e~
ne-
e~

1™

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

MARCELO GOMES PEREIRA DE LACERDA

Out-of-the-box Parameter Control for Evolutionary and Swarm-based Algorithms

with Distributed Reinforcement Learning

Recife
2021

MARCELO GOMES PEREIRA DE LACERDA

Out-of-the-box Parameter Control for Evolutionary and Swarm-based Algorithms
with Distributed Reinforcement Learning

Tese apresentada ao Programa de Pos-
Graduagao em Ciéncias da Computacao da
Universidade Federal de Pernambuco, como
requisito parcial para a obtencao do titulo
de Doutor em Ciéncias da Computacao.

Area de Concentraciao: Inteligéncia
Computacional.

Orientadora: Profa. Teresa Bernarda Ludermir, Ph.D.
Co-Orientador: Prof. Fernando Buarque de Lima Neto, Ph.D.

Recife
2021

Catalogacéao na fonte
Bibliotecério Cristiano Cosme S. dos Anjos, CRB4-2290

L1310

Lacerda, Marcelo Gomes Pereira de

Out-of-the-box parameter control for evolutionary and swarm-based
algorithms with distributed reinforcement learning / Marcelo Gomes Pereira de
Lacerda. — 2021.

213 f.:il., fig., tab.

Orientadora: Teresa Bernarda Ludermir.

Tese (Doutorado) — Universidade Federal de Pernambuco. Cin, Ciéncia da
Computacéo, Recife, 2021.

Inclui referéncias e apéndices.

1. Inteligéncia Computacional. 2. Inteligéncia de enxames. 3. Computacao
evolucionéaria. 4. Aprendizagem por reforgo. |. Ludermir, Teresa Bernarda
(orientadora). Il. Titulo.

006.31 CDD (23. ed.) UFPE - CCEN 2021 - 95

Marcelo Gomes Pereira de Lacerda

“Out-of-the-box Parameter Control for Evolutionary and Swarm-based
Algorithms with Distributed Reinforcement Learning”

Tese de Doutorado apresentada ao Programa
de Pos-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obteng¢do do titulo de Doutor em Ciéncia da
Computagdo.

Aprovado em: 19/03/2021.

BANCA EXAMINADORA

Prof. Dr. Adenilton José da Silva
Centro de Informatica / UFPE

Prof. Dr. Luciano Demetrio Santos Pacifico
Departamento de Computacdo / UFRPE

Prof. Dr. Carmelo Jose Albanez Bastos Filho
Escola Politécnica de Pernambuco / UPE

Prof. Dr. Herbert Kuchen
Institu fur Wirtschaftsinformatik / Westfalische Wilhelms-Universitdt Miinster

Prof. Dr. Guilherme de Alencar Barreto
Departamento de Engenharia de Teleinformatica / UFC

Profa. Dra. Teresa Bernarda Ludermir
Centro de Informatica/ UFPE
(Orientadora)

Dedicated to all health professionals and scientists that abdicated their lives to fight on
the battle front of the war against COVID-19.

ACKNOWLEDGEMENTS

Firstly, I would like to thank the creator and ruler of this universe for allowing me
to walk the path that led me to where I am today. In addition, I would like to thank
the Brazilian government and the State of Pernambuco for having financed my entire
journey in academia so far. I wish even more people could be as privileged as I have been
throughout all these years, so that we could build together a better country for everyone.

Fortunately, the list of friends and colleagues that I would like to thank is quite large.
The path taken between the first time I considered doing this doctorate until its com-
pletion was very long, which made me come across many people who, in different ways,
contributed to this achievement. Due to space constraints and to avoid forgetting to thank
someone, I would just like to extend my most sincere gratitude for the technical, scien-
tific, and, above all, nontechnical contributions made by everyone. Friends and colleagues
from POLI-UPE, CIn-UFPE and ERCIS-WWU, as well as the friends I keep outside the
academic world, without your support, the accomplishment of this mission would have
been much more difficult.

To Prof. Teresa Ludermir and Prof. Herbert Kuchen, who gave me the opportunity
to absorb their knowledge and learn from their vast experience during the last 4 years,
thank you very much for trusting my work and my potential. I feel privileged to have had
the chance to be supervised by world-class advisors like you both. To my academic father
Prof. Fernando Buarque, who led me and shaped me academically since my scientific
initiation in 2009, from whom I have enormous affection and admiration, thank you very
much for everything. I will always carry your academic genes with me, which I hope to
honor during my life as a researcher. I hope I can return to society the privilege of having
been educated by you.

I would like to thank my uncles, aunts, and cousins for all the support given during
the most difficult moments of this journey. I would like to thank my grandfather Moacir
and my grandmother Dalila for having given all the care and support during this phase.
However, I would like to especially thank my grandmother Aliete, who unfortunately
could not witness the end of this long journey. Her joy with each achievement of mine,
from the beginning of my life until our last moments together, will be forever in my mind
and in my heart.

I would like to give special thanks to my brother Bruno, my sisters-in-law Rhanna
and Camylle, and my mother-in-law Socorro for all the moments together. Such moments
really helped me to take part of the worries out of my mind in the most difficult moments.
You were essential to the success of this doctorate. However, I would like to give special

thanks to my parents Jorge and Josélia, who taught me from the first moments of my life

the importance of knowledge, honesty, and, above all, correctness in my decisions. You
both are the best references of good human beings that I could have. Thank you very
much for having shown me since I was a child the wonders of discovering something new,
of exploring the unknown. Without the countless hours that you both dedicated to my
education, and without the good emotional structure kept at home during my entire life,
I would certainly be in a completely different situation now. If I am very happy today
personally and professionally, since I do what I love, that is because of you, and I will owe
you forever. Thank you very much.

Last, but definitely not least, I would like to thank my dear wife, Caroline, for all
these years by my side, giving all the necessary support so that I could achieve this goal.
Thank you very much for holding my hand during all the moments of abdication, for
always being there for me, for making me believe that everything would work out in the
end. Thank you very much for your patience at the moments when I needed to isolate
myself from everything and everyone to focus on this research. Thank you very much for
the words of encouragement, for all the care and love dedicated during all these years,
doing the possible and impossible so that I could be truly happy and successful in my
profession. Thank you very much for always supporting me in the most critical decisions,
for always being with me, no matter what, and for keeping everything in order at home in
the most critical moments of this journey, often abdicating your personal and professional
life. Be sure that we have built this together. Without your love, your support and your
understanding, this achievement would not be possible. Finally, thank you very much for
making the wise decision to bring our "four-legged child" into our lives in the last year of
this journey, which brought much more joy to my days and was essential during the last
year, which was unique and very difficult for everyone.

I hope I have honored the support given by all of you during this long journey. To all

of you, the deepest and most sincere gratitude.

ABSTRACT

Despite the success of evolutionary and swarm-based algorithms in many different
application areas, such algorithms are very sensitive to the values of their parameters.
According to the No Free Lunch Theorem, there is no parameter setting for a given
algorithm that works best for every possible problem. Thus, finding a quasi-optimal pa-
rameter setting that maximizes the performance of a given metaheuristic in a specific
problem is necessary. As manual parameter adjustment for evolutionary and swarm-based
algorithms can be very hard and time demanding, automating this task has been one of
the greatest and most important challenges in the field. Out-of-the-box parameter con-
trol methods are techniques that dynamically adjust the parameters of a metaheuristics
during its execution and can be applied to any parameter, metaheuristic and optimiza-
tion problem. Very few studies about out-of-the-box parameter control methods can be
found in the literature, and most of them apply reinforcement learning algorithms to
train effective parameter control policies. Even though these studies have presented very
interesting and promising results, the problem of parameter control for metaheuristics
is far from being solved. A few important gaps were identified in the literature of this
field, namely: (1) training parameter control policies with reinforcement learning can be
very computational-demanding; (2) reinforcement learning algorithms usually require the
adjustment of many hyperparameters, what makes difficult its successful use. Moreover,
the search for an optimal policy can be very unstable; (3) and, very limited benchmarks
have been used to assess the generality of the out-of-the-box methods proposed so far in
the literature. To address such gaps, the primary objective of this work is to propose an
out-of-the-box policy training method for parameter control of mono-objective evolution-
ary and swarm-based algorithms with distributed reinforcement learning.The proposed
method had its generality tested on a comprehensive experimental benchmark with 133
scenarios with 5 different metaheuristics, solving several numerical (continuous), binary,
and combinatorial optimization problems. The scalability of the proposed architecture was
also dully assessed. Moreover, extensive analyses of the hyperparameters of the proposed
method were performed. The experimental results showed that the three aforementioned
gaps were successfully addressed by the proposed method, besides a few other secondary

advancements in the field, all commented in this thesis.

Keywords: swarm intelligence; evolutionary computation; reinforcement learning; pa-

rameter control.

RESUMO

Apesar do sucesso de algoritmos evolutivos e baseados em enxames em diferentes
areas de aplicagao, estes algoritmos sao muito sensiveis aos seus parametros. De acordo
com o teorema "nao existe almoco gratis", nao existe configuragao para um determinado
algoritmo que funcione melhor para todos os problemas possiveis. Assim, faz-se necessario
encontrar uma configuracao de parametro que maximize o desempenho de uma dada meta-
heuristica em um problema especifico. No entanto, o ajuste manual de parametros para
algoritmos evolutivos e baseados em enxames pode ser muito dificil e exigir muito tempo.
Portanto, automatizar essa tarefa tem sido um dos maiores e mais importantes desafios
da area. Métodos out-of-the-box de controle de parametros sdo técnicas que ajustam di-
namicamente os parametros de uma metaheuristica durante sua execucao e podem ser
aplicados a qualquer parametro, metaheuristica e problema de otimizagao. Poucos estu-
dos sobre métodos de controle de pardmetros out-of-the-box podem ser encontrados na
literatura, e a maioria deles aplica algoritmos de aprendizagem por reforco para treinar
politicas de controle de parametros eficazes. Embora esses estudos tenham apresentado
resultados muito interessantes e promissores, o problema do controle de parametros para
metaheuristicas estd longe de ser resolvido. Algumas lacunas importantes foram identifi-
cadas na literatura da area, a saber: (1) Métodos de treinamento de politicas de controle
de parametros baseados em aprendizagem por reforco podem demandar muito esforco
computacional e tempo de execugao. (2) Algoritmos de aprendizagem por reforgo geral-
mente requerem o ajuste de varios hiperparametros, o que dificulta seu uso com sucesso.
Além disso, a busca por uma politica 6tima pode ser muito instével. (3) Benchmark
experimentais muito limitados foram usados para avaliar a generalidade dos métodos out-
of-the-box, o que limita a avaliacdo da generalidade dos métodos propostos. A fim de
preencher tais lacunas, o objetivo principal deste trabalho é propor um método de treina-
mento de politica out-of-the-box para controle de parametros de algoritmos evolucionarios
e baseados em enxames mono-objetivos utilizando aprendizagem por reforco distribuida.
A fim de avaliar sua generalidade, o método proposto foi testado em um benchmark
experimental abrangente com 133 cenarios com 5 metaheuristicas diferentes, resolvendo
varios problemas de otimizacdo continua, binarios e de otimizacdo combinatéria. A es-
calabilidade da arquitetura proposta também foi avaliada. Além disso, foi realizada uma
analise dos hiperparametros do método proposto. Os resultados experimentais mostraram
que as trés lacunas acima mencionadas foram satisfatoriamente preenchidas pelo método

proposto, além de alguns outros avangos secundarios na area.

Palavras-chave: inteligéncia de enxames, computagao evolucionaria, aprendizagem por

reforco, controle de parametros.

LIST OF FIGURES

[Figure 1 — Conflicting criteria in designing a metaheuristic: exploration versus ex- |
| ploitation.| 33
[Figure 2 — Example of the one-point crossover method.| 37
[Figure 3 — Example of the n-point crossover method, where n =2.. 37
[Figure 4 — Example of the uniform-point crossover method. The array [0.3, 0.6, |
| 0.1, 0.4, 0.8, 0.7, 0.3, 0.5, 0.3] of random numbers were used to decide |
| the inheritance oo 38
[Figure 5 — Taxonomy of parameter adjustment techniques.| 48
[Figure 6 — 'The agent-environment interaction in a Markov decision process.. . . . 51
[Figure 7 — The Ape-X architecture.|, 62
[Figure 8 — Graphical representation of the PB'T algorithm and comparisons with |
| parallel random /grid search, and sequential methods.| 65
[Figure 9 — General scheme of the proposed training method on the RL tramework.| 87
[Figure 10 — Training of the parameter controller using distributed Reinforcement |
| Learning (single PBT worker). Multiple RL workers work in parallel |
| inside a PBT worker to collect experiences and transfer them to the [
| centralized replay buffer. The centralized learner adjusts its current |
| policy based on these collected experiences. After “uploading’ its col- |
| lected experiences, each worker requests an update of its local policy. |
| The RL workers run synchronously or asynchronously| 89
[Figure 11 — Single RL worker in the training process.| 89
[Figure 12 — "Iraining of the parameter controller using distributed Reinforcement |
| Learning and Population Based Training (multiple PBT workers). Mul- |
| tiple PB'T workers work in parallel and asynchronously. They communi- |
| cate with each other through the parameter and hyperparameter server, |
| where parameters and hyparameters are exchanged between PB'T work- [
[TS . . . e 92
[Figure 13 — Sample from Figures |32 and [33/in Appendix A.1. Comparing the 30%

best policies trained with different sizes of the population of PB'l' work-

ers: 4, 8, and 16. The comparisons have been made between samples

of the best fitness found in the executions of the HCLPSO algorithm

with the 30% best trained policies of the training set available for each

function. The original p-values were computed with the Mann-Whitney

U test 107

[Figure 14 —

Sample from Figures |34 and [35[in Appendix A.1. Comparing the best

policies trained with different sizes of the population of PB'T" workers:

4,8, and 16. The comparisons have been made between samples of the

best fitness found in the executions ot the HCLPSO algorithm with the

30% best trained policies of the training set available for each function.

'T'he original p-values were computed with the Mann-Whitney U test.|

[Figure 15 —

. 108

Training rewards accumulated during the training process of each policy.[108

[Figure 16 —

Sample from Figures [36] and |37 in Appendix A.1. Mean fitness ot the

best policy found after some time of training in hours with 4, 8, and

16 PB'l" workers. Fach plotted point in the lines shows the mean best

fitness tfound by HCLPSO controlled by the best policy found so tar.|

[Figure 17 —

Sample from Figures |38 and |39 in Appendix A.2. Average execution

time in seconds of one training epoch during the training process with

1,2, and 4 RL workers.|.

111

[Figure 18 —

Sample from Figures [40] and |41/ in Appendix A.3. Comparing the 30%

best policies trained with different perturbation intervals: 2, 4, and 8

iterations. The comparisons have been made between samples of the

best fitness found in the executions of the HCLPSO algorithm. T'he

original p-values were computed with the Mann-Whiteney U test.| . .

. 113

[Figure 19 —

Sample from Figures |42 and |43[in Appendix A.3. Comparing the best

policy trained with different perturbation intervals: 2, 4, and & itera-

tions. The comparisons have been made between samples of the best

fitness found in the executions of the HCLPSO algorithm solving func-

tions 1-16 from the CEC17 benchmark set. The original p-values were

computed with the Wilcoxon Rank-Sum test.|

[Figure 20 —

Sample from Figures [44] and 45/ in Appendix A.3. Mean fitness of the

best policy found after some time of training in hours with 2, 4, and

8 iterations of perturbation interval. Fach plotted point in the lines

shows the mean best fitness found by HCLPSO controlled by the best

policy found so far.|

114

[Figure 21 —

Sample from Figures |46/ and [47] in Appendix A.4. Comparing the 30%

best policies trained with different quantile fractions: 0.125, 0.25, 0.375.

The comparisons have been made between samples of the best fitness

found in the executions of the HCLPSO algorithm. The original p-

values were computed with the Mann-Whitney U test.|

[Figure 22 —

Sample from Figures |48/ and |49[in Appendix A.4. Comparing the best

policies trained with different quantile fractions: 0.125, 0.25, 0.375. 'T'he

comparisons have been made between samples of the best fitness found

in the executions of the HCLPSO algorithm. The original p-values were

computed with the Mann-Whitney U test.|

116

[Figure 23 —

Sample from Figures [50[and 51| in Appendix A.4. Mean fitness of the

best policy found after some time of training in hours with with quantile

fractions of 0.125, 0.25, and 0.375. Each plotted point in the lines shows

the mean best fitness found by HCLPSO controlled by the best policy

found so fard. L

[Figure 24 —

Sample from Figures [52] and [53] in Appendix A.5. Comparing the 30%

best policies trained with different resample probabilities: 0.25, 0.5,

0.75. The comparisons have been made between samples of the best

fitness found in the executions of the HCLPSO algorithm. The original

p-values were computed with the Mann-Whitney U test.|

[Figure 25 —

sample from Figures [54] and [55[in Appendix A.5. Comparing the best

policy trained with different resample probabilities: 0.25, 0.5, and 0.75.

The comparisons have been made between samples of the best fitness

found in the executions of the HCLPSO algorithm. The original p-

values were computed with the Wilcoxon Rank-Sum test..

119

[Figure 26 —

Sample from Figures [57] and 58/ in Appendix A.5. Mean fitness of the

best policy found after some time of training in hours with 0.25, 0.5,

and 0.75 of resample probability. Fach plotted point in the lines shows

the mean best fitness found by HCLPSO controlled by the best policy

found so farl.

[Figure 27 —

Sample from Figures [59] and [60] in Appendix A.6. Comparing the 30%

best policies trained with 100 and 300 iterations per episode. The com-

parisons have been made between samples of the best fitness found in

the executions of the HCLPSO algorithm. 'T'he original p-values were

computed with the Mann-Whitney U test.|

123

[Figure 28 —

Sample from Figures |61 and [62[in Appendix A.6. Comparing the best

policies trained with 100 and 300 iterations per episode. The compar-

1sons have been made between samples of the best hitness found in

the executions ot the HCLPSO algorithm. The original p-values were

computed with the Mann-Whitney U test.|

124

[Figure 29 —

Percentage of problems in which the selected and the best policies per-

formed similarly or significantly better than the other approaches (7.e.

average performance is superior and p-value< 0.05, or p-value> 0.05).

SvsR, Svs'l, and SvsH refer to the comparisons between the selected

trained policy and the random, the tuned, and the human-designed

policies, respectively. BvsR, Bvs'T, and BvsH refer to the comparisons

between the best trained policy and the random, the tuned, and the

human-designed policies, respectively.|.

126

[Figure 30 —

Percentage of problems in which the selected and the best policies per-

formed significantly better than the other approaches (i.e. average per-

formance is superior and p-value< 0.05). SvsR, SvsT, and SvsH refer to

the comparisons between the selected trained policy and the random,

the tuned, and the human-designed policies, respectively. BvsR, Bvs'T,

and BvsH refer to the comparisons between the best trained policy and

the random, the tuned, and the human-designed policies, respectively.| .

126

[Figure 31 —

Sample from Agures [69 [70% [71 [72% [73% [74% [75% [76L [77, and [78[in Ap-

pendix A.7. Mean fitness found by HCLPSO, DE, FSS, binary GA

and ACO with the selected policies, the best policies, and static tuned

parameters, after some time of training in hours.|.

128

[Figure 32 —

Comparing the 30% best policies trained with different sizes of the

population of PB'T workers: 4, 8, and 16. The comparisons have been

made between samples ot the best fitness found in the executions of the

HCLPSO algorithm solving functions 1-16 from the CECT7 benchmark

set with the 30% best trained policies of the training set available for

cach function. L

[Figure 33 —

Comparing the 30% best policies trained with different sizes of the

population of PBT workers: 4, 8, and 16. The comparisons have been

made between samples ot the best fitness found in the executions of

the HCLPSO algorithm solving tunctions 17-30 from the CEC17 bench-

mark set with the 30% best trained policies of the training set available

for each function. The original p-values were computed with the Mann-

Whitney U test.|.

149

[Figure 34 —

Comparing the best policy trained with different sizes of the population

ot PB'I" workers: 4, 8, and 16. The comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO

algorithm solving functions 1-16 from the CEC17 benchmark set. 'T'he

original p-values were computed with the Wilcoxon Rank-Sum test.| . .

151

[Figure 35 —

Comparing the best policy trained with different sizes ot the population

of PB'I' workers: 4, 8, and 16. The comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO

algorithm solving functions 17-30 from the CEC17 benchmark set. The

original p-values were computed with the Wilcoxon Rank-Sum test.| .

. 152

[Figure 36 —

Mean fitness of the best policy found after some time of training in

hours with 4, 8, and 16 PBT workers. Each plotted point in the lines

shows the mean best fitness found by HCLPSO controlled by the best

policy found so far. Only tunctions 1-16 are shown.

[Figure 37 —

Mean fitness of the best policy found after some time of training in

hours with 4, 8, and 16 PB'l" workers. Each plotted point in the lines

shows the mean best fitness found by HCLPSO controlled by the best

policy found so far. Only tunctions 17-30 are shown.|.

155

[Figure 38 —

Average execution time in seconds of one training epoch during the

training process with 1, 2, and 4 RL workers, for each training function

(functions 1-16).]

[Figure 39 —

Average execution time in seconds of one training epoch during the

training process with 1, 2, and 4 RL workers, for each training function

(functions 17-30).

157

[Figure 40 —

Comparing the 30% best policies trained with different perturbation in-

tervals: 2, 4, and & iterations. The comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO al-

gorithm solving functions 1-16 from the CEC17 benchmark set. 'T'he

original p-values were computed with the Mann-Whiteney U test.| . .

. 158

[Figure 41 —

Comparing the 30% best policies trained with different intervals: 2, 4,

and & iterations. The comparisons have been made between samples

of the best fitness found in the executions of the HCLPSO algorithm

solving functions 17-30 from the CEC17 benchmark set. The original

p-values were computed with the Mann-Whiteney U test.|.

159

[Figure 42 —

Comparing the best policy trained with ditferent perturbation inter-

vals: 2, 4, and 8 iterations. The comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO

algorithm solving functions 1-16 from the CEC17 benchmark set. 'I'he

original p-values were computed with the Wilcoxon Rank-Sum test.| .

. 161

[Figure 43 —

Comparing the best policy trained with different perturbation inter-

vals: 2, 4, and 8 iterations. T'’he comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO al-

gorithm solving functions 17-30 from the CEC17 benchmark set. 'T'he

original p-values were computed with the Wilcoxon Rank-Sum test. . .

162

[Figure 44 —

Mean fitness of the best policy found after some time of training in

hours with perturbation intervals of 2, 4, and 8 iterations. Each plot-

ted point in the lines shows the mean best fitness found by HCLPSO

controlled by the best policy found so far. Only functions 1-16 are shown.[164

[Figure 45 —

Mean fitness of the best policy found after some time of training in

hours with perturbation intervals of 2, 4, and 8 iterations. Fach plot-

ted point in the lines shows the mean best fitness tound by HCLPSO

controlled by the best policy found so tar. Only functions 17-30 are

ShOWDL

[Figure 46 —

Comparing the 30% best policies trained with different quantile frac-

tions: 0.125, 0.25, 0.375. The comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO

algorithm solving functions 1-16 from the CEC17 benchmark set. 'T'he

original p-values were computed with the Mann-Whitney U test.|. . .

. 166

[Figure 47 —

Comparing the 30% best policies trained with different quantile frac-

tions: 0.125, 0.25, 0.375. The comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO al-

gorithm solving functions 17-30 from the CEC17 benchmark set. 'T'he

original p-values were computed with the Mann-Whitney U test.|. . .

. 167

[Figure 48 —

Comparing the best policy trained with different quantile fractions:

0.125, 0.25, 0.375. The comparisons have been made between samples

of the best fitness found in the executions of the HCLPSO algorithm

solving functions 1-16 from the CECIT7 benchmark set. 'T'he original

p-values were computed with the Wilcoxon Rank-Sum test.|.

169

[Figure 49 —

Comparing the best policy trained with different quantile fractions:

0.125, 0.25, 0.375. 'T'he comparisons have been made between samples

of the best fitness found in the executions of the HCLPSO algorithm

solving functions 17-30 from the CEC17 benchmark set. The original

p-values were computed with the Wilcoxon Rank-Sum test.|.

170

[Figure 50 —

Mean fitness of the best policy found after some time of training in

hours with quantile fractions ot 0.125, 0.25, and 0.375. Each plotted

point in the lines shows the mean best fitness found by HCLPSO con-

trolled by the best policy found so far. Only functions 1-16 are shown.|.

[Figure 51 —

Mean fitness of the best policy found after some time of training in

hours with quantile fractions of 0.125, 0.25, and 0.375. Each plotted

point in the lines shows the mean best fitness found by HCLPSO con-

trolled by the best policy tound so far. Only functions 17-30 are shown.| 173

[Figure 52 —

Comparing the 30% best policies trained with different resample prob-

abilities: 0.25, 0.5, 0.75. The comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO

algorithm solving functions 1-16 from the CEC17 benchmark set. The

original p-values were computed with the Mann-Whitney U test.|. . .

. 174

[Figure 53 —

Comparing the 30% best policies trained with different resample prob-

abilities: 0.25, 0.5, 0.75. The comparisons have been made between

samples of the best fitness found in the executions of the HCLPSO al-

gorithm solving functions 17-30 from the CEC17 benchmark set. 'T'he

original p-values were computed with the Mann-Whitney U test.|. . .

. 175

[Figure 54 —

Comparing the best policy trained with different resample probabilities:

0.25, 0.5, and 0.75. The comparisons have been made between samples

of the best fitness found in the executions of the HCLPSO algorithm

solving functions 1-16 trom the CECI17 benchmark set. The original

p-values were computed with the Wilcoxon Rank-Sum test.|.

177

[Figure 55 —

Comparing the best policy trained with different resample probabilities:

0.25, 0.5, and 0.75. The comparisons have been made between samples

of the best fitness found in the executions of the HCLPSO algorithm

solving functions 17-30 from the CEC17 benchmark set. The original

p-values were computed with the Wilcoxon Rank-Sum test.|.

178

[Figure 56 —

Mean fitness of the best policy found after some time of training in

hours with resample probabilities of 0.25, 0.5, and 0.75. Each plotted

point in the lines shows the mean best fitness found by HCLPSO con-

trolled by the best policy found so far. Only functions 1-16 are shown.|.

[Figure 57 —

Function 1.

[Figure 58 —

Mean fitness of the best policy found after some time of training in

hours with resample probabilities 0.25, 0.5, and 0.75. Each plotted point

in the lines shows the mean best fitness tound by HCLPSO controlled

by the best policy found so far. Only functions 17-30 are shown.

181

[Figure 59 —

Comparing the 30% best policies trained with 100 and 300 iterations

per episode. The comparisons have been made between samples of the

best fitness found in the executions of the HCLPSO algorithm solving

functions 1-16 from the CEC17 benchmark set. T'he original p-values

were computed with the Mann-Whitney U test.|

[Figure 60 —

Comparing the 30% best policies trained 100 and 300 iterations per

episode. The comparisons have been made between samples of the best

fitness found in the executions of the HCLPSO algorithm solving func-

tions 17-30 from the CEC17 benchmark set. The original p-values were

computed with the Mann-Whitney U test.|

183

[Figure 61 — Comparing the best policies trained 100 and 300 iterations per episode.

| found in the executions of the HCLPSO algorithm solving functions

I
| The comparisons have been made between samples of the best fitness |
I
I

| 1-16 from the CEC17 benchmark set. The original p-values were com-
| puted with the Mann-Whitney U test.] 185
[Figure 62 — Comparing the best policies trained 100 and 300 iterations per episode.

| found in the executions of the HCLPSO algorithm solving functions

I
| The comparisons have been made between samples of the best fitness [
I
I

| 17-30 from the CEC17 benchmark set. The original p-values were com-

| puted with the Mann-Whitney U test.| 186
[Figure 63 — Transtormed p-values for the comparisons between the best policy trained |
| with 100 and 300 iterations and the random policy (100vR and 300vR, |
| respectively).| 187

[Figure 64 — Transtormed p-value for each of the comparisons between the selected

and the best policies and the random, tuned and human-designed poli-
cies, in the experiments with HCLPS0. SvsR, Svs'l', and SvsH refer to

|
|
|
the comparisons between the selected trained policy and the random, [
|
|

the tuned, and the human-designed policies, respectively. BvsR, Bvs'T,

and BvsH reter to the comparisons between the best trained policy and

the random, the tuned, and the human-designed policies, respectively.| . 190

[Figure 65 — Transtormed p-value for each of the comparisons between the selected

and the best policies and the random, tuned and human-designed poli-

cies, in the experiments with DE. SvsR, Svs'l, and SvsH refer to the

comparisons between the selected trained policy and the random, the

BvsH refer to the comparisons between the best trained policy and the

|
|
|
| tuned, and the human-designed policies, respectively. BvsR, Bvs'l', and
|
|

random, the tuned, and the human-designed policies, respectively| . . . 191

[Figure 66 — Transtormed p-value for each of the comparisons between the selected

and the best policies and the random, tuned and human-designed poli-

cies, in the experiments with F'55. SvsR, Svs'T, and SvsH refer to the

tuned, and the human-designed policies, respectively. BvsR, Bvs'l', and

BvsH refer to the comparisons between the best trained policy and the

I
I
| comparisons between the selected trained policy and the random, the
I
I
I

random, the tuned, and the human-designed policies, respectively.| . . . 192

[Figure 67 —

Transtormed p-value for each of the comparisons between the selected

and the best policies and the random, tuned and human-designed poli-

cies, in the experiments with binary GA. SvsR, Svs'l', and SvsH refer to

the comparisons between the selected trained policy and the random,

the tuned, and the human-designed policies, respectively. BvsR, BvsT,

and BvsH reter to the comparisons between the best trained policy and

the random, the tuned, and the human-designed policies, respectively.| .

193

[Figure 68 —

Transtormed p-value for each of the comparisons between the selected

and the best policies and the random, tuned and human-designed poli-

cles, in the experiments with ACO. SvsR, Svs'l', and SvsH refer to the

comparisons between the selected trained policy and the random, the

tuned, and the human-designed policies, respectively. BvsR, Bvs'l', and

BvsH refer to the comparisons between the best trained policy and the

random, the tuned, and the human-designed policies, respectively.| . .

. 194

[Figure 69 —

Mean fitness found by HCLPSO with the selected policies, the best

policies, and static tuned parameters, after some time of training in

hours. Only functions 1-16 are shown.|.

199

[Figure 70 —

Mean fitness found by HCLPSO with the selected policies, the best

policies, and static tuned parameters, after some time of training in

hours. Only functions 17-30 are shown.|

200

[Figure 71 —

Mean fitness tound by DE with the selected policies, the best policies,

and static tuned parameters, atter some time of training in hours. Only

functions 1-16 are shown.

[Figure 72 —

Mean fitness tound by DE with the selected policies, the best policies,

and static tuned parameters, after some time of training in hours. Only

functions 17-30 are shown.

[Figure 73 —

Mean fitness found by F'SS with the selected policies, the best policies,

and static tuned parameters, atter some time of training in hours. Only

functions 1-16 are shown.

[Figure 74 —

Mean fitness found by F'SS with the selected policies, the best policies,

and static tuned parameters, after some time of training in hours. Only

functions 17-30 are shown. L.

[Figure 75 —

Mean fitness found by binary GA with the selected policies, the best

policies, and static tuned parameters, after some time of training in

hours. Only problem instances 1-12 are shown.[.

205

[Figure 76 —

Mean fitness found by binary GA with the selected policies, the best

policies, and static tuned parameters, after some time of training in

hours. Only tunctions 13-23 are shown.|

206

[Figure 77 — Mean fitness found by ACO with the selected policies, the best policies, |

| and static tuned parameters, atter some time of training in hours. Only |

| problem instances 1-12 are shown.. 207
[Figure 78 — Mean fitness found by ACO with the selected policies, the best policies, |
| and static tuned parameters, atter some time of training in hours. Only |
I functions 13-23 are shown. 208

[Figure 79 — Quantile of the selected policies in the ranked pool of trained policies.

|
| For instance, the cell in the first row and first column shows that the |
selected policy to control HCLPSO in the test with function 1 is the |

|

I
| worst performing policy among the 3.6% best policies available in the
I

pool of trained policies for thiscase.| 209

LIST OF TABLES

Mable T —

Number of papers retrieved with each database.|

[Table 2 — Overview of the data extraction process.|.

Mable 3 —

Quality assessment of the accepted studies.|

[Table 4 —

Grouping studies by control methods and controlled parameters.|

72
74
76
95

[Table 6 —

Number of comparisons between the p * 100% best policies for each

tested perturbation interval, where they outpertormed another setup

and scored 0.05 or less of p-value computed through Mann-Whitney U

test (all quantiles from 1.0 to 0.01) or Wilcoxon Rank-Sum test (only

comparisons with the best policy).| L.

106

Mable 7 —

Maximum training reward and standard deviation of the accumulated

training rewards of all trained policies available for each tunction. . . .

. 109

Table 8 —

Number of comparisons between the p * 100% best policies for each

tested perturbation interval, where they outpertormed another seutp

and scored 0.05 or less of p-value computed through Mann-Whitney U

test (all quantiles from 1.0 to 0.01) or Wilcoxon Rank-Sum test (only

comparisons with the best policy).| L.

112

(Table 9 —

Number of comparisons between the px100% best policies for each tested

quantile fraction, 7.e. 0.125, 0.25, and 0.375, where it outperformed other

setup and the p-value computed through Mann-Whitney U test (for

0.01 < p < 1.0, where p is the quantile of the selected policies) or

Wilcoxon Rank-Sum test (for the comparisons between the best policies)

is lower than or equal to 0.05.|,

[Table 10 —

Number of comparisons between the p * 100% best policies where each

tested resample probability, 7.e. 0.25, 0.5, and 0.75, outperformed other

setup and the p-value computed through Mann-Whitney U test (for

0.01 < p < 1.0, where p is the quantile of the selected policies) or

Wilcoxon Rank-Sum test (for the comparisons between the best policies)

1s lower than or equal to 0.05.|

[Table 11 —

Number of comparisons between the px100% best policies for each tested

budget per training episode, where they outpertormed another setup

and scored 0.05 or less of p-value computed through Mann-Whitney U

test (all quantiles from 1.0 to 0.01) or Wilcoxon Rank-Sum test (only

comparisons with the best policy).|0 0L

123

[Table 12 —

Mean and standard deviation (between parenthesis) of the best fitnesses

found by HCLPSO with the 30% best policies trained with 4, 8, and 16

PBT workers|

[Table 13 —

Mean and standard deviation (between parenthesis) of the best fitnesses

tound by HCLPSO with the best policy found with 4, 8, and 16 PBT

WOTKers..

[Table 14 —

Mean and standard deviation (between parenthesis) of the best fitnesses

found by HCLPSO with the 30% best policies trained with 2, 4 and 8

iterations of perturbation interval.|

160

[Table 15 —

Mean and standard deviation (between parenthesis) of the best fitnesses

found by HCLPSO with the best policy found with 2, 4 and 8 iterations

of perturbation interval.|. o000

163

[Table 16 —

Mean and standard deviation (between parenthesis) of the best fitnesses

found by HCLPSO with the 30% best policies trained with different

quantile fractions: 0.125, 0.25, and 0.375.|

[Table 17 —

Mean and standard deviation (between parenthesis) of the best fitnesses

tound by HCLPSO with the best policy trained with different quantile

fractions: 0.125, 0.25, and 0.375.)

[Table 18 —

Mean and standard deviation (between parenthesis) of the best fitnesses

found by HCLPSO with the 30% best policies trained with different

resample probabilities: 0.25, 0.5, and 0.75..

176

[Table 19 —

Mean and standard deviation (between parenthesis) of the best fitnesses

found by HCLPSO with the best policy trained with different resample

probabilities: 0.25, 0.5, and 0.75.|

179

[Table 20 —

Mean and standard deviation (between parenthesis) of the best fitnesses

found by HCLPSO with the 30% best policies trained with different 100

and 300 iterations for each episode.|

[Table 21 —

Mean and standard deviation (between parenthesis) of the best fitnesses

tfound by HCLPSO with the best policies trained with difterent 100 and

300 iterations for each episode.|o

188

[Table 22 —

Mean of the best fitnesses tfound by HCLPSO with its parameters con-

trolled by the selected policies, the best policies, a human-designed poli-

cie, a random policy, and the same algorithm with static parameters

defined by I/F-Race|.

195

[Table 23 —

Mean ot the best fitnesses tound by DE with its parameters controlled

by the selected policies, the best policies, a human-designed policie, a

random policy, and the same algorithm with static parameters defined

by I/F-Race.|

196

[Table 24 — Mean of the best fitnesses found by F'SS with its parameters controlled |

| by the selected policies, the best policies, a human-designed policie, a |

| random policy, and the same algorithm with static parameters defined |
| by I/F-Race.| 197
[Table 25 — Mean of the best fitnesses found by binary GA with its parameters |

| controlled by the selected policies, the best policies, a human-designed |

| policy, a random policy, and the same algorithm with static parameters [
| defined by I/F-Race.|. 198
[Table 26 — Mean of the best fitnesses found by ACO with its parameters controlled |

| by the selected policies, the best policies, a human-designed policy, a |

| random policy, and the same algorithm with static parameters defined |
| by I/F-Race.| 198

CONTENTS

1 INTRODUCTION
1.1 OPTIMIZATION AND METAHEURISTICS

1.3.1 General Objective] 29
(1.3.2 Specific Objectives| 29
14 THESISSTRUCTUREI 30

2 BACKGROUND
2.1 BASIC CONCEPTS OF METAHEURISTICS
2.1.1 Classical Optimization Models and Exact Optimization Methods| . . 31

22 EVOLUTIONARY AND SWARM-BASED ALGORITHMS

2.2.1 Evolutionary Algorithms| 0. 34
2.2.1.1 Genetic Algorithms| 36
2.2.1.2 Differential Evolutionlo o 40
(2.2.2 Swarm-based Algorithms|o 41
[2.2.2.1 Particle Swarm Optimization| 42
[2.2.2.2 Ant Colony Optimization| 44
2223 Fish School Searchl oo 46
2.2.3 Parameter Adjustment for Metaheuristics| 48
[2.2.3.1 Parameter lTuningl. 43

49
23 REINFORCEMENT [EARNING] 51
(2.3.1 Temporal-Difference Learning| 55
(2.3.2 Policy Gradient Methods| 58
[2.3.2.1 Deep Deterministic Policy Gradient| 59
[2.3.2.2 DDPG with Distributed Prioritized Experience Replay| 60
[2.3.2.3 Twin Delayed DDPG| oo 62

24 POPULATION BASED TRAINING]

3 LITERATURE REVIEW
31 METHODOLOGY| 68

3.1.1 Research Questions| 69
(3.1.2 Types of accepted studies| 69

3.1.4 Data Extractionl. 70
3.2 RESULTS AND DISCUSSIONSI 70
3.2.1 Results Overview| 70
(3.2.2 Detailing accepted studies| 75

(3.2.2.1 Reinforcement Learning|. 76

43 CHOOSING A TRAINED POLICY!

o EXPERIMENTAL RESULTS AND DISCUSSION
bl EXPERIMENTAL METHODOLOGY

b.1.1 Choosing the Reinforcement Learning Method|. 97
6.1.2 Setting up the Hyperparameters of TD3 and PBT| 98
6.1.3 Choosing the Metaheuristics and the Optimization Problems| 99
b.1.4 The Computational Setup|. 103
....................... 103
6.2.1 Hyperparameter analysis 104
6211 Numberof PBI workers 104
(212 Number of RL workers| 110
(213 Perturbation intervall 111
5.2.1.4 Quantile fraction| 114
(.2.1.5 Resample probability] 117
.2.1.6 Summarizing the hyperparameter analysis| 120
6.2.2 Analysis of different budgets in the training and testing phases| . . . 122
5.2.3 Generality assessment| 124
6 CONCLUSIONI. e e e e e e 130

6.1 FINAL REMARKS AND MAIN CONTRIBUTIONS

62 AVENUES OF FUTURE RESEARCH]

REFERENCES| o oo oo 135

APPENDIX 146

APPENDIX A — DETAILED EXPERIMENTAL RESULTS

APPENDIX B — PAPERS RELATED TO THIS STUDY;

25

1 INTRODUCTION

"Imagination is the Discovering
Faculty, pre-eminently. It is
that which penetrates into the
unseen worlds around us, the

worlds of Science."

Ada Lovelace

1.1 OPTIMIZATION AND METAHEURISTICS

Optimization is the process of finding a set of arguments that maximizes or minimizes a
mathematical function. Mathematically, optimization is the minimization or maximization
of an objective function f subject to constraints ¢; on its vector of variables x, as shown
in Equation (NOCEDAL; WRIGHT), |2006; ENGELBRECHT, 2007)), where £ and I are the

sets of equality and inequalities constraints.

min f(x), (1.1)
subject to
¢i(x)=0,i€E, (1.2)
and
ci(x)>0,i€el. (1.3)

An optimization problem can be seen as a search problem, since they can be solved
by searching for the appropriate solution among a set of possible ones, known as the
search space (NOCEDAL; WRIGHT), |2006). Due to the size and dimensionality of the search
space or to the characteristics of its surface (e.g. whether the objective function is convex
or not), many optimization problems are in NP, but not in P, or even in N P-hard.
It means that even though a solution for such problems can be verified in polynomial
time, the most efficient algorithm known so far solves them at least in exponential time
(FORTNOW, |2009)). It is important to mention that if P = NP, the N P problems outside
N P-hard can be solved in polynomial time. However, by the time this thesis was written,
P has not been proven to be equals N P. For these problems, finding an exact solution to
large instances might take an unacceptable amount of time. Thus, approximate methods
should be considered (EIBEN; SMITH, 2015; [TALBI, 2009).

26

Heuristics are approximate search methods that, following a set of previous assump-
tions (i.e. previous human knowledge) find good solutions without trying every possible
solution in the search space. The drawback of these techniques is that they do not guar-
antee the best solution possible. However, they are able to find good enough solutions in
polynomial time (FOULDS, |1983; |SILVER), |2004)).

Heuristics can be divided into problem-specific heuristics and metaheuristics. Surely,
problem-specific heuristics are approximate search methods that use rules designed to
solve specific problems. On the other hand, metaheuristics are designed to be applied to
many different search problems (TALBI, |2009).

Metaheuristics can be divided into single-solution-based and population-based algo-
rithms (PBA). Single-solution-based methods use a single worker that iteratively tests
sequential solutions in a trial-and-error mechanism. Population-based algorithms use a
population of workers that test multiple solutions in parallel. These workers must com-
municate with each other to improve their search capabilities (TALBL, 2009)).

Evolutionary algorithms (EA) and swarm-based algorithms (SI) are two distinct fam-
ilies of PBAs. EAs are inspired by biological genetics and natural selection (EBERHART)
2007)), while swarm-based algorithms are inspired by the collective behavior of animals
in nature. Due to the interaction between the workers that represent the population of
solutions, swarm-based algorithms exhibit a property called Swarm Intelligence. Swarm
Intelligence is the property of any system composed by numerous simple parts that in-
teract with each other, emerging complex patterns from such interactions (BONABEAU;
DORIGO; THERAULAZ, [1999} [PANIGRAHI; SHI; LIM, 2011)).

1.2 PARAMETER ADJUSTMENT FOR EA AND SWARM-BASED ALGORITHMS

Despite the success of EA and swarm-based algorithms in many different application areas
(ALETT; MOSER, 2016)), such algorithms are very sensitive to the values of their parameters
(EIBEN; SMIT), 2011). Two kinds of parameters of metaheuristics can be distinguished:

1. Numerical parameters: Parameters that assume only integer or real values.

2. Categorical parameters: Parameters that assume categorical values, i.e. unordered
values taken from a finite set of discrete values. Usually these parameters determine

the logic that will be used in the operators of the metaheuristic.

According to the No Free Lunch Theorem (NFL), there is no parameter setting for a
given algorithm that works best for every possible problem (WOLPERT; MACREADY/,(1997).
Thus, finding an optimal parameter setting that maximizes the performance of a given
metaheuristic in a specific problem is necessary. However, manual parameter adjustment

for EA and SI can be very hard and time demanding. Therefore, automating this task has

27

been one of the greatest and most important challenges in the field (EIBEN; HINTERDING;
MICHALEWICZ, [1999).

Autonomous adjustment approaches can be divided into two groups (KARAFOTIAS;
HOOGENDOORN; EIBEN, [2015b):

o Tuning algorithms: The parameters are adjusted before the execution of the algo-
rithm, usually via multiple previous runs. These techniques identify the best set of
values that maximizes the performance of a given algorithm for the problem at hand.
The chosen values are kept constant during the entire execution of the optimization

process.

o Control algorithms: The parameters are adjusted on-the-fly, i.e. during the execu-
tion of the algorithm. Control methods choose a set of values for the optimization
algorithm, so that it runs for a given amount of time and, then, returns a perfor-
mance measure. The controller is therefore able to know how good that choice was.
These steps are repeated over and over, always trying to maximize the performance
of the optimization algorithm by making the best choice for each moment of the

optimization process.

The techniques of both groups aim at reducing the need for manual adjustment or,
in a few cases, completely remove such a need. Such a reduction is achieved by sub-
stituting the original set of parameters of the optimization algorithm by a smaller set
added by the controller, or by an equally large but less sensitive set of parameters. The
complete removal of manual parameter adjustment is achieved by very few techniques,
which is usually done by freezing "parameters" to values that present usually good results
(PARPINELLI; PLICHOSKI; SILVA| 2019). However, it is well-known that the optimal value
of a given parameter changes along the optimization process, and only control methods
are able to perform such a dynamic adjustment (EIBEN; HINTERDING; MICHALEWICZ,
1999; [KARAFOTIAS; HOOGENDOORN; EIBEN, [2015b)).

From the perspective of machine learning, parameter control can be understood as
the learning problem of finding a good policy to dynamically adjust the parameters of an
algorithm for a set of unseen target problems. This learning process is performed over a set
of training instances. Even though such a perspective was initially defined to be applied
to parameter tuning and has been used since then (LOPEZ-IBAREZ et al., 2011; BIRATTARI
et al., 2010), it can be easily transferred to parameter control (BIRATTARI, 2009).

From now on, in this work, whenever the word "parameter" is used, the class of nu-
merical parameters is referred. If categorical parameters had also been considered, oper-
ator selection methods (7.e. methods that dynamically change the operators of a running
metaheuristic) would have to be considered as parameter control techniques, which is not
considered in this thesis. The adjustment of categorical parameters is often called Adap-

tive Operator Selection, and the algorithms that present such a feature are usually called

28

hyperheuristics (CONSOLI et al., 2016; DACOSTA et al., 2008; |CONSOLIL; MINKU; YAO, 2014;
DRAKE et al., 2020). Therefore, there is a well-established field already existent that is out
of the scope of this study.

Among the control methods, two subgroups can be identified (KARAFOTIAS; HOOGEN-|
'DOORN; EIBEN, 2015b)):

o Control methods tailored to a specific application: In this group, the control methods
are conceived to work with specific algorithms, controlling specific parameters and

solving specific problems.

o Out-of-the-box control methods: These control methods can be applied to any op-

timization algorithm, parameter and/or optimization problem.

The vast majority of the studies about parameter control methods for EA and SI that
have been published so far focus on the methods tailored to specific applications. A few
publications have been made on the development of out-of-the-box methods. Surveys on
the topic of parameter adjustment have been published by Eiben et al. in 1999
HINTERDING; MICHALEWICZ), [1999)), Zhang et al. in 2012 (ZHANG et al), 2012), Karafotias
et al. in 2015 (KARAFOTIAS; HOOGENDOORN; EIBEN, 2015D), Aleti et al. in 2016
2016), Guan et al. in 2017 (GUAN; YANG; SHENG) [2017) and Parpinelli et al. in
2019 (PARPINELLI; PLICHOSKI; SILVA|, 2019).

