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RESUMO 

 

Estratégias adaptadas às características individuais de pacientes mostram-se 

promissoras para o diagnóstico de doenças e podem levar a uma melhoria da saúde 

das populações. A metabonômica faz uso da espectroscopia de Ressonância 

Magnética Nuclear (RMN) de 1H para a avaliação de biofluidos, com preparo mínimo 

de amostra. A incidência de três ou mais episódios de sibilância durante um ano 

descrevem o quadro de sibilância recorrente, condição associada a níveis mais 

baixos de função pulmonar que aqueles que não apresentam um quadro de 

sibilância. Desenvolver ferramentas que permitam o reconhecimento de potenciais 

fatores associados à sibilância, principalmente na forma recorrente, é de grande 

importância para pacientes lactentes. Com isso, o presente estudo almejou 

desenvolver modelos metabonômicos, a partir de dados espectrais de RMN de 1H 

de soro, capazes de discriminar lactentes que apresentam quadro de sibilância não 

recorrente daqueles que tem um quadro de sibilância recorrente. Amostras de soro 

de lactentes que apresentavam sintomas de sibilância foram analisadas por 

espectroscopia de RMN de 1H e foram usadas ferramentas de estatística 

multivariada para discriminar os pacientes com sibilância recorrente (n = 25) (SR) 

dos que apresentavam sibilância não recorrente (n = 25) (SNR). As análises 

espectroscópicas foram realizadas utilizando um espectrômetro de RMN de 1H, 

operando a 400 MHz, aplicando as sequências de pulso HPRESAT para saturação 

do sinal da água e Carr-Purcell-Meiboom-Gill (CPMG). Os espectros foram 

processados utilizando o software MestReNova. Para o cálculo dos modelos 

metabonômicos foram empregadas as técnicas: análise de componentes principais 

(PCA), para análise exploratória; análise de discriminantes por projeções ortogonais 

à estrutura latente (OPLS-DA) e análise discriminante linear com o algoritmo 

genético (GA-LDA), para análise de discriminantes; e, para análise de classe única, 

utilizou-se o formalismo Data Driven Soft Independent Modeling of Class Analogy 

(DD-SIMCA). Para os cálculos de PCA e OPLS-DA utilizou-se o MetaboAnalyst 5.0 

enquanto para as análises de GA-LDA e DD-SIMCA, MATLAB 2010a software. O 

modelo que apresentou a melhor performance foi o DD-SIMCA, que obteve 78,6% 

de sensibilidade, 87,5% de especificidade, 81,8% de precisão, 91,7% de valor 

preditivo positivo e 70,0% de valor preditivo negativo para discriminação dos 

pacientes com sibilância não recorrente. Nove regiões espectrais foram identificadas 



como importantes na separação dos grupos de sibilância recorrente e sibilância não 

recorrente. A partir dessas regiões espectrais, foi possível identificar sete 

metabólitos endógenos e duas rotas metabólicas associadas à discriminação 

observada: (I) metabolismo de alanina, aspartato e glutamato; e (II) metabolismos de 

glutamina e glutamato. A análise multivariada de dados tornou possível desenvolver 

um modelo metabonômico com alta sensibilidade e especificidade, útil para o 

diagnóstico diferencial de sibilância recorrente e sibilância não recorrente.  

  

 

Palavras-chave: metabolômica; RMN de 1H; análise de classe única; sibilância; 

lactentes. 

  



ABSTRACT 

 

Strategies adapted to patient’s individual characteristics are promising to disease 

diagnosis and could lead to an improvement in the health of population. 

Metabonomics uses 1H Nuclear Magnetic Resonance (NMR) spectroscopy for 

biofluids evaluation, with minimal sample preparation. The incidence of three or more 

episodes of wheezing in one year characterizes recurrent wheezing, which is a 

physio pathological condition associated to lower levels of lung function. The 

development of tools that allow the recognition of potential factors associated with 

wheezing, especially recurrent wheezing, would be essential for infants. Hence, the 

present study aimed to develop 1H NMR-based metabonomics models able to 

discriminate infants who present recurrent wheezing from non-recurrent wheezing. 

Serum samples from infants who presented wheezing symptoms were analyzed by 

1H NMR spectroscopy and multivariate statistical tools were used to discriminate 

recurrent wheezing (n = 25) (RW) from Non-Recurrent wheezing (n = 14) (NRW). 1H 

NMR spectroscopy analysis were performed using a NMR spectrometer operating at 

400 MHz, applying HPRESAT and Carr-Purcell-Meiboom-Gill (CPMG) pulse 

sequences. The spectra were processed using MestReNova software. 

Metabonomics models were built using different techniques, as follows: Principal 

Component Analysis (PCA), formalism for exploratory analysis; Orthogonal projection 

to Latent Structures Discriminant Analysis (OPLS-DA) and Genetic Algorithm – 

Linear Discriminant Analysis (GA-LDA) for classification by discriminant analysis; and 

Data Driven Soft Independent Modeling of Class Analogy (DD-SIMCA), for one class 

analysis. PCA and OPLS-DA were performed using MetaboAnalyst 5.0, while LDA 

DD-SIMCA metabonomics models were built using MATLAB 2010a software. The 

DD-SIMCA metabonomics model presented the best performance, as follows: 78.6% 

sensitivity, 87.5% specificity, 81.8% accuracy, 91.7% positive predictive value and 

70.0% negative predictive value to discriminate patients with non-recurrent wheezing. 

Nine spectral regions shown that are important for discrimination between recurrent 

and non-recurrent wheezing samples. These spectral regions were assigned to 

seven endogenous metabolites and the two main metabolites pathways responsible 

by observed discrimination: (I) alanine, aspartate and glutamate metabolism; and (II) 

glutamine and glutamate metabolism. Multivariate data analysis allowed to build 



metabonomics model with high sensitivity and specificity useful for differential 

diagnosis of recurrent wheezing and non-recurrent wheezing 

 

Keywords: metabolomics; 1H NMR; one class analysis; wheezing; infants. 

  



LISTA DE ILUSTRAÇÕES 

 

Quadro 1 – Representação da Multidisciplinaridade da Metabonômica 20 

Figura 1 – Esquema das vias aéreas normais e durante a asma. Pode-

se observar a broncoconstricção (1), produção de muco (2) 

e edema (3) 

23 

Figura 2 – “Roda da urina” publicada no livro Epiphanie Medicorum em 

1506 por Ulrich Pinder 

26 

Figura 3 – Objetos de pesquisa das ciências ômicas numa abordagem 

que parte da informação genética até a manifestação 

metabólica de biocomponentes 

27 

Gráfico 1 – Resultados de produção de trabalhos na área de 

Metabonomica/Metabolômica por ano no período de 2000 a 

2020 

28 

Figura 4 –  Divisão do momento magnético de spin (mI) com a 

aplicação de um campo magnético (B0) 

31 

Figura 5 – Deslocamentos químicos de 1H (δH) presentes em grupos 

funcionais orgânicos ao longo do eixo de um espectro de 

RMN. 

33 

Figura 6 – Representação do fenômeno da RMN num sistema de 

coordenadas girantes. O campo magnético oscilante B1 

aplicado perpendicularmente a B0 é utilizado para excitar a 

amostra 

34 

Figura 7 – Sequência de pulsos no experimento de PRESAT para 

suprimir o sinal da água 

35 

Figura 8 – Sequência de pulsos CPMG com sinal HPRESAT. Em preto 

tempo em segundos, em azul tempo em microssegundos, 

em marrom tempo em milissegundos, em ciano número de 

ciclos 

36 

Figura 9 – Esquematização da sequência de pulsos Carr-Purcell-

Meiboom-Gill 

36 

Figura 10 – Esquematização da sequência de passos realizada para 

extrair informação dos dados coletados numa análise 

39 



metabonômica 

Figura 11 – Esquema de uma matriz hipotética X(i,j) no cálculo de PCA  40 

Figura 12 – Representação das matrizes utilizadas no PLS-DA. X 

contendo os dados originais e Y, os índices de classe 0 

(pertencente a classe analisada) e 1 (não pertencente) do 

exemplo, i representa as amostras e j as variáveis 

41 

Figura 13 – Esquema gráfico do cálculo da OPLS-DA, indicando os 

escores (p’), escores ortogonais (porto’), autovetores (w’), 

autovetores ortogonais (worto’), pesos (t), pesos ortogonais 

(torto’) para a matriz X, u as colunas da matriz Y e c’ as 

classes do modelo 

43 

Quadro 2 – Métricas da matriz de confusão, seu cálculo e significância 

estatística para modelos metabonômicos 

46 

Figura 14 – Típico espectro de RMN de 1H (400 MHz, D2O) de soro 

obtido nesse estudo de um paciente do grupo de Sibilância 

não Recorrente. Alguns sinais foram atribuídos a 

metabólitos 

51 

Figura 15 – Análise de componentes principais do conjunto de dados 

analisado. Em vermelho amostras de Sibilância Recorrente 

e em verde amostras de Sibilância não Recorrente 

52 

Figura 16 – Modelo de PLS-DA. Em vermelho Sibilância Recorrente e 

em verde Sibilância não Recorrente  

53 

Figura 17 – Figuras de mérito do PLS-DA. A) Teste de permutação. B) 

Valores de performance do modelo  

54 

Figura 18 – Modelo metabonômica de OPLS-DA calculado para 

discriminação entre os grupos de Sibilância Recorrente e 

não Recorrente (A). Resultado do teste de permutação do 

OPLS-DA (B) 

55 

Figura 19 – Modelo DDSIMCA para o grupo de treinamento (A) e o 

grupo teste (B). Em preto as amostras da classe de 

treinamento (SR), em cinza as amostras outliers preditas 

pelo modelo. A linha verde indica o intervalo de confiança 

do grupo de amostras modeladas no formalismo 

57 



Figura 20 – (A) Balanço da conversão do glutamato em glutamina e a 

produção de intermediários de vias energéticas. (B) Vias 

metabólicas de biossíntese do glutamato 

60 

Figura 21 – Identificação das vias metabólicas mais relevantes para a 

discriminação. (a) Metabolismo da alanina, aspartato e 

glutamato (p-value 0.0045); (b) Metabolismo da D-glutamina 

e D-glutamato (p-value 0.0230) 

62 

 

 

  



LISTA DE TABELAS 

 

Tabela 1 – Atividade de alguns núcleos observados em RMN e sua 

abundância natural 

34 

Tabela 2 – Exemplo de matriz de confusão em formalismos 

quimiométricos 

45 

Tabela 3 – Características demográficas, clínicas e laboratoriais dos 

voluntários por grupo 

50 

Tabela 4 – Matriz de confusão das classes preditas usando o Índice 

Preditivo de Asma modificado (mAPI) 

51 

Tabela 5 – Matriz de confusão dos modelos de GA-LDA para 

treinamento e teste 

56 

Tabela 6 – Matriz de Confusão do modelo metabonômico de DD-

SIMCA utilizando o espectro de RMN de 1H do soro de 

lactentes para discriminação entre Sibilância Recorrente e 

Sibilância não Recorrente 

58 

Tabela 7 – Metabólitos endógenos mais importantes para 

discriminação entre Sibilância Recorrente e Sibilância não 

Recorrente e sua variação de concentração nestes grupos 

de acordo com o modelo metabonômico de GA-LDA 

59 

 

  



LISTA DE ABREVIATURAS E SIGLAS 

 

API   do inglês, Asthma Predictive Index 

CPMG  Sequência Carr-Purcell-Meiboon-Gill 

CLAE   Cromatografia líquida de alta eficiência 

DD-SIMCA  do inglês, Data Driven Soft Independent Modeling of Class Analogy 

EBC   do inglês, Exhaled Breath Condensate  

EISL   do espanhol, Estudio Internacional de Sibilancias em Lactentes 

FN   Falsa negativa 

FP   Falsa positiva 

GA   do inglês, Genetic Algorithm 

HPRESAT  Sequência de pulsos com pulso seletivo para supressão do sinal da 

água 

IA   Inteligência Artificial 

IgE   Imunoglobulina E 

IV   Espectroscopia de Infravermelho 

KNN   do inglês, K-Nearest Neighbor 

LDA   Análise Discriminante Linear, do inglês Linear Discriminant Analysis 

LDL   do inglês Low Density Lipid 

mAPI do inglês, Modified Asthma Predictive Index 

OPLS-DA  Análise discriminante por projeções ortogonais à estrutura latente, do 

inglês Orthogonal Projection to Latent Structures Discriminant Analysis 

PC   Componente principal 

PCA   Análise de Componentes Principais, do inglês Principal Component 

Analysis 

PIAMA  do inglês, Prevention and Incidence of Asthma and Mite Allergy 

PLS-DA  Análise discriminantes por Mínimos Quadrados Parciais, do inglês 

Partial Least Square Discriminant Analysis 

RF   Radiofrequência 

RMN de 1H  Ressonância Magnética Nuclear de hidrogênio 

SIMCA  do inglês, Soft Independent Modeling of Class Analogy 

SNR   Sibilância não recorrente 

SNV   do inglês, Standard Normal Variation 

SR   Sibilância recorrente 



TCLE   Termo de consentimento livre e esclarecido 

TMS   Tetrametilsilano 

VLDL   do inglês, Very Low Density Lipid 

VN   Verdadeira negativa 

VP   Verdadeira positiva 

VPN   Valor preditivo positivo 

VPP   Valor preditivo negativo 

 

