multiplicative robustness weight at the log likelihood level. In Aeberhard et al. (2021)
was compared just the especial case of a GAM with the following methods: Alimadad and Salibian-
Barrera (2011),Croux et al. (2012a) and Wong et al. (2014). The simulations in the special case of
a GAM showed that Aeberhard et al. (2021) robust estimator report the best-performing. The recent
publication of the book by Rigby et al. (2019) introduce an alternative robust estimation method
for GAMLSSs. They robustly fit a GAMLSS model obtaining parameters estimators with bounded
influence functions. The book shows a simulated a random sample of size 490 from a BEo(5,5) dis-
tribution (beta original) and contaminated it with random samples of size 5 from each of two uniform
distributions, U(0,0.1) and U(0.99,1). The simulations results showed that the contamination results
in a distorted fit to the data and the method was able to accommodate the outliers. As mentioned
by Rigby et al (2019), pag 259, the work is not complete and theoretical and computational aspects
still need to be studied. Therefore, the main contributions in this study is purpose a modification in
the method proposed by Rigby et al. (2019) and an unprecedented robust proposal using the idea of
censored variables is presented. In addition, it also features the robust GAMLSS method proposed by
Rigby et al. (2019) considering the gamma distribution, presenting the bias corrections for the estima-
tors; a wide simulation study considering different types of models, sample sizes and contamination
intensity were considered to evaluate the existing robust proposals.
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1.2.3 A New Approach To Robust Regression Using Adaptive Truncation

In GAMLSS models, parametric terms (linear and non-linear) and additives are used to model p
parameters, θθθ

> = (θ1, . . . ,θp) of the density probability function f (y|θθθ), where yyy> = (y1, . . . ,yn) is
the vector of the response variables. The maximum likelihood estimator of θθθ is sensitive to the pres-
ence of extreme values (outliers), meaning that the estimated values can be distorted by the presence
of outliers. To solve this issues in statistical modelling and data analysis, robust methods began to
emerge in the 1960s [Heritier et al. (2009)], with the aim of minimize the impact of outliers and derive
methods that produce reliable parameter estimates, with associated confidence intervals and tests.

In the literature, several proposals for robust methods can be found. However, only two works
proposed a robust estimation based on GAMLSS model. The first, Aeberhard et al. (2021), introduces
robustness by modifying the objective function following an idea introduced by Eguchi and Kano
(2001). The second work is an alternative robust estimation method for GAMLSSs presented in
the book of Rigby et al. (2019). This method achieves robustness by transformation of the observed
response through (normalized) quantile residuals. The Rigby et al. (2019) method depends on a tuning
constant that regulates the contributions of an observation to the objective function and the choice
of tuning constant is subjective and made before fitting. The Aeberhard et al. (2021) method also
depends on tuning constant, and propose a novel general criterion for the selection. It is simulation-
based and relies on the heuristic idea of controlling how the robustness weights at the score level
behave under data generated from the assumed model.

The main contribution of this study is to present a new approaches for the robust GAMLSS model
based on truncation distribution, and propose a selection criterion for the tuning constant, which
optimizes the quality of the fit of the data to the assumed model.
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2 SPATIAL SCAN STATISTICS BASED ON EMPIR-
ICAL LIKELIHOOD

Suppose that a region G has a partition G1, ...,Gk. Let ni be the population and yi be the disease

count in area, i = 1, . . . ,k, hence, N =
k
∑
i

ni and C =
k
∑
i

yi are the population and the number of cases,

respectively, in region G. Kulldorff (1997) proposed two possible stochastic models: the counts are
independent binomial random variables with parameters ni and pi; the counts are independent Poisson
random variables with expected value ni pi. Let the connected areas as a region of interest defined by
subareas that share a geographic boundary so that, for a particular subarea i, there is at least one other
subarea j that has a common boundary. Let Z be a candidate for a spatial cluster where Z is a subset of
connected areas, yZ = ∑

i∈Z
yi be the number of disease cases in Z and yZ̄ the number of events outside

Z. The risk population inside Z is given by nZ = ∑
i∈Z

ni and nZ̄ is the risk outside Z. The method

evaluates if the probability of occurrence of an event inside and outside cluster Z is the same. Assume
that pi = p when i∈ Z and pi = q when i 6∈ Z. Under the null hypothesis of no clustering, p = q, while
under the alternative hypothesis of the presence of spatial cluster p > q. Assuming binomial counts
in each area, the likelihood under the alternative hypothesis for a fixed cluster candidate is given by

L(Z, p,q)H1 = pyZ(1− p)nZ−yzqC−yZ(1−q)(N−nZ)−(C−yZ).

The maximum likelihood estimator (MLE) for p and q are p̂ = cZ
nZ

and q̂ = C−cZ
N−nZ

. A likelihood
ratio test statistic search for the most likely cluster, and the cluster Z with the highest likelihood ratio
function is given by

KZ =
L(Z, p̂, q̂)H1

LH0

,

where LH0 =CC(N−C)N−C. The maximum likelihood ratio test statistic for unspecified spatial cluster
Z is given by

K = max
(Z∈Z )

KZ,

where Z is the set of all possibles connected areas in G. The number of areas in Z is finite but
is usually too big. This includes the individual regions as clusters and all the others possibilities.
Although finding K requires the evaluation of KZ only a finite number of times, this is unfeasible
because the number of possible clusters is extremely large, except for very small number of areas.
Kulldorff (1997) solved this problem defining a smaller class that contains a reasonable number clus-
ter candidates. This class contains all circles centered on the centroid areas and with arbitrary radius
r up to an upper limit defined by the operator. The centroid area is defined as the geometric center
of subareas. The null distribution of K is analytically untractable (Kulldorff and Nagarwalla (1995)).
To find the distribution of the test statistic under the null hypothesis Monte Carlo hypothesis testing
is required Dwass (1957). The standard Spatial Scan Statistic algorithm is summarized as follow.

Step 1: Select an area and define a circle centered at the centroid with radius r with the nearest neighbor,
i.e., the first cluster Z is defined;
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Step 2: Compute the statistic KZ for cluster Z;

Step 3: Increase the radius r of circle cluster including the next nearest neighbor up to an upper limit;

Step 4: Compute the statistic KZ for each new Z cluster;

Step 5: Compute the maximum K for the centroid;

Step 6: Repeat steps 1-5 for each centroid;

Step 7: Compute the maximum likelihood ratio test statistic for all centroids, hence find the most likely
cluster;

Step 8: Use the Monte Carlo method to estimate the null distribution of K.

The spatial scan statistic is one of the most important methods for detecting and monitoring spatial
disease clusters. However, it has some limitations:

• the rigid geometry of the spatial cluster candidates. In practice, the cluster may have a elongated
shape (factors as long river or main road). Other kind of geometry was proposed in the literature
with different forms.

• It is assumed that disease cases follow a Poisson or Binomial spatial process but the cases count
data sets frequently present an excess of zeros, overdispersion Zhang et al. (2012) and others
process de Lima et al. (2015), resulting in violation of the assumptions, increasing type I error
and leads to a incorrect inference for the model parameters.

The likelihood ratio test has good power properties and they are very efficient. The main disad-
vantage is that a family of distributions has to be assumed for the data. The next section presents a
non parametric version of spatial scan statistics.

2.1 SPATIAL SCAN STATISTICS BASED ON EMPIRICAL LIKELIHOOD

2.1.1 Empirical likelihood for Two Samples

Empirical likelihood Owen (1988) is a type of nonparametric likelihood which can be used to
obtain a nonparametric version of the theorem of Wilks (1938), where it does not assume a parametric
family of distributions for the data. The method proposed in this thesis is centred around the concept
of empirical likelihood to find the most likely cluster. A summary of the proposed method is presented
as follows.

Let X1, . . . ,Xm and Y1, . . . ,Yn be two independent and identically distributed samples from the
random variables X and Y , respectively, with E(X) = µX , E(Y ) = µY , Var(X) = σX

2 and Var(Y ) =
σY

2, where σ2
Y > 0, σ2

X > 0, µX ∈ R and µY ∈ R. Let θ = µX − µY be the parameter of interest.
Consider p = (p1, . . . , pm) : pi ∈ [0,1]for i = 1, . . . ,m and q = (q1, . . . ,qn) : qi ∈ [0,1] for i = 1, . . . ,n
two sets of probability measure imposed over the two samples. The empirical loglikelihood (ELL)
for difference of the means of two samples (θ ) is

ELL(θ) = max
(p,q)

(
m

∑
i=1

log(pi)+
n

∑
i=1

log(qi)

)
, (2.1)

subject to pi > 0, qi > 0,
m
∑
i

pi = 1,
n
∑
i

qi = 1 and
m
∑
i

piXi−
n
∑
i

qiYi = θ .
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Suppose that it is necessary to test the hypotheses H0 : θ = θ0 and H1 : θ 6= θ0. The empirical
loglikelihood ratio statistic is given by

ELLRθ0 =
ELLH0

ELLH1

, (2.2)

where ELLH0 and ELLH1 is maximized using the Lagrange method under H0 and H1, respectively.

Under H1, the function to be maximized is given in Equation (2.1), subject to
m
∑
i

pi = 1 and
n
∑
i

qi = 1.

The Lagrange multiplier method to maximize a function f (w) subject to the constraint j(w) = 0 has
the following steps.

Step 1 Calculate the value of w = wλ , which solves J(w) = ∇ f (w)− λ∇ j(w) = 0,where ∇ is the
gradient operator.

Step 2 Obtain λ to solve j(wλ ), where λ is the Lagrange multipliers.

Thus, the functions used in the Lagrange multiplier for the situation considered is

f (p,q) = max
(p,q)

(
m

∑
i=1

log(pi)+
n

∑
i=1

log(qi)

)
, j(p) = 1−

n

∑
i=1

pi and j(q) = 1−
n

∑
i=1

qi.

The equation for J becomes

J(pi,qi) =
m

∑
i=1

log(pi)+
n

∑
i=1

log(qi)−λ1(1−
m

∑
i=1

pi)−λ2(1−
n

∑
i=1

qi).

The first step of the Lagrange multiplier method is to differentiate the J function and calculate the
critical values of this function, where the critical values are the points where the derivative function
is zero. The derivatives of J are

∂J
∂ pi

=
1
pi
−λ1,

for i = 1, . . . ,m, and
∂J
∂qi

=
1
qi
−λ2,

for i = 1, . . . ,n. Solving these equations we obtain pi =
1
λ1

and qi =
1
λ2

. Hence,

m

∑
i=1

pi =
m

∑
i=1

1
λ1

= 1→ λ1 = m,

and
n

∑
i=1

qi =
n

∑
i=1

1
λ2

= 1→ λ2 = n,

which yields

pi =
1
m

and qi =
1
n
.

The Lagrange multiplier method implies that ELLH1 = m−mn−n. Hence, the likelihood ratio statistic
on the parameter of interest, θ , is defined as

ELLRθ = max
(p,q)

(
m

∑
i=1

log(m× pi)+
n

∑
i=1

log(n×qi)

)
,
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subject to the constraints given in Equation (2.1). The J function used in Lagrange multiplier under
H0 is

J(p,q) = ∑
m
i=1 log(m× pi)+∑

n
i=1 log(n×qi)−λ1

[
1−

m
∑

i=1
pi

]
−λ2

[
1−

n
∑

i=1
qi

]
−λ3

[
m
∑

i=1
pi(Xi−µ)

]
−λ4

[
n
∑

i=1
qi(Yi−µ)

]
.

The derivatives of the J function are

∂J
∂ pi

=
1
pi
−λ1−λ3(Xi−µ),

for i = 1, . . . ,m, and
∂J
∂qi

=
1
qi
−λ2−λ4(Yi−µ),

for i = 1, . . . ,n. Solving
m
∑

i=1
pi

∂J
∂ pi

= 0 and
n
∑

i=1
qi

∂J
∂qi

= 0 , we obtain, λ1 = m and λ2 = n. Thus, setting

∂J
∂ pi

= 0 and ∂J
∂qi

= 0,

pi =
1

m+λ3(xi−µ)
,

where λ3 solves

m

∑
i=1

(xi−µ)

m+λ3(xi−µ)
= 0,

and
qi =

1
n+λ4(yi−µ)

,

where λ4 solves

n

∑
i=1

(yi−µ)

n+λ4(yi−µ)
= 0.

The ELLRθ0 can be obtained numerically. One of the important properties of ELLRθ0 is that it can
be used to obtain a nonparametric version of the Wilk’s Theorem.

Non parametric version of the Wilk’s Theorem (Wu and Yan (2012)): Suppose σ2
X <∞, σ2

X <∞

and m
o → π ∈ (0,1) as o→ ∞ , where o = m+n. Then, −2×ELLRθ0 converges in distribution to a

χ2
1 random variable with one degree of freedom, i.e.

−2×ELLRθ0
d−→ χ

2
1 .

The empirical likelihood theory described above is expressed under the alternative hypotheses -
two side. Then, the Scan Statistic based on empirical likelihood has two new problems:

1. The Scan Statistic compares two samples and searches (Scan) for the most likely cluster based
in fact that mean of cluster is largest of the other, i.e., the alternative hypotheses is an inequality
H1 : µX > µY . Hence, how to maximize an empirical likelihood when subject to inequality
hypotheses?

2. When the alterative hipothesis is H1 : µX > µY the asymptotic distribution −2×ELLR is not
necessarily chi-squared (see Chapter 10,Owen (1988)). We cannot expect to find the distribu-
tion of the ratio in the closed analytical form. How to calibrate the likelihood ratios and make
inference?
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In the first problem our proposal is to use the augmented Lagrange multiplier method with a Se-
quential Quadratic Programming-SQP interior algorithm, proposed by Nocedal and Wright (2006),
to maximize the empirical likelihood. In the second problem the propose is to use bootstrap method.
Initiated by Efron in 1979, the basic bootstrap approach use re-sampling to generate an empirical esti-
mate of the statistic sampling distribution. The EL method combined with Bootstrap method produces
very accurate results (Owen (1988)).

2.1.2 Algorithm

Our proposal is based following the Kulldorff’s approach and algorithm, distinguishing in the use
of test statistics and obtaining the p-value. In the following, only the bootstrap algorithm for p-value
is described because the algorithm is similar.

Suppose that a region G has a partition G1, . . . ,Gk. For each Gi, let us to consider ni be the popu-

lation and yi be the disease counts in area i = 1, . . . ,k, hence, N =
k
∑
i

ni and C =
k
∑
i

yi are the population

and the number of cases, respectively, in region G. Let Z be a candidate for a spatial cluster where
z is a subset of connected areas. We assumed that E( yi

ni
) = µZ if i ∈ Z and E( yi

ni
) = µZ̄ if i /∈ Z. Let

θ = µZ−µZ̄ . Our interest is the hypothesis testing problem of the null hypothesis H0 : θ = 0 against
the alternative hypothesis H1 : θ ≥ 0 using the statistic ELLR and Bootstrap method.

The Bootstrap Test Algorithm

The basic concern when using bootstrap, is to formulate a re-sampling mechanism that leads to the
distribution of the test statistic under the null hypothesis. Let u the union of the random samples of the
cluster candidate yZ = (y1/n1, . . . ,yk1/nk1) and its complementary region yZ̄ = (y1/n1, . . . ,yk2/nk2),
respectively, where k1 + k2 = k and k1 < k2. The empirical distribution function of u is defined as
Ĵ0 and characterizes the probabilistic mechanism (Efron and Tibshirani (1994)). Ĵ0 is a non paramet-
ric estimate of the common distribution J0 that would originate both yZ and yZ̄. Then, the natural
estimation of probabilistic mechanism J under H0 is obtained by bootstrap sampling u∗ ( for more
details see cap. 16 of Efron and Tibshirani (1994)). In the following is described the algorithm of the
computation of the bootstrap test statistic .

Step 1: On the basis of real observations u = (yZ,yZ̄) = (u1, . . . ,uk), compute ELLR0 ( Equation (2.2))
and denote it by ELLRo

0;

Step 2: Generate the bootstrap sample u∗ = (u∗1, . . . ,u
∗
k);

Step 3: On the basis of bootstrap sample, perform Algorithm 1 to compute the simulated value ELLR∗0;

Step 4: Repeat the step 2 and 3 B times;

Step 5: Denote ELLR∗0,b as the bth simulated value of ELLR0 derived in step 2, 3 and 4. Then, the p-
value of ELLR0 equals #{ELLRo

0 ≥ ELLR∗0,b : b = 1, . . . ,B}/B where #A represents the number
of elements in set A.

2.2 SIMULATIONS STUDIES

In this Section the process of simulation of the data sets is presented, under the null hypothesis
and the alternative hypothesis, used to estimate the distribution of statistic−2×ELLRθ0 , to calculated
the empirical power and size of the hypothesis test. The simulations of the data sets will be based
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on the ZIP distribution, described above, and can be extended to any distribution family. The ZIP
distribution is a discrete mixture with two components: zero with probability φ and a Poisson family
distribution - PO(µ) - with probability 1−φ . The ZIP model is described as

Yi =

{
0 , with probability φ

P(µi) , with probability 1−φ
,

where µ > 0 and 0 < φ < 1 is the zero inflated parameter, i. e., the probability of extra zeros. Hence,
the probability function of ZIP is given by

P(Y = y|µ,φ) =

{
φ +(1−φ)exp(−µ) y = 0
(1−φ)µy exp(−µ)

y! y = 1,2,3, . . .

The mean and variance are given by Rigby et al. (2019) which are defined by

E(Y ) = (1−φ)µ ,
Var(y) = (1−φ)µ +φ(1−φ)µ2 .

To describe this model in terms of null hypothesis, consider a region G partitioned into k disjoint
areas. Let ni be the population and yi be the event counts in area i = 1, . . . ,k. Then, the hypothesis of
clustering or no clustering under ZIP model can be express as

H0 : Yi ∼ ZIP(λni,φ), ∀i,

H1 : Yi ∼ ZIP(λ jni,φ), j = 1,2 where λ1 > λ2 for some set of i (connected areas),

where λ represents the incidence rate of the event, which is unknown in general.

2.2.1 Cluster Models

The simulations were based on Kulldorff et al. (2003), which presented a collection of 1.220.000
simulated benchmark data sets generated under Poisson distribution, with 51 different cluster models
and under the null hypothesis, to be used for power evaluations. The region considered is the 245
counties and county equivalents in the Northeastern United States, consisting of the states of Maine,
New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Penn-
sylvania, Delaware and Maryland, as well as the District of Columbia. The clusters were based on
three different sets of local clusters: rural, urban and mixed area. Within each of these three sets, was
constructed the different size clusters using 2, 4, 8 and 16 counties. The center of the rural cluster
was Grand Isle County in northern Vermont, on the Canadian border. The center of the mixed cluster
was Pittsburgh (Allegheny County) in western Pennsylvania. The center of the urban cluster was
Manhattan (New York County) in New York City, closely surrounded by other very urban counties.
Hence, there are 12 cluster types, where they differ in the number of cities in the cluster (2,4,8,16)
and the cluster location (mixed, rural and urban). The clusters with 16 counties and the three location
are shown in Figure 1. We considered these simulated data under the null hypothesis of the Pois-
son model to compare the effectiveness of the proposed Empirical Likelihood Scan method and the
method proposed by Kulldorff and Nagarwalla (1995).