In 2021, a systematic literature review about out-of-the-box parameter control meth-
ods for EA and swarm-based algorithms was produced (LACERDA et al) 2021). In this

study, it was revealed that most of the papers about out-of-the-box parameter con-

trol for metaheuristics have applied Reinforcement Learning (RL) (EIBEN et al., |2007;
KARAFOTIAS; SMIT; EIBEN, 2012) (KARAFOTIAS; EIBEN; HOOGENDOORN| 2014; KARAFO-
[TTAS; HOOGENDOORN; WEEL, [2014; [KARAFOTIAS; HOOGENDOORN; EIBEN] 2015a; [ROST]
PETROVA; BUZDALOVA| 2016). Other papers have applied different techniques to create

controllers, such as regression methods in order to predict the performance of the meta-

heuristic given different configurations and scenarios, among others (ALETI et al, |2014;
ALETI;, MOSER|, 2013}, [BIELZA; POZO; LARRARAGA|, [2013; [ALETL, MOSER; MOSTAGHIM|
2012; LEUNG; YUEN; CHOW, 2012)) (CHATZINIKOLAOU, 2011} ALETT; MOSER, [2011; MAT-|
[URANA; SAUBION, 2008) (AINE; KUMAR; CHAKRABARTT, 2006). This study will be detailed

later in this work.

RL algorithms are machine learning techniques where an interacts with its surrounding
environment by taking actions and receiving rewards, improving its performance by trial

and error (SUTTON; BARTO, 2018). They are especially useful when decisions must be

taken over time and the training data is not independent and identically distributed
(i.i.d.), which is the case of parameter control, since a scenario at a given time ¢ can be
highly correlated with a scenario at t+1, for instance. However, even though the RL-based

out-of-the-box methods have presented the most promising results so far, the solutions

29

for the problem of parameter control for metaheuristics still has a lot to be improved. In
our literature review, we have identified a few issues that are still open. Three of them,
dealt by this thesis, are listed below:

1. Training EA and SI parameter control policies with RL can be very computational-
demanding. And to date no study has ever proposed a scalable approach that could

benefit from parallel and distributed computing platforms.

2. RL algorithms usually require the adjustment of many hyperparameters, what makes
difficult its general use. Also, the search for an optimal policy can be very unstable,
since RL algorithms usually suffer from bias overestimation caused by the "dog
chasing its tail" effect in the Bellman Equations. It means that, for many algorithms,
the policy search is likely to exploit wrong decisions and prone to get stuck in local
minima (FUJIMOTO; HOOF; MEGER), 2018]).

3. Even though the authors of the reviewed studies argue that their proposed meth-
ods are out-of-the-box, very limited benchmarks have been used to assess such a

generality, what reduces the scope and generality of these methods.

1.3 OBJECTIVES

1.3.1 General Objective

The primary objective of this work is to propose an out-of-the-box policy training method
for parameter control of mono-objective EA and swarm-based algorithms with distributed
Reinforcement Learning, addressing the three aforementioned issues identified in the lit-

erature.

1.3.2 Specific Objectives

Each addressed issue is related to a specific objective in this work, which are listed below:

1. Propose a scalable parameter control policy training method that produces a policy

that can be succesfully used in an unseen problem.

2. Propose a mechanism that diminishes the difficulties on hyperparameter adjustment

and instability of the learning process.

3. Assess the generality of the proposed method in an experimental benchmark with
metaheuristics and optimization problems with different characteristics, including
EA and swarm-based algorithms solving numerical and categorical optimization

problems.

30

1.4 THESIS STRUCTURE

The remaining of this work is organized as follows: Chapter 2 presents the Background
needed to follow the proposed core ideas of this thesis; Chapter 3 presents the system-
atic literature review; Chapter 4 describes the proposed method; Chapter 5 details the
experimental methodology and discusses the results achieved in the experiments carried
out in this study; and Chapter 6 presents the conclusions drawn from this study. As this
thesis rely heavily in experimental work, the figures and tables resulting of the extensive
simulations are presented in Appendices A1-A7, just after the reference section. Appendix
A8 contains title and abstracts of all the articles written by the author during the research

that are related to the study carried out.

31

2 BACKGROUND

"(...) in my opinion, all things in

nature occur mathematically."

Rene Descartes

In this chapter, the theoretical background that is necessary to understand this thesis

is presented.

2.1 BASIC CONCEPTS OF METAHEURISTICS

2.1.1 Classical Optimization Models and Exact Optimization Methods

In search problems with feasible solutions, there is a solution in an unknown location
in a search space that must be found. Optimization and modelling are two families of
search problems. Modelling problems involve finding a representation of an observed phe-
nomenon that produces the correct outputs for the observed inputs (EIBEN; SMITH, 2015).
As previously defined, optimization is the process of finding a set of arguments that max-
imizes or minimizes an objective function. In a more practical point of view, optimization
is the task of taking decisions that maximize the performance of the decision maker in a
given task.

The process to solve an optimization problem can be divided into 4 steps: problem
formulation, problem modelling, problem optimization (solving), and solution implemen-
tation. The problem modelling phase is essential since it determines realistic is your model,
and therefore how useful your solution is in the real world. Also, it determines the opti-
mization method to solve the problem (TALBI, 2009).

An optimization problem can be defined as a tuple (.5, f), where S represents the set
of all feasible solutions, and f is the objective function f : S — R that determines the
quality of each feasible solution. A global optimum is a solution s* € S, Vs € S, f(s*) <
f(s) if f must be minimzed, and s* € S, Vs € S, f(s*) > f(s) otherwise. In other words,
a global optimum is a feasible solution that is no worse than any other. It means that
there might be many global optima in a single function. The best solution in a limited
area of the search space that is worse than the global optima is called local optimum. The
objective of any optimization method is to find the global optima of a given optimization
problem (TALBI, 2009).

There are several families of optimization models used to formulate optimization prob-
lems. The two most common approaches to build and optimization model is mathematical
programming and constraint programming (TALBI, [2009). In constraint programming, the

solution is defined purely by constraint functions. It means that the solution of the prob-

32

lem is found by satisfying all constraints. In mathematical programming, which is the
most common approach for building optimization models, the search process is guided
by an objective function (EIBEN; SMITH, 2015)). There are also cases where constraints
are used to limit the search space represented by an objective function. This work fo-
cuses on optimization methods for mathematical programming models. Thus, constraint
programming-based approaches will not be further detailed. Also, in the real world, most
of the optimization problems present constraints. Thus, constraint functions will always
be considered in the definitions presented in this background section. In these cases, the
reader might consider the existence of an empty set of constraints.

A widely used mathematical programming model is linear programming (LP). In LP,
both the objective function and constraints are linear continuous functions. In such prob-
lems, the region of feasible solutions is a convex set and the objective function is convex.
Thus, exact approaches such as the Dantzig’s Simplex algorithm (DANTZIG, |1961]) solve
them efficiently (7.e. in polynomial time) (TALBI, 2009).

Another mathematical programming model used for continuous optimization is non-
linear programming (NLP). In such models, the objective function and/or the constraints
are nonlinear continuous functions (BERTSEKAS, [1999)). As opposed to linear program-
ming models, NLPs are difficult to solve. Linearizing the model is one alternative to make
it solvable by an exact algorithm for LP models. However, the linearization of nonlinear
models always shows approximation errors. For quadratic or other convex functions, exact
algorithms can be used within an acceptable execution time in moderate problems (NO-
CEDAL; WRIGHT), [2006). However, for problems with high dimensionality, non-separable
dimensions, multimodality and nondifferentiability, approximate methods are mandatory
(TALBI, 2009).

For numerical problems with discrete variables, integer programming (IP) can be used
for modelling. When the problem presents both discrete and continuous variables, mixed
integer programming models (MIP) can be applied. A more general type of IP problems is
the family of combinatorial optimization problems, of which variables have a finite set of
discrete values. Usually, there is no order among such values. The majority of the real world
combinatorial problems are not solvable by an exact algorithm in polynomial time (at least
so far) and many of them are NP-Hard (TOSCANT; VELOSO, [2012). Therefore, approximate
methods can be used to give satisfactorily good solutions (i.e. optimal solutions are not

guaranteed).

2.1.2 Metaheuristics

For NP-Hard problems, heuristics are good options as approximate search methods. How-
ever, heuristics that are designed for these problems are usually ineffective in instances
with higher dimensionality. Moreover, heuristics are approximate solutions conceived for

specific problems, which means that a heuristic designed for a given problem A will not

33

work in a different problem B, unless B is polynomially reduceable to A (TALBI, 2009)).

Metaheuristics are heuristics designed to solve multiple problems. They have received
an increasing attention in the last 30 years due to its ability in approximate the solu-
tion of large-sized problems within a reasonable time. There is a classic trade-off that
must be considered when a new metaheuristic is conceived or an already existing one
is used to solve a problem: exploration versus exploitation. Exploration is the ability of
the metaheuristic to diversify its search process, searching for solutions in a wide area
in the search space. On the other hand, exploitation is the capacity of intensification of
the search process in a promising region. In Figure [T} the design space of a metaheuristic
is presented ranging from random search, that is pure diversification (i.e. exploration),
to local search, which is total intensification (i.e. exploitation). Random search consists
in randomly generating a new solution at each iteration (7.e. no memory is used), while
local search generates a new solution by selecting the best neighbor to the current solution
(TALBI, 2009).

Figure 1 — Conflicting criteria in designing a metaheuristic: exploration versus exploita-

tion.
Random Search Popuiatlon-_ba}sed Smgle—solutiqn _based Local Search
metaheuristics metaheuristics
Diversification Design space of a metaheuristic Intensification

Source: Produced by the author based on (TALBI, |2009)).

Between random search and local search, the metaheuristics can be divided into
population-based (e.g. Ant Colony Optimization (ACO) (DORIGO) [1992)), Artificial Bee
Colony (ABC) (KARABOGA; BASTURK|, 2008), Crow Search Algorithm (CSA) (ASKARZADEH,
2016), Differential Evolution (DE) (STORN; PRICE, [1997), Elephant Herding Optimiza-
tion (EHO) (WANG; DEB; COELHO, 2015)), Fish School Search (FSS) (FILHO et al., 2009a)),
Genetic Algorithms (HOLLAND] (1975), Particle Swarm Optimization (PSO) (KENNEDY;
EBERHART) |1995)), and single-solution based metaheuristics (e.g. Guided Local Search
(GLS) (VOUDOURIS, [1998), Greedy Adaptive Search Procedure (GRASP) (FEO; RE-
SENDE, |1989)), Iterated Local Search (ILS) (MARTIN; OTTO; FELTEN, (1991)), Simulated
Annealing (SA) (CERNY, [1985), Tabu Search (TS) (GLOVER, [1986)). As explained in the
previous chapter, single-solution-based metaheuristics are based on the idea of having
a single solution evolving throughout the iterations of the search process, while PBAs
have multiple solutions evolving in parallel. As expected, multiple solutions bring more
diversification to the search process than a single evolving solution.

According to Talbi (TALBI 2009), metaheuristics can also be classified according to

the following aspects:

34

« Nature inspired versus non-nature inspired metaheuristics: Metaheuristics can be
inspired by mechanisms in nature, like the collective behavior of animals or the

natural evolution of species.

o Memory-based versus memoryless methods: As previously mentioned, when local
search was compared against random search, metaheuristics can make use of memory
(i.e. use the search history to make better decisions in the future) or be completely

memoryless.

e Deterministic versus stochastic metaheuristics: Deterministic metaheuristics pro-
duce the same final solution for the same initial solution, while stochastic meta-
heuristics present some degree of randomness, which causes the algorithm to return

different solutions even though the same initial solutions are given.

o [terative versus greedy methods: Iterative metaheuristics start with single or mul-
tiple solutions that are transformed throughout the iterations by search operators,
while greedy algorithms assign values to each of the decision variables one by one,
until a complete solution is obtained. It is important to highlight that the vast

majority of metaheuristics are iterative

2.2 EVOLUTIONARY AND SWARM-BASED ALGORITHMS

Evolutionary and Swarm-based algorithms are stochastic, iterative nature inspired meta-
heuristics. They mostly use memory to guide their search process. This section presents
the most important aspects of both families of metaheuristics and describes a few relevant

algorithms, which were used in the experiments presented later in this work.

2.2.1 Evolutionary Algorithms

Evolutionary Algorithms are metaheuristics inspired by the process of natural evolution.
Such mechanisms are adapted and simplified to fit to the trial-and-error dynamics that
are present in every metaheuristic. The first ideas of applying Darwinian principles to
automated problem solving date back to the 1940s, when Alan Turing proposed 'genet-
ical or evolutionary search' (EIBEN; SMITH, [2015|). However, the first implementation of
an optimization algorithm based on evolution and recombination mechanisms was first
executed in a computer in 1962 (EIBEN; SMITH, 2015). During the 1960s and 1970s, three
different implementations of the basic ideas of evolutionary search started to be devel-
oped independently: Evolutionary Programming (EP) (FOGEL; OWENS; WALSH, |1966)),
Genetic Algorithms (GA) (JONG), 1975; HOLLAND) 1973), and Evolution Strategies (ES)
(RECHENBERG, |1973). In the early 1990s, these three approaches became part of a new
field called Evolutionary Computing (EC), of which algorithms were termed Evolution-
ary Algorithms (EA) (EIBEN; SMITH, [2015)). Then, these algorithms were divided into

35

the three already mentioned groups EP, GA and ES, and a fourth one called Genetic
Programming (GP), that was first proposed in the 1990s (KOZA| 1990).

Every EA is based on the following idea: given a population of candidate solutions
living in an environment with limited resources, they must compete for those resources to
survive. Such a competition causes the so-called natural selection. Thus, the fittest ones

survive. The general scheme of EAs is presented in the Algorithm [I]

Algorithm 1: General scheme of an Evolutionary Algorithm.
Input: Randomly initialized population of candidate solutions
Output: Best solution ever found

EVALUATE each candidate

while Stopping condition is not met do

SELECT parents

RECOMBINE pairs of parents

MUTATE the resulting offspring

EVALUATE new candidates

SELECT candidate solutions for the next generation

b =R B NEVURE VI

return Best solution ever found

0]

In Algorithm [it can be noticed that the basic scheme of an EA is composed by
four operators: recombination, mutation, evaluation and selection. These operators are
executed for each iteration (i.e. generation). It starts with the selection of parents for the
recombination step. Then, the offspring generated during the recombination procedure is
mutated. After that, the new candidates are evaluated and, finally, the surviving candidate
solutions are selected to pass to the next generation. The mechanisms implemented in each
operator vary according to the algorithm. Thus, before using or creating an EA, these
operators must be defined. Besides, the structure of the candidate solutions that form the
population of solutions must be decided beforehand.

As previously mentioned, each candidate solution represents a candidate solution to
the optimization problem at hand. Therefore, its structure depends on the problem, which
is modeled through an objective function, and a set of constraint functions. For example,
a binary vector represents an candidate solution (7.e. solution) in a binary optimization
problem, while a real-coded vector represents a solution to a numerical optimization prob-
lem modeled as a mathematical function with continuous variables. Thus, after modeling
the problem using one of the optimization models presented earlier in this work, the
solution representation (i.e. structure of candidate solutions) must be defined.

Defining the representation of solutions, the aforementioned four operators can be
defined. The selection mechanism involves the procedure used to select the surviving
candidate solutions from a population to pass to a new generation (i.e. iteration). This
step can be called replacement. Also, this mechanism can be used to select candidate

solutions to recombine or mutate, i.e. generate new candidate solutions. It is important

36

to mention that the best solutions are more likely to be chosen in the selection process,
and the higher such a probability, the stronger the evolutionary pressure in the population
over the generations.

The recombination mechanism, also known as crossover, involves the exchange of in-
formation (i.e. values from the solution vectors) between selected candidate solutions,
while the mutation procedure generates a random perturbation in the solution vectors.
The first mechanism causes the algorithm to exploit promising regions, while the second
one generates diversity in the search process.

Finally, the evaluation step is the part of the algorithm where the quality of each
surviving solution is measured. This mechanism uses the objective function to evaluate
each candidate solution in the population, assigning a numerical value to each one of them.
Such a value is called fitness and it is used to identify the fittest candidate solutions. The
fittest candidate solutions are the ones with the highest probability of surviving over
the iterations and passing their genes through generations via successive recombinations
(EIBEN; SMITH, [2015)).

There are several possibilities for the stopping condition. Its choice depends on the
necessities of the user or designer of the algorithm. For example, the iterative algorithm
might stop when it reaches a given number of iterations, or when its best solution does
not improve anymore for a given number of iterations.

In the following sections, two EAs will be detailed: Genetic Algorithms and Differential
Evolution (DE). These methods have been chosen to be presented in this section because

they have been used in the experiments of this study.

2.2.1.1 Genetic Algorithms

The basis for the Genetic Algorithms was initially established by Holland as a means of
studying the adaptive behavior in nature (HOLLAND, |1973). However, the studies of De
Jong (JONG, |1975) and Goldberg (GOLDBERG, |1989) greatly contributed to define what
came to be the simple (or canonical) version of the GA as an optimization algorithm. Its
operators and solution representation are described below.

In the simple GA, the candidate solution x is a binary-coded solution vector, i.e.
x € {0,1}", where n is the number of dimensions of the binary decision space. It means
that such an algorithm is more suitable to solve binary optimization problems, which can
be modeled as an Integer Programming model where the variables range between 0 and
1 in the feasible space. The evaluation of a solution in the simple GA (considering an IP
model for the problem at hand) is straightforward, since each bit in the bit string (i.e.
each gene in the chromosome) represents one variable in the decision space.

There are three standard methods for recombination of binary-encoded solution vec-
tors: one-point crossover, n-point crossover, and uniform crossover. For all methods, two

parents are recombined to create two children. In the one-point crossover, two parents

37

exchange their genes by randomly selecting a random number within the range [1,n — 1],
where n is the number of bits in the parent vectors. Then, both parents are splitted at
this point and two children are created by exchanging their tails.

The n-point crossover is a generalization of the one-point crossover, where n points are
randomly selected instead of one, and the parts between the splitting points are exchanged
between the parents. Finally, in the uniform crossover, n random numbers between 0 and
1 are generated, one for each variable in the solution vector. For the variables of which
the corresponding random values lie below 0.5, the value of the first parent will be copied
into the first child, and the value of the second parent will be copied into the second
child. Otherwise, the bit from the first parent is copied into the second child, and the bit
from the second parent is copied into the first child (EIBEN; SMITH, 2015). The one-point,

n-point and uniform crossover methods are illustrated in Figures [2] [and [4] respectively.

The crossover operator is executed with a given probability p..

Figure 2 — Example of the one-point crossover method.

[oJoJoJo]z]oolo]0] [oJoJofofoofolo[z]

Y

(1|1]0]j1)jojofofof1 [1TiToT1]xlolololol

Source: Produced by the author based on (EIBEN; SMITH] [2015)).

Figure 3 — Example of the n-point crossover method, where n = 2.

(0jojojoj1ijojojojo] [0]oJoJoJoJoJoJo]o]

|L]1joj1fojojojof1] (1f1]of1j1j0jofO]1]

Source: Produced by the author based on (EIBEN; SMITH, [2015)).

38

Figure 4 — Example of the uniform-point crossover method. The array [0.3, 0.6, 0.1, 0.4,
0.8, 0.7, 0.3, 0.5, 0.3] of random numbers were used to decide the inheritance.

[oJoJoJoJz]oJo]o]0] [o[z]ofoooJo]o]0]

[T]1]o]1JoJoJoJo]1] [TToToTi]x]a]o]o]1]

Source: Produced by the author based on (EIBEN; SMITH, [2015).

The standard mutation process for binary strings is quite simple. Each bit of each
candidate solution flips with some probability. When a bit is flipped, it turns 1 if its
previous value is 0, and vice-versa. Surely, the mutation probability must be low in order
to avoid too much randomness in the search process (EIBEN; SMITH, 2015)).

Binary-encoded solutions can also be used to solve nonbinary optimization problems.
For example, let x be a binary-encoded solution vector with 80 bits, where each subset of
contiguous 8 bits represents an integer variable in the decision space of an optimization
problem. It means that the given problem has 10 decision variables and each variable is
able to represent 256 possible values. In some cases, the binary strings are also used to
represent a real-valued vector. Considering the 80 bits-long string and a floating-point
representation of real values with 16 bits, the optimization problem has a decision space
with 5 real-valued decision variables. However, a few problems arise when such an ap-
proach is used. One of them is the difference of significance between each bit, what makes
the probability of changing the value of a variable from 2 to 3 the same as changing it from
0 to 128. Another issue is that the Hamming distance between two consecutive integers
is not always 1 (e.g. the Hamming distance between 2 and 3 is indeed 1, but the distance
between 127 and 128 is 8). Thus, due to the mentioned issues, it is recommended to use a
proper integer or real-valued representation for the solutions vectors in such optimization
problems. Surely, the operators must be defined accordingly (EIBEN; SMITH, [2015)).

The selection operator is responsible for the evolutionary pressure on the population
(i.e. exploitation). It keeps the fittest candidate solutions alive as long as possible and
assures that their genes are likely to be passed over the generations. Selection procedures
can be used both for parent selection and survival selection. It is important to highlight
that some of the selection mechanisms available in the literature are common to many
EAs. In order to illustrate how selection methods work, a few selection approaches are
detailed below.

As already mentioned, in parent selection operators, a set of A candidate solutions are
selected and copied into a mating pool. It is possible to enable the replacement of the
selected candidate solutions, which means that there may be multiple copies of the best

candidate solutions in the pool, what increases the evolutionary pressure. Then, pairs of

39

candidate solutions are randomly selected to recombine their genes. Three approaches are
widely used in the literature: fitness proportional selection (FPS), ranking selection (RS),
and tournament selection (T'S).

For a given candidate solution 7, the fitness proportional selection assigns a selection
probability proportional to its fitness, as described in the Equation [2.1] where f; is the
fitness of candidate solution ¢ and u is the population size. This method was introduced
in (HOLLAND)| 1992) and, since then, it has been widely studied, especially due to the
fact that it is easier to perform theoretical analysis on it. However, it is known that its
canonical form presents a few critical drawbacks, such as its strong tendency to premature
convergence, especially when there is a small group of outstanding solutions in comparison
to the others, and its low evolutionary pressure when the quality of the solutions are too
close to each other (EIBEN; SMITH, [2015)).

fi

=113

The ranking selection method was conceived in an attempt to surpass the issues of

Prps(i) = (2.1)

premature convergence and low evolutionary pressure of the FPS method. Proposed in
(BAKER, |1987)), it keeps the evolutionary pressure constant during the search process by
defining the selection probability inversely proportional to its rank in a population sorted
by the fitnesses of the candidate solutions in descending order. Such a principle can be
implemented in many ways. For example, the most common and simple inversely propor-
tional function is linear, as described in Equation [2.2] where s (1 < s < 2) is a parameter
of the operator, ¢ is the ranking of the candidate solution. In such an implementation,
the best candidate solution has rank @ — 1 and the worst has rank 0. It is also possible
to put more evolutionary pressure in the search process by using an exponential function
instead of the linear one, where the difference between the selection probabilities of the
top-ranked candidate solutions and the remaining ones is greater than in the linear ap-
proach. Such an approach is defined in the Equation where ¢ must be defined so that
the sum of the probabilities is equal to 1 (EIBEN; SMITH, |2015)).

2 — 2i(s —1
s i(s—1)

Prin—rank(1) = .
hnsrani (i) = ==)

(2.2)

Pezp—rank (Z) —

(2.3)

The tournament selection is the most commonly used method in GAs, due to its
simplicity and efficiency, especially in large populations. The idea of this approach is to
avoid considering the entire population for selection by randomly selecting small groups
of candidate solutions, comparing them, and then selecting the best one. The pseudocode
for this a method is described in Algorithm

40

Algorithm 2: Pseudocode for the TS algorithm..

Input: A\, k, Population of candidate solutions

Output:) selected candidate solutions in the mating pool
1 SET current_member to 1; while current_member < X do
2 PICK k candidate solutions randomly (with or without replacement)
3 COMPARE the selected candidate solutions and select the best one
4 ADD a copy of the selected candidate solution to the mating pool
5 INCREMENT current member

6 return \ selected candidate solutions in the mating pool

The survival selection method, also known as replacement mechanism, is responsible
for selecting i candidate solutions from a set of u parents plus A children generated
from the p parents. The aforementioned parent selection mechanisms can be applied
to the survival selection. However, some selection mechanisms were specially designed
for survival selection and some of them are widely used in the literature. One of the
most commonly used mechanism, which is actually complementary to other methods,
is elitism. Implementing the elitism mechanism, the current k& best candidate solutions
are guaranteed to pass to the next generation. Elitism has been found as one of the most
important mechanisms to be implemented in any Evolutionary Algorithm, since it greatly
influences the convergence of the algorithm, bringing more stability to the search process
(EIBEN; SMITH, [2015)).

2.2.1.2 Differential Evolution

Differential Evolution (DE) was proposed in 1997 by Storn and Price (STORN; PRICE,
1997)) and has been one of the most successful metaheuristics ever created due to its many
powerful improved versions proposed over the last two decades, e.g. (ZHANG; SANDERSON|,
2009; [TANABE; FUKUNAGA| [2013} ITANABE; FUKUNAGA| 2014} BREST; MAUCEC; BOSKOVI¢,
2016; [BREST; MAU¢EC; BOSKOVId, 2017; [TONG; DONG; JING, 2018)). This algorithm was
conceived to solve mathematical continuous optimization problems. The main difference
between the canonical DE algorithm and GA is the mutation operator called differential
mutation. In order to mutate the population, a perturbation vector is calculated for each
candidate solution. Such a vector is calculated by randomly choosing three candidate
solutions with indexes rq, o and r3 and using the formula presented in Equation
where F' > 0 is a real number and sets the pace of the search process, and x,; is the
position of the r;-th candidate solution (EIBEN; SMITH, 2015).

P =Xy +F (Xpy — Xpg)- (2.4)

A new solution (i.e. offspring) is created by exchanging the genes between the pertur-

bation vector and its corresponding parent. The genes from the perturbation vector are

41

inherited by the new solution with a given probability C,. For each gene not chosen to
be passed to the child, the corresponding gene from the selected parent is copied instead.
The selection of the surviving solution is made by choosing the fittest one between the
parent and the new solution. The general structure of DE algorithms is the same as the
GA algorithms (EIBEN; SMITH, [2015)).

This canonical strategy is called DE/rand/1/bin. There are plenty of different strate-
gies available in the literature. However, besides the previously described one, another
commonly used strategy is the so-called DE/best/1/bin, where instead of using a ran-
domly chosen candidate solution r1, the best candidate solution (i.e. the fittest one) is
used, as described in Equation 2.5, where Xpest is the position of the best candidate
solution in the population (EIBEN; SMITH, 2015).

P = Xpest T+ F- (sz - Xr3)- (25)

2.2.2 Swarm-based Algorithms

Swarm-based algorithms, also known as Swarm Intelligence (SI) algorithms, are powerful
metaheuristics based on a population of candidate solutions that searches in parallel for
the optimal solution(s) of an objective function in a search space. The communication
between such very simple reactive agents causes the emergence of complex self-organizing
patterns capable of efficiently solving very complex optimization problems. This emer-
gence property is called Swarm Intelligence, hence the name of the field (BONABEAU;
DORIGO; THERAULAZ, [1999; [PANIGRAHI; SHI; LIM, 2011} [VASUKI, 2020). These mecha-
nisms are inspired by the behavior of collectives of animals in nature, e.g. flocks of birds
looking for good sources of food or schools of fish protecting themselves from predators. In
general, the candidate solutions in the best spots in the search space share their positions
with the others, so that each candidate solution decides how such an information will be
used together with the knowledge acquired throughout its own search path. The stronger
the influence of the best-positioned candidate solutions on the population, the stronger
the exploitation behavior of the swarm. The stronger the influence on each candidate solu-
tion of its own search history, the stronger the exploration behavior of the population. As
well as EAs, the biggest challenge in swarm-based algorithms is to manage an adequate
balance between exploration and exploitation throughout the search process.

Three swarm-based algorithms are detailed below: Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO) and Fish School Search (FSS). These algorithms are cho-
sen to be detailed in this section because they were used in the experimental benchmark
of this work. Their selection was mainly because of their distint operational characteris-
tics, respectively, combined optimization rationale on local and global information, ample
schem of externally shared information, and automatic selection of exploration and ex-

ploitation.

42

2.2.2.1 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm was proposed by Kennedy and Eber-
hart in 1995 (KENNEDY; EBERHART) |1995)). It is inspired on the collective foraging behav-
ior of birds and its one of the most widely used and well-succeeded swarm-based algorithm
so far. Its simple yet effective mechanism is described in Algorithm |3 In this pseudocode,
it can be seen that, for each iteration, the velocity vector of each candidate solution is
calculated, then it is added to the position vector. It is important to notice that it was
originally conceived to continuous search spaces. If the new position of a given particle
is outside the boundaries of the search space, the position vector is not updated. The
equation of the velocity vector defined in the Equation was proposed in 1998 by Shi
and Eberhart (SHI; EBERHART), [1998)) and it is the most commonly used version of the
technique. It adds the parameter w (i.e. inertia weight) to the canonical algorithm. In this
Equation, v; is the velocity vector in R™ of the candidate solution ¢ at iteration ¢, ¢; and
cy are real-valued parameters called cognitive and social factors, respectively, r;, and rj,
are two random vectors in [0, 1]", x; ¢ is the position vector in R™ of the candidate solution
i at iteration ¢, piy is the personal best (pbest) vector in R™ of the candidate solution i
at iteration ¢, and g is the global best (gbest) vector in R™ of the entire population at

time ¢.

Algorithm 3: Pseudocode for the PSO algorithm.

Input: Randomly initialized population of candidate solutions

Output: Best solution ever found

EVALUATE each candidate solution

while Stopping condition is not met do

3 CALCULATE velocity vector for each candidate solution according to

Equation

4 ADD the velocity vectors of each candidate solution to their position vectors
according to Equation

EVALUATE each candidate solution

6 UPDATE the candidate solutions’ pbest position and the ghest position

[.

7 return Best solution ever found

Vig+1 = Wk Vig + €1 % Ty, ¢ - (Pig — Xig) + C2 * Tigt - (8¢ — Xit)- (2.6)

Xit+1 = Xit T Vit+1- (2.7)

Each dimension in the velocity vector is limited to a maximum value in order to avoid
instability in the population. The pbest of the candidate solution ¢ at iteration t is the
best position found by the candidate solution itself until the beginning of the iteration ¢,

while the gbest of the population at iteration ¢ is the best position found by the entire

43

population until the beginning of the iteration t. The inertia weight w is the weight
given to the previous velocity vector, which conserves part of its direction and intensity.
The higher its value, the stronger the exploration behavior. The cognitive factor ¢ is
the weight given to the difference vector between the pbest and the current position of
each candidate solution, i.e. the weight given to its own knowledge acquired throughout
the search process. The higher its value, the stronger the exploration behavior in the
algorithm. Finally, the social factor ¢, is the weight given to the difference vector between
the gbest and the current positions of the candidate solutions, i.e. the weight given to the
the global knowledge acquired throughout the search process. Thus, the higher its value,
the stronger the exploitation behavior on the population.

Despite the enormous success of such an algorithm in many applications, it usually
presents an overly exploitative behavior. As well as other metaheuristics, the mainte-
nance of the balance between exploration and exploitation has been one of its greatest
challenges. Thus, the PSO algorithm and its many variants have been widely studied
since the proposal of the canonical version of the metaheuristic. In 2006, Liang et al.
have proposed an interesting version of the PSO called Comprehensive Learning PSO
(CLPSO) (LIANG et all, [2006)). In their study, they have proposed a modification to the
velocity vector as shown in Equation , where p;{ is a vector of the candidate solution
i updated according to Equations[2.9]and 2.10] Such an update occurs every m iterations
with no improvement in the fitness of the given particle. In Equation , pfht 41 is the gt
dimension of the vector pj at the iteration ¢ + 1, p;, ; is the 4% dimension of the pbest
vector of the candidate solution 7 at the iteration t, prg, ; is the 4" dimension of the pbest
vector of another candidate solution selected by tournament at the iteration ¢, Ti;¢ 1S a
random number between 0 and 1, and ps is the population size. In the CLPSO original
paper, a = 0.05 and b = 0.45.

Vit+l = W * Vig - C* Ty ¢ - (P?,t - Xi,t)- (2.8)

. Pijt T < pegts

Pij 141 =)
prs;t otherwise.

(exp(10) — 1)

In the proposed mechanism, each dimension of the p; vector is updated separately.

Dot = a4 bx*

For each dimension, if a random number is lower than the probability calculated accord-
ing to Equation the corresponding value of the pbest of the candidate solution 7 is
copied into the vector. Otherwise, the corresponding value of the pbest of another can-
didate solution chosen by tournament selection between two randomly chosen candidate
solutions in the remaining population is copied instead. According to Equation [2.10] the
probability of choosing its own pbest to update the vector p; by the candidate solution

44

1 depends on its index. The higher the probability, the more exploratory is its behavior.
On the other hand, the lower the probability, the more exploitative it is. It means that
the balance between exploration and exploitation varies among the candidate solutions
in the population according to their indexes.

Even though candidate solutionizing the levels of exploration and exploitation is an
important improvement on the PSO algorithm, candidate solutions with higher explo-
ration tendency are adversely influenced by candidate solutions with a higher exploitation
tendency. Such an issue was addressed by Lynn and Suganthan in 2015, when they pro-
posed one of the current state-of-the-art PSO variants, the Heterogeneous Comprehensive
Learning PSO (HCLPSO) (LYNN; SUGANTHAN, [2015)). In this algorithm, the population
is divided into two subpopulations: an exploratory and an exploitative subpopulation. The
velocity of the particles in the exploratory subpopulation is calculated through Equation
2.8 while the candidate solutions in the exploitation subpopulation calculate their ve-
locities according to Equation [2.11] The authors of this paper have defined that a = 0
and b = 0.25. In HCLPSO, the vector p;j for the candidate solutions of the exploratory
subpopulation is updated considering only the candidate solutions from the same sub-
population, while the candidate solutions from the exploitation subpopulation learn from
the entire population. Besides, if the pbest vector of an candidate solution i from the
exploration subpopulation is copied into (p;ﬁt when this vector is updated, a dimension is
randomly chosen to be learnt from the pbest of a randomly chosen candidate solution in

the same subpopulation.

Vigrl = Wk Vig + 1Ty ¢ (Phy — Xie) + C2 % Tig e - (86 — Xie)- (2.11)

With the aforementioned mechanisms, the authors have proposed a more powerful PSO
variant than CLPSO, with a more effective balance between exploration and exploitation.
The results achieved in the experiments presented in the paper still place the proposed

algorithm among the state-of-the-art variants of PSO.

2.2.2.2 Ant Colony Optimization

The vanilla version of the Ant Colony Optimization algorithm was proposed in 1992 by
Dorigo (DORIGO, [1992). Conceived to solve combinatorial optimization problems, it is
inspired on the foraging behavior of ants. In this algorithm, the problem is modelled as
a graph where the nodes are the possible values of the solution space. The objective of
these ants is to find the less expensive path where all nodes are visited only once. Every
candidate solution must walk through the graph looking for such a path and calculating
the cost of each valid path found. Such a cost then defines the amount of pheromone
deposited by each candidate solution in the corresponding path. The less expensive is the
path, the more pheromone will be deposited on the links between the nodes that formed

the currently evaluated path. Thus, the best paths are strongly marked by large amounts

45

of pheromone. For each new iteration, the more pheromone deposited in a given path, the
more likely its choice. It is easy to see that the application of such an algorithm to the
Traveling Salesman Problem (TSP) is straightforward (ILAVARASL; JOSEPH, 2014). The
very simple pseudocode for the ACO algorithm is depicted in Algorithm [4]

Algorithm 4: Pseudocode for the vanilla ACO algorithm.
Input: Graph with initial values of pheromone
Output: Best path ever found
while Stopping condition is not met do
CONSTRUCT the ant solutions
L UPDATE globally the pheromone trails

4 return Best solution ever found

w N =

The amount of pheromone 7, deposited on each link of the graph must be previously
defined by the user. The construction of a new solution is made by each ant starting from
an initial node and gradually choosing the next step (i.e. next solution to add to the
final solution vector). For each visited node i, the next node j is chosen probabilistically
by looking at the available nodes connected to i. Equation [2.12] shows the most widely
used formula to calculate the probability of choosing a node j from a node 7, where c¢;;
represents the link between the nodes ¢ and j, S, is the set of available nodes given the
partial solution build so far by the ant, 7;;; is the amount of accumulated pheromone
deposited in the link between the nodes ¢ and j up to the current iteration ¢, n(c;;) is
the cost of walking from node i to node j, and a and 3 are parameters that defines the
importance of the knowledge acquired by the population during the search process and
the a priori knowledge defined by the user, respectively (DORIGO; MANIEZZO; COLORNT,
1996).

(o7

2 n(ei)]?

Zcuesp,t Tilt (n(ca))?
The pheromone update in a given link between two nodes ¢ and j is usually made

through Equation [2.13] where p is the evaporation rate, g(s) is the quality (i.e. fitness)

assigned to the solution solution vector s, and Sy, is the set of solutions selected to

plcijlSpe) = (2.12)

update the pheromone trails.

Tijar1 = (1= p)Tije + Z g(s). (2.13)

SESupa.t
In 1997, Stutzle and Hoos proposed a widely used variant of the ACO algorithm,
the MAX-MIN Ant System (MMAS) (STUTZLE; HOOS, |1997). In this study, the authors
proposed maximum and minimum bounds for the accumulated amount of pheromone
deposited in the links. Moreover, the S,,4 set includes only one solution: the best solution

in the current iteration. However, from time to time the best solution ever is used instead.

46

Such a frequency is increased over time, increasing the exploitation of the search process
as it comes closer to the end of the optimization process. Since MMAS was applied to
the TSP problem, the quality of the solutions are their corresponding travelling distances
d(s). Since the objective of the TSP is to minimize the travelling distance, g(s) is defined
as 1/d(s).

2.2.2.3 Fish School Search

Proposed by Bastos Filho and Lima Neto in 2008, Fish School Search (FSS) (FILHO et al.,
2008)) (FILHO et al., 2009a)) is a PBA for continuous optimization problems. It is inspired
on the collective foraging behavior of fish schools. The success of the search process is
represented by the weight of each fish. In other words, the heavier an candidate solution,
the more successful its search history.

Algorithm [5] shows the pseudocode of the FSS algorithm. Each iteration of the algo-
rithm is divided into four operators: the candidate solution movement, the feed operator,
the collective instinctive movement, and the collective volitive movement. It is important
to mention that two solution evaluations are called for each iteration. This is necessary

for the feeding operator, as explained later in this subsection.

Algorithm 5: Pseudocode for the FSS algorithm.
Input: Randomly initialized population of candidate solutions
Output: Best solution ever found
EVALUATE each candidate solution
while Stopping condition is not met do
Run the candidate solution MOVEMENT operator
EVALUATE each candidate solution
Run the FEEDING operator
Run the COLLECTIVE INSTINCTIVE MOVEMENT operator
Run the COLLECTIVE VOLITIVE MOVEMENT operator
EVALUATE each candidate solution

return Best solution ever found

W N OO A W N

©

In the candidate solution movement operator, each candidate solution randomly moves
in the search space. Such an operator is responsible for the exploratory behavior of the
algorithm. In this operator, random vectors are added to each solution in the population,
as shown in Equation [2.14] where step;,q is the candidate solution step and must be
defined by the user. After executing such an operator for each fish, the candidate solution

only moves to the new position if it is better than the current one.

Xit+1 = Xit + Tig * St€Ping. (2.14)

As already mentioned, the success of each fish is encoded in the weight of the candidate

solution. The fish gains weight through the feeding operator, where the relative fitness

47

gain after the last execution of the candidate solution movement is added to the previous
weight. Such a mechanism is shown in Equation , where Af;; is the fitness gain of
the candidate solution i after the candidate solution movement at the current iteration t,
and w; ¢ is the weight of the i-th fish at iteration ¢.

Afig

max; Afi;

(2.15)

W1 = Wig +

The collective instinctive movement defines a displacement vector that is added to the
position vector of all candidate solutions in the population. Such a vector is the weighted
average of the displacement vectors of each candidate solution. This displacement vector
is the difference vector between the positions of a given candidate solution after and
before the candidate solution movement. The weights for this average calculation are
the fitnesses gained during the candidate solution movement for each candidate solution.
Equation [2.16| shows the calculation of a new position vector in the collective instinctive
movement, where N is the population size and Axy is the aforementioned displacement
vector added to the candidate solution k£ during the displacement movement at the current

iteration t.

S A frr * AXpey
Z]]{;V::[Afk:,t

The collective volitive movement is the last operator executed in every iteration of

Xit+1 = Xit + (2.16)

the F'SS. It is responsible to increase the exploitation or the exploration according to the
current situation of the search process. The exploitation is increased by contracting the
fish school when the total weight sum of the population increases between the latest and
the current iterations. On the other hand, the exploration is increased by expanding the
population when the total weight remains the same. It is important to highlight that
the weight of a fish never decreases, since a fish updates its position on the candidate
solution movement only if its fitness increases. Thus, the gain of weight of any fish can be
only positive or null. Surely, the same applies to the total weight of the population. The
total weight stagnation happens when the algorithm gets stuck in a local minimum and
cannot find better places during the candidate solution movement. When this happens,
the algorithm expands its population, increasing the exploration behavior, what makes
the fish visit areas that have not been visited before (most likely).

The movements of expansion and contraction are performed using the barycenter of
the population as a reference point. The barycenter is calculated through Equation [2.1
The expansion movement is described in the Equation [2.18/and the contraction movement
is shown in the Equation 2.19] step,q is the volitive step size that must be defined by the

user.

N
s Aw; g x Axyg

B, =
‘ 21]21 sz‘,t

(2.17)

48

Xit — B

Xit+1 = Xjt + Stepvolri,tm- (2'18)
it — Dt
X;:+ — B

Xit+1 = Xit — Stepuolri,tﬁ- (2.19)
it — Dt

2.2.3 Parameter Adjustment for Metaheuristics

As already mentioned, according to the No Free Lunch Theorem, there is no parameter
setting for a given algorithm that works best for every possible problem (WOLPERT;
MACREADY}, (1997)). Therefore, finding an optimal parameter setting that maximizes the
performance of a given metaheuristic in a specific problem is necessary. However, manual
parameter adjustment for EA and SI can be very hard and time demanding. Therefore,
automating this task has been one of the greatest and most important challenges in the
field (EIBEN; HINTERDING; MICHALEWICZ, [1999).

Autonomous adjustment approaches can be divided into two groups (KARAFOTIAS;
HOOGENDOORN; EIBEN, 2015b): tuning algorithms and control algorithms. Figureshows
the taxonomy of the methods of parameter adjustment. Such a classification was adapted
from (TALBI, 2009) and (EIBEN; SMITH, |2015). The following subsections depicts each one

of these classes.
Figure 5 — Taxonomy of parameter adjustment techniques.

Parameter adjustment

/\,

Tuning Methods Control Methods

Design of Experiments Meta-optimization Dynamic Adaptive Self-Adaptive

Source: Produced by the author based on (TALBL 2009) and (EIBEN; SMITH, [2015)).

2.2.3.1 Parameter Tuning

Parameter tuning methods, also known as off-line methods, are techniques that auto-
matically find good parameters for a given metaheuristic previous to its execution on a
target problem, keeping them constant throughout its execution. Usually, metaheuristic
designers or users tune one parameter at a time. Thus, the interferences between some of
the parameters are not captured and the results may be suboptimal. To overcome such
an issue, Design of Experiments (DOE) can be used. In order to use DOE, a few things
must be defined beforehand (TALBI, 2009):

49

« Parameters to vary in the experiments (also known as factors, design variables,

predictor variables, and input variables);

o Levels that represent the possible values of each parameter to be adjusted.

When n parameters need to be adjusted with & levels each one, brute-force approaches,
such as Grid Search, need k" experiments to find a good adjustment (LIASHCHYNSKYT;
LIASHCHYNSKYT, 2019). It is important to notice that each experiment is composed by a
number of executions of the metaheuristic with a given parameter setup for a set of train-
ing functions. However, there are more efficient methods for experimental design, where
a smaller number of experiments is created. For example, the F-Race algorithm initially
creates a set of experiments and runs each one of them on a set of training problems
(BIRATTARI et al., |2010)). Then, instead of running all setups for all training functions,
the experiments are gradually evaluated on such a problem set and the setups that show
poor performance can be earlier discarded, what saves processing time (BIRATTARI et al.,
2002).

An iterated version of the F-Race tuning algorithm, known as Iterated F-Race (I/F-
Race), starts with a small set of setups, applies the F-Race algorithm until a given stopping
condition is met. Then, it randomly generates new setups using the distribution of the
surviving setups. Such a technique has been widely used since its proposal and it can be
considered as one of the state-of-the-art techniques of parameter tuning for metaheuristics
(BALAPRAKASH; BIRATTARI; STUTZLE, [2007a; BIRATTARI et al., [2010)).

As depicted in Figure [f] tuning methods can also be classified as meta-optimization
algorithms. The techniques in this group apply a metaheuristic to search for a good pa-
rameter setup of another metaheuristic. In such approaches, the solution of the upper
metaheuristic is the parameter setup of the lower metaheuristic. Thus, a solution evalua-
tion consists in an execution (or multiple executions for non-deterministic metaheuristics)
of the lower metaheuristic with the parameter setup encoded in the upper solution vector
(BIRATTARI et al., |2002).

2.2.3.2 Parameter Control

Tuning methods are widely used in EA and SI communities, especially due to their usually
simple mechanisms. However, it is well-known that the optimal value of a given parameter
changes along the optimization problem. Parameter control algorithms, also known as
online parameter adjustment algorithms, set the parameter values of a metaheuristic on-
the-fly, 7.e. throughout the optimization process. Thus, they are capable of choosing the
best parameter setup for a given algorithm solving a given problem at a given point in
time. Therefore, a metaheuristic with dynamic parameters are likely to perform better
than the same metaheuristic with static parameters (EIBEN; HINTERDING; MICHALEWICZ,
1999 [KARAFOTIAS; HOOGENDOORN; EIBEN], 2015b).

50

As shown in Figure [5] there are three types of parameter control algorithms: dynamic,
adaptive, and self-adaptive methods (EIBEN; SMITH, [2015). The dynamic methods do
not use any information from the search process in order to make decisions about the
parameters values. These decisions are usually made based on the elapsed time of the
search process (EIBEN; SMITH, [2015)). For example, a common dynamic parameter control
policy for the PSO algorithm is a linear decrease of the inertia weight and the cognitive
factor, and a linear increase of the social factor. Such policies are usually conceived in
order to create a stronger exploratory behavior in the beginning of the search process
followed by a stronger exploitative behavior in the end.

The adaptive methods receive feedbacks from the search process so that smarter deci-
sions can be made. Adaptive techniques involve mechanisms of credit assignment, which
estimates the importance of each decision on the success of the entire search process. It
is important to mention that the control mechanism is implemented in an external agent
that interacts with the running metaheuristic, setting parameter values and receiving
feedbacks on its performance with the new parameter adjustment (EIBEN; SMITH, 2015)).

Finally, the self-adaptive methods evolve the parameters of a metaheuristic by in-
cluding them in the solution vector. Thus, the parameters will be evolved alongside the
decision variables of the optimization problem by the algorithm itself. It means that even
though self-adaptive methods also use the feedback of the search process to make deci-
sions, the parameter control policy is implicitly implemented with the operators of the
metaheuristic itself. For example, in a self-adaptive approach for GA with real-valued
solution vector, the mutation and the crossover probabilities are encoded in the solution
vector itself and are treated as decision variables.

As already mentioned in this work, a different classification scheme was proposed in
(KARAFOTIAS; HOOGENDOORN; EIBEN] [2015b): control methods tailored to an applica-
tion and out-of-the-box control methods. The parameter control algorithms tailored to
specific applications are techniques that were designed to work with a specific metaheuris-
tic and/or a specific problem. The vast majority of the studies about parameter control
methods for EA and SI that have been published so far focus on such methods (LACERDA
et al., 2021)). Such a finding is better discussed in the literature review chapter of this study.
On the other hand, out-of-the-box parameter control algorithms can be applied to several
metaheuristics and optimization problems. It means that without any change in the logic
of the control algorithm, it can be used in different scenarios. The differences between
both groups are similar to the differences between customized and out-of-the-box soft-
wares. It is important to note that out-of-the-box methods are inherently adaptive, since
in order to be able to be applied to multiple metaheuristics and optimization problems,
the control mechanism must be implemented outside the metaheuristic itself. Therefore,
no self-adaptive methods should be classified as out-of-the-box.