 

 

  



SUMÁRIO 

 

1 INTRODUÇÃO 19 

2 OBJETIVOS 22 

2.1 GERAL 22 

2.2 ESPECÍFICOS 22 

3 FUNDAMENTAÇÃO TEÓRICA 23 

3.1 ASMA E SIBILÂNCIA: CARACTERÍSTICAS, CONDIÇÕES 

CLÍNICAS E SAÚDE PÚBLICA 

23 

3.2 METABONÔMICA: O ESTUDO DO PERFIL METABÓLICO 25 

3.2.1 Estado da Arte 28 

3.3 RESSONÂNCIA MAGNÉTICA NUCLEAR 29 

3.3.1 Sequência de Pulsos 33 

3.3.2 Processamento das Informações Espectrais 37 

3.4 FORMALISMOS QUIMIOMÉTRICOS 39 

3.4.1 Figuras de Mérito 45 

4 METODOLOGIA 47 

4.1 SELEÇÃO DE PACIENTES E PROCEDIMENTOS ÉTICOS 47 

4.2 ENSAIOS METABONÔMICOS 48 

5 RESULTADOS E DISCUSSÃO 50 

5.1 DADOS DOS PACIENTES 50 

5.2 FORMALISMOS QUIMIOMÉTRICOS 51 

5.3 VIAS METABÓLICAS 59 

6 PERSPECTIVAS 63 

7 CONCLUSÃO 64 

 REFERÊNCIAS 66 

 APÊNDICE A – TERMO DE CONSENTIMENTO LIVRE E 

ESCLARECIDO (TCLE) DO ESTUDO 

77 

 APÊNDICE B – FICHA CADASTRAL DE PACIENTES DO 

AMBULATÓRIO DE PEDIATRIA E DE PUERICULTURA DO 

HOSPITAL DAS CLÍNICAS DE PERNAMBUCO 

79 

 APÊNDICE C – QUESTIONÁRIO PADRÃO DE COLETA DE 

DADOS DE PACIENTES DO AMBULATÓRIO DE PEDIATRIA 

80 



E DE PUERICULTURA DO HOSPITAL DAS CLÍNICAS DE 

PERNAMBUCO, BASEADO NO EISL  

 APÊNDICE D – MODELOS DE TREINAMENTO E TESTE, 

RESPECTIVAMENTE, DA MODELAGEM COM O GRUPO DE 

SIBILÂNCIA RECORRENTE COMO GRUPO ALVO E MATRIZ 

DE CONTIGÊNCIA  

81 

 

 

 

 APÊNDICE E – RESULTADO DO ÍNDICE PREDITOR DE 

ASMA MODIFICADO DOS VOLUNTÁRIOS DO ESTUDO 

82 

 APÊNDICE F – CLASSIFICAÇÃO DOS PACIENTES 

VOLUNTÁRIOS DO ESTUDO SEGUNDO O mAPI, GA-LDA E 

DDSIMCA 

83 

 ANEXO A – VIAS METABÓLICAS DA ALANINA-

ASPARTATO-GLUTAMATO E D-GLUTAMINA E D-

GLUTAMATO 

84 

   

 



19 
 

1 INTRODUÇÃO 

 

 Grandes mudanças nas ciências são esporadicamente experimentadas diante 

de inovações tecnológicas, modificação de protocolos e perfis profissionais que as 

implementem (ÁLVAREZ-FERNÁNDEZ e NÚÑEZ-REIZ, 2016). Estratégias 

adaptadas às características individuais de pacientes mostram-se promissoras para 

o diagnóstico de doenças e podem levar a uma melhoria da saúde da população, 

otimizando os resultados para cada paciente individualmente (SAVOIA et al., 2017). 

Avanços rápidos em capacidade computacional, criação de bancos de dados 

vinculados e novas terapias direcionadas estão tornando cada vez mais possível a 

prevenção ou o tratamento de doenças com base nas características individuais 

(WEIL, 2018). A prática de caracterizar um paciente em termos de genoma ou 

proteoma, pode lançar luz sobre sua resposta fisiológica a uma intervenção e é uma 

necessidade, dado o fato de que a variação interindividual clinicamente significativa 

existe (GOETZ e SCHORK, 2018). 

Trabalhos que visam desenvolver um modelo diagnóstico, com uma 

abordagem focada nos metabólitos produzidos por um tipo de doença, são alvo de 

investigação das ciências ômicas – Metabonômica e Metabolômica. Definida em 

1999, por Nicholson, Lindon e Holmes, a Metabonômica é a medida quantitativa da 

resposta metabólica multiparamétrica e dinâmica de sistemas vivos a estímulos 

fisiopatológicos ou modificação genética. Diferentemente da Metabolômica, que visa 

caracterizar todo o metaboloma de um sistema, a Metabonômica visa identificar 

padrões de alterações presentes mediante estímulos ou modificações no sistema 

em estudo. A Metabonômica é uma área de pesquisa multifacetada, implicando a 

interação de diferentes profissionais e expertises. Em algumas abordagens, tem-se 

uma integração entre a Medicina, que avalia uma fisiopatologia ou uma resposta 

homeostática à ação de um agente externo; a Química Analítica, que produz uma 

medida quantitativa da matriz biológica estudada e avalia, de maneira 

multiparamétrica, os dados coletados. O Quadro 1 traz uma representação geral 

dessa multidisciplinaridade.  
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Quadro 1 – Representação da Multidisciplinaridade da Metabonômica 

 

Fonte: Autoria própria (2021). 

Doenças respiratórias crônicas apresentam-se como um problema de saúde 

pública há anos, tendo registrado aproximadamente 3,91 milhões de mortes em 

2017, sendo 7% de todas as mortes do mundo (LI et al., 2020). Dentre estas, a 

asma merece destaque por ser a doença crônica mais comum presente em crianças 

(SOLÉ et al., 2017). Sua prevalência vem aumentando ao redor do mundo, e esses 

indicadores de crescimento parecem estar conectados às taxas de industrialização e 

urbanização (RODRIGUES, 2007). Estudos longitudinais apontam que a asma é 

uma das causas de sibilância de repetição, por conseguinte, a identificação de 

possíveis fatores de risco pode possibilitar a instalação de condutas terapêuticas 

mais específicas (DELA BIANCA et al., 2007).  

A incidência de três ou mais episódios de sibilância, durante um ano descreve 

o quadro de sibilância recorrente (MALLOL et al., 2010), sendo uma condição clínica 

associada aqueles pacientes que apresentam chiado no peito, ou sibilos. Bebês com 

doenças respiratórias associadas à sibilância no primeiro ano de vida apresentam 

níveis mais baixos de função pulmonar que aqueles que não apresentam um quadro 

de sibilo (MARTINEZ et al., 1995). Desenvolver ferramentas que permitam o 

Metabonômica

Medicina

Bioquímica

Quimiometria

Espectroscopia
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reconhecimento de potenciais fatores associados à sibilância, principalmente na 

forma recorrente, seriam imprescindíveis para pacientes lactentes (ARANDA et al., 

2015). 

A estratégia metabonômica faz uso da espectroscopia de Ressonância 

Magnética Nuclear (RMN) de 1H para a avaliação de biofluidos, com preparo mínimo 

de amostra, sendo também uma técnica não destrutiva e rápida (DE GRAAF et al., 

2015; FAN et al., 2018). Os espectros de RMN de 1H do plasma e soro sanguíneos 

mostram bandas largas de sinais de proteínas e lipoproteínas, e outras 

macromoléculas que compõem o metaboloma de um indivíduo, considerando que as 

intensidades dos sinais observados podem ser editadas com base nos coeficientes 

de difusão molecular ou nos tempos de relaxação da RMN (LINDON e NICHOLSON, 

2008). O metaboloma é a coleção de pequenas moléculas endógenas que marcam 

impressões digitais específicas da bioquímica celular (TURI et al., 2018). 

Os dados espectrais obtidos em estudos metabonômicos são tratados por 

métodos de estatística multivariada, buscando o reconhecimento de padrão 

associado ao status bioquímico dos pacientes e/ou voluntários. A Inteligência 

Artificial (IA) é uma poderosa ferramenta de reconhecimento de padrão e tem atraído 

a atenção de pesquisadores em diversas áreas (LIU, 2018). Aprendizagem de 

máquinas é uma forma de IA na qual um modelo aprende com base em exemplos e 

não regras pré-programadas (SHILLAN, 2019). Com isso, pode-se obter modelos 

precisos, exatos, reprodutíveis e de baixo custo de implementação, sendo possível 

ainda analisar dados à distância, possibilitando a cooperação entre pares.  

No que diz respeito a modelos metabonômicos para diagnóstico de asma em 

lactentes que apresentam sibilos, ainda não existem trabalhos na literatura, como 

aponta Kelly e colaboradores (2017) e nossa busca na literatura. A metabonômica 

propicia uma abordagem eficiente e de baixo custo, sendo assim um método 

promissor para a compreensão da sibilância pelo desenvolvimento de testes de 

diagnóstico robustos, sensíveis e reprodutíveis (ZHANG, 2012). 
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2 OBJETIVOS 

2.1 GERAL 

 

Desenvolver modelos metabonômicos, a partir de dados espectrais de RMN 

de 1H de soro, que sejam capazes de discriminar lactentes que apresentam quadro 

de sibilância recorrente daqueles que não apresentam sibilância recorrente. 

 

2.2 ESPECÍFICOS 

 

Obter os espectros de RMN de 1H de amostras de soro dos lactentes com 

sibilância recorrente e com sibilância não recorrente;  

Empregar técnicas de aprendizagem de máquinas para o reconhecimento de 

padrões, identificando padrões metabonômicos, discriminando lactentes que 

apresentam sibilância recorrente dos que apresentam sibilância não recorrente; 

Validar os modelos metabonômicos construídos; 

Identificar as regiões espectrais responsáveis pela discriminação e atribuí-las 

aos metabólitos endógenos produzidos pelos indivíduos do estudo; 

Identificar as vias metabólicas associadas ao quadro fisiopatológico dos 

indivíduos participantes do estudo. 
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3 FUNDAMENTAÇÃO TEÓRICA 

 

3.1 ASMA E SIBILÂNCIA: CARACTERÍSTICAS, CONDIÇÕES CLÍNICAS E SAÚDE 

PÚBLICA 

 A asma é um distúrbio inflamatório crônico das vias aéreas que causa 

episódios recorrentes de sibilos, falta de ar e opressão torácica (KUMAR, 2010). É 

causada por fatores genéticos e ambientais, e se manifesta com a contração 

reversível do músculo liso das vias aéreas e a hiper-reatividade brônquica 

(MATTIUZZI e LIPPI, 2020; GASTON, 2011) característica de processos 

inflamatórios (Figura 1). 

 

Figura 1 – Esquema representativo das vias aéreas normais (A) e durante a asma (B) e estruturas 
morfológicas e celulares em cada situação  

 

  

 

Fonte: Kumar (2010). 

A sibilância de repetição é a característica principal da asma de início precoce 

(DELIU et al., 2017). Um estudo internacional evidenciou que 45,2% dos lactentes 

desenvolvem pelo menos um episódio de sibilância no primeiro ano de vida e que 

20,3% apresentam sibilância recorrente (MALLOL et al., 2007).  
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A má percepção da gravidade da doença pelo paciente, familiares e/ou 

equipe médica, assim como as exacerbações, contribui para o aumento do risco de 

mortalidade (PITCHON et al., 2018). Além disso, a exacerbação do quadro de asma 

é um dos fatores responsáveis pelos seus altos níveis de mortalidade e morbidade 

(DE BENEDICTIS e ATTANASI, 2016). 

 A ocorrência de três ou mais episódios de sibilância no último ano caracteriza 

uma sibilância recorrente (SOLÉ, 2008). Apesar de sibilos, também conhecidos 

como chiado no peito, serem sintomas comuns nos pacientes asmáticos, nem todos 

os lactentes sibilantes serão asmáticos no futuro (BACHARIER et al., 2008). 