In the simulation of Zero Inflated Poisson distribution, as well as Kulldorff et al. (2003), we use the
real female population in the 245 counties and county equivalents in the Northeastern United States
to simulate a Zero Inflated Poisson model. As the population for each county we used the number
of women living there according to the 1990 United States census. These data have been previously
used to evaluate the existence of geographical clusters of breast cancer mortality in Kulldorff (1997)
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Figure 1 – Map showing the urban cluster (blue) centered around Manhattan, New York, in the center, the
mixed cluster (green) centered around Pittsburgh in the west and the rural cluster (red) centered around Grand
Isle in the north.

Source: The author (2021)

2.3 SIMULATIONS RESULTS

Firstly, it was evaluated and compare the power functions between the ration test using empirical
likelihood and the ration test using the likelihood based on Poisson model, without the scan process,
that is, it was compared the hypothesis testing for two samples. In the simulations, it was compared
the power functions of ELLR and K generated under a Zero Inflated Poisson - ZIP with inflated
proportion φ = 40% and φ = 10%, based on samples with size n1 = 15 and n2 = 5, see Figure 2. We
use 500 samples runs and 500 bootstrap to calculate the p-values for α = 5%. We used δ to measure
the strength of the cluster from 1 to 20, with δ = 1 indicating no spatial cluster effect and δ = 20
indicating strong spatial cluster effect, that is, we assumed that E[yi] = 0.001∗δ , where 0.001 is the
incidence rate.

In the simulation, when φ = 0.1, the type I error (δ = 1) is 0.082 and 0.072 and when φ = 0.4
the type I error (δ = 1) is 0.04 and 0.18 for ELLR and K, respectively. These results suggested that
the type I error probabilities of ELLR were not significantly affected by zero inflated effects. The
comparison of the powers showed that the ration based on empirical likelihood is always higher than
the Kulldorff’s ratio in presence of zero inflated.

2.3.1 Power and Size Comparison

In this section, the results of the empirical power and the size of the tests based on the Poisson and
Zero inflated Poisson models will be presented. Furthermore, two indicators were used to evaluate
the accuracy of methods.

Costa and Assunção (2005), Tango and Takahashi (2005), Costa et al. (2012) evaluated the effi-
ciency of the most likely cluster matched the real cluster, using sensitivity measures. Let ẑ and z be
the most likely cluster and the real cluster, respectively, with corresponding populations nẐ and nZ .
Sensitivity is the average proportion of the real cluster identified correctly. SS =

nẐ∩Z
nZ

. The Negative
Predictive Value - NPV is the average proportion of the detected cluster that is part of the comple-
mentary real cluster, i.e., the proportion of the detected cluster incorrectly identified, NPV =

nẐ∩Zc
nẐ

. A
good method has large sensitivity and a low NPV . If the average proportion of SS and NPV is close to
one and zero, respectively, the detected cluster is likely to cover a high proportion of the real clusters
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Figure 2 – Simulations of power functions as functions of δ for selected φ , with samples size n1 = 15, n2 = 5
and α = 5%.

Source: The author (2021)

and with lower error.

2.3.1.1 Simulation Based on Poisson Model

Spatial Scan Statistic based on Empirical Likelihood were evaluated under the Poisson model.
The type I error rates and the empirical power were compared with the Kulldorff’s Scan. The results
were based on 500 simulated data under the null and alternative hypothesis of each type of different
cluster size (2,4,8 and, 16). To obtain the p-value for the Kulldorff Scan method each data were
replicated 500 times using Monte Carlo method, and for the Empirical Likelihood Scan 500 bootstrap
samples were generated for each data.

Table 1 presents the test size for Empirical Likelihood Scan - ELS and Kulldorff Spatial Scan -
KS. The results are better for the ELS method, since the type I error probabilities is closer to the
significance level for the ELS method than for the KS method, i.e. the ELS method can control better
the false alarm rates (type I error probability). The results also show that the computation of the power
of the test is more precise for the ELS method, when compared to the KS method.

Table 1 – Size of the Spatial Scan test considering 500 simulated data under the Poisson model.

ELS 5% KS 5% ELS 1% KS 1%
3,4% 1,0% 0,4% 0,6%

KS - Kuldorff Statistic Scan ; ELS - Empirical Likelihood Scan; Source: The author (2021)

The results of empirical power and the indicators rates are reported in Table 2. The empirical
power values are lower for the ELS method for all clusters than for the KS method. Moreover, this is
expected by the fact that KS method is parametric and the ELS method is non parametric. Indeed, the
power of empirical likelihood converges to the Kulldorf method when the size of the cluster increases.
Note that the empirical power values are more precise for the ELS method, according to the results
given in Table 1.

The results of SS and NPV indicators are presented in Table 3. It is shown that for the scenario
considered, in average for all clusters, the Kulldorff method gives better results. The Empirical Like-
lihood Scan method identified correctly 62.9% of the cluster with 8 cities and the Kulldorff method
has 82% of SS, while the NPV indicates that the proportion average of error is 36.2% for ELS method
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Table 2 – Empirical Power values for ELS and KS method under Poisson model.

Cluster α = 0,01 α = 0,05
Size ELS KS ELS KS

2 0,182 0,872 0,380 0.904
4 0,338 0,822 0,648 0,892
8 0,646 0,860 0,826 0.920

16 0,754 0,874 0,897 0,918
KS - Kuldorff Statistic Scan ; ELS - Empirical Likelihood Scan; Source: The author (2021)

and 25.2% for KS method.

Table 3 – Sensitivity and Negative Predictive Value Indicators.

Cluster SS NPV
Size ELS KS ELS KS

2 0,231 0,903 0,94 0,306
4 0,441 0,885 0,72 0,419
8 0,629 0,82 0,362 0,252

16 0,451 0,791 0,181 0,170
KS - Kuldorff Statistic Scan ; ELS - Empirical Likelihood Scan; Source: The author (2021).

2.3.1.2 Simulation Based on ZIP Model

The Spatial Scan Statistic based on Empirical Likelihood were evaluated from ZIP distribution,
compared type I error rates and power between Kulldorff’s Scan and the Empirical Likelihood Scan.
Based on ZIP distribution with φ = 40%, we generated random ZIP counts (500 simulations runs),
and calculate bootstrap p-values for both methods from 500 bootstrap samples. The regions were
simulated using incidence rate of 100 cases per 100.000 persons and the clusters were simulated with
incidence rate of 1.000 cases per 100.000 persons, according with the hypothesis described and the
cluster of size 2, 4, 8, 16 as described in previous section.

Table 4 shows the type I error probabilities for Empirical Likelihood Scan - ELS and Kulldorff
Spatial Scan - KS. The Kulldorff Scan assumes that the number of disease cases in different locations
have independent Poisson distributions leads to an increased rate of false positives with 100% and
100% for α = 5% and α = 1%, respectively. Its expected that the type I error probabilities (false
alarm rate) is the same as the significance level and this behavior is better in Empirical Likelihood
method with 2% and 1% for α = 5% and α = 1%, respectively. The Kulldorf’s method is not able to
control the zero inflated effects, with a false alarm rate of 100%.

Table 4 – Size of the Spatial Scan test by Bootstrap estimation (500 replicates). Using ZIP model (φ = 40%).

KS 5% ELS 5% KS 1% ELS 1%
1% 2% 1% 1%

KS - Kuldorff Statistic Scan ; ELS - Empirical Likelihood Scan; Source: The author (2021)

The results of power are report in Table 5. The ELS method shows a low power for clusters of
sizes 2, 4 and 8 for α = 0,01 and clusters of sizes 2 and 4 for α = 0,05. This can be explained
by the fact that Kulldorf’s Scan does not account zero inflated but Empirical Likelihood Scan does.
Furthermore, the zero inflated effects is stronger in clusters of sizes 2 and 4.

Table 6 shows the SS and NPV results. On average, clusters with sizes 8 and 16 achieved the best
SS indicating that the Empirical Likelihood Scan method identified correctly 100% and 90.3% of the
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Table 5 – Empirical Power for δ = 10 and φ = 0.4

Cluster α = 0,01 α = 0,05
Size ELS KS ELS KS

2 0 1 0 1
4 0,066 1 0,162 1
8 0,052 1 0,656 1

16 1 1 1 1
KS - Kuldorff Statistic Scan ; ELS - Empirical Likelihood Scan; Source: The author (2021)

size of the real cluster, while the NPV indicate that the proportion average of error is 4% for both size
cluster 8 and 16.

Table 6 – Sensitivity and Negative Predictive Value Indicators

Cluster SS NPV
Size ELS KS ELS KS

2 0,253 0,5 0,90 0,5
4 0,782 0,75 0,42 0,0
8 1 0,875 0,04 0,0
16 0,905 0,898 0,046 0,085

KS - Kuldorff Statistic Scan ; ELS - Empirical Likelihood Scan; Source: The author (2021)

2.4 APPLICATIONS

Measles is an infectious disease, highly contagious and caused by viruses, can be contracted by
people of any age, but has a higher incidence in children under one years old (Veronesi and Focaccia
(2015)). Contamination is transmitted by air, caused by sneezing, coughing and other contact with
contaminated secretions (Veronesi and Focaccia (2015)). It has a strong impact of socioeconomic
aspects on the transmission and incidence of the disease.

Brazil received from the Pan American Health Organization in 2016 the certificate of measles
eradication. However, the outbreak in the north of the country in 2018 broke the cycle of absence
of measles, evidencing the need for disease control, surveillance and eradication. In 2019, Brazil re-
ported two outbreaks of the disease with 4.447 confirmed measles cases until September 18 (de Saúde
do Estado de São Paulo (2019)). Until June 23, 2019, 3.906 cases of measles have been registered
and 97.5% of these cases are concentrated in 153 counties of the state of São Paulo (de Saúde do Es-
tado de São Paulo (2019)). With this scenario, an epidemiological investigation of measles outbreaks
in the state of São Paulo is of fundamental importance for proper health surveillance.

São Paulo (SP) is a Brazilian state located in the Southeast region, bordering the state of Rio de
Janeiro to the northeast; with Minas Gerais to the north; with Mato Grosso do Sul to the west; and
with Paraná to the south. In its eastern and southeastern portion is bathed by the Atlantic Ocean. It
has a territorial area of 248222 km2, where approximately 46.670.000 people living (IBGE, 2019),
totaling a demographic density of 166 inhabitants per square kilometer.

As mentioned earlier, São Paulo presented a large part of the occurrence of measles cases in Brazil
in 2019. In this case study, the region of São Paulo was defined for the application of the proposed
method and the data to be used are the 2982 confirmed measles cases from January 1st, 2019 to
September 4th, 2019 provided by the São Paulo State Department of Health. Figure 3 presents the map
of the administrative boundary of the 645 counties that make up the state of São Paulo and the spatial
distribution of measles incidence in 2019 through September 4. Measles cases are concentrated in 111
counties of the state, with the largest occurring in its capital São Paulo, recording 67.15% of all cases.
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The center of the high incidence of measles is concentrated in the metropolitan region of São Paulo,
presenting incidence rates varying from 16 to 43 cases per 100 thousand inhabitants. Fernandópolis,
in north of São Paulo is the county with the highest incident rate, 71 cases per inhabitants. The
data presented a distribution with excess of zeros with 82.8% of the counties (534) having 0 (zero)
occurrences of measles cases, featuring zero inflation.

Figure 3 – Map showing the incidence rate of measles

Source: The author (2021)

The Kulldorff method identified a cluster with 28 regions (Figure 4) with an incidence rate of 14
per 100.000 inhabitants, while the region has a rate of 7 cases per 100.000 inhabitants. These results
should be interpreted with caution due to the high occurrence of zeros in the whole region, which will
not characterize the Poisson distribution, required in the application of the Kulldorff method. The
ELS statistic was constructed using the measles occurrence rate as a variable of interest and with a
maximum proportion of the population in the cluster of 50%. The statistical test did not indicate any
significant cluster.

Figure 4 – Kuldorff Cluster of Measles cases in São Paulo in Brasil, 2019

Source: The author (2021)
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2.5 CONCLUSIONS

In this chapter, a non-parametric cluster identification method based on Kuldorff’s Scan Statistics
and the Empirical Likelihood theory was proposed. The searching procedure between Kuldorff’s
method and the one based in empirical likelihood proposed in this thesis is similar, but the test statistic
used in every scan is different.

In the context of scan statistics for simulated data and real data, the ELS method was efficient for
clusters with larger number of regions, being able to reduce Type I error. False alarm rates should be
taken into consideration when using scan methods. As shown in the analysis, the presence of zero
inflation is associated with 100% type I error probability using the Kuldorff Scan method. In terms
of Public Health management, this probability indicates that all cluster identify will be false alarms,
while to the Empirical Likelihood the probability type I is controlled. Is expected that the type I error
(false alarm rate) is the same as the significance level and this behavior is better in ELS method. This
result indicates the presence of a cluster when in reality it does not exist. Hence, when the data are
inflated with zeros the Spatial Scan by Kulldorff should be used with caution.

The Empirical Likelihood method is usually effective and powerful in dealing with populations
with skewed distribution. The main contribution of the proposal is the possibility of application to any
family of distributions and the ability to apply continuous variables duly associated with a population
at risk.

The method proposed in that the empirical likelihood methods applied to spatial scan can be very
promising and is a good candidate for a method for detecting clusters, but the mean is a non-robust
statistic that is affected by the presence of outliers and this fact linked to the choice of the Poisson
model inflated by zeros may have influenced the level of empirical power.

An improvement for future work could be to compare with other non parametric methods and to
consider methods to deal with the non-circular form of the cluster and work with another parameter
of interest.
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3 A NEW APPROACH TO ROBUST REGRESSION
USING CENSORING FOR GAMLSS

3.1 PRELIMINARY

This section briefly describes the methodology of classical regression and introduces the general-
ized additive models for location, scale and shape (GAMLSS).

The purpose of a regression is to establish a quantifiable dependency relationship between vari-
ables that can be expressed through a mathematical model, which has all its fixed components, or
even by a statistical model, when was include at least one random component.

A specific class of a statistical model, called as multiple linear model regression - LM, is a sta-
tistical model that uses the relationship between two or more variables so that one of them can be
described or its value estimated from the others, can be defined as:

Yi = β0 +β1xi1 +β2xi2 + . . .+βsxis + εi,

where Yi are random variables (response variables), for i = 1, . . . ,n, βs are coefficients to be estimated,
s is the number of explanatory variables, εi are the random errors independently distributed normal
variables, with zero mean and constant variance σ2, that is, εi

i.i.d.∼ N(0,σ2). In the following, we
have another way to define the model: Yi ∼ N(µi,σ

2) and µi = β0 + β1xi1 + β2xi2 + . . .+ βsxis for
i = 1, . . . ,n. To avoid mathematical notation problems, we adopt the matrix form to define the models.
The linear model in matrix form is defined as

Y i.i.d.∼ N(µµµ,Iσ
2)

µµµ = Xβββ ,

where βββ is the unknown vector of s+1 coefficients to be estimated and X is a design matrix n×(s+1)
with s explanatory variables and a column representing the constant coefficient. The assumption
of normality of random errors is an assumption which excludes a range of situations, such as, for
example, binary response variables, proportion, counting or even categorical.

Nelder and Wedderburn (1972) proposed the class of Generalized Linear Models - GLM whose
basic idea is to expand the possibility of other distributions for the response variable besides the dis-
tribution normal. In essence, an GLM is defined by a probability distribution that belongs to the
exponential family for the response variable (random component), a set of independent variables de-
scribing the linear structure of the model (systematic component) and a monotonic link function g(.)
used in modelling the relationship between µµµ and the explanatory variables. Data analysis through
GLM is quite flexible, because for the same linear structure you can obtain several models depending
on the random component and the chosen link function (Nelder and Wedderburn (1972a)).

Let EF(µµµ,ΦΦΦ) the exponential family distribution, where µ and Φ are the vectors of the param-
eters of location and scale parameters. Distributions, such as normal, inverse normal, beta, Poisson,
binomial and gamma are examples of distributions that belong exponential family and can be used to
fit generalized linear models. Therefore, GLM model can be written as:

y i.i.d.∼ EF(µµµ,ΦΦΦ)
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g(µµµ) = Xβββ ,

where, X is design matrix and βββ is the unknown vector of coefficients. The g(.) is the link function
and must necessarily be twice differentiable and strictly monotonic. GLM are widely used, however,
may also be unsuitable for some situations, such as example, when the relationship between the mean
of the response variable and the explanatory variables is not linear.

In this context, the GAM, proposed by Hastie and Tibshirani (1990), add non-parametric smooth-
ing functions to GLM, in order to leave their own data conduct their relationship with the predictor.
The Generalized Additive Models can be definded as:

Y∼ EF(µµµ,ΦΦΦ)

g(µµµ) = Xβββ +
J

∑
j=1

f j(x j)

where X is a matrix n× (s+ 1), f j are non-parametric smoothing function applied to covariates x j
with j = 1, . . . ,s and βββ is the unknown vector of s+1 coefficients. For more details on the LM, GLM
and GAM mentioned above, see Nelder and Wedderburn (1972a) and Hastie and Tibshirani (1990a).

GLM and GAM are still limited, since only the location parameter (mean) of the distributions
is modeled, and necessarily, the distribution needs to belong to the exponential family. There are
situations where may require more flexibility to the distribution of the response variable, such as, it is
desired that it has a large asymmetry and kurtosis.

To remedy the above restrictions, Rigby and Stasinopoulos (2005) proposed the generalized ad-
ditives models for location, scale and shape - GAMLSS, a new class of models (semi) parametric
regression models, which allow that all parameters of the response variable be modeled in a linear or
non-linear function. In the next section, the GAMLSS model was presented as well as the process of
estimation.

3.2 GENERALIZED ADDITIVE MODELS FOR LOCATION, SCALE AND
SHAPE - GAMLSS

The GAMLSS regression model proposed by Rigby and Stasinopoulos (2005) allows the fitting of
any distribution for the response variable, regardless of whether it belongs to a family of distributions.
The GAMLSS model class also allows the systematic part of the model to be expanded, so that all
parameters of location, scale and shape, of the chosen distribution, are fitted. That is, all parame-
ters can be modeled according to the explanatory variables and, in addition, the predictors can also
incorporate non-parametric smoothing functions, random effects, or other terms additions. Though
presenting the LM, GLM and GAM models as particular cases, this model has the assumption that
the observations of the Y response variable are independent. According to Stasinopoulos et al (2017),
the GAMLSS can be defined as follows.