This work focuses on out-of-the-box methods. Therefore, in chapter 3, a literature

o1

review on this subject is presented.

2.3 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a machine learning paradigm where an agent interacts
with its surrounding environment by taking actions and receiving rewards, improving its
performance by trial-and-error. This section describes the basics of RL and presents the
necessary topics to understand the proposal of this work.

An RL problem can be formulated as a Markov Decision Problem (MDP), which is
a classical formal formulation of sequential decision making processes. In an MDP, the
decision maker (i.e. learner) is called agent. Everything outside the agent is called envi-
ronment, which the agent interacts with through actions that modify its state. Since the
agent is goal-oriented, which means that there must be an objective that the agent must
pursue, the effect of each action on the environment generates a reward that indicates how
good is the taken action for the pursuit of the agent’s objective. A positive reward rein-
forces the taken action for the observed state when the given action was taken (SUTTON;
BARTO) 2018)).

As already mentioned, in an RL problem the learning agent interacts with the envi-
ronment over and over through a trial-and-error process. In this iterative process, it is
expected that the agent learns optimum actions for different scenarios (i.e. states of the
environment). Figure@ shows this mechanism, where the agent takes and action A; at time
t, and the environment 'reacts" to the action, returning a new state S;,; alongside a re-
ward Ry, 1. The sequence of states, actions, and rewards Sy, Ag, Ry, S1, A1, R, S, Ag, Rs...
is called trajectory (SUTTON; BARTO, [2018]).

Figure 6 — The agent-environment interaction in a Markov decision process.

—>
Agent
state S; reward Ry action A;
' Rt+i
' Environment |« :
—
" St

Source: Produced by the author based on (SUTTON; BARTO) 2018)).

Equation shows the probability of reaching a state s’ at time ¢ and receive a reward
r after taking an action a at time ¢, when the environment was in a previous state S;_; at

time ¢ — 1. In such a formulation, R; and S; are random variables whose distributions are

52

dependent only on the preceding state and action. Such a definition defines the dynamics
of the MDP (SUTTON; BARTO, 2018)).

p(s',rls,a) = P{S; =5, Ry =7r|S;_1 = s, A1 = a}. (2.20)

The objective of an RL agent is to maximize the cumulative reward received along the
trajectory. Thus, the reward can be thought of as a scalar signal of which accumulation
over time must be maximized. The accumulated reward is also known as expected return
(PUTERMAN, [1990).

A terminal state of an MDP is a state that, whenever the agent reaches it, the agent
stops learning. A full trajectory from an initial state to a terminal state is called episode.
Learning tasks with such a state are called episodic tasks, of which the expected return
can be calculated according to Equation m However, in many situations (especially in
robotics), there is no such a state, which means that the agent must learn indefinitely.
These tasks are called continuing tasks. In both cases, the agent tries to maximize G, for
each time t (PUTERMAN, (1990; SUTTON; BARTO, 2018).

Gt == Rt+1 -+ Rt+2 -+ Rt+3 + ...+ RT- (221)

The problem of continuing tasks is that the expected return is usually infinite. In order
to overcome this issue, the agent must consider a decreasing discounting factor for each
of the future reward as described in Equation In this equation, v € [0,1] and is
called discounting factor (KAELBLING; LITTMAN; MOORE, (1996 SUTTON; BARTO, 2018)).
It is important to note that the closer to zero, the more myopic is the agent. On the
other hand, the closer to one, more importance is given to distant rewards. GG; can also

be calculated recursively, as defined in Equation [2.23

Gy = Ry +vRiio + 72Rt+3 + ... = Z ’7th+]¢+1- (222)
k=0

Gt = Rt+1 + ’yGH-l' (223)

In order to unify the representation of both episodic and continuing tasks, instead
of using terminal states, absorbing states can be added to the MDP, from which transi-
tions take the execution flow back to themselves and the corresponding rewards are zero
(ALAGOZ et al., 2010). Then, the expected return can be defined according to Equation
[2.24] where T can be infinite or not (SUTTON; BARTO, 2018).

T
Gi= Y "Ry (2.24)

k=t+1
Almost every RL algorithm works by iteratively learning a function that estimates

how good is a given state, or a given action taken in a given state. Such an estimation

53

is intended to make the agent choose the best action for the current state in order to
maximize the expected return. The probability function that maps each state to each
possible action is called policy, which can be represented as a function m(als), where a is
the taken action and s is the current state of the environment (SUTTON; BARTO, |2018)).

Given an agent with a policy 7, the value function of a state s is the expected return
if the agent starts working in the given state and follows 7 thereafter. In other words, the
quality of a given state is the expected return of an agent using a policy m, starting from
the given state until it reaches an absorbing state. Equation [2.25| presents such a function
under the MDP framework, which is called state-value function for policy mw. Similarly,
the action-value function for policy m can be computed as shown in Equation [2.26] which
computes the expected return (i.e. quality) of an action a taken when the agent observes
the environment in a state s. As already mentioned, the value functions v, and ¢, can be
learned from experience, when true rewards are received for each state and taken action
(LAPAN, 2018)).

vr(s) = E[Gy|S; = 8] = E [Z YRy ps1]Si = 81 ,Vs e S. (2.25)
™ ™]{,’:0
Ix(5,a) = E[thst =s5A =a] = IE: [Z ’Yth+k+1|St =s5,A = G] . (2.26)
k=0

Equation [2.27 shows the relationship between the value function of a state s and the
state values of its successor states. This is called Bellman equation. It computes recursively
(i.e. as a breadth-first search in a tree of possibilities) the expected return by considering
all possibilities of states, actions, and rewards from the current state until it reaches an
absorbing one. In other words, for each combination of a, s’ and r, its probability is
calculated as w(a|s)p(s’, r|s,a). Then, the expected return is calculated by summing over
the rewards of all visited states multiplied by their probabilities (MA; STACHURSKI, [2019).

Ur(S) = IE[GJS?& = 3]
= IEF:[Rt—H + G415 = 9]
= Y (als) =Y p(s 718, @) [+ Y E[GrialSiar = o

= w(als)d p(s',r|s,a) [r +yv(s')],Vs € S.

s'r

(2.27)

Given the definitions presented so far, the goal of an RL agent can be redefined as
the search for a policy that maximizes the state and state-action value functions, i.e.
maximizes the expected return for each visited state in its trajectory. A policy 7 is better
or equal than a policy 7’ if and only if v, (s) > vy (s), Vs € S. There is always a policy that
is better than or equal to all other policies. Such a policy is called optimal policy and can

be denoted as m,. Optimal policies make optimal decisions, what causes the state value

54

function to be optimal as well (LAPAN| 2018). Equation shows the definition of the
optimal state-action value function, where v,(S+1) is the optimal state value function, as

defined in Equation [2.29

Gr. (8,a) = E[Ri11 + Y0.(St41)]S: = s, Ay = al. (2.28)

Ur, (Si41) = max V(). (2.29)

Since v, is the value function of a policy, it must satisfy the self-consistency posed
by the Bellman equation. Equation shows the Bellman equation for v,, also known
as Bellman optimality equation, where A(s) is the set of available actions for the state
s. Such an equation is built upon the idea that optimal actions are always taken with
optimal policies, as previously mentioned (?7LAPAN, [2018).

Ux(8) = max ¢, (s,a
(5) = max gs.(5.0)
= HlélX E[Gt|5t = S, At = a}
= me%X}?[RtH +7G111| S = s, Ay = d (2.30)
= mg‘X]E[Rt-‘rl + Yr, (Se41)[5t = 5, A = d
- mgx Zp(sl7 T|S7 CL) [T + Vr, (8/)]'
The Bellman optimality equation can be used to compute the state-action value func-

tion for the optimal policy, as defined in Equation [2.31]

gr.(s,0) = p(s',r|s,a) {r +ymax g, (s',d’)| . (2.31)

s'r

The Bellman optimality equation can be exactly solved. However, such an exact so-
lution can only be found under three conditions: the dynamics of the environment is
accurately known; there is enough computational resource to compute the exact solution
in a reasonable time; the RL problem presents the Markov property. Dynamic Program-
ming (DP) is a set of widely known iterative algorithms that guarantee optimal policies
in MDPs where their dynamics are perfectly known. They are quite efficient under such
conditions when compared to other methods such as linear programming or direct search.
Two of the most common DP approaches are Policy Iteration and Value Iteration (BERT-
SEKAS, 2000; LAPAN, 2018)).

In the Policy Iteration method, two iterative processes are interchangeably executed:
policy evaluation and policy improvement. The output of the policy evaluation affects the
policy improvement and vice-versa. Such a “cooperation" happens until the the optimal

policy is found (LAPAN] [2018). The policy evaluation and policy improvement processes

95

are shown in Equations and [2.33], respectively, which are computed for each state
ses.

vrr1(s) = Zp(s’, rls, m(s))[r + yor(s)]. (2.32)
Tri1(s) = arg max /Zp(s/, rls, T ($)[r + Yok (8] (2.33)

It is important to mention that these iterative processes are executed until they con-
verge to the optimal policy or another stopping criterium is met. However, defining an
effective and efficient criterium can be hard. The Value Iteration method serves as an
alternative technique, where a single iteration is performed for both iterative processes.
Thus, it can be written as a single iterative process that combines the policy improvement
and the policy evaluation steps, as shown in Equation [2.34] Since an optimal state value
function always leads to optimal actions, computing such an optimal function takes the

search process to the optimal policy (LAPAN, 2018)).

Ukt1(s) = max > p(s' rls, mi(s)) [+ yoe(s)]. (2.34)

s'r
Although these techniques guarantee the return of the optimal policy, a perfect model
of the environment’s dynamics is almost impossible to be obtained in real world possi-
ble. Therefore, methods that approximate the state and state-action value functions are
mandatory for such cases. The following subsections present some of the most common
algorithms from this group, which are keys for the success of the method proposed in this

work.

2.3.1 Temporal-Difference Learning

Monte Carlo are RL methods that do not rely on the complete knowledge of the envi-
ronment. Instead, they learn the value functions from a set of experiences, i.e. sequence
of states, actions, and rewards sampled from the interactions between the agent and the
environment. In such methods, the adjustment of the value functions is performed after a
full episode is executed. In the every-visit Monte Carlo method, the state value function
is calculated according to Equation [2.35 where G, is the actual return following time t,
and « is the learning rate. In such an equation, G; serves as a target value to which v (S;)

should converge. In this equation, k is the number of the current episode (LAPAN] 2018).

Vrr1(8e) = v(sy) + a[Gy — vr(sy)] - (2.35)

Waiting until the end of an episode to assign credits to the states may cause the credit
assignment process to be inaccurate, since the details of the trajectory are lost when the

rewards are summarized. Thus, instead of updating the value function at the end of the

56

episode, Temporal-Difference (TD) methods wait only until the next step. However, the
actual cumulative return is not known when such an update is made (APOSTOL, 2012).
Therefore, as defined in the Bellman equations in Equation the expected return (i.e.
the target value) is estimated through rt+1) 4+~v¢(S;41) immediately after the transition
from s; to s;y1, when the reward r;;; is returned.

The state value function update of the simplest TD method, known as TD(0), or
one-step TD, is shown in Equation m For each step ¢ in the episode, the TD(0) agent
perceives the environment in the state s;, takes an action a,; following a policy 7, observes
the new state s;,1 and the received reward r,, 1, and computes the new state value vy (s;).
Notice that the quantity between brackets is the error between the estimated state value
v¢(s¢) and the estimate 7t + 1) +yv(S¢+1). Such an error is called TD error and is usually
represented as ¢;, which is guaranteed to converge (i.e. stabilize) in the long run. Even
though the difference between Gy and v (s;) in the every-visit Monte Carlo method is also
guaranteed to converge, the TD error in TD(0) converges faster (TESAURO), [1992; LAPAN,
2018).

Ve (se) = ve(8) + a[reen +yve(Sep1) — ve(se)] - (2.36)

In the description of the TD(0) method presented in the previous paragraph, it can
be seen that no action-state value is computed. Thus, the policy 7 cannot take any action
based on the quality of each possible action given the current state of the environment.
One of the most important algorithms proposed in the early years of the RL field is known
as (Q-learning. It updates the state-action value function, Q, as described in Equation 2.3
which looks pretty similar to the TD(0) state value update rule. For each step t of an
episode, an action a; is chosen according to the current state s; following a given policy
(e.g. e-greedy policy, where the action with the highest state-action value is chosen with a
probability €). Then, 7,1 and s;,1 are observed and Qy11(s, a;) is computed. It has been
proven that, given a few conditions on the sequence of the learning rate value are met and
t — oo, the Q-function converges to g+ with probability 1 regardless of the policy being
followed. This is due to the fact that the action taken one step ahead (i.e. for the state

St+1) is chosen in order to maximize Q (i.e. max, Q(s¢+1,a)) (HABIB, 2019).

Qir1(5¢, ar) = Qulag, 5¢) + @ [1441 + 7y max Qi(St11,a) — Qi(st,ar) | - (2.37)
In the Q-function update shown in Equation the choice of the action a that

maximizes ((S;+1,a) is made using the same Q-function that is used to evaluate the
chosen action. Thus, decisions are made based on an estimate function, which has an
estimation error. In other words, if a wrong decision is made using the given Q-function,
such a bad decision might be reinforced by the same Q-function. This issue causes the
algorithm to exploit suboptimal decisions and, therefore, suboptimal policies, what slows
down the convergence to the optimal q* (LAPAN| 2018).

o7

In order to overcome this issue, the Double Q-Learning algorithm learns two different
Q-functions (i.e. state-action value functions): @)1 to guide the choice of actions, and
()2 to evaluate the chosen actions, or vice-versa (HASSELT; GUEZ; SILVER, 2015). In this
approach, for each step t of an episode, an action a; is chosen using the policy € — greedy
with 1, @2, or the combination of both functions. Choosing one of the Q-functions at
random or averaging their chosen actions in the case of a continuous action space are
two possibilities for such a combination. After taking the action a;, the agent observes
riy1 and syy1. Then, with a probability of 50%, Equation is used to update the Q)
function. Otherwise, Equation [2.39|is used to update Q5.

Q1 i41(8, ar) = Que(se, a0) + [Tt+1 + YQ2,4(St41, arg max Q1 ¢(S141, a)) — Q1.4(st, @t)] .
(2.38)

Q241(50,a1) = Qay(st, ar) +

o1 + YQ1¢(8t41, arg max Qa4 (s¢41,a)) — Q2,¢(84, at)] :
’ (2.39)
In the Q-Learning-based methods presented above, it is necessary to try every se-
quence of combinations of states and values for the algorithm to be able to compute Q
accurately for every possible case. In the real world this is impractical, since the set of
possible states, and sometimes the set of actions, are usually huge. In order to give the
Q-Learning capability of generalization and compute the Q-function for unseen combi-
nations of states and actions, ML algorithms are applied to learn such a function from
samples of experiences. In 2013, Mnih et al. published a groundbreaking paper where
deep neural networks are used to approximate the Q-function in the Q-Learning algo-
rithm (MNIH et al., [2013)). In their approach, a neural network, called Q-network, receives
the state of the environment encoded on an input vector of observed variables and out-
puts the state-action values for each possible discrete action (i.e. the output has one
neuron for each possible action). The Q-network is trained through gradient descent with
a batch of experiences, i.e. triplets of observed states, their taken actions, and the tar-
get Q values computed as 7,11 + ymax, Q;(s;+1,a). The proposed algorithm was named
Deep Q-Netowrks (DQN). In order to avoid the previously mentioned bias overestimation
effect, in 2015, Mnih et al. proposed the Double DQN algorithm, a version of the DQN
algorithm with two Q-networks. As in the Double Q-Learning algorithm, one of the net-
works is used to choose actions, while the other one evaluates the chosen actions (MNIH
et al., |2015). Both algorithms presented superhuman performance in complex tasks such
as playing several different Atari games without explicitly teaching the agent a single rule
of the game.
Q-Learning-based algorithms are part of a wider group of RL algorithms called model-

free methods. Different from model-based methods, in which actions rely on a model of the

o8

environment, model-free algorithms base their decisions on value functions that are learned
from experience. Such a difference has been already discussed in this work when Temporal-
Difference methods (i.e. model-free) were compared with Dynamic Programming (i.e.
model-based). A model-free alternative for the Q-Learning algorithms is the family of

Policy Gradient methods, which is presented in the next section.

2.3.2 Policy Gradient Methods

The RL algorithms presented so far are based on the idea of approximating value func-
tions. The policy of the Q-Learning algorithm, for instance, is indirectly approximated by
learning the state-action value function Q.

Policy gradient methods are techniques that directly learn a parameterized policy (LA-
PAN, 2018)). In such methods, w(als,0) = Pr{A; = a|S; = s,0; = 0} is the probability of
taking an action @ in a state s when the policy’s parameter vector is @ € R? | where d' is
the number of policy’s parameters. These algorithms learn 6 through gradient ascent on
the gradient of some scalar performance measure J(0) (see Equation [2.40)), thus maximiz-
ing the agent’s performance. It is important to mention that besides learning the policy’s
parameters, value functions can also be approximated in Policy Gradient methods. For
example, J(0;) can be defined as v,,(so), which is the true value of the initial state given
that the parameterized policy 7g is followed. However, as previously discussed, such a
value must be learned throughout the search for the optimal policy. Therefore, approxi-
mation methods of state value functions such as the techniques we have been discussing
so far can be used (SUTTON et al., [1999).

0t+1 = Ht + OCVJ(Ot) (240)

In order to ensure the exploration in the optimal policy search, the policy is usually
required to be stochastic. It means that w(a|s, @) €]0,1] for all a, s and 8. If the action
space is discrete, the most common function used to define the probabilities of each action
in the action space is the exponential softmax distribution over all possible actions. Such
a function is shown in Equation , where h(s,a,0) € R is a parameterized numerical
preference. These action preferences can be parameterized by a deep artificial neural
network (ANN), where 6 is the weight vector of all connection between neurons. This

parameterization is called softmaz in action preferences (LAPAN| 2018).

eh(s,a,e)

S, eh(s:b0)”

Policy gradient methods also offer ways of computing actions in a continuous space.

m(als,0) = (2.41)

Instead of computing probabilities for each of the possible actions in a discrete action
space, in a continuous space, the parameters of a continuous probability distribution

must be learned. For example, a normal distribution can be used so that its mean and

99

standard deviation must be learned. Like the softmax function in action preferences,
an ANN can be used to approximate such a distribution (LAPAN, 2018)). Equation m
shows the probability of choosing an action a given a state s and the parameters 6,
where 7 & 3.14159 (i.e. 7 is not the parameterized policy), and o(s, 0) and u(s, @) are
the approximated standard deviation and the approximated mean of the distribution

computed for the state s by a policy with parameters 6.

S Y O et TG
o(s,0)V2m p< 20(s,0)? > (2.42)

In the following subsections, three closely related policy gradient methods with con-

m(als,0) =

tinuous action space that use ANNs to approximate their policies and value functions are
presented. Due to the approximation of both policy and value functions, these algorithms
can be classified as hybrid methods, since they inherit the policy approximation from

policy gradient methods and the Q-function learning from the Q-Learning algorithm.

2.3.2.1 Deep Deterministic Policy Gradient

Proposed in 2015 by Lillicrap et al., the Deep Deterministic Policy Gradient algorithm
is a technique that uses ANNs to approximate policies for continuous action spaces and
the Q-function (LILLICRAP et al| [2015). The Q-function is learned by minimizing the
mean-squared Bellman error (MSBE) described in the Equation , where D is a set
of experiences called experience replay buffer, () is the Q-function parameterized with
the parameter vector ¢, and 7y is the policy parameterized with the parameter vector 6.
After calculating the MSBE for a given batch of experiences, the parameters ¢ are adjusted
through gradient descent. It is important to notice that the term between the outermost
parenthesis is the same error expression used in the Q-function approximation equation
of the Q-Learning algorithm, as presented in Equation [2.37] In DDPG, Qg approximates
the Q-function itself, while 7y learns to maximize Q i.e. it learns to take the best action

given the current state and the current Q-function.

L($.D) = ul), S (1@l mols) ~ Qls)’ (2.43)

(s,a,r,s") €D
As previously mentioned, the performance J(0) is used to adjust the policy parameters
0 with gradient ascent. In DDPG, such a performance is computed by averaging the

state-action values of all actions taken for the states in the experience set D, as shown in
Equation [2.44]

JO.D) =~ 5 Quls.mols)). (2.44)

‘D| (s,a,r,s")ED
In this method, a number of experiences is collected with a given policy mg and added

to the experience buffer replay. When it is time to update the policy and the Q-function, a

60

set of experiences is randomly selected to perform the aforementioned updates. Then, Q-
function is updated followed by the policy update. This process is repeated until a stopping
criterium is met. When the update ends, the current iteration ends and the agent needs to
gather new experiences with the new updated policy starting a new iteration. The whole
training process ends when another stopping criterium is met, usually when the learning
process converges.

In order to avoid bias overestimation, a second network can be used for each one
of the ANNs used in DDPG, one for Qpn; and another one for mg. These networks are
called target networks and are used in the target calculation of the MSBE computation as
shown in Equation [2.45] In this formula, the MSBE equation is rewritten with the target
networks Qg,, . and m,,,,.,. These networks hold an approximate copy of the parameters
of their respective main networks, but they are updated from time to time after the main
network policy is updated. Such an update is made in a frequency that must be previously

defined. Such a mechanism creates a delay between the main and the target networks.

L@ D) = Y (1 9Qa (5 Toumas)) — Qols,0))”. (2.45)

|D| (s,a,r,s") €D
It is important to mention that instead of just copying the parameters from the main
to the target networks, the target networks are updated by polyak averaging as shown in
Equations and [2.47] where p is a hyperparameter that defines how much from the

previous target policies are kept when they are updated.
¢:fa7"get = /0¢target + (1 - p)¢, (246)

egarget = petarget + (1 - p)e (247)

Finally, in order to generate diversity in the policy training process, a mean-zero
Gaussian noise € ~ N with a user-defined standard deviation is added to the taken
actions. This noise works as a regularizer in the learning process, avoiding the policy to
get stuck in local optimum. Besides, the actions are clipped within the interval [ajou, Ghigh)
to keep the taken actions within a valid interval. However, this is done only during the
training process, which means that when a trained policy is tested, the raw output of the

policy network must be used instead.

2.3.2.2 DDPG with Distributed Prioritized Experience Replay

The experience replay is the mechanism of choosing experiences in the replay buffer to
learn from. For instance, in the original DDPG algorithm, this selection is made ran-
domly. In 2015, Schaul et al. proposed the prioritized experience replay (SCHAUL et all
2015). Based on the concepts of prioritized sweeping proposed by More and Atkeson in
1993 (MOORE; ATKESON| |1993), in the prioritized experience replay, the experiences from

61

which the agent must learn are chosen with different probabilities. These probabilities are
calculated according to how much information the agent may gain from each experience.
It means that the experiences on which the neural network-based approximators show
the highest losses are more likely to be chosen. The objective of such a mechanism is to
speed up the learning process of RL algorithms and make these algorithms more sample-
efficient (i.e. require less training experiences to achieve a certain level of performance),
which is one of the biggest challenges in the RL field (KARIMPANAL, 2020). Since its pro-
posal, prioritized experience replay has been successfully used in several well established
algorithms, such as DQNs (WANG et al) 2015)). In 2017, Hessel et al. showed that such a
prioritization is the most important component for the success of many state-of-the-art
RL algorithms (HESSEL et al., 2017)).

Neural networks have become increasingly costly to train. Distributed stochastic gra-
dient descent has been used in many deep learning frameworks to speed up the training
process (HORGAN et al., [2018). In these implementations, the parameter updates can be
done synchronously (KRIZHEVSKY), 2014) or asynchronously (DEAN et al., 2012). In the
synchronous mode, all gradients are calculated by multiple workers and applied at once.
On the other hand, in the asynchronous mode, once any worker finishes calculating its
portion of gradients, it updates the weights of the network without waiting for the others.

Distributed implementation have also been proposed for Reinforcement Learning. In
most of these implementations, many workers run in parallel and fill the experience buffer
much faster than the single-worker versions of the algorithm (LIANG et all 2017). A few
authors have also proposed a distributed update of the policy and value function param-
eters.

In 2018, Horgan et al. proposed a distributed prioritized experience replay mechanism
for RL algorithms, what they called Ape-X (HORGAN et al, 2018). In this approach,
the experiences are collected by multiple independent workers running in parallel. Thus,
experiences can be collected more efficiently than the algorithms that use a single agent.

Each agent stores the collected experiences in a local buffer and, when it is full, such
experiences and their precomputed corresponding priorities are transferred to a centralized
shared memory. It is important to highlight that these workers run without any point of
synchronization. Therefore, the centralized shared memory is partitioned into shards, one
for each worker to store its collected experiences.

A central thread that runs the training algorithm itself periodically and asynchronously
samples a few prioritized experiences in order to calculate their gradients and update its
parameters. Such a thread is called learner. These parameters are stored in a parameter
server. After sending the experiences to the centralized learner, each worker sends a request
of policy update to this server. When the request is attended, the worker flushes its local
buffer and starts collecting new experiences. When the centralized replay buffer is full,

some experiences are chosen to be removed. It can be done by just removing the oldest

62

ones or by selecting random experiences, for instance.
The generality of Ape-X was assessed by implementing and testing distributed versions
of DQN (i.e. Ape-X DQN), and DDPG (i.e. Ape-X DDPG). Figure [7] shows the Ape-X

architecture.

Figure 7 — The Ape-X architecture.

Learner
Policy 7 T, Parameters
Parameters [plicy | Gradients

[=]

Parameters Server Replay Buffer

Policy Parameters

[

Transitions
l Worker 1 ¥ Worker 2 Worker n

/7N Transitions /7N Transitions s e o ;o \\ Transitions

f Paolicy f———— Local Buffer Policy ———— Local Buffer o o O | Palicy ————> Local Buffer

) - N S
Actians States/ Actians States/ Actions States!

3 Rewards ¥ Rewards | Rewards

Environment Environment Environment

Source: Produced by the author.

2.3.2.3 Twin Delayed DDPG

As already mentioned, the target networks used in DDPG are intended to reduce the
bias overestimation, where bad actions are exploited. However, such an issue was not
completely removed from the algorithm. In order to improve even more the performance
of DDPG, in 2018 Fujimoto et al. proposed a few changes in the algorithm. This new
method was named Twin Delayed DDPG (TD3) algorithm (FUJIMOTO; HOOF; MEGER,
2018)).

Three changes were made in the original DDPG algorithm. The first one was the

addition of a clipped noise in the action taken by the target policy mg,,,,., during the
MSBE computation. The noise is clipped within the interval [—c¢, ¢|, where ¢ is a constant
that must be previously defined. Such a mechanism is intended to smooth the target
policy, since wrong actions with peak values might make the algorithm to quickly exploit
them and get stuck in a local optimum. Therefore, the clipping mechanism works as a
regularizer of the added noise when it causes such an undesired effect. In addition, the
final taken action value is clipped within the interval [ajon, anign], just like DDPG and for
the same reason.

The second change is the use of two neural networks to compute the Q-function and
the use of two target networks. Thus, instead of calculating the Q value with a single

network, two networks compute separately and the minimum Q value is chosen. This

63

choice is made in order to avoid very high Q values for bad decisions, what reduces even
more an eventual bias overestimation. Equations and show the loss calculation
for networks 1 and 2, respectively.

Unlike in the Double Q-Learning algorithm, both networks are updated in every step
of the episode. Analogously to DDPG, the policy is updated by gradient ascent. However,

only (g, is used to evaluate the taken actions.

1) 2
I/(¢17 D) == ﬁ Z (T + ”}/ ZIE%% Q¢i,target (S/7 ﬂ-ei,target (S/>) - Q¢1 (87 a)) : (248)
(s,a,r,s')ED ’
1 . , : ?
L(¢,, D) = D > (7’ Y MINQg, e (870, 0100 (57) — Qo (5, a)) - (2.49)
(s,a,r,s") €D ’

Finally, the third and last change in the original DDPG algorithm is the addition of a
delay between the updates of the policy and the Q-function, where the Q-function will be
updated more often. For example, for each update of the policy network, the Q-function
can be updated twice, what is recommended by the authors of TD3.

Like the Ape-X DDPG algorithm, the distributed implementation of TD3 can be
implemented using the architecture shown in Figure[7] Such an implementation is available
in (LIANG et al., [2017). However, unlike the Ape-X DDPG, TD3 uses synchronous workers
and chooses random transitions during the experience replay. It means that the centralized

replay buffer is updated only when all workers have finished collecting experiences.

2.4 POPULATION BASED TRAINING

Machine Learning algorithms usually require the adjustment of a large set of hyperparam-
eters. The automatic adjustment of hyperparameters is essential to ease the use of such
techniques. Proposed in 2017 by Jaderberg et al., Population-Based Training (PBT) is
an asynchronous population-based optimization algorithm that was designed to efficiently
control the hyperparameters of ML algorithms during the training process (JADERBERG
et al., [2017; LI et al) |2019). The idea of the algorithm is to run multiple training processes
in parallel, each one with different values for the hyperparameters. Each training process
runs inside an asynchronous worker. From time to time, the hyperparameters and pa-
rameters are exchanged between workers and the hyperparameters are perturbed, thus
changing them throughout the training process. The online adjustment of hyperparame-
ters is especially useful when the learning problem is highly non-stationary, which is the
case for RL algorithms.

Algorithm [6] shows the pseudocode for the PBT algorithm. It is important to note that
this is a general description of the PBT algorithm and the exploitation and exploration

operators must be defined for each application, as well as the stopping conditions.

64

Algorithm 6: Pseudocode for Population Based Training.

Input: Initialize the population of workers and their respective parameters and
hyperparameters.

Output: Best pair of parameters and hyperparameters vectors ever found.

foreach worker running in parallel and asynchronously do

=

2 while stopping condition is not met do
3 RUN its internal training process starting with the current
hyperparameters

if a given condition is met then
EXCHANGE parameters and hyperparameters with another worker
(exploitation operator)
6 PERTURB the hyperparameter vector (exploration operator)

7 return Best pair of parameters and hyperparameters vectors ever found.

Figure§|illustrates the PBT algorithm and compares it to the Sequential Optimization
and the Parallel Random/Grid Search method. In this figure, each rectangle represents
a set of values for the parameters of a given model, while each circle represents a set of
values for its hyperparameters. Similar colors between rectangles means similar parame-
ters, and consequently similar colors between circles means similar hyperparameters. Each
pair of rectangles and circles represents a state of a training model. The horizontal bars
above the circles represent the quality of the models, which means that the bars in red
are the worst ones, while the bars in green are the best ones. Each horizontal sequence
of models connected by dashed lines represents a training process. It means that in the
Sequential Optimization (a), the only training process is executed sequentially, while in
the Parallel Random/Grid Search (b) and Population Based Training (c), multiple train-
ing processes are performed in parallel. The difference between the Parallel Random/Grid
Search and the Population Based Training is the communication between training pro-
cesses, represented by the vertical rectangle in Figure 2.c. In this figure, the parameters
and hyperparameters from the upper training process are copied into the model in the
lower training process (exploitation). Then, the hyperparameters of the copied model are
perturbed (exploration), what is represented by the transition from the green circle to
the blue circle. Notice that the color of the rectangle in purple has not changed during
the exploration phase, since only the hyperparameters are perturbed (JADERBERG et al.,
2017; ILT et al, 2019).

It can be seen that PBT inherits the best characteristics of both techniques: perform
multiple parallel searches like parallel random /grid search, and change the hyperparame-
ters on-the-fly like sequential optimization. Running a population of PBT workers has the
obvious advantage of avoiding getting stuck in local optima, while changing hyperparam-
eters on-the-fly has the advantages of any control algorithm. Together with the communi-

cation between PBT workers, these features allow the PBT algorithm to be very efficient

65

and effective, since it strongly benefits from distributed platforms and concentrates com-
puting resources on promising regions of both the hyperparameter and parameter search
spaces. The PBT’s original paper showed that RL algorithms can strongly benefit from
the technique (JADERBERG et al., [2017} [LI et al., 2019)).

Figure 8 — Graphical representation of the PBT algorithm and comparisons with parallel
random/grid search, and sequential methods.

Sequential Optimization
Performance

= . =
- - -+ Hyperparameters(——»(- -, O—»(-~ O
1 1 1
1 1 1
.......................................).
b2 gL >
Parameters
Parallel Random/Grid Search Population Based Training

[[

- -

) I e S
LA

Source: Produced by the author based on (JADERBERG et al., 2017)).

66

3 LITERATURE REVIEW

"Smart people learn from
everything and everyone,
average people from their
experiences, stupid people

already have all the answers."

Authorship supposedly assigned

to Socrates.

The parameter control problem for metaheuristics has received an increasing atten-
tion. For example, since the propsosal of the Particle Swarm Optimization algorithm
(PSO) (KENNEDY; EBERHART) 1995), the adaptation of its parameters has been widely ex-
plored (e.g. (SHI; EBERHART) [1998) (DONG et al., [2008)) (CHEN; LI; LIAO) [2009)) (NICKABADI;
EBADZADEH; SAFABAKHSH, [2011)) (XU, [2013)). Besides the PSO algorithm, Genetic Al-
gorithms (GA) and Differential Evolution (DE) have been also heavily explored in the
literature (PARPINELLI; PLICHOSKI; SILVA, [2019)). However, most of these studies are ex-
perimental, even though theoretical analyses have also been made for the most common
algorithms (e.g. PSO, GA, DE, ES, etc). A study about adaptive versions of the PSO
algorithm was published in 2016 by Harrison et al. (Harrison; Engelbrecht; Ombuki-Berman),
2016)). In this paper, the authors analyzed the convergence behavior of eight variants of
the PSO algorithm. Dang et al. (DANG; LEHRE, 2016) and Doerr et al. (DOERR; WITT;
YANG), 2018)) performed rigorous runtime analyses of evolutionary algorithms with self-
adaptive mutation rates and proved their effectiveness. In 2018, Qian et al. showed that
adaptive sample sizes for evolutionary algorithms solving noisy problems work better than
sampling with fixed size (QIAN et al,, 2018). In 2019, Del Ser et al. published a compre-
hensive survey on the most recent advances in evolutionary and swarm-based algorithms,
where the most relevant theoretical analysis of these algorithms can be found (SER et al.
2019).

A few literature reviews on parameter control and/or tuning methods have been pub-
lished since the 1990’s. In 1999, Eiben et al. organized the field of parameter adjustment
for metaheuristics, dividing the solutions for the first time into tuning and control meth-
ods (EIBEN; HINTERDING; MICHALEWICZ, |1999). Also, the authors of this study classified
the control methods among deterministic, adaptive and self-adaptive algorithms. Besides,
the discussed techniques were grouped according to the adapted parameter (i.e. represen-
tation of candidate solutions, mutation rate, crossover rate, etc).

In 2012, Zhang et al. published a survey that focus on adaptive mechanisms for evolu-
tionary algorithms with a more detailed classification scheme (ZHANG et al., 2012). They

classified the reviewed techniques according to three different taxonomies: adaptation ob-

67

jects (i.e. What is adapted?), which are subdivided into control parameters, evolutionary
operators, population structure, and "others"; adaptation evidences (i.e. What are the ev-
idences that guide the adaptation mechanism?), which are subdivided into deterministic
factors such as time, fitness values, population distribution, and fitness values with popu-
lation distribution; and adaptation methods (i.e. How are these objects adapted?), which
are subdivided into simple rules-based mechanisms, coevolution, entropy-based control,
and fuzzy control. Also, in order to better illustrate the analyzed problem, the authors
have detailed a state-of-the-art adaptive Genetic Algorithm (Zhang; Chung; Lol 2007)) and
an adaptive version of the Particle Swarm Optimization algorithm (Zhan et al., |2009).

In 2013, Jordehi and Jasni presented a survey about parameter adaptation for PSO
(JORDEHIL; JASNI, [2013). As in the previously cited survey, the authors divided the al-
gorithms according to the adapted parameters. Also, the paper presented and discussed
parameter-free versions of the PSO algorithm.

In 2015, Karafotias et al. (KARAFOTIAS; HOOGENDOORN; EIBEN, [2015b)) updated the
survey published by Eiben et al. in 1999 (EIBEN; HINTERDING; MICHALEWICZ;, (1999). Also,
the authors presented a new way to classify the existing parameter adjustment mechanisms
into four groups: control methods tailored to application, out-of-the-box control method,
tuning methods defining static values, and static values defined by intuition or convention
(i.e. no automatic parameter adjustment mechanism used). In order to group the retrieved
papers, the authors classified them according to the adapted parameters. Besides, this was
the first survey that classified a group of techniques as out-of-the-box algorithms. However,
it is important to highlight that some of the discussed techniques could not be considered
as actual out-of-the-box methods, since they cannot be truly applied to every possible
parameter of metaheuristics. In this study, the concept of out-of-the-box methods seems
to have been a little bit "relaxed".

In 2016, Moser and Aleti published a systematic literature review about automatic
parameter adjustment (ALETT; MOSER), 2016)). To the best of our knowledge, this is the only
systematic literature review about parameter adjustment that has been published so far.
The authors did an outstanding job grouping a considerable amount of papers according to
different aspects. However, the authors did not consider classifying the studies according
to whether the proposed method is out-of-the-box or not. Thus, the aspects that need to
be analyzed when talking about out-of-the-box approaches are missing in this study.

In 2017, Guan et al. published a survey focused on population size adaptation for
Evolutionary Algorithms (GUAN; YANG; SHENG, [2017). In the first part of the paper, the
authors have divided the articles into theoretical and experimental studies. Besides, the
experimental studies were further divided into deterministic methods, adaptive methods
and self-adaptive methods. In the second part of the study, the authors compared the
performances of the algorithms that have been considered as part of the state-of-the-art
of the field. To the best of our knowledge, this has been the only study that presented

68

experiments with comparisons between the most relevant techniques discussed in the
review itself.

In 2019, Parpinelli et al. presented a survey about parameter control for evolutionary
and swarm-based algorithms. They presented an algorithm classification scheme adapted
from Eiben et al. (EIBEN; HINTERDING; MICHALEWICZ, (1999) and Zhang et al. (ZHANG
et al., 2012). The techniques were classified into online and offline methods. The online
methods were further classified into deterministic, adaptive and aggregated algorithms.
Finally, the adaptive techniques were classified even further in simple rules, fuzzy control,
learning automata, entropy-based method and others. This is the study that best covers
the parameter control approaches for swarm-based algorithms.

In 2020, Huang et al. published a survey focused on parameter tuning methods (Huang;
Li; Yao, 2020)). In this study, the authors divided the methods into 3 types: Simple
Generative-Evaluate Methods, High-Level Generate-Evaluate Methods, and Iterative Gen-
erate - Evaluate Methods. The later was further divided into 4 groups: Experimental
Design based Methods, Numerical Optimization based Methods, Heuristic Search based
Methods, and Model-based Optimization Methods. Even though this review was not sys-
tematically made, it presents a comprehensive analysis of the cited techniques, where the
most relevant tuning methods proposed up to its date of publication are highlighted (e.g.
(HUTTER et al), |2009)(BALAPRAKASH; BIRATTARI; STUTZLE, 2007b)(NANNEN; EIBEN,
2007)).

Even though these surveys are quite relevant to the problem at hand and bring useful
insights on future directions, none of them is focused on out-of-the-box control mecha-
nisms. Besides, the only study that mentioned the idea of out-of-the-box methods and
classified some techniques accordingly was the one published by Karafotias et al. in 2015
(KARAFOTIAS; HOOGENDOORN; EIBEN| [2015a), even though the inclusion of some studies
in this group are indeed questionable. Also, it is important to note the lack of systematic
literature reviews in the field. Therefore, in 2021 we have published the first system-
atic literature review on out-of-the-box parameter control methods for evolutionary and
swarm-based algorithms (LACERDA et al., |2021)). The main objective of this literature re-
view was to identify and discuss out-of-the-box approaches for parameter control for EA
and swarm-based algorithms, and present the trends and the main challenges of such a
field. Also, a detailed explanation of each method and comparisons between them were
presented. It is important to highlight that none of the previous surveys presented such
a detailed analysis of out-of-the-box methods. In the next sections, the aforementioned

systematic literature review is presented.

3.1 METHODOLOGY

This section presents the research questions answered in this systematic literature review

and its methodology.

69

3.1.1 Research Questions

The research questions are listed below.

« RQ1: Which methods for out-of-the-box parameter control have been used in the

literature?

o RQ2: Which methods for out-of-the-box parameter control are self-adaptive on their

own parameters?

e RQ3: Which methods adapt their search to the limitations of the underlying hard-

ware, time budget, or maximum number of fitness evaluations?

o RQ4: What are the main challenges and future trends for out-of-the-box parameter
control for EA and SI?

It is important to mention that RQ2 was posed due to the importance of diminishing
the need for manual parameter adjustment. Also, RQ3 is an important question since

these methods are usually compute-intensive.

3.1.2 Types of accepted studies

This literature review is concerned with any study published in a scientific journal or a

conference proceeding that matches with any of the following inclusion criteria:

1. Articles that develop or improve mechanisms for out-of-the-box parameter control
for EA and SI;

2. Articles that apply any general mechanism of parameter control in EA and SI to

solve practical problems;

This paper is not concerned with studies that match with any of the following ezclusion

criteria:

1. Articles that are not written in English;

2. Articles that are not published in any scientific journal nor conference proceeding;
3. Articles where the proposed method is tailored to an application;

4. Articles where operator selection methods are proposed;

5. Articles where the proposed controller is suitable for anything but EA or SI.

70

3.1.3 Study identification and selection

In order to identify and select articles for this literature review, a search string was de-
fined and used in the following databases: ACM Digital Library, Scopus (includes other
traditional databases, such as Science Direct, Springer Link and IEEE Xplore), Web of
Science and arXiv.org. Articles were searched with the following search string in their title
and abstract: ("parameter control” OR "parameter adaptation” OR 'self-adaptive") AND
("evolutionary computation” OR "swarm intelligence” OR "metaheuristic" OR “evolution-
ary algorithm?”).

The identification and selection of studies was the first step performed in the review
process. This stage was divided into two phases. In the first phase, the aforementioned
search string was used in the databases to retrieve all articles published until January 20th,
2020. Then, all duplicates were removed. In the second phase, the inclusion and exclusion
criteria were applied to the remaining studies by analyzing only titles and abstracts. In
case the number of papers retrieved from the databases is low, the inclusion and exclusion
criteria are also applied to the title and the abstract of the references of the selected papers

in the current phase.

3.1.4 Data Extraction

In the data extraction process, the relevant information from the selected papers in the
previous phase were extracted. To extract such an information, these articles had to
be fully analyzed. In order to avoid any bias, two researchers worked together in this
phase, discussing the divergences until it came to a common agreement. The researchers
focused on the identification of the methods used to build the controllers, the controlled
optimization algorithms, the controlled parameters, and the optimization problems used

in the experiments.

3.2 RESULTS AND DISCUSSIONS

This section presents the results of our systematic literature review, which is divided into
two parts: Section that presents an overview of the collected studies, and Section
3.2.2, where these studies are detailed.

3.2.1 Results Overview

After using the search string in the databases mentioned in the Subsection a total
of 4449 papers were retrieved. Table [I] shows the distribution of retrieved papers for
each database. After removing duplicates, 3983 articles remained. The application of the
inclusion and exclusion criteria removed another 3933 articles. Thus, 50 studies remained
in the list of selected papers. Then, these articles were further analyzed in the extraction

phase.

71

Table 1 — Number of papers retrieved with each database.

Database Retrieved
documents

ACM Digital Library 1458

arXiv.org 38

Scopus 2172

‘Web of Science 781

Source: Produced by the author.

Given that in the selection phase only the title and the abstract have been analyzed,
in a few cases it was not clear whether the inclusion or exclusion criteria match or not.
For these cases, we have decided to pass them to the data extraction phase for a deeper
analysis. Thus, after deeply analyzing each selected paper, another 37 studies were ex-
cluded. In the end, 0.4% of the selected papers matched the criterion 1, 3%, matched
the criterion 2, 59.2% matched the criterion 3, 5.2% matched the criterion 4, and 37.7%
matched the criterion 5. The sum of the percentages for the aforementioned criteria is not
100%, since each paper can match to multiple criterion.

Finally, an amount of 13 articles have been selected to compose this literature review.
We considered such a number of accepted studies very low. Thus, the inclusion and ex-
clusion criteria were also applied to their references, adding 2 other papers to the list of
accepted studies, totaling 15 selected articles.

Table [2] shows an overview of the results of the extraction phase. As mentioned in the
Section [3.1.4] the researchers involved in this phase focused on the identification of the
methods used to build the controllers, the controlled algorithms used in the experiments,
the controlled parameters, and the optimization problems. Due to space limitations in the
Table 2] some of the names of the optimization algorithms and problems were written in
acronyms (some of them have been already introduced in this work): Genetic Algorithms
(GA), Evolution Strategies (ES) (BEYER, |1995), Differential Evolution (DE), Particle
Swarm Optimization, Tabu Search (TS) (GLOVER; LAGUNA, |1997)), Quadratic Assignment
Problem (QAP), Royal Road Problem (RRP), Component Deployment Problem (CDP),
Optimal Ordering of Tables (OOT), and Traveling Salesman Problem (TSP).

It can be observed that the majority of the studies have applied RL or other predictive
methods as parameter control algorithms. Both methods were used in 66,67% of the
analyzed studies. Besides, RL was the most common paradigm used in the last 6 years of
publications (i.e. 4 out of 5 studies). This is probably due to the recent huge success of
RL algorithms in highly complex scenarios that were once considered intractable, such as
beating a world-class player of Go (SILVER et al., |2016)).

The predictive approaches use algorithms for time-series analysis to approximate the
chance of success of each possible value for each parameter. The four papers that applied
such an approach were proposed by the same research group and are actually a sequence

of improvements of an initial algorithm published between 2011 and 2014.

Table 2 — Overview of the data extraction process.

72

X Control Controlled Controlled Optimization
Article Year
Method Algorithms Parameters Problems
Reinf ¢ Mutati Continuous
ROST; PETROVA; BUZDALOVA, 2016 2016 CHHOreement g uration benchmark
Learning step-size .
functions.
Reinf ¢ Continuous
KARAFOTIAS; HOOGENDOORN; EIBEN, 2015a) 2015 Lem OrcemeMt pS and GA Al parameters benchmark
earnin,
& functions.
Predictive
ALETI et al.| {2014 2014 Parameter GA All parameters QAP and RRP.
Control
Reinf ¢ Continuous
KARAFOTIAS; HOOGENDOORN; WEEL), 2014 2014 Lem OrcemeMt pS and GA Al parameters benchmark
carning functions.
Reinf ¢ Continuous
KARAFOTIAS; EIBEN; HOOGENDOORN, 2014) 2014 Lem Oreement ps and GA All parameters benchmark
carmneg functions.
Predictive C d
ALETT; MOSER) 2013 2013 Parameter GA rossover an QAP and CDP.
Mutation rates
Control
BIELZA; POZO; LARRAGAGA| [2013 9013 savesian GA Crossover and 7,
Networks Mutation rates
Predictive
ALETI; MOSER; MOSTAGHIM| 2012 2012 Parameter GA Crossover and — QAP, RRP and
Mutation rates CDP.
Control
Reinf " Mutati Continuous
KARAFOTIAS; SMIT; EIBEN, 2012 9012 | ororeement - pg utation benchmark
Learning step-size K
functions.
Crossover rate,
differential Conti
k . ontinuous
LEUNG; YUEN; CHOW, [2012 9012 Surrogate GA, DE amplification) mark
Models and PSO factor, C1, C2, .
. . functions.
and inertia
weight.
Agent-based Rastrici
CHATZINIKOLAOU. [2011 2011 Genetic GA Mutation rate fas :gm
Algorithm unetion.
Predictive
ALETI; MOSER, 2011 2011 Parameter GA Crossover and RRP and
mutation rates CDP.
Control
F Mutati d
(MATURANA; SAUBION] [2008) 2007 | GA uration an QAP.
Logic crossover rates.
inf t Benchmark
EIBEN et al., 2007 o006 einforcement All parameters o ek
Learning functions.
AINE; KUMAR; CHAKRABARTI, 2006 9006 DYnamic GA Crossover and o,
Programming mutation rates

Source: Produced by the author.