Identificar precocemente quais dessas crianças sibilantes serão asmáticas no 

futuro é imprescindível devido a ansiedade da família, a qual deseja saber o 

diagnóstico e, principalmente, o prognóstico da doença na criança (FIRMIDA, 2013). 

Além do mais, já foi demonstrado que as crianças que desenvolviam sibilância 

durante os primeiros três anos de vida, e cujo sintomas persistiram até seis anos de 

idade, apresentavam níveis significativamente mais baixos da função pulmonar aos 

seis anos de idade, em comparação com crianças cujo sintomas de chiado 

começaram após os três anos de idade (MARTINEZ et al., 1995). Sendo assim, o 

diagnóstico precoce permitiria a otimização do tratamento com objetivo de preservar 

a função pulmonar. 

Embora existam ferramentas diagnósticas para a asma, ela segue 

subdiagnosticada nos países do MERCOSUL (SOLÉ et al., 2017). Para países como 

Brasil, Bolívia e Venezuela que apresentam sistemas públicos de saúde (PEREIRA 

et al., 2012), um diagnóstico precoce de asma pode levar a uma diminuição dos 

custos associados a essa doença. 

 Atualmente, para o diagnóstico de asma em crianças, é importante a 

confirmação da limitação das vias respiratórias, que pode ser avaliada pelo exame 

de espirometria (GINA, 2019) e por ferramentas preditivas tais como o Índice 

Preditivo de Asma (API, do inglês Asthma Predictive Index) e a Prevenção e 

Incidência de Asma e Alergia a Ácaro (PIAMA, do inglês Prevention and Incidence of 

Asthma and Mite Allergy) (COLICINO et al., 2019). No que diz respeito às 

ferramentas preditivas, estas apresentam uma razão de verossimilhança negativa 

relativamente baixa, o que o torna uma ferramenta ineficiente para predizer a asma 
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(LI et al., 2019; CASTRO-RODRIGUEZ et al., 2019). Essa razão relaciona a 

proporção da probabilidade do resultado de um teste em pessoas que têm a doença 

com a probabilidade de pessoas que não a têm (DEEKS e ALTMAN, 2004). No que 

diz respeito ao teste de espirometria, este exige técnicas de expiração forçada, que 

só poderiam ser executadas com segurança a partir de crianças de 5 anos 

(BACHARIER et al., 2008).  

O Estudo Internacional de Sibilância em Lactentes (EISL) multicêntrico, 

realizado entre 2005 e 2007, teve como objetivo determinar a prevalência de 

sibilância recorrente durante o primeiro ano de vida (DELA BIANCA et al., 2007). O 

EISL identificou que 45,2% dos 30.093 lactentes avaliados apresentaram pelo 

menos 1 episódio de sibilância no primeiro ano de vida e 20,3% apresentaram 

sibilância recorrente (MALLOL et al., 2010). Este questionário por sua vez apresenta 

sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo de 

86%, 91,8%, 76,8% e 95,4%, respectivamente (CHONG NETO et al., 2007). 

Entretanto, apesar das variáveis clínicas apresentadas pelo EISL, fatores genéticos 

ou ambientais, quer façam parte da anamnese, do exame físico ou de meios 

complementares de diagnóstico, não apresentam poder suficiente para serem 

usados como marcador único na identificação de asma no futuro em pacientes 

lactentes (MEDEIROS et al., 2011). Com isso, a busca de biomarcadores para 

pacientes lactentes que apresentem quadro de sibilância recorrente ou não 

recorrente constituem uma importante área a ser explorada. 

 

3.2 METABONÔMICA: O ESTUDO DO PERFIL METABÓLICO 

A ideia de que vários estados de doença podem ser refletidos por mudanças 

nas concentrações de metabólitos é fundamental para compreender a 

metabonômica e remete aos povos da Grécia Antiga (MADSEN et al., 2010). Esse 

pensamento também permeou pensadores da Idade Média como Ulrich Pinder 

(LEHMAN-MCKEEMAN, 2005), que associava cores, cheiros e sabores a urinas em 

diferentes patologias (Figura 2). 
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Figura 2 - “Roda da urina” publicada no livro Epiphanie Medicorum em 1506 por Ulrich Pinder  

 

Fonte: Lehman-McKeeman (2005). 

 

Ao longo das décadas de 1970 e 1980, conforme os espectrômetros de RMN 

melhoraram e as intensidades dos campos magnéticos aumentaram, a avaliação de 

perfis metabólicos empregando essa técnica começou a atrair a atenção de outros 

cientistas (WISHART, 2019). Lindon, Nicholson e Holmes (1991, p.1881) definiram o 

termo “metabonômica” da seguinte maneira: “(...) é a medida quantitativa da 

resposta metabólica, multiparamétrica, dependente do tempo, de sistemas vivos a 

estímulos fisiopatológicos ou modificações genéticas”. 

Enquanto isso, o termo metabolômica foi introduzido em 2001, por Oliver 

Fiehn, como sendo a análise abrangente e quantitativa do metaboloma de um 

sistema biológico após estímulos fisiopatológicos ou modificações genéticas 

(CANUTO et al., 2018). Atualmente, metabonômica e metabolômica são termos 

usados como sinônimos (MADSEN et al., 2010), mas há uma diferença 

metodológica importante: a análise metabolômica exige a utilização de uma 

ferramenta de separação de misturas, normalmente a Cromatografia Líquida de Alta 

Eficiência (CLAE), ou Cromatografia em fase Gasosa (CG), associada à 

espectrometria de massas; na metabonômica, a análise é feita com mínima 

intervenção na amostra, normalmente usando RMN (DUNN e ELIS, 2005). 
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Juntamente com a genômica, transcriptômica e proteômica, a metabonômica 

fornece informações específicas que permitem a compreensão de vias metabólicas 

em processos patológicos (ZHANG, 2012) (Figura 3).  

 

Figura 3 - Objetos de pesquisa das ciências ômicas numa abordagem que parte da 
informação genética até a manifestação metabólica de biocomponentes  

 

Fonte: Autoria própria (2020). 

 

 Para desenvolver um estudo metabonômico, um problema biológico a ser 

estudado deve ser previamente definido, através da elaboração de uma ou mais 

perguntas a serem elucidadas ao final do estudo (CANUTO et al., 2018). As etapas 

de uma investigação do perfil metabólico envolvem a coleta da amostra biológica, 

análise instrumental, processamento dos espectros, pré-processamento das 

amostras análise multivariada de dados e a identificação dos metabólitos.  

 O uso de amostras de sangue tem como vantagem, considerando outros 

biofluidos, uma menor alteração diária de componentes (GHINI et al., 2019), o que 

não ocorreria com amostras de urina. Além disso, existe a conveniência do uso de 

pequenos volumes para as amostras, o que pode ser uma vantagem se empregado 

na prática clínica. 

A espectroscopia de RMN de 1H e a espectrometria de massas são as 

ferramentas mais comumente usadas para medir o metaboloma, mas as técnicas de 

espectroscopia óptica, como espectroscopia Raman e espectroscopia na região do 

infravermelho (IV) também já foram relatadas na literatura (MADSEN, 2010). 
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Geralmente, na metabonômica baseada em espectroscopia de RMN de 1H, poucas 

etapas (ou nenhuma) de pré-processamento da amostra são requeridas, podendo 

ser empregadas amostras sólidas ou líquidas, além de tratar-se de uma técnica não 

destrutiva, quando comparada com a espectrometria de massas (CANUTO et al., 

2018).  

 Todos os estudos metabonômicos resultam em conjuntos de dados 

multivariados complexos que são então analisados a partir de ferramentas de 

reconhecimento de padrão que permitem a identificação de “impressões digitais” 

bioquímicas e a classificação de amostras (LINDON e NICHOLSON, 2008; 

BECKONERT et al., 2007).  

3.2.1 Estado da Arte 

 A metabonômica é um campo de pesquisa multifacetado, integrando Ciências 

Biológicas, Ciências Médicas, Química e Data Science, possuindo um enorme 

potencial para que grupos de pesquisa trabalhem em cooperação. Uma busca 

realizada na Web of Science, com os termos “metabonomics or metabonomic or 

metabolomics or metabolomic” no título dos trabalhos, nos anos de 2000 a 2020, 

resultou em 17837 documentos (artigos, resumos de conferências ou revisões). 

Esses dados são apresentados no Gráfico 1.  

Gráfico 1 – Números de artigos publicados por ano contendo o termo Metabonomic(s) ou 

Metabolomic(s) no título. Período considerado: de 2000 a 2020 

 

Fonte: Autoria própria a partir de dados do Web of Science (2021). 
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 Os modelos diagnósticos disponíveis na literatura abrangem diversas 

doenças, tais como hepatite C viral (GODOY et al, 2010), hepatite B crônica 

(GILANY et al., 2019), câncer geniturinário (MANZI et al., 2020), fibrose cística 

(ZANG et al., 2019) e diagnóstico diferencial de infertilidade na presença de 

varicocele (LIRA NETO et al., 2020). Nos estudos metabonômicos, a avaliação da 

capacidade preditiva de modelos de classificação baseia-se nos parâmetros de 

exatidão, sensibilidade e especificidade (SOARES, 2016). 

 Modelos metabonômicos para o tratamento de asma podem utilizar como 

biofluido o condensado do ar exalado (EBC, do inglês Exhaled Breath Condensate), 

urina ou o soro de pacientes. Um estudo de revisão sistemática realizado por Kelly e 

colaboradores (2017) comparou estudos metabonômicos que tinham a asma como 

objeto de pesquisa. Dentre os artigos avaliados, num total de vinte e um, onze 

autores utilizaram como biofluido o EBC, enquanto quatro utilizaram urina, dois 

utilizaram soro e quatro utilizaram plasma. Utilizando os valores de exatidão, os 

autores da revisão sistemática classificaram os trabalhos como bons (≥80%) ou 

muito bons (≥ 85%). 

A escolha do soro do paciente pode otimizar o diagnóstico na prática clínica, 

uma vez que geralmente são pedidos exames de dosagem de IgE para pacientes 

asmáticos (BACHARIER et al., 2008), também avaliados no soro. Além disso, uma 

vez que a espectroscopia de RMN é uma técnica reprodutível, adequa-se bem como 

ferramenta diagnóstica num ambiente clínico (MADSEN, 2010). 

 

3.3 RESSONÂNCIA MAGNÉTICA NUCLEAR 

 Em 1896, Pieter Zeeman demonstrou uma nova relação entre luz e 

magnetismo, ao provar que um campo magnético externo provoca a modificação da 

emissão e absorção de radiação luminosa (RHODES, 2017; INGLE e CROUCH, 

1998). Décadas mais tarde, Isidor Rabi e seus colaboradores observaram que um 

campo magnético oscilante poderia provocar a reorientação do spin nuclear e do 

momento magnético (RABI et al., 1938). Bloembergen, Purcell e Pound, em 1947, 

publicaram o primeiro estudo que aplicava a RMN à amostras líquidas, abrindo 

assim espaço para maiores aplicações dessa técnica. Este estudo empregou em 

seus cálculos a constante magnetogírica, que é definida como uma propriedade 
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nuclear intrínseca, referente a razão entre os momentos magnético e angular do 

núcleo (Bloembergen, Purcell e Pound, 1947; MLYNÁRIK, 2017). 

 Tais descobertas contribuíram para traçar as bases teóricas da 

espectroscopia de Ressonância Magnética Nuclear. Nesses estudos, provou-se a 

fundamental importância do spin nuclear para o fenômeno da RMN (CLARIDGE, 

2009). Para cada núcleo com spin diferente de zero, o número de estados de spin 

permitidos que se pode quantizar é determinado por seu número quântico de spin 

nuclear (I). Para cada número I existem (2I+1) estados, podendo variar de +I a –I 

(BLOEMBERGEN, et al, 1947; PAVIA, 2009). Em átomos que não apresentem 

número atômico e número de massa pares, os números quânticos de momento 

angular orbital e do spin dão origem a momentos magnéticos (μ), o que significa 

que, de certo modo, eles se comportam de forma semelhante a pequenos imãs 

(ATKINS, 2008). Deste modo, somente núcleos com spin nuclear (I) diferente de 

zero possuem atividade na RMN (ROCHA, 2013).  