Let yi, for i = 1, . . . ,n, be the response variable observations independent, with probability (den-
sity) function f (yi|θθθ i), where θθθ

i> = (θ i
1, . . . ,θ

i
p) is a vector of p parameters that is related to the

effects of explanatory variables and random effects through monotonic link function gk(θθθ kkk), for
k = 1, . . . , p. This function (gk) is defined as additive model given by

gk(θθθ k) = ηk = Xkβββ k +
Jk

∑
j=1

Z jkγγγ jk, (3.1)

where, θθθ
>>>
k = (θ 1

k , . . . ,θ
n
k ), ηηη>k = (η1k, . . . ,ηnk) are vectors of length n, βββ

>
k = (β1k, . . . ,βbkk) is a

parameter vector of length bk, Xk is a known design matrix of order n× bk, Z jk is a fixed known



34

n× q jk design matrix and γγγ jk is a q jk-dimensional random variable. The matrices XXXk may or may
not be equal, that is, it is the predictor of each parameter of the distribution can receive different
explanatory variables (Rigby and Stasinopoulos (2005)).

Model (3.1) is called the GAMLLSS and is more general than the GLM or GAM. The distribution
of the dependent variable is not limited to the exponential family and all parameters are modelled in
terms of both fixed and random effects. See below some special cases of GAMLSS.

1. If Jk = 0 for k = 1,2, . . . , p, there are no additive terms associated with the distribution param-
eters then model (3.1) reduces to a fully linear parametric GAMLSS model given by:

gk(θθθ k) = ηk = Xkβββ k. (3.2)

2. The fully linear parametric GAMLSS can be extended to allow the inclusion of terms nonlinear
modeling of the k distribution parameters in the form:

gk(θθθ k) = ηk = hk(xk,βββ k), (3.3)

where hk for k = 1, . . . , p are non linear function and xk is a explanatory vector assumed to be
known.

3. If Z jk = In, is an n×n identity matrix, and γγγ jk = h jk = h jk(x jk) for all combination of j and k
then Model (3.1) reduces to a linear semi parametric GAMLSS given by:

gk(θθθ k) = ηk = Xkβββ k +
Jk

∑
j=1

h jk(x jk), (3.4)

where x jk, for j = 1,2, . . . ,Jk and k = 1,2, . . . , p, are vectors of length n, the function h jk is an
unknown function of the explanatory variable X jk.

4. The linear semiparametric GAMLSS can be extended to allow the inclusion of terms nonlinear
modeling of the k distribution parameters. If Z jk = In, is the n× n identity matrix, and γγγ jk =
h jk = h jk(x jk) for all combination of j and k then model 3.1 reduces to a non linear semi
parametric GAMLSS given by:

gk(θθθ k) = ηk = hk(xk,βββ k)+
Jk

∑
j=1

h jk(x jk), (3.5)

where x jk for j = 1,2, . . . ,Jk and k = 1,2, . . . , p, are vectors of length n, the function h jk is an
unknown function of the explanatory variable X jk, x jk for j = 1,2, . . . ,Jk and k = 1,2, . . . , p are
vectors of length n.

5. If Z jk = In, is an n× n identity matrix, and γγγ jk = h jk = h jk(x jk) for specific combinations
of j and k in Model (3.1), then the resulting model contains parametric, nonparametric and
random-effects terms.

3.2.1 Parameters Estimation

In this section, some techniques for estimating the parameters and hyperparameters of the GAMLSS
models will be presented. The parameters estimation is based on two iterative estimation algorithms,
the RS algorithm, proposed by Rigby and Stasinopoulos (2005), and CG, proposed by Cole and Green
(1992).
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GAMLSS models, previously defined in Equation (3.1), can be written as

Y∼D(µµµ,σσσ ,τττ,ννν)

g(µµµ) = η1 = X1βββ 1 +Z11γγγ11 + . . .+ZJ11γγγJ11,

g(σσσ) = η2 = X2βββ 2 +Z12γγγ12 + . . .+ZJ22γγγJ22,

g(τττ) = η3 = X3βββ 3 +Z13γγγ13 + . . .+ZJ33γγγJ33,

g(ννν) = η4 = X4βββ 4 +Z14γγγ14 + . . .+ZJ44γγγJ44,

where D(µµµ,σσσ ,τττ,ννν) is a four parameter distribution, µµµ is usually a location parameter, σσσ is often a
scale parameter, ννν and τττ are the shape parameters of the distribution, generally associated with skew-
ness and kurtosis, respectively. The fixed effect parameters are represented by βββ =(βββ>

>>
111 ,βββ

>>>
222 ,βββ

>>>
333 ,βββ

>>>
444 )
>

are the fixed effects parameters, γγγ = (γγγ>11 . . . ,γγγ
>
J11,γγγ

>
21 . . . ,γγγ

>
J44)
> are the random effect parameters as-

suming that γγγ jk have independent normal distributions with γγγ jk ∼ Nq jk(0,G
−
jk), where G−jk is the

generalized inverse of a q jk x q jk symmetric matrix G jk = G jk(λλλ jk), which depend on a vector of
hyperparameters λλλ = (λλλ>11 . . . ,λλλ

>
J11,λλλ

>
21 . . . ,λλλ

>
J44)
> and regulates the degree of smoothing required in

the fit.
When the model does not have random effects, that is, it does not have a smoothing function, then

we have a parametric model that only requires the estimation of βββ . In this case, the model parameters
are estimated by maximum likelihood. As we assume a four-parameter model, the loglikelihood
function is defined as

l =
n

∑
i=1

log{ f (yi|µi,σi,τi,νi)}.

For a GAMLSS model with random effects, the penalized maximum likelihood estimation method is
used, which refers to the estimation of βββ and γγγ for constant λλλ . Thus, the penalized likelihood function
is given by

lp = l− 1
2

4

∑
k=1

Jk

∑
j=1

γγγ
T
jkG jkγγγ jk. (3.6)

Rigby and Stasinopoulos (2005) proposed two algorithms to maximize the likelihood function
penalized (Equation (3.6)) and fit a GAMLSS for fixed values of hyperparameters, the CG and RS
algorithms. The first, CG algorithm, is a generalization of the Cole and Green algorithm (1992),
which uses the first derivatives and the exact values or approximate the second and cross derivatives.
However, for many probabilities density functions the parameters have orthogonal information, that
is, the values of the cross-derivatives of the likelihood function are equal to zero. In this case, it
is used the RS algorithm which does not use the expected value of the cross derivatives. A third
methodology, which mixes steps from both algorithms, starts the process by RS and finish with CG.
The RS and CG algorithms lead to (penalised) maximum likelihood estimators for γγγ and esteem the
parameters βββ for fixed hyperparameters λλλ . The first proposals for hyperparameter estimation use
the optimization method to minimize the Akaike criterion and thus select the best estimate for λλλ .
However, this process requires the adjustment of several models, resulting in a high computational
cost, especially if the model has several smoothing functions (Rigby and Stasinopoulos (2013)). In
this context, Rigby and Stasinopoulos (2014) proposed a way to automatically select the value of this
parameter, which they call local estimation, because the method is applied in each step of the RS and
CG algorithm, using the maximum likelihood theories. This alternative has the main advantage of
being faster compared to the others. In addition, there are, at least, three different methodologies for
estimating the smoothing hyperparameters: generalised cross validation, generalised akaike informa-
tion criterion and maximum likelihood based methods (for more details on parameter estimation see
Chapter 3 Stasinopoulos et al. (2017)).
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3.3 ROBUST STATISTICS

Robust statistics aims at producing consistent and possibly efficient estimators, test statistics with
stable level and power, when the model is slightly misspecified (Heritier et al. (2009)). Huber (1996)
approaches the definition of robustness in three aspects: qualitative, quantitative and infinitesimal.
The qualitative concept is based on the principle of fundamental continuity of robustness, which pos-
tulates that small disturbances in the underlying probability distribution should cause small changes
in the performance of the statistical method used in the analysis. Let a cumulative probability distri-
bution Fθ that captures the structural part as well as the random part of the model. A model is said
to be misspecified if the data generating lies in a neighborhood of the true (postulated) model. This
notion of a neighborhood, due originally to Huber (1965), is defined as:

Fε = (1− ε)Fθ + εG, (3.7)

where θ is a set of parameters of interest, G is an arbitrary distribution and 0 ≤ ε ≤ 1. When ε = 0,
then there is no model misspecification and the data-generating process is exactly the postulated
model. This is the assumption in classical estimation based, for example, on the maximum likelihood
estimator. A common approach of violating the probability distribution assumptions is the contami-
nation of the sample with outliers.

The definition of quantitative robustness is based on the breakdown point concept, and measures
the property of robustness of a statistic. The breaking point is defined as the amount maximum of bad
specification of the probabilistic model that an estimator can resist before breakdown (Huber (1996)),
that is, before produces inconsistent and inefficient estimators. The infinitesimal definition is based
on the concept of the influence function that will be defined later. In this work, will be used the
qualitative and infinitesimal aspects for formulate the new propose for robust fitting GAMLSS. More
details can be found in Huber (1965, 2004), Heritier et al. (2009) andFarcomeni and Ventura (2012).

3.3.1 Influence Function

Influence function - IF is a useful concept for studying the robustness properties of an estimator.
The influence function (IF) measures the effect on the estimator of an infinitesimal contamination
on any observation in the sample and gives us the idea of how an estimator would look under point
contamination. A particular case of the function Fε , defined in (3.7), occurs when G is a distribution
in which the value g occurs with probability 1. Thus, if X follows distribution G, then P(X ≤ x) = 0
if x < g and the mean of X is E(X) = g. The function in (3.7) is rewritten as Fε,g = (1− ε)Fθ + εGg.
The purpose of defining function Fε,g is to observe how the value g affects the value of a function
or estimator of the Fθ distribution, when g occurs with probability ε . It can be noted that when ε is
small enough, the Fε,g and Fθ distributions are quite similar. The relative influence of the value g on
an estimator T (), is given by

T (Fε,g)−T (Fθ )

ε

The influence function is the relative influence of g on an estimator Fθ , when the probability of
contamination by g tends to zero

IF = lim
ε→0

T (Fε)−T (Fθ )

ε

It is an approximation to the behavior of θ̂ when the sample contains a small fraction ε of outliers.
This influence function measures the impact of an infinitesimal contamination at y on the estimator. If
an estimator is robust, IF should not be arbitrarily large for any value of y. In other words, IF should
be bounded for all values of y if the estimator is robust. For a more discussion on influence function,
see, for example, Hampel et al. (2011).
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3.3.2 The Class of M-Estimators

Let (y1,y2, . . . ,yn) are i.i.d. observations generated from a distribution with cdf F(y,θ) and an
unknown parameter θ . Huber (1996) proposed the class of M-estimators that naturally generalize the
MLE. An M-estimator of θ is given by the solution θ̂[M] of the minimization problem

min
θ

n

∑
i=1

ρ(yi;θ) (3.8)

or, alternatively, by the solution for θ of

n

∑
i=1

ϒ(yi;θ) = 0 (3.9)

for suitable ρ and ϒ functions where ϒ(yi;θ) = ∂ρ(y;θ)
∂θ

. Note that, if ρ = − log( f (y|θ)) then M-
estimator is the maximum likelihood estimator. In general, ϒ needs not be the derivative of some
ρ-function with respect to the parameter of interest, hence the Equation (3.9) is more general and is
often referred as the proper definition of an M-estimator Heritier et al. (2009). The Huber function is
one special case of M-estimator. It is defined by:

ρk(x) =
{ 1

2x2, |x| ≤ k.
k|x|− 1

2k2, |x|> k.
(3.10)

Other classes of robust estimators are the R-estimators (R-estimators) and L-estimators (HUBER,
1996).

In statistical analysis, often outliers are observed and may have huge influences on the estimated
model. In this way, robust statistics have the purpose of modeling the discrepancies, delimiting the
influence of these outliers, to make them more stable, avoiding the model parameters from being
under or overestimated.

3.4 ROBUST FITTING OF A GAMLSS MODEL

This work is centred around in the proposal presented in Rigby et al. (2019), that consists of trans-
forming the IF of the maximum likelihood estimation. In general, maximum likelihood estimation
leads to parameter estimators with unbounded influence function for some or all parameters. Hence,
maximum likelihood estimation are generally vulnerable to the unbounded influence of even a single
outlier y. For a robust estimator of parameter θ it is necessary that the influence function, for param-
eters θθθ kkk for k = 1, . . . , p, be bounded as y moves into the left or right tail of the distribution of Y . The
next lemma features the influence function of the MLE of θθθ , based on influence function of general
M-estimates of Huber (2004), p45.

Lemma 1 - IF for the MLE (Rigby et al. (2019)) Let Y be a random variable with probability
density function fY (y;θθθ) and cumulative distribution function FY (y;θθθ). Let IF(y; θ̂) for the maximum
likelihood estimator θ̂ of parameter θk for k = 1, . . . ,K, assuming a random sample from fy(y;θ). Let
IF(y; θ̂θθ) be the corresponding vector of influence functions, i.e. IF(y; θ̂θθ) = [IF(y; θ̂1), . . . ,
IF(y; θ̂k)]

>. Then,

IF(y, θ̂θθ) = AAA−1 ∂ l

∂ θ̂θθ
,

where AAA = −E
{

∂ 2l
∂θθθ∂θθθ

>

}
is the expected information matrix and ∂ l

∂θθθ
is the vector of first derivatives

of the log density function, i. e., l = log fY (y;θθθ). This lemma can be found in Heritier et al. (2009);
Rigby et al. (2019).
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Rigby et al. (2019) find the influence functions for the MLEs of all parameters of each of four
example distributions for Y (normal(NO), beta(BE), gamma(GA) and t f amily(T F) distribution)
and check whether the influence function bounded, for the each parameter, is bounded or unbounded
as outlier value y moves towards one of the ends of the range of Y . Table 7 gives a summary of theses
results considering the refer B as bounded an UB as unbounded.

Table 7 – Bounded - B or unbounded - UB influence functions for MLE of parameters of distributions.

Left tail Right tail
µ σ ν µ σ ν

NO(µ,σ) UN UN UN UN
BE(µ,σ) UN B B UN
GA(µ,σ) B UN UN UN

T F(µ,σ ,ν) B B UN B B UN
Source: Rigby et al pg. 251 (2019).

Consider a value y of a response variable Y , one outlier relative to the model is a value of y for
which FY (y;θ) is very closed to 0 or 1. Some strategies can be used when dealing with outliers. The
robust fitting of a GAMLSS model was initially proposed in Rigby et al. (2019) and exemplified only
for the beta distribution and constant systematic component. In addiction, it was not done simulation
studies or comparison with existing robust procedure. In this sense, we will carry out a simulation
study for the beta distribution and extend the proposal to the gamma distribution

The proposal is based in bounded the influence function to obtain the parameter estimators. In the
previous section was defined the general class of M-estimators, the proposal can be considered as an
M-estimation Huber (2004) defined as

ρ(y,β ,γ) = ψ(l(β ,γ))−bψ ,

where ψ(l(β ,γ)) is a bounded l(β ,γ) obtained by bounding yi by setting

y∗i =


yi, Φ−1(α)≤ ri ≤Φ−1(1−α)

F−1
Y (α; θ̂i), ri < Φ−1(α)

F−1
Y (1−α; θ̂i), ri > Φ−1(1−α),

(3.11)

where α is a probability close to zero (e.g. α = 0.01), ri = Φ−1[FY (yi; θ̂i] is the normalized quantile
residual Dunn and Smyth (1996a) and where, θ̂i = (µ̂i, σ̂i, ν̂i, τ̂i). The value α can be seen as ro-
bustness tuning probabilities that regulates the contribution of observations based on the normalized
quantile residual. The choice of α is made before fitting the model to data, however, there is no cri-
terion for the choice of α . The term bψ(θθθ) guarantees that the estimator is Fisher consistent, that is,
asymptotically unbiased under the postulated model (see, Heritege, 2009, section 2.3.2). This term
can sometimes be difficult to compute and so is evaluated by numerical integration (Piessens et al.
(2012)) . This term is defined as E[ψ(l(βββ ,γγγ)]. Then in the GAMLSS fitting, for a given smoothing
parameter λλλ , the robust estimator for the βββ and γγγ is defined by maximizing the rewriting penalized
log-likelihood defined in (3.6) as:

lpr(βββ ,γγγ) = ψ(l(βββ ,γγγ))−bψ −
1
2

4

∑
k=1

Jk

∑
j=1

γγγ
T
jkG jkγγγ jk. (3.12)

Rigby et al. (2019) suggest the following practical robustness procedures, iterate between (RE)fit
the model robustly and identify and remove gross outliers. Then, procedure of robust fitting GAMLSS
is as follow:
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Step 1 Compute the estimation θ̂θθ on the original data by maximizing (3.6) using a CG and RS algo-
rithm and get global deviance and residual of the estimated model;

Step 2 For a given robustness tuning probabilities (α), with the estimation θ̂θθ , bounded the response
variable y based on transformation defined in Equation (3.11), generating the new y values
defined as y∗.

Step 3 Compute the estimation θ̂θθ on the y∗ data by maximizing (3.12).

Step 4 Stop if there is no change global deviance otherwise go back to step 2.

The first step of the procedure starts from using the residual of the model fit and the global de-
viance of the classical GAMLSS defined as −2l(θ̂θθ), where l(θ̂θθ) is the logarithm of the fitted likeli-
hood function. The GAMLSS algorithm use the general idea of the local scoring algorithm that re-
peated weighted fits to a modified response variable using modified weights until convergence when
the maximum is reached Stasinopoulos et al. (2017). Hence, following the suggest of the practical
robustness procedures we defined a second proposal that weight observations that the residuals are
too big, that is, set weights equal to zero when the normalized quantile residual exceed values of a
second threshold. For a complete evaluation of the practical robustness procedure, these algorithms
will be called robust fitting GAMLSS - RG and weighted robust fitting GAMLSS - RGW. Therefore,
the first contributions of this work are

X Modify the structure of the robust process, set weights equal to zero using the normalized
quantile residual, called as RGW;

X Present a broader simulation study for the beta distribution;

X Introduce the robust fitting GAMLSS model for the gamma distribution.