73

The RL-based approaches are all based on Temporal Difference, with exception of
(KARAFOTIAS; SMIT; EIBEN, 2012), which was the very first study that formalized the
use of such a paradigm for parameter control. These studies were strongly influenced
by (KARAFOTIAS; EIBEN; HOOGENDOORN, 2014) and were mostly written by the same
research group as well.

Regarding the controlled algorithms, it is important to notice that, with the excep-
tion of (LEUNG; YUEN; CHOW, [2012)), all studies used only EAs as controlled algorithm.
Therefore, there is a lack of studies that evaluated out-of-the-box control methods in
swarm-based algorithms.

Even though these methods are supposed to work with any algorithm and parameter,
in the majority of the papers only part of the parameters of the chosen metaheuristics
is controlled. Also, it can be noted that the crossover and the mutation rates/step-size
are the ones that are mostly chosen to be controlled. The remaining parameters are kept
constant and must be previously defined by the user. In these studies, the authors defined
these constant parameters through tuning methods or in an ad-hoc manner. Controlling
part of the parameters set makes the problem easier to deal with, since the parameter
space becomes simpler.

It is important to highlight that just a small part of the analyzed studies control the
population size. The high complexity of the population size control was verified by Aleti et
al. in 2014 (ALETI et al., 2014])). Besides that, they used only EAs as controlled algorithms.
This is probably due to the fact that controlling the population size of a swarm-based
algorithm requires the creation of an addition/removal mechanism of candidate solutions.
On the other hand, the concepts of killing or giving birth to candidate solutions are
inherent to any EA.

Regarding the optimization problems, no real-world instances have been used in any
of the studies. In 8 of the 15 selected papers, the experimental benchmark sets were com-
posed of well-known benchmark functions. In the other studies, the control methods were
tested on benchmark instances of traditional combinatorial or integer-mixed optimization
problems.

Table [3| describes the results of the quality assessment of the accepted articles. For this
purpose, a questionnaire was created with the following questions, to which three answers
are possible: Yes (Y), Partially (P) and No (N). This questionnaire had to be created for
this literature review because there was no available questionnaire with such a purpose.
Questions 1, 2 and 3 try to assess the quality of the description of the proposed method in
the paper. Also, they are intended to check if the authors are clear about the downsides
of their proposed controllers. Questions 4, 5, 6, 7 and 8 are intended to assess the quality
of the experimental methodology. It is important to mention that the values defined for
the question 5 are based on the number of functions available in the benchmark set of
the CEC 2017 Competition on Constrained Real-Parameter Optimization (AWAD et al.,

Table 3 — Quality assessment of the accepted studies.

74

Article Year Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q Total
KARAFOTIAS; EIBEN; HOOGENDOORN| [2014) 2014 1 1 0.5 1 0.5 1 1 1 7
KARAFOTIAS; HOOGENDOORN; EIBEN 201sa|) 2015 0.5 1 0.5 1 05 1 1 1 6.5
KARAFOTIAS; HOOGENDOORN; WEEL) 2014) 2014 0 1 1 1 05 1 1 1 6.5
ALETI et al.| [2014) 2014 0 1 1 1 0 1 1 1 6
ALETL; MOSER; MOSTAGHIM| [2012) 2012 0 1 1 1 0 05 1 1 5.5
LEUNG; YUEN; CHOW, [2012) 2012 1 1 0.5 1 1 0 1 0 5.5
ALETI; MOSER; 2011 2011 1 0 1 1 0 05 1 1 5.5
ALETI; MOSERI 2013 2013 0 0 1 1 0 0.5 1 1 4.5
MATURANA; SAUBION, |2008) 2007 1 11 0 1 05 0 0 45
BIELZA; POZO; LARRAGAGAL [2013) 2013 1 0 1 0 0 05 0 1 35
ROST; PETROVA; BUZDALOVA| |2016|) 2016 0 0 1 1 0 0 0 1 3
KARAFOTIAS; SMIT; EIBEN; 2012) 2012 1 0 1 0 0 0 0 1 3
CHATZINIKOLAOU, [2011) 2011 0 1 1 0 0 0 0 1 3
EIBEN et all, [2007) 2007 1 0o 1 0 0 1 o o0 3
AINE; KUMAR; CHAKRABARTI, 2006) 2006 1 0 1 0 1 0 0o o0 3

Total 85 8 135 9 45 75 8 11 70

Source: Produced by the author.

2016), which are 29.

1. Have the authors described the weaknesses of the proposed technique? (Y/P/N)

2. Have the authors described the threats of the application context? (Y/P/N)

3. Have the authors described the parameter control algorithm? (Y/P/N)

4. Have the authors applied hypothesis tests to draw robust conclusions from the

results? (Y/N)

5. Have the authors tested the proposal on a big set of benchmark problems (N: 1-10

instances; P: 11-20 instances; Y: 21 instances or more)?

6. Did the proposed approach controls all parameters of the controlled algorithm on

the experiments? (N: controls 1 parameter; P: controls more than 1, but not all of

them; Y: controls all parameters)

7. Have the authors tested the proposal on multiple optimization algorithms? (Y/N)

8. Have the authors compared the proposed method with multiple control methods?

(Y/N)

As it can be observed, the studies with the highest standards are the most recent
ones, except for Rost et al. (ROST; PETROVA; BUZDALOVA| 2016). It shows that this field

is becoming more and more mature, as any other relatively new scientific field. However,

it can also be observed that, among the 7 highest scoring papers, 6 of them were written

by the same two research groups.

75

Question 5 was the least scored, which means that there is a lack of studies that applies
their approaches to a large benchmark problem set. The second least scored question is
question 6, which meaning that there is also a lack of studies where all parameters are
controlled by the algorithm, especially population size, as mentioned before. Questions 1
and 2 are not well scored as well, since it is not common to find, in any field, papers that
openly talk about their weaknesses and threats.

The highest scored questions are 3, 8 and 4. Question 3 talks about how well the control
method is explained in the study. For this question, the score was already expected to be
high. Question 8 tells whether the proposed control method was compared to other control
methods or not. Question 4 quantifies how often hypothesis tests have been used. Even
though this is a mandatory tool to draw correct conclusions from experiments with non-
deterministic algorithms, this has never been a common practice in the field of EA and
swarm-based algorithms. Thus, the high score observed in such a question is surprising.

Overall, all studies together scored 70 points. This is approximately 58.4% of the
total of 120 points. Even though it means that there is a lot to improve on the quality
of the papers in this field, the latest papers (except Rost et al., 2016 (ROST; PETROVA;
BUZDALOVA, 2016)) presented very high standards, especially when compared to the
oldest ones. It means that this field has shown studies with an increasing good quality.
Thus, it is expected that future studies will present high standards as well. It is important
to mention that, despite some of the selected papers presented low quality standards, they
still present relevant contributions to the field.

In the next section, the aforementioned accepted studies are more detailed.

3.2.2 Detailing accepted studies

The studies detailed in this section are classified according to the approach used to imple-
ment the parameter controller. Since there are methods that were used only once, these
studies are grouped together as "Others". In order to ease the visualization of the whole
picture, Table 4 groups the studies by the approach used to develop the controller and
the controlled parameters. Due to space limitations on the Table [4] the references of the

papers were replaces by numbers as depicted below:

1. (AINE; KUMAR; CHAKRABARTI, 2006]);
2. (ALETI et al, [2014);

3. (ALETT; MOSER, 2011));

4. (BIELZA; POZO; LARRAGAGA, 2013);
5. (ALETIL; MOSER, 2013));

6. (ALETL; MOSER; MOSTAGHIM, 2012);

76

7. (CHATZINIKOLAOU, 2011));

8. (EIBEN et al., [2007));

9. (KARAFOTIAS; SMIT; EIBEN, 2012);
10. (KARAFOTIAS; HOOGENDOORN; EIBEN, 2015a));
11. (KARAFOTIAS; EIBEN; HOOGENDOORN], [2014]);
12. (KARAFOTIAS; HOOGENDOORN; WEEL|, 2014]);
13. (LEUNG; YUEN; CHOW, 2012);
14. (MATURANA; SAUBION, 2008));

15. (ROST; PETROVA; BUZDALOVA, [2016));

Table 4 — Grouping studies by control methods and controlled parameters.

Mutation
Mutation and Others All
Rate Crossover Parameters
Rates
Reinforcement Learning 15,9 10, 11, 12, 8
Predictive Parameter Control 6, 5 2
Others 7 4,3,14,1 13

Source: Produced by the author.

3.2.2.1 Reinforcement Learning

This group includes studies that applied RL algorithms to implement a parameter con-
troller.

In 2006, Eiben et al. (EIBEN et al., [2007) combined the RL algorithms Q-Learning and
SARSA to build an out-of-the-box parameter controller. To the best of our knowledge, this
was the first time an RL algorithm was used to design an out-of-the-box parameter con-
troller for EA and SI, even though the authors did not claim that the proposed approach
could be applied to multiple scenarios. In this approach, the Q function is approximated
by a regression tree. The action is chosen by a GA that optimizes such an approximated
function. The approach was tested on 10 multimodal randomly generated functions. The
results of the experiments showed that the proposed approach overcame a standard GA
in the most complex functions. However, such a success came with an overhead in the
optimization process: for each action to be taken, a GA must be fully executed.

In 2012, Karafotias et al. (KARAFOTIAS; SMIT; EIBEN, [2012) talked about out-of-the-
box parameter controllers for the first time, proposing a new RL-based approach. In this
work, the authors have defined the components of any technique that is intended to be

built within their framework:

7

o A set of observed variables extracted from the population of the evolutionary or

swarm-based algorithm;
e A set of actions that are converted into parameter values;

o Any function that maps the vector of observed variables to a vector of parameter

values can be used as policy.

The authors have also divided parameter control methods into two classes: static,
which outputs the same parameter values for the same inputs; and dynamic, which might
output different values for the same input. A pipeline with 4 different stages for the
computation of the observed variables was defined as depicted below (not every stage

must be visited):

1. Source: The current state of the optimization algorithm is represented with its raw
data, e.g. the positions of each candidate solution, their velocities, fitness values,

etc;

2. Digest: a function maps such a raw data to a given value v that summarizes the
state of the algorithm from a certain point of view, e.g. best fitness, population

diversity, etc;

3. Derivative: the variation of v from the previous iteration to the current one is

calculated; and finally;

4. History: stores the transformed v’s from the last stage from previous iterations;

For the experiments, a (10 + \)-ES with gaussian mutation, uniform random parent
selection and no recombination was used. Its mutation step size was the controlled pa-
rameter. The authors defined 4 observed variables. One of them is a history vector of
a fitness-related digest observed variable. The other ones are single variables related to
the fitnesses of the population and its diversity. Different combinations of these observed
variables were tested. The policy was approximated by an fully connected ANN without
hidden layers, which was trained in an off-line phase in order to define the parameter con-
trol policy to be used afterwards. The results were quite promising, since the algorithm
overcame tuned versions of the original ES algorithm in many cases and the self-adaptive
ES versions implemented with specific heuristics for the mutation step-size adaptation.
The authors state that the choice of the set of observed variables, the set of parameters
to be controlled and the algorithm to approximate the policy is critical to the success of
the proposed framework.

In 2014, Karafotias et al. proposed an out-of-the-box parameter controller based on RL
using Temporal Difference with eligibility traces (KARAFOTIAS; HOOGENDOORN; WEEL,

78

2014)). In this paper, the authors used genotypic and phenotypic diversities, fitness stan-
dard deviation, fitness improvement and a stagnation counter as observed variables. The
reward was calculated by the ratio between the variation of the best fitness during the
last run of the metaheuristic and the number of objective function evaluations needed to
achieve such a performance. The set of actions was composed by all the possible com-
binations of values of the controlled parameters. For discrete parameters, the number
of possible values is finite. However, for continuous parameters, the authors decided to
discretize their previously defined ranges. Thus, for such parameters, one of the intervals
created by the discretization process is selected when an action is taken. Then, its final
value is chosen through interpolation or probabilistic sampling. Both ways were tested in
the experiments.

In this approach, the state of the metaheuristic is inferred from the observed variables
through a binary decision tree that is built during the execution of the algorithm, ac-
cording to the history of actions, rewards and observed variables. Each node of this tree
represents an observed variable and a cutting point, while each leaf represents one of the
discrete states of the environment (i.e. metaheuristic). The tree starts with a single leaf
that represents the only state known by the algorithm in the beginning of the learning
process. As the process goes on, new observed variables and rewards are computed and
passed through the tree. The path along the branches is defined according to the values
of the observed variables and the sequence of encountered nodes. When this tree walk
reaches one of the leaves, a state is assigned to the given set of observed variables, which
is "stored" in the given leaf. Whenever a leaf presents a set of observed variables that can
be segmented into two clearly disjointed groups, the leaf will be turned into a decision
node and two new child leaves are created. Thus, the state space is gradually segmented
over time.

The authors applied the proposed algorithm to four state-of-the-art EAs solving bench-
mark optimization problems. All parameters for each algorithm have been controlled, in-
cluding the population size. The results showed that, for the cases where there is room for
improvement in the performance of the optimization algorithm solving a given problem,
the proposed control mechanism obtained good results when compared to other tech-
niques, to a random control method and to the static versions of the metaheuristics. The
results also showed that the random controller presented a surprisingly good performance,
what made the authors conclude that randomness seems to be an important factor for
parameter control. The main drawback of this approach is the large amount of hyper-
parameters needed to be defined. Another drawback is that the state tree usually gets
very large. When this happens, the number of states explodes and the state-action table
becomes too big. Large state-action matrices are hard to approximate, since many of the
state-action pairs are never visited and their values are never updated. This behavior

might cause bias overestimation on a small set of states and actions. In the same year,

79

the same authors proposed a modified version of this approach, where the final value of
the parameters are randomly selected via a uniform distribution (KARAFOTIAS; EIBEN;
HOOGENDOORN; 2014)).

In 2015, Karafotias et al. investigated the effects of using four different reward func-
tions in their previously published approaches (KARAFOTIAS; EIBEN; HOOGENDOORN,
2014) (KARAFOTIAS; HOOGENDOORN; WEEL, 2014): 1) Improvement of the best fitness
over the needed amount of time, as originally proposed; 2) A binary function, which re-
turns 1 when there is an improvement on the best fitness, and returns 0 otherwise; 3) The
difference between the current value returned by the formula used in the reward calcu-
lation number 1 and the average between the last non-zero values; 4) The raw value of
the fittest candidate solution (KARAFOTIAS; HOOGENDOORN; EIBEN] 2015a)). The exper-
imental setup remained the same. Surprisingly, the binary function overcame the other
approaches. It is important to highlight that such a reward function does not present any
scale sensitivity to the objective function of the optimization problem, which means that
it presents more generality.

In 2016, Rost et al. proposed two methods to overcome the limitations of the ap-
proach proposed by Karafotias et al. in 2014 (KARAFOTIAS; EIBEN; HOOGENDOORN,
2014)) (KARAFOTIAS; HOOGENDOORN; WEEL, 2014)):

1. Application of an entropy-based adaptive range parameter control proposed by Aleti
and Moser (ALETIL; MOSER, |2013), which will be detailed later, so that the number of
bins should not be defined by the user (i.e. the user would not have to be concerned

about the granularity of the action space);

2. Use one agent for each parameter, where the action space is segmented following the
ideas of state space segmentation used in (KARAFOTIAS; EIBEN; HOOGENDOORN,
2014).

In the experiments, the authors have decided to control only the mutation step-size.
For experimental purposes, a single EA was used, which solves a set of benchmark mathe-
matical functions. The results showed that the approach number 2 is more sample-efficient.
The drawback of this approach is that using a single isolated agent for each parameter
may not capture any dependency between these parameters. However, this downside is not
properly explored in this paper, since only one parameter is controlled in the experiments
(ROST; PETROVA; BUZDALOVA, 2016)).

3.2.2.2 Predictive Parameter Control

This group includes the studies that used time-series concepts to infer the probability of

success for each value of each parameter at each point of time.

80

In 2011, Aleti and Moser proposed an algorithm that, using past performances, ap-
proximates the probability distribution that determines how likely each value of the pa-
rameters will produce an optimal outcome for each cycle (ALETT; MOSER, 2011)). Besides,
the algorithm is also able to chose one variation among a set of variations of a given
operator.

The distributions are calculated using a method called Predictive Parameter Control
(PPC), which uses the least squares method to approximate the probability of success for
a given value of a given parameter at a given time. It is important to mention that these
probabilities are assigned to an interval of values with fixed size instead of a single value,
from which the final parameter value is sampled. For this study, the authors assumed that
the values to be predicted vary linearly over time.

The Royal Road and The Component Deployment Problems were chosen to be solved
by two very different EAs. The crossover and mutation probabilities were controlled by
the PPC method. A clear downside of the proposed approach is that it does not take
into account any information about the population state itself. It considers only a time-
related variable and the previous performances of each possible value for each parameter,
besides the success rate for a each parameter values. Another downside is the use of linear
regression to predict the optimal parameter values, what imposes serious limitations to
the method given the complexity of the problem. Even though the proposed algorithm
outperforms other parameter control approaches, the authors stated that a more complete
experimental benchmark should be used in a future work.

In 2012, Aleti et al. proposed an improvement for their previous work (ALETI; MOSER;
MOSTAGHIM, 2012). Instead of sampling the parameter values from intervals with fixed
size, the sizes of the intervals are adapted through time. In such a mechanism, the most
successful range is divided into two equally-sized ranges. Then, these ranges inherit the
probability of being chosen from the original range. The worst performing range is merged
with the worst range among its neighbors. The probability of choosing the merged range
is equal to the highest probability between both original ranges. This probability of choice
of a range is calculated by the ratio between the number of times the choice of this range
produced an improvement on the performance of the metaheuristic and the number of
times the given range was chosen. This method increases the exploitation on the most
promising ranges and the exploration on the worst performing ones.

For the experiments, the authors applied the new parameter control method to EAs
solving the Royal Road, the Generalized Quadratic Assignment and the Component De-
ployment problems. The crossover and mutation rates were chosen to be the controlled
parameters. The reward is calculated based on the fitness values returned by the objective
function. Since the Component Deployment Problem is multi-objective, a hypervolume-
based indicator is used for this purpose. The results of the experiments showed that the

proposed technique outperforms all state-of-the-art algorithms up to the date of the pub-

81

lication, especially for the most complex problems. The authors claim that the superiority
of the proposed method is due to the fact that the most promising areas of the parameter
space are quickly and deeply exploited. However, high-performing ranges are sometimes
merged to large intervals, turning it difficult to reestablish the exploitation behavior on
that region. Another drawback is that, as its predecessor, the parameter adjustment is
still being made considering only time-related variables.

In 2013, Aleti and Moser proposed another improvement on their previous studies
(ALETI; MOSER, 2013)). In this work, the K-Means algorithm (Lloyd, [1982)) guided by in-
formation entropy is used to cluster parameter values according to their contribution to
the performance of the metaheuristic. The formed clusters define the boundaries between
bins for each parameter. The same experimental setup developed in the previous work
was used in this one, except for the exclusion of the Royal Road problem. The new ap-
proach consistently outperformed all other state-of-the-art techniques on the experiments,
including its predecessor.

In 2014, Aleti et al. investigated four different time-series prediction techniques to be

used with their parameter control technique proposed in 2011 (ALETTI et al., 2014):

o Linear regression, as published in their original paper;

o Simple Moving Average, where the average value of past performances is used to

predict future responses, which assumes that the historical trend continues;

o Exponentially Weighted Moving Average, where the average of past data points
is calculated with exponentially increasing weights assigned to each point.In this
approach more importance is given to the most recent executions, which makes the
same assumptions as the technique number 2, but presents higher sensitivity to

noise;

» Autoregressive Integrated Moving Average (ARIMA) (NEWBOLD, [1983)), which is a

combination of linear and moving average techniques.

These prediction methods make statistical assumptions about the data points that
must be verified before using them. Therefore, the authors analyzed such statistical prop-
erties on data collected from previous executions of EAs for each of the following parame-
ters: mutation rate, crossover rate, population size, mating pool, and variations of some of
these operators. It was concluded that all prediction techniques are satisfactorily suitable
for all of them, except for population size, which presented extra difficulties. Regarding
the experimental results, the linear regression predictor showed the best performance. The
experiments with population size control showed that, even though no prediction method
is suitable to predict the quality of its values, controlling the population size did not harm

the performance of the original underlying EA.

82

3.2.2.3 Others

This section groups up the studies that used other approaches than RL or PPC to create
a parameter controller.

Aine et al., 2006, proposed a parameter control method based on Dynamic Program-
ming (AINE; KUMAR; CHAKRABARTT, |2006). In this approach, the parameter control prob-
lem for EAs was modeled as an optimization problem where the expected quality of the
population of an EA in a given state at a certain point of time is maximized by choosing
the optimal set of parameter values and setting a certain amount of time to run the algo-
rithm. The authors authors used only population diversity and quality measures to infer
the state of the metaheuristic. They claim that their approach is able to consider time
constraints and adapt its choices to fit to them.

As a proof of concept, the authors controlled the crossover and mutation rates of a
GA solving random instances of the Traveling Salesman Problem. The authors compared
the performance of the proposed algorithm to a tuning method. The results showed that,
under the posed time constraints, the dynamic approach achieved better results than the
static method. However, the proposed technique was tested on a single problem, even
though it was applied to many different instances of it. Given the very limited set of
observed variables defined by the authors, there is no guarantee that such an approach
would be successfully applied to other problems and/or metaheuristics.

In 2008, Maturana and Saubion (MATURANA; SAUBION, 2008|) proposed a parameter
control method based on fuzzy logic. Their approach was divided into two phases: the
learning and the control phases.

During the learning phase, the effects of different parameter combinations on the
diversity and quality of the population are learned from previous executions of the opti-
mization algorithm. The function that maps such variables to one another is approximated
by a Takagi-Sugeno Fuzzy Logic Controller with polynomials of order 1. The coefficients
of these polynomials are defined through multivariate linear regression. On the control
phase, a heuristic is used to control the diversity of the population, using as feedback
a fitness-based numerical signal and the diversity itself. The parameter values are set
through the function that maps such a diversity to values that must be used in order to
reach such a performance.

In this paper, the authors have tested three different control heuristics. A permutation-
encoded GA was used to solve 38 instances of the Quadratic Assignment Problem. The
results were compared only between the proposed heuristics. The main drawback of this
approach is that if a large set of observed variables is used, the fuzzy functions becomes
prohibitively complex.

In 2011, Chatzinikolaou presented a self-adaptive agent-based, peer-to-peer GA for
parameter control (CHATZINIKOLAOU, 2011). In this proposal, a multi-agent system is

implemented, where each agent runs an independent GA and, from time to time, they

83

interact with each other. In this interaction, they exchange candidate solutions and pa-
rameter values. The communication between agents is made through a protocol called
Lightweight Coordination Calculus (ROBERTSON] [2005)). The multi-agent system works

as depicted below:

1. Each agent runs its optimization process for some time and computes its average

fitness. The average fitness defines the quality of each agent.

2. Each agent shares its performance with its neighbor agents. Then, it chooses with
whom it will exchange candidate solutions and parameters via a roulette wheel

selection.

3. The recombination of candidate solutions between agents is done by exchanging can-
didate solutions, while the new parameters are obtained by averaging the parameter

values of both agents and applying a random mutation to them.

The author highlights that the agents are executed asynchronously, in such a way that
the system is able to keep running even with communication issues between agents or
some of them are down (what obviously harm the overall performance of the algorithm).
In fact, the system is able to work even with a single agent, even though, in this case,
the parameter set will remain constant during the whole optimization process. The main
advantage of the proposed method is that not only the parameters control can benefit
from the collective behavior of the population of agents, but it is also highly scalable in a
distributed platform. It is important to note that, even though the author presented this
algorithm as a metaheuristic itself, the parameter control proposed in this work can be
used with any other metaheuristic and parameter.

Despite the very interesting proposed mechanism, the authors applied their technique
to only one benchmark function. Also, they did not compare their proposal to any other.
Instead, this work has intended to evaluate the influence of the information exchange
and the size of the population of agents on the overall performance and on the evolution
of the mutation rate. Thus, the author tested three different variations: no communica-
tion between agents; exchanging only candidate solutions; exchanging candidate solutions
and parameters. Also, different agent population sizes were tested. The best results were
achieved with full communication between agents, where candidate solutions and pa-
rameters are exchanged. Moreover, the larger the number of agents, the better is the
performance of the algorithm.

In 2012, Leung et al. proposed a parameter-less out-of-the-box parameter control called
Parameter Control System Using Entire Search History (PCSH) (LEUNG; YUEN; CHOW,
2012). The PCSH algorithm uses previous solutions generated by the underlying meta-

heuristic and their fitnesses to approximate the objective function’s landscape. With this

84

information, the proposed algorithm can choose parameter values that maximize the ap-
proximated objective function. A Binary Space Partitioning Tree is used to build the
surrogate model. The authors argued that this algorithm was chosen mainly because the
it is parameter-less.

In order to evaluate the proposed method, 3 metaheuristics were used: GA, DE and
PSO. The following parameters were controlled: Crossover operator, crossover values and
mutation operator (GA); crossover operator, crossover values and differential amplifica-
tion factor (DE); and the cognitive, social and inertia weights (PSO). A set of more than
30 well-known benchmark optimization functions was used to evaluate the proposed tech-
nique. The parameter-less aspect of the algorithm can be considered as an advantage,
since it completely removes the need of parameter adjustment. However, it may cause
some difficulty for the algorithm to generalize to multiple classes of problems. Another
advantage is that, according to the authors, using a surrogate model to evaluate the ap-
proximated quality of a parameter setting saves a lot of computational resources. Also,
this model might be increasingly improved as more and more data is generated during
the optimization tasks. The presented results are quite interesting and encouraging.

In 2013, Bielza et al. proposed a parameter control algorithm using Bayesian Networks,
where each node is a parameter of a GA (BIELZA; POZO; LARRAAAGA| 2013). This makes
the algorithm able to learn the correlation between parameters. The Bayesian network
is induced from a training dataset composed by multiple runs from the metaheuristic.
These runs are executed during a reduced number of generations with a small population
in order to reduce the computational burden of the process. The parameters of the GA
are set according to the joint distribution function encoded by the learned network. Even
though the authors present such an approach as an improved GA, the use of Bayesian
Networks for parameter control as proposed in the paper can be clearly extended to any
algorithm or parameter.

The authors applied their algorithm to the problem of optimal ordering of tables.
These were the controlled parameters: population initialization method, crossover oper-
ator, crossover rate, mutation operator, mutation rate, selection method and stopping
criteria. The experiments showed that the new approach presented very similar results
to state-of-the-art algorithms for the problem at hand. However, it dramatically reduced
the computational burden needed to achieve such a performance. Also, for the largest

instances of the problem, the proposed algorithm overcame all other approaches.

3.3 CONCLUSIONS

After presenting an overview of the results of this literature review and detailing every
selected paper, here the four research questions previously posed for this literature review

are answered.

85

RQ1: Which methods for out-of-the-box parameter control have been used
in the literature?

We have found that 66.67% of the selected articles used RL or time-series analysis
methods to create an out-of-the-box parameter control method. The main disadvantages
of the RIL-based approaches analysed in this review are the large set of hyperparameters to
be adjusted. Also, the tree-based approximation method for state definition may generate
very large tress, what might incur in the problems already mentioned in this study. The
time-series prediction-based approaches provide smaller sets of hyperparameters, but use
only time-related variables, hence ignoring any information that could be extracted from
the population. This characteristic gives less approximation power to the models used in
these controllers when compared to the RL-based ones. The remaining papers presented
various different solutions, such as DP, fuzzy logic, agent-based GA, surrogate models and
Bayesian networks. Since there is only one approach proposed for each of these methods,
we cannot summarize their characteristics as a single group, as we did for RL and PPC-
based methods. It is also important to highlight that 4 of the 5 last published papers,
which corresponds to the latest 6 years of publications, applied RL on parameter control,
which produced interesting results.

RQ2: Which methods for out-of-the-box parameter control are self-adaptive
on their own parameters?

Unfortunately, only one of the accepted studies proposed a parameter-less control
method: Leung et al., 2012 (LEUNG; YUEN; CHOW, 2012).

RQ3: Which methods adapt its search to the limitations of the underlying
hardware, time budget, or maximum number of fitness evaluations?

None of the accepted studies were concerned with the extra computational burden
added by the control method to the controlled algorithm.

RQ4: What are the main challenges and future trends for out-of-the-box
parameter control for EA and SI?

The problem of parameter control is far from being satisfactorily solved. Regarding
out-of-the-box parameter control methods, things become even more difficult. Here are

the main challenges that we have identified after concluding the current literature review:

1. Training EA and SI parameter control policies with RL can be very computational-
demanding. And to date no study has ever proposed a scalable approach that could

benefit from parallel and distributed computing platforms.

2. RL algorithms usually require the adjustment of many hyperparameters, what makes
difficult its successful use. Also, the search for an optimal policy can be very unstable,
since RL algorithms usually suffer from bias overestimation caused by the "dog

chasing its tail" effect in the Bellman Equations. It means that, for many algorithms,

86

the policy search is likely to exploit wrong decisions and stuck in local minima
(FUJIMOTO; HOOF; MEGER|, 2018]).

. Even though the authors of the reviewed studies argue that they propose out-of-the-
box methods, very limited benchmarks have been used to assess such a generality,

what reduces the scope and generality of these methods.

. To the best of our knowledge, no one has explored the transferability between dif-
ferent problems, in a way that an optimal policy is chosen among many policies
trained over a set of training functions, aiming to maximize the performance of the

metaheuristic in an unseen testing function.

87

4 TRAINING PARAMETER CONTROLLERS WITH DISTRIBUTED REIN-
FORCEMENT LEARNING

"Everything you can imagine is

real."

Pablo Picasso

In this thesis, we put forward an out-of-the-box training methodology for parame-
ter control policy for EA and swarm-based algorithms with distributed Reinforcement
Learning. We suggest that in the training process, the PBT algorithm is used to evolve
the parameters and hyperparameters of the RL algorithm, which then controls the param-
eters of a metaheuristic that solves an optimization problem. Figure [9 shows the general
scheme of the proposed training approach. It can be seen that the running metaheuristic
and the optimization problem form the environment that the RL algorithm interacts with.
The RL algorithm acts on the environment by setting the parameters of the metaheuristic.
Then, the metaheuristic runs for one iteration, changes its state, and returns it to the RL
algorithm in the format of observed numerical variables. The state of the environment is
returned alongside a performance measure (i.e. reward).

As already mentioned, the objective of the proposed method is to train a policy for
a given metaheuristic running on a set of training functions and successfully apply the
trained policy on an unseen testing function, limited by a predefined budget. The idea is

to perform one training process for each training function, and for each finished training

Figure 9 — General scheme of the proposed training method on the RL framework.

Population Based Training

r S
RL Algorithm's

Hyperparameters ’ Performance
RL Algorithm
A A
Parameters QObserved Metaheuristic's
(Action) Variables Performance
(State) (Reward)
Y
Metaheuristic
A
Solutions Fitnesses
h 4

Optimization Problem

Environment

Source: Produced by the author.

88

epoch, the most up-to-date policy is stored in a pool of trained policies. Then, one of the
trained policies in the pool is chosen to be applied to the unseen problem. In any problem
where machine learning algorithms are used to solve it, the training data must be chosen in
an attempt to reproduce the distribution of the production data (i.e. test data or unseen
data). Likewise, in our method, the set of training functions must correspond to problems
of which the objective functions share some characteristics with the unseen problem. The
reason for this is that similar problems may generate similarly distributed data during the
search process of the metaheuristic. Thus, the success of the proposed method depends on
the choice of such a training set. However, the identification of similar problems depends
on the previous knowledge of the users about their objective functions.

The policy training process is key for the success of the proposed approach. This

process is described next.

4.1 LEARNING THE POLICIES

In our method, multiple workers interact with multiple instances of the environment
collecting experience data in parallel, one copy of the environment for each RL worker.
Figure shows multiple RL workers running in a distributed arrangement, where A1,
A2, and An represent their local policies, M is the controlled metaheuristic, P is the
optimization problem and LB is its local buffer. The interaction between workers and
their instances of the environment is made through the observation of the state variables
that describe the environment state and the actions taken accordingly by copies of the
current policy. These state variables are described later in this section. A representation
of such a worker, which we will call RL worker from now on, can be seen in Figure [11]

Algorithm [7] shows the pseudocode of the RL worker. Each RL worker runs indepen-
dently collecting experiences and storing in their respective local buffers until they are
completely full. Then, the collected experiences are copied into the centralized replay
buffer. If the workers run asynchronously, the replay buffer is divided into parts, one for
each worker. Otherwise, the replay buffer works as a single shared memory. Whenever
this memory becomes full of transitions, the oldest ones must be removed. After finishing
the replay buffer update, each worker cleans up its local buffer and requests an update
of its local policy from the centralized learner. The centralized learner then responds as
soon as it is ready to do so.

Algorithm |8 shows the pseudocode of the centralized learner, where the new policy
is learned. When the workers run asynchronously, the learner thread updates the policy
parameters asynchronously as well. In this case, it updates its parameters continuously,
without waiting for the workers to finish updating the replay buffer. On the other hand,
when these workers run synchronously, the learner updates its policy parameters when-
ever all workers have finished copying their transitions into the replay buffer. Line 3 in

Algorithm [§ works as a synchronization barrier for such cases. It can be seen that this

89

Figure 10 — Training of the parameter controller using distributed Reinforcement Learn-
ing (single PBT worker). Multiple RL workers work in parallel inside a PBT
worker to collect experiences and transfer them to the centralized replay
buffer. The centralized learner adjusts its current policy based on these col-
lected experiences. After “uploading" its collected experiences, each worker
requests an update of its local policy. The RL workers run synchronously or
asynchronously.

/ Updated Policy \
™

'
) Updated Policy Policy Updated Policy 1
\Fé\dients
» (Sharded) Replay Buffer | Experiences
_ n Learner /
Experiences
\ Experiences
Al LB 1 @ LB 2 An LB 3
@ Worker 1 @ Worker 2 0 Worker n

Source: Produced by the author.

Figure 11 — Single RL worker in the training process.

4)

Experiences
P Local Buffer

Metaheuristic's
Parameters

Observables
and Rewards

Problem's
Parameters

e

Worker /

Source: Produced by the author.

90

Algorithm 7: Pseudocode of the RL worker.
Input: Most up-to-date parameter control policy.
Output: Set of collected experiences.
1 REQUEST from the centralized learner an update of its local policy
2 CLEAN the local buffer if it is full of previous experiences
3 while Local buffer is not full do

4 INITIALIZE the environment (i.e. initialize the metaheuristic and the
optimization problem)
CALCULATE the current values of the state variables of the environment
6 while the budget of the metaheuristic is not exhausted do
7 TAKE an action by defining the current parameter values of the

metaheuristic according to the current values of the state variables

8 SET the new parameter values of the metaheuristic

RUN the metaheuristic for one iteration

10 GET the reward for the taken action

11 CALCULATE new values for the state variables of the environment

12 STORE the n-tuple (previous values of state variables, action, reward,
new values of state variables) in the local buffer as a new experience

13 return Set of collected experiences.

mechanism embraces both synchronous and asynchronous distributed implementations of
RL algorithms, such as TD3 and Ape-X DDPG, respectively.

After updating the current policy, a testing phase is executed. At this point, the most
up-to-date policy is tested on the remaining training functions, so that the current policy
can be stored at the pool of trained policies alongside its performance on such functions.

The testing and storage phases are represented in lines 5 and 6.

Algorithm 8: Pseudocode of the centralized learned running mechanism.

Input: Initial policy.

Output: Trained policy.

while Stopping criteria are not met do

2 if Workers run synchronously then

3 L WAIT until all RL workers have updated the centralized buffer

4 UPDATE the parameters of the policy

TEST the current policy on the set of remaining training functions

6 STORE the current policy in the pool of trained policies alongside its
performance in the tests

7 RESPOND to all pending requests for a policy update sent by the RL workers

=

8 return Trained policy.

In our method, the PBT algorithm is used to evolve the parameters and hyperparame-
ters of the RL algorithm on-the-fly. The training process previously described runs inside
a PBT worker, as depicted in Figure [I0] As previously mentioned, the exploitation and

exploration mechanisms need to be defined according to the necessity of each situation

91

where the PBT algorithm is used. For the exploitation mechanism of our method, each
worker of the bottommost quantile (7.e. the least performing workers) randomly chooses
another PBT worker in the upmost quantile to copy its parameters and hyperparameters.
Such a quantile is previously defined by the user. The performance of a PBT worker is
measured based on the average reward over all steps performed during its latest train-
ing epoch. The reward for each taken action is defined later in this section. Regarding
the exploration mechanism, the hyperparameters of the PBT workers are perturbed fol-
lowing a predefined mutation function with a given probability. If not, the continuous
hyperparameters are multiplied by a random factor, which can be anything between 1.2
or 0.8, or changed to one of its adjacent values if the hyperparameter is discrete. Figure
shows the distributed RL algorithm running under the PBT framework. The afore-
mentioned implementation of the exploitation and exploration mechanisms is available
at https://docs.ray.io/en/master/ (LIANG et al., 2017)). The pseudocode of the PBT algo-
rithm is shown in Algorithm [0] in the previous section.

It is important to notice that the PBT algorithm allows a diverse search for the optimal
policy. This implies that training policies with RL algorithms running under the PBT
framework increase the chance of finding an optimal policy and avoiding bad policies.
Thus, the larger the population of PBT workers, the better (as long as the hardware
supports it).

On the other hand, the number of parallel RL workers per PBT worker does not
affect the capacity of exploration of the algorithm, but speeds up the training process. To
understand this, it is important to notice that the size of the local buffers is the size of
the centralized buffer divided by the predefined number of RL workers. Thus, the more
RL workers used, the smaller each local buffer, and therefore the faster they are filled
with transitions. Since the data is collected by the RL workers, until their local buffers
are full, the larger the population of RL workers, the faster the centralized replay buffer
is updated and, thus, the faster the training process.

It is clear that setting the numbers of RL workers and PBT workers means dealing
with conflicting objectives, since any hardware has limited resources. Therefore, the user
must deal with the trade-off between exploration capability and time-efficiency.

The PBT algorithm has its own hyperparameters, namely: perturbation interval (i.e.
the interval between each exploitation/exploration execution), quantile fraction (i.e. the
parameter/hyperparameter exchanging quantile), and resampling probability (i.e. the
probability of resampling from the original distribution). The higher the quantile frac-
tion, the stronger is the exploitation in the search for the policy, since more PBT workers
exchange information between them. The higher the resampling probability, the stronger
the exploration, since resampling from the original distribution means resetting the values
of the hyperparameters.

Regarding the perturbation interval, understanding its effects is not so straightforward,

92

Figure 12 — Training of the parameter controller using distributed Reinforcement Learn-
ing and Population Based Training (multiple PBT workers). Multiple PBT
workers work in parallel and asynchronously. They communicate with each
other through the parameter and hyperparameter server, where parameters
and hyparameters are exchanged between PBT workers.

/ \ Parameters,
;pum; Hyperparameters

1 and Perfarmance

>

(Sharded) Replay

Buffer 1

=

-
LS Parameters and
Hyperparameters
RL Worker 1/ _ RL Waorker 2 / RL Worker n_/ [

PET Worker 1

/ \ Parameters,

Hyperparameters
\ ’{g RL Wiorker Ly

and Performance

o Parameter
and Hyperparameter

Server
Parameters and

| Hyperparameters
ey

RL Worker n

PBT Worker 2

TR
- !

/ \ Parameters,
fmé Hyperparameters

E n :f and Performance
Replay

200
Parameters and

Hyperparameters

RL Wiorker Ly RL Worker 2 RL Worker n

A

f

PBT Worker n

Source: Produced by the author.

93

since every perturbation of hyperparameters (i.e. exploration) comes after an exchange of
parameters and hyperparameters between two PBT workers (i.e. exploitation). Therefore,
the exploration/exploitation balance strongly depends on the other two hyperparameters.
The impact of the numbers of PBT and RL workers on the performance of the search
process is discussed later in this paper through the analysis of the results of the experi-
ments.

It is important to note that as PBT works as the highest layer of control, the user
needs to define exact values only to its hyperparameters. It means that, regardless of the
RL algorithm used, the hyperparameters that need to be manually set to exact values
will be the same. For the hyperparameters of the underlying RL algorithm, flexible ranges
can be defined, which makes its use easier. Moreover, the same hyperparameters must be
defined regardless of the used metaheuristic, what also eases the use of the proposed
methods since the user does not need to understand how multiple metaheuristics work,

but only the rationale of PBT and how its hyperparameters affect its behavior.

4.2 DEFINING THE REWARD FUNCTION, THE STATE VARIABLES, AND THE ACTION
SPACE

As already mentioned, for each interaction of the controller with the metaheuristic, the
optimization algorithm runs for one iteration. After that, its performance is returned as
a reward for the taken action. This reward is calculated according to Equation [4.1], where
«, is a factor that must scale the reward to values in the order of magnitude of 10°, which
avoids instability of the learning process of the neural networks that approximate the value
functions. Moreover, a, is the action taken at time ¢, s, is the state of the metaheuristic
after taking such an action, s, is the state of the metaheuristic before taking this action
and F,q.(s;) is the maximum fitness among the candidate solutions of the metaheuristic

at time ¢.

Fmaw(st)
Fmam(st—l)
After preliminary experiments, «, was set to 1, so that the previously described con-

(4.1)

7’<5t, Gt) = a,logig

dition (rewards remain in the order of magnitude of 10°) were met. With this function,

% for each iteration of the
max Stfl)

optimization algorithm, which means that it must maximize the maximum fitness gain

the RL algorithm aims at the maximization of the ratio

between iterations. However, if the maximum fitness decreases, the penalty (i.e. negative
reward) will be more severe than the reward received when it increases because of the log;g
function. Such an “imbalanced” reward policy makes the agent avoid at all cost situations
where the maximum fitness is decreased. It is important to highlight that this reward
function is not sparse, which makes the learning process of the value functions easier. In

this context, a sparse reward function is a function that often returns zero reward.

94

For the calculation of the reward in minimization problems, the fitness assigned to
each solution found by the metaheuristic is calculated according to Equation In this
equation, x is the solution vector, and f(x) is the value of the objective function for
the solution x. The denominator of the fraction in the equation (i.e. max(f(x),1072"))
avoids division by zero. If the best fitness in the population is decreased in a minimization
problem from iteration ¢ — 1 to iteration ¢, the reward is positive. For a maximization

problem, it needs to increase for a positive reward.

1
maa(F(x), 10-)
These equations were proposed by Schuchardt et al. in (SCHUCHARDT; GOLKOV; CRE-
MERS), 2019). In this work, the authors applied the algorithm Proximal Policy Optimiza-

F(x) = (4.2)

tion (PPO) to control the parameters and other aspects of different metaheuristics. It
is important to mention that this work was not returned by the search engines used in
the already presented systematic literature review. However, the proposed method can be
classified as out-of-the-box as well, and the reward function proposed in the paper turned
it essential in the development of this work. Moreover, the idea of executing one single
training process for each function came up to enable the use of this reward function. With
such a function, if multiple training functions are interleaved during the training process,
so that each training epoch is performed for a different training function, the scale of the
rewards varies throughout the training process. This difference between scales turns some
of the functions more important than others when the average reward over many training
epochs is calculated by PBT in order to rank the PBT workers. Thus, the same training
function must be used for all training episodes.

The given reward function was chosen because the PPO algorithm is a model-free and
gradient-based policy for continuous action spaces, just as our chosen RL algorithm that
will be discussed later. This is the first study that applied an RL method for continuous
action spaces to train parameter control policies. Later on, in this work, the choice of the
RL algorithm to evaluate our method will be justified and the similarities between the
chosen algorithm and PPO will become clearer.

The set of state variables observed by the RL agent was inspired by the work published
by Sharm et al. in (SHARMA et al., 2019). The values of all variables lie between 0 and 1,
such that the inputs of the policy have the same numerical importance. Table |5| provides
the state variables used in this work, where f,s¢ is the worst fitness so far, b is the
current budget left, B is the initial available budget, b. is the elapsed budget since the
last improvement of the best fitness so far, p,, is an candidate solution with index a; picked
from the PBA, a; and b; are random indexes, max and min are the vectors with all their
values set to the maximum and minimum values for each dimension of the PBA’s search
space, respectively, pys is the candidate solution of the PBA with the best fitness, fq, is

the fitness of an candidate solution with index a; picked from the PBA, f; is the current

95

Table 5 — Set of state variables.

Variable definition Equation Length
Normalized difference between the best fitness so far _
(ﬁ’sf) and the average fitness of the population % 1
(F).
Ratio between the standard deviation of the witnesses i)
st

of the population (std(F')) and the maximum standard ET e s

deviation between two candidate solutions in the population.

Percentage (between 0 and 1) of the remaining budget b
of the episode. B

Percentage (between 0 and 1) of the budget elapsed

o

= 1
since the last improvement of the best fitness. B
Normalized Euclidean distance between 100 pairs of —pp.
z . etw p Apai =2u, s 10,99) 100
randomly chosen candidate solutions. [maz—man]]

Normalized Euclidean distance between the current
fittest candidate solution and 100 other randomly chosen Apbs el Vi € [0,9] 10

[[max—min]||’
candidate solutions.

Normalized absolute difference between the fitnesses | fa, —fv, | .
. . . ——"1 Vi € [0,99] 100
of 100 pairs of randomly chosen candidate solutions. fosf—Ffwss
Normalized absolute difference between the currently | fa; —fofl Vi [0,9] 10
P 7 b
best fitness and 100 randomly chosen candidate solutions. fosp=Fwss

Normalized absolute differences between the currently
best fitness ever found so far and 100 randomly chosen %, Vi € [0,9] 10
candidate solutions.

Number of improving candidate solutions for each one of the

L S=E k€ [0,9] 10
latest 10 iterations. t—k

Whether the best fit has i d t i
ether the bes ness .ever .as improved or not for Loss, » Yk € [0.9] 10
each one of the latest 10 iterations. t

Source: Produced by the author.

best fitness among all candidate solutions of the PBA, py,y is the position of the solution
with the best fitness so far, I;_, is the number of candidate solutions that improved their
fitness during the (t — k) agent’s iteration (i.e. k = 0 is the current ' iteration), N,
is the number of candidate solutions in the PBA in the (t — k)™ agent’s iteration, and
Iyss, , is a boolean variable that is set if the best fitness so far was improved during the
(t — k)™ agent’s iteration.

It is important to mention that every random index is sampled with replacement
from a uniform distribution. After concatenating all observed variables, the vector of
observations has 254 floating-point values.

As already mentioned, the agent works in a continuous action space. Thus, its actions
are continuous values assigned to each parameter of the metaheuristic. In our approach,
these actions are values between 0 and 1, which are rescaled to predefined parameter
ranges through Equation [£.3] where p; is the original value returned by the policy to
the parameter 4, p; maq, is the upper bound of the range of values for parameter @, p; min

is the lower bound of the same range, and p; is the final value set to the parameter i.

96

The decision to keep the policy output between 0 and 1 was made to avoid an unstable
behavior of the the neural networks that approximate such a policy in the execution of

the learning algorithm.

p; = pi(pi,maz - pz,mzn) + pi,min~ (43>

4.3 CHOOSING A TRAINED POLICY

As previously mentioned, a pool of trained policies is generated with a set of training
problems during the training phase. After that, a policy must be chosen in order to solve
an unseen problem. Such a choice aims at the maximization of the performance of the
chosen metaheuristic on the unseen problem. This mechanism is proposed and described
in this section.