Na ausência de um campo magnético externo, os estados de spin são 

degenerados, perdendo essa degenerescência na presença de um campo 

magnético externo (SILVA, 2017). No caso do núcleo de hidrogênio-1, os estados de 

spin possíveis são +1/2 e –1/2, sendo um desses estados correspondente à 

orientação paralela ao campo magnético, e o outro à orientação antiparalela 

(MLYNÁRIK, 2017). Tal orientação de momentos magnéticos nucleares num campo 

magnético estático B0 dá origem a um vetor de magnetização, que é a soma vetorial 

de momentos magnéticos nucleares individuais (MLYNÁRIK, 2017). Ao aplicar um 

pulso de radiação eletromagnética, com frequência correspondente à diferença de 

energia entre ambos estados, é promovida a transição de spins do estado de menor 

energia para o de maior energia (HEMMINGA, 1992) (Figura 4). A diferença de 

energia aplicada é proporcional à força do campo magnético externo e à constante 

magnetogírica do núcleo (HEMMINGA, 1992). 
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Figura 4 - Diagrama de energia apresentando os estados de spin (mI), como função do 
campo magnético externo (B0)  

 

Fonte: Autoria própria (2020). 

 

Uma vez que a absorção de energia é um processo quantizado, a energia 

absorvida deve ser igual à diferença de energia entre os dois estados envolvidos 

(PAVIA, 2009). As equações 1 e 2 demonstram como ocorre a quantização dessa 

energia em núcleos de spin 1/2.  

 Δ𝐸 =  𝐸𝛽 − 𝐸𝛼 = ℎ𝜐 

Δ𝐸 = (−
1

2
𝛾ℏ𝐵0) −  (+

1

2
𝛾ℏ𝐵0)    ∴ |∆𝐸| =  𝛾ℏ𝐵0 

(1) 

(2) 

 Sendo ħ a unidade de quantização do momento angular do núcleo, (h/2π), e h 

a constante de Planck. Outro termo que aparece na Equação 1 é a constante 

magnetogírica (γ), que é uma propriedade intrínseca do núcleo atômico e determina 

a dependência de energia com o campo magnético (PAVIA, 2009), como descrita na 

Equação 3.  

 
𝛾 =

2𝜋 𝜇

ℎ 𝐼
 (3) 

 A condição de ressonância é atingida quando a frequência da radiação 

eletromagnética se iguala a frequência de Larmor (ATKINS, 2008), como descrito 

nas equações abaixo.  
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 Δ𝐸 = ℎ𝜐 (4) 

 
Δ𝐸 =  

ℎ

2𝜋
𝛾𝐵0 

(5) 

 

 
𝜐 =  

𝛾𝐵0

2𝜋
 (6) 

 

A Equação 6 é a equação fundamental da Ressonância Magnética Nuclear. 

Na presença de um campo magnético, a distribuição (população) não é igualitária 

para os estados possíveis de energia, ficando o estado de menor energia 

ligeiramente em excesso (BARROS, 2017). Com isso, as populações obedecem a 

distribuição de Boltzmann (Equação 7). 

 
ln (

𝑁𝛼

𝑁𝛽
) =  

−Δ𝐸

𝑘𝐵𝑇
 (7) 

Sendo Nα e Nβ as populações nos estados α e β, respectivamente, kB a 

constante de Boltzmann, T é a temperatura absoluta (K) e ΔE a diferença de energia 

entre os estados. A diferença de população entre os estados de spin impacta 

diretamente na intensidade do sinal de RMN, sendo, portanto, diretamente 

proporcional às concentrações das espécies na amostra.  

Sistemas moleculares são formados por átomos, e não simplesmente 

núcleos, ligados entre si através de densidades eletrônicas e de interações 

eletrostáticas (COSTA, 2016). Sendo assim, é necessário considerar os efeitos de 

densidades eletrônicas e de outros núcleos atômicos na frequência de ressonância 

de cada núcleo. Quanto maior a densidade eletrônica em torno de um núcleo, maior 

será o campo contrário induzido e se opondo ao campo aplicado. Desta forma, este 

campo contrário que protege o núcleo diminui a intensidade do campo magnético 

aplicado ao núcleo observado. Consequentemente, núcleos em diferentes 

ambientes químicos apresentam frequências diferentes. Esse fenômeno é chamado 

de deslocamento químico, sendo representado pela letra grega delta (δ) 

(HEMMINGA, 1992). Usualmente, o δ é expresso em ppm (partes por milhão) e, no 

caso dos núcleos de 1H e 13C, o sinal atribuído às metilas do tetrametilsilano (TMS) é 

usado como referência interna de deslocamento químico (MLYNÁRIK, 2017). A 
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Equação 8 demonstra como a medida do deslocamento químico é obtida (PAVIA, 

2009). 

 𝛿 =
𝜐𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑑𝑜 − 𝜐𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎

𝜐𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎
 𝑥 106 (8) 

Logo, núcleos em diferentes ambientes químicos possuem diferentes 

deslocamentos químicos, e, por conseguinte, os que se apresentam em um mesmo 

ambiente químico possuem o mesmo deslocamento químico (GOUVEIA, 2017). A 

Figura 5 traz os deslocamentos químicos observados para alguns grupos funcionais 

orgânicos.  

 

Figura 5 - Deslocamentos químicos de 1H (δH) presentes em grupos funcionais orgânicos ao 
longo do eixo de um espectro de RMN.  

 

Fonte: Adaptado de Pavia (2009). 

 

3.3.1 Sequência de pulsos  

 O núcleo mais importante para análise de biomoléculas com atividade na 

RMN é o de 1H, sendo relatados alguns estudos com 13C, 15N, porém estes núcleos 

apresentam baixa abundância natural e o núcleo de 31P apesar da alta abundância 

natural (Tabela 1), os sinais da maioria dos compostos fosforilados se sobrepõe 

(MARKLEY et al., 2017). Se os picos de um espectro de RMN apresentarem boa 



34 
 

resolução e uma relação sinal ruído aceitável, suas intensidades podem se 

correlacionar linearmente com sua concentração relativa (MARKLEY et al., 2017).  

 

Tabela 1 – Características de alguns núcleos estudados por espectroscopia de RMN. 

Núcleo 1H 2H 13C 14N 15N  31P 

Constante 
magnetogírica γ 
(radianos/Tesla) 

267,53 41,1 67,28 19,3 -27,1  108,3 

Abundância natural 99,985 0,015 1,11 99,63 0,37  100,00 

Fonte: adaptado de Rocha (2013) e Pavia (2009). 

 

Para que seja possível a realização de experimentos via RMN, é necessário 

que haja um mecanismo de interação entre a radiação eletromagnética e o sistema 

em estudo (MONARETTO, 2019). No experimento de RMN, um campo magnético 

oscilante B1 na frequência de Larmor é aplicado perpendicularmente a B0 na forma 

de um pulso de radiofrequência. O pulso faz com que a magnetização M0, que 

estava originalmente na direção do campo B0, no eixo z, gire num ângulo θ, gerando 

assim magnetização no plano x’y’ (COLNAGO e ANDRADE, 2016) (Figura 6).  

 

Figura 6 – Representação do fenômeno da RMN num sistema de coordenadas girantes. O campo 
magnético oscilante B1 aplicado perpendicularmente a B0 é utilizado para excitar a amostra   

 

Fonte: adaptado de Colnago e Andrade (2016). 

A Equação 9 permite determinar o ângulo θ entre o vetor magnetização e o 

eixo z após aplicação de um pulso de radiofrequência (RF) pelo tempo tp.  
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 𝜃 =  𝛾𝐵1 𝑡𝑝 (9) 

A sequência de pulsos muda temporariamente o comportamento evolutivo do 

sistema de spin nuclear, às vezes imitando a remoção de algumas das interações de 

spin nuclear (LEVITT, 2008). A sequência de pulsos HPRESAT consiste em um 

pulso relativamente longo e de baixa potência para saturar seletivamente uma 

frequência específica, geralmente a frequência atribuída ao sinal da água, e outro 

pulso não seletivo de 45º ou 90º para excitar as frequências de interesse (GOUVEIA, 

2017) (Figura 7). 

 

Figura 7 – Sequência de pulsos no experimento de HPRESAT para suprimir o sinal da água  

 

Fonte: Costa (2016). 

 

Um problema secundário à abundante quantidade de água na análise de 

biofluidos é a presença de macromoléculas, tais como lipídeos e proteínas (VAN et 

al., 2003). A presença desses biocompostos numa amostra submetida à 

espectroscopia de RMN de 1H pode resultar em espectros com sinais alargados, o 

que leva, muitas vezes, a uma maior dificuldade para a visualização de sinais menos 

intensos (GOUVEIA, 2017). Tal adversidade pode ser contornada aplicando-se a 

sequência de pulsos desenvolvida por Carr-Purcell-Meiboon-Gill (CPMG), que 

explora a taxa de relaxação transversal (T2) dessas macromoléculas, funcionando 

como um filtro de T2 (Figura 8).  
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Figura 8 – Sequência de pulsos CPMG com sinal HPRESAT. Em preto tempo em segundos, em azul 

tempo em microssegundos, em marrom tempo em milissegundos, em ciano número de ciclos 

 

Fonte: Autoria própria (2021). 

 

Assim como na sequência HPRESAT, ao aplicar-se um pulso de RF de 90º, 

ao longo do eixo x, o vetor magnetização tem sua orientação alterada e passa a ser 

analisado considerando as componentes no eixo z e no plano xy (SILVA, 2017). Em 

seguida, são aplicados sucessivos pulsos de 180° com intervalos de tempo τ, até 

que os spins com valores menores de T2 tenham relaxado, e o espectro é adquirido 

contendo apenas as ressonâncias de interesse (COSTA, 2016). Na sequência 

apresentada na Figura 8, a supressão do sinal da água é realizada aplicando um 

pulso seletivo por 2,0 s, enquanto espécies com T2 menor que 400 ms não são 

observados no espectro porque o sinal de RMN é “filtrado”, pois as magnetizações 

dos núcleos de menor T2 são perdidas durante os ciclos de eco de spin. A Figura 9 

apresenta um esquema com a dinâmica associada ao vetor magnetização, ao 

aplicar a sequência de pulsos CPMG como filtro de T2. 

 

Figura 9 – Esquematização da sequência de pulsos Carr-Purcell-Meiboom-Gill  

 

Fonte: Silva (2017). 
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 Inicialmente, aplica-se um pulso de RF de 90°, mudando a orientação do 

vetor magnetização, que agora está no plano xy. Durante o tempo ∆ (ou Τ), as 

componentes no plano xy evoluem, de forma que o vetor resultante no plano xy 

diminua ao longo do tempo. Segue-se a aplicação de um pulso de RF de 180°, 

gerando o “eco de spin”, pois a evolução das componentes no plano xy fazem com 

que o vetor resultante no plano xy aumente de intensidade com o tempo. Após o 

tempo ∆, a intensidade do sinal começa a decair e segue-se a aquisição ou aplica-se 

novo pulso de RF de 180°. A definição do tempo ∆ é muito importante, pois espécies 

que tenham um T2 menor que o valor de ∆ perderão a magnetização no plano xy 

antes da aplicação do pulso de RF de 180°. Com isso, os sinais atribuídos a essas 

espécies não serão observados no espectro. 

 

3.3.2 Processamento das Informações Espectrais 

Comumente, dados espectrais extraídos da RMN para uma análise 

metabonômica são analisados nas seguintes etapas: processamento de dados pós-

instrumental, tais como a transformada de Fourier, ajuste de fase e correção da linha 

de base; quantificação de características espectrais comumente implementadas via 

binning; normalização e escalonamento; e modelagem quimiométrica multivariada 

estatística de dados (ANDERSON et al., 2011). A transformada de Fourier é 

responsável por recuperar as frequências de ressonância, presentes no domínio do 

tempo, num decaimento livre de indução (ATKINS, 2008). No entanto, se a 

magnetização for invertida no plano xy, e não perfeitamente alinhada ao longo do 

eixo x é necessário recorrer ao ajuste de fase (IZQUIERDO-GARCÍA et al., 2011). 

Na técnica de binning, os espectros são divididos em janelas uniformemente 

espaçadas, ou bin, com base em conhecimento prévio ou de maneira estocástica 

utilizando um algoritmo (EMWAS et al., 2018), permitindo que seja realizada uma 

redução de dados agrupando respostas espectrais. As intensidades dentro de cada 

bin são somadas, de modo que a área sob cada região espectral é usada em vez de 

intensidades individuais (SOUSA et al., 2013). Os dados são reunidos numa matriz, 

de forma que cada linha contenha os dados espectrais de uma amostra; enquanto 

cada coluna contém a intensidade do sinal observada para cada bin. As 

intensidades dos sinais presentes no espectro podem variar em ordens de 

magnitude, levando a um viés ou a uma influência indevida de metabólitos altamente 
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concentrados nos resultados de um estudo metabonômico (EMWAS et al., 2018). As 

variações podem ocorrer de maneira intra- e inter-amostral. Para contornar esse 

problema, realiza-se uma normalização por escalamento dos dados com base na 

fórmula da Equação 10, na qual x é o valor da variável que é subtraído da média (da 

linha ou coluna) e então dividido pelo desvio padrão (da linha ou da coluna).  