X Introduce a new approach to robustness using censoring for GAMLSS (will be presented in the
Section 3.6)

3.4.1 A New Robust Fitting GAMLSS for Gamma Distribution

In this section will be presented the contribution of this thesis on GAMLSS robustness, described
the robust fitting of a gamma distribution with parameters µ and σ and showing the bias correction
for the parameters estimators of the gamma model. The functions will be available within one of the
gamlss packages in R (R Core Team (2020)). Assume Y ∼ GA(µ,σ) then:

fY (y;σ ,µ) =
y

1
σ2−1 exp

[ −y
(σ2µ)

]
(σ2µ)

1
σ2 Γ
( 1

σ2

) , (3.13)

where y > 0, µ > 0 and σ > 0. The log-likelihood and first derivatives of the log density function,
l = log( fY (y; µ,σ)), with respect to µ ans σ are given by:

l = log( fY (y; µ,σ)) =
( 1

σ2 −1
)

log(y)− y
σ2µ

− 1
σ2 log(σ2)− 1

σ2 log(µ)− log
(

Γ
( 1

σ2

))
.

∂ l
∂ µ

=
1

σ2µ2 (y−µ). (3.14)

∂ l
∂σ

=
2

σ3

[
y
µ
+ϒ

(
1

σ2

)
− log

(
y

σ2µ

)
−1
]
, (3.15)
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where ϒ
(
x) = Γ

′
(x)

Γ(x) . The functions ψ
(

∂ l
∂ µ

)
and ψ

(
∂ l
∂σ

)
are bounded versions of ∂ l

∂ µ
and ∂ l

∂σ
obtained

by setting

y∗i =


yi, ai ≤ yi ≤ bi
ai, yi < ai
bi, yi > bi

,

where ai = F−1
Y (α; µi,σi), bi = F−1

Y (1−α; µi,σi) and α is a small probability. Hence, within the
GAMLSS algorithm, ∂ li

∂ µi
and ∂ li

∂σi
are replaced by

h1i = ψ

(
∂ li
∂ µi

)
−E

[
ψ

(
∂ li
∂ µi

)]
and

h2i = ψ

(
∂ li
∂σi

)
−E

[
ψ

(
∂ li
∂σi

)]
,

respectively, where the expected values provide the bias correction.

Bias Correction
Bias corrections for the estimators of µ and σ are presented below. The procedure for obtaining

the bias was based on the methodology used in Rigby et al. (2019) but only developed for the beta
distribution.

Bias correction for estimator of µ: Here we fit the gamma distribution (GA(µ,σ)) robustly,
showing the bias correction for µ̂ . The first derivative of the log density function with respect to µ is
given in Equation (3.14).

E
[

ψ

(
∂ l
∂ µ

)]
=
∫ ai

bi

∂ l
∂ µ

fY (yi; µi,σi)dy+α

[
∂ l

∂ µi

∣∣∣∣
ai

+
∂ l

∂ µi

∣∣∣∣
bi

]

=
∫ ai

bi

1
σ2

i µi
(yi−µ)

y
1

σ2
i
−1

i exp
[ −yi
(σ2

i µi)

]
(σ2

i µi)
1

σ2
i Γ
( 1

σ2
i

) dy+α

[
1

σ2
i µ2

i
(ai−µi)+

1
σ2

i µ2
i
(bi−µi)

]
.

The integral in equation above is available as

=
(σiµi)

−2

(σ2
i µi)

σ
−2
i Γ
( 1

σ2
i

) ∫ ai

bi

(yi−µi)y
σ
−2
i −1

i exp
(
−yi

σ2
i µi

)
dy.

=
(σiµi)

−2

(σ2
i µi)

σ
−2
i Γ
( 1

σ2
i

)[∫ ai

bi

yσ
−2
i

i exp
(
−yi

σ2
i µi

)
dy−

∫ ai

bi

µiy
σ
−2
i −1

i exp
(
−yi

σ2
i µi

)
dy

]
.

Using integration by parts,

∫ ai

bi

yσ
−2
i

i exp
(
−yi

σ2
i µi

)
dy =

−yσ
−2
i

i exp
(
−yi

σ2
i µi

)
σ
−2
i µ

−1
i

∣∣∣∣bi

ai

+
∫ ai

bi

µiy
σ
−2
i −1

i exp
(
−yi

σ2
i µi

)
dy.

Hence,

E
[

ψ

(
∂ l
∂ µ

)]
=

1
(σ2

i µi)σ−2
Γ( 1

σ2 )µ

[
−bσ

−2
i

i exp
(
−bi

σ2
i µi

)
+aσ

−2
i

i exp
(
−ai

σ2
i µi

)]
+α

[
(ai−µi)

σ2
i µ2

i
+
(bi−µi)

σ2
i µ2

i

]
.
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Bias correction for estimator of σ :Here we fit the gamma distribution (GA(µ,σ)) robustly, showing
the bias correction for σ̂ . The first derivative of the log density function with respect to σ is given by
Equation (3.15).

E
[

ψ

(
∂ li
∂σi

)]
=
∫ ai

bi

∂ l
∂σi

fY (yi; µi,σi)dy+α

[
∂ l

∂ µi

∣∣∣∣
ai

+
∂ l

∂ µi

∣∣∣∣
bi

]
.

The integral is not tractable, so it is evaluated by numerical integration. The numerical integration
used here is based on series extrapolation methods. The central idea of these techniques was origi-
nally presented by Longman (1956), in which it is based on the slowly converging alternating series
transformation of Euler. Many variations of extrapolation techniques were proposed after the ap-
proach of Longman. Among them, the algorithm (Wynn (1956)) stands out, which is an efficient
recursive implementation of the Shanks Transform (Shanks (1955)) . For more details see Piessens
et al. (2012).

3.5 ROBUST FITTING FOR GAMLSS B Robust Fitting for GAMLSS BY
AEBEHARD ET. AL. (2021)

In order to compare and evaluate our proposal for a robust fitting GAMLSS model, it was con-
sidered the proposed by Aeberhard et al. (2021). To our knowledge, this is the only robust fitting
GAMLSS model available in the literature besides Rigby et al (2019). The study is a general ap-
proach to achieve robustness in fitting GAMLSS by limiting the contribution of observations with low
log-likelihood values, based on divergence measure approach of Eguchi and Kano (2001). Hence, the
penalized log-likelihood function (3.6) is redefined as lpah , is given by

lpah(βββ ,γγγ) = ρc(l(βββ ,γγγ))−bρ c−
1
2

p

∑
k=1

Jk

∑
j=1

γγγ
T
jkG jkγγγ jk. (3.16)

where,

ρc(z) = log
1+ exp(z+ c)

1+ exp(c)
, c > 0,

bρc =
n

∑
i=1

bρci =
n

∑
i=1

∫
ρ
∗
c (log f (y|θθθ i))dy

is a correction term ensuring Fisher consistency and ρ∗c is directly derived from the specified ρc
through:

ρ
∗
c =

∫ z

−∞

exp(s)ρ
′
cds.

In this case,
ρ
∗
c = exp(z)− exp(c)log(1+ exp(z+ c)).

The robustness tuning constant c controls how early ρc starts to diminish the contribution of an ob-
servation to the objective function (3.16). To maximize Equation (3.16), they use the algorithm of
Marra et al. (2017) to accommodate the robustified objective function and corresponding correction
term bρc . Aeberhard et al. (2021) propose a novel general criterion for the selection of the tuning
constant c based on median downweighting proportion (MDP) and studied in more details the robust
fitting for a gamma distribution within GAMLSS framework.
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3.6 A NEW APPROACH TO ROBUSTNESS USING CENSORING FOR
GAMLSS

In this section it will be introduced the main contribution of this chapter, the idea for a new robust
estimation method for the broad class of GAMLSS. This approach uses the same structure to bounded
the influence function of the data, as set out in Section (3.4), however, the modeling is carried out using
the concepts of censored data, which will be briefly presented in this chapter. Hence, will be unified
the concepts of the transformation (3.4) and censored data to propose a new robust fitting GAMLSS
method.

3.6.1 Censored Distributions

In several fields of science the interest is in situations where the random variable cannot be ob-
served completely for all individuals in the experiment, but instead there is only one interval in which
this variable is contained, characterizing what we call censored data (see Colosimo and Giolo (2006)).

There are three types of censoring, the most common being right censoring, which occurs when
the interval observed is of the type [a,∞) for some finite constant known, that is, when we know
that the true value of the variable of interest is greater than the observed value a. In several practical
situations, censoring happens for reasons such as the limitations of the measuring equipment or the
experimental design. For example, a digital scale that does not provide a reading above 200 kg, then
it will shows 200 kg for all objects that weigh more than the limit.

The second type of censoring is on the left, when the true value of the interest is less than the
observed value a. In this case, the observed range is of the type (∞,a], where a is a finite and known
constant. In a school exam, the minimum percentage of correct answers for the approval is of 40%
Breen (1996).

The last type of censoring is interval, which occurs when it is only possible to observe an interval
finite type [a,b] in which the true value of the variable is contained, with |a|< ∞, |b|< ∞ and a < b.
Interval is a more general type of censoring that occurs, for example, in studies in which patients are
followed up on periodic visits and it is known only that the event of interest occurred within a certain
time interval.

The new robust fitting GAMLSS proposal is based on use of censored structure to generate a better
representation of bounded the influence function to proposal a new robust estimation for GAMLSS.

3.6.2 Maximum Likelihood

Consider a random sample t1, . . . , tn from a T with probability distribution f (t|θ) and cumulative
distribution function Fθ (t), where all observations are uncensored. The likelihood function for θ is
given by

L(θ) =
n

∏
i=1

f (ti,θ)

Thus, L is a function of θ and finding the maximum likelihood estimator corresponds to finding the
value θ̂ in which the function L reaches its maximum for the fixed sample. Note that the likelihood
function structure does not allow for censored data. In this way, the likelihood function in the presence
of censoring is defined in a way that each individual contributes to the likelihood function with specific
information (Klein and Moeschberger (2006)).

An individual who, for example, has an exact failure time, contributes to the likelihood function
with the probability of the event of interest occurring at this time. This contribution is given by
the probability density function of T at this time. The contribution of each individual censored on
the right is given by the T complementary cumulative distribution function, evaluated in the last visit
time. Similarly, the contribution of a censored individual to left is given by the cumulative distribution
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function of T assessed at the time of the first visit. Finally, the contribution of an individual who
presents a time of failure in a certain interval is given by the probability that the time of occurrence
of the event belongs to this interval. In summary, the general form of the likelihood function in the
presence of censoring is

L(θ) =

[
∏
i∈L

F(ti)

]
×

[
∏
i∈R

(1−F(ti))

]
×

[
∏
i∈I

(F(ti2)−F(ti1))

]
×

[
∏
i∈D

fT (ti)

]
where

• L - is the set of indices for which the i− th observation was left censored;

• R - is the set of indices for which the i− th observation was right censored;

• I - is the set of indices for which the i− th observation was censored at an interval (ti1, ti2);

• D - is the set of indices for which the i− th observation failed.

In the next section, we will present our robust proposal based on the application of the concept of
censoring in the normalized residual quantile.

3.6.3 Robust Modelling Using Censoring

Considering the normalized residual quantile of a classic GAMLSS model and considering that
outliers may occur, we obtain interval censored observations in order to eliminate the impact of out-
liers in the estimation of the GAMLSS model.

Our interest is to consider the transformation defined in Equation (3.11) to generate censored
observations with an interval criterion. Note that censored observations are those that the process
identifies as a possible outlier. Thus, the contribution of each censored observation is given the like-
lihood function evaluated in the range defined by the tuning probabilities.

Consider the model defined in (3.1). For a given smoothing parameter λλλ , the robust estimator for
the βββ and γγγ is defined by maximizing the rewriting penalized log-likelihood defined in (3.6) as

lpcens(βββ ,γγγ) = lcens(βββ ,γγγ)−
1
2

4

∑
k=1

Jk

∑
j=1

γγγ
T
jkG jkγγγ jk, (3.17)

where

lcens =
n

∑
i=1

log
{[

f (yi|θθθ iii)
]1−δi−ξi

[∫ ai

−∞

f (yi|θθθ iii)
]1−δi

[∫ ∞

bi

f (yi|θθθ iii)
]1−ξi

}
,

δi =

{
1, ri ≥Φ−1(α)
,0, ri < Φ−1(α)

, (3.18)

ξi =

{
1, ri ≤Φ−1(1−α)
0, ri > Φ−1(1−α)

, (3.19)

ri = Φ−1[FY (yi; θ̂i] is the normalized quantile residual (see Dunn and Smyth (1996a)) and θ̂i =
(µ̂i, σ̂i, ν̂i, τ̂i), ai = F−1

Y (α;θθθ iii) and bi = F−1
Y (1−α;θθθ iii) and α is a small probability and it is the

same tuning probability defined in Section 3.4.
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3.7 SIMULATIONS STUDIES

To investigate the finite sample properties of the proposed method and assess the robustness prop-
erties, we carry out three simulation studies. The first study simulates a parametric model without
covariates in systematic components of µ and σ . The second study is fully linear parametric gamma
model with one covariate, and the third study used a non parametric gamma model. In these three
studies, was compared robust fitting GAMLSS proposed by Rigby et al. (2019), called RG; the mod-
ification of the Rigby method, called RGW; non robust fitting GAMLSS - G; robust fitting GAMLSS
based on censoring, called CENS; and the robust fitting GAMLSS method propose by Aeberhard
et al. (2021), called as AH method. The choice of the robustness tuning constant c of Aeberhard
method was based on median downweight proportion using 0.95 efficiency propose by Aeberhard
et al. (2021). The tuning probabilities α (defined in Section 3.4) regulate the contribution observation
based on the normalized quantile residual. The tuning probabilites for RG, CENS and RGW was
defined as α = 0.01. For the RG, all values of normalized quantile residual that do not belong to
the range defined in Equation (3.11) are transformed. For RGW method the values of observations
set weights equal to zero when the values of normalized quantile residual do not belong to the range
defined in Equation (3.11). The CENS method use α = 0.01 in the functions (3.18) and (3.19) to
accommodate possible outliers.

The evaluation of the performance of the estimates was carried out by investigating the Mean
Square Error - MSE(θ̂ ,θ) = 1

K ∑
K
i=1(θ̂i−θ)2 where θ̂i is i-th Monte Carlo estimate K is he number

of replications, mean square deviations for each sample defined as MSD = 1
n ∑

n
j=1(θ̂ j− θ j)

2 where
j = 1, . . . ,n and the average bias across K replications defined as 1

K ∑
K
j=1(θ̂i j−θi) where i = 1, . . . ,n.

Our code was implemented in software R (R Core Team (2020)), based on the gamlss packages
Stasinopoulos et al. (2017), and the computation of Aeberhard method was performed using the R
packages GJRM Marra and Radice (2020). All computations are performed with 200 replicates for all
scenarios. The simulated data are contaminated by choosing at random of the response and by adding
a constant to their original values, following Aeberhard et al. (2021). The details of the contamination
will be presented in the next sections.

3.7.1 Simulation under Parametric Gamma Model Without Covariates in Systematic
Component

Let yyy = (y1, . . . ,yn) be a vector of variables from gamma distribution with parameters µ and σ .
The probabilities density function, denoted by GA(µ,σ), is given in Equation (3.13). The parametric
gamma GAMLSS model for µ and σ was simulated without covariates. Hence, the model can be
defined with the following systematic components: η1 = log(µ) = β11 and η2 = log(σ) = β12. The
simulations study was based on 200 replicates of the distribution GA(µ = 2,σ = 0.5) with 3 different
sizes (n1 = 100, n2 = 200 and n3 = 500) and contaminated it with 4 levels: 0%, 2%, 5% and 10% of
the sample. Each sample is contaminated by randomly selecting elements from the sample and adding
a fixed value 15, the same methodology which is used by Aeberhard et al. (2021). This contamination
process associates the outliers with the long tail of distribution and inflating estimates.

The investigation using the MSE shows that, without contamination (first result in Table 8), all
methods have similar performance. When the data are contaminated, in all levels, the MSE of AH
estimations are slight better for both parameters. Only the performance of RGW estimations of µ

for sample size 200 and 500 and 10% of contamination are better than AH estimations. Note that,
when the number of contaminated observations increases, the MSE of RG and Cens estimates also
increase. Figures 5, 6 and 7 show the boxplots of estimates of µ and σ by sample size 100, 200
and 500, respectively. The red line indicate the real values of parameters. The results indicates the
best performance for AH estimates. The simulations with samples of size 100 (Figure 5) indicate
that the RGW estimations of µ has a good performance compared to the AH estimates that have
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better performance, in all levels. However, for σ̂ the results are better for AH estimates. Note that,
the σ estimates for the RGW method are underestimated at all levels of contamination, while the
σ estimates for the AH method are underestimated only at the 10% levels of contamination. When
we consider samples of size 200 and 500 (Figures 6 and 7, respectively), the results has the same
underestimation behavior.

The results show a better performance for the AH method. However, the AH method presents a
tuning constant selection criterion that can be considered an advantage compared to the RG, RGW
and Cens methods in which the tuning constants were defined in a subjective way.

Table 8 – Mean squared error for µ̂ and σ̂ with 0%, 2%, 5% and 10% contamination with constant systematic
component based on the gamma distribution.

0% contamination
µ̂ n G RG RGW AH Cens σ̂ n G RG RGW AH Cens

100 0.001 0.001 0.01 0.01 0.01 100 0.001 0.001 0.002 0.001 0.001
200 0.005 0.005 0.005 0.005 0.005 200 0.001 0.001 0.001 0.001 0.001
500 0.002 0.002 0.002 0.002 0.002 500 0.000 0.000 0.000 0.000 0.000

2% contamination
µ̂ n G RG RGW AH Cens σ̂ n G RG RGW AH Cens

100 0.105 0.017 0.013 0.010 0.019 100 0.021 0.002 0.004 0.001 0.002
200 0.096 0.010 0.007 0.005 0.015 200 0.023 0.001 0.004 0.001 0.002
500 0.090 0.006 0.004 0.002 0.015 500 0.023 0.001 0.002 0.000 0.002

5% contamination
µ̂ n G RG RGW AH Cens σ̂ n G RG RGW AH Cens

100 0.585 0.060 0.012 0.010 0.091 100 0.078 0.005 0.003 0.001 0.009
200 0.571 0.054 0.007 0.006 0.127 200 0.080 0.006 0.002 0.001 0.017
500 0.561 0.047 0.003 0.002 0.213 500 0.080 0.005 0.001 0.000 0.031

10% contamination
µ̂ n G RG RGW AH Cens σ̂ n G RG RGW AH Cens

100 1.86 0.344 0.013 0.013 1.160 100 0.148 0.030 0.004 0.002 0.099
200 2.043 0.446 0.008 0.009 2.600 200 0.157 0.040 0.002 0.001 0.188
500 2.156 0.503 0.003 0.006 2.181 500 0.163 0.047 0.002 0.001 0.164

Source: The author (2021)
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Figure 5 – Boxplots of µ and σ estimates, for the parametric model without covariates, sample size 100 and
2%, 5% and 10% levels contamination, based on the gamma distribution.
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Figure 6 – Boxplots of µ and σ estimates, for the parametric model without covariates, sample size 200 and
2%, 5% and 10% levels contamination, based on the gamma distribution.
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Figure 7 – Boxplots of µ and σ estimates, for the parametric model without covariates, sample size 500, 2%,
5% and 10% levels contamination, based on the gamma distribution.
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3.7.2 Simulation Under Parametric Gamma Model with Covariates in Systematic
Component

The parametric gamma GAMLSS model for µ and σ was simulated with one covariates. Hence,
the model can be defined with the following systematic components: ηi1 = log(µi) = β11+Xiβ21 and
ηi2 = log(σi) = β12 +Xiβ22, where β11 = β21 = 1, β12 = −1.5, β22 = 1 and the covariate Xi were
fixed in all replicates and defined as a uniform distribution Uni f orm(0,1). Here, was simulated 200
replicates of a random samples with 3 different samples sizes (n1 = 100, n2 = 200 and n3 = 500)
and contaminate it with 4 levels: 0%, 2%, 5% and 10% of the sample. Each sample is contaminated
by randomly selecting elements from the sample and adding a fixed value 15, the same methodology
used in Aeberhard et al. (2021).