Let P be a set of trained policies and T" a set of trained functions. Each policy in P is
generated after a training epoch of PBT worker during the training process with a given
metaheuristic m optimizing a given objective function f € T'. It is important to notice
that, since each training epoch of each worker generates one new policy, there are multiple
policies trained with each function f € T

In order to find a policy that maximizes the performance of the metaheuristic m on
the unseen objective function f,,, a score must be calculated for each policy p € P. This
score is calculated by testing p for each training function g € T"— {f}, where f is the
objective function used to train p. Then, the performance of each policy p for each function

g € T —{f} is defined as n?é]}f’{;)})' In this formula, n(P;,) is the number of policies in
P that presented a lower average performance over 30 runs than p on the function g,
and n(P — {p}) is the total number of trained policies in P except p. It means that the
performance of p in g is the percentile of the average performance of p running 30 times
on g (e.g. fitness, in case ¢ is a maximization problem) among all policies in P running
on g. After calculating the scores of the policy p for each function g, the final score is
calculated by averaging them. The policy with the highest score is chosen to be used on
the unseen objective function f,.

It is important to note that the choice of the best policy for a given unseen function f,
is not guaranteed, since this choice is made through the observation of the performances of
p in different functions g # f,,. The results achieved by the such a policy selection method

can be seen in Section 5.2.3, where the generality of the proposed method is assessed.

97

5 EXPERIMENTAL RESULTS AND DISCUSSION

"What is research but a blind
date with knowledge?"

Will Harvey

The experiments in this study have been designed to verify whether the proposed
method is able to address the three gaps found in the literature presented in the early

chapters of this work or not. Such gaps are summarized as follows:

1. Training EA and SI parameter control policies with RL can be very computational-

demanding.

2. RL algorithms usually require the adjustment of many hyperparameters, what makes

difficult its successful use. Also, the search for an optimal policy can be very unstable.

3. Very limited benchmarks have been used to assess the generality of the out-of-the-

box methods proposed so far in the literature.

This chapter is divided into two parts: Experimental Methodology, where the method-
ology used in this work to perform the experiments is provided, and Results and Discus-

sion, where the experimental results are delivered.

5.1 EXPERIMENTAL METHODOLOGY

5.1.1 Choosing the Reinforcement Learning Method

A few aspects must be taken into account to choose the right RL algorithm to solve a
given problem. First of all, it is necessary to choose between model-based and model-free
algorithms. Model-based algorithms create an internal model of its surrounding environ-
ment. Even though good models give to the agent the capability of accurate long-term
planning, building accurate models can be very hard or even infeasible in real-world ap-
plications. A successful example of a model-based RL algorithm is AlphaZero (SILVER et
al., |2017)).

Model-free algorithms work by making decisions without any information about the
state of the environment and transition probabilities. As previously mentioned in this
work, model-free methods learn by experience. Even though these algorithms are less
sample-efficient, they are easier to implement and to make them work, since they do not
depend on the quality of the model of the environment. Thus, in this work, only model-free

algorithms are considered.

98

As previously mentioned, model-free algorithms can be divided into two subgroups:
policy optimization methods and Q-learning-based methods. Policy optimization meth-
ods are usually more stable. However, Q-Learning algorithms are usually more sample-
efficient. Given this trade-off, intermediate methods, which mix the characteristics of
both classes of algorithms, are worth being considered. As presented in the background
chapter of this work, TD3 and Ape-X DDPG are two of the state-of-the-art intermedi-
ate algorithms. However, TD3 was proposed as an improvement of the canonical DDPG,
promising more stability in the learning process. Even though the asynchronous workers
of Ape-X DDPG would benefit more from a parallel platform, its usual instability, i.e. its
higher probability of exploiting bad actions, does not pay off in our problem, as observed
in preliminary experiments. Therefore, in this work, we used TD3 to train the parameter

control policies.

5.1.2 Setting up the Hyperparameters of TD3 and PBT

The implementation of TD3 used in this paper are available in the module 7{lib of a Python
library called Ray (LIANG et al [2017). Some of its hyperparameters were controlled by
the PBT algorithm, while others were kept fixed.

The constant hyperparameters of the TD3 algorithm used in the experiments of this
study were defined as follows. The algorithm Adam was used as the parameter optimizer
of the neural networks (KINGMA; BA, [2014).

« Update delay between policy and Q-Function parameters: 2 (i.e. for each policy
update, the Q-Function is updated twice);

 Target noise (i.e. variance of the gaussian noise €): 0.2;

 Target noise clip (i.e. ¢): 0.5;

« Standard deviation of the zero-mean gaussian noise added to the actions: 0.1;
e 7:0.99;

o Initial random steps (i.e. number of steps with random decisions executed before

the algorithm starts learning): 45000;
o Adam [(;: 0.9;
o Adam [(5: 0.999;

e Adam e: 1077;

The frequency in which the target network is updated is also constant for each of the

PBT workers. However, each PBT worker sets a different value to such a hyperparameter.

99

To set these values, considering that 16 PBT workers are used, the interval [100, 5000]
is divided into 15 equally sized intervals. These 16 equally distanced values are used as
the target network update frequency for the PBT workers, one value for each worker.
Regarding the dynamic hyperparameters of TD3 controlled by the PBT algorithm, oy
and «, are initially randomly set to a number within the interval [107%, 107!] following a
log uniform distribution, while 7 and the L2 regularization hyperparameter are randomly
chosen within the ranges [107*,1072] and [0,1] respectively, these ones using a uniform
distribution.

The number of hidden layers of the neural networks used in both algorithms was set
to 4 with 300 neurons each. Relu was used as the activation function for all neurons in the
hidden layers. For each interaction between the RL worker policy and the corresponding
environment, one iteration of the metaheuristic solving a given optimization problem is
executed. Each episode is composed of 45000 of these iterations, what generates 45000
transitions. Since one epoch was composed of 300 iterations of the metaheuristic, each
episode is composed of 150 of these epochs. The size of the centralized replay buffer was
set 45000. As already mentioned, the size of the local buffers was defined as the size of
the centralized buffer divided by the number of PBT workers.

Concerning the hyperparameters of the PBT algorithm, they were set as defined be-

low.:

o Perturbation interval: 4;
« Quantile fraction: 0.125;

e Resample probability: 0.5.

The number of PBT and RL workers used in these experiments were set to 16 and
2, respectively, unless stated otherwise. The implementation of PBT used in this work
is available in the library Ray (LIANG et al., |2017). The aforementioned hyperparameter
setup was defined after preliminary experiments and a hyperparameter analysis, which
is presented and discussed later in this work. The three hyperparameters of the PBT
alongside the number of PBT and RL workers form the set of five hyperparameters of our
method that need to be set to an exact value (any hyperparameter of the underlying RL
algorithm can be set to a flexible range to be controlled by PBT). In other words, they

are the hyperparameters of the last and highest level of control.

5.1.3 Choosing the Metaheuristics and the Optimization Problems

The algorithm HCLPSO was used to solve all 29 functions of the CEC17 Bound Con-
strained Benchmark Continuous Functions in their versions with 10 dimensions (ALI et al.,
2016)). It is important to mention that all functions in this set are minimization problems.

It means that the objective functions are multiplied by -1 to make it suitable for the

100

proposed method. In this work, the instances are numbered according to the number of
their corresponding functions in the competition.

In order to assess the generality of the proposed method, four other algorithms were
used: FSS, DE with DE/rand/1/bin strategy, binary GA, and ACO. The FSS and DE
algorithms were used to solve the same 29 functions of the aforementioned CEC17 bench-
mark set with 10 dimensions. Therefore, HCLPSO, FSS, and DE form the continuous
part of our benchmark set, which has 87 instances to test our method (i.e. the num-
ber of combinations between 3 algorithms and 29 problems). Concerning the problems
for the binary GA, 23 instances of the Knapsack problem have been used. These in-
stances have 20 or 50 items and were randomly selected from (PISINGER 2005), where
the definition of the problem and the description of all instances can be found. The
objective function of the Knapsack problem must be maximized. It is important to men-
tion that, in our implementation, the fitness values of the unfeasbile solutions are set
to zero. The ACO algorithm was used to solve 23 instances of the Traveling Salesman
Problem (TSP) with 10, 30, and 50 cities. The distances between the cities were ran-
domly generated. In (ILAVARASI; JOSEPH, [2014), it can be found a description of the
TSP. Even though TSP is a minimization problem, its objective function is calculated
as the inverse of the original fitness function, as defined in (DAS; MULLICK; SUGANTHAN},
2016). The definition of each of the selected instances is available at the following link:
https://github.com/lacerdamarcelo/rl _based parameter control ea si /raw/main/in-
stances_description.ods. The spreadsheet available in this link makes reference to the in-
stance files that are available at the following repositories: TSP: https://github.com/ lac-
erdamarcelo/rl_based_parameter control ea_si/tree/main/vlsi tsp/mar_tsp; Knapsack
Problem: https://github.com /lacerdamarcelo/rl based parameter control ea_si/tree/
main/knapsack problem.

It can be noticed that the number of dimensions of the problems used in this bench-
mark set is low. However, the objective of such a setup is to assess the capacity of our
approach to work with scenarios with different algorithms and problems. In total, 133
scenarios have been chosen to evaluate our proposed method.

As previously mentioned, the values of the parameters defined for the metaheuristics
by the static policies were computed through a state-of-the-art tuning method. The chosen
method is a distributed implementation of the algorithm I/F-Race (BALAPRAKASH; BI-
RATTARI; STUTZLE, 2007Db)). In our straightforward implementation, each parameter setup
is evaluated by a single thread. Besides, the number of allocated threads was defined as
the number of available CPUs in the system. Therefore, if 48 physical or virtual CPUs
are allocated for the tuning task, only 48 configurations can be evaluated for execution of
the F-Race part of the I/F-Race algorithm (i.e. they are all evaluated in parallel).

For our method and the I/F-Race algorithm, for each instance f € T;, where T; is

the i-th problem in the experimental benchmark (CEC17 continuous functions, Knapsack

https://github.com/lacerdamarcelo/rl_based_parameter_control_ea_si/raw/main/instances_description.ods
https://github.com/lacerdamarcelo/rl_based_parameter_control_ea_si/raw/main/instances_description.ods
https://github.com/lacerdamarcelo/rl_based_parameter_control_ea_si/tree/main/vlsi_tsp/mar_tsp
https://github.com/lacerdamarcelo/rl_based_parameter_control_ea_si/tree/main/vlsi_tsp/mar_tsp
https://github.com/lacerdamarcelo/rl_based_parameter_control_ea_si/tree/main/knapsack_problem
https://github.com/lacerdamarcelo/rl_based_parameter_control_ea_si/tree/main/knapsack_problem

101

Problem or TSP), the remaining instances 7' — {f} are used as training instances. All
training processes for both methods were executed during 24 hours. In the end of each
training process of the I/F-Race algorithm, for each function of the benchmark, the last
surviving setup is chosen. If more than one setup lasts, one of them is randomly chosen.

The parameter setup for the I/F-Race algorithm is depicted below:

o Number of parameter configurations evaluated for each new F-Race process: 48;
o Minimum F-Race iterations before it starts removing bad setups: 20;

o Parameter setup generator standard deviation: 0.3 * range of values of the param-

eter;
e Minimum number of configurations in the F-Race pool: 10;

e Maximum number of F-Race iterations: 30.

For all approaches tested in this work, each policy, both dynamic and static, evaluated
in a given metaheuristic and optimization problem, is made by executing it 30 times. For
almost all cases, 300 iterations were set as budget to the metaheuristic, unless stated
otherwise. Moreover, for every experiment, the population size was set to 100 candidate
solutions. For the HCLPSO, the exploration and exploitation population sizes were set to
50 each. The population size was fixed even in the dynamic policies because the complexity
added to the optimization process when the population size is dynamically adjusted,
especially in the swarm-based algorithms, is not the focus of this work.

Regarding the human-designed policies, they were defined based on relevant papers
and a few common sense values as previously mentioned. These values and the reference

papers that were used to define the given policies are depicted below:

« HCLPSO (LYNN; SUGANTHAN, [2015)):

w: Linear decrease from 0.99 to 0.2;

— ¢: Linear decrease from 3 to 1.5;

candidate solution step: Linear decrease from 0.1 to 0.000001;
— cl: Linear decrease from 2.5 to 0.5;

— ¢2: Linear increase from 0.5 to 2.5;

— m: 5.

o FSS (FILHO et al., 2009b):

— candidate solution step: Linear decrease from 0.1 to 0.000001;

— Volitive step: twice the candidate solution step;

102

— Maximum weight: 5000.

« DE (DAS; MULLICK; SUGANTHAN, 2016):
— F: 2
— Crossover probability: 0.5;

« ACO (DAS; MULLICK; SUGANTHAN, 2016):
— a: 1;

- B2
— p: 0.98;

Probability of using the best ant ever to update the pheromone trail instead

of the best in the iteration: linear increase from 0 to 1.
o GA (MICHALEWICZ; ARABAS, |1994; [HRISTAKEVA, |2004):

— Mutation probability: 0.1;
— Crossover probability: 0.75;
— Elitism size: 2.
For the policies trained with our method and the random policies, the numerical

ranges from which these policies must choose a value to be set to the parameters of the

metaheuristics were defined as follows:

« HCLPSO:
— w: [0.2, 0.99];
— ¢ [1.5, 3];
— cl: [0.5, 2.5];

c2: [0.5, 2.5];
— m: d.
o FSS:

— candidate solution step: [0, 0.1];

— Volitive step [-0.2, 0.2] (the RL algorithm decides whether to contract or not);
« DE:

— F: [0.01, 4];

— Crossover probability: [0.01, 1].

103

e ACO:

— Probability of using the best ant ever to update the pheromone trail instead
of the best in the iteration: [0, 1].

« GA:

— Mutation probability: [0.001, 1];
— Crossover probability: [0.001, 1];

Elitism size: [1, 5].

All comparisons between policies in a given metaheuristic and a given optimization
problem were performed through the Wilcoxon Rank-Sum test with 95% of confidence
with a sample size of 30, unless stated otherwise.

It is important to mention that in the experiments carried out in this work, all functions
have been used once as unseen function. When a function is used as an unseen problem,
the remaining functions in the benchmark set are used as the training set. For example,
when function 1 from the CEC17 benchmark set is used as testing function, the remaining

functions 3-30 are used as training set.

5.1.4 The Computational Setup

The experiments were performed on the PALMA-IT HPC cluster, from University of Muen-
ster, Germany. At the time when the experiments have been made, the system had 412
nodes with 2 Intel Xeon Gold 6140 CPUs containing 18 physical CPU cores each, what
allows up to 72 threads running in parallel per node. The connection between nodes was
made through Intel Omni-Path with 100Gbit /s of bandwidth. The workload of the system
was managed by Slurm 18.08.8. For each experiment, one CPU was allocated for each allo-
cated thread. Thus, for our method and the I/F-Race algorithm, 48 CPUs were allocated.
Finally, the following softwares, operating system, libraries and their corresponding ver-
sions were used: CentOS 7, Python 3.6.6, GCC 7.3.0, OpenMPI 3.1.1, Ray 0.8.4 (RLLib),
Tensorflow 2.1.0, Numpy 1.18.1 and Scipy 1.4.1.

5.2 RESULTS AND DISCUSSIONS

The experiments presented in this study have been divided into three parts:

104

1. Hyperparameter analysis: The values of the hyperparameters of the PBT algorithm
(i.e. the last layer of control) are varied in order to assess their effects on the

performance of the policy learning process.

2. Analysis of different budgets in the training and the testing phases: In these experi-
ments, policies trained with 100 iterations per episode are tested with 300 iterations.
Such experiments are intended to verify if it is possible to save training time by re-
ducing the budget per training episode without affecting the performance of the

trained policies in an unseen function.

3. Generality assessment: The generality of our method is assessed by testing it on 133
different combinations of metaheuristics and optimization problems. Five contin-
uous, binary and combinatorial metaheuristics are used to build the experimental
benchmark. Moreover, our method is compared with static policies tuned by a state-
of-the-art tuning algorithm, a random policy and a human-designed policy, which
are defined by the authors of relevant papers in the literature. The comparisons
against the state-of-the-art tuning method are intended to compare the proposed
dynamic parameter adjustment method against a static policy tuned by a well-
known and widely used algorithm. Comparing against the human-designed policies
has the objective of comparing a computer-designed parameter adjustment policy
against a human-designed one. Finally, comparing against a random policy aims at
analyzing how far are the trained policies from a completely random and clueless

policy.

5.2.1 Hyperparameter analysis

In this part of the experiment, only HCLPSO is used. As previously mentioned, HCLPSO
is used to solve the already presented 29 CEC17 functions. In this section, we analyze the
effects on the quality of the trained policies and, consequently, on the performance of the
HCLPSO algorithm, when each one of the five hyperparameters of the proposed method

are varied.

5.2.1.1 Number of PBT workers

The first hyperparameter analyzed in this section is the number of PBT workers. For
such experiments, the training process was executed with 4, 8 and 16 PBT workers.
The remaining hyperparameters were fixed as defined in the experimental methodology
description. The performance of the trained policies for each problem is defined as the
average best fitnesses found by the HCLPSO algorithm for the problem at hand across
30 executions. The performances of the three setups were compared to each other.
Table [6] shows the number of comparisons between the p x 100% best policies trained

with each tested number of PBT workers where the setup defined by the column name

105

significantly outperformed another one. If A significantly outperforms B, it means that not
only the performance of A was superior to B, but also the p-value computed with Mann-
Whitney U test is lower than or equal to 0.05. Such a test was used in the experiments
with all quantiles except Best, which used Wilcoxon Rank-Sum test with 5% of confidence.
The best results are achieved by the policy among the pool of trained policies that showed
the highest performance on the testing function. Given that this function is unknown in a
real world situation, such a especial policy selection method cannot be used in real cases.
This is used in this work only to show how good the policies generated by our method can
be, and how well the underlying metaheuristic can perform if an excellent policy selection
method is used.

Since each setup is compared with the other two setups in 29 functions, 58 comparisons
are made for each population size of PBT workers. It means that, for instance, when the
top 30% best policies trained with 4, 8, and 16 PBT workers, were compared to each other,
the performance of the policies trained with 4 PBT workers significantly outperformed
one of the other setups in 43 out of 58 comparisons. Besides, comparing the same superior
quantile of trained policies, the setup with 8 PBT workers outperformed another setup
in 16 cases, while the setup with 16 PBT workers showed significant superiority in 24
comparisons. It is important to mention that comparing the 30% best policies means that
the best fitness found in each of the 30 executions performed in the testing function by
each policy among the 30% best policies is included in the samples to be compared.

Table [6] shows the number of comparisons between the p* 100% best policies for each
tested perturbation interval, where they outperformed another setup and scored 0.05 or
less of p-value computed through Mann-Whitney U test (all quantiles from 1.0 to 0.01)
or Wilcoxon Rank-Sum test (only comparisons with the best policy). It is important
to mention that, in order to make such comparisons, the available trained policies are
ranked by their performances in the testing function itself. Therefore, to compare the
30% best policies in function 1, the available trained policies (i.e. the policies trained
with the remaining benchmark functions) are tested in the function 1 itself, and their
performances are used to define the 30% best policies. Surely, since in the real world the
testing function is unknown, this is made only for experimental purposes.

It can be seen in Table 6] that up to the comparison of the 10% best policies, the setup
with 4 PBT workers performed better than the other setups in more cases. However, when
only the top policies are compared, the setup with 16 PBT workers outperformed the other
configurations in more comparisons. Such a superiority of smaller populations of PBT
workers is surprising, since the conclusions drawn in the paper available in the Appendix
B of this work clearly state that the more PBT workers, the better. Nevertheless, it is
clear that the more restrictive the group of top policies, the less sensitive is the HCLPSO
to the number of PBT workers.

106

Table 6 — Number of comparisons between the p * 100% best policies for each tested
perturbation interval, where they outperformed another setup and scored 0.05
or less of p-value computed through Mann-Whitney U test (all quantiles from
1.0 to 0.01) or Wilcoxon Rank-Sum test (only comparisons with the best policy).

Number PBT workers

Quantile (p) 4 8 16
1.0 34 33 15
0.9 37 32 12
0.8 39 27 14
0.7 41 26 14
0.6 42 24 16
0.5 45 21 19
0.4 45 19 22
0.3 43 16 24
0.2 39 15 24
0.1 38 18 23
0.01 22 10 25
Best 3 5 11

Source: Produced by the author.

Figures and [33] in Appendix A.1 show the comparisons between the three tested
sizes of the population of PBT workers for functions 1-16 and 17-30, respectively. Such
comparisons are made with the 30% best policies in the pool of trained policies. However,
the values shown in the figures are not the original p-values of the hypothesis tests. A
transformed p-value is calculated for each comparison in order to make the results visually
more intuitive. Let A be the proposed method with the number of PBT workers defined in
the row’s name of the heatmaps, and let B be the proposed method with the population
size of PBT workers defined in the column’s name. If A outperforms B, the transformed
p-value is 1 — p, where p is the original p-value. Otherwise, the transformed p-value is
calculated as p — 1. The closer to 1 the transformed p-value, the higher the probability
of A being superior to B. On the other hand, the closer to -1, the higher the probability
of B being superior to A. The closer to zero, the closer to each other the performances
of A and B. Figures [34] and [35] in Appendix A.1 show the transformed p-values of the
comparisons between the best policies trained on each setup. It is clear in such figures
that the performance of the best policies is less sensitive to the number of PBT workers
than the performance of the 30% best policies, as already observed in Table[6] It means
that the better the policy selection method, i.e. the higher the probability of choosing
the top policies in a pool of trained policies, the less sensitive to the number of PBT
workers the final performance of the optimization process. Figure [I3] delivers a sample
from Figures [32| and while Figure [14] shows some of the results presented in Figures
and [35] Tables [12] and [13] shows the numerical results of these experiments for further
analysis.

As previously presented, comparing up to the 10% best policies, the policies trained
with 4 PBT workers performed better than the policies trained with 8 and 16 PBT

107

Figure 13 — Sample from Figures [32| and |33 in Appendix A.1. Comparing the 30% best
policies trained with different sizes of the population of PBT workers: 4, 8,
and 16. The comparisons have been made between samples of the best fitness
found in the executions of the HCLPSO algorithm with the 30% best trained
policies of the training set available for each function. The original p-values

were computed with the Mann-Whitney U test.

(a) Function 1

(b) Function 3

(¢) Function 4

& o £ o £ o
¥ IB.G E] 2 I~0.8 E] 2 0.8 =
5% € 5 € 5 €
E -0.4 Z E -0.4 E -0.4 7
m = o k-] o k-]
< m -0.0 2 < w -0.0 2 < ® -0.0 2
% £ e E 5 E
=] =] [=]
& 0.4 = 0.4 = 0.4
2y £ 2 5 =X 5
Ex 0,82 En 0,82 En 0,82
= 4 -3 16 = 4 -3 16 = 4 -3 16

Number of PBT workers Number of PBT workers Number of PET workers

(d) Function 5 (e) Function 6 (f) Function 7
& o £ B £ o
£ Io.a = L} Io.a = 8 0.83 I-u.a E
& g 5" g 5" - g
E -0.4 Z E -0.4 E -0.4 L
2 -0.0 © £y -0.0 © £q -00
& £ . £ % £
=] 5 [oS i o
g =04y 5 e 5 -—0ud
g 5 = - 2o 5
5 0,82 5 = -—0.8E 5 ~ 0,82

4 8 16 4 8 16 4 8 16

Number of PET workers Number of PET workers Number of PET workers

Source: Produced by the author.

workers in most of the cases. This difference is probably due to the fact that more PBT
workers cause the policy search to explore the policy space more widely. Performing a
wider search creates policies with more diversified performance, which means that not
only better policies are more likely to be found, but also worse policies. Figure [15| shows
three examples of such a behavior in functions 9, 14, and 27. These boxplots show the
training rewards accumulated during the training process of all policies in the policy pool
available for functions 9, 14, and 27. It can be seen that the maximum training reward
(i.e. the quality of the best policy) is consistently higher with 16 PBT workers than with
4 PBT workers. However, the distribution of training reward is more spread out across
the y axis when the population is large. The same behavior was observed in all other
cases. Table [[shows for all functions the maximum reward and the standard deviation of
the reward distribution. In this table, the aforementioned behavior can also be noticed:
greater maximum reward and standard deviation with 16 PBT workers than with 4 PBT
workers. Another explanation for such results is the fact that, in the implementation
used in this work, the number of PBT workers defines the frequency in which the target
network is updated. It is possible that the configuration with 4 PBT workers may have
“accidentally" set such a hyperparameter to a good value, what compensates the lack of

diversity in the policy search.

108

Figure 14 — Sample from Figures|34|and [35|in Appendix A.1. Comparing the best policies
trained with different sizes of the population of PBT workers: 4, 8, and 16.
The comparisons have been made between samples of the best fitness found in
the executions of the HCLPSO algorithm with the 30% best trained policies
of the training set available for each function. The original p-values were

Training reward

Number of PET workers

Number of PET warkers

16

4

16

computed with the Mann-Whitney U test.

(a) Function 8 (b) Function 10

o8 & g os S

0.59 8. 2 - 0.61 -0.83 & 2
0.4 Z 2 0.4 Z

- E -

-0.0 € £ -0.0 €

E 5 E

-0.4 g -0

£ £ 0.83 0.63 £

08 5 —-0.8c

a & 16 = a & 16

Number of PET workers

(e) Function 14

Number of PET workers

(d) Function 12

e
0.8 § g
[}
=]
0.4 % 2
-0.0 g E
=]
(=]
—D.QE E
0885 E
=z
a 8 16 a 8 16

Number of PBT workers Number of PBT workers

Source: Produced by the author.

(a) Function 9 (b) Function 14

Training reward
N & o

4 8 16
Mumber of PBT workers

4 8 16
Number of PBT workers

Source: Produced by the author.

Training reward

(c) Function 11

F
e B
2o

0.77

1]

nsformed p-value

0.54 -0.52

Number af PET workers

H’
&
-

-0,82

4 8 16
Number of PET workers

(f) Function 15

o -a-zg

0.06 0.29 0

4

——
e P
£

I ®
e & &=
-

ansfarmed p-value

16

—_—

-0.8E

Number of PET warkers
8
L

a4 B 16
Number of PBT workers

Figure 15 — Training rewards accumulated during the training process of each policy.

(¢) Function 27

4 8 16
Number of PBT workers

109

Table 7 — Maximum training reward and standard deviation of the accumulated training
rewards of all trained policies available for each function.

4 PBT workers 8 PBT workers 16 PBT workers
Function Standard Maximum Standard Maximum Standard Maximum
Deviation Reward Deviation Reward Deviation Reward
1 2.15 6.91 2.20 7.29 2.13 7.49
3 1.91 6.22 2.05 7.39 2.13 7.54
4 2.27 6.91 2.29 7.39 2.33 7.54
5 2.18 6.91 2.27 7.39 2.31 7.54
6 2.19 6.91 2.26 7.39 2.31 7.54
7 2.19 6.91 2.27 7.39 2.31 7.54
8 2.19 6.91 2.26 7.39 2.31 7.54
9 2.19 6.91 2.28 7.39 2.32 7.54
10 2.18 6.91 2.27 7.39 2.31 7.54
11 2.20 6.91 2.28 7.39 2.33 7.54
12 2.14 6.91 2.22 7.39 2.28 7.54
13 2.12 6.91 2.15 7.39 2.20 7.54
14 2.23 6.91 2.29 7.39 2.33 7.54
15 2.18 6.91 2.25 7.39 2.29 7.54
16 2.20 6.91 2.27 7.39 2.31 7.54
17 2.17 6.91 2.27 7.39 2.31 7.54
18 2.10 6.91 2.14 7.39 2.18 7.54
19 2.10 6.91 2.17 7.39 2.21 7.54
20 2.18 6.91 2.26 7.39 2.30 7.54
21 2.17 6.91 2.26 7.39 2.30 7.54
22 2.18 6.91 2.27 7.39 2.31 7.54
23 2.18 6.91 2.27 7.39 2.31 7.54
24 2.18 6.91 2.26 7.39 2.31 7.54
25 2.19 6.91 2.28 7.39 2.32 7.54
26 2.19 6.91 2.27 7.39 2.31 7.54
27 2.20 6.91 2.27 7.39 2.31 7.54
28 217 6.91 2.26 7.39 2.30 7.54
29 2.21 6.91 2.29 7.39 2.32 7.54
30 2.22 6.91 2.28 7.39 2.31 7.54

Source: Produced by the author.

Figures [36] and [37] show the mean best fitness found by HCLPSO solving each CEC17
benchmark function controlled by the best policy found with 4, 8, and 16 PBT workers
until different points in time. The average best fitnesses are calculated from 30 executions
of the metaheuristic with the best policy so far in each of the tested functions. In 16 out
of 29 functions, the performances of the best policies found by each setup are very close
to each other during almost the entire training process. Figure [16la exemplifies such a
pattern with function 5. In 8 problem instances, the configuration with 16 PBT workers
outperforms the other two configurations during most of the training time. It means that
if an early stopping mechanism is implemented, the configuration with 16 PBT workers is
more likely to return a better best policy. Finally, in 2 problem instances, the setup with
4 PBT workers outperformed the other two setups. Figures [16}b and [16]¢ illustrate these

groups with functions 13 and 29, respectively.

110

Figure 16 — Sample from Figures |36/ and [37] in Appendix A.1. Mean fitness of the best
policy found after some time of training in hours with 4, 8, and 16 PBT

workers. Each plotted point in the lines shows the mean best fitness found by
HCLPSO controlled by the best policy found so far.

(a) Function 5 (b) Function 13 (c¢) Function 29
:_g | ey I—“_; Ix10% i PRT woikar E 3225 %107 - s
§ It} e 1 e § 122100 R} o
T 525x107 |) 93.215% 107 5
2 || RS T
szx10t | @ 3,205 % 10°

Z515x10%F h = 32107
m 3,195 x 10*
n

1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 = 1 4 7 10 13 16 19 22 24
Accumuiated execation time (hours) Accumuiated execation time (hours) Accumuiated execation time (hours)

Maan ftness |lng
W
x
-
)

3 saxie?

Source: Produced by the author.

5.2.1.2 Number of RL workers

As already mentioned in this work, the number of RL workers allocated for each PBT
worker affects the time efficiency of the training process. With more RL workers, the
experience collection and, therefore, the training epoch becomes shorter. It means that
the decision regarding the adjustment of such a hyperparameter is straightforward: the
more, the better. Surely, since the number of workers that can be executed in parallel in
any computing platform is limited, there is a trade-off in the cases where it is recommended
to use a large population of PBT workers. The more PBT workers are used, i.e. the more
diversified is the policy search, the less RL workers per PBT worker can be allocated, i.e.
the less time-efficient is the training process. The more RL workers are used, the faster
the training process runs, but the less diverse the policy search.

Figures [38 and [39] in Appendix A.2 show the average execution time of one training
epoch with 1, 2, and 4 RL workers. The corresponding function of each bar chart is the
function that was used to train the policies. The figures clearly show that there is always
a speed-up when the number of RL workers is increased. Figure shows three of the
29 functions shown in Figures and [39] which show slightly different speed-ups. It is
important to mention that the testing phase took on average approximately 3000 seconds
to be executed, regardless of the number of RL workers. In the experiments carried out
in this study, the sets of training functions used to test the training policies during the
learning process for each testing functions are similar to each other. Besides, the fitness
call of the benchmark functions are quite similar to each other in terms of execution time.
Thus, there was no significant variance on the execution time of the testing phase across
the training process of each benchmark function. Therefore, it is clear that the testing
phase is a bottleneck for the training process as a whole, since it takes a large portion
of the execution time of a single training iteration. Without such a bottleneck, speed-ups
approximately proportional to the number of RL workers could be achieved.

Despite the aforementioned nonproportionality, it is clear that the proposed architec-

111

ture benefits from parallel computing platforms. Therefore, it satisfactorily addresses the
issue number 1 found in the literature. This is expected to happen since this architec-
ture is based on well-succeeded distributed implementations of RL algorithms. However,

a more efficient implementation should be made in order to achieve greater speed-ups.

Figure 17 — Sample from Figures 3§ and [39]in Appendix A.2. Average execution time in
seconds of one training epoch during the training process with 1, 2, and 4 RL
workers.

1

1

-]
-]
=
(=]

6000

(a) Function 1 (b) Function 15 (¢) Function 29
6000
4000

4000
l . o l . o . .
o o o
1 2 4 1 2 4 1 2 4

Number of AL workers Number of AL workers Number of AL workers

B
2
=]
=]

time in sec {epoch)
L]
-]
=]
-]

time in sec {epoch
time in sec {epoch

Exec.
Zxec,
Exec.

Source: Produced by the author.

5.2.1.3 Perturbation interval

As previously mentioned in this work, the perturbation interval is the hyperparameter of
the PBT algorithm that defines how often the PBT workers will communicate with each
other. The lower its value, the more often such a communication occurs. In the communi-
cation process, not only parameters and hyperparameters are exchanged between workers,
what causes the algorithm to exploit promising regions, but the hyperparameters are also
perturbed according to a given probabilistic distribution. It is clear that such an opera-
tor is a hybrid mechanism regarding the trade-off between exploration and exploitation.
Therefore, it is not clear how to deal with such a balance by adjusting the perturbation
interval.

Table |8 shows the number of comparisons between the p * 100% best policies for each
tested perturbation interval, where they outperformed another setup and scored 0.05 or
less on the p-value computed through Mann-Whitney U test (all quantiles from 1.0 to
0.01) or Wilcoxon Rank-Sum test (only comparisons with the best policy). It can be
seen that the closer to the top the selected policies, the better the policies trained with
8 iterations of perturbation interval in comparison to the others. It can be seen that
the recommended perturbation interval gradually increases from 2 to 8 as the quantile
decreases. Moreover, the lower the selected quantile, the smaller the difference between
the performances of the tested perturbation intervals.

Figures 40| and [41] in Appendix A.3 show the transformed p-values of the 30% best
policies trained with perturbation intervals of 2, 4, and 8 training iterations, tested in
functions 1-16 and 17-30, respectively. The original p-values were calculated with the
Mann-Whitney U test. Figures [42] and [43]in Appendix A.3 show the transformed p-values

112

Table 8 — Number of comparisons between the p * 100% best policies for each tested
perturbation interval, where they outperformed another seutp and scored 0.05
or less of p-value computed through Mann-Whitney U test (all quantiles from
1.0 to 0.01) or Wilcoxon Rank-Sum test (only comparisons with the best policy).

Perturbation interval

Quantile (p) 2 4 8
1.0 49 34 1
0.9 45 36 2
0.8 37 39 5
0.7 36 41 4
0.6 29 43 10
0.5 25 44 12
0.4 28 44 12
0.3 19 41 19
0.2 17 35 20
0.1 16 26 24
0.01 15 16 20
Best 2 1 3

Source: Produced by the author.

of HCLPSO executed with the best policy trained with perturbation intervals of 2, 4, and 8
iterations. Figures[I§ and [I9show some of the comparisons presented in Figures[40]and 4]
and [A2] and [43] respectively. It is clear that the lower the quantile of the selected policies,
the less sensitive the HCLPSO to the perturbation interval. Therefore, it can be concluded
that the better the policy selection method, i.e. the higher the probability of choosing
the top policies in a pool of trained policies, the less sensitive to the hyperparameter at
hand the final performance of the optimization algorithm. Tables [14] and [L5| deliver the

numerical results of such experiments for further analysis.

Perturbation interval

Perturbation interval

os &
g
-0.4 &
00 ¢
TE
0.4
[=4
-0.85
a4
Perturbation interval
(a) Function 11
o8 %
g
-0 5
00 €
TE
-0.4
2
-0,82

2 4 B
Perturbation interval

(d) Function 14

T L1
EN 0.8 %
E 0.4
[= T
S -0.0 &
=]

= E
£ -—0.48
Eo 0 5
& -0.8=

2 4 B
Perturbation interval

(b) Function 12

= @
EN I~0.8 %
0.4 3
g'l' 0.0 g
5 -
5 -—0.4 4
Ew 8] 5
& 0.8

2 4 B
Perturbation interval

(e) Function 15

Perturbation interval

Perturbation interval

113

L1

R 053 0.97 [el
0.4 %

Sk e -

Ly 0.53 -0.0 E
-—0.4¢

n [=4

= l—o.s,?

2 4 -3
Perturbation interval

(¢) Function 13

|
o
=
nsformed p-value

2 4 B
Perturbation interval

(f) Function 16

Figure 18 — Sample from Figures [40] and 41| in Appendix A.3. Comparing the 30% best
policies trained with different perturbation intervals: 2, 4, and 8 iterations.
The comparisons have been made between samples of the best fitness found
in the executions of the HCLPSO algorithm. The original p-values were com-
puted with the Mann-Whiteney U test.

Figure 19 — Sample from Figures |42 and 43| in Appendix A.3. Comparing the best pol-
icy trained with different perturbation intervals: 2, 4, and 8 iterations. The
comparisons have been made between samples of the best fitness found in the
executions of the HCLPSO algorithm solving functions 1-16 from the CEC17
benchmark set. The original p-values were computed with the Wilcoxon Rank-

Perturbation interval

Perturbation interval

Sum test.

(a) Function 1

(4

~n O 032 o089 f8 2
-

-04 5

<+ 0.32 0 0.06 '°'°§
-—0.4§

o -0.089 -0.06 0 S
0.8

2 4 -]
Perturbation interval

(d) Function 5

¢

n 0 003 -0.03 I‘“ 2
0.4 %

+ 003 © -0.0 E
-—0.48

0.03 1l 0 [=

- oo [o |5

2 4 -]
Perturbation interval

Parturbation interval

(b) Function 3

w [
fall Y] o5 3
g £
c -0.4 5
Sw 0.26 -0 ©
it E
= —0.48
3 n
=8 093 0.78 0 c
2 -0.8 =
2 4 8
Perturbation interval
(e) Function 6
o8 %
g
-4
0.0 &
TE
-—0.48
w -D.089 | 1k 0 =
0.8

2 a4 8
Perturbation interval

Source: Produced by the author.

Perturbation interval

Perturbation interval

(c¢) Function 4

ansformed p-value

2 4 -3
Perturbation interval

(f) Function 7

-0.0

I~—0.3,-_—

|
[=]
£
ansformed p-value

2 4
Perturbation interval

114

Figures [44] and [45] in Appendix A.3 show the mean best fitness found by HCLPSO
solving each CEC17 benchmark function controlled by the best policies found with 2,
4, and 8 iterations of perturbation interval at different points in time. The mean best
fitness is calculated from 30 executions. The performance of the three tested configurations
remained similar to each other during most of the training process in 17 functions, as
exemplified in Figure 20la with function 1. The configuration with 2 iterations presented a
significantly superior best policy during most of the training process in only 2 functions, as
shown in Figure 20/b with function 27. Even though the training process with 4 iterations
generated the 30% best policies among all tested configurations, it could not keep its
best policy superior to the best policies found by the other configurations for most of the
training time in any of the benchmark problems. Regarding the setup with 8 iterations,
it overcame the other configurations during most of the 24 hours of training in only 3
functions, as illustrated in Figure 20lc with function 24. After analyzing such results, it
can be concluded that the adjustment of the perturbation interval does not cause a great
impact on the evolution of the best policy found for the majority of the functions. It
means that the quality of the best policy found in a training process with early stopping

is not seriously affected by such a hyperparameter.

Figure 20 — Sample from Figures 44| and 45 in Appendix A.3. Mean fitness of the best
policy found after some time of training in hours with 2, 4, and 8 iterations
of perturbation interval. Each plotted point in the lines shows the mean best
fitness found by HCLPSO controlled by the best policy found so far.

(a) Function 1 (b) Function 27 (c) Function 24
5 = T 2.76 x 107
% 367] — e S 3.096x10° S — e 5274%x10° h| =
& erars “ 3 & e | & ey
i [\ bt f30955x100) arvieas B vz x10n B0 v
T
2108 | 7 "3.004 x 107 o — W g 2.08x10 =
£ || 5 3.0935 x 107 [2,08 107 e
c100 || < 3.003x10° \ < 2.64x10°
3 i e D S 2 3.0025 % 107 \ 3 2.62 x 10*
2 ¢ $ e
= 1 a 7 10131619 22 24 1 4 7 10 13 16 19 22 24 = 1 4 7 10 13 16 19 22 22

Accumulated execution time (hours) Accumulated execution time (hours} Accumulated execution time (hours}

Source: Produced by the author.

5.2.1.4 Quantile fraction

Let g be the value set as the quantile fraction for a given training process. In the ex-
ploitation phase, the ¢% worst PBT workers copy the hyperparameters and parameters
of the ¢% best PBT workers. It means that the greater the quantile fraction, the more
PBT workers exchange information and, therefore, the stronger the exploitation.
Table[9] provides the number of comparisons between the px100% best policies for each
tested quantile fraction, i.e. 0.125, 0.25, and 0.375, where it outperformed other setup and
the p-value computed through Mann-Whitney U test (for 0.01 < p < 1.0, where p is the
quantile of the selected policies) or Wilcoxon Rank-Sum test (for the comparisons between

the best policies) is lower than or equal to 0.05. It is straightforward to see the the lower

115

the quantile fraction, the better. It means that the less PBT workers communicate with
each other, the more diverse is the search process and, thus, the higher the probability of
finding a good policy. Surely, that must have a minimum quantile fraction recommended,
otherwise the behavior of PBT would be very close to the previously presented Random /-
Grid Search. Such a value should be found through a more thorough parameter analysis,
i.e. with a higher granularity on the discretization of the hyperparameter space. It is
important to highlight that the more restrictive the set of top selected policies, the less
sensitive to the quantile fraction the performance of HCLPSO.

Table 9 — Number of comparisons between the p * 100% best policies for each tested
quantile fraction, 7.e. 0.125, 0.25, and 0.375, where it outperformed other setup
and the p-value computed through Mann-Whitney U test (for 0.01 < p < 1.0,
where p is the quantile of the selected policies) or Wilcoxon Rank-Sum test (for
the comparisons between the best policies) is lower than or equal to 0.05.

Quantile fraction
Quantile (p 0.125 0.25 0.375

1.0 46 21 16
0.9 46 18 20
0.8 47 18 17
0.7 49 20 15
0.6 50 20 15
0.5 51 20 15
0.4 52 20 12
0.3 48 22 11
0.2 48 26 7
0.1 48 26 6
0.01 27 19 7
Best 10 3 1

Source: Produced by the author.

Figures [46] and [7] in Appendix A.4 show the transformed p-values achieved by the
HCLPSO controlled with the 30% best policies, trained with three quantile fractions,
0.125, 0.25, and 0.375. The original p-values calculated for such comparisons have been
computed through Mann-Whitney U test. Some of the comparisons shown in such figures
are presented in Figures 6] Figures 8] and (9] show the transformed p-values of the
comparisons made between the best policy found for each of the three already mentioned
tested values for the quantile fraction. Some of these comparisons are shown in Figure
[0 It is clear the superiority of the setup with 0.125 of quantile fraction and the low
sensitivity of the top policies to such a hyperparameter. It means that the better the
policy selection method, the less sensitive the performance of the chosen policy to the
quantile fraction. Tables [16| and [17| provide the numerical results of these experiments for

further analysis.

116

Figure 21 — Sample from Figures |46/ and 47 in Appendix A.4. Comparing the 30% best
policies trained with different quantile fractions: 0.125, 0.25, 0.375. The com-
parisons have been made between samples of the best fitness found in the
executions of the HCLPSO algorithm. The original p-values were computed
with the Mann-Whitney U test.

Quantile fraction
0.375 0.25 0.125

Quantile fraction
0.375 0.25 0.125

(a) Function 1

0.8
-0.4

-0.0

|
o
-

nsformed p-value

(=]
08

0.125 0.25

0.375
Quantile fraction

(d) Function 5

|
o
-

Transformed p-value

o
T —
o
@

0.125
Quantile fraction

0.25 0.375

L1
C a 0.8 =
= £
t- -0.4
£ =
% R -0.0 g
& e L
(s)] o e
B l—o.ag

8 0.125 0.25 0.375

Quantile fraction

(e) Function 6
L1
cw I~0.3 El
2w g
o -0.4 3
£ =
%ﬁ -0.0 E
§ 2 -—0.4f
& s
3 l—o.sg

S 0.125 0.25 0.375

Quantile fraction
Source: Produced by the author.

(b) Function 3

Quantile fraction
0.375 0.25 0.125

0.125
Quantile fraction

(¢) Function 4

o
ca 0.8 =
= £
- -0.4 %
£s :
w R -0.0 g
& e —0.af
&w 0 s

;: I»—D.E,t
8 0.125 0.25 0.375

Quantile fraction

(f) Function 7

|
o
F-

Transformed p-value

o
_I T

0.25 0.375

Figure 22 — Sample from Figures |48/ and @l in Appendix A.4. Comparing the best policies
trained with different quantile fractions: 0.125, 0.25, 0.375. The comparisons
have been made between samples of the best fitness found in the executions
of the HCLPSO algorithm. The original p-values were computed with the
Mann-Whitney U test.

Quantile fraction

Quantile fraction

(a) Function 8

4
q 0 012 8.2
- 0.4 %
L -
n 012 O -0.0 U
8 E
[=]
-0.69 -0.81 (] g
n . g =
B l—o.ag
S 0.125 0.25 0.375
Quantile fraction
(d) Function 28
U
: o8 H Ioa %
- 0.4 2
e =
n -0.089 O 0.0 ©
N E
e 0.4
n 0.42 0 =
B l—o.a,?
S 0.125 0.25 0.375

Quantile fraction

Quantile fraction

Quantile fraction
0.375 0.25 0.125

Source: Produced by the author.

(b) Function 11

@
@ 0 0.8 %
N =
- -0.4 G
e T
n 0.15 o -00 ¥
e E
e —0.af
LM -0.59 -0.67 0 =
;. I~—0.8¢
8 0.125 0.25 0.375

Quantile fraction

(e) Function 29

|
o
a

0

Transformed p-value

0.37

0.125
Quantile fraction

0.25 0.375

Quantile fraction
0.375 0.25 0.125

(c) Function 13

Quantile fraction
0.375 0.25 0.125
ansformed p-value

0.125 0.25

0.375
Quantile fraction

(f) Function 30

[

o 023 ooe [2
0.4 7

023 0 0.03 -o.og
—0.4:

-0.06 -0.03 (0] =
—0.8 =

0.125 0.25 0.375
Quantile fraction

117

Figures [50| and [51] in Appendix A.4 show the mean best fitness found by HCLPSO
solving each CEC17 benchmark function controlled by the best policy found with 0.125,
0.25, and 0.375 of quantile fraction at different points in time. The mean best fitnesses are
calculated across 30 executions of the metaheuristic with the best policy so far in each of
the tested functions. It can be seen that the best policy of each setup behaves similarly
during the entire training process in 15 problem instances. In 6 functions, the training
process with 0.125 of quantile fraction held the best policy among the best policies found
by all configurations during most of the training process. The best policies found with
0.25 and 0.375 of quantile fraction remained superior to the others during most of the
training process in only 3 instances each. It means that if early stopping is used, a training
process with 0.125 of quantile fraction is slightly more likely to return a better policy.
However, in most of the cases, the probability of finding the best policy among the three

tested configurations for each setup would be very similar to each other.

Figure 23 — Sample from Figures and in Appendix A.4. Mean fitness of the best
policy found after some time of training in hours with with quantile fractions
of 0.125, 0.25, and 0.375. Each plotted point in the lines shows the mean best
fitness found by HCLPSO controlled by the best policy found so far.

(a) Function 1 (b) Function 13 (c) Function 25

el
i
w
£
-
=

o v » — T293x10° —
s ‘ s 72.92x10% | s
| 22.01 % 10% \\
< 29x10°
2x10% L d289x100 | S
N £2.88 x10%)
5 2.87 x 10*

i = 2.86 x 10%
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Accumulated execution time (hours} Accumulated execution time (hours} Accumulated execution time (hours)

(d) Function 23

-
o
~

e e
e o @
= %

Mean fitness |fog scal
Mean fitness |log s

] S
T 2.63x10° T
2,62 x 10%) 8175
g2.61x10"

 2E10* S

2 2.50 x 107 A
S 2,38 x 10*
= 2.57 % 107
3 2.56 x 10*
=

1 4 7 10 13 16 19 22 24
Accumulated execution time (hours}

Source: Produced by the author.