 
𝑥̃𝑖𝑗 =  

𝑥𝑖 −  𝑥̅

𝑠
 

(10) 

A escolha de ser na linha ou na coluna está relacionada se a variação que 

dificulta ou insere um erro à modelagem se dá na amostra ou no conjunto de 

amostras, respectivamente. O autoescalonamento pelas linhas da matriz de dados é 

chamado também de Padronização Normal de Sinal (SNV, do inglês Standard 

Normal Variate) (DA-COL et al., 2017). Após a etapa de normalização, os dados 

podem ser analisados a partir da matriz de correlação. Técnicas de estatística 

multivariada são utilizados no conjunto de dados espectrais, devido à vasta 

dimensionalidade, visando identificar padrões naturais de agrupamentos. Isso pode 

ser feito a partir de análises exploratórias ou de reconhecimento de padrão e/ou 

análises classificatórias supervisionadas, que são usadas para extrair a informação 

relevante dos dados de entidades ou metabólitos responsáveis por diferenciar os 

grupos de amostras (CANUTO et al., 2018). Uma vez identificado padrões ou 

construídos modelos supervisionados para discriminar as amostras, segue-se para a 

identificação das regiões espectrais mais relevantes para a discriminação e, depois, 

para a atribuição dessas regiões aos metabólitos (Figura 10). 
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Figura 10 – Sequência básica para extração de dados em ensaios metabonômicos 

 

 Fonte: Autoria própria (2021). 

 

3.4 FORMALISMOS QUIMIOMÉTRICOS 

As últimas duas décadas testemunharam uma explosão de dados decorrentes 

do desenvolvimento e maturação gradual de tecnologias ômicas e bioinformática 

(BOJA et al., 2014). Definida em 1974 por Svante Wold como “A arte de extração de 

informações quimicamente relevantes de dados produzido em experimentos 

químicos” (WOLD, 1995), a quimiometria emergiu da necessidade de extrair 

informação química da avalanche de dados produzidos pela moderna 

instrumentação (FERREIRA, 2015). Atualmente, abrange a análise de dados 

químicos, para calibração e classificação de dados, e o planejamento de 

experimentos químicos e simulações (IUPAC, 2021). Devido à variabilidade e 

riqueza de dados multivariados, é quase impossível reconhecer padrões no conjunto 

de dados em estudo de maneira direta (LIU et al., 2018). 

A aprendizagem de máquinas ou machine learning (ML) é um ramo bem 

estabelecido da Inteligência Artificial (IA) (LAPADULA et al., 2020). Trata-se de uma 

forma de IA na qual um modelo aprende com base em exemplos e não regras pré-
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programadas (SHILLAN et al., 2019). Dentre os métodos de machine learning, 

geralmente os mais empregados para a construção de modelos quimiométricos são 

o de Análise de Componentes Principais (PCA), Análise Discriminantes por Mínimos 

Quadrados Parciais (PLS-DA), Análise discriminante por projeções ortogonais à 

estrutura latente (OPLS-DA) e a Análise Discriminante Linear (LDA). 

 A análise de componentes principais é uma ferramenta quimiométrica de 

análise multivariada utilizada para mitigar redundâncias e reduzir a dimensionalidade 

do conjunto de variáveis, por meio da criação de uma nova base, cujas 

componentes são linearmente independentes e em menor número, comparando em 

relação ao conjunto inicial de dimensões (ROSSI, 2017).  

 Como uma ferramenta de análise exploratória, a PCA permite revelar a 

existência ou não de amostras anômalas, de relações entre as variáveis medidas e 

de relações ou agrupamentos entre amostras (LYRA, 2010). A realização da PCA 

consiste em fatorar a matriz de dados X, como demonstrada na Equação 8. Nesta 

matriz, X é a matriz de dados originais de entrada (input), o número de linhas é igual 

ao número de casos (amostras) e o número de colunas é igual ao número de 

variáveis (espectrais). 

 𝐗 = 𝐓𝐋𝐓 + 𝐄 (8) 

Em que L é a matriz dos pesos, T a matriz dos escores e E a matriz dos 

resíduos e T sobrescrito corresponde a transposição da matriz (LYRA et al., 2010) 

(Figura 11). 

 

Figura 11 – Esquema de uma matriz hipotética X(i,j) no cálculo de PCA  

 

Fonte: Autoria própria (2021). 
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A PCA, entretanto, trata-se de um método exploratório não supervisionado. 

Para a construção de modelos de classificação são necessários métodos 

supervisionados. Nos métodos supervisionados, os modelos são construídos 

utilizando amostras com características conhecidas e, subsequentemente, o modelo 

é utilizado para prever a classe de amostras desconhecidas (SANTANA, 2020). São 

exemplos de métodos supervisionados o Soft Independent Modeling of Class 

Analogy (SIMCA), K-Nearest Neighbor (KNN), PLS-DA, OPLS-DA e LDA.  

O método de classificação PLS-DA utiliza a técnica de regressão multivariada 

por mínimos quadrados parciais (PLS) (SANTANA et al., 2020). Para a construção 

do modelo por PLS, os dados são organizados em dois blocos: o conjunto de dados 

é representado numa matriz Xixj em que as i linhas representam as amostras e as j 

colunas as variáveis instrumentais e a matriz Yixn que contém os valores para a 

propriedade de interesse que está sendo avaliada (LOPES, 2015) e sua quantidade 

de colunas depende da quantidade de classes em estudo. Tanto a matriz X quanto a 

matriz Y são decompostos em novas variáveis, denominadas variáveis latentes (VL) 

(Figura 12).  

 

Figura 12 – Representação das matrizes utilizadas no PLS-DA. X contendo os dados originais 
e Y, os índice de classe 0 (pertencente a classe analisada) e 1 (não pertencente) do exemplo, i 

representa as amostras e j as variáveis  

 

Fonte: Adaptado de Groski et al. (2015). 
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Como o método de PLS maximiza a relação entre a variável dependente e os 

escores, pode-se afirmar que as variáveis latentes representam as direções que 

melhor discriminam as classes em estudo (FERREIRA, 2015). Essa decomposição 

em variáveis latentes acontece da seguinte maneira (Equação 9): 

 𝐗 =  𝐓A𝐏A
T + 𝐄 e 𝐘 =  𝐓A𝐪A

T + 𝐅 (9) 

Nesta equação, A é o número de variáveis latentes. A matriz PA e o vetor qA são 

denominados pesos (do inglês loadings) da matriz X e Y, respectivamente (LOPES, 

2015), sendo o T sobrescrito correspondente às suas transposições. A matriz TA é a 

matriz de escores e E e F são os resíduos. 

A incorporação de uma etapa de filtração ortogonal no método de PLS-DA, o 

OPLS-DA, pode alcançar a separação da variação sistemática de interesse 

eliminando variações derivadas de fontes de confusão (HOLMES et al., 2006). Com 

isso, informações não correlacionadas da matriz X em relação a matriz Y são 

removidas (BYLESJÖ et al., 2006) o que é uma propriedade útil para a identificação 

de fontes desconhecidas da variação dos dados bem como para a identificação das 

variáveis preditivas do modelo (BYLESJÖ e RANTALAINEN, 2009). O método 

proposto por Trygg e Wold (2001) para cálculo da OPLS-DA é abordado na Equação 

10. 

 𝐗 =  𝐭𝐩𝐩𝐩
𝐓 +  𝐓𝐨𝐏𝐲𝐨

𝐓 + 𝐄 (10) 

Sendo tp o valor de escores preditivos de uma amostra, pp o vetor de pesos 

preditivo, To a matriz de escores ortogonais, Pyo a matriz de pesos ortogonais e E a 

matriz residual de X. Os escores ortogonais são calculados pela decomposição dos 

autovalores e usando os autovetores (w) como vetores de peso (w’) (TRYGG e 

Wold, 2001). A Figura 13 esquematiza a equação 10. 
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Figura 13 – Esquema gráfico do cálculo da OPLS-DA, indicando os escores (p’), escores ortogonais 
(porto’), autovetores (w’), autovetores ortogonais (worto’), pesos (t), pesos ortogonais (torto’) para a 

matriz X, u as colunas da matriz Y e c’ as classes do modelo  

 

Fonte: Trygg e Wold (2001). 

 

No caso de sobreposição de classes numa direção preditiva, a variação Y-

ortogonal pode ser empregada para intensificar as taxas de classificação (BYLESJÖ 

et al., 2006), o que pode levar o OPLS-DA a uma maior facilidade na visualização 

dos loadings usados na discriminação. 

A análise discriminante linear (do inglês, Linear Discriminant Analysis), LDA, é 

uma técnica supervisionada de análise multivariada e supervisionada cujo principal 

intuito é projetar os dados em um subespaço menor que possa resultar em uma 

melhor separação entre as classes (SILVA, 2017). A classificação por LDA emprega 

a distância de Mahalanobis e estima uma única covariância agrupada matriz S, em 

vez de usar uma estimativa separada para cada classe (MOREIRA et al., 2009). O 

GA foi proposto por John Holland e é uma técnica que simula matematicamente os 

mecanismos de seleção natural e a teoria da evolução das espécies (SOARES, 

2016), possibilitando a seleção de variáveis presentes num vasto conjunto de dados. 

O algoritmo genético básico envolve cinco passos: codificação das variáveis, criação 

da população inicial, avaliação da resposta, cruzamento e mutação (COSTA FILHO, 

1998). Com a seleção de variáveis é possível proceder com a LDA, uma vez que 

esta não pode construir um modelo com mais variáveis que amostras (FERREIRA, 

2015). 

Os formalismos de análise de discriminantes citados até então classificam 

seus indivíduos com base em informação prévia fornecida ao modelo. Contudo, 

cabe citar também os formalismos modelativos ou de classe única, que têm como 

objetivo distinguir objetos de uma classe particular, ou classe alvo, de outros objetos 

e classes (ZONTOV et al., 2017). O método de Soft Independent Modeling of Class 
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Analogy (SIMCA) é um destes, assumindo que os valores medidos para um dado 

grupo de amostras similares terão uma distribuição uniforme e modelável supondo 

que haja uma distribuição probabilística, permitindo estimar o grau de certeza na 

classificação (FERREIRA, 2015). Versões mais recentes do cálculo do SIMCA, o 

Data Driven SIMCA (DD-SIMCA) permitem calcular os erros de classificação do 

modelo (ZONTOV et al., 2017). Assim, a área de aceitação é construída para um 

valor especificado α de um erro tipo I e levando em consideração a 

presença/ausência de outliers (POMERANSTEV et al., 2014). 

Na metodologia empregada para cálculo do SIMCA os limites de cada classe 

são definidos por um modelo de PCA ajustado a cada classe de treinamento 

(FERREIRA, 2015). Para a tomada de decisões, o modelo se baseia em dois fatores 

que são provenientes da análise de componente principal de cada grupo: Hotelling 

(H), valor que representa o quadrado da distância de Mahalanobis do centro de um 

modelo a uma amostra projetada dentro do subespaço da PCA; e erro quadrado de 

predição (Q), valor da distância Euclidiana de uma amostra ao subespaço da PCA 

(POMERANSTEV et al., 2020). Assim sendo, uma amostra deve obedecer a ambos 

critérios para ser classificada num determinado grupo:  

(
𝑄 < 𝑄𝛼

𝐻 <  𝐻𝛼
) 

 Sendo Qα e Hα limites críticos decididos visando diminuir o erro tipo I. Já no 

DD-SIMCA, por ser um modelo que pode seguir um critério de componentes 

principais robusto, a amostra deve seguir o critério da distância completa (D) descrito 

nas equações 11 e 12 e ser aceita na condição D<Dα (POMERANSTEV et al., 2020). 

 
D =  LH

H

H0
+ LQ

Q

Q0
∝ Χ2 (LH + LQ) (11) 

 Dα =  Χ−2(α, LD), LD =  LH + LQ (12) 

 Assume-se que a distribuição de H e Q sigam o modelo de chi-quadrado. L 

representa graus de liberdade que possam ser assumidos por H ou Q, χ-2 é (1-α) do 

quantil da distribuição nos graus de liberdade (POMERANSTEV et al., 2020). 

Modelos robustos têm sido empregados em conjuntos de dados que apresentam 

grande complexidade nas suas informações e são uma alternativa que apresenta 
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insensibilidade a pequenos desvios de suposições e, ao mesmo tempo, não são 

alterados devido a desvios maiores (POMERANSTEV et al., 2014) 

O emprego de métodos multivariados é de especial importância para a 

metabonômica pois geralmente um único biomarcador não é responsável para 

descrever uma condição clínica individualmente (MADSEN, 2010). 