Figure 8 – Boxplots of the Mean Squared Deviation of µµµ and σσσ estimates, for the parametric model with
covariates, simple size 100, all levels contamination and based on the gamma distribution.
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Figure 9 – Boxplots of the Mean Squared Deviation of µµµ and σσσ estimates, for the parametric model with
covariates, simple size 200, all levels contamination and based on the gamma distribution.
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Figure 10 – Boxplots of the Mean Squared Deviation of µµµ and σσσ estimates, for the parametric model with
covariates, simple size 500 and all levels contamination based on the gamma distribution.
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Figures 8, 9 and 10 below presents Boxplots of the Mean Squared Deviation - MSD of µµµ and σσσ

estimates of all combination scenarios, for samples sizes 100, 200 and 500, based on 200 replicates.
In each figure, the lines represents the contamination levels and the columns the parameters of models
(first column µµµ and second column σσσ ). For sample sizes 100 (Figure 8), without contamination (first
line) the methods show similar results for both parameters, with values a little higher for the RGW σσσ

estimates. At 2% contamination the robust methods are competitive with a better performance level
for the AH estimates. At 5% and 10% contamination the results indicate a better performance for the
µµµ of the AH and RGW estimates, while for the estimates of σσσ the results of the AH estimates are
better. Note that, when the percentage of contamination increases, the variability of the mean squared
error of the Cens estimates also increases. The results for samples of sizes 200 and 500 (Figures
9 and 10, respectively) indicate the same behavior registered in samples of size 100, that is, at 2%
of contamination the results of the robust methods are competitive with a slight advantage for the
AH estimates and at 5% and 10% contamination the RGW and AH estimations have the smallest
values of MSD with a slight advantage for AH estimates. The Cens estimates present a competitive
result, however, when the level of contamination is 10% the MSD increases. The selection of tuning
constants can influence the regulation and control of possible outliers. In addition, the Cens method
bound the observations by modifying the structure of the likelihood function and not the observations
or weight of observations, like the other methods.
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3.7.3 Simulation Under Non Parametric Gamma Model

The non parametric gamma estimations was evaluated based on the brain image data, introduced
in Section 3.8. The brain data were used to simulate and control the parameters following Aeberhard
et al. (2021). In summary, the brain image data have a non negative response variable representing
the physiological activation level of voxels in a brain location, represented by x1 and x2, defining
the location of each voxel and used as covariates. The set of voxel and response variables forms a
sample of size 1567. The covariate data were used to generate a response for each voxel according to
a GAMLSS with a gamma distribution with expectation µµµ and variance σ2µ2 where the systematic
components is non parametric defined as log(µ) = η1 = s1(x1,x2) and log(σ) = η2 = s2(x1,x2). The
smooth function s1 and s2 has not been defined in Aeberhard et al. (2021), hence, these functions were
constructed to represent the main features of the fitted surfaces on the real data. The smooth functions
are available as:

s1(x1,x2) = 0.9e−0.05(x1−65)2/11(x2−32)2/12
cos(5πx1x2)

s2(x1,x2) =−1.8e−0.05((x1−65)2/11(x2−32)2/12)

The contaminated data are generated in a similar way to Aeberhard et al. (2021), were modify a
simulated data set by choosing at random 78 (5%) of the responses falling in the upper-right corner of
the brain slice, for x1 > 70 and x2 > 30, and by adding 25 to their original value. The simulations were
based on the contamination levels of 0% and 5% with 200 replications, fitting a gamma GAMLSS
with log links for both parameters µµµ and σσσ . The bivariate Thin Plate Regression Splines with k = 20
bases was used to approximate the s1 and s2 smooth functions. In addition the Maximum likelihood
based methods (REML) was used for estimating the smoothing hyper-parameters (see Rigby and
Stasinopoulos (2005); Stasinopoulos et al. (2017)).

The MSD of µ̂µµ and σ̂σσ for simulation without contamination, that is, 0% of contamination, shows
that the AH estimation has a poor performance with high MSD values. Figure 12 shows the boxplots
of MSD of µ̂µµ and σ̂σσ for the contamination level of 5% and the five methods (G, RG, RGW, AH and
Cens). The MSD of AH and RGW estimates shows the best results for the both parameters, with
better performance for µµµ estimates of AH and better performance for σσσ estimates of RGW.

Figure 13 shows colored surfaces representing the average bias of µ̂ and σ̂ , across replications,
that is, 1

200 ∑
200
j=1(θ̂i j− θi) where i = 1, . . . ,n, θi is µi or σi, and 200 is the number of replicates. It

is desirable that the values of µ̂ and σ̂ bias be near to 0. Observing the results, the scale of color of
surface bias near of 0 is purple for µ̂ and blue σ̂ . Note that the coloring patterns are not the same
between the figures for both parameters. The bias for µ̂ (first column of Figure 13) of G, RG and
Cens shows a large positive bias in the top-right corner of the brain slice, which is precisely the area
that is contaminated (x1 > 70 and x2 > 30). The bias for µ̂ of AH estimates shows negative values
(−1.67,−1) in center of the brain, while the bias of the RGW estimates concentrates higher values in
the area of the right edges of the brain image. The surface for the average bias of σ̂ (second column
of Figure 13) shows large positive bias in the center of the brain in all methods. The AH estimates
indicate more high values, between 1.09 and 1.4 in the center of the brain image, while RGW method
indicate more high values, between 0.47 and 0.78 in the center of the brain image. Thus, in this
scenario, the AH and RGW methods are competitive.
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Figure 11 – Boxplots of the Mean Squared Deviations of µµµ and σσσ estimates, simulated under non parametric
gamma model with 0% of contamination.
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Figure 12 – Boxplots of the Mean Squared Deviations of µµµ and σσσ estimates, simulated under non parametric
gamma model with 5% of contamination.
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Figure 13 – Surfaces of the average biases for the µ̂ and σ̂ simulated under non parametric gamma model with
5% of contamination.
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3.8 APPLICATIONS

In this section, the performance of the proposal will be illustrated with real data of functional
magnetic resonance imaging measurements - FMRI of the human brain. The FMRI, for a human brain
subject to a particular experimental stimulus, was presented in Landau et al. (2004) and subsequently
used in Wood (2017), are available in the R package gamair available on CRAN. The aim of the
Wood (2017) study is to test a difference in the timing between two anatomically distinct brain regions
using a measure, summarized as the median of three measurements of fundamental power quotient on
each brain voxel. The variable of interest is the median of three replicate Fundamental Power Quotient
values at each voxel, called medFPQ. This is the main measurement of brain activity, which represents
the physiological response of the brain to controlled stimuli. The covariates used in model is the
coordinates x1 and x2 identifying the location of each voxel. Following Wood (2017) and Aeberhard
et al. (2021), it was modeled both the mean and variance of medFPQ as joint functions of the s1(x1,x2)
and s2(x1,x2) to be approximated by Thin Plate Regression Spline basis functions with a smoothness
penalty. Wood (2017) (p. 329) identified two outliers voxel responses (medFPQ< 0.0005), that were
discarded for the subsequent analysis. Here, this two outliers voxel response will be considered.

The response variable medFPQ is a continuous variable in positive real numbers. The minimum
value of the observations is 0.000003 and the maximum is 20.82. In Figure 14, we have a medFPQ
boxplot, with 92 extreme values, equivalent to 5.86% of the observations . We can observe that
the distribution is asymmetric, with a positive asymmetry coefficient equal to 5.86. In addition, the
kurtosis coefficient was equal to 56.3, indicating that the distribution of these data is leptokurtic.

The estimated surfaces of µ and σ , for the five methods are given in Figure 15. The surface for σ

estimates (second column in Figure 15) indicates a larger localized response variance in G estimates,
localized in the left corner of the brain. This is caused by two observations in this area which are
the ones in identified and excluded from the analysis in Wood (2017). The large values of σ̂ may
characterize the existence of outliers or the occurrence of high values of σ in location. Only the AH
and RGW estimates were able to reduce the high values of σ at the top of the brain image. The
largest estimated surfaces for µ of G, located in the upper-right corner of the brain, is much low when
considering the RGW and AH methods, that is, the large values in µ mean brain activity implied by
G estimates have been smoothed when considering robust estimation. These low values do not imply
that these observations are outliers, but that they, may be, do not seem to follow the same pattern as
the data given the gamma GAMLSS assumed. This behavior can be explained when we investigate
the outliers identified by each method. The RG identified 35 outliers, RGW 92, AH could have 35
observations and the Cens method identified 40 outliers.

A residual analysis was carried out using the normalised quantile residuals. The main advantage
of the normalised quantile residuals is that, whatever the distribution of the response variable, their
true values always have a standard normal distribution given the assumption that the model is correct
Dunn and Smyth (1996b). Figures 17 and 16 shows the QQ plot and worm plot of the normalised
quantile residuals of the adjusted models, respectively, indicating a lack of fit caused by some change
in kurtosis measures in all methods. The worm plots of G, RG, AH and Cens indicate a leptokurtic
distribution with positive excess kurtosis, that is, the distribution has fatter tails. The worm plot of
residuals of RGW method indicates a distribution with negative excess kurtosis.
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3.9 CONCLUSION

In this chapter several contributions have been introduced for robust fitting GAMLSS models. The
first contribution was to evaluate the quality of the estimates produced by the robust method proposed
by Rigby et al. (2019) and compare it with the Aeberhard et al. (2021) proposal. For this, based on
the idea of Rigby et al. (2019), we introduce the robust fitting GAMLSS gamma model with bias
correction and we carried out an extensive simulation study with several scenarios. Until now, only
the correction of bias for the estimators of the beta model were presented in Rigby et al. (2019). In
addition, computational codes produced are quite general since it can be employed for any likelihood.
We introduced two robust estimations methods for the broad class of GAMLSS. The first modifies
Rigby et al. (2019) proposal by changing the weight of the observations considered outliers (RGW);
the second is based on the ideas of censored variables (cens).

Simulations based on the gamma distribution showed the RGW and Aebehard method - AH are
competitive methods with the best results. When it is considered the non parametric model, the re-
sults are slightly better for the RGW method, while for parametric model without and with covariate
in systematic component the results are slightly better for the AH method. Our proposed robust es-
timator based on censoring has of some limitations. Like any robust estimator, the proportion of
contaminated data cannot be unreasonably large without the estimator starting to break at some point.
The AH method presents a tuning constant selection criterion that can be considered an advantage
compared to the RG, RGW and Cens methods in which the tuning constants were defined in a subjec-
tive way, which can affect the performance of the methods. In addition, the cens method bound the
observations by modifying the structure of the likelihood function and not the observations or weight
of observations, like the other methods. We believe that an adaptive censoring method can shows
better results and it is worth to be investigate in future research.

The application to the brain imaging data showed also show that our robust estimator allows the
automatic detection of deviating observations. In addition, the gamma distribution was not suitable
for modeling brain imaging data. Our proposal is based on a new idea of thinking about robust
models. The study of this alternative idea is not complete and future studies on theoretical properties
will be needed, such as the sampling distribution necessary for inference; the correction for Fisher
consistency cannot be directly extended beyond continuous families of distribution due to the reliance
on quantile residuals; and the challenges of selection of tuning probabilities and smoothing parameter
selection are not discussed. In the next chapter, a new proposal for a robust fitting GAMLSS and a
robust tuning constant selection method will be presented.
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Figure 14 – Boxplot of median of Fundamental Power Quotient - medFPQ based on the gamma distribution.
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Figure 15 – Surfaces for the µ σ estimates of median of Fundamental Power Quotient - medFPQ.
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Figure 16 – Worm plot for normalised quantile residuals of median of Fundamental Power Quotient - medFPQ,
based on the gamma distribution.
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Figure 17 – QQ plot for normalised quantile residuals of median of Fundamental Power Quotient - medFPQ,
based on the gamma distribution.
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4 A NEW APPROACH TO ROBUSTNESS USING ADAP-
TIVE TRUNCATION FOR GAMLSS

4.1 INTRODUCTION

Generalized additive models for location, scale and shape (GAMLSS) are a flexible and gen-
eral class of distributional regression models that have been introduced by Rigby and Stasinopoulos
(2005). See also Stasinopoulos et al. (2018, 2017) for a review. GAMLSS models are very popular
and widely used in the literature, due to their flexibility. These models allow the modeling of all pa-
rameters of any probability distribution, that is, they allow the use of exploratory variables to model
the parameters of location, scale and shape. It’s worth pointing out that, these models cover special
cases generalized additive models - GAM ( Hastie and Tibshirani (1990b)) and generalized linear
models - GLM (Nelder and Wedderburn (1972b)).

In GAMLSS models, parametric terms (linear and non-linear) and additives are used to model p
parameters, θθθ

> = (θ1, . . . ,θp) of density probability function f (y|θθθ), where yyy> = (y1, . . . ,yn) is the
vector of the response variables. The fit is carried out by maximum likelihood - ML estimation. The
maximum likelihood estimators are sensitive to the presence of extreme values (outliers), meaning
that the estimated can be distorted by the presence of outliers.

To solve this issues in statistical modelling and data analysis, robust methods began to emerge in
the 1960s [Heritier et al. (2009)], with the aim of minimize the impact of outliers and derive methods
that produce reliable parameter estimates, with associated confidence intervals and tests. Robustness
is discussed in detail in Huber (1981), Hampel (1968) and Maronna et al. (2006).

Edgeworth (1887) was one of the first to propose alternatives to least square, as a robust estimator.
Cantoni and Ronchetti (2001) presented robust inference for generalized linear models (GLMs) based
on the notion of quasi-likelihood. Mills and Dupuis (2002) proposed a robust estimation procedure
for generalized linear mixed models. Cantoni (2004) presented a robust approach to longitudinal
data analysis. Alimadad and Salibian-Barrera (2011) discussed an outlier-robust fit for generalized
additive models (GAMs) based on the backfitting algorithm. Croux et al. (2012b) obtained functional
estimates for the mean and the dispersion in extended GAMs that are both robust and smooth.

Cadigan and Chen (2001) presents properties of robust M-estimators for poisson and negative
binomial data. Cantoni and Zedini (2009) showed a robust version of the hurdle model. Aeber-
hard et al. (2014) presents robust inference in the negative binomial regression model. Agostinelli
et al. (2014) presents robust estimators of the generalized log-gamma distribution. Valdora and Yohai
(2014) proposed a family of robust estimators for generalized linear models, using an M-estimator
after applying a variance stabilizing transformation to the response. These works, however, cannot be
extended to the more general setting of GAMLSS and only two works proposed a robust estimation
based on GAMLSS model. The first, Aeberhard et al. (2021), introduces robustness by modifying
the objective function following an idea introduced by Eguchi and Kano (2001). The second work is
an alternative robust estimation method for GAMLSSs is presented in book of Rigby et al. (2019).
This method achieves robustness by transformation of the observed response through (normalized)
quantile residuals.

This work is motivated by the small number of proposals that address robust fitting for GAMLSS
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models and the existence of several real problems to which robust fitting for GAMLSS models can
be applied. We can cite: Rule et al. (2004) (estimation of the glomerular filtration rate and serum
creatinine), Harrell Jr (2015) (diabetes data), Conen et al. (2004) (prevalence of hyperuricemia) and
Beyerlein et al. (2008) (childhood obesity). Therefore, we propose a robust fitting of a GAMLSS,
where throughout the work we understand the term robust as that method is not sensitive to any ar-
bitrary contamination in the response distribution (Hampel (1968); Huber (2004)). Our method is
based on a simple adaptive truncation approach where potential outlier contaminated observations are
checked and if necessary removed by truncating the distribution of the response variable. We shall
show that this conceptual simple approach outperforms the standard approaches based on the influen-
tial function. The works is organized as follows. Section 4.2 introduces the GAMLSS model. Section
4.3 discusses our robust method. Section 4.4 briefly review outlier contamination and Section 4.5
reports the results of a simulation study. Two examples are discussed in Section 4.6 while concluding
remarks are found in Section 4.7.

4.2 GAMLSS

Let yi, for i = 1, . . . ,n, be the response variable observations independent, with probability (den-
sity) function f (yi|θθθ i), where θθθ

i> = (θ i
1, . . . ,θ

i
p) is a vector of p parameters that is related to the

effects of explanatory variables and random effects through monotonic link function gk(θθθ kkk), for
k = 1, . . . , p. This function (gk) is defined as additive model given by:

gk(θθθ k) = ηk = Xkβββ k +Zk1γγγk1 + . . .+ZkJkγγγkJk
, (4.1)

where, θθθ
>>>
k = (θ1k, . . . ,θnk), ηηη>k = (η1k, . . . ,ηnk) are vectors of length n, βββ

>
k = (β1k, . . . ,βbkk) is a

parameter vector of length bk, XXXk is the matrix of values of the explanatory variable, also called
design matrix of order n×bk, Z jk is the base design matrix (n×q jk) depending on the values of XXXk
and γγγ jk is a q jk-dimensional random vector. Model (4.1) is called the GAMLSS. The distribution
of the dependent variable is not limited to the exponential family and all parameters are modelled in
terms of both fixed and random effects.