5.2.1.5 Resample probability

The resample probability is the probability with which a set of hyperparameters is ran-
domly perturbed according to their initial probability distribution in the exploration
phase. As previously mentioned, the greater such a probability, the more explorative the
policy search.

Table 10| provides the number of comparisons between the p*100% best policies where
each tested resample probability, i.e. 0.25, 0.5, and 0.75, outperformed other setup and
the p-value computed through Mann-Whitney U test (for 0.01 < p < 1.0, where p is the

118

quantile of the selected policies) or Wilcoxon Rank-Sum test (for the comparisons between
the best policies) is lower than or equal to 0.05. It can be seen that the performance of the
setups with 0.5 and 0.75 are very similar to each other, although the policies trained with
0.5 of resample probability have shown better results in most of the selected quantiles. It
can also be observed that the more restrictive the quantile, the higher the recommended
resample probability, i.e. the more diverse must be the policy search, except when only

the best policy is considered.

Table 10 — Number of comparisons between the p x 100% best policies where each tested
resample probability, i.e. 0.25, 0.5, and 0.75, outperformed other setup and the
p-value computed through Mann-Whitney U test (for 0.01 < p < 1.0, where
p is the quantile of the selected policies) or Wilcoxon Rank-Sum test (for the
comparisons between the best policies) is lower than or equal to 0.05.

Resample probability

Quantile (p) 0.25 0.5 0.75
1.0 4 42 37
0.9 7 42 32
0.8 8 43 32
0.7 6 43 32
0.6 5 45 32
0.5 5 44 30
0.4 6 42 33
0.3 8 36 34
0.2 9 32 40
0.1 9 24 42
0.01 15 25 28
Best 4 4 1

Source: Produced by the author.

Figures [62] and [53] in Appendix A.5 show the transformed p-values computed for the
comparisons between the 30% best policies trained with 0.25, 0.5, and 0.75 of resample
probability. Figure [24] presents some of the comparisons provided in such figures. Figures
and [55|in Appendix A.5 show the transformed p-values computed for the comparisons
between the best policy found in the training process executed with 0.25, 0.5, and 0.75 of
resample probability, exemplified in Figure 25] Once again, the quality of the best policies
shows a very low sensitivity to the hyperparameter at hand. However, it is also important
to observe that despite the slight superiority of the setups with 0.25 and 0.5 of resample
probability, when only p-values of 0.05 or less are considered, such setups presented the
lowest number of comparisons with a positive transformed p-value. The policies trained
with 0.25 of resample probability scored a positive transformed p-value in 18 of the 58
comparisons, while the setups with 0.5 and 0.75 achieved such a performance in 29 and 36
cases, respectively. This fact corroborates with the results observed in the analysis of the
quantile fraction, which recommends high diversity in the policy search. Tables 18 and

in Appendix A.5 provide the numerical results of these experiments for further analysis.

£ os &
=y =
0 N g
S8 0.4 %
E -
S -0.0 €
e £
3 —0.42
Ui i 0 %
2 : I»—G.S;_—

0.25 05 0.75

Resample probability

(a) Function 5
£ o8 £
=" —=
0 N g
R 0.4
E -
S -0.0 €
ge £
E -—0.a
nm 0 =
2 E 0,82

0.25 a.5 0.75
Resample probability

(d) Function 8

g 08 §
=i]
Bd 0.4 2
2 -]
Sin -0.0 ¢
2g E
=2 <
£ -—0.4-5
B £
2 ; -0.8=

0.25 0.5 0.75
Resample probability

(b) Function 6

g Io.s &
=R "
s 0.4 3
2 -
S -0.0 &
%o £
E o -—O.QE
ﬁE I—o.s;

0.25 a.5 0.75
Resample probability

(e) Function 9

119

2 E
= =
B 8
m N =
o9 a
2 °
CI-IE o
g £

=}
E =
g g

it
ez o =

s

0.25 0.5 0.75
Resample probability

(c¢) Function 7

g o8 &
=N £
og -0
2 -
Sin -0.0 €
g g
[=3 S
E —GJI'E
3 =
[0,8 <
© 8 { =]

0.25 a.5 0.75
Resample probability

(f) Function 10

Figure 24 — Sample from Figures [52| and |53| in Appendix A.5. Comparing the 30% best
policies trained with different resample probabilities: 0.25, 0.5, 0.75. The com-
parisons have been made between samples of the best fitness found in the
executions of the HCLPSO algorithm. The original p-values were computed
with the Mann-Whitney U test.

Figure 25 — Sample from Figures [54] and [55/in Appendix A.5. Comparing the best policy
trained with different resample probabilities: 0.25, 0.5, and 0.75. The com-
parisons have been made between samples of the best fitness found in the
executions of the HCLPSO algorithm. The original p-values were computed
with the Wilcoxon Rank-Sum test.

(a) Function 11

Em o8 &
a I
ol 0.4 3
2 k]
S -0.0 ©
ge £
£ -0.4
B s
3 ; 08

0.25 0.5 075

Resample probability

(d) Function 14
g [
Sk 0 026 -0.06 o =2
™ =
g g 0.4 3z
Sn 026 0 D4 g0 §
e £
E -—0.4

0.06 -0.4 0 c
£ 5 e I~—u.s,§

0.25 Q.5 0.75
Resample probability

(b) Function 12

0.25 a.5 0.75
Resample probability

(e) Function 15

-4

0,45 -0.0
u I
0.25 .75
Resample umbahlllh'

0.5 0.25
e
o
-
I
4
a

Resample probability
|
°Q
(]

Transformed p-value

0.75

Source: Produced by the author.

2 o
s 0 003 o088 %% 2
8N o4 2
g° -
Eq .03 0 021 -00 €
e £
£ -—0.4
o -0.089 0.21 0 €
z ; —-0.8c

Resample probability

(c) Function 13

=

g 08 5
=f g
Ed 0.4 2
2 -
S -0.0 €
g E
= S
E -—0.4-;
1] s
N 0

&5 l—u.a,?

0.25 a.5 0.75
Resample probability

(f) Function 16

a

L o7 o072 I” 2

-

g -0.4 3

n 1] 037 -00 ¢

8 E

-—0.a

0.3 0 <

~ 2 I~—o.a,§_’9
-]

0.25 0.5 0.75
Resample probability

Figures [57] and 58 in Appendix A.5 show the mean best fitness found by HCLPSO

120

solving each CEC17 benchmark function controlled by the best policy found with 0.25,
0.5, and 0.75 of resample probability at different points in time. The mean best fitnesses
are calculated across 30 executions of the metaheuristic with the best policy so far in each
of the tested functions. Figure [26] shows four examples of the typical patterns found in
these experiments.

The best policy of each setup behaves similarly during the entire training process in 17
of the 29 functions, as illustrated in Figure [26la with function 1. In 7 instances, the best
policy found in the training process executed with 0.5 of resample probability overcame
the best policies of the other configurations in most of the training time, as exemplified in
Figure 26]b with function 13. The setups with 0.75 and 0.25 of resample probability made
it in only 2 and 3 functions, respectively. Figures 26lc¢ and [26]d show the experimental
results for some of the functions of these groups. Therefore, if early stopping is used, there
is a higher probability of finding the best policy among all best policies if the resample
probability is set to 0.5. However, like in the previous experiments and comparisons made
in this work, the hyperparameter at hand did not significantly affect the evolution of the

quality of the best policy over time for the majority of the benchmark functions.

Figure 26 — Sample from Figures and in Appendix A.5. Mean fitness of the best
policy found after some time of training in hours with 0.25, 0.5, and 0.75 of
resample probability. Each plotted point in the lines shows the mean best
fitness found by HCLPSO controlled by the best policy found so far.

(a) Function 1 (b) Function 13 (c) Function 15

I x10% e

S\ H
3 % 10% ‘ \ 8126

1

‘

\

\

fitness |log scale)

Mean fitness [fog scale)
Mean fitness |log scale)
LS
x
"
-]
W

e — 2% 10%

3

Mei

1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Accumulated execution time (hours} Accumulated execution time (hours} Accumulated execution time (hours)

(d) Function 17

g iz
1.81 x 10% 1‘ \ — 2:;

18x10% || ;
179 x 10* o
1.78 x 10%

1.77 x 107

bt
|

i
1
1.76 x 10% 1

1 4 7 10 12 16 19 22 24
Accumulated execution time (hours}

Mean fitness |log scale)

Source: Produced by the author.

5.2.1.6 Summarizing the hyperparameter analysis

A few important findings from the previously presented experiments are listed below:

o A large population of PBT workers does not always benefit the policy search. If the

policy selection method does not often choose one of the top policies in the pool of

121

trained policies, the performance of the optimization method in the unseen problem
may be worse than if a small population had been chosen. For the policy selection
methods that are more likely to choose one of the top policies, larger populations of
PBT workers should be preferred. This is due to the fact that, in such cases, there is
a higher probability of eventually finding a promising region in the policy space due
to its greater exploration power. Nevertheless, the superiority of the policies trained
with less PBT workers in a less restrictive selection (i.e. lower selection quantile)
in comparison with the ones trained with larger populations is quite surprising. A

deeper investigation should be carried out to better understand such a finding.

More RL workers always speed up the training process, as long as the underlying
hardware supports it. It means that the proposed architecture scales well and ben-
efits from parallel computing platforms. Such a finding satisfactorily addresses the
issue number 1 provided on the Introduction chapter of this work: training EA and
SI parameter control policies with RL can be very computational-demanding. How-
ever, a more efficient implementation of the proposed method is needed to achieve

more sizeable speed-ups.

The remaining hyperparameters, i.e. perturbation interval, quantile fraction, and
resample probability, should be adjusted aiming at the increase of exploration of
the policy search. Therefore, low values should be set to the quantile fraction (i.e.
0.125, according to the previously discussed results). while the resample probabil-
ity should be greater or equal than 0.5, according to the experiments. As already
mentioned, it is hard to define the best value for the perturbation interval aiming
at the increase of exploration of the search process, since the perturbation of the
RL hyperparameters is always preceded by the exploitation phase. However, the
intermediate value among the tested ones (i.e. 4) achieved the best performance in

our experimental benchmark.

For most of the tested functions, the performances of the top generated policies are
not significantly affected by the adjustment of any of the hyperparameters of our
method. It means that the better the policy selection method, the less sensitive to
the adjustment of the hyperparameters the quality of the selected policy. Therefore,
due to such a relative robustness, besides the reduction of the number of hyper-
parameters of the RL algorithm that need to be set to exact values, the proposed
method satisfactorily addresses the issue number 2 presented in the Introduction
chapter of this work: RL algorithms usually require the adjustment of many sensi-
tive hyperparameters, what hinders its successful use in the problem of parameter
control. Despite some of the hyperparameters of TD3 were still manually set in these
experiments, this is an important step towards the full hyperparameter control of

algorithms of this kind.

122

5.2.2 Analysis of different budgets in the training and testing phases

As described in Chapter 4, one of the observed variables that describes the state of the
metaheuristic (i.e. the state of the environment) is the ration between the elapsed number
of iterations and the episode budget, expressed in percentage. Such a variable is intended
to give the controller the ability to take actions according to how much is left from the
initial budget for the current episode. Given that the percentage value is always relative
to the total budget, and not an absolute value such as the number of elapsed iterations,
the agent is supposed to make correct decisions regardless of the difference between the
budgets allocated for the training and testing phases. Surely, it is expected that the closer
the budgets to each other, the better, since the trained policy would be applied to a
scenario it was previously trained for.

This section is intended to assess the ability of our method to apply the knowledge
acquired throughout a training process executed with a budget of 100 iterations per
episode to solve testing problems with a budget of 300 iterations per episode. This could
be very useful to significantly reduce the training time by reducing the episode length.

Table [11| shows the number of comparisons between the p* 100% best policies for each
tested budget per training episode, where they outperformed another setup and scored
0.05 or less of p-value computed through Mann-Whitney U test (all quantiles from 1.0 to
0.01) or Wilcoxon Rank-Sum test (only comparisons with the best policy). It is important
to mention that each setup was compared with the other one in 29 different functions.

As expected, the experimental results showed that it is recommended to use the same
budget for the training and testing phases, since such a setup outperformed its alterna-
tive in almost all comparisons. However, it is important to highlight that for the more
restrictive quantiles, such a difference becomes increasingly smaller, in such a way that it
vanishes when only the top policies are used for the comparisons.

Figures 59 and [60]in Appendix A.6 show the transformed p-values for the comparisons
between the 30% best policies trained with 100 and 300 iterations per training episode,
tested in functions 1-16 and 17-30, respectively. Figures and provide the same
comparisons but between the best policies only. Tables 20| and 21] in Appendix A.6 show
the numerical results of such experiments.

Figure [27] shows some of the comparisons provided in Figures [59| and [60| in Appendix
A.6, while Figure [27] exemplifies the comparisons delivered in Figures [61] and [62] in the
same appendix section. Observing the aforementioned figures, it can be seen that the
superiority of the experiments with the same budget for the training and testing episodes
is clear in the 30% best policies. However, such a difference cannot be observed when
only the best policies are compared to each other, what corroborates with the findings
observed in Table [I1] Nevertheless, using different budgets for training and testing phases
should be avoided given the clear superiority of its alternative setup for almost every

tested case. Besides, in Machine Learning, it is always recommended to provide to the

123

Table 11 — Number of comparisons between the p*100% best policies for each tested bud-

get per training episode, where they outperformed another setup and scored
0.05 or less of p-value computed through Mann-Whitney U test (all quantiles
from 1.0 to 0.01) or Wilcoxon Rank-Sum test (only comparisons with the best

policy).

Iterations
Quantile (p) 100 300
1.0 4 25
0.9 5 24
0.8 3 24
0.7 3 24
0.6 4 24
0.5 4 24
0.4 5 24
0.3 6 22
0.2 9 19
0.1 11 14
0.01 5 8
Best 1 1

Source: Produced by the author.

training algorithm a training condition as close as possible to the testing (i.e. production)

environment.

Figure 27 — Sample from Figures and in Appendix A.6. Comparing the 30% best

Mumnper of iterations in trainin

Mumper of iterations in trainin

policies trained with 100 and 300 iterations per episode. The comparisons
have been made between samples of the best fitness found in the executions
of the HCLPSO algorithm. The original p-values were computed with the
Mann-Whitney U test.

(a) Function 5 (b) Function 6 (c) Function 7
c c
E E
. = . = .
I-n.a E £ I-u.a £ £ I-n.a E
© [Il = =
=] = =] 0 = =] 0 >
8 0.4 w8 0.4 7 w8 0.4
= ke g~ ke g~ =
L, “ = - “ = - o
0.0 g E 0.0 g E 0.0 g
< A= [< A= [(]
° -—0.43 s 0 0.4; s 0 0.4;
-] < ceg < ceg <
m -0.8LC M -—0.8 = M -—0.8 =
ol ol
100 300 E 100 300 E 100 300
MNumuoer of iterations in training = Mumber of iterations in training = Number of iterations in training
(d) Function 8 (e) Function 9 (f) Function 10
c =
E E
[. e 5
0.8 £ 5 I-IJ.EI E = I-I:I.EI £
= = el [=
= = o B = o =
= 0.4 7 w8 0.4 7 w8 0.4 I
= = = = z ™ =
-0.0 & " -0.0 = = -0.0 =
E £ E g E
< = | _ (= = L — e
° =04 s 0 0.4 s 0 0.4
=] = <o = ce =
m -0.8 & M -=0.8 = oM -=0.8 <
=] =
100 300 E 100 300 E 100 300
Mumoer of iterations in training = Number of iterations in training = Numober of iterations in training

Source: Produced by the author.

124

Figure 28 — Sample from Figures and in Appendix A.6. Comparing the best policies
trained with 100 and 300 iterations per episode. The comparisons have been
made between samples of the best fitness found in the executions of the
HCLPSO algorithm. The original p-values were computed with the Mann-
Whitney U test.

(a) Function 11 (b) Function 12 (c) Function 13
cC c c
£ £ £
I . IC] " "= 3
£ I-u.a £ £ I-IJ.E £ £ I-IJ.E E|
C [= [= [
S e 0 0.089 [, ¢ 28 0.4 % =8 0 0.4 %
g~ k= c - k= c - =
B 0.0 ¢ B 0.0 £ = 00 £
o = [= [=
= - = = - = = - =
e g 0.089 0 0.4-1—': o g 0.4-1—': o g 0 0.4-1—':
Bl I-—o.sg Bl I-—o.sg Bl I-—osE
Ta] fal fal
E 100 300 E 100 300 E 100 300
= Mumber of iterations in training = Mumober of iterations in training = Number of iterations in training

(d) Function 14 (e) Function 15 (f) Function 16
c c [=
E E E
[. [. [5
= I-u.a E 5 I-u.a E = I-IJ.E E
C [=4 [= [
S e 0 026 ,, ° Z8 0. 3 9 o R loa 2
s~ ke s~ e - =
= “ = o = - o
E 0.0 g E 0.0 E E 0.0 g
= _p.45 = _0.4E = _p.as
wg 026 0 0.4 - 0.4 wg 037 0 0.4
L m I-—osE L m 0.85 = m I-—osE
Ta] Ta] o
E 100 300 E 100 300 E 100 300
z =2 =

MNumuoer of iterations in training Numper of iterations in training Number of iterations in training

Source: Produced by the author.

Despite the aforementioned conclusions, the best policies trained in both scenarios
clearly outperformed a random policy in almost all functions. It means that the knowledge
acquired during a training process with 100 iterations per episode is meaningful in unseen
functions with a budget of 300 iterations per episode. As previously mentioned, overcoming
a random policy means that the controller left the initial condition of total ignorance about
the underlying metaheuristic and the problems it solves to a trained knowledgable state.
Figure [63]in Appendix A.6 shows the transformed p-values for the comparisons between
the best policies trained with 100 and 300 iterations per episode with the random policy
(columns 100vsR and 300vsR, respectively). Table 21]shows the numerical results of these

experiments.

5.2.3 Generality assessment

As already mentioned, this section is intended to assess the generality of the proposed
method by running the algorithm in 133 different scenarios, where 5 metaheuristics are
tested in several optimization problems: HCLPSO, FSS, DE, binary GA and ACO. The
results achieved by the proposed method in such experiments are compared with a ran-
dom policy, with the static versions of these algorithms tuned by the I/F-Race, and with
human-designed policies, which are defined by the authors of relevant papers in the liter-

ature.

125

Figure shows the percentage of problems in which the best policy and the policy
selected through the policy selection method significantly outperformed or performed sim-
ilarly to the other policies. In these experiments, an algorithm A performs significantly
better than an algorithm B in a given problem if the average performance of A is su-
perior to B and the p-value of the Wilcoxon test performed with both samples is less
than or equal to 0.05. Figure [30] shows the percentage of the cases where the selected
and the best policies strictly significantly outperformed the other approaches. These per-
formances were measured after 24 hours of training. SvsR, SvsT, and SvsH stand for
Selected versus Random policies, Selected versus Tuned static policies, and Selected versus
Human-designed policies, while BvsR, BvsT, and BvsH abbreviate Best versus Random
policies, Best versus Tuned static policies, and Best versus Human-designed policies.

It can be seen that the best policies performed at least as well as all other approaches
in at least 96% of the problems solved by HCLPSO, DE, FSS, and Binary GA, showing
a very good comparative performance in ACO as well. Besides, excellent results can
also be observed when only the cases where the best policies significantly overcame the
other approaches are considered. In 10 out of 15 comparisons, the best trained policies
outperformed the other algorithms in at least 72% of the problems. It is important to
highlight that the best “machine-designed" policies performed at least as well as the
human-designed policies in almost all scenarios, outperforming them in the vast majority
of the tested cases. Concerning the selected policies, they performed at least as well as the
other methods in the vast majority of the scenarios with HCLPSO, DE, FSS, and ACO.
Moreover, despite the fact that the selected policies did not significantly outperform any
of the other algorithms in almost any of the tests with Binary GA, they overcame them in
most of the cases with HCLPSO, DE, and FSS. Figures[64], [65] [66], [67], and [6§ in Appendix
A.7 provide the transformed p-values computed for each comparison. Tables [22] 23],
[25], [26] in Appendix A.7 present the numerical results of the aforementioned experiments

for further analysis.

126

Figure 29 — Percentage of problems in which the selected and the best policies performed
similarly or significantly better than the other approaches (i.e. average per-
formance is superior and p-value< 0.05, or p-value> 0.05). SvsR, SvsT, and
SvsH refer to the comparisons between the selected trained policy and the ran-
dom, the tuned, and the human-designed policies, respectively. BvsR, BvsT,
and BvsH refer to the comparisons between the best trained policy and the
random, the tuned, and the human-designed policies, respectively.

1.0
HCLPSO

» 0.8
o DE 1 1 g
in 0.6 5
z FSS - 0.76 0.97 c
< 0.4
= Binary GA - 0.61 1 9

= -0.2

ACO 0.087 0.83
-0.0

SvsR SvsT SvsH BvsR BvsT BvsH
Comparisons

Source: Produced by the author.

Figure 30 — Percentage of problems in which the selected and the best policies performed
significantly better than the other approaches (i.e. average performance is
superior and p-value< 0.05). SvsR, SvsT, and SvsH refer to the compar-
isons between the selected trained policy and the random, the tuned, and the
human-designed policies, respectively. BvsR, BvsT, and BvsH refer to the
comparisons between the best trained policy and the random, the tuned, and
the human-designed policies, respectively.

1.0
HCLPSO i
@ 0.8
2 oe [N o.41 [1 o
wn
B 0.6 3
5 o9 052 062 052 0.9 . =
< -0.4 ©
Sginary GA 0.087 0.087 0.087 [N by
= -0.2
AcO | 0.39 0 0.61
-0.0

SvsR SvsT SvsH BvsR BvsT BvsH
Comparisons

Source: Produced by the author.

It is clear that the performances of the selected policies are quite below the performance
of the best policies for FSS, binary GA, and ACO. The average quantile of the selected
policies for HCLPSO, DE, FSS, binary GA, and ACO in the ranked pool of trained policies
is 0.042, 0.111, 0.189, 0.16, and 0.344, respectively. In other words, on average, the selected
policies for HCLPSO, DE, FSS, binary GA, and ACO are placed among the 4.21%,
11.12%, 18.89%, 16.01% and 34.46% best policies of the pool, respectively. The worst

performance of the selection method in the policy selection for ACO can be explained

127

by the the fact that the instances of TSP used in this benchmark set were randomly
generated, as previously mentioned. Thus, the TSP instances are highly uncorrelated,
which means that finding a policy that performs well in a given set of training functions
does not guarantee that it will perform well in an unseen problem instance. Despite that
all selected policies are, on average, among the best policies in the pool, it can be noticed
that the selection mechanism has chosen the policies with the lowest rankings for the
metaheuristics that showed the worst performances. Given the excellent results presented
by the best policies, it can be concluded that the proposed method is able to find very
good policies for almost all 133 scenarios, but its success depends on an effective policy
selection method. The quantiles of the selected policies for each metaheuristic and each
problem is provided in Figure [79in Appendix A.7.

Figures [69} [70] [72] [73] [74] [75] [76] [77, and [7§ in Appendix A.7 show the mean
best fitness found by HCLPSO, DE, FSS, binary GA, and ACO with their parameters
controlled by a selected policy, the best policy and static policies tuned by I/F-Race at
different points in the training time. The mean best fitnesses are calculated across the 30
executions of the metaheuristics performed with each testing function. Figure [31] shows

some of the results provided by the aforementioned figures.

128

Figure 31 — Sample from figures [69] [72] [74] [77, and [7§] in Appendix
A.7. Mean fitness found by HCLPSO, DE, FSS, binary GA and ACO with the

selected policies, the best policies, and static tuned parameters, after some
time of training in hours.

(a) Function 14 - HCLPSO (b) Function 15 - HCLPSO (¢) Function 18 - HCLPSO

3 z]
< 1.53 x 10* Hekactea ih i i T .
J1.52x10° e i Vast ot T 3x10%
@ I — Tuned Perametsrs w 107 1 —— Tuned Peramstsrs w
= 1.51 % 10% o o a1
g S J £ ; £2x10" :
= 1.5x10 = N o = AL Sabacted Madal
7 1.49x 10° if 6%10% — \ i X o
5 . v] \ v Tuned Parametars
2 1.48 x 10 c N c
2 1.a7x10° \ (! E4x=10 £ 10°
5 1.46 x 10% S c3x10* [
2 1.45% 10*))
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Trarring hours Trarring hours Traiming hours

(d) Function 17 - DE (e) Function 21 - DE (f) Function 29 - DE

;: 3 Sebectad Misks! ;: 2.38x10% — Bebactad Miste! ;: ™ Bebactad Mistsl
3 2x10 | st et 34 [st et Z 34x10 [sk Mool
5 1.95x10% | | — Tunsd Parametars] | Tuned Parametars k) 3 1a Tunsd Parametars
E i } f 32,36 % 10 | 73:35%10 Vi
2 19x10 Wi i = \ = 3.3=10? |
@ 3 N 4 2.34x=10% A a
§1.85x107 |I i A 4 3.25% 10 |
= 3 = = 1y
£ 1.8x10 i e L AR L ¥ = 2.32 % 10% II 2 32=10? 1
= 3 = =
g 1.75% 10]) T 3 3.15%10°
2 — 2 z3x10 2
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Trarring hours Trarring hours Traiming hours

(g) Function 1 - FSS (h) Function 12 - FSS (i) Function 19 - FSS

E Sesecnnd Mol '_'t 107 X Setecten Mese) % Setecten Mese)
o Bust Hadel 9 Bt Moset Iy Bt Mosei
BRI ! Tuned Paramaters [— Tuned Paramstars [— Tuned Parametsrs
o — b . o 6% 10% o=
2 £ £
-H: é 4% 108 ‘E 104
b 3x10% — H
g w0’ £ £
= - 2w lch [
< c © il e T
a " o
o w o
= = =
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Trarring hours Trarring hours Traiming hours

(j) Function 1 - Binary GA (k) Function 5 - Binary GA (1) Function 20- Binary GA

8x10* 1.012 x 10%

g, z z
© 1 ™ T 1.45x 10%
y 8.7x10 I . ¥ 1.011 % 10° & 4
8.6 x 107 - ! e} 1.445 = 10
=3 = AN S ’ 2 1.01x10% =3
£ g.5x10° \ . = e £ 1.44 x10*% 8
S Ba 3 Satacted Maal =1.009%10% | . — Satacted Masal = . Sesacted Masal
i 84x10 el T ¥ 1,008 % 10° Ak il i 1435 x 10° Sy ol
Lg3x10? | o . / L o143x10*
£ 82x10° | & 1.007 x 10 £ 1425 %107
lI I i rl . \
g 81x10? il B 5 UG 10 % La42x10° o
L gx10° vy & 1.005 x 10 L 3.a15=10% o
° 1 4 7 10 13 16 19 22 24 ° 1 4 7 10 13 16 19 22 24 ° 1 4 7 10 13 16 19 22 24
Trarring hours Trarring hours Traiming hours

(m) Function 6 - ACO (n) Function 15 - ACO (o) Function 17 - ACO

Z376x10? et et 2 2x10) e 2 18x10-* e
4] s st el 2 195x10? [] Bost Haal
7 3.74%10 Tunea Paramstars k] Tuned Parametars 71,75 % 10~ — Tuned Parametars
Za7zx10? g 19x10 2 17x10-0
:u 3.7x10? :u 1.85x 10 7 :u 1.65 % 10-%
£ 3.68 x 10 * £ 18x10? Z 1ex10?
T 3.66x1073 T 175%10? = 1.55% 10~*
a 3 ; 3 / 3
2 3.64 x 10 2 17x10-% £ 15x107* d
1 4 7 10 13 16 19 22 24 1L 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Trarring hours Traiming hours Traiming hours

Source: Produced by the author.

For the experiments with HCLPSO, DE, and FSS, the performance of the selected
policies and the tuned static parameters are close to each other during most of the training
time in the majority of the benchmark functions. However, in the end of the training
process the final selected policy usually overcomes the static set of parameter values that

survives the evolutionary pressure of the I/F-Race algorithm. Regarding the best policy, it

129

outperforms the tuned parameters during the entire training process in almost every case.
Besides, it usually shows a much better performance since the beginning of the training
process.

Concerning the experiments with binary GA, it is clear that the best policy consis-
tently outperformed the tuned parameters during the entire training process in almost
every case. However, the evolution of the selected policies did not work as expected.
It means that the policy selection method has failed on the selection of a good policy
among the pool of trained policies. It seems that the selected policies consistently led the
metaheuristic to forbidden solutions. Finally, regarding the experiments with ACO, the
I/F-Race could not finish its first training iteration within 24 hours in many cases. Be-
sides, the policy selection method showed some difficulty in selecting a top policy among
the available trained policies for each experiment. Once again, the best policies showed
the best performances by far in the vast majority of the cases during the entire training
process. Therefore, it can be concluded that the proposed training process quickly finds
very good policies. However, a more effective policy selection method should be proposed
in order to identify such policies. Such a method would dramatically reduce the necessary
time to find a satisfactorily good policy during the training process.

One might question the unstable curve of the tuned parameters. Such instability is
due to the fact that the I/F-Race only guarantees the survival of the best parameter
values ever by testing them on a set of training functions in which the unseen function is
not included. Therefore, the best parameter values for the training functions may not be
the best parameter values for the testing instance. The same happens to the performance
of the selected model. The curve of the best model is the only one that monotonically
decreases (for minimization problems) or increases (for maximization problems). This is
due to the fact that, as previously explained, the best policy for each point in time is
chosen by looking at the performance of all policies in the pool of trained policies in the
testing function. Therefore, the best performing policy for the testing function itself is
always chosen and the testing performance always increases or remains the same.

The aforementioned experiments showed that our method works for many different
situations, since it was successfully tested in several numerical (i.e. continuous), binary,
and combinatorial optimization problems, which were solved by very different metaheuris-
tics. Therefore, it has been shown that the proposed approach has a satisfactory degree
of generality. Besides, despite other approaches are claimed to be out-of-the-box, this is
the study that tested the proposed method in the largest and most diverse benchmark set
by far, which truly assesses the generality of the technique. Therefore, the issue number

3 found in the literature was satisfactorily addressed.

130

6 CONCLUSION

"And so you touch this limit,
something happens and you
suddenly can go a little bit
further. With your mind power,
your determination, your
instinct, and the experience as

well, you can fly very high."

Ayrton Senna

6.1 FINAL REMARKS AND MAIN CONTRIBUTIONS

This study proposed an out-of-the-box policy training method for parameter control of
mono-objective EA and swarm-based algorithms with distributed Reinforcement Learn-
ing, addressing the aforementioned issues identified in the literature. Among other sec-
ondary objectives, this work was intended to address the following three gaps found in

the literature:

1. Training EA and SI parameter control policies with RL can be very computational-

demanding.

2. RL algorithms usually require the adjustment of many hyperparameters, what makes

difficult its successful use. Also, the search for an optimal policy can be very unstable.

3. Very limited benchmarks have been used to assess the generality of the out-of-the-

box methods proposed so far in the literature.

After delving into the selected problem and performing the experiments using the put
forward ideas of this thesis, we argue that some novel contributions to the field of out-of-

the-box parameter control for EA and swarm-based algorithms were produced, namely:

1. A systematic literature review about the given subject had never been published
before. Therefore, such novelty is of substantial importance, since it organizes what
has been published so far and guides the interested scientific community towards
the edge of the field.

2. The proposed training process is clearly able to benefit from parallel computing
platforms, even though the speed-ups are not proportional to the number of added
RL workers. It means that the gap number 1 found in the literature is satisfactorily
addressed.

131

. PBT is used to control some of the hyperparameters of TD3 and to allow a more
diverse policy search through multiple parallel training processes, known as PBT
workers. The hyperparameter analysis made in this work revealed a few insights
regarding the adjustment of the PBT’s hyperparameters, i.e. the hyperparameters
of the last layer of control of the proposed architecture. Overall, it can be concluded
that such hyperparameters must be adjusted for the maintenance of the diversity of
the policy search, so that very good policies can eventually be found in the policy
search space. It means that the larger the population size of PBT workers, the less
likely the policy search gets stuck in local minima and, therefore, the more likely a
good policy is found. In other words, larger populations of PBT workers avoid the
so-called “dog chasing its own tail" effect, where bad actions are exploited, which

causes the well-known instability of model-free RL algorithms.

. Another interesting finding observed in the hyperparameter analysis is the low sen-
sitivity of the quality of the top policies available in the pool of trained policies to
the PBT’s hyperparameters. It means that the better the policy selection method,
the less sensitive the selected policies to such hyperparameters. Despite the fact
that many of the TD3 hyperparameters still had to be manually set for these exper-
iments, the aforementioned findings suggest that the gap number 2 was satisfactorily

addressed, especially the need for a more stable training process.

. It is important to notice that, despite the 5 hyperparameters that are needed to be
adjusted, the user of the proposed method would not need to understand the many
metaheuristics available in the literature and how their perparameters affect their
behaviors. This is due to the fact that the PBT layer’s hyperparameters are the only
ones to be defined. Therefore, the only hyperparameters to be adjusted would be
the same, regardless of the underlying metaheuristic, which corroborates with the

conclusion that the issue number 2 was satisfactorily addressed.

. The generality assessment showed that our method works for many different sit-
uations, since it was successfully tested in several numerical (7.e. continuous), bi-
nary, and combinatorial optimization problems, which were solved by very different
metaheuristics. Therefore, it has been shown that the proposed approach has a sat-
isfactory degree of generality. Besides, despite other approaches are claimed to be
out-of-the-box, this is the study that tested the proposed method in the largest
and most diverse benchmark set by far, which truly assesses the generality of the
technique. Therefore, the issue number 3 found in the literature was satisfactorily
addressed.

. For some of the tested cases, the best policy found by the training algorithm over-

came the human-designed and tuned (i.e. static) policies by far. It is important

132

to highlight that human-designed policies usually require considerable effort from
its human designers to achieve a competitive performance, while our method could

outperform it in the vast majority of the cases within only 24 hours of training.

8. Schuchardt et al. applied for the first time an RL algorithm with continuous action
space in the problem of parameter control for EA and swarm-based algorithms
(SCHUCHARDT; GOLKOV; CREMERS, 2019)). However, their experiments were very
limited in terms of the number of simultaneously controlled parameters, and the
size and diversity of the benchmark set. In this work, we have advanced the study

of the application of such algorithms in the problem at hand.

The proposed method is still very costly. However, it is important to observe that once
the policy is trained and selected to be used in a given unseen problem, the controller is
used in the production mode. In a neural network-based policy, which is the case of TD3,
the production mode involves performing only feedforward operations, which is known to
be very efficient. Therefore, in continued use situations one can have an efficient and very

effective automatic parameter control.

6.2 AVENUES OF FUTURE RESEARCH

A few ideas are left as future work, namely:

1. The current policy selection method chooses the same policy for different unseen
problems. In fact, it only takes into account the performances of the policies in the
training functions. Therefore, the success of the proposed selection method depends
entirely on the choice of the functions for the training set. Thus, a method for selec-
tion of training functions should be investigated. In such an approach, the training
instance that shows the most similar features to the unseen problem should be cho-
sen to train the policy. Consequently, there would be no need for training several
policies for all training functions, nor testing in all of them. Thus, a successful se-
lection method of training functions would dramatically increase the efficiency of
the method, since just a single training process would be needed to be executed and
the removal of the testing phase would allow speed-ups proportional to the number
of RL workers. A set of features that could be extracted from the objective func-
tions in order to compare different problem instances are the so-called Exploratory
Landscape Analysis features (ELA) (MERSMANN et al., 2011)).

2. As previously mentioned, the population size control was kept out of the scope of
this work. The main challenge in this problem is to create a mechanism of addition
candidate solutions that does not add to much noise in the search process and a
removal mechanism that does not lose important information acquired by the popu-

lation. Despite the advances we have made that are not included in this study, as the

133

paper published in the 2018 Congress of Evolutionary Computation (LACERDA et
al., [2018) and another study submitted to a scientific journal, the method proposed

in this work still needs to be tested on the population size of metaheuristics.

3. The current reward function was designed in a way that almost every action has
non-zero return. This is done because many of the RL algorithms do not deal well
with sparse reward functions. Sometimes, in parameter control for metaheuristics,
an apparently wrong decision must the made in order to maximize its expected
future reward, even though such an action momentarily takes the metaheuristic to
a bad region in the search space of the optimization problem. Despite the presented
RL algorithms are supposed to make decisions “thinking" in the long run, they
actually try to approximate the expected future return just by looking one step
ahead. Therefore, an algorithm that deals with long periods without any non-zero
reward and is capable of accurately assigning credits for the sequence of actions
taken during such periods should be tested. This way, the reward function could
return a non-zero reward only when relevant improvements are made in the search
process, or even in the end of an episode, when it is known the performance of
the metaheuristic after a sequence of actions. One possible candidate for such an
investigation is AlphaZero (SILVER et al., 2017)).

4. The proposed method should be applied to operator selection as well and could be

extended to multiobjective optimization.

5. In the experiments designed for this thesis, many of the hyperparameters of the
RL algorithm were manually set. Therefore, instead of reducing the difficulties in
the use of the underlying metaheuristic by diminishing the complexity of parameter
adjustment, it may make it even harder. However, it is important to notice that, in
the proposed method, the PBT algorithm is able control the entire set of hyperpa-
rameter of any RL algorithm. Thus, in the future, we plan to make new experiments
where every hyperparameter of the RL algorithm is controlled by PBT. With such
a experimental setup, there would be necessary to adjust only the hyperparameters

of the proposed method itself.

6. As already mentioned, the purpose of the generality assessment is to assess the
performance of the proposed method in very different scenarios. Thus, instead of
testing our method in the most complex instances of the problems used in the
experiments, which usually require more computational resources, we decided to
focus on the variability of the scenarios and keep the computational requirements
for the experiments the lowest possible. However, we plan to extend the experiments

presented in this work by including more complex scenarios in the future.

7. More RL algorithms will be tested in the RL layer.

134

8. Equation |4.2| presents a transformation for objective functions of minimization prob-
lems that does not work with problems with solutions with negative fitness values.
Therefore, we plan to test our method with a different transformation function (e.g.

multiply the original fitness values by -1).

135

REFERENCES

AINE, S.; KUMAR, R.; CHAKRABARTI, P. P. Adaptive parameter control of
evolutionary algorithms under time constraints. In: TIWARI, A.; ROY, R.; KNOWLES,
J.; AVINERI, E.; DAHAL, K. (Ed.). Applications of Soft Computing. Advances in
Intelligent and Soft Computing. Berlin, Heidelberg: Springer, 2006.

ALAGOZ, O.; HSU, H.; SCHAEFER, A. J.; ROBERTS, M. S. Markov decision
processes: A tool for sequential decision making under uncertainty. Medical Decision
Making, v. 30, n. 4, p. 474-483, 2010.

ALETI, A.; MOSER, I. Predictive parameter control. In: Proceedings of the 15th
Annual Conference on Genetic and Fvolutionary Computation. New York, NY, USA:
ACM, 2011. (GECCO ’'11), p. 561-568. ISBN 978-1-4503-0557-0. Disponivel em:
<http://doi.acm.org/10.1145/2001576.2001653> .

ALETI, A.; MOSER, I. Entropy-based adaptive range parameter control for evolutionary
algorithms. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation. New York, NY, USA: ACM, 2013. (GECCO ’13), p. 1501-1508. ISBN
978-1-4503-1963-8. Disponivel em: <http://doi.acm.org/10.1145/2463372.2463560>.

ALETI, A.; MOSER, I. A systematic literature review of adaptive parameter
control methods for evolutionary algorithms. ACM Comput. Surv., ACM, New York,
NY, USA, v. 49, n. 3, p. 56:1-56:35, out. 2016. ISSN 0360-0300. Disponivel em:
<http://doi.acm.org/10.1145/2996355>.

ALETI, A.; MOSER, I.; MEEDENIYA, I.; GRUNSKE, L. Choosing the appropriate
forecasting model for predictive parameter control. Evolutionary Computation, v. 22,
n. 2, p. 319-349, June 2014. ISSN 1063-6560.

ALETI, A.; MOSER, I.; MOSTAGHIM, S. Adaptive range parameter control. In: 2012
IEEE Congress on Evolutionary Computation. [S.1.: s.n.], 2012. p. 1-8. ISSN 1089-778X.

ALI, N. H. A. adn M. Z.; LIANG, J. J.; QU, B. Y.; SUGANTHAN, P. N. Problem
Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition
on Single Objective Bound Constrained Real-Parameter Numerical Optimization. 2016.

APOSTOL, K. Temporal Difference Learning. [S.1.]: SaluPress, 2012. ISBN 6139274524.

ASKARZADEH, A. A novel metaheuristic method for solving constrained engineering
optimization problems: Crow search algorithm. Computers & Structures, v. 169, p. 1-12,
2016.

AWAD, N. H.; ALI, M. Z.; SUGANTHAN, P. N.; LIANG, J. J.; QU, B. Y. Problem
Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition
on Single Objective Real-Parameter Numerical Optimization. [S.1.], 2016.

BAKER, J. E. Reducing bias and inefficiency in the selection algorithm. In: Proceedings
of the Second International Conference on Genetic Algorithms on Genetic Algorithms and
Their Application. USA: L. Erlbaum Associates Inc., 1987. p. 14-21. ISBN 0805801588.

http://doi.acm.org/10.1145/2001576.2001653
http://doi.acm.org/10.1145/2463372.2463560
http://doi.acm.org/10.1145/2996355

136

BALAPRAKASH, P.; BIRATTARI, M.; STUTZLE, T. Improvement strategies for the
f-race algorithm: Sampling design and iterative refinement. In: BARTZ-BEIELSTEIN,
T.; AGUILERA, M. J. B;; BLUM, C.; NAUJOKS, B.; ROLI, A.; RUDOLPH, G.;
SAMPELS, M. (Ed.). Hybrid Metaheuristics. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007. p. 108-122. ISBN 978-3-540-75514-2.

BALAPRAKASH, P.; BIRATTARI, M.; STUTZLE, T. Improvement strategies for the
f-race algorithm: Sampling design and iterative refinement. In: Hybrid Metaheuristics.
[S.1.: s.n.], 2007.

BERTSEKAS, D. Nonlinear Programming. [S.1.]: Athena Scientific, 1999.

BERTSEKAS, D. P. Dynamic Programming and Optimal Control. 2nd. ed. [S.l.]: Athena
Scientific, 2000. ISBN 1886529094.

BEYER, H.-G. Toward a theory of evolution strategies: Self-adaptation. Evolutionary
Computation, v. 3, n. 3, p. 311-347, 1995. Disponivel em: <https://doi.org/10.1162/
evco.1995.3.3.311>|

BIELZA, C.; POZO, J. A. F. del; LARRADAGA, P. Parameter control of genetic
algorithms by learning and simulation of bayesian networks — a case study for the
optimal ordering of tables. Journal of Computer Science and Technology, v. 28, n. 4, p.
720-731, 2013.

BIRATTARI, M. Tuning metaheuristics - a machine learning perspective. In: Studies in
Computational Intelligence. [S.1.: s.n.], 2009.

BIRATTARI, M.; STATZLE, T.; PAQUETE, L.; VARRENTRAPP, K. A racing
algorithm for configuring metaheuristics. In: Proceedings of the 4th Annual Conference

on Genetic and Fvolutionary Computation. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002. (GECCO’02), p. 11-18. ISBN 1558608788.

BIRATTARI, M.; YUAN, Z.; BALAPRAKASH, P.; STUTZLE, T. F-race and iterated
f-race: An overview. In: Ezperimental Methods for the Analysis of Optimization
Algorithms. [S.1.: s.n.], 2010.

BONABEAU, E.; DORIGO, M.; THERAULAZ, G. From Natural to Artificial Swarm
Intelligence. USA: Oxford University Press, Inc., 1999. ISBN 0195131584.

BREST, J.; MAUCEC, M. S.; BOsKOVI¢, B. il-shade: Improved l-shade algorithm for
single objective real-parameter optimization. In: 2016 IEEE Congress on Evolutionary
Computation (CEC). [S.1.: s.n.], 2016. p. 1188-1195.

BREST, J.; MAUCEC, M. S.; BOSKOVI¢, B. Single objective real-parameter
optimization: Algorithm jso. In: 2017 IEEE Congress on Evolutionary Computation
(CEC). [S.1.: s.n.], 2017. p. 1311-1318.

CERNY, V. Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. J. Optim. Theory Appl., Plenum Press, USA, v. 45, n. 1, p. 41-51,
jan. 1985. ISSN 0022-3239. Disponivel em: <https://doi.org/10.1007/BF00940812>.

CHATZINIKOLAOU, N. Coordinating evolution: An open, peer-to-peer architecture for
a self-adapting genetic algorithm. In: Enterprise Information Systems. [S.l.: s.n.], 2011.
v. 73.

https://doi.org/10.1162/evco.1995.3.3.311
https://doi.org/10.1162/evco.1995.3.3.311
https://doi.org/10.1007/BF00940812

137

CHEN, H.; LI, G.; LTIAO, H. A self-adaptive improved particle swarm optimization
algorithm and its application in available transfer capability calculation. In: 2009 Fifth
International Conference on Natural Computation. [S.1.: s.n.], 2009. v. 3, p. 200-205.
ISSN 2157-9563.

CONSOLI, P. A.; MEI Y.; MINKU, L. L.; YAO, X. Dynamic selection of evolutionary
operators based on online learning and fitness landscape analysis. Soft Comput.,
Springer-Verlag, Berlin, Heidelberg, v. 20, n. 10, p. 3889-3914, out. 2016. ISSN
1432-7643. Disponivel em: <https://doi.org/10.1007/s00500-016-2126-x>.

CONSOLI, P. A.; MINKU, L. L.; YAO, X. Dynamic selection of evolutionary algorithm
operators based on online learning and fitness landscape metrics. In: DICK, G.;
BROWNE, W. N.; WHIGHAM, P.; ZHANG, M.; BUI, L. T.; ISHIBUCHI, H.; JIN,
Y.; LI, X.; SHI, Y.; SINGH, P.; TAN, K. C.; TANG, K. (Ed.). Simulated Evolution
and Learning. Cham: Springer International Publishing, 2014. p. 359-370. ISBN
978-3-319-13563-2.

DACOSTA, L.; FTALHO, A.; SCHOENAUER, M.; SEBAG, M. Adaptive operator
selection with dynamic multi-armed bandits. In: Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association
for Computing Machinery, 2008. (GECCO ’08), p. 913-920. ISBN 9781605581309.
Disponivel em: |<https://doi.org/10.1145/1389095.1389272>.

DANG, D.-C.; LEHRE, P. K. Self-adaptation of Mutation Rates in Non-elitist
Populations. 2016.

DANTZIG, G. Maximization of a linear function of variables subject to linear
inequalities. In: . [S.L: s.n.], 1961.

DAS, S.; MULLICK, S. S.; SUGANTHAN, P. Recent advances in differential evolution
— an updated survey. Swarm and Evolutionary Computation, v. 27, p. 1 — 30, 2016. ISSN
2210-6502.

DEAN, J.; CORRADO, G.; MONGA, R.; CHEN, K.; DEVIN, M.; MAO, M.;
RANZATO, M. aurelio; SENIOR, A.; TUCKER, P.; YANG, K.; LE, Q. V.; NG, A. Y.
Large scale distributed deep networks. In: PEREIRA, F.; BURGES, C. J. C.; BOTTOU,
L.; WEINBERGER, K. Q. (Ed.). Advances in Neural Information Processing Systems
25. [S.1.]: Curran Associates, Inc., 2012. p. 1223-1231.

DOERR, B.; WITT, C.; YANG, J. Runtime Analysis for Self-adaptive Mutation Rates.
2018.

DONG, C.; WANG, G.; CHEN, Z.; YU, Z. A method of self-adaptive inertia weight for
pso. In: 2008 International Conference on Computer Science and Software Engineering.
[S.L: s.n.], 2008. v. 1, p. 1195-1198. ISSN null.