 

3.4.1 Figuras de Mérito 

 Apesar de determinar um limite para aceitação de erros, os modelos podem 

ainda apresentar classificação errônea de amostras. Para calcular a taxa dos erros 

cometidos pelo classificador, os resultados são organizados na forma de tabela de 

contingência ou matriz de confusão (FERREIRA, 2015) (Tabela 2). Numa matriz de 

confusão, se uma amostra, classificada como positiva pelo padrão-ouro, for 

classificada pelo modelo corretamente, é contada como verdadeira positiva (VP). 

Porém, se for classificado como negativo, é considerado falso negativo (FN), ou erro 

Tipo II. Se a amostra, classificada como negativa pelo padrão-ouro, for classificada 

como negativa é considerada verdadeiro negativo (VN). Entretanto, se for 

classificada como positiva, é contado como falso positivo (FP), ou erro Tipo I 

(THARWAT, 2018). 

 

Tabela 2 – Exemplo de matriz de confusão em formalismos quimiométricos 

  Classe Verdadeira 

  A B 

Classe Predita  
A VP FP 

B FN VN 

Fonte: autoria própria (2021). 

 

As métricas de exatidão, sensibilidade, especificidade, valor preditivo positivo 

(VPP) e valor preditivo negativo (VPN) são calculadas como mostra o Quadro 2. 
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Quadro 2 – Métricas da matriz de confusão, seu cálculo e significância estatística para modelos 
metabonômicos  

Métrica Cálculo 

Exatidão 
𝑉𝑃 +  𝑉𝑁

𝑛 𝑑𝑒 𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑠
 

Sensibilidade 
𝑉𝑃

𝑉𝑃 + 𝐹𝑁
 

Especificidade 
𝑉𝑁

𝐹𝑃 + 𝑉𝑁
 

Valor Preditivo Positivo (VPP) 
𝑉𝑃

𝑉𝑃 + 𝐹𝑃
 

Valor Preditivo Negativo (VPN) 
𝑉𝑁

𝐹𝑁 + 𝑉𝑁
 

Razão de verossimilhança negativa 
1 − 𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒

𝑒𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑑𝑎𝑑𝑒
 

Intervalo de confiança a 95%* 1,96 ∗ √[
(𝑃)(1 − 𝑃)

𝑛
] 

*O P indicado na fórmula é a proporção para a qual se pretende 
calcular o intervalo de confiança. 

 

Fonte: Adaptado de Luque et al. (2019). 

 

Exatidão trata-se da fração de predições corretas; especificidade mede a 

fração das amostras negativas preditas corretamente, enquanto sensibilidade é a 

proporção das amostras positivas medidas corretamente (LEVER et al., 2016).O 

valor preditivo positivo (VPP) representa a métrica de correta classificação das 

amostras para o número total de amostras positivas, enquanto o valor preditivo 

negativo (VPN) é expresso como a razão entre as amostras negativas classificadas 

corretamente e o número total de amostras classificadas como negativas 

(THARWAT, 2018).  
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4 METODOLOGIA 

 

4.1 SELEÇÃO DE PACIENTES E PROCEDIMENTOS ÉTICOS 

Os pacientes selecionados tinham entre seis e trinta e seis meses de idade. 

Tratavam-se de pacientes do Serviço de Alergia e Imunologia Clínica e no 

Ambulatório de Pediatria e de Puericultura do Hospital das Clínicas de Pernambuco 

que apresentavam sintomas anteriores de sibilância. As crianças participantes 

tiveram o termo de consentimento livre e esclarecido (TCLE) (APÊNDICE A) 

assinado pelos pais e/ou responsável legal. Posteriormente, foi aplicado o 

questionário padrão de coleta de dados de pacientes do Ambulatório de Pediatria e 

de Puericultura do Hospital das Clínicas de Pernambuco, baseado no EISL 

(APÊNDICE B e C) para registro de dados epidemiológicos. No questionário dos 

pacientes também houve o registro de achados laboratoriais como teste cutâneo 

(com testagem para Dermatophagoides pteronyssinus, Blomia tropicalis, barata mix 

e epitélio de cão) e dosagem de eosinófilos absoluta e relativa. Os pacientes foram 

classificados, usando os critérios deste questionário, como positivos ou negativos e, 

para este estudo, esses grupos foram classificados como Sibilância Recorrente 

(SR), para os pacientes positivos, e Sibilância não Recorrente (SNR), para os 

negativos. No universo de 81 pacientes atendidos, foram selecionados 14 

voluntários no grupo positivo e 25 no grupo negativo.  

Os critérios de inclusão para os voluntários selecionados foram: lactentes que 

apresentaram três ou mais episódios de sibilância nos últimos seis meses; ausência 

de outras doenças respiratórias, como infecções respiratórias recentes, fibrose 

cística, broncodisplasia ou bronquiectasia. Os critérios de exclusão foram: o uso de 

medicamentos para o tratamento de sibilância ou asma, como corticoide inalatório, 

antileucotrienos e/ou broncodilatadores; uso de medicação para tratamento de crise 

aguda em menos de quinze dias. Para cada paciente, foi empregado o Índice 

Preditivo de Asma modificado, conforme descrito por Guilbert et al. (2004). O 

protocolo de preparação das amostras incluiu centrifugação (4000 RPM por 10 

minutos) do sangue total dos participantes do estudo e amostragem apenas do soro. 
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O presente estudo foi aprovado pelo Comitê de Ética em Pesquisa do Centro 

de Ciências da Saúde da Universidade Federal de Pernambuco (número de 

aprovação 2.337.325). 

 

4.2 ENSAIOS METABONÔMICOS 

Os espectros de RMN de 1H foram adquiridos usando um espectrômetro 

VNMRS400, operando a 400 MHz. Foram utilizados 400 μL de soro e 200 μL de D2O 

num tubo de RMN de 5 mm. A sequência de pulso Carr-Purcell-Meiboom-Gill 

(CPMG) com pré-saturação do sinal de água foi usada com os seguintes 

parâmetros: janela espectral igual a 6,4 kHz, tempo de aquisição igual a 2,55 s, 128 

transientes, spin eco delay igual a 400 microssegundos, 88 ciclos, dando um tempo 

total de eco igual a 70,4 milissegundos e tempo de aplicação do pulso seletivo para 

saturação do sinal da água igual a 2,0 s, a 27º C (BECKONERT, 2007). O sinal 

atribuído ao grupo metil do lactato (δ 1,33 ppm) foi utilizado como referência de 

deslocamento químico (BATISTA, 2018). A utilização do software MestReNova 

possibilitou o processamento dos espectros e da correção da linha de base, pelo 

Polinômio de Bernstein e ajuste manual de fase. Em seguida, foi selecionada a 

região entre δ 0,65 e 4,5 ppm dos espectros e utilizou-se um bin de 0,004 ppm/bin. 

Os dados espectrais foram coletados em uma matriz com 39 casos (linhas) e 963 

variáveis (coluna). O conjunto de dados foi pré-processado usando normalização por 

média (nas linhas e, em seguida, nas colunas, nessa ordem).  

Empregou-se como análise exploratória a PCA e para análise classificatória 

empregou-se PLS-DA e OPLS-DA, utilizando a plataforma online MetaboAnalyst. 

Para validar os modelos obtido por PLS-DA e OPLS-DA, foi utilizado o Leaving-One-

Out Cross Validation (LOOCV) e teste de permutação, usando 2000 permutações 

(PONTES, 2019). O modelo de LDA foi realizado usando o software MATLAB 

2010a. Para o modelo LDA, as amostras foram divididas em dois grupos: 

treinamento e teste na proporção de 70:30 de cada grupo classificado. O Algoritmo 

Kennard-Stone foi utilizado para fazer a seleção das amostras. O Algoritmo Genético 

(GA) (população = 500, gerações = 50) foi executado para promover uma seleção de 

variáveis para o modelo LDA. Utilizou-se também o MATLAB 2010a para a análise 

DD-SIMCA, utilizando 6 componentes principais. Os dados foram centrados na 



49 
 

média, utilizou-se como parâmetros α = 0.05, outlier significance de 0.01 com chi-

quadrado como tipo de área de aceitação num modelo robusto. Para cada um dos 

modelos metabonômicos de LDA e DD-SIMCA calculou-se a sensibilidade, 

especificidade, exatidão, valor preditivo positivo e valor preditivo negativo.  

Foi utilizado o MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/) para análise 

de vias metabólicas e as mais relevantes foram descritas, baseadas no valor de p. 

Foi escolhida a biblioteca Homo sapiens e utilizado o teste Exato de Fisher e o 

algoritmo de relative-betweenness centrality como as opções para a análise de 

sobre-representação e análise de topologia de via metabólica, respectivamente 

(PANG et al., 2018). 
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5 RESULTADOS E DISCUSSÃO 

 

5.1 DADOS DOS PACIENTES 

A Tabela 3 apresenta os dados clínicos dos voluntários classificados neste 

estudo nos grupos de Sibilância Recorrente (n=14) e Sibilância não Recorrente 

(n=25). A Figura 14 mostra um espectro típico de RMN de 1H do soro de um dos 

pacientes do grupo SNR com o processamento pós-instrumental e com alguns 

metabólitos identificados em seus respectivos deslocamentos químicos.  

 

Tabela 3 – Características demográficas, clínicas e laboratoriais dos voluntários por grupo 

 Sibilância não 

Recorrente 

Sibilância 

Recorrente 

Valor 

de p 

Número de voluntários 25 14  

Idade em meses (Média ± desvio padrão) 22,3 ± 7,4 27,8 ± 6,2 0,024a 

Sexo (Masculino:Feminino) 20:5 8:6 0,156b 

Etnia (Afrodescendente:Caucasiano) 7:17* 3:10** 1,000b 

Teste cutâneo (Positivo:Negativo) 22:3 11:2** 1,000b 

Eosinófilos/mm³ (Média ± desvio padrão) 369,6 ± 297,9 585,6 ± 431,2  0,073a 

Eosinófilos (%) (Média ± desvio padrão) 3,4 ± 2,5 5,6 ± 4,0 0,042a 
a. Teste t de Student; b Teste exato de Fisher. *A etnia de um dos pacientes foi indicada como “outra”. 
** Informação não preenchida por um dos voluntários. 

Fonte: Autoria própria (2020). 

  

A Tabela 4 apresenta a matriz de confusão com a predição feita usando o 

Índice Preditivo de Asma modificado (mAPI, do inglês Modified Asthma Predictive 

Index). A classificação para cada paciente está no APÊNDICE E. O mAPI foi 

desenvolvido como um indicador de ocorrência de asma, mas a título de 

comparação, classificamos todos os voluntários do estudo. Assim, o mAPI 

classificou corretamente as 14 amostras de pacientes que tiveram o diagnóstico de 

Sibilância Recorrente. Por outro lado, das 25 amostras fornecidas por pacientes que 

tiveram o diagnóstico de Sibilância Não-Recorrente, o mAPI classificou corretamente 

apenas 12 (48%) amostras.  
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Tabela 4 – Matriz de confusão das classes preditas usando o Índice Preditivo de Asma modificado 
(mAPI)  

  Diagnóstico Clínico 

 
Sibilância 

Recorrente 
Sibilância Não-

Recorrente 

Classe predita pelo mAPI 
Positivo 14 13 

Negativo 0 12 

Sensibilidade 100%; especificidade 48,0%; exatidão 66,6%; VPP 51,8% e VPN 100%. 

Fonte: Autoria própria (2020). 

 

Figura 14 – Típico espectro de RMN de 1H (400 MHz, D2O) de soro obtido nesse estudo, de um 
paciente do grupo de Sibilância não Recorrente. Alguns sinais foram atribuídos a metabólitos 

 

Fonte: Autoria própria (2020). 

 

5.2 FORMALISMOS QUIMIOMÉTRICOS 

A PCA do conjunto de dados analisado não mostrou uma diferença 

significativa entre os grupos em estudo (Figura 15). PC1 e PC2 explicaram apenas 

28.6% da variância do conjunto de dados. Além disso, não foi observado 

agrupamento entre as amostras. 

A primeira componente principal apresenta a máxima variância das variáveis. 

A segunda componente principal não é correlacionada com a primeira e representa 

o máximo da variância residual, e assim sucessivamente até que toda a variância 

seja explicada (IZQUIERDO-GARCÍA, 2011). Um dos motivos que justifique valores 
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baixos de variância explicada pelas componentes principais da PCA é a grande 

dimensionalidade dos dados analisados. Apesar da região que os espectros foram 

avaliados ter sido pequena, o número de bin utilizados gerou 963 variáveis para a 

matriz dos dados. Para esse estudo utilizou-se um número de bin menor visando 

diminuir a probabilidade de múltiplos picos residindo num único bin (ANDERSON, 

2010). Como a estratégia de análise exploratória não atendeu aos propósitos deste 

estudo realizaram-se análises classificatórias supervisionadas. 