The estimation of the parameters is based on the model formulated as a random-effects GAMLSS.
Assume in model (4.1) that the γγγ jk have independent normal distributions with γγγ jk ∼ Nq jk(0,G

−
jk),

where G−jk is the generalized inverse of a q jk x q jk symmetric matrix G jk = G jk(λλλ jk), which may
depend on a vector of hyperparameters λλλ jk. Hence, the parameter vector βββ and the parameters of
random effects γγγ jk, for j = 1,2, . . . ,Jk and k = 1,2, . . . , p are estimated in the structure of GAMLSS,
for fixed vector of smoothing hyper parameters, maximizing a function likelihood penalty penalized
lp given by:

lp = l− 1
2

p

∑
k=1

Jk

∑
j=1

γγγ
T
jkG jkγγγ jk, (4.2)

where l = ∑
n
i=1 log{ f (yi|θθθ i)} is the log-likelihood function of the data given θθθ

i for i = 1,2, . . . ,n.
Rigby and Stasinopoulos (2005) proposed two algorithms to maximize the likelihood function penal-
ized. They fit a GAMLSS for fixed or for estimates values of hyperparameters, using the CG and RS
algorithms (for more details see Chapter 3 Stasinopoulos et al. (2017)).

4.3 ROBUST FITTING FOR GAMLSS

An outlier is defined as a value of y lying in the left or right tail of the distribution of Y , i. e.,
a value of y for which cumulative distribution function FY (y|θθθ) is very close to 0 or 1 Rigby et al.
(2019). The influence function, introduced by Huber (1967), is a important definition in robustness
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to outliers. Hampel (1968) defines as "the effect of an infinitesimal contamination at point x, on a
estimate, standardized by the mass of the contamination". For a robust estimator of parameter θθθ we
want the influence function to be bounded as y moves into the left or right tail of the distribution of
Y . In general, maximum likelihood estimation (MLE) leads to parameter estimates with unbounded
influence function for some or all parameters. Hence, MLE are generally vulnerable to the unlimited
influence of even a single outlier y.

Rigby et al. (2019) proposed a robust estimation method for GAMLSSs based in bounded the
influence function to obtain the parameter estimators. The approach is similar to the idea used in Field
and Smith (1994) that starting with a parametric model and modifying the usual likelihood functions
to obtain robust estimates with good breakdown properties. The breaking point is defined as the
amount maximum of bad specification of the probabilistic model that an estimator can resist before
breakdown, that is, useless (see Huber (1996)). In this way, the proposal method achieves robustness
by transforming the observed response through (normalized) quantile residuals. The bounding of y is
defined as

y∗i =


yi, Φ−1(α)≤ ri ≤Φ−1(1−α)

F−1
Y (α; θ̂i), ri < Φ−1(α)

F−1
Y (1−α; θ̂i), ri > Φ−1(1−α)

(4.3)

where α1 is a probability close to zero (e.g. α = 0.01), ri = Φ−1[FY (yi; θ̂i] is the normalized quantile
residual (Dunn and Smyth (1996a)) and where, θ̂i = (µ̂i, σ̂i, ν̂i, τ̂i). The value α is tuning probabilities,
associated to Φ−1(α), that can be seen as robustness tuning constant that regulates the potential
outliers and, if necessary, its removed by truncating the distribution of the response variable. This
proposal has two problems: the first is that the domain of the distribution considered is modified; the
second problem is that the choice of α is made before fitting the model to data, however, there is no
criterion for the choice of α . In the following, we describe the use of truncated distribution to propose
a new robust fitting for GAMLSS, and in Section 4.3.3, we propose a adaptive truncation, that allows
automatic selection of robustness tuning constant.

4.3.1 Robust Fitting for GAMLSS Using Truncation

In statistics, a truncated distribution is a conditional distribution that results from restricting the
domain of some probability distribution.

Let X be a continuous random variable with probability density function g(x) and a distribution
function G(x), x ∈ R. Given a continuous random variable Y , its probability desnity function, fY (y),
which represents the distribution of X in the interval [a,b], with −∞ < a < b < ∞, is a truncated
probability distribution.

fT (y) =

{
g(y)

G(b)−G(a) , a≤ y≤ b
0 o. c.

(4.4)

The robust function proposed by Rigby et al. (2019) is defined through a restriction in the domain
of the probability distribution in question, based on the residuals of the non-robust modeling. The
new proposal of robust fitting for GAMLSS using truncation distribution for the observations that
the normalized quantile residuals, of the original fitted distribution, lying outside of bounds of tuning
constant probabilities α1 and α2. The bound of truncation distribution, t1 and t2 are the quantile of
the original fitted distribution, associated of tuning constants probabilities α1 and α2, where they are
small probability in tails. Therefore, the fit a GAMLSS model using a truncated distribution relies on
transforming the response variable Y :

y∗i =


yi, Φ−1(α1)≤ ri ≤Φ−1(α2)

F−1
Y (0.5; θ̂i), ri < Φ−1(α1)

F−1
Y (0.5; θ̂i), ri > Φ−1(α2)

(4.5)
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where θ̂i = (µ̂i, σ̂i, ν̂i, τ̂i).
The robust estimator for the βββ , γγγ , and λλλ is defined by maximizing the rewriting penalized log-

likelihood defined in Equation (4.2) as:

lpT (βββ ,γγγ) = lT −
1
2

p

∑
k=1

Jk

∑
j=1

λk jγ
>
k jGk jγk j. (4.6)

where lT (βββ ) = ∑
n
i=1 log{ fT (y∗i |θθθ

i)} is the log-likelihood function, based on truncated distribution, of
the data given θθθ

i for i = 1,2, . . . ,n.
Next we describe the algorithms for maximization the penalised log likelihood.

4.3.2 Algorithm for the New Robust Fitting for GAMLSS Based on Truncation

Our procedure of robust fitting for GAMLSS is as follow:

Step 1 Compute the estimation θ̂θθ on the original data by maximizing (4.2) using a CG and RS algo-
rithm (introduced briefly in Section 3.2.1);

Step 2 For given tuning probabilities bound α1 and α2 and with the estimation θ̂θθ obtained define the
tuning constant t1 and t2 of the truncated distribution.

Step 3 Bounded the response variable y, weighting out observations that are outside of bounds, based
on (4.5), generating the new y values defined as y∗.

Step 4 Generate the truncated distribution.

Step 5 Compute the estimation θ̂θθ on the y∗ data by maximizing (4.6).

Step 6 Stop if there is no change global deviance otherwise go back to step 2.

Note that this transformation is indexed by a so-called robustness tuning probabilities α1 and α2.
In our procedure of robust fitting for GAMLSS, the choice is subjective and we need a selection
criteria. In the next section we propose a adaptive criterion for choice the tuning probabilities.

4.3.3 Adaptive Truncation

The robustness tuning constant probabilities α1 and α2 regulates how the contribution of an ob-
servation to the objective function and regulates the level of truncation and the number of observation
truncated. The choice can be made by targeting a certain loss of estimation efficiency with respect
to the MLE at the assumed model. Here, we proposed a criterion based on goodness of fit at the as-
sumed model, that relies on the Anscombe-Glynn test [Thode (2002)] of kurtosis for normal samples
or Anderson-Darling test of normality [Anscombe and Glynn (1983)]. Our automatic procedure of
choice of tuning probabilities as follow:

Step 1 Define a set of candidates of tuning probabilities;

Step 2 For a given tuning probabilities α1 and α2 use the algorithm defined in the previous section of
the New Robust Fitting for GAMLSS Based on Truncation.

Step 3 Apply the normality test on the normalized quantile residual, based on the Anscombe-Glynn or
Anderson-Darling test with a predefined level of significance.

Step 4 The process looking for the best tuning probabilities, change α1 and α2 and repeat 1-2 until the
hypothesis of normality is not rejected.
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4.4 OUTLIERS CONTAMINATION

The generation of contaminated data is a fundamental part of the simulation process that seeks
to analyze the efficiency of robust estimators. In the literature, few proposals for robust methods for
generalized additive models and generalized linear models define criteria for contamination of simu-
lated data. In this section, we describe the contamination criteria used in robust estimation proposals
for generalized linear models and generalized additive models.

The term robustness is usually used to designate that a given method of statistical analysis is
not sensitive to minor violations of the assumptions. The most typical situation refers to potential
deviations from the form of the assumed probability distribution, but it can also be associated with
other types of requirements or assumptions, such as independence, same distribution or randomization
procedure Huber (1996).

The contamination of the sample with outliers is a relatively common form of violation of the
postulated probability distribution. The tail of the distribution can become long, inflating the standard
deviation estimate, depending on the intensity of contamination.

Simulation studies, which evaluate the robust propositions, use different forms of contamination
of the probability distribution involved. Rigby et al. (2019) in chapter 12, section 12.2.4 simulate a
random sample of size 490 from a BEo(5,5) distribution and contaminate it with random samples of
two Uniform distribution, U(0,0.1) and U(0.9,1) each sample with size 5.

Aeberhard et al. (2021) simulated a non parametric GAMLSS based on the gamma distribution
and Poisson distribution. In the simulation studies with gamma distribution with parameters µ and
σ , the work use the smooth function with two fixed covariates x1 and x2. The contaminated data
are generated modifying a clean simulated data set by choosing at random 5% of the responses,
in a specific region of the covariates, and by adding 10 to their original value. In the simulation
studies with Poisson distribution with parameters µ , the work use the smooth function with covariates
X ∼Uni f orm(0,1) distribution. The contaminated data are obtained by randomly selecting 5% of
the original responses and changing them to the nearest integer yuu

1
2 , where u1 is drawn from the

Uni f orm(2,5) distribution and where u2 is randomly set to either {−1,1}.
Alimadad and Salibian-Barrera (2011) proposed a robust fit for generalized additive models.

Simulate studies considered poisson and binomial responses, with outliers either at the beginning
or at the end of the range of the covariate used in the experiment in the following manner. Let
(y∗1,x1), . . . ,(y∗n,xn) be the data, and consider the observations y∗j with x(k1) ≤ x j ≤ x(k2), for fixed
numbers k1 and k2 , where x(m) is the mth order statistic. Then

y j = (1− z j)y∗j + z jw j,

where z j ∼ B(1,δ ), and w j = 10 or w j ∼ Poisson(30) depending on whether y j has a binomial or
Poisson distribution. Hence, the number of outliers (and their position in the Poisson case) in each
sample is random.

Bayes et al. (2012) proposed a new regression model for proportions considering the beta rect-
angular distribution. The work considering two simulation studies, one without covariates and the
other considering covariates. In the scenario without covariates, first, a dataset with sample size n
was simulated from the Beta distribution with parameters µ and parameter of dispersion σ . Next,
5% of sample of size n are replaced by values generated from the uniform distribution (q,1), where
q corresponds to the 0.999 quantile of the simulated beta distribution — that is, outliers in the right
tail of the distribution by considering values generated from another distribution. In the scenario with
covariates, the following model were considered: Y ∼ Beta(µ,σ) and logit(µ) = β0 +β1X , where
i = 1, ,n and X ∼Uni f rom(−3,3). In this scenario, 2% of the random sample generated from beta
distribution (y) were replaced by their contaminated values y = y±∆. Were consider four perturbation
patterns:

i A decrease of ∆ units of the response values to higher values of x,
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ii An increase of ∆ units of the response values to lower values of x,

iii A decrease and increase of ∆ units of the response values for higher and lower values of x,
respectively

iv A decrease of ∆ units of the response values for central values of x.

Croux et al. (2012a) simulated 1000 datasets of size n = 250 coming from a Poisson-like distri-
bution with mean function µ(x1,x2) and dispersion function γ(x1,x2). The data are simulated in three
different settings, contaminating a growing percentage (0%,3%, and 5%) of observations, uniformly
located in 0.1< x1 < 0.2 and 0.8< x2 < 0.9 , with y observations drawn from a discrete U(25,28) dis-
tribution. Fu et al. (2020) propose a robust regression and consider a linear model (y = β0+zβ1+σε)
with a variety of error distribution types, for instance, Normal erros, N(0,1), and σ takes a value of 1,3
and 4. Wong et al. (2014) studies M-type estimators for fitting robust Generalized Additive Models
in the presence of outliers. Two types of distribution were considered: the binomial and poisson dis-
tribution, and two types of univariates smooth function. The contaminated data were generated in the
following manner. For binomial distribution, y is set to 0 if the original value of y is 1, and vice versa.
For Poisson data, y is set to the nearest integer to yuu

12 , where u1 is generated from Uni f orm(2,5)
and u2 is drawn randomly from (1,1). Overall, these works do not present a fixed criterion for con-
tamination. The next section describes the simulation studies as well as the contamination process
used.

4.5 SIMULATIONS

In this section, we investigate the sensitivity of the our robust fitting for GAMLSS proposal in the
presence of outliers by considering three simulations studies. The first study simulates a parametric
GAMLSS model without covariates in systematic components for the parameters. The second study
is a parametric GAMLSS model with one covariate in systematic component of all parameters. The
third study used a non parametric GAMLSS model. In all three studies, was based on gamma and
beta distributions comparing the following methods

1. non robust fitting for GAMLSS Rigby and Stasinopoulos (2005), called G;

2. robust fitting for GAMLSS proposed in Rigby et al. (2019), called RG

3. robust fitting for GAMLSS method propose by Aeberhard et al. (2021), called AH.

4. Adaptive Truncation GAMLSS based on Anderson Darling Test with significance level 0.01.
The method is called AD01.

5. Adaptive Truncation GAMLSS based on Anderson Darling Test with 0.05. The method is
called AD05.

6. Adaptive Truncation GAMLSS based on Anderson Darling Test with significance level 0.1 The
method is called AD1.

7. Adaptive Truncation GAMLSS based on Anscombe Test with significance level 0.01. The
method is called Ansc01.

8. Adaptive Truncation GAMLSS based on Anscombe test with significance level 0.05. The
method is called Ansc05.

9. Adaptive Truncation GAMLSS based on Anscombe test with significance level 0.1. The method
is called Ansc1.
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The evaluation of the performance of the estimates was carried out by investigating the: Mean
Square Error - MSE(θ̂ ,θ) = 1

K ∑
K
i=1(θ̂i−θ)2 where θ̂i is i-th Monte Carlo estimate K is he number

of replications; and the Mean Square Deviations for each sample defined as MSD = 1
n ∑

n
j=1(θ̂ j−θ j)

2

where j = 1, . . . ,n.
All computations are performed using the R packages GJRM Marra and Radice (2020) and gamlss

Stasinopoulos et al. (2017) in R Team et al. (2020). The choice of the value of the robustness tun-
ing constant c of Aeberhard method, was based on median downweighting proportion (MDP) using
0.95 efficiency, propose by Aeberhard et al. (2021). The tuning probability α regulates the contri-
bution observation based on the normalized quantile residual. The tuning probabilites for RG and
RGW was defined as α = 0.01. The truncation robust used the adaptive method for select the tuning
probabilities.

4.5.1 Simulations Under Beta Distribution

In this section we use the beta distribution to evaluated the proposal. The beta distribution is
very flexible in situations where the Y, dependent variable, is continuous and restricted to the some
finite intervals, because its density function can take different forms depending on the values of the
parameters that compose it. The probability density function of the beta distribution, denoted by
BE(µ,σ), is given by:

fY (y|µ,σ) =
1

B(τ,β )
yυ−1(1− y)υ−1.

for 0 < y < 1, where
τ = µ(1−σ

2)/σ
2

υ = (1−µ)(1−σ
2)/σ

τ > 0, υ > 0 and hence 0 < µ < 1 and 0 < σ < 1. In this parameterization Y ∼ BE(µ,σ), the mean
of Y is E(Y ) = µ and the variance isVar(Y ) = σ2µ(1−µ)

The aim of this section is to investigate the performance of the methods in samples of size 100,
contaminated with 0%, 2%, 5% and 10% of the observations. The investigation was based on 4
contamination scenarios of the variable response, considering the location of the contamination in the
tail: left tail, right tail, both tails and at model. In general, the process use a random sample with 100
observations is generated from BE(µ,σ) and 2%, 5% and 10% of observation are selected at random
and replaced according to contamination position. When contamination is carried out in both tails,
the percentage of contamination of 5% is replaced by 6%, due to the fact that the sample size is even.
The contamination processes are defined below.

1. contamination on the left - observation are selected at random and replaced by sample from
uniform distribution in interval (0,u1), where u1 is the quantile of the BE(µ,σ) with percentile
0.001.

2. contamination on the right - observation are selected at random and replaced by sample from
uniform distribution in (u2,1), where u2 is the quantile of the BE(µ,σ) with percentile 0.999.

3. contamination on the left and right - Observations are selected randomly and half of them are
applied to process 1 and the other half to process 2.

4. without contamination - A random sample with 100 observations is generated from BE(µ,σ)
without contamination.

In the following, details on the models used will be presented.
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4.5.1.1 Parametric GAMLSS Based On Beta Distribution with Constants Systematic Components
for µ and σ .

In this subsection the simulation studies consider the parametric GAMLSS model under beta
distribution with µ = 0.7 and σ = 0.05, without covariates, that is, Y ∼ BE(µ,σ). The model can be
defined with the systematic components defined as

η1 = logit(µ) = β11

and
η2 = logit(σ) = β12.

The simulations study was based on 200 replicates, from the BE(µ = 0.7,σ = 0.05) distribution,
with sample size 100, considering contamination of 0%, 2%, 5% and 10% of the observations. Figure
18 shows the density of BE(0.7,0.05) used in simulations and the histogram of one sample of size
100.

Figure 19 displays boxplots of µ̂ (left column of figure) and σ̂ (right column of figure) for all
methods, assumed Beta GAMLSS model without covariates in systematic component and without
contamination. Only the AH (Aeberhard method) σ estimates show poor performance. The other
methods shows good quality in the estimation of the parameters in comparison with the G method
(non robust fitting for GAMLSS). Figure 20 displays boxplots of µ̂ (left column of figure) and σ̂ (right
column of figure) for all methods under left contamination. Each line of figure represents one level
of contamination. The G estimation (non robust fitting for GAMLSS) shows poor performance in
all levels of contamination, underestimating µ and overestimating σ , as expected. Among the robust
methods, the AH underestimates the values of µ and σ for levels of 2% (first line) and 5%(second
line). Under the level of 10% (third line) AH estimates are controlled showing good performance,
while RG estimates are underestimated for µ overestimated for σ . All variations of our proposal
showed good performance in all levels of contamination. Figure 21 displays boxplots of µ̂ and σ̂

for all methods under right contamination. The G estimation overestimating µ and σ in all levels.
Among the robust methods, the AH overestimate the values of µ and underestimates the values of σ

for all levels of contamination. All variations of our proposal showed similar and good performance
in all levels of contamination. Lastly, the results for the both tail contamination is displays in Figure
22. In this scenario, the AH estimations underestimates σ̂ at the levels of 2% and 5%. Table 9 shows
the results of MSE of the estimations of µ and σ . The truncation robust fitting for GAMLSS based on
the Anscombe test, presents the lowest values of MSE at all levels of contamination and distribution
tails.