DORIGO, M. Optimization, Learning and Natural Algorithms. Tese (Doutorado) —
Politecnico di Milano, Italy, 1992.

DORIGO, M.; MANIEZZO, V.; COLORNI, A. Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), v. 26, n. 1, p. 29-41, 1996.

https://doi.org/10.1007/s00500-016-2126-x
https://doi.org/10.1145/1389095.1389272

138

DRAKE, J. H.; KHEIRI, A.; OZCAN, E.; BURKE, E. K. Recent advances in selection
hyper-heuristics. Furopean Journal of Operational Research, v. 285, n. 2, p. 405 — 428,
2020. ISSN 0377-2217. Disponivel em: <http://www.sciencedirect.com/science/article/
pii/S0377221719306526>.

EBERHART, R. C. Computational Intelligence: Concepts to Implementations. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. ISBN 1558607595.

EIBEN, A. E.; HINTERDING, R.; MICHALEWICZ, Z. Parameter control in
evolutionary algorithms. IEEE Transactions on Fvolutionary Computation, v. 3, n. 2, p.
124-141, July 1999. ISSN 1089-778X.

EIBEN, A. E.; HORVATH, M.; KOWALCZYK, W.; SCHUT, M. C. Reinforcement
learning for online control of evolutionary algorithms. In: Proceedings of the jth
International Conference on Engineering Self-organising Systems. Berlin, Heidelberg:
Springer-Verlag, 2007. (ESOA’06), p. 151-160. ISBN 978-3-540-69867-8. Disponivel em:
<http://dl.acm.org/citation.cfm?id=1763581.1763595>.

EIBEN, A. E.; SMIT, S. K. Evolutionary algorithm parameters and methods to tune
them. In: HAMADI, Y.; MONFROY, E.; SAUBION, F. (Ed.). Autonomous Search.
Berlin, Heidelberg: Springer, 2011.

EIBEN, A. E.; SMITH, J. E. Introduction to Evolutionary Computing. 2nd. ed. [S.1.]:
Springer Publishing Company, Incorporated, 2015. ISBN 3662448734.

ENGELBRECHT, A. P. Computational Intelligence: An Introduction. 2nd. ed. [S.L.]:
Wiley Publishing, 2007. ISBN 0470035617.

FEO, T. A.; RESENDE, M. G. C. A probabilistic heuristic for a computationally
difficult set covering problem. Oper. Res. Lett., Elsevier Science Publishers

B. V., NLD, v. 8 n. 2, p. 67-71, abr. 1989. ISSN 0167-6377. Disponivel em:
<https://doi.org/10.1016 /0167-6377(89)90002-3>.

FILHO, C. J. A. B.; NETO, F. B. de L.; LINS, A. J. C. C.; NASCIMENTO, A.

[. S.; LIMA, M. P. A novel search algorithm based on fish school behavior. In: 2008
IEEE International Conference on Systems, Man and Cybernetics. [S.1.: s.n.], 2008. p.
2646-2651.

FILHO, C. J. A. B.; NETO, F. B. de L.; LINS, A. J. C. C.; NASCIMENTO, A. 1. S;
LIMA, M. P. Fish school search. In: . Nature-Inspired Algorithms for Optimisation.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 261-277.

FILHO, C. J. A. B.; NETO, F. B. L.; SOUSA, M. F. C.; PONTES, M. R.; MADEIRO,
S. S. On the influence of the swimming operators in the fish school search algorithm. In:
2009 IEEE International Conference on Systems, Man and Cybernetics. [S.1.: s.n.], 2009.
p- 5012-5017.

FOGEL, L.; OWENS, A. J.; WALSH, M. J. Artificial intelligence through simulated
evolution. In: . [S.1.: s.n.], 1966.

FORTNOW, L. The status of the p versus np problem. Commun. ACM, Association
for Computing Machinery, New York, NY, USA, v. 52, n. 9, p. 7886, set. 2009. ISSN
0001-0782. Disponivel em: |[<https://doi.org/10.1145/1562164.1562186>.

http://www.sciencedirect.com/science/article/pii/S0377221719306526
http://www.sciencedirect.com/science/article/pii/S0377221719306526
http://dl.acm.org/citation.cfm?id=1763581.1763595
https://doi.org/10.1016/0167-6377(89)90002-3
https://doi.org/10.1145/1562164.1562186

139

FOULDS, L. The heuristic problem-solving approach. Journal of the Operational
Research Society, Springer, v. 34, p. 927-934, 1983.

FUJIMOTO, S.; HOOF, H. van; MEGER, D. Addressing Function Approxzimation Error
in Actor-Critic Methods. 2018.

GLOVER, F. Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res., Elsevier Science Ltd., GBR, v. 13, n. 5, p. 533-549, maio 1986.
ISSN 0305-0548. Disponivel em: <https://doi.org/10.1016/0305-0548(86)90048-1>.

GLOVER, F.; LAGUNA, M. Tabu Search. Norwell, MA, USA: Kluwer Academic
Publishers, 1997. ISBN 079239965X.

GOLDBERG, D. E. Genetic Algorithms in Search, Optimization and Machine Learning.
1st. ed. USA: Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN 0201157675.

GUAN, Y.; YANG, L.; SHENG, W. Population control in evolutionary algorithms:
Review and comparison. In: Bio-inspired Computing: Theories and Applications. [S.1.:
s.n.], 2017. p. 161-174.

HABIB, N. Hands-On Q-Learning with Python: Practical Q)-learning with OpenAl Gym,
Keras, and TensorFlow. Packt Publishing, 2019. ISBN 9781789345759. Disponivel em:
<https://books.google.com.br/books?id=xxiUDwAAQBAJ>.

Harrison, K. R.; Engelbrecht, A. P.; Ombuki-Berman, B. M. The sad state of self-adaptive
particle swarm optimizers. In: 2016 IEEE Congress on Fvolutionary Computation
(CEC). [S.1.: s.n.], 2016. p. 431-439. ISSN null.

HASSELT, H. van; GUEZ, A.; SILVER, D. Deep Reinforcement Learning with Double
Q-learning. 2015.

HESSEL, M.; MODAYIL, J.; HASSELT, H. van; SCHAUL, T.; OSTROVSKI, G.;
DABNEY, W.; HORGAN, D.; PIOT, B.; AZAR, M.; SILVER, D. Rainbow: Combining

Improvements in Deep Reinforcement Learning. 2017.

HOLLAND, J. Genetic algorithms and the optimal allocation of trials. STAM J. Comput.,
v. 2, p. 88-105, 1973.

HOLLAND, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press, 1975. Second edition, 1992.

HOLLAND, J. H. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Cambridge,
MA, USA: MIT Press, 1992. ISBN 0262082136.

HORGAN, D.; QUAN, J.; BUDDEN, D.; BARTH-MARON, G.; HESSEL, M.;
HASSELT, H. van; SILVER, D. Distributed Prioritized Experience Replay. 2018.

HRISTAKEVA, M. Solving the 0-1 knapsack problem with genetic algorithms. In: . [S.L.:
s.n.], 2004.

Huang, C.; Li, Y.; Yao, X. A survey of automatic parameter tuning methods for
metaheuristics. IEEE Transactions on Evolutionary Computation, v. 24, n. 2, p. 201-216,
2020.

https://doi.org/10.1016/0305-0548(86)90048-1
https://books.google.com.br/books?id=xxiUDwAAQBAJ

140

HUTTER, F.; HOOS, H. H.; LEYTON-BROWN, K.; STUETZLE, T. Paramils: An
automatic algorithm configuration framework. Journal of Artificial Intelligence Research,
AT Access Foundation, v. 36, p. 267-306, Oct 2009. ISSN 1076-9757. Disponivel em:
<http://dx.doi.org/10.1613 /jair.2861>

ILAVARASI, K.; JOSEPH, K. S. Variants of travelling salesman problem: A survey.
In: International Conference on Information Communication and Embedded Systems
(ICICES2014). [S.1.: sn.], 2014. p. 1-7.

JADERBERG, M.; DALIBARD, V.; OSINDERO, S.; CZARNECKI, W. M.;
DONAHUE, J.; RAZAVI, A.; VINYALS, O.; GREEN, T.; DUNNING, I.; SIMONYAN,
K.;FERNANDO, C.; KAVUKCUOGLU, K. Population based training of neural networks.
CoRR, abs/1711.09846, 2017. Disponivel em: <http://arxiv.org/abs/1711.09846>.

JONG, K. A. D. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Tese (Doutorado) — University of Michigan, USA, 1975. AAI7609381.

JORDEHI, A. R.; JASNI, J. Parameter selection in particle swarm optimisation: a
survey. Journal of Experimental & Theoretical Artificial Intelligence, v. 25, n. 4, p.
527-542, 2013.

KAELBLING, L. P.; LITTMAN, M. L.; MOORE, A. W. Reinforcement learning: A
survey. J. Artif. Int. Res., Al Access Foundation, El Segundo, CA, USA, v. 4, n. 1, p.
237-285, maio 1996. ISSN 1076-9757.

KARABOGA, D.; BASTURK, B. On the performance of artificial bee colony
(abc) algorithm. Appl. Soft Comput., Elsevier Science Publishers B. V., NLD,
v. 8, n. 1, p. 687-697, jan. 2008. ISSN 1568-4946. Disponivel em: |<https:
//doi.org/10.1016 /j.asoc.2007.05.007>.

KARAFOTIAS, G.; EIBEN, A. E.; HOOGENDOORN, M. Generic parameter control
with reinforcement learning. In: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation. [S.l.: s.n.], 2014. (GECCO ’14), p. 1319-1326.

KARAFOTIAS, G.; HOOGENDOORN, M.; EIBEN, A. E. Evaluating reward definitions
for parameter control. In: Proceedings of the 2015 European Conference on the
Applications of Evolutionary Computation. [S.1.: s.n.], 2015. (EvoApplications '15), p.
667-680.

KARAFOTIAS, G.; HOOGENDOORN, M.; EIBEN, A. E. Parameter control in
evolutionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary
Computation, v. 19, n. 2, p. 167-187, April 2015. ISSN 1089-778X.

KARAFOTIAS, G.; HOOGENDOORN, M.; WEEL, B. Comparing generic parameter
controllers for eas giorgos. In: Proceedings of the 2014 IEEE Symposium Series on
Computational Intelligence. [S.].: s.n.], 2014. (SSCI ’14), p. 16-53.

KARAFOTIAS, G.; SMIT, S. K.; EIBEN, A. E. A generic approach to parameter
control. In: Proceedings of the 2012 FEuropean Conference on the Applications of
Evolutionary Computation. [S.l.: s.n.], 2012. (EvoApplications "12).

KARIMPANAL, T. G. Neuro-evolutionary Frameworks for Generalized Learning Agents.
2020.

http://dx.doi.org/10.1613/jair.2861
http://arxiv.org/abs/1711.09846
https://doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1016/j.asoc.2007.05.007

141

KENNEDY, J.; EBERHART, R. C. Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks. [S.1.: s.n.], 1995. p. 1942-1948.

KINGMA, D. P.; BA, J. Adam: A Method for Stochastic Optimization. 2014.

KOZA, J. R. Genetic Programming: A Paradigm for Genetically Breeding Populations
of Computer Programs to Solve Problems. Stanford, CA, USA, 1990.

KRIZHEVSKY, A. One weird trick for parallelizing convolutional neural networks. 2014.

LACERDA, M. G. P. de; NETO, H. de A. A.; LUDERMIR, T. B.; KUCHEN, H.;
NETO, F. B. de L. Population size control for efficiency and efficacy optimization in

population based metaheuristics. In: 2018 IEEE Congress on Evolutionary Computation
(CEC). [S.1.: s.n.], 2018. p. 1-8.

LACERDA, M. G. P. de; PESSOA, L. F. de A.; NETO, F. B. de L.; LUDERMIR,

T. B.; KUCHEN, H. A systematic literature review on general parameter control for
evolutionary and swarm-based algorithms. Swarm and Evolutionary Computation, v. 60,
p. 100777, 2021. ISSN 2210-6502. Disponivel em: <http://www.sciencedirect.com/
science/article/pii/S2210650220304302> .

LAPAN, M. Deep Reinforcement Learning Hands-On: Apply Modern RL Methods, with
Deep Q)-Networks, Value Iteration, Policy Gradients, TRPO, AlphaGo Zero and More.
[S.L]: Packt Publishing, 2018. ISBN 1788834240.

LEUNG, S. W.; YUEN, S. Y.; CHOW, C. K. Parameter control system of
evolutionary algorithm that is aided by the entire search history. Appl. Soft
Comput., Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The
Netherlands, v. 12, n. 9, p. 3063-3078, set. 2012. ISSN 1568-4946. Disponivel em:
<http://dx.doi.org/10.1016/j.as0c.2012.05.008>.

LI, A.; SPYRA, O.; PEREL, S.; DALIBARD, V.; JADERBERG, M.; GU, C;
BUDDEN, D.; HARLEY, T.; GUPTA, P. A generalized framework for population
based training. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery; Data Mining. New York, NY, USA: Association for Computing
Machinery, 2019. (KDD '19), p. 1791-1799. ISBN 9781450362016. Disponivel em:
<https://doi.org/10.1145/3292500.3330649>.

LIANG, E.; LIAW, R.; MORITZ, P.; NISHIHARA, R.; FOX, R.; GOLDBERG, K;
GONZALEZ, J. E.; JORDAN, M. 1.; STOICA, I. RLlib: Abstractions for Distributed
Reinforcement Learning. 2017.

LIANG, J. J.; QIN, A. K.; SUGANTHAN, P. N.; BASKAR, S. Comprehensive learning
particle swarm optimizer for global optimization of multimodal functions. IEEFE
Transactions on Evolutionary Computation, v. 10, n. 3, p. 281-295, 2006.

LTIASHCHYNSKYTI, P.; LIASHCHYNSKYTI, P. Grid Search, Random Search, Genetic
Algorithm: A Big Comparison for NAS. 2019.

LILLICRAP, T. P.; HUNT, J. J.; PRITZEL, A.; HEESS, N.; EREZ, T.; TASSA, Y;
SILVER, D.; WIERSTRA, D. Continuous control with deep reinforcement learning. 2015.

Lloyd, S. Least squares quantization in pcm. IEEE Transactions on Information Theory,
v. 28, n. 2, p. 129-137, March 1982. ISSN 0018-9448.

http://www.sciencedirect.com/science/article/pii/S2210650220304302
http://www.sciencedirect.com/science/article/pii/S2210650220304302
http://dx.doi.org/10.1016/j.asoc.2012.05.008
https://doi.org/10.1145/3292500.3330649

142

LYNN, N.; SUGANTHAN, P. N. Heterogeneous comprehensive learning particle
swarm optimization with enhanced exploration and exploitation. Swarm and
Evolutionary Computation, v. 24, p. 11 — 24, 2015. ISSN 2210-6502. Disponivel em:
<http://www.sciencedirect.com /science/article/pii/S2210650215000401>.

L6PEZ-IBanEZ, M.; DUBOIS-LACOSTE, J.; STUTZLE, T.; BIRATTARI, M. The irace
Package: Iterated Racing for Automatic Algorithm Configuration. [S.1.], 2011.

MA, Q.; STACHURSKI, J. Dynamic Programming Deconstructed: Transformations of
the Bellman Equation and Computational Efficiency. 2019.

MARTIN, O.; OTTO, S. W.; FELTEN, E. W. Large-step markov chains for the traveling
salesman problem. Complex Systems, v. 5, p. 299-326, 1991.

MATURANA, J.; SAUBION, F. On the design of adaptive control strategies

for evolutionary algorithms. In: Proceedings of the Fvolution Artificielle, Sth
International Conference on Artificial Evolution. Berlin, Heidelberg: Springer-Verlag,
2008. (EA’07), p. 303-315. ISBN 3-540-79304-6, 978-3-540-79304-5. Disponivel em:
<http://dl.acm.org/citation.cfm?id=1793671.1793702>

MERSMANN;, O.; BISCHL, B.; TRAUTMANN, H.; PREUSS, M.; WEIHS, C.;
RUDOLPH, G. Exploratory landscape analysis. In: Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation. New York, NY, USA: Association
for Computing Machinery, 2011. (GECCO ’11), p. 829-836. ISBN 9781450305570.
Disponivel em: |[<https://doi.org/10.1145/2001576.2001690>.

MICHALEWICZ, Z.; ARABAS, J. Genetic algorithms for the 0/1 knapsack problem.
In: RAS, Z. W.; ZEMANKOVA, M. (Ed.). Methodologies for Intelligent Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1994. p. 134-143. ISBN 978-3-540-49010-4.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; GRAVES, A.; ANTONOGLOU, [
WIERSTRA, D.; RIEDMILLER, M. Playing Atari with Deep Reinforcement Learning.
2013.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; RUSU, A. A.; VENESS, J;
BELLEMARE, M. G.; GRAVES, A.; RIEDMILLER, M.; FIDJELAND, A. K;
OSTROVSKI, G.; PETERSEN, S.; BEATTIE, C.; SADIK, A.; ANTONOGLOU, [
KING, H.; KUMARAN, D.; WIERSTRA, D.; LEGG, S.; HASSABIS, D. Human-level
control through deep reinforcement learning. Nature, Nature Publishing Group, a division
of Macmillan Publishers Limited. All Rights Reserved., v. 518, n. 7540, p. 529-533, fev.
2015. ISSN 00280836. Disponivel em: <http://dx.doi.org/10.1038 /nature14236>.

MOORE, A. W.; ATKESON, C. G. Prioritized sweeping: Reinforcement learning with
less data and less time. Mach. Learn., Kluwer Academic Publishers, USA, v. 13, n. 1,
p. 103-130, out. 1993. ISSN 0885-6125. Disponivel em: <https://doi.org/10.1023/A:
1022635613229>.

NANNEN, V.; EIBEN, A. E. Relevance estimation and value calibration of evolutionary
algorithm parameters. In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.
(IJCAT'07), p. 975-980.

http://www.sciencedirect.com/science/article/pii/S2210650215000401
http://dl.acm.org/citation.cfm?id=1793671.1793702
https://doi.org/10.1145/2001576.2001690
http://dx.doi.org/10.1038/nature14236
https://doi.org/10.1023/A:1022635613229
https://doi.org/10.1023/A:1022635613229

143

NEWBOLD, P. Arima model building and the time series analysis approach to
forecasting. Journal of Forecasting, v. 2, n. 1, p. 23-35, 1983. Disponivel em:
<https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980020104>.

NICKABADI, A.; EBADZADEH, M. M.; SAFABAKHSH, R. A novel particle swarm
optimization algorithm with adaptive inertia weight. Appl. Soft Comput., Elsevier
Science Publishers B. V., NLD, v. 11, n. 4, p. 3658-3670, jun. 2011. ISSN 1568-4946.
Disponivel em: |<https://doi.org/10.1016/j.as0c.2011.01.037>.

NOCEDAL, J.; WRIGHT, S. J. Numerical Optimization. second. New York, NY, USA:
Springer, 2006.

PANIGRAHI, B. K.; SHI, Y.; LIM, M.-H. Handbook of Swarm Intelligence: Concepts,
Principles and Applications. 1st. ed. [S.1.]: Springer Publishing Company, Incorporated,
2011. ISBN 9783642173899.

PARPINELLI, R. S.; PLICHOSKI, G. F.; SILVA, R. S. da. A review of techniques
for on-line control of parameters in swarm intelligence and evolutionary computation
algorithms. International Journal of Bio-inspired Computation, v. 13, n. 1, p. 1-17, 2019.

PISINGER, D. Where are the hard knapsack problems? Computers € Operations
Research, v. 32, n. 9, p. 2271 — 2284, 2005. ISSN 0305-0548.

PUTERMAN, M. L. Chapter 8 markov decision processes. In: Stochastic Models.
Elsevier, 1990, (Handbooks in Operations Research and Management Science, v. 2).

p. 331-434. Disponivel em: <https://www.sciencedirect.com/science/article/pii/
50927050705801720>.

QIAN, C.; BIAN, C.; YU, Y.; TANG, K.; YAO, X. Analysis of noisy evolutionary
optimization when sampling fails. In: Proceedings of the Genetic and FEvolutionary
Computation Conference. New York, NY, USA: Association for Computing
Machinery, 2018. (GECCO ’18), p. 1507-1514. ISBN 9781450356183. Disponivel em:
<https://doi.org/10.1145/3205455.3205643>.

RECHENBERG, 1. Evolutionsstrategie : Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Stuttgart-Bad Cannstatt: Frommann-Holzboog,
1973. (Problemata, 15).

ROBERTSON, D. A lightweight coordination calculus for agent systems. In: Proceedings
of the Second International Conference on Declarative Agent Languages and Technologies.
Berlin, Heidelberg: Springer-Verlag, 2005. (DALT’04), p. 183-197. ISBN 3-540-26172-9,

978-3-540-26172-8. Disponivel em: <http://dx.doi.org/10.1007/11493402 11>.

ROST, A.; PETROVA, 1.; BUZDALOVA, A. Adaptive parameter selection in
evolutionary algorithms by reinforcement learning with dynamic discretization of

parameter range. In: Proceedings of the 2016 on Genetic and Evolutionary Computation.
[S.1.: s.n.], 2016. (GECCO ’16).

SCHAUL, T.; QUAN, J.; ANTONOGLOU, I.; SILVER, D. Prioritized Fxperience
Replay. 2015.

SCHUCHARDT, J.; GOLKOV, V.; CREMERS, D. Learning to Evolve. 2019.

https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980020104
https://doi.org/10.1016/j.asoc.2011.01.037
https://www.sciencedirect.com/science/article/pii/S0927050705801720
https://www.sciencedirect.com/science/article/pii/S0927050705801720
https://doi.org/10.1145/3205455.3205643
http://dx.doi.org/10.1007/11493402_11

144

SER, J. D.; OSABA, E.; MOLINA, D.; YANG, X.-S.; SALCEDO-SANZ, S.; CAMACHO,
D.; DAS, S.; SUGANTHAN, P. N.; COELLO, C. A. C.; HERRERA, F. Bio-inspired
computation: Where we stand and what’s next. Swarm Evol. Comput., v. 48, p. 220-250,
2019.

SHARMA, M.; KOMNINOS, A.; IBANEZ, M. L.; KAZAKOV, D. Deep Reinforcement
Learning Based Parameter Control in Differential Evolution. 2019.

SHI, Y.; EBERHART, R. A modified particle swarm optimizer. In: 1998 IFEFE
International Conference on Fvolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No.98TH8360). [S.1.: s.n.], 1998. p. 69-73.
ISSN null.

SILVER, D.; HUANG, A.; MADDISON, C. J.; GUEZ, A.; SIFRE, L.; DRIESSCHE,
G. van den; SCHRITTWIESER, J.; ANTONOGLOU, I.; PANNEERSHELVAM, V_;
LANCTOT, M.; DIELEMAN, S.; GREWE, D.; NHAM, J.; KALCHBRENNER, N.;
SUTSKEVER, I.; LILLICRAP, T.; LEACH, M.; KAVUKCUOGLU, K.; GRAEPEL, T.;
HASSABIS, D. Mastering the game of Go with deep neural networks and tree search.
Nature, Nature Publishing Group, v. 529, n. 7587, p. 484-489, jan. 2016.

SILVER, D.; HUBERT, T.; SCHRITTWIESER, J.; ANTONOGLOU, I.; LAI, M,;
GUEZ, A.; LANCTOT, M.; SIFRE, L.; KUMARAN, D.; GRAEPEL, T.; LILLICRAP,
T.; SIMONYAN, K.; HASSABIS, D. Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm. 2017.

SILVER, E. An overview of heuristic solution methods. Journal of the Operational
Research Society, Springer, v. 55, n. 9, p. 936-956, 2004.

STORN, R.; PRICE, K. Differential evolution — a simple and efficient heuristic for
global optimization over continuous spaces. J. of Global Optimization, Kluwer Academic
Publishers, USA, v. 11, n. 4, p. 341-359, dez. 1997. ISSN 0925-5001. Disponivel em:
<https://doi.org/10.1023/A:1008202821328>.

STUTZLE, T.; HOOS, H. Max-min ant system and local search for the traveling salesman
problem. In: Proceedings of 1997 IEEE International Conference on Evolutionary
Computation (ICEC °97). [S.1.: s.n.], 1997. p. 309-314.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, 2018. ISBN 0262039249.

SUTTON, R. S.; MCALLESTER, D.; SINGH, S.; MANSOUR, Y. Policy gradient
methods for reinforcement learning with function approximation. In: Proceedings of the
12th International Conference on Neural Information Processing Systems. Cambridge,

MA, USA: MIT Press, 1999. (NIPS’99), p. 1057-1063.

TALBI, E.-G. Metaheuristics: From Design to Implementation. [S.1.]: Wiley Publishing,
2009. ISBN 0470278587.

TANABE, R.; FUKUNAGA, A. Success-history based parameter adaptation for
differential evolution. In: 2013 IEEE Congress on Evolutionary Computation. [S.l.: s.n.],
2013. p. 71-78.

https://doi.org/10.1023/A:1008202821328

145

TANABE, R.; FUKUNAGA, A. S. Improving the search performance of shade using
linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation
(CEC). [S.1.: s.n.], 2014. p. 1658-1665.

TESAURO, G. Practical issues in temporal difference learning. Mach. Learn., Kluwer
Academic Publishers, USA, v. 8, n. 3-4, p. 257277, maio 1992. ISSN 0885-6125.

TONG, L.; DONG, M.; JING, C. An improved multi-population ensemble differential
evolution. Neurocomputing, v. 290, p. 130 — 147, 2018. ISSN 0925-2312. Disponivel em:
<http://www.sciencedirect.com /science/article/pii/S0925231218301735>.

TOSCANI L. V.; VELOSO, P. A. S. Complezidade de Algoritmos. third. [S.1.]: Bookman,
2012.

VASUKI, A. Nature-Inspired Optimization Algorithms. first. New York, NY, USA:
Chapman and Hall/CRC, 2020.

VOUDOURIS, C. Guided local search — an illustrative example in function optimisation.
BT Technology Journal, Kluwer Academic Publishers, USA, v. 16, n. 3, p. 46-50, jul.
1998. ISSN 1358-3948. Disponivel em: <https://doi.org/10.1023/A:1009665513140>.

WANG, G.-G.; DEB, S.; COELHO, L. d. S. Elephant herding optimization. In:
Proceedings of the 2015 3rd International Symposium on Computational and Business
Intelligence (ISCBI). USA: IEEE Computer Society, 2015. (ISCBI '15), p. 1-5. ISBN
9781467385015. Disponivel em: <https://doi.org/10.1109/ISCBI.2015.8>.

WANG, Z.; SCHAUL, T.; HESSEL, M.; HASSELT, H. van; LANCTOT, M.; FREITAS,
N. de. Dueling Network Architectures for Deep Reinforcement Learning. 2015.

WOLPERT, D. H.; MACREADY, W. G. No free lunch theorems for optimization. IEEFE
Transactions on Evolutionary Computation, v. 1, n. 1, p. 67-82, 1997.

XU, G. An adaptive parameter tuning of particle swarm optimization algorithm. Appl.
Math. Comput., Elsevier Science Inc., USA, v. 219, n. 9, p. 45604569, jan. 2013. ISSN
0096-3003. Disponivel em: |<https://doi.org/10.1016/j.amc.2012.10.067>.

Zhan, Z.; Zhang, J.; Li, Y.; Chung, H. S. Adaptive particle swarm optimization. I[EFEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), v. 39, n. 6, p.
1362—-1381, Dec 2009. ISSN 1941-0492.

ZHANG, J.; CHEN, W.-N.; ZHAN, Z.-H.; YU, W.-J.; LI, Y.-L.; CHEN, N.; ZHOU, Q.
A survey on algorithm adaptation in evolutionary computation. Frontiers of Electrical
and Electronic Engineering, v. 7, n. 1, p. 16-31, 2012. ISSN 1673-3584. Disponivel em:
<https://doi.org/10.1007 /s11460-012-0192-0>.

Zhang, J.; Chung, H. S.; Lo, W. Clustering-based adaptive crossover and mutation
probabilities for genetic algorithms. IEFE Transactions on Fvolutionary Computation,
v. 11, n. 3, p. 326-335, June 2007. ISSN 1941-0026.

ZHANG, J.; SANDERSON, A. C. Jade: Adaptive differential evolution with optional
external archive. IEEE Transactions on Evolutionary Computation, v. 13, n. 5, p.
945-958, 2009.

http://www.sciencedirect.com/science/article/pii/S0925231218301735
https://doi.org/10.1023/A:1009665513140
https://doi.org/10.1109/ISCBI.2015.8
https://doi.org/10.1016/j.amc.2012.10.067
https://doi.org/10.1007/s11460-012-0192-0

Appendix

147

148

APPENDIX A - DETAILED EXPERIMENTAL RESULTS

A.l1 HYPERPARAMETER ANALYSIS - NUMBER OF PBT WORKERS

Figure 32 — Comparing the 30% best policies trained with different sizes of the population
of PBT workers: 4, 8, and 16. The comparisons have been made between
samples of the best fitness found in the executions of the HCLPSO algorithm
solving functions 1-16 from the CEC17 benchmark set with the 30% best

trained policies of the training set available for each function.

(a) Function 1

(b) Function 3

(c¢) Function 4

g @ £ @ £ @
£ 0.8 = £ 0.8 = £ 0.8 =
: £ g" £ g" £
; -0.4 g ; -0.4 g ; -0.4 g
o -0.0 ¢ L -0.0 ¢ T -0.0 ¢
5 £ 5 £ 2 £
E —O.QE E —O.QE E —O.QE
5 -0.8 £ 5 = -0.8£ 5 i -0.8¢
a 8 16 a 8 16 a 8 16
Number of PET werkers Number of PET workers Number of PET werkers
(d) Function 5 (e) Function 6 (f) Function 7
n n n
g [g [g [
E 0.8 2 E = 0.8 2 E = 0.8 2
> > >
E -0.4 g E -0.4 g E -0.4 g
[:=] [:=] [:=]
= -0 2] -0 2 W -0 2
5 E 5 E 5 E
5 -0.4E 5 -—0.4 5 -—0.4
2 c 2. c - c
E -0.882 En 0,82 Ex 0,82
= a 8 16 = a 8 16 = a 8 16
Number of PET workers Number of PET workers Number of PET workers
(g) Function 8 (h) Function 9 (i) Function 10
g @ g @ g @
U = [T - o -
J‘:‘, =, 0.8 2 fé =, 0.8 2 fé =, 0.8 2
> > >
; -0.4 g ; -0.4 g ; -0.4 g
<o -0 Y <o -0 4 < wm -0.0 %
£ £ £ £ 5 £
= -—0.4 = -—0.4 = -—0.4
<] 0 z 2 0 z 2 0 z
5 & I-—o.s,@ 5 & I-—o.s,@ 5 E I-—o.s,@
4 8 16 8 16 4 8 16
Number of PET workers Number of PET workers Number of PET workers
(j) Function 11 (k) Function 12 (1) Function 13
g o8 ¥ g g 0.8 &
e = e] L
2 Loa 7 2 g 0.4 %
= v = b= =
[-0.0 U] < w -0.0 ¢
% E s 5 g
L -—0.48 = = -0.48
£ £ 2, g, ¥
E -0.85 E = 5 = -0.85
a 8 16 4 8 16 a 8 16
Numbper of PBT workers Number of PBT workers Number of PET workers
(m) Function 14 (n) Function 15 (o) Function 16
¢ . & o & o
(N 2 v = v -
t‘; I 0.8 _z ;g = 0.8 - J‘:‘, =, 0.8 2
H] lo.a I = 0.4 Z = 04 A
= o =] g g
& 0.0 © S -0.0 ¢ Taw -0.0 ¢
£ E 5 E = £
L -0.48 = -0.4& = —-0.4:¢
& £ B = B =
£ -0.8F EA -0.88 EA -0.88
=2 z z

4 8 16
Number of PET workers

Source: Produced by the author.

4 8 16
Number of PET workers

8 16
Number of PET workers

149

Figure 33 — Comparing the 30% best policies trained with different sizes of the population
of PBT workers: 4, 8, and 16. The comparisons have been made between
samples of the best fitness found in the executions of the HCLPSO algorithm
solving functions 17-30 from the CEC17 benchmark set with the 30% best
trained policies of the training set available for each function. The original
p-values were computed with the Mann-Whitney U test.

(a) Function 17 (b) Function 18 (c) Function 19
n " "
£ g b v g v
fe Io.s E e 0 Io‘s E g Io‘s E
2 0.4 % z lo.a 7 H loa 2
= a = = = o
w -0.0 g LY -0.88 ‘0.0 E & ‘0.0 E
. —0.ag i 048 o 048
a, Z 2 2 o 2 2 ¢
ER -0.882 En -0.8° & -0.8F
= a 8 16 B a a 16 B a a 16
Number of PBT workers Mumber of PET workers Number of PBT workers
(d) Function 20 (e) Function 21 (f) Function 22
1 w o
g o8 % g o8 & g o8 &
Eld e 5 E 5 €
H] lo.a I E 0.4 2 E 04 A
5 = T = T
) ‘0.0 E 2 o0 £ = -00 £
& _04f c -—0.42 c -—0.42
g o g a5 g
EA -08E E -0.88 E -0.88
= a 8 16 = a 8 16 = a 8 16
Numbper of PBT workers Number of PBT workers Number of PBT workers
(g) Function 23 (h) Function 24 (i) Function 25
e & g
g Io‘s E 2 Io.s El g Io.s El
B s = z = €
2 Loa 7 S 0.4 L S 0.4 %
= = -
m = @ k-] @ k-]
& 0.0 U & -o0 @ e -0.0 ¢
5 £ 5 £ B £
5 " :-—D.AE‘ I 0.4 I 0.4 §
£ -08F E -0.88 E -0.88
2 a 8 16 = a 8 16 = a 8 16
Number of PBT workers MNumber of PET workers Number of PET workers
(j) Function 26 (k) Function 27 (1) Function 28
;‘f Io.s E] g Io.s E] g Io.s El
= = =
2 0.4 % 2 0.4 % 2 0.4 %
= = =
e = a = o k=
o -0.0 € o -0.0 ¢ o -0.0 ¢
5 E 5 E 5 E
5 -—0.4E 5 -—0.4E 5 -—0.4E
a8 4] = a8 = a8 =
5 l—o.s,@ 5 l—o.s,@ 5 l—o.s,@
a 8 16 a 8 16 a 8 16
Number of PBT workers Number of PBT workers Number of PBT workers
(m) Function 29 (n) Function 30
2 2
g 0.8 5 g 0.8 &
s s s =
2 0.4 % 2 0.4 %
B) = T
o -0.0 € o -0.0 %
5 g 5 g
E -—o.aE E -—CME
E -0.8£ E -0.8E
= a e 16 = a 8 16

Number of PET werkers Number of PET werkers

Source: Produced by the author.

150

Table 12 — Mean and standard deviation (between parenthesis) of the best fitnesses found
by HCLPSO with the 30% best policies trained with 4, 8, and 16 PBT workers.

Function

4 PBT workers

8 PBT workers

16 PBT workers

© 00 N3 Uk W

W N NNNNNNNNLNNKERRHERKH@RHKH H B H §B
S © ®TI O TAER®NREO©OWNNOO W R WNRKO

50153.55(113219.43)
573.42(450.80)
404.62(1.92)
523.01(8.26)
601.62(1.95)
729.30(7.78)
826.66(9.32)
935.57(78.22)
1460.37(144.13)
1118.36(8.85)
223372.22(548615.49)
3158.39(1224.48)
1470.76(17.97)
4147.98(2371.13)
1833.34(112.17)
1809.21(28.75)
14710.11(5612.24)
1950.98(36.30)
2049.44(22.70)
2327.62(17.61)
2474.70(435.08)
2637.54(37.53)
2749.57(46.47)
2921.56(28.70)
2908.55(76.84)
3097.48(3.83)
3411.42(10.57)
3231.86(38.08)
25182.87(15798.82)

92955.86(165974.58)
601.84(417.54)
404.46(1.83)
525.53(8.97)
602.70(3.16)
731.70(8.62)
820.50(9.84)
941.72(87.33)
1437.86(130.69)
1117.41(8.00)
197619.31(448869.89)
3292.84(1307.50)
1470.41(16.94)
4373.60(2444.10)
1850.35(115.33)
1824.92(35.52)
14630.16(5666.13)
1947.57(33.13)
2052.64(26.50)
2330.59(16.43)
2758.22(599.03)
2646.84(41.34)
2757.25(32.63)
2924.27(29.30)
2913.23(62.65)
3098.04(4.59)
3411.68(5.47)
3239.36(40.91)
26796.03(17226.01)

8554.90(13973.90)
782.43(791.32)
404.35(2.09)
524.57(8.79)
602.34(3.14)
729.38(7.82)
828.06(9.84)
938.38(51.90)
1447.53(140.47)
1124.43(14.24)
379037.67(894686.73)
3138.82(1310.99)
1473.03(17.82)
4583.84(2502.11)
1836.32(114.72)
1820.76(32.15)
13821.35(5792.08)
1947.12(36.83)
2051.86(25.23)
2328.93(19.57)
2539.31(512.17)
2647.51(37.22)
2756.13(37.49)
2924.44(35.14)
2923.27(74.02)
3098.24(4.12)
3411.58(8.19)
3237.72(38.13)
27340.11(18193.29)

Source: Produced by the author.

151

Figure 34 — Comparing the best policy trained with different sizes of the population of
PBT workers: 4, 8, and 16. The comparisons have been made between samples
of the best fitness found in the executions of the HCLPSO algorithm solving
functions 1-16 from the CEC17 benchmark set. The original p-values were
computed with the Wilcoxon Rank-Sum test.

(a) Function 1

(b) Function 3

(¢) Function 4

g i g v
g E - § - 0.8 %
g H H oa T
= = L 8
™]] -0.0 ¥
o - . E
4 > > 5
-0.4
2 .18} i £
5 5 " 5 ! -0.8F
a 8 16 a 8 16 a 8 16
Mumber of PBT workers Mumber of PBT workers Mumber of PBT workers
(d) Function 5 (e) Function 6 (f) Function 7
g e ¥ g, loa g g os &
[} [} [
S oa 7 H oa [H oa I
& - & o = -
a -0.0 E b -0.0 E a -0.0 E
il 048 i -0.a8 i -0.a8
- g £ g - 021 0O g
£ | —0.8 - Em —0.8 - £ —0.8 -
< a 8 16 = a 8 16 < a 8 16
Number of PBT workers Number of PBT workers Number of PBT workers
(g) Function 8 (h) Function 9 (i) Function 10
w w n
g g g
= o] =]
g E g
= = (=
[:=] =] [:=]
o B - w
i % Pt
(=} o (=}
1] T 1
2 2 2
g EX ER
= a 8 16 = 4 8 16 = a 8 16
Number of PET workers Number of PBT workers Number of PET workers
(j) Function 11 (k) Function 12 (1) Function 13
n n w
o o T @ o 1]
£ 0.77 | -0.54 I‘“ 2 fe I"" 2 e l” 2
2 04 3 2 0.4 3 H loa 2
B T B T = o
= -0.0 g i -0.0 g L] -0.0 E
c —0.4 c -0.ag i 048
a b ad i g i
a 0 = a © = e E
E -0.88 EA -0.88 ER -0.8 %
= 4 8 16 = a 8 16 = a 8 16
Number of PET workers Number of PET workers Number of PBT workers
(m) Function 14 (n) Function 15 (o) Function 16
& ©] " »
o o @
£ 2 £e o0 n 0.06 l"" 2 -
= =
z Z z 0.4 % 2
=) - n 0 029 -00 © &
5 £ 5 E %
E E E 0.06 0.29 0 _DAQE E
: £ £s oo I 088 ‘
=z =z 4

a 8 16
Number of PET workers

a4 8 16
Number of PET workers

Source: Produced by the author.

4 a8 16
Number of PET workers

152

Figure 35 — Comparing the best policy trained with different sizes of the population of
PBT workers: 4, 8, and 16. The comparisons have been made between samples
of the best fitness found in the executions of the HCLPSO algorithm solving
functions 17-30 from the CEC17 benchmark set. The original p-values were

computed with the Wilcoxon Rank-Sum test.

(a) Function 17

(b) Function 18

(c) Function 19

g] 5] 5
- o8, 2 e 0 003 -0.03 IM 2 €
H o4 I H lo.a I H
= = . = =
& 0o U T 0.03 0 023 o0 &
g 048 g 04§ g
g 0.03 023 © g

£ -08F ER l—o 8L =
z a a 16 2 a a 16 2 a a 16

Number of PBT workers Mumber of PBT workers Mumber of PBT workers

(d) Function 20 (e) Function 21 (f) Function 22
g v g v & v
_\é . 0 l0<3 ? _\é 0.8 ? _\é . l0<3 ?
2 -0.4 = -0.4 = -0.4
5 o E o E 5
oo 0 -0.06 -o0.0 E o 0.0 E) 0.91 1] E
5 E 5 E 5 E
e —0.48 © —0.48 e 048
£ 2 2 2 2 2
ER 0-0¢ o —08f £ —0sf ER o —0sf
E T 3 T E T

a a 16 a a 16 a a 16

MNumber of PBT workers MNumber of PBT workers MNumber of PBT workers

(g) Function 23 (h) Function 24 (i) Function 25
g] 5] g v
e l“ 2 e 0 015 018 l"‘s 2 £e 0 0 l" 8 2
z lo.a I 2 loa I 2 lo.a I
T a 0.0 ?E: o 015 0 0.0 ?E o 0 m 0.0 ?E-*
i 048 g 048 g 048
2 o TE 2, o1s o TE 2 s o TE
R -0.8E ER -08E ER -08F
= = 4

a a 16 a a 16 a a 16

Number of PBT workers Number of PBT workers Number of PBT workers

(j) Function 26 (k) Function 27 (1) Function 28
g v g v g v
e (21 0.23 l“ 2 § lo's E : lo‘s s
2 loa 7 2 loa 7 2 lo.a 7
& 0 006 oo @ g oa © Ea 00 ©
% g % g % g
L 048 e 04§ e 04§
£, 023 006 O g - g 2. 0 2
£ —0.8 o £ —0.8 - Em —0.8 -
2 2 2

4 8 15
Number of PBT workers

(m) Function 29

mMumber of PET workars
8
o

4 8 16
Number of PET workers

8 15

4
Number of PBT workers

Source: Produced by the author.

Mumber of PET workers

4 8 16
Number of PBT workers

(n) Function 30

< 0 018 -0.15 l"‘s

0.4
o -0.18 1] -0.72 X

-0.a
0.15
-3 [—o.a =

4 a8 16
Number of PET workers

nsfarmed pvalue

Tr

153

Table 13 — Mean and standard deviation (between parenthesis) of the best fitnesses found

by HCLPSO with the best policy found with 4, 8, and 16 PBT workers.

Function

4 PBT workers

8 PBT workers

16 PBT workers

© 00N Uk W

W NNNNNNNNNNKRRRRHKRBRR B £
OV XN R RWNRO®©WNNO WA WN RO

2744.27(2600.24)
300.48(0.90)
403.19(1.34)
512.14(5.37)
600.05(0.03)
722.29(4.13)
815.16(5.82)
900.22(0.21)
1362.72(107.01)
1111.95(4.87)
8241.11(4857.18)
2145.56(440.76)
1458.80(15.29)
2163.20(531.44)
1654.40(65.92)
1753.24(20.68)
6665.20(2585.54)
1920.52(17.21)
2026.35(8.86)
2271.90(42.36)
2238.31(20.40)
2576.35(104.45)
2655.83(82.26)
2888.03(96.81)
2803.48(137.71)
3093.95(2.27)
3392.54(58.48)
3191.93(21.81)
13619.13(7645.78)

2261.78(1571.10)
301.82(2.21)
402.41(1.61)
509.38(3.93)
600.01(0.01)
719.86(3.17)
813.70(5.27)
900.07(0.14)
1335.09(70.03)
1110.23(5.38)
8313.78(5166.85)
1829.25(195.86)
1455.57(13.76)
2054.91(474.41)
1665.60(81.20)
1774.11(28.82)
7075.14(3470.86)
1916.80(5.96)
2013.99(8.10)
2267.90(44.81)
2235.68(12.24)
2573.66(93.05)
2660.49(108.84)
2873.30(88.30)
2822.31(124.97)
3094.21(2.01)
3394.52(65.68)
3195.47(38.34)
14378.93(7159.92)

1871.58(2570.42)
302.28(2.95)
402.69(2.21)
511.32(3.45)
600.00(0.00)
719.33(3.61)
812.42(4.42)
900.12(0.08)
1318.66(72.49)
1110.61(4.36)
7183.36(5164.44)
1654.86(143.25)
1451.57(16.47)
2340.42(932.14)
1626.69(39.20)
1756.49(17.67)
6672.07(2674.56)
1915.02(9.97)
2016.44(13.58)
2228.83(39.88)
2229.63(13.36)
2556.44(126.63)
2651.78(74.43)
2862.97(132.21)
2826.19(188.55)
3092.26(1.42)
3380.92(44.65)
3199.48(19.17)
12464.23(7271.84)

Source: Produced by the author.

154

Figure 36 — Mean fitness of the best policy found after some time of training in hours
with 4, 8, and 16 PBT workers. Each plotted point in the lines shows the
mean best fitness found by HCLPSO controlled by the best policy found so
far. Only functions 1-16 are shown.

(a) Function 1 (b) Function 3 (c¢) Function 4

—— z _ —— z ——

% 407 e fustwald 8 e funtwald F 4.08x 107 e puntwald

7 | 12 POT paceers 3 | 18 PAT e 4 | 18 POT e

. > 2

Ea0s | LU | FA0Tx107 |

- T 4.06 % 107

UL Emx 107 'I faosxio’ |

E 5 £ |

= | = Z 4.04 % 107

e 10% 3 - z ; >

s e gAx10® Al = 4.03x 107

g —_— Zaxi0r T =] -
1 4 7 19 13 16 19 72 24 1 4 7 10 13 16 19 72 24 : 1 4 7 10 13 16 19 77 24
Accumulated execution tme hours) Accurmulated execution tme hours) Accurulated execution tme (hours)

(d) Function 5

AP ik

I -

3 s3x10* | — PO warkers
A | 16 BT wbmrs
._3' 5.25x 107 |

= A |

§ s2wiet 4l

Z515%107

- ==

3 sax10? SE— e
E3

1 4 7 10 13 16 18 22 24
Accurmuiated execation tirme (hours)

(g) Function 8

L B.325x10°

1 4 7 14 13 16 19 22 24
Accurmulated execution tme [hours)

(j) Function 11

1.14 x 107 i et
135 % 10° | 18 PAT mcwers

-125 % 107
nizx1e® |
115 % 10% 5

1 4 7 10 13 16 19 27 24
Accurmulated esxecution tme (hours)

(m) Function 14

T 1.4735% 167 | RO
1472107 7] — R e

e

T laETsE 10t | | AR s

1.465% 10° | |
n 1.462% % 10°
LaG6x10° | |
1.4575 % 10° I
1.455x% 10*]
- 1.4525 % 107 :

{log scal

Mean fitnes:

1 4 7 10 13 16 19 77 74
Accumulated execution tme hours)

(e) Function 6

-E.ﬂﬁx'lﬂl - 2 PNT

i e
L04x10% | 16 PAT b

= .

= 6.0% x 10

£ a02x10® |

£ |

~ 6.01x 107

£ gx1pr Sm—= —_—

’ 1 4 7 10 13 16 19 72 24
Accurmnulated execution tme (hours)

(h) Function 9

9.3%10°
25%10° |
w2 % 107
15 % 100
a1x107 | |
5.05 x 107
I exio?

1 4 7 14 13 16 19 22 24
Accurnulated execution tme (hours)

(k) Function 12

Wt N ==
1 4 7 10 13 16 19 22 2a

Accurnulated esecution tme (hours)

(n) Function 15

Mean finess {og scake)
=]

—
15 PAT narbarn

1 4 7 10 13 16 19 37 2d
Accumulated execution tme (hours)

Source: Produced by the author.