 

Figura 15 – Análise de componentes principais do conjunto de dados analisado. Em vermelho as 
amostras de Sibilância Recorrente e em verde as amostras de Sibilância não Recorrente 

 

Fonte: Metaboanalyst 5.0 (2020). 

 

Modelos de classificação são ferramentas importantes para fornecer medidas 

de correlação estatística (MADSEN, 2010). A Figura 16 revela como as amostras 

ficaram dispostas no modelo PLS-DA realizado, que apesar de um possível 
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agrupamento de classes, apresenta baixa performance devido à baixa exatidão do 

modelo. As figuras de mérito do PLS-DA (Figura 17) não apresentaram resultados 

estatisticamente relevantes para a separação dos lactentes com Sibilância 

Recorrente e Sibilância não Recorrente. Uma possível causa desse resultado pode 

ter sido o grande número de variáveis, associadas às regiões espectrais que 

caracterizavam as amostras. Nessas condições, o modelo torna-se muito 

dependente do conjunto de dados usado para sua construção e, às vezes, eles 

apresentam baixa capacidade de generalização (RODRÍGUEZ-PÉREZ, 2018). 

 

Figura 16 – Gráficos de escores da PLS-DA. Em vermelho, Sibilância Recorrente; e, em verde, 

Sibilância não Recorrente 

 

Fonte: Metaboanalyst 5.0 (2020). 
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Figura 17 – Figuras de mérito do PLS-DA. A) Teste de permutação. B) Valores de performance do 
modelo 

 

 

Fonte: Metaboanalyst 5.0 (2020). 

 

O uso do OPLS-DA possibilitou uma melhor visualização da discriminação 

entre as amostras, apresentando um valor de R2Y igual a 0,87. O valor de R2Y 

representa a fração da variância explicada do modelo pela regressão 

(BORGONOVO,2006). Resultados semelhantes de R2Y foram observados em 

modelos que estudavam soro de pacientes com asma e doença pulmonar obstrutiva 

crônica, como apontam os estudos de Ghosh et al. (2019). A Figura 18 mostra o 

gráfico de escores e o teste de permutação do modelo metabonômico usando 

OPLS-DA. Tal ferramenta resultou num modelo sobreajustado, devido ao baixo valor 

de Q2 (Q2 igual a –0,268), resultando assim numa baixa capacidade preditiva. 
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Figura 18 – Modelo metabonômico de OPLS-DA calculado para discriminação entre os grupos de 
Sibilância Recorrente e não Recorrente (A). Resultado do teste de permutação do OPLS-DA (B) 

 

Fonte: Metaboanalyst 5.0 (2020). 

 

Devido a tendência a grupamento das amostras, os modelos construídos com 

PLS-DA e OPLS-DA indicam que a informação que discrimina os grupos de 

interesse está contida no conjunto de dados, mas a variação intra e intergrupo é 

muito intensa, dificultando a discriminação. Assim, optou-se por realizar duas 

abordagens distintas: construir funções discriminantes, usando LDA, a partir de um 

conjunto reduzido de variáveis; e uma modelagem usando DD-SIMCA, que utiliza 

um número limitado de componentes principais e considera apenas a variação 

intragrupo. 

O resultado do formalismo GA-LDA, apresentado como matriz de 

contingência na Tabela 5, apresenta um modelo metabonômico com exatidão, 

especificidade e sensibilidade iguais a 75%, 62,5% e 100%, respectivamente. Outro 

resultado apresentado pelo GA-LDA foram as variáveis de interesse responsáveis 

pela separação das classes em estudo. Tais variáveis associadas ao deslocamento 

químico que apresentam podem ser associadas a metabólitos presentes nos 

quadros de sibilância recorrente e sibilância não recorrente.  
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Tabela 5 – Matriz de confusão dos modelos de GA-LDA para treinamento e teste 

  Diagnóstico Clínico 

Modelo de Treinamendo 
Sibilância 

Recorrente 
Sibilância não 

Recorrente 

Classe predita 
Sibilância Recorrente 10 0 

Sibilância não Recorrente 0 17 

Modelo de teste   

Classe predita 
Sibilância Recorrente 4 3 

Sibilância não Recorrente 0 5 

Sensibilidade 100%; especificidade 62,5%; exatidão 75,0%; VPP 57,1% e VPN 100%. 

Fonte: Autoria própria (2020). 

 

O uso do Algoritmo Genético possibilitou realizar a análise de LDA, 

contornando a restrição do cálculo de LDA quando existem mais variáveis que 

amostras (FERREIRA, 2016). Os resultados apresentados pelo modelo 

metabonômico de LDA tiveram exatidão de 75,0% (± 24,5), apresentando 42,9% de 

casos falsos-positivos. Isto implica numa baixa especificidade (62,5% ± 27,4) e 

também em baixo valor preditivo positivo (57,1% ± 28,0). Entretanto, este modelo 

poderia ser utilizado como ferramenta de triagem de novas amostras, uma vez que 

apresentou valor preditivo negativo igual a 100%, o que indica que todas as 

amostras do grupo de Sibilância não Recorrente foram classificadas corretamente. A 

performance do LDA apresenta-se então promissora, podendo-se melhorar o 

modelo inserindo mais amostras nos grupos de calibração e teste no futuro. 

Modelos one-class, ou aqueles que apresentam modelagem de classe, 

consistem na descrição de uma classe alvo e na detecção se um objeto externo 

pertence ou não a essa classe (RODIONOVA et al., 2016). Tais modelos também 

são úteis quando há baixa disponibilidade de amostras aceitas pelos critérios de 

inclusão (KHAN e MADDEN, 2014). Isso leva a um desbalanceamento de dados 

entre as classes, que faz com que os algoritmos de aprendizagem de métodos de 

aprendizagem de máquinas apresentem dados de baixo desempenho para a classe 

com menor número de amostras (MENA e GONZALEZ, 2009). Como a avaliação da 

capacidade preditiva de um modelo depende dos seus indicadores de exatidão, 

sensibilidade e especificidade (SOARES, 2020), optou-se por utilizar do formalismo 
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DD-SIMCA para construção de um modelo metabonômico que identificasse os 

pacientes que apresentam o quadro de sibilo não recorrente. Para o grupo de 

treinamento, das 17 amostras do grupo SNR selecionadas previamente pelo 

Kennard-Stone uma apresentou-se como outlier e uma como amostra de extremo, 

enquanto as demais estavam no intervalo de confiança estabelecido para o modelo. 

No grupo de teste foram selecionadas 8 amostras do grupo SNR e foram utilizadas 

todas as amostras do grupo SR para testar o modelo. Desta feita, o modelo pode 

prever que amostras apresentavam características semelhantes ao grupo inicial que 

serviu de treinamento para o formalismo empregado. Os resultados obtidos 

apresentaram sensibilidade, especificidade e exatidão de 78,6% (±17,0), 87,5% 

(±14,0) e 81,8% (±16,0), respectivamente (Figura 18). Obteve-se para os valores 

preditivos positivo e negativo 91,7% (±12,0) e 70% (±19,0), respectivamente. A 

Tabela 6 apresenta as figuras de mérito do modelo. 

 

Figura 19 – Modelo DD-SIMCA para o grupo de treinamento (A) e o grupo teste (B). Em verde, as 

amostras da classe de treinamento (SR); em laranja, amostras classificadas como extremos; e em 

vermelho, as amostras outliers preditas pelo modelo. A linha verde indica o intervalo de confiança 

(95%) do grupo de amostras modeladas, enquanto a linha vermelha indica o limite a partir do qual 

tem-se as amostras não pertencentes ao grupo modelado. 

 

 

A) 
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Fonte: Autoria própria (2020). 

 

Tabela 6 – Matriz de Confusão do modelo metabonômico de DD-SIMCA utilizando o espectro de 
RMN de 1H do soro de lactentes para discriminação entre Sibilância Recorrente e Sibilância não 

Recorrente 

  Diagnóstico Clínico 

Grupo de teste  
Sibilância 

Recorrente 
Sibilância Não 

Recorrente 

Classe Predita 
Sibilância Recorrente 11 1 

Sibilância Não Recorrente 3 7 

Sensibilidade 78,6%; especificidade 87,5%; exatidão 81,8%; VPP 91,7% e VPN 70,0%. 

Fonte: Autoria própria (2020). 

 

O baixo número de pacientes que apresenta Sibilo Recorrente pode não 

representar adequadamente todos os casos dessa condição fisiopatológica, mas ao 

optar por realizar uma metodologia com modelagem de classe para os casos 

negativos valida-se a descrição envolvendo os lactentes saudáveis (CABRAL e 

OLIVEIRA, 2014). Uma modelagem invertendo as classes de estudo foi realizada e 

seus achados foram incluídos no APÊNDICE D. 

Comparando a razão de verossimilhança negativa entre os modelos de GA-

LDA, DDSIMCA e a informação fornecida pelo mAPI, tem-se respectivamente os 

valores de 0; 0,24; 0,48. Este valor varia de 1 a 0 e quanto mais próximo a 0 menor 

a probabilidade de o voluntário apresentar-se doente se classificado como negativo 

B) 
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pelo modelo em estudo (FERREIRA e PATINO, 2018). Quando comparados 

(APÊNDICE F) com o mAPI, a performance dos modelos de DD-SIMCA e GA-LDA 

são melhores, o que indica que o uso de modelos metabonômicos podem levar a um 

diagnóstico diferencial entre lactentes que apresentem sibilância recorrente dos que 

não apresentam. 

 

5.3 VIAS METABÓLICAS 

Nove regiões espectrais mostraram-se importantes para discriminar amostras 

de sibilância recorrente de não recorrente, ao realizar a seleção de variáveis de 

interesse pelo Algoritmo Genético. Essas regiões foram atribuídas a oito metabólitos 

(Tabela 7) que podem ser agrupados em duas classes: lipídios (VLDL / LDL e 

colesterol) e aminoácidos e seus derivados (histidina, leucina, glutamina, glutamato 

e ácido N-acetil-L-aspártico).  

 

Tabela 7 – Metabólitos endógenos mais importantes para discriminação entre Sibilância Recorrente e 
Sibilância não Recorrente e sua variação de concentração nestes grupos de acordo com o modelo 

metabonômico de GA-LDA 

Componente 
Deslocamento 

Químico (δ/ppm) 
↑ Grupo Referência 

VLDL/LDL-CH3 0.791  SR 
WHISHART et al., 

2009 
Colesterol-C10 1.087 SR LI et al., 2017 
Não atribuído 1.097 SNR  

Leucina 1.743  SNR 
MAMTIMIN et al., 

2014 

Glutamato  2.335 SNR 
 MAMTIMIN et al., 

2014 

Ácido N-Acetil-L-Aspartico 2.519; 2.711  SR 
WHISHART et al., 

2009 

Glutamina 2.131 SR 
WHISHART et al., 

2009 

Histidina 3.976 SNR 
MAMTIMIN et al., 

2014 

Fonte: Autoria própria (2020). 

 

Os níveis séricos de VLDL e LDL aumentam a resposta imunológica, visto 

que essas moléculas induzem a produção de quimiocinas pró-inflamatórias 

(SARASWATHI e HASTY, 2006). O modelo metabonômico GA-LDA indica que os 

pacientes SR apresentaram níveis séricos mais elevados de VLDL e LDL e 
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colesterol. A mobilização de lipídeos relaciona-se com o metabolismo lipídico e 

estresse oxidativo (JUNG et al., 2013; FARRAIA et al., 2019). Moléculas oxidantes 

agem destruindo as funções ciliares do epitélio respiratório enquanto aumentam a 

secreção de muco, contribuem para a contração do músculo liso e servem como 

moléculas de quimiotaxia para células inflamatórias (SAGDIC et al., 2010).  

Muitas vezes, os aminoácidos são considerados mediadores da atividade 

imunológica na asma (MATYSIAK et al., 2020). Níveis significativos de leucina em 

pacientes asmáticos relacionam-se à conversão para acetato, que posteriormente 

gera acetil-CoA e, por conseguinte, entra no ciclo do ácido tricarboxílico para 

atender à alta demanda metabólica desses pacientes (GHOSH et al., 2019). 

Glutamato e glutamina foram observados com níveis séricos elevados nos grupos 

SR e SNR, respectivamente. São aminoácidos não essenciais e desempenham um 

papel importante em muitas funções metabólicas como o equilíbrio do pH sanguíneo 

pela aminação do glutamato e nas vias energéticas. O papel do glutamato e da 

glutamina nas vias metabólicas está relacionado tanto ao ciclo da ureia quanto ao 

ciclo de Krebs na geração de energia para a contração do músculo liso (NELSON e 

COX, 2014) e suas concentrações estão em constante equilíbrio (TAPIERO et al., 

2002) (Figura 19).  