Overall, these simulation results yields one main conclusion. Our proposed robust method per-
forms better to the existing alternatives in the robust fitting for GAMLSS.
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Figure 18 – Histogram of a random sample and probability density function of a GAMLSS model based on a
beta distribution with parameters µ = 0.7 and σ = 0.05.

y

D
en

si
ty

0.64 0.66 0.68 0.70 0.72 0.74

0
5

10
15

20

Source: The author (2021)

Figure 19 – Boxplots of µ̂ and σ̂ simulated at model (without contamination), based on Beta(µ,σ) without
covariates in systematic component and sample size 100. The red line is the parameter value (µ = 0.7 and
σ = 0.05).
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Figure 20 – Boxplots of µ̂ (first column of the figure) and σ̂ (second column of the figure) simulated under left
contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third line of the figure
), based on Beta(µ,σ) without covariates in systematic component and sample size 100. The red line is the
parameter value (µ = 0.7 and σ = 0.05).
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Figure 21 – Boxplots of µ̂ (first column of the figure) and σ̂ (second column of the figure) simulated under
right contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third line of the
figure ), based on Beta(µ,σ) without covariates in systematic component and sample size 100. The red line is
the parameter value (µ = 0.7 and σ = 0.05).
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Figure 22 – Boxplots of µ̂ (first column of the figure) and σ̂ (second column of the figure) simulated under left
and right contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third line of the
figure ), based on Beta(µ,σ) without covariates in systematic component and sample size 100. The red line is
the parameter value (µ = 0.7 and σ = 0.05)
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Table 9 – Mean squared errors of µ̂ and σ̂ with 0%, 2%, 5% and 10% of contamination in the left tail, right tail
and both tails, based on Beta(µ,σ) distribution with constant systematic component.

without contamination
Level θ̂ G RG RGW AH AD01 AD05 AD1 Ansc01 Ansc05 Ansc1

0%
µ̂ 0.000006 0.000006 0.000008 0.000006 0.000007 0.000007 0.000008 0.000006 0.000006 0.000006
σ̂ 0.000011 0.000013 0.000042 0.002257 0.000015 0.000018 0.000023 0.000013 0.000013 0.000013

Right contamination
Level θ̂ G RG RGW AH AD01 AD05 AD1 Ansc01 Ansc05 Ansc1

2%
µ̂ 0.000027 0.000007 0.000007 0.000023 0.000006 0.000006 0.000007 0.000006 0.000006 0.000006
σ̂ 0.002948 0.000013 0.000042 0.001932 0.000012 0.000013 0.000017 0.000012 0.000012 0.000012

5%
µ̂ 0.000137 0.000015 0.000007 0.000112 0.000005 0.000006 0.000007 0.000005 0.000005 0.000005
σ̂ 0.009983 0.000065 0.000044 0.001483 0.000018 0.000023 0.000027 0.000018 0.000018 0.000018

10%
µ̂ 0.000472 0.000063 0.000007 0.000383 0.000006 0.000007 0.000007 0.000006 0.000006 0.000006
σ̂ 0.022170 0.000521 0.000051 0.000909 0.000018 0.000024 0.000026 0.000018 0.000017 0.000019

Left contamination
Level θ̂ G RG RGW AH AD01 AD05 AD1 Ansc01 Ansc05 Ansc1

2%
µ̂ 0.000176 0.000007 0.000007 0.000048 0.000005 0.000006 0.000006 0.000005 0.000005 0.000005
σ̂ 0.010392 0.000013 0.000047 0.000985 0.000013 0.000015 0.000016 0.000011 0.000012 0.000014

5%
µ̂ 0.00102 0.00002 0.0000056 0.00004 0.000005 0.000005 0.000006 0.0000057 0.000005 0.000005
σ̂ 0.03175 0.00006 0.000047 0.00015 0.00001 0.00001 0.00004 0.00001 0.00001 0.00001

10%
µ̂ 0.002934 0.000076 0.000008 0.000007 0.000006 0.000006 0.000007 0.000006 0.000006 0.000006
σ̂ 0.057655 0.000524 0.000049 0.000021 0.000017 0.000019 0.000022 0.000015 0.000016 0.000017

left and right contamination
Level θ̂ G RG RGW AH AD01 AD05 AD1 Ansc01 Ansc05 Ansc1

2%
µ̂ 0.000047 0.000005 0.000005 0.000010 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005
σ̂ 0.007238 0.000014 0.000042 0.001415 0.000012 0.000018 0.000027 0.000013 0.000013 0.000015

5%
µ̂ 0.000228 0.000007 0.000009 0.000009 0.000007 0.000007 0.000007 0.000007 0.000007 0.000007
σ̂ 0.028493 0.000089 0.000046 0.000241 0.000014 0.000016 0.000026 0.000014 0.000015 0.000016

10%
µ̂ 0.000460 0.000006 0.000007 0.000006 0.000006 0.000006 0.000007 0.000006 0.000006 0.000006
σ̂ 0.046628 0.000386 0.000047 0.000041 0.000016 0.000017 0.000021 0.000016 0.000016 0.000017

G - non robust fitting for GAMLSS, RG - robust fitting for GAMLSS by Rigby et al. (2019), RGW - robust fitting for GAMLSS modified, AH -
Aeberhar method, AD01 - truncation robust fitting for GAMLSS with Anderson Darlin test and significance level 1%, AD05 - truncation robust fitting
for GAMLSS with Anderson Darlin test and significance level 5%, AD1 - truncation robust fitting for GAMLSS with Anderson Darlin test with
significance level 10%, Ansc01 - truncation robust fitting for GAMLSS with Anscombe test and significance level 1%, Ansc05 - truncation robust
fitting for GAMLSS with Anscombe test and significance level 5%, Ansc1 - truncation robust fitting for GAMLSS with Anscombe test and
significance level 10%
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4.5.1.2 Parametric GAMLSS Based on Beta Distribution with Linear Systematic Components for
µ and σ

In this subsection, was conduct a specific study based on Yi ∼ Beta(µi,σi) with systematic com-
ponents defined as

ηi1 = logit(µi) = β11 +B21Xi,

and
ηi2 = logit(σi) = β12 +β22Xi,

where, i = 1, . . . ,n, β11 = 0.5, β21 = 1, β12 = −2, β22 = −1.5 and Xi ∼ Uni f orm(0,1) is a fixed
covariate. The simulations studies was based on 200 replicates, from the beta distribution with sample
sizes 100 and the contamination was carried out in 0%, 2%, 5% and 10% of the observations. Figure
23 shows the µ and σ used in simulations and the histogram of one sample generated based on model.

Figure 23 – µ and σ parameters used in the simulations of GAMLLSS model under Beta(µ,σ) with linear
systematic components and a scatter plot of a random sample generated based on the proposed model without
contamination.
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Source: The author (2021)

Figure 24 displays boxplots of the MSD of µ̂ (left column of figure) and σ̂ (right column of figure)
for all methods, based on the model without contamination. Only the AH method shows largest MSD
for the µ and σ estimates, however, the values are small. The other methods shows similar values of
MSD in comparison with the G method (non robust fitting for GAMLSS). Under left contamination
(Figure 25), the robust methods has similar performance,standing out negatively AH estimations with
some outliers in the boxplot of the MSD of µ̂ under 2% of contamination. Under right contamination
(Figure 26), the AH estimates has the largest MSDs despite the small values at the level of 2% (first
line). At the levels of 5% and 10% the results are similar. Under left and right contamination (Figure
27), again the AH estimations shows poor performance for µ̂ in levels of 2% with has the largest
MSDs and tends to vary more than the others. For all the others robust methods the estimations
shows good performance. Therefore, our proposed robust method performs better to the existing
alternatives in the robust fitting for GAMLSS.



75

Figure 24 – Boxplots of the MSD of µ̂ and σ̂ , simulated at model (without contamination), based on Beta(µ,σ)
with linear systematic component and sample size 100.
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Figure 25 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third
line of the figure ) and based on Beta(µ,σ) with linear systematic component and sample size 100.
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Figure 26 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under right contamination (2% - first line of the figure , 5% - second line of the figure and 10% -
third line of the figure ) and based on Beta(µ,σ) with linear systematic component and sample size 100.
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Figure 27 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left and right contamination (2% - first line of the figure , 5% - second line of the figure and
10% - third line of the figure) and based on Beta(µ,σ) with liner systematic component and sample size 100.
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4.5.1.3 Non Parametric GAMLSS Based on Beta Model using Nonparametric Systematic
Component with P-splines

The nonparametric beta model are evaluate based on the systematic components defined as

logit(µ) = η1 = s1(X).

and
logit(σ) = η2 = s2(X).

The smooth functions are

s1(X) =−0.5∗X2 +5× cos(X× pi)× exp(−X)×−X

s2(X) =−2(X2 +2X)sin(Xπ).

where X ∼U(0,1) is a fixed covariate. The simulations studies were based on 200 replicates, from
the beta distribution with sample sizes 100 and the contamination was carried out in 2%, 5% and
10% of the observations. Figure 28 shows the µ and σ used in simulations and the histogram of one
sample generated based on model.

Figure 28 – µ and σ parameters used in the simulations of GAMLLSS model under Beta(µ,σ) with linear
systematic components and a scatter plot of a random sample generated based on the proposed model without
contamination.
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Source: The author (2021)

Figure 29 displays boxplots of the MSD of µ̂ and σ̂ for all methods simulated without contamina-
tion. The AH estimation shows poor performance for the σ estimates, presenting largest MSDs and
tends to vary more than the others. Our proposal performs similarly to the G method (non robust fitting
for GAMLSS). Under left contamination (Figure 30), our robust methods has similar performance,
while the AH has the largest MSDs. Under right contamination (Figure 31), the non parametric model
is less sensitive to contamination in 2% of observations, showing a similar results. Only the error of
AH estimates show greater variability. At the level of 5% contamination (second line of figure) the
results are similar, with largest MSDs for AH. At the level of 10% the RGW, AD05 and AD1 has
the lowest MSDs. Finally, Figure 32 displays boxplots of the MSD of µ̂ and σ̂ under left and right
contamination. Among robust methods, the AH has the largest MSDs. At the levels of 5% and 10%
the results are similar.
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Figure 29 – Boxplots of the MSD of µ̂ and σ̂ , simulated at model (without contamination), based on Beta(µ,σ)
with non parametric systematic component and sample size 100.
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Figure 30 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third
line of the figure), based on Beta(µ,σ) with non parametric systematic component and sample size 100.
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Figure 31 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under right contamination (2% - first line of the figure , 5% - second line of the figure and 10% -
third line of the figure ), based on Beta(µ,σ) with non parametric systematic component and sample size 100.
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Figure 32 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left and right contamination (2% - first line of the figure , 5% - second line of the figure and
10% - third line of the figure ), based on Beta(µ,σ) with non parametric systematic component and sample
size 100.
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4.5.2 Simulations Under Gamma Distribution

In this section we use the gamma distribution to evaluate the proposal. The gamma distribution is
appropriate for positively skewed data and its density function, denoted by GA(µ,σ), is given by

fy(y|µ,σ) =
y1/σ2−1

(σ2µ)1/σ2
Γ(1/σ2)

for y > 0, where µ > 0 and σ > 0. Here E(Y ) = µ and Var(Y ) = σ2µ2.
The investigation used samples of size 100, based on 4 contamination scenarios of the variable

response, considering the location of the contamination: left tail, right tail and both tails. A random
sample with 100 observations is generated from GA(µ,σ) and 2%, 5% and 10% of the observations
are randomly selected and replaced according to contamination position. When contamination is
carried out on the left and right tail, the percentage of contamination of 5% is replaced by 6%. The
contamination processes are defined below.

1. contamination on the left - observation are selected at random and replaced by the quantile of
the GA(µ,σ) distribution with the 0.0001 percentile;

2. contamination on the right - observations are selected randomly and a constant k defined as the
quantile of the distribution G(µ,σ) with a percentile of 0.9999 is added;

3. contamination on the left and right - Observations are selected randomly and half of them are
applied to process 1 and the other half to process 2;

4. without contamination - A random sample with 100 observations is generated from GA(µ,σ)
without contamination.

In the next subsections, details on the models used will be presented.

4.5.2.1 Parametric GAMLSS Based On Gamma Distribution without Covariates Systematic
Components for µ and σ .

In this subsection the simulation studies consider the parametric GAMLSS model under gamma
distribution with µ = 10 and σ = 0.5 without covariates, that is, Y ∼ GA(10,0.5). Hence, the model
can be defined with the systematic components defined as

η1 = log(µ) = β11,

and
η2 = log(σ) = β12.

The simulations studies was based on 200 replicates, from the GA(µ = 10,σ = 0.5) distribution,
with sample size 100, considering contamination of 0%, 2%, 5% and 10% of the observations. Figure
33 shows the density of distribution used in simulations and the histogram of sample of size 100.

Figure 34 displays boxplots of µ̂ (left column of figure) and σ̂ (right column of figure) for all
methods assumed gamma GAMLSS model without contamination and covariates in systematic com-
ponent. Only the RGW estimates shows poor performance, underestimating the parameters. Our
proposal shows good quality in the estimation in comparison with the G method (non robust fitting
for GAMLSS), with similar results. Figure 35 displays boxplots of µ̂ and σ̂ for all methods under
left contamination. At the level of 2% contamination, the µ estimates shows good performance for all
methods with slightly worse performance for G estimates. The σ estimates shows better performance
for our proposal. At the level of 10% of contamination, the truncated robust GAMLLS, using the
Anderson Darling test with any significance level, tends to present less variability and proximity to
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the real values of the model. The AH estimations shows poor performance with high variability for σ

estimates at level 5% and overestimating σ at level 10%. The methods RG, AH and Ansc01 were not
able to adequately estimate the σ values at the level of 10%. Under right contamination (Figure 36),
the G estimations overestimating µ and σ in all levels. Among the robust methods, the RG overesti-
mated the values of µ and σ for all levels of contamination, the RGW estimations underestimates the
values of σ in all levels of contamination. All variations of our proposal showed good performance
in all levels of contamination with similar results. Ansc01 estimates tend to show greater variabil-
ity. Lastly, the results for the both tail contamination is displays in Figure 37. In this scenario, our
proposal present the best results with less variability and similar results for all variations. The AH
estimations of σ at level 5% and 10% shows high variability with a tendency to overestimate. Table
10 shows the MSE of µ̂ and σ̂ . The truncation robust based on Anscombe test so does not show better
results at 10% contamination levels.

Overall, these simulation results yields one main conclusion. Our proposed robust method per-
forms better than existing alternatives in the robust fitting for GAMLSS, and the truncation robust
fitting for GAMLSS, based on Anscombe test, is slightly best performance for contamination levels
of 2% and 5%, while the truncation robust fitting for GAMLSS, based on Anderson Darling test, is
better for the conatamination level of 10%

Table 10 – Mean square error for µ̂ and σ̂ with 0%, 2%, 5% and 10% of contamination in the left tail, right tail
and both tails, of GA(µ,σ) with constant systematic component.

Without contamination
Level θ̂ G RG RGW AH AD01 AD05 AD1 Ansc01 Ansc05 Ansc1

0%
µ̂ 0.000006 0.000006 0.000008 0.000006 0.000007 0.000007 0.000008 0.000006 0.000006 0.000006
σ̂ 0.000011 0.000013 0.000042 0.002257 0.000015 0.000018 0.000023 0.000013 0.000013 0.000013

Right contamination
Level θ̂ G RG RGW AH AD01 AD05 AD1 Ansc01 Ansc05 Ansc1

2%
µ̂ 1.080033 0.361641 0.252016 0.231639 0.241528 0.260609 0.276917 0.232586 0.231526 0.228580
σ̂ 0.007348 0.001595 0.004670 0.001594 0.001509 0.002116 0.002589 0.001494 0.001660 0.001701

5%
µ̂ 5.978484 1.611620 0.339583 0.307492 0.293229 0.343079 0.396373 0.289707 0.288429 0.293412
σ̂ 0.031593 0.005848 0.004064 0.001410 0.001493 0.001943 0.002818 0.001371 0.001396 0.001464

10%
µ̂ 22.329934 14.243905 0.315961 0.287171 0.311421 0.311654 0.336634 5.827071 0.293656 0.309258
σ̂ 0.072660 0.047567 0.004842 0.001815 0.002429 0.002943 0.003238 0.020127 0.002325 0.002315

Left contamination
Level θ̂ G RG RGW AH AD01 AD05 AD1 Ansc01 Ansc05 Ansc1

0%
µ̂ 0.279989 0.271174 0.367058 0.286428 0.268324 0.274299 0.279722 0.264916 0.260221 0.268902
σ̂ 0.006445 0.002070 0.004586 0.002582 0.001344 0.001931 0.002459 0.001326 0.001343 0.001554

5%
µ̂ 0.458018 0.402517 0.386445 0.311100 0.292978 0.319177 0.320348 0.302044 0.292071 0.292063
σ̂ 0.030220 0.009062 0.005025 0.020678 0.001673 0.002606 0.002723 0.002549 0.001703 0.001769

10%
µ̂ 1.133534 1.007512 0.442105 0.523201 0.297604 0.361759 0.376285 0.979308 0.456819 0.334813
σ̂ 0.093362 0.084681 0.016044 0.104466 0.002187 0.002829 0.003092 0.089168 0.024137 0.007426

left and right contamination
Level θ̂ G RG RGW AH AD01 AD05 AD1 Ansc01 Ansc05 Ansc1

2%
µ̂ 0.329630 0.236114 0.330853 0.247510 0.250449 0.260435 0.274652 0.235935 0.237472 0.256391
σ̂ 0.007275 0.001629 0.005240 0.001619 0.002224 0.002474 0.002911 0.001235 0.001290 0.001558

5%
µ̂ 0.359355 0.097202 0.093907 0.066363 0.076502 0.076619 0.087286 0.063558 0.065757 0.068647
σ̂ 0.011915 0.002521 0.001189 0.001214 0.000480 0.000388 0.000368 0.000345 0.000352 0.000341

10%
µ̂ 3.634607 1.176805 0.410479 0.372144 0.342864 0.370330 0.389817 0.362483 0.342256 0.340621
σ̂ 0.103202 0.043173 0.004439 0.029092 0.001697 0.002118 0.002500 0.002717 0.001654 0.002059

G - non robust fitting for GAMLSS, RG - robust fitting for GAMLSS by Rigby et al. (2019), RGW - robust fitting for GAMLSS modified, AH -
Aeberhar method, AD01 - truncation robust fitting for GAMLSS with Anderson Darlin test and significance level 1%, AD05 - truncation robust fitting
for GAMLSS with Anderson Darlin test and significance level 5%, AD1 - truncation robust fitting for GAMLSS with Anderson Darlin test with
significance level 10%, Ansc01 - truncation robust fitting for GAMLSS with Anscombe test and significance level 1%, Ansc05 - truncation robust
fitting for GAMLSS with Anscombe test and significance level 5%, Ansc1 - truncation robust fitting for GAMLSS with Anscombe test and
significance level 10%
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Figure 33 – Histogram of a random sample and probability density function of a GAMLSS model based on a
Gama distribution with parameters µ = 10 and σ = 0.5.
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Figure 34 – Boxplots of µ̂ and σ̂ simulated at model (without contamination), based on GA(µ,σ) without
covariates in systematic component and sample size 100. The red line is the parameter value (µ = 10 and
σ = 0.5).
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Figure 35 – Boxplots of µ̂ (first column of the figure) and σ̂ (second column of the figure) simulated under left
contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third line of the figure
), based on GA(µ,σ) without covariates in systematic component and sample size 100. The red line is the
parameter value (µ = 10 and σ = 0.5).
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Figure 36 – Boxplots of µ̂ (first column of the figure) and σ̂ (second column of the figure) simulated under
right contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third line of the
figure ), based on GA(µ,σ) without covariates in systematic component and sample size 100. The red line is
the parameter value (µ = 10) and σ = 0.5).
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Figure 37 – Boxplots of µ̂ (first column of the figure) and σ̂ (second column of the figure) simulated under left
and right contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third line of the
figure), based on GA(µ,σ) without covariates in systematic component and sample size 100. The red line is
the parameter value (µ = 10 and σ = 0.5).
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4.5.2.2 Parametric GAMLSS Based on Gamma Distribution with Covariates in Systematic
Components For µ and σ .

In this subsection, was conduct a specific study based on Yi ∼ Gamma(µi,σi) with systematic
components defined as

η1 = log(µi) = β11 +β21Xi

and
η2 = log(σi) = B12 +B22Xi,

where i = 1, . . . ,n, β11 = 0.5, β21 = 1, β12 =−1.5, β22 = 1 and Xi ∼Uni f orm(0,1) is a fixed covari-
ate. The simulations studies was based on 200 replicates, from the gamma distribution with sample
sizes 100 and the contamination was carried out in 2%, 5% and 10% of the observations. Figure 38
shows the µ and σ parameters used in the simulations of GAMLLSS model under GA(µ,σ) with
linear systematic components and a scatter plot of a random sample generated based on the proposed
model without contamination.

Figure 38 – µ and σ parameters used in the simulations of GAMLLSS model under GA(µ,σ) with linear
systematic components and a scatter plot of a random sample generated based on the proposed model without
contamination.
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Figure 39 displays boxplots of the MSD of µ̂ (left column of figure) and σ̂ (left column of figure)
for all methods simulated without contamination. Only the RGW estimations shows high variability
of MSD for the σ estimates. The other methods shows similar values of MSD in comparison with the
G method (non robust fitting for GAMLSS). Under left contamination (Figure 40), the µ estimations
of G method it does not present severe distortions in its estimates due to the fact that the gamma
distribution has an influence function limited on the left. The σ estimates shows the best results for
the Truncation proposal based on Anderson Darling test. Under right contamination (Figure 41), the
performance of MSDs of µ̂ are similar at level of 2% of contamination among the robust methods.
The MSDs of σ̂ has high variability. At levels 5% and 10% of contamination, the AH estimates are
slightly performance. All variations of truncation robust shows extreme values. Under left and right
contamination (Figure 42), the estimations shows good performance at level 2% and 5% with similar
results. At level 10% the RGW estimation shows slightly better performance for both parameters.
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Figure 39 – Boxplots of the MSD of µ̂ and σ̂ , simulated at model (without contamination), based on gamma
model with covariates in systematic component and sample size 100.
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Figure 40 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third
line of the figure ) and based on gamma model with covariates in systematic component and sample size 100.
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Figure 41 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under right contamination (2% - first line of the figure , 5% - second line of the figure and 10% -
third line of the figure ) and based on gamma model with linear systematic component and sample size 100.
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Figure 42 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left and right contamination (2% - first line of the figure , 5% - second line of the figure and
10% - third line of the figure ) and based on Gama model with liner systematic component and sample size 100.
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4.5.2.3 Non Parametric GAMLSS based on Gamma Model Using NonParametric Systematic
Component with P-splines.

The non parametric gamma model were evaluate based on the systematic components defined as

log(µ) = η1 = s1(X)

and
log(σ) = η2 = s2(X).

The smooth functions are
s1(X) = 2XeX sin(2π(1−X)2),

s2(X) =−(X +1)1/2−X2 sin(Xπ),

where X ∼U(0,1) is a fixed covariate. The simulations study was based on 200 replicates, from the
gamma distribution with sample sizes 100 and the contamination was carried out in 2%, 5% and 10%
of the observations. Figure 43 shows the µ and σ parameters used in the simulations of GAMLLSS
model under gamma distribution with non parametric systematic components and a scatter plot of a
random sample generated based on the proposed model without contamination.

Figure 43 – µ and σ parameters used in the simulations of GAMLLSS model under gamma distribution with
non parametric systematic components and a scatter plot of a random sample generated based on the proposed
model without contamination.

0.0

2.5

5.0

7.5

0.00 0.25 0.50 0.75 1.00
x

y

µ

0.3

0.4

0.5

0.6

0.00 0.25 0.50 0.75 1.00
x

sig
ma
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Figure 44 displays boxplots of the MSD of µ̂ and σ̂ for all methods. The boxplots of the MSDs
of µ performs similarly in comparison with the G method. Only the MSDs of RGW estimation
shows larger variability. Under left contamination (Figure 45), the MSDs of µ̂ of robust methods
has similar performance with 2% contamination, while for the MSD of σ̂ the RG and truncation
estimation has a slight better performance. At level 5% the MSDs for the σ̂ for RGW has a slight
better performance with competitive results for AD01 and Ansc1. The AH estimations has the largest
MSDs of σ̂ . With 10% of contamination the boxplots of the MSD of µ̂ has the RGW and Ansc1 with
the best performances, while the MSD of σ̂ the best performance are RGW with competitive results
for AD05 and AD1 methods. The AH estimation has poor performance with the larger MSD. Under
right contamination (Figure 46), the AH estimations shows the best performance. Finally, Figure 47
displays boxplots of the MSDs of µ̂ and σ̂ under left and right contamination. At level 2% the boxplot
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of MSDs of µ̂ and σ̂ results are similar and the AH method shows greater variability. At level 5% the
boxplot of the MSD of µ̂ and σ̂ for the AH method has the best performance. Lastly, at the levels of
10% the results indicate that MSD of µ̂ of AH method has the lowest values, with competitive results
for AD1 method. For the MSD of σ̂ the AH method shows the smallest values.

Figure 44 – Boxplots of the MSD of µ̂ and σ̂ , simulated at model (without contamination), based on GA(µ,σ)
with non parametric systematic component and sample size 100.
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Figure 45 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third
line of the figure), based on GA(µ,σ) with non parametric systematic component and sample size 100.
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Figure 46 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left contamination (2% - first line of the figure , 5% - second line of the figure and 10% - third
line of the figure), based on GA(µ,σ) with non parametric systematic component and sample size 100.
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Figure 47 – Boxplots of the MSD of µ̂ (first column of the figure) and σ̂ (second column of the figure),
simulated under left and right contamination (2% - first line of the figure , 5% - second line of the figure and
10% - third line of the figure), based on GA(µ,σ) with non parametric systematic component and sample size
100.
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4.6 APPLICATIONS

In order, to illustrate the advantages from the use of our proposal of robust fitting for GAMLSS,
based on truncation distribution, we consider two real data sets. The first investigate the vulnerability
of child to poverty in Ceara state, Brazil. The second study investigated the outbreak of H1N1 flu by
looking at the weekly counts of influenza-like-illness (ILI) doctor visits in United States. Influenza-
like-illness is a medical diagnosis of possible influenza or other illness causing a set of common
symptoms. These include fever, shivering, chills, malaise, dry cough, loss of appetite, body aches,
and nausea, typically in connection with a sudden onset of illness.

4.6.1 Extreme Child Poverty

Brazil is historically characterized by having a high number of individuals in a state of extreme
poverty. According to a ONU study (2010), five Brazilian cities are among the twenty most unequal
in the world, with the largest income differences between rich and poor in the country and with some
of the notable regions in the world for presenting pockets of poverty. In this context, it is essential
to know and understand the behavior of the levels of poverty, in order to identify policy proposals to
combat poverty, that can revert their levels more quickly.

In this subsection, we consider the proportion of children (0–14 year olds) vulnerable to poverty,
in the municipalities of the state of Ceará in Brazil, in 2010. The data can be obtained from IBGE
(2012). We are interested in modeling the proportion of children vulnerable to poverty - PCVP. Here,
a child is considered vulnerable to poverty if the per capita household income is at most BRL 255,
in 2010. The PCVP data set comprises 184 observations. The boxplot of the proportion of children
vulnerable to poverty (Figure 48) identified thirteen extreme observations. The PCPV data has values
in the range 0.4993 and 0.9364, with a mean of 0.8266 and standard deviation of 0.066.

The PCVP data is modeled here using a beta distribution, due to the data are restricted over some
finite interval, see Gupta and Nadarajah (2004). The method presented here are: truncation robust
fitting for GAMLSS, based on Anderson Darling test with significance level 1% - AD, Ansccomb
test with significance level 1% - Ansc, Aeberhard method - AH, non robust fitting for GAMLSS -
G, robust fitting for GAMLSS - RG and weight robust fitting for GAMLSS - RGW. The results of
truncation robust fitting for GAMLSS based on the anderson darling test with a significance level of
5% and 10% are the same for level 1%, as well as, the results of Anscome with a significance level of
5% and 10% are the same for level 1%.

The final result on the estimation is presented in Table 11. This table shows the values of statistics
for model comparison in order to evaluate the ability of methods to fit the data. According to this
table, the AD01 and RGW estimation have the smallest confidence interval amplitudes and the lowest
values of AIC. Figure 49 presents the residual analysis for models. This figure allow shows that
the distribution of the residuals for RGW and AD01 is not far from the normal distribution, which
indicates that this model is appropriate for the PCVP data. The estimated and the observed histograms
of the PCVP data are presented in Figure 50 for all methods, which confirms that the AD01 and
RGW estimations provides a better fit for these data, with a slightly better performance for the AD01
estimations. Assuming the AD01 beta model as a final model, we can see in Table 11 that the median
of proportion of children vulnerable to poverty is close to 1 with low dispersion.
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Figure 48 – Boxplot of the proportion of children vulnerable to poverty - PCVP in Ceará, Brazil in 2010.
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Table 11 – Estimates and 95% Wald confidence intervals for the parameters of the beta models and different
methods.

Model µ̂ σ̂ AIC
AD01 0.84 (0.831, 0.845) 0.13 (0.120, 0.148) -572.28

Ansc01 0.83 (0.819, 0.836) 0.16 (0.142, 0.173) -524.85
AH 0.83 (0.821, 0.840) 0.15 (0.133, 0.173) -107.67

RGW 0.84 (0.832, 0.846) 0.12 (0,113, 0.139) -566.88
RG 0.83 (0.819, 0.836) 0.16 (0.142, 0.171) -507.93
G 0.83 (0.817, 0.835) 0.16 (0.148, 0.180) -508.84

Source: The author (2021)
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Figure 49 – Worm plot for residuals of models for truncation robust fitting for GAMLSS, based on Anderson
Darling test with significance level 1% - AD, Ansccomb test with significance level 1% - Ansc, Aeberhard
method - AH, non robust fitting for GAMLSS, robust fitting for GAMLSS - RG and weight robust fitting for
GAMLSS - RGW.
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Figure 50 – Estimated density and the observed histograms of the proportion of children vulnerable to poverty
- PCVP data.
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4.6.2 Influenza-Like Illness - ILI

Alimadad and Salibian-Barrera (2011) propose an outlier-robust fit for Generalized Additive Mod-
els with applications to disease outbreak detection. They illustrate the use of this approach on the
detection of the outbreak of H1N1 flu by looking at the weekly counts of influenza-like-illness (ILI)
doctor visits that was reported through the U.S. They consider data for the 2006-2007, 2007–2008,
and 2008–2009 seasons and fit a GAM model with a logarithmic link function, but they do not re-
port which probability distribution was used. The data is available on- line (US Centre for Disease
Control, http://www.cdc.gov/flu/weekly/fluactivity.htm). Each seasons consists
of weekly counts from week 40 through week 20 of the following calendar year. Figure 51 shows the
weekly number of influenza-like-illness visits in the United States for the 2006–2008 flu seasons. A
large number of cases were registered in weeks 17 to 20 indicated in the figure with solid circles. This
behavior was due to the worldwide epidemic outbreak of H1N1 that started in the Spring of 2009.
We applied the robust fitting for GAMLSS methods to fit the data based on the time (week number)
as covariate and the penalized splines to create an approximating function that attempts to capture
patterns in the data.

Figure 51 – Weekly counts of influenza-like-illness outpatient visits in the United considering data for the 2006
- 2008. The 2008 season is indicated with solid circles.
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All methods evaluated in the previous sections were adjusted. The resulting fit is shown in Figure
51. It is possible to see that the robust fit is not affected by the atypical large counts of the last weeks
of the 2008 season in µ estimates (left panel). The σ estimates shown the same pattern reducing the
values of the estimates in the week with high numbers of visits. The red points indicated that the
truncated robust was able to identify the outliers. Figure 53 features the worm plot of the residuals
of the models. We can see that method AD1 obtained a slightly better fit, with all points within
the confidence bands. Besides not presenting any standards that indicate lack of fit. Therefore, the
truncated method presents the best results.



105

Figure 52 – Non robust fitting for GAMLSS, Aeberhard method, truncation robust fitting for GAMLSS fits to
µ (left panel) and σ (right panel) to the weekly number of influenza-like-illness visits in the United States for
the 2006 - 2008 flu seasons. In panel the black line denotes the non robust fit, the blue line corresponds to
the truncation robust fitting for GAMLSS fit associated to Anderson Darling test significance level of 10%, the
green line corresponds to the robust fitting for GAMLSS proposed by Rigby et al. (2019), while the Aebehard
method fit is indicated with a red line. Right panel contains estimate of σ to each model.
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Figure 53 – Worm plots for fitted models Truncated robust fitting for GAMLSS basend on Anderson Darling
test with α = 10%, non robust fitting for GAMLSS - G and Aeberhard method - AH.
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4.7 CONCLUSIONS

We introduced a robust estimation method for the class of GAMLSS, based on a new strategy of
handling outliers. The use of truncated distributions in GAMLSS models as a strategy to deal with
outliers, allows that all the computational and theoretical advantages and aspects of the theory of
GAMLSS models to be used. Our implementation in software R is stable and quite general since it
can be employed for any probability distribution. The distributions that are allowed for a GAMLSS
are wide, they just need to be parametric. Currently, in the gamlss package Stasinopoulos and Rigby
(2007) of R, there are 100 distributions implemented, including discrete, continuous and mixed. All
distributions implement in the package can be truncated freely. It is also possible to implement a new
distribution. In addition, we introduce a simple and effective selection criterion for tuning probabil-
ities. We believe this criterion has broad applicability in the implementation of robust methods in
many contexts, because its involves selecting the best truncation distribution for the response variable
subject to contamination. However, perhaps the insertion of an efficiency measure along the lines of
the selection criteria, as presented by Aeberhard et al. (2021), improves the proposal.

Simulations showed that our robust estimator has the best performance compared to existing ap-
proaches to robust fitting for GAMLSS models in most established scenarios and generated estimates.
In addiction, our proposal has low computational cost in comparison with the Aeberhard method. For
example, the processing time of our proposal for modeling extreme child poverty data represented
5% of the time required for processing the Aeberhard method.

Our application to the Influenza-Like Illness - ILI and extreme child poverty showed that our ro-
bust estimator allows for the automatic detection of deviating observations through truncation. There-
fore, it is a competitive alternative to other methods.

Future work includes implementations for discrete distributions, study other measures to assess
the performance of estimators and works on robust selection of smoothing parameters.
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5 CONCLUDING REMARKS

This thesis presents two independent themes with different background. The first theme presents a
new method for detecting spatial clusters. The main contribution of the proposal is the alternative of
application to any family of distributions and the ability to apply continuous variables duly associated
with a population at risk. The results showed that the ELS method was efficient for clusters with
larger number of regions, being able to reduce Type I error. False alarm rates should be taken into
consideration when using scan methods. As shown in the analysis, the presence of zero inflation
is associated with more than 60% type I error probability using the KS method. In terms of Public
Health management, this probability indicates that at least 60% of cluster identify will be false alarms.
The mean is a non-robust statistic that is affected by the presence of outliers and this fact linked to the
choice of the Poisson model inflated by zeros may have influenced the quality of the results. Thus,
using the proportion or a median with parameters of interest in modeling empirical likelihood can
generate more consistent results. An improvement for future work could be to compare with other
non parametric methods, and to consider methods to deal with the non-circular form of the cluster
and empirical likelihood approach.

The second theme presents several contributions and two proposals to robust estimation for gener-
alized additive models of location, scale and shape - GAMLSS, which focus on contamination situa-
tions in the tails of distributions. The main motivation is the scarcity of robust methods for GAMLSS
models.

Based on the idea of Rigby et al. (2019), we introduce the robust fitting for gamma model with bias
correction and we carried out an extensive simulation study with several scenarios. Until now, only
the correction of bias for the estimators of the beta model were presented. Furthermore, we modified
Rigby et al. (2019) proposal to eliminate outliers. The first proposal seeks transformations in order
to limit the influence function associated with the probability distribution of interest, modifying the
logarithm structure of the likelihood function, using concepts of censorship. The second proposal is
based on a simple adaptive truncation, where observations identified as possible outliers are verified
and, if necessary, removed by truncation of the response variable distribution. We also presents an
adaptive proposal for defining the tuning constant, necessary for estimating the model.

The robust estimator based on censoring has of some limitations. Like any robust estimator, the
proportion of contaminated data cannot be unreasonably large without the estimator starting to break
at some point. The choice of tuning constant is arbitrary. We believe that adaptive censoring method
can show better results and it is worth to be investigate in future research.

Simulations showed that the robust truncated adaptive method has the best performance compared
to existing approaches to robust GAMLSS models, in most established scenarios. The robust trun-
cated adaptive method has low computational cost in comparison with the Aeberhard method. For
example, the processing time of our proposal for modeling extreme child poverty data represented
5% of the time required for processing the Aeberhard method.

Our proposals is based on a new idea of thinking about robust models. The study of this alternative
idea is not complete and future studies on theoretical properties will be needed, such as the sampling
distribution necessary for inference; the correction for Fisher consistency cannot be directly extended
beyond continuous families of distribution due to the reliance on quantile residuals; and the challenges
of selection of tuning probabilities and smoothing parameter selection are not discussed.
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Future work includes implementations for discrete distributions, study other measures to assess
the performance of estimators and works on robust selection of smoothing parameters.
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