 

Figura 20 – (A) Balanço da conversão do glutamato em glutamina e a produção de 
intermediários de vias energéticas. (B) Vias metabólicas de biossíntese do glutamato  
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Com base nos dados obtidos, quando um paciente apresenta o quadro de 

sibilância recorrente, uma condição mais agravada considerando ambos grupos 

estudados, a reação tende a deslocar-se para a formação de novas moléculas de 

glutamina. Os níveis séricos elevados desses metabólitos podem estar relacionados 

à presença da sibilância recorrente, que possivelmente reflete a carga energética 

decorrente de inflamação e broncoconstrição (DE BENEDICTIS e ATTANASI, 2016) 

pela produção de energia e intermediários metabólicos do ciclo de Krebs e ciclo da 

ureia (Figura 20). O ácido N-acetil-L-aspártico sérico está relacionado ao ciclo 

glutamato-glutamina como um dos metabólitos intermediários (WISHART et al., 

2009). O Anexo A mostra as vias metabólicas da Alanina-Aspartato-Glutamato e D-

Glutamina e D-Glutamato, as mais relevantes para a discriminação entre Sibilância 

Recorrente e não Recorrente, segundo nossos resultados. 

A histidina e seus produtos metabólicos são potentes mediadores da 

inflamação aguda e já foram relatados achados de níveis séricos alterados de 

histidina em processos inflamatórios nas vias aéreas em pacientes asmáticos 

(MOTTA et al., 2014). Este aminoácido foi encontrado com níveis elevados nos 

pacientes com sibilância não recorrente e por ser um aminoácido essencial não 

existem rotas de biossíntese que justifiquem seu aumento sérico. Todas as vias 

metabólicas discutidas estão de acordo com as mais relevantes indicadas na análise 

de vias metabólicas realizada (Figura 21).  
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Figura 21 – Vias metabólicas mais relevantes para a discriminação. (a) Alanina, aspartato e glutamato 
(p-value 0.0045); (b) D-glutamina e D-glutamato (p-value 0.0230) 

 

Fonte: Metaboanalyst (2020). 

 

A presença de diferentes arranjos bioquímicos-metabólicos reforça que a 

expressão de metabólitos está subjacente a perfis patológicos distintos já na idade 

pré-escolar (CARRARO et al., 2018). Relacionar esses metabólitos com a condição 

dos pacientes fornece novos insights sobre o mecanismo patogênico da asma 

(JUNG, 2013) e pode levar a tratamentos adequados nos estágios iniciais da 

doença, melhorando a qualidade de vida do paciente. 
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6 PERSPECTIVAS 

 

Espera-se que esse trabalho venha a ser útil para pesquisas e protocolos 

clínicos que busquem realizar um diagnóstico diferencial em lactentes que 

apresentem sibilo recorrentes daqueles que não apresentem. Ele também serve 

como linha de partida para diferentes abordagens metodológicas tais como testar se 

há diferença entre lactentes saudáveis e os grupos estudados, realização de 

modelos que englobem como variáveis IgE e valores de eosinófilos bem como que 

seus dados integrem bancos de dados que tratem acerca da condição clínica 

abordada ao longo do trabalho.  

 Além do que foi mencionado, espera-se que os modelos metabonômicos 

desenvolvidos possam ser utilizados na prática clínica, promovendo um diagnóstico 

precoce em lactentes e, consequentemente, seja possível realizar um tratamento 

adequado aos que apresentem um quadro de sibilo recorrente e evitar que aquelas 

crianças que não apresentam um quadro de recorrência não sejam submetidas a um 

tratamento indevido. Com isso, a academia integra-se à prática, aplicando pesquisa 

de ponta aos protocolos clínicos realizados no Sistema Único de Saúde brasileiro, 

estando de acordo com seu princípio básico de integralidade. 
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7 CONCLUSÃO 

 

No presente trabalho foram desenvolvidos modelos metabonômicos capazes 

de identificar pacientes com Sibilância não Recorrente e diferenciá-los de lactentes 

que apresentam Sibilância Recorrente. 

Com base nos achados do presente estudo, foi possível identificar 

metabólitos característicos de ambas condições fisiopatológicas e avaliar as vias 

metabólicas envolvidas, a partir dos espectros de RMN de 1H adquiridos das 

amostras analisadas.   

Os formalismos que resultaram em modelos com melhores performance 

foram GA-LDA (sensibilidade 100%; especificidade 62,5%; exatidão 75,0%; VPP 

57,1% e VPN 100%) e DD-SIMCA (sensibilidade 78,6%; especificidade 87,5%; 

exatidão 81,8%; VPP 91,7% e VPN 70,0%). A análise multivariada de dados tornou 

possível desenvolver um modelo metabonômico com alta sensibilidade e 

especificidade. A integração de técnicas analíticas e algoritmos de análise 

multivariada pode fornecer uma nova ferramenta para o diagnóstico diferencial de 

Sibilância Recorrente e Sibilância não Recorrente. 

 As vias metabólicas da alanina- aspartato-glutamato e histidina mostram-se 

em congruência com as vias metabólicas reportadas na literatura de quadros 

precursores de asma. 

 A integração de modelos metabonômicos à prática clínica necessita de uma 

série de requisitos para ser implementada que incluem formação contínua de 

profissionais, avanços em pesquisa e adaptação de conteúdo. Espera-se que os 

resultados apresentados justifiquem o esforço de aumentar o número de pacientes 

para a obtenção de modelos mais robustos, podendo embasar pesquisas futuras no 

ramo das ciências ômicas e no diagnóstico de Sibilância Recorrente e Sibilância não 

Recorrente.  

Os achados descritos neste trabalho não incluíram as dificuldades 

encontradas para a obtenção dos modelos metabonômicos mencionados no texto. 

Tais dificuldades foram poucas, entretanto responsáveis por traçarmos novos rumos 

para este trabalho. Eis aqui seu detalhamento: inicialmente havia um n de 81 
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voluntários no estudo com suas respectivas amostras de soro. Os pacientes do 

grupo “saudável”, não incluído neste estudo, tiveram suas amostras analisadas 

usando um espectrômetro de 7 T, operando a 300 MHz. No entanto, durante a 

execução do estudo, este equipamento quebrou e com isso as demais amostras, ou 

seja, todas aquelas do grupo de doentes (sibilantes recorrentes e sibilantes não 

recorrentes) foram analisadas no equipamento de 9 T, operando a 400 MHz, 

mencionado na metodologia. Ao realizar uma análise de PCA entre o grupo de 

saudáveis e doentes observou-se um agrupamento natural proveniente da diferença 

de dados obtidos entre os equipamentos, inerentes ao campo magnético aplicado, e 

não pelo perfil das amostras, o que levou ao descarte do uso de dados dos 

pacientes saudáveis. Também não foi possível continuar com a seleção de mais 

pacientes para o estudo para aumentar o n de pacientes com sibilância recorrente 

ou sibilância não recorrente devido a suspensão do atendimento no Ambulatório de 

Pediatria e Puericultura por conta da pandemia de COVID-19. 
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APÊNDICE A – TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO (TCLE) 

DO ESTUDO 
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APÊNDICE B – FICHA CADASTRAL DE PACIENTES DO AMBULATÓRIO DE 

PEDIATRIA E DE PUERICULTURA DO HOSPITAL DAS CLÍNICAS DE 

PERNAMBUCO 
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APÊNDICE C – QUESTIONÁRIO PADRÃO DE COLETA DE DADOS DE 

PACIENTES DO AMBULATÓRIO DE PEDIATRIA E DE PUERICULTURA DO 

HOSPITAL DAS CLÍNICAS DE PERNAMBUCO, BASEADO NO EISL  
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APÊNDICE D – MODELOS DE TREINAMENTO E TESTE, RESPECTIVAMENTE, 

DA MODELAGEM COM O GRUPO DE SIBILÂNCIA RECORRENTE COMO 

GRUPO ALVO E MATRIZ DE CONTIGÊNCIA 

 

 

 

  Diagnóstico Clínico 

Grupo de teste 
Sibilância 

Recorrente 
Sibilância Não 

Recorrente 

Classe Predita 
Sibilância Recorrente 3 9 

Sibilância Não Recorrente 1 16 

Sensibilidade 75%; Especificidade 64%; Exatidão 65,51%; VPP 25% e VPN 94,12%. 
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APÊNDICE E – RESULTADO DO ÍNDICE PREDITOR DE ASMA MODIFICADO 

DOS VOLUNTÁRIOS DO ESTUDO 

Numeração dos 
voluntários 

Índice Preditor de Asma Modificado (mAPI) 

Critérios 
Maiores 

Critérios 
Menores Resultado 

1 2 3 1 2 3 

10 S N N N N N Positivo 

13 N N N N S N Negativo 

26 N N N N N N Negativo 

34 N N N N N N Negativo 

35 S N N N N N Positivo 

36 S N N N N N Positivo 

40 N N S N N N Positivo 

43 S N N N N N Positivo 

45 S N N N * N Positivo 

46 N S N N * N Negativo 

47 N N N N S N Negativo 

48 S N N N N N Positivo 

49 N N N N N S Negativo 

50 N N S N N N Positivo 

51 S S N N N S Positivo 

52 S N N N S N Positivo 

54 S N N N N N Positivo 

55 S N N N S N Positivo 

56 S N N S N N Positivo 

58 S N N N N N Positivo 

59 N N S N N N Positivo 

60 S N N N N N Positivo 

61 N N N N N N Negativo 

62 S N N N S N Positivo 

63 N N N N S N Negativo 

64 N N N N N N Negativo 

65 S N N N S N Positivo 

66 S N N N N N Positivo 

67 S N N N N N Positivo 

68 S N N N N N Positivo 

71 S N N N N N Positivo 

72 N N N N S N Negativo 

73 N N N N S N Negativo 

74 S N N N N N Positivo 

75 S N N N N N Positivo 

76 S N N N S N Positivo 

78 N N N N N N Negativo 

80 S N N N S N Positivo 

81 S N N N N N Positivo 

*Não informado 
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APÊNDICE F – CLASSIFICAÇÃO DOS PACIENTES VOLUNTÁRIOS DO ESTUDO 

SEGUNDO O mAPI, GA-LDA E DDSIMCA 

Numeração 
dos 

voluntários 

Diagnóstico 
Clínico 

Classificação 
segundo mAPI 

Modelo GA-LDA Modelo DD-SIMCA 

10 SR Positivo SR SR 

13 SNR Negativo SNR SNR 

26 SNR Negativo SNR SNR 

34 SNR Negativo SNR SNR 

35 SNR Positivo SNR SNR 

36 SR Positivo SR SR 

40 SNR Positivo SR SNR 

43 SR Positivo SR SR 

45 SR Positivo SR SR 

46 SNR Negativo SR SNR 

47 SNR Negativo SNR SNR 

48 SNR Positivo SNR SNR 

49 SNR Negativo SNR SNR 

50 SNR Positivo SNR SNR 

51 SR Positivo SR SR 

52 SR Positivo SR SR 

54 SNR Positivo SNR SNR 

55 SR Positivo SR SR 

56 SNR Positivo SNR SNR 

58 SNR Positivo SR SNR 

59 SNR Positivo SNR SNR 

60 SR Positivo SR SNR 

61 SNR Negativo SNR SNR 

62 SR Positivo SR SR 

63 
SNR 

Negativo SNR 
Amostra outlier do 

grupo SNR 

64 SNR Negativo SNR SNR 

65 SR Positivo SR SR 

66 SR Positivo SR SR 

67 SNR Positivo SNR SNR 

68 SNR Positivo SNR SNR 

71 SR Positivo SR SNR 

72 SNR Negativo SNR SNR 

73 SNR Negativo SNR SNR 

74 
SNR 

Positivo SNR 
Amostra de extremo 

do grupo SNR 

75 SR Positivo SR SNR 

76 SR Positivo SR SR 

78 SNR Negativo SNR SR 

80 SNR Positivo SNR SNR 

81 SNR Positivo SNR SNR 

 Métrica de performance 

Exatidão – 66,6% 75% 81,8% 
Sensibilidade – 100% 100% 78,6% 
Especificidade – 48% 62,5% 87,5% 
Valor Preditivo 
Positivo 

– 
51,8% 57,1% 91,7% 

Valor Preditivo 
Negativo 

– 
100% 100% 70,0% 

Em azul as amostras de treinamento e em verde as amostras de teste 
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ANEXO A – VIAS METABÓLICAS DA ALANINA-ASPARTATO-GLUTAMATO E D-

GLUTAMINA E D-GLUTAMATO 

 

 

 