[
i
g
L

=

(f) Function 7

TAw1nd

o T i
5 7.45x% 107 | iyt
£ raxiw® |

s 7.35x 107

4 |

g

c 7.3x2107 1

pell &L 1. L

c % —-—
E T2 % 10* Es

1 4 7 10 13 16 19 27 24
Accurmnulated execution tme (hours)

(i) Function 10

L 1.65 = 104

= 6x 107

1.55%10* |
1.5x 107

1.45 % 10°
l.4x 107
1.35 % 10°

g
=

1 4 7 14 13 16 19 22 24
Accurnulated execution tme (hours)

(1) Function 13

Laxw® — 4T Wk
o 1 — PR wames
¥ 2 i P by
=)

2 =R

. 1 \

& "

£ 2x10*

.‘: |

= L

=

1 4 7 10 13 16 19 22 24
Accurmulated execution tirme (hours)

(o) Function 16

1.78 = 107 (] L
76 = 10 [RINE
i 1o ‘I',_I' 18 PAT cern
TZx 100 |
L7 %104 Y
L.68 x 10° Yo [k
.66 % 10° i =
64 % 10°)
1.62 x 10°
1 4 7 10 13 16 19 77 7a
Accurmulated execution tme thours)

155

Figure 37 — Mean fitness of the best policy found after some time of training in hours
with 4, 8, and 16 PBT workers. Each plotted point in the lines shows the
mean best fitness found by HCLPSO controlled by the best policy found so
far. Only functions 17-30 are shown.

(a) Function 17

I 182%10° 4T b
A LELw 10t T i

2 nex1e® |-
T LTEx1e Lo
i 178 % 107 LS

= L77 =107 1A
= L76x 10° '8
I g

= L75x 10°
1 4 7 10 13 16 19 27 24

Accurmulated execution tme (hours)
(d) Function 20

£ z.06%10% e

= =
E om0 | | i
-] |
w2o04xie? |1
£ Rt
E 2.03x 10 | \ RS
caezxi0. | N
=
1 4 7 1013 16 19 722 2a
Accumulated execution time (hours)
(g) Function 23
= y
£ zeax10t

fzezx100

¥ 2.6x107 =

g R

= z.58%10° N —

I 2.56% 107

=
1 4 7 1013 16 19 22 24
Accurmulated execution tme [hours)

(j) Function 26

z9x10" 51

g seale)
i b

2.88x 10"
2.86 % 10
2.84 = 10~

in fitness {1

282 = 10°
Z.a8x10°

M

1 4 7 10 13 16 19 27 24
Accurmulated esxecution tme (hours)

(m) Function 29

T 3225 %107

 APET wakars

i 3e2x30] — i,
T 3.215= 107

Tozz2iwa0?

?3.205310’ e
Foz2xo A \ =

o 3.185 % 10°
I

1 4 7 10 13 16 18 22 24
Accurmuiated execation tirme (hours)

(b) Function 18

= LPAT b
: gy et
S 18 PT pers
|
A
10t ?_.
taxin’ \ \ |
Saxiot =l I'l
-_E Fxa0t % i
=
1 4 7 10 13 16 19 22 2a
Accurnulated esxecution tme (hours)

(e) Function 21

£ 2.28 % 104
g
L 226x10"

L z2.z2ax 10

=

1 &4 7 14 13 16 19 27 24
Accurnulated esecution tme (hours)

(h) Function 24

= 2.66 % 10 T
=

1 4 7 14 13 16 19 22 24
Accurnulated execution tme (hours)

(k) Function 27

T3007%100 ST
i 3.096 x 10° Ty
' 3.095 % 10° —\\

; 3.004 x 10° =

3.093 = 10¥ \

Mpan

1 4 7 10 13 16 19 27 24
Accurnulated esecution tme (hours)

Source: Produced by the author.

(¢) Function 19

E196x10° - T

Z \ e puntwald

L1a5% 100 AR P el

2 1

W l9ax1e? | |

4

£ 183x10° | |

b U

E 1.92x 10°

Z - -
1 4 7 10 13 16 19 77 24
Accurulated execution tme (hours)

¥ - 2T g

Faaex 10t — T -

Fa3ax10® | 18 PAT e

Zz3zx10° | |

B s

g 230t |

fa28x10t | |

= 228%10* Dy M

= 2z2awxio? L*v..—-_ m—

=
1 4 7 10 13 16 19 27 24
Accurmulated execution tme (hours)

(i) Function 25

L 293%10° S

= z.872x10%)

T 2e1x10?

PEELEERL

£ z.mo x 107

I z.amx10"

L 287 %100

= 7.86 x 10° =
1 4 7 14 13 16 19 22 24
Accurnulated execution tme (hours)

(1) Function 28

FO34L%10° = R
405 « 10° I. | l', e TR T
= 3ax10f (!

7 2395 x 107 | e e,

£ 339x10°

L 3.385% 10"

s 3.a38x10° -
1 4 7 10 13 16 19 27 24
Accurmulated execution time (hours)

(n) Function 30

15 PAT sctars

1 4 7 10 13 16 19 77 2a
Accumulated execution tme (hours)

156

A.2 HYPERPARAMETER ANALYSIS - NUMBER OF RL WORKERS

Figure 38 — Average execution time in seconds of one training epoch during the training
process with 1, 2, and 4 RL workers, for each training function (functions

xec. time in sec (epoach)

c. time in sec {epoch)

Exe

Exec. time in sec {epoch) Exec. time in sec [epoch)

Exec. time in sec {epoch)

1-16).

(a) Function 1

@
a
=}
a

4000

- I l .
o
1 2 a

Number of AL workers

(d) Function 5

65000

4000
- . .
[+]
1 2 a

Number of AL workers

(g) Function 8

5000

4000
- . .
o
1 2 a4
Number of AL workers

(j) Function 11

65000

4000
- I .
o
1 2 a

Number of AL workers

(m) Function 14

65000

4000
- .
[+]
1 2 a

Number of AL workers

(b) Function 3

-3
a
=)
a

&
=

Exec. time in sec {epoch)
L)
=]
(=]
=] [=]
- -
: -

Number of AL workers

(e) Function 6

-3
-]
=]
a

Exec. time in sec {epoch)
L]
& &
=] [=] =]
- -
: -

Number of AL workers

(h) Function 9

-]
a
2
k-l

Exec. time in sec (epoch)
L]
& &
o o =]
; -
: -

Number of AL workers

(k) Function 12

-3
a
=)
a

Exec. time in sec {epoch)
&)
& &
o [=] [=]
; -
: -

Number of AL workers

(n) Function 15

-]
a
2
a

B
-]
e
=]

xec, time in sec lepoch)
N
(=]
=]
(=] o
) -
: -

Mumber of AL workers

Source: Produced by the author.

Exec. time in sec {epoch)

Exec. time in sec {epoch)

c. time in sec {epoch)

Exel

Exec. time in sec {epoch)

Exec. time in sec {epoch)

4000

2000
o

&
=

2000
o

(c) Function 4

1 2 a

Nurmnber of AL workers

(f) Function 7

-3
a
=]
=)

65000

4000
- .
[+]
1 2 a4

Number of AL workers

(i) Function 10

5000

4000
- . l
[+]
1 2 4

Nurmber of AL workers

(1) Function 13

1 2 a

Nurmnber of AL workers

(o) Function 16

5000

-3
a2
=
a

4000
- . .
o
1 2 a

Mumber of AL workers

157

Figure 39 — Average execution time in seconds of one training epoch during the training

process with 1, 2, and 4 RL workers, for each training function (functions
17-30).

(a) Function 17 (b) Function 18 (¢) Function 19

= 6000 = 6000 = 6000
o o =3

2 2 2

L] L] u

2 4000 2 4000 2 2p00
& & a

c c c

£ 2000 £ 2000 £ 2000
9 9 8

5 e 5 e 5
w 1 2 a w 1 2 a w 1 2 a

Number of AL workers Number of AL workers Nurmber of AL workers

(d) Function 20 (e) Function 21 (f) Function 22

= 5000 = 5000 = 5000

=1 =1 =]

=4 =4 =

= = =

b 4000 b 4000 8 4000

ia ia @

c c c

£ 2000 £ 2000 £ 2000

8 8 g

R R 5o

"' 1 2 a "' 1 2 a '-' 1 2 a
Number of AL workers Number of AL workers Nurmnber of AL workers

(g) Function 23 (h) Function 24 (i) Function 25

= 5000 = 5000 = 8000

B B E

2 2 2

=) =) =)

= 4000 = 4000 o 4000

= = &

= = -

£ 2000 £ 2000 £ 2000

o o g

3 o 3 o & o

o 1 2 a o 1 2 a ul 1 2 a
Number of AL workers Number of AL workers Number of AL workers

(j) Function 26 (k) Function 27 (1) Function 28

= 6000 = 6000 = 6000

o o =3

2 2 2

L] L] u

2 4000 2 4000 2 2p00

& & a

e e =

£ 2000 £ 2000 £ 2000

e e N

% o 3 o = a

w 1 2 a w 1 2 a w 1 2 a
Number of AL workers Number of AL workers Number of AL workers

(m) Function 29 (n) Function 30

< 5000 = 5000

=1 =1

T z

1 4000 1 4000

I ia

£ =

W@ w

g 2000 E 2000

g 5

Z o =3 o

'“ 1 2 a = 1 2 a
Number of AL workers Mumbier of AL workers

Source: Produced by the author.

158

A.3 HYPERPARAMETER ANALYSIS - PERTURBATION INTERVAL

Figure 40 — Comparing the 30% best policies trained with different perturbation intervals:
2, 4, and 8 iterations. The comparisons have been made between samples of
the best fitness found in the executions of the HCLPSO algorithm solving
functions 1-16 from the CEC17 benchmark set. The original p-values were
computed with the Mann-Whiteney U test.

Perturbation interval perturbation interval Perturbation interval Perturbation interval

Perturbation interval

o Ioa %
lo.a

< 0.0 ©
E

048

» o l—ME

Ioa L
f E
-0.4
- 0.0 ©
E

=3

. (042

i I—oag

(a) Function 1

Io‘s

-0.4
-0.0
-0.4

I

Transformed p-value

|
o
o

2 a 8
Perturbation interval

(d) Function 5

2 a 8
Ferturbation interval

(g) Function 8

2 a 8
Perturbation interval

(j) Function 11

|
-
-
nsformed p-value

2 a4 B
Perturbation interval

(m) Function 14

Ios £
bl B
0.4 %
- o0 g
b)

° 2
-0.88

2 4 g

Perturbation interval

(b) Function 3

T Ios L
(=,] [}
b=} >
s 0.4 &
= -3
S« -0.0 U
= E
m =
g ——0.4¢
fe €
gz —0.8 =

Perturbation interval

(e) Function 6

a 2

Parturbation interval
28

Ferturbation interval

(h) Function 9

= @
[
g & I~B.8 %
=
£ -0.4 3
(= =
o= -0.0 2
i E
£ -0.4¢
Ew S
e 0.8

2 4 -]
Perturbation interval

(k) Function 12

] [
B 0.8 T=r.
2 [
IS -0 i
5 Ll 0.0 g
i E
£ -—0.4
Ew 5
b 0.8

2 a4 B
Perturbation interval

(n) Function 15

i @
[

2 0.8 %
2 £
= -4 G
[=4 k=
S -0.0 €
H E
Ew s
& 0.8

4
Perturbation interval

Source: Produced by the author.

Perturbation interval Perturbation interval Perturbation interval Parturbation Interval

Perturbation interval

(c¢) Function 4

o
=]
Transformed p-value

|
o
o

Perturbation interval

(f) Function 7

| —
o

Ferturbation interval

(i) Function 10

| —
e o
o

o o
e &
Transformed p-value

(=]
—-—
| |
e e
W

2 a 8
Perturbation interval

(1) Function 13

-0

|
o
-

Transformed p-value

|
o
w®

Perturbation interval

(o) Function 16

-0.4

—-0.4

Transformed p-value

—-—
s
-

2 4 g
Perturbation interval

159

Figure 41 — Comparing the 30% best policies trained with different intervals: 2, 4, and
8 iterations. The comparisons have been made between samples of the best
fitness found in the executions of the HCLPSO algorithm solving functions
17-30 from the CEC17 benchmark set. The original p-values were computed
with the Mann-Whiteney U test.

(a) Function 17 (b) Function 18 (c) Function 19
g Io.s ES = Io{s E T Io{s E
= [B s T
3 o4 % 2 — £ Lo.a %
c LY € 4 & £ 4 4
s 00 © s 0.0 © s 0.0 ¥
] 5 s -0.0 I s 0.0 F
& £ = E = E
£ -0.4E E ——0.4¢ < -—0.4¢
¢ e € & £ &
e -0.8E I 0.8 I 0.8 8
2 a4 8
Perturbation interval Perturbation interval Perturbation interval
(d) Function 20 (e) Function 21 (f) Function 22
T Ims 4 T Ioa 4 T Ioa 2
Co 5 c 5 c S
@ 5 @ > & e
£ loa [£ loa [£ loa I
f= = f= = f= o
o= -0.0 “E-? 2 -0.0 “E-? o -0.0 "E?
© E] E] E
£ -—0.4¢& € ——0.4& < -—0.4¢
Ly -0.75 1] c £ c £ 5
o —0.8 - gz —0.8 - gz —0.8 -
2 a 1 2 a 1 2 a 8
Perturbation interval Perturbation interval Perturbation interval
(g) Function 23 (h) Function 24 (i) Function 25
g Io.s g] Io‘s E g Io.s g
| = o |
g = o) » B =
£ -0.4 3 £ 0.4 L £ -0.4 %
5 0.0 B s 00 © 5 00 B
=] ‘ = B o e E
o3 g m c (]
£ -—0.4¢ £ —0.4¢ £ —0.4
£ o] £ = & £ £
B -0.82 i 0.8 8 = -0.82
2 a4 B
Perturbation interval Perturbation interval Perturbation interval
(j) Function 26 (k) Function 27 (1) Function 28
g o8 & g o8 &] o8 Y
z g 1 g B 5
g = £ £ 4
c -0.4 3 & -0.4 3 £ to.a L
S 00 §© s 0.0 § g oo ¥
=] g 2 -0, g 0.0 [
2 z 2 2 2 £
o -0.88 7 -0.88] -08°
a bl a = = [
2 4 -] 2 4 -] a
Perturbation interval Perturbation interval Perturbation interval
(m) Function 29 (n) Function 30
g 0.8 % g os &
g] @ €
] >] >
c -04 3 = -4 G
& 0.0 € 5 -00 €
5 £ 5 £
= -—0.48 = -—0.4E
¢ o < = Z
8 -0.82 £ -0.82
2 4 B 2 4 B
Perturbation interval Perturbation interval

Source: Produced by the author.

160

Table 14 — Mean and standard deviation (between parenthesis) of the best fitnesses found
by HCLPSO with the 30% best policies trained with 2, 4 and 8 iterations of
perturbation interval.

Function

2 iterations

4 iterations

8 iterations

© 00N W

W N NNNNNNNNLNHRRERKHRH B H H -
S © XTI TARXNROO©WNO WK WNRO

8554.90(13973.90)
782.43(791.32)
404.35(2.09)
524.57(8.79)
602.34(3.14)
729.38(7.82)
828.06(9.84)
938.38(51.90)
1447.53(140.47)
1124.43(14.24)
379037.67(894686.73)
3138.82(1310.99)
1473.03(17.82)
4583.84(2502.11)
1836.32(114.72)
1820.76(32.15)
13821.35(5792.08)
1947.12(36.83)
2051.86(25.23)
2328.93(19.57)
2539.31(512.17)
2647.51(37.22)
2756.13(37.49)
2924.44(35.14)
2923.27(74.02)
3098.24(4.12)
3411.58(8.19)
3237.72(38.13)
27340.11(18193.29)

43223.09(117239.20)
518.48(349.13)
404.68(2.08)
523.60(8.33)
602.16(3.01)
729.34(7.80)
826.46(9.25)
942.72(90.89)
1459.01(146.04)
1121.89(13.13)
285201.15(723700.98)
3144.16(1314.20)
1471.99(18.23)
4523.43(2531.56)
1832.89(113.27)
1815.76(30.45)
14081.42(5948.50)
1950.16(38.65)
2049.87(24.07)
2326.41(21.68)
2513.22(483.93)
2642.32(37.18)
2754.72(39.62)
2923.90(31.60)
2918.58(79.47)
3097.97(3.99)
3411.41(10.07)
3236.36(38.61)
25643.20(16621.70)

40666.55(116995.93)
556.50(478.65)
404.78(2.21)
523.61(8.45)
602.39(3.33)
728.97(7.77)
826.41(9.33)
952.62(120.92)
1469.08(151.90)
1124.91(17.91)
333109.65(890314.91)
3175.08(1361.04)
1472.86(18.41)
4752.28(2711.13)
1838.62(114.66)
1821.51(33.05)
14006.41(6180.81)
1953.75(42.47)
2051.77(25.10)
2327.25(19.89)
2481.75(456.92)
2643.65(37.15)
2756.83(36.10)
2925.38(34.23)
2928.76(86.78)
3098.93(4.72)
3411.54(7.93)
3241.20(40.14)
26388.23(17735.60)

Source: Produced by the author.

161

Figure 42 — Comparing the best policy trained with different perturbation intervals: 2,

Perturbation interval perturbation interval Perturbation interval Perturbation interval

Perturbation interval

<

4, and 8 iterations. The comparisons have been made between samples of
the best fitness found in the executions of the HCLPSO algorithm solving
functions 1-16 from the CEC17 benchmark set. The original p-values were
computed with the Wilcoxon Rank-Sum test.

(a) Function 1 (b) Function 3 (¢) Function 4
@ = @ = @
0 0.32 0.089 I"" 2 En 0 026 I""’ 2 En 0 H 0.15 I""’ 2
0.4 % £ 0.4 % E Loa 2
032 0 005 -00 g S+ 026 0 -0.0 g §em o -0.0 g
-0.4E § -0.4E § —0.4E
-0.089 0.06 0O = £ w 0 = Ew -0.15 0 =
0.8 & 0.8 & 0.8
2 a 8 2 a4 8 2 a 8
Perturbation interval Perturbation interval Perturbation interval
(d) Function 5 (e) Function 6 (f) Function 7
& = & =
a E 0.4 5 5
g EQ -0 g 5
2 E -0.4° E
= £ -0.089 LI O;E £
£ g -o.8f g
2 4 8 2 4 8 2 4 8
Perturbation interval Perturbation interval Perturbation interval
(g) Function 8 (h) Function 9 (i) Function 10
7] = = i il [
0 032 006 l“ 2 £ Ea 0 |04 015 l"‘s 2
lo.a I g g lo.a I
032 0 023 oo} § §« 04 0 023 o0}
—0.a8 £ £ y —0.a8
£ g g : ¢
006 023 O l—o.s,_E g fe 015 023 o l—o.s,_E
2 a 8 2 a 8
Perturbation interval Perturbation interval Perturbation interval
(j) Function 11 (k) Function 12 (1) Function 13
| v o v " L
i 035 l“ H a0 029 l” z o 0 0089 K l” Z
: loa 7 g loa 7 g lo.a 7
o ERIE oo E R -0.47 0.0 E Se -0.089 0 0.8 [T ?E:
—0.a8 "; X 0.8 g 0.8
1] c 1] c -0.61 -0.8 c
l—u.s,’_-’.‘ 5° l—n.s,’_-’.‘ 5° l—n 8
2 3 -3 F3 3 -3 2 3 8
Perturbation interval Perturbation interval Perturbation interval
(m) Function 14 (n) Function 15 (o) Function 16
i o o o o o
l"‘s z a0 l"‘s z a0 0.12 l"‘s 2
Loa 7 g loa 7 £ loa T
0.0 E Se U 0.0 & Se 0 -0.08 -00
048 £ —0.48 £ —0.48
¢ 2 0.12 ¢ 2w -0.12 0080 O ¢
l—o.s,’_-‘.' " l—o.s,’_-‘.' " -0.8F
2 a 8 2 a B
Perturbation interval Perturbation interval Perturbation interval

Source: Produced by the author.

162

Figure 43 — Comparing the best policy trained with different perturbation intervals: 2,
4, and 8 iterations. The comparisons have been made between samples of
the best fitness found in the executions of the HCLPSO algorithm solving
functions 17-30 from the CEC17 benchmark set. The original p-values were
computed with the Wilcoxon Rank-Sum test.

(a) Function 17 (b) Function 18 (c) Function 19
= (Y] = (Y] r L
g 0.8 % g i I:O{B % g i 0 0.21 I:O{B %
2 oa I 2 ‘oa & ‘o %
s 0.0 ¥ S« 0.089 00 ¥ S« 021 o0 0.0 ¥
i —04§ 2 —0a§ - —0a§
£ .t o083 0o £ 0 £
¥ 085 5" l—o.sg 5" l—o.sg
2 a 8 2 a 8
Perturbation interval Perturbation interval Perturbation interval
(d) Function 20 (e) Function 21 (f) Function 22
= & - u = T j ¥
< £ g £ a0 012 037 l“ z
£ z £ z £ 0a
% E % E %., 012 o0 -0.0 E
£ & £ & £ -0.a8
2 £ g £ g ¢
g £ g £ 8" 08
Perturbation interval Perturbation interval Perturbation interval
(g) Function 23 (h) Function 24 (i) Function 25
T 1] e 1]] L
£ l“ 2 £ 2 Ea 0 032 012 l“ 2
g lo.a I g 7 g lo.a I
5 00 § 5 B Se 032 o WESM o0 I
S E © E & E
£ 048 £ £ £ 048
2 a 8
Perturbation interval Perturbation interval Perturbation interval
(j) Function 26 (k) Function 27 (1) Function 28
™= v ™ v " L
4 2 ¢ l“ | En 0 0 029 l“ 2
i 4 £ loa 7 £ foa
g i S« 00 [§« 0 0 0 o0 ¥
£ -0.95 0 £ -06.286 -0 0 £
13 I 8" l—oss 8" l—o-ss
2 3 -3 F3 3 8
Perturbation interval Perturbation interval Perturbation interval
(m) Function 29 (n) Function 30
T os B 2
£ 5 £ £
£ 04 £ 3
s _0.0 © o o
o —0.4a8 < £
g —o.s._@ g .'-E
Perturbation interval Perturbation interval

Source: Produced by the author.

163

Table 15 — Mean and standard deviation (between parenthesis) of the best fitnesses found
by HCLPSO with the best policy found with 2, 4 and 8 iterations of pertur-

bation interval.

Function

2 iterations

4 iterations

8 iterations

© 00N

W NNNMNNNNNNLENHKRKERRR H HH R @B 9
SO XN RN WNRO©®EONOUNWNR O

1871.58(2570.42)
302.28(2.95)
402.69(2.21)
511.32(3.45)
600.00(0.00)
719.33(3.61)
812.42(4.42)
900.12(0.08)
1318.66(72.49)
1110.61(4.36)
7183.36(5164.44)
1654.86(143.25)
1451.57(16.47)
2340.42(932.14)
1626.69(39.20)
1756.49(17.67)
6672.07(2674.56)
1915.02(9.97)
2016.44(13.58)
2228.83(39.88)
2229.63(13.36)
2556.44(126.63)
2651.78(74.43)
2862.97(132.21)
2826.19(188.55)
3092.26(1.42)
3380.92(44.65)
3199.48(19.17)
12464.23(7271.84)

1760.98(2119.78)
301.53(1.41)
402.84(1.75)
511.61(3.82)
600.01(0.01)
720.71(3.58)
812.94(3.66)
900.08(0.22)
1336.10(73.91)
1111.88(5.68)
7734.00(4635.55)
1680.41(203.28)
1453.18(15.51)
1915.48(426.31)
1629.79(51.49)
1768.19(25.58)
5906.80(2353.29)
1912.83(5.17)
2011.56(8.88)
2237.39(23.01)
2229.00(14.11)
2573.32(107.54)
2646.33(90.12)
2881.26(95.43)
2784.57(143.34)
3093.22(1.36)
3377.73(107.29)
3191.34(17.32)
12404.88(7540.49)

1687.90(1784.74)
301.00(1.38)
402.45(1.72)
511.01(3.58)
600.00(0.00)
719.08(4.77)
812.61(4.17)
900.05(0.11)
1324.20(61.94)
1110.31(4.36)
6260.91(2744.10)
1770.48(241.27)
1448.80(12.04)
1845.26(294.09)
1636.16(45.67)
1747.28(10.59)
5871.19(2740.23)
1911.98(6.02)
2016.87(12.57)
2244.03(28.95)
2227.24(8.43)
2564.38(120.05)
2613.06(50.81)
2877.38(104.32)
2762.46(149.65)
3093.81(2.65)
3384.57(83.46)
3187.96(22.23)
12282.12(3917.91)

Source: Produced by the author.

164

Figure 44 — Mean fitness of the best policy found after some time of training in hours
with perturbation intervals of 2, 4, and 8 iterations. Each plotted point in the
lines shows the mean best fitness found by HCLPSO controlled by the best
policy found so far. Only functions 1-16 are shown.

(a) Function 1

s
7 —— 4 mratiens
107 | flames

100 ||

104 w =

1 4 7 10 13 16 19 22 24
Accumulated execution time (hours}

(d) Function 5

Mean fitness (log scale)
-
=1
-

)
AEE T =]
4 \ 3w
S825x10° |
~ ‘.%
& a I
E 5.2x 10 \‘"
T 5.15x107 4
= 51x10?
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(g) Function 8
T .
E83x107 5 = ooty
o 8.3%107 =
2
T B.25 % 107
& [
E s2x10? |
£ 8.15 % 107 "1. _
] —
= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(j) Function 11
E la4x107 — et
7 1135 x 10° “I =Ll
£ 113x100 |
g1zsx100 ||
é 1.12x10° \ \
£ 1.115 = 10° .
H L
£ 111x10°
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(m) Function 14
£ 1475x10° - 3ttt
s N 4 tinnn
o la7x107 ‘]\‘ =t
= 1.465 x 10° I‘ 1‘
w
3
g 1.46 % 10 \ \
Erassxies U e
& A A
E 145x10° \ =
= 1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)

(b) Function 3

% s 3 treoatbams
i I e
g2 10° \

s Ul

£ ex107 ‘

&

%‘xm; |\

23w B

1 4 7 10 13 16 19 22 23
Accumulated executlon time {hours)

(e) Function 6

3 Hevatiems
— & b

£ .05 %102
w 5
5 6:043 10
-_; 6,03 x 107
£ 6.02x10°

£ 6.01x10°
5 z
£ 6x10

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(h) Function 9

9.35 % 10¢

9.3x10° | — i et
9.25 x 107
9.2 % 107
8,15 % 107
8.1 =107
9,05 % 107

9 x 107 e

1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)

(k) Function 12

og scale}

Mean fitness {|

s m e
5 =
o10° | \

g |

E 105 ‘ ‘

e ||

5104 e

=

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(n) Function 15

S g
g A =
EEERTY ',\‘

= |\

4 LEi

& 1 b

= \ ¥

= T

£2x10* ! —

s e
=

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

Source: Produced by the author.

(c¢) Function 4

'%a.ngx 107 ‘ e —
¢ 4,08 % 107 e K
£ 4.07 x 107 \

T 4.06x10° ||
& 4.05 x 10° |I
= a.04x107 |

faozxi0r e

= 1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)

(f) Function 7
& TS®10T 3 theeatboms
] 4 tarinen
F7asx10t ||
£ 74ax100 ||
7.35 % 107 "
£ zaxie ||
Trasx1et b
e J

i 7.2x107]
=

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(i) Function 10

T 1esx10° 5 s
§ Lexle — S
21,55 % 107 \
% lsx1°
§ 1a5x10° |
£ lax1le? ll
£13sx10® |
z -
= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(1) Function 13
E3x10® o T
g \| — aitweien
@
2 |
& "|
& |
£2x10 \‘I
=
€ —
z e e e
z
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(0) Function 16
Tirsx1e’ e ——
S L76%10° A — & it
Sizaxior) A e
Zi72x10® |\
& L7x107 |\
freax100 L |—
£ 1.66x10° W
5 1.64x10° ¥ T L
3 B |
= 1.62 x 10°

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

165

Figure 45 — Mean fitness of the best policy found after some time of training in hours
with perturbation intervals of 2, 4, and 8 iterations. Each plotted point in the
lines shows the mean best fitness found by HCLPSO controlled by the best

policy found so far. Only functions 17-30 are shown.

(a) Function 17

S 179%10°
§178x10°
£ L77x10°
T 17610
3 175 %107
H

1 4 7 10 13 16 19 22 23
Accumulated executlon time {hours)

(d) Function 20

T 3

= .06 x 10 - 3 trenatbens
5 g e
%

L 2:05%10° fl

=
= 2,04 % 10°
w

-1 \
fzozxier | \
T 2.02%10° |
&

= 2.01x10°

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(g) Function 23

5
e 263%x10°] o]
Fe2x10? [\ = e
Z2e1x100 |||

< 28x100 |7y

¥ 2.59x10° 3
£ 2.58x10° T
T 2.57x10° T 1
& 2.56 % 10°]
= 1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)

(j) Function 26

29x10° = = 3 et
2.88%x10° | \ — S
286x10° I~
2,84 % 10° = —
2.82 % 107 \

2.8 % 10° |

an fitness {log scale}

n
[
9
&
X
o)
L]

Zarex10’ E
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(m) Function 29

3.225x 107 = 7 freeaibms

322x10° % | =
3218x10°) 5.

3.21x10° A
2.205 x 10° | By

3.2 %10° —— ———

3.195 x 10* % \

219 x 107 \ e

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

Mean fitness {log scale)

(b) Function 18

E . i
E a1 et
2 \'|

L T L | ‘I

g \

=] 3

= 6 x10* o

=

1 4 7 10 13 16 19 22 23
Accumulated executlon time {hours)

(e) Function 21

w

S2azx100 || — S
& —

£ 23x10° ‘I,

g 1

ﬁi?tx 10’ ‘IH

Ez226x100 | 7 \

£ 2 \
- 1 Y P T T
'5 2.24 % 107

= 1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)

(h) Function 24

T 2.76 % 10”

J27ax100 ZEE:::
52.72x10" | \ S
2 27%100 |

g 2.68 x 10% H

g

£286x10° | =

T2.64x10° |

5 2.62x10% |
=

1 4 7 10 13 16 19 22 24
Accumulated execution time (hours)

(k) Function 27

3.096 x 10* =

2.0955 x 10* \. B hutiiae

3.095 x 10" L_.‘.
3.0945 x 107 \

3.004 x 107 p =
3.0933 x 107 |

3.003 x 10% \

2 3.0025 x 107
£ 1 4 7 10 13 16 19 22 24
Accumulated execution time (hours)

n fitness (log scale)

Source: Produced by the author.

(¢) Function 19

£196x100 - ~ 3 teeattens
\ B

w
z 1.95 % 10°
=194 10° |
&
£1.93x10° \
£ 1
£ 1.92x10°
5

1.91x 10?
= 1

4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(f) Function 22

T 2.38x%10°

Ezasxi0®) = s
cz23ax10° ||

=2.32x 107 ||

2 2.3x104

|

fa228x100 |

E 2.26x 107 ‘#N

Ez2dx10® N\

= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(i) Function 25

Tz2.93x10°

& . ~ 3 et
§2e2x100 || g e
c291x%10° |\

T 28x10

§ 289 x 107
£ 2.88 x 107
£ 2.87 % 10°
% 286 x 107

4 7 10 13 16 19 22 24
Accurmulated executlon time {hours)

(1) Function 28

T:u 241x20°) e
&, 3.405 x 10° |5 =)o
£ zaxw |

v 3.395x10°)

é 2,39 x 107 |

f 3.385 % 10° \ ‘ﬂ_ =
£ 3.38x10° 1 —_—
=z

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(n) Function 30

E .

s = =
;4310‘ Ilﬂ — 8 taatimy
S3x10t ||

& |

£ 23100 '|||

= bl

g e

3 L, ——
=

1 4 7 10 13 16 19 22 28
Accumulated executlon time {hours)

A.4 HYPERPARAMETER ANALYSIS - QUANTILE FRACTION

166

Figure 46 — Comparing the 30% best policies trained with different quantile fractions:
0.125, 0.25, 0.375. The comparisons have been made between samples of
the best fitness found in the executions of the HCLPSO algorithm solving
functions 1-16 from the CEC17 benchmark set. The original p-values were
computed with the Mann-Whitney U test.

Quantile fraction
0.375 0.25 0.125

Quantile fraction
0.375 0.25 0.125

Quantile fraction

0.375 0.25 0.125

Quantile fraction
0.375 0.25 0.125

Quantile fraction
0,375 ©.25 0.125

(a) Function 1

o
—

0.125 0.25 0.375
GQuantile fraction

(d) Function 5

T—

L
B oW

0.125 0.25 0.375
Quantile fraction

(g) Function 8

o
—

0.125 ©0.25 0.375
GQuantile fraction

(j) Function 11

o
—

0.125 0.25 0.375
Quantile fraction

(m) Function 14

|
I

0.125 0.25 0.375
Quantile fraction

[
e e
w &
Transformed p-value

|
e
-
nsformed p-value

L
°
Transformer p-value

[
o e
®

0.8 &
g
0.4 3
0.0 §
E
-0.4¢
Z
-0.8 5
os %
z
-0.4 }
0o ©
o0 §
-—0.48
&
—0.8 -

(b) Function 3

@
cw 0.8 =
=i g
o -0.4 3
ge z
e [T
B 5 0.0 £
E -—0.4E
on a (=
;! l—o 82
S 0.125 0.25 0.375
Quantile fraction
(e) Function 6
[
Ea In.s b
Ta 0.4 L
-] B
Tn -0.0 €
= E
& e —0.4f
gn 5
5 -0.82
S 0.125 0.25 0.375
Quantile fraction
(h) Function 9
[
cw I~0.S]
= £
o 0.4 A
£e z
= [T}
3 1 0.0 g
[-—0.4§
gm 5
;’: 0.8
S 0.125 0.25 0.375
Quantile fraction
(k) Function 12
[
Eu In.s b
A 0.4 L
£8 =
wn -0.0 2
=N E
& e -—0.4¢
&n 5
= l—o.s,@
S 0.125 0.25 0.375
Quantile fraction
(n) Function 15
S
£q
Eo
=0
e
E
SR
i
¢ 0.125 0.25 0.375

Quantile fraction

Source: Produced by the author.

Quantile fraction
0.375 0.25 0.125

Quantile fraction
0.375 0.25 0.125

Quantile fraction

0.375 0.25 0.125

Quantile fraction
0.375 0.25 0.125

Quantile fraction
0,375 ©0.25 0.125

(c) Function 4

Transformed p-value

o
-
| |
o ©
L.

0.125 0.25 0.375
GQuantile fraction

(f) Function 7

08 §
g
-0.4 3
0.0 ©
E
—0.4
£

0.125 0.25 0.375
Quantile fraction

(i) Function 10

Transformed p-value

=]
—
| |
e e
W

0.125 0.25 0.373
Quantile fraction

(1) Function 13

Io.a

-0.4
-0.0

-0.4

Transformed p-value

—
s
w®

0.125 0.25 0.375
Quantile fraction

(o) Function 16

Io{s E
z
0.4 4
00 @
00 {
L 0,88
&

l—o.a =

Tr

0.125 0.25 0.375
Quantile fraction

167

Figure 47 — Comparing the 30% best policies trained with different quantile fractions:
0.125, 0.25, 0.375. The comparisons have been made between samples of
the best fitness found in the executions of the HCLPSO algorithm solving
functions 17-30 from the CEC17 benchmark set. The original p-values were
computed with the Mann-Whitney U test.

(a) Function 17 (b) Function 18 (c) Function 19
[L
- T In.a E - Io{s E
= o N = =i H
£a R 0.4 % g ro.a }
fa s 2 s A
£e £s % Eo o0 ©
28 =1 "0 E 28 et -
5" §° -—0.4¢ 5" -—0.42
0 c =
SR o l—o.s,? SR -0.8F
M m M
© 0.125 0.25 0.375 S 0.125 0.25 0.375 ¢ 0125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(d) Function 20 (e) Function 21 (f) Function 22
& 08 § & 0.8 § . os %
SR - SR - =R]
ga 0.4 % ga 0.4 L £3 loa £
gd = fd = gs o
o0 -0.0 ¢ %N -0.0 € n -0.0 ©
= E N E = E
§° . -—oa% E" —o.a% g" i -0 A»E
comn con oW
;-! I»—os,? ; -0.82 R l—o 8L
S 0.125 0.25 0.375 S 0.125 0.25 0.375 9 0.125 0.25 0.375
Quantile fraction GQuantile fraction Quantile fraction
(g) Function 23 (h) Function 24 (i) Function 25
[o [
£ 0.8 = - o8 I £ 0.8 %
c " € =2 c c® €
o= -0.4 g 0.4 o= -0.4 3
Fal [Fal
= oo £ 2 0o ¥ e 00 £
w N -0 a i -0. wn -0
8 E =0 E =8 E
5 e 2o -—0.48 5 -0.4¢
- = -
gn 0 £ an = gn H
B l—o.a,? 5 -0.85 B -0.82
S 0.125 0.25 0.375 ¢ 0.125 0.25 0.373 S 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(j) Function 26 (k) Function 27 (1) Function 28
& o8 & - o8 Y & o8 &
s 8 g SR T s 8 g
ga 0.4 I e Lo.a o -0.4 3
£a T £e ® £a T
w -0.0 2 o B -0.0 U o n -0.0 %
£5 £ =0 E £5 £
g 0.4 £e -—0.48 g 0.4
3 2 5 £ = 2
cmn oW cn
B -0.88 5 ‘—o 8L B -0.88
S 0.125 0.25 0.375 @ 0,125 0.25 0.375 S 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(m) Function 29 (n) Function 30
[(]
£n In.s E En Io‘s E
om 0.4 % Ha loa I
£d - gs 5
= a w
% R 0.0 E % n 0.0 E
E -] —0.4 § e -—0.4¢
g 5 amn &
: l—o.s,@ g I—M.'-E
S 0.125 0.25 0.375 6 ©0.125 0.25 0.375
Quantile fraction Quantile fraction

Source: Produced by the author.

168

Table 16 — Mean and standard deviation (between parenthesis) of the best fitnesses found
by HCLPSO with the 30% best policies trained with different quantile frac-

tions: 0.125, 0.25, and 0.375.

Function

Quantile: 0.125

Quantile: 0.25

Quantile: 0.375

© 00N W

W N NNNNNNNNLNHRRERKHRH B H H -
S © XTI TARXNROO©WNO WK WNRO

8554.90(13973.90)
782.43(791.32)
404.35(2.09)
524.57(8.79)
602.34(3.14)
729.38(7.82)
828.06(9.84)
938.38(51.90)
1447.53(140.47)
1124.43(14.24)
379037.67(894686.73)
3138.82(1310.99)
1473.03(17.82)
4583.84(2502.11)
1836.32(114.72)
1820.76(32.15)
13821.35(5792.08)
1947.12(36.83)
2051.86(25.23)
2328.93(19.57)
2539.31(512.17)
2647.51(37.22)
2756.13(37.49)
2924.44(35.14)
2923.27(74.02)
3098.24(4.12)
3411.58(8.19)
3237.72(38.13)
27340.11(18193.29)

37505.78(90437.82)
499.53(282.06)
404.40(1.95)
523.59(8.26)
601.86(2.56)
729.04(7.62)
826.67(9.23)
933.62(47.66)
1443.67(136.58)
1119.25(9.48)
214801.41(539974.14)
3045.63(1203.92)
1470.40(17.60)
4475.72(2481.99)
1840.97(114.93)
1816.52(30.98)
13769.20(5606.61)
1945.81(34.07)
2048.42(23.46)
2328.44(16.67)
2593.18(541.45)
2644.23(38.16)
2756.51(35.74)
2922.42(30.99)
2911.61(73.64)
3097.86(3.81)
3411.57(8.02)
3235.81(39.29)
25022.49(15927.70)

51867.84(105183.66)
511.77(341.93)
404.46(1.95)
523.84(8.49)
601.95(2.48)
729.35(7.76)
827.61(9.61)
930.78(36.92)
1445.08(138.06)
1119.34(9.82)
211618.46(532502.97)
2981.10(1152.46)
1469.75(17.36)
4488.95(2511.58)
1835.11(119.48)
1817.83(32.85)
13659.41(5519.70)
1944.49(32.87)
2049.26(23.83)
2328.73(15.28)
2576.45(535.01)
2643.73(40.53)
2756.15(35.52)
2923.01(30.20)
2910.39(70.84)
3097.87(3.89)
3411.44(9.26)
3234.92(38.96)
25323.89(16111.62)

Source: Produced by the author.

169

Figure 48 — Comparing the best policy trained with different quantile fractions: 0.125,
0.25, 0.375. The comparisons have been made between samples of the best
fitness found in the executions of the HCLPSO algorithm solving functions
1-16 from the CEC17 benchmark set. The original p-values were computed
with the Wilcoxon Rank-Sum test.

(a) Function 1

Quantile fraction

(b) Function 3

Quantile fraction

Source: Produced by the author.

(¢) Function 4

L L
sm 0 |-pz9 REH I°° 2 Sin Ssm 0 0.21 o008 [°% 2
aa Fy Ba 8a 7
=] o4 L g g o4 L
£e © £e £e ®
*n 029 o HNW o0 © s “h 021 0 029 00 ©
£a E £n £n E
g9 048 E@ g° 043
= -0.55 -0.74 [€ 2 2w -0.06 020 0O ¢
cv"~‘- -0 °R °R * -0
m m m
< 0,125 0.25 0.375 < 0.125 0.25 0.375 < 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(d) Function 5 (e) Function 6 (f) Function 7
v v L
£ 0 N 0.08 IM] £m IM = £ 091 EXTH I” z
B loa 7 B loa 7 B loa 7
£e 0.15 o0 015 B £e B £e ki
s w B8 i 0.0 E s) 0.0 E s) 0.0 E
§° -0.42 59 -0.42 59 -0.42
€ € c
Sp A% gy B [—o 8k R [—n 8k R 2 [—n 8
]]]
< 0,125 0.25 0.375 < 0.125 0.25 0.375 < 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(g) Function 8 (h) Function 9 (i) Function 10
c £ £ os %
S En En 0 0.18 5
SN =] £0 3 7
o= L g 0.8 &
£2 Ee £2 018 o 003 b
<8 8 28 = =
003 0O =
ox SR oR [—o.a £
m]]
S 0.125 0.25 0.375 < 0,125 0.25 0.375 < 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(j) Function 11 (k) Function 12 (1) Function 13
& L - : oa % & L
s : E £ n 0 BT 0.97 —$ g ﬂ E
o a T o4 & o a
£e g Eclezr o RN b e g
@ .37 K = @
eq £ s 5 (O 7% <8 £
ce e g -0.48 ce s
[n = e o w
Fmn N Iy -0.97 -0.74] g Fmn e
5 £ 5 £
S 0125 0.25 0.375 S 0.125 0.25 0.375 S 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(m) Function 14 (n) Function 15 (o) Function 16
o o
cswm 0 -0.03 R 1% 2 Sin 08 2 Sin
=] > s H N
o lo.a § it Lo.a § o
£° © £° © £0
= 0.03 0 (EL -0.0 g ah -0.0 g =0
EQ’ —0.48 Ed -0.4.& Ed
= o £ = £ =
°B m [—0-53 °R [—o.a,_E sr
] o o
< 0,125 0.25 0.375 < 0,125 0.25 0.375 < 0,125 0.25 0.375

Quantile fraction

170

Figure 49 — Comparing the best policy trained with different quantile fractions: 0.125,
0.25, 0.375. The comparisons have been made between samples of the best
fitness found in the executions of the HCLPSO algorithm solving functions
17-30 from the CEC17 benchmark set. The original p-values were computed
with the Wilcoxon Rank-Sum test.

(a) Function 17

Quantile fraction

(b) Function 18

Source: Produced by the author.

(c) Function 19

(Y] (Y] L
g 2 I:O{B _z g 2 I:O{B _z g 2 FYTH -0.15 I:O{B _i
'{ér«_ lo.a '{ér«_ lo.a '{ér«_ lo.a I
E2 = E2 = EC ©
il K il i 6.0 U
o ﬂ 0.0 £ P ﬂ 0.0 £] n 0 0.29 0.0 £
E@ -0.48 E@ -0.48 £@ -0.48
2 € 2 003 0O € 2w 015 0329 0 ¢
o w 1] o wm - om - -
& [—o.a,_f & -0.85 & -0.8%
< 0,125 0.25 0.375 < 0,125 0.25 0.375 < 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(d) Function 20 (e) Function 21 (f) Function 22
—_— i i i
Sin 0 0.8 _: Sin 0.8 _: Sin 0.8 _:
£ - z £a z £a 2
£ lo.a [£ lo.a [£ lo.a T
£ o : o feo 5 g o
i 042 o0 0.35 o0 E 2% | 0.0 E =% 0.0 E
£9 i 048 £9 048 £9 048
3 ; £ = £ = £
e 035 o© & 2w g EPY 0.59 o.22 €
B m [—0-8&‘ 5 08 g B D3t
a 0.125 0.25 0.375 a 0.125 0.25 0.375 a 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(g) Function 23 (h) Function 24 (i) Function 25
o8 % o8 %
tw 0 -D.06 0.03 £ 8 2 tw 0 -0.03 8 2
B =2 f iz f
g= g= o4 L g to.a I
£° £° = £° =
J - o @
2 ﬂ 0.06 2 n 0.0 £ 2 ﬂ 0 0.0 £
£° £° 048 £° —0.48
2w -0.03 S £ Sw 0.03 0 c
r r -0.85 r -0.85
< 0,125 0.25 0.375 < 0.125 0.25 0.375 < 0.125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(j) Function 26 (k) Function 27 (1) Function 28
v v [
cw o [oEml 003 [°° 2 £ %) 2 So 7
£q z £q z g0 z
v ro.a & o Lo.a £ z
= - " @
Eolo37l o 023 00 B £ 00 © ta g
25 . i 20 E L £
59 048 59 -0.42 E“ -—0.48
2w 003 023 o0 € = g o 42| o <
r -0.8F ® -0.8F = = -0.82
& ©0.125 0.25 0.375 8 ©0.125 0.25 0.375 8 0125 0.25 0.375
Quantile fraction Quantile fraction Quantile fraction
(m) Function 29 (n) Function 30
[[
) I"" 2 Sq 0 023 008 I"'s 2
il 0.4 L il 0.4 %
i -] - =] L]
% ﬂ -0.0 g % ﬁ 0.23 o 0.03 -0.0 g
§° 0.4 8 §° -0.45
037 o© < -0.06 -0.03 0 =
°g 2 l—o.s,ﬁ_‘i oK l—o.sg
S 0.125 0.25 0.375 S 0125 0.25 0.375

Quantile fraction

171

Table 17 — Mean and standard deviation (between parenthesis) of the best fitnesses found

by HCLPSO with the best policy trained with different quantile fractions:
0.125, 0.25, and 0.375.

Function Quantile: 0.125 Quantile: 0.25 Quantile: 0.375
1 1871.58(2570.42) 1258.53(1497.63) 1621.28(1823.51)
3 302.28(2.95) 300.72(0.74) 301.70(1.86)
4 402.69(2.21) 402.48(1.68) 402.46(2.01)
5 511.32(3.45) 512.01(4.15) 510.20(3.69)
6 600.00(0.00) 600.01(0.01) 600.01(0.00)
7 719.33(3.61) 719.74(2.91) 719.00(4.11)
8 812.42(4.42) 814.02(4.79) 811.28(3.39)
9 900.12(0.08) 900.10(0.13) 900.05(0.04)
10 1318.66(72.49) 1320.06(102.69) 1323.21(118.30)
11 1110.61(4.36) 1110.95(5.33) 1109.03(3.49)
12 7183.36(5164.44) 6848.12(3165.11) 6606.88(3718.77)
13 1654.86(143.25) 1571.99(179.09) 1743.12(295.09)
14 1451.57(16.47) 1448.30(14.26) 1451.34(15.61)
15 2340.42(932.14) 2005.76(467.43) 1890.91(319.05)
16 1626.69(39.20) 1619.82(30.65) 1631.08(46.30)
17 1756.49(17.67) 1760.80(15.94) 1768.71(32.55)
18 6672.07(2674.56) 5555.61(2253.23) 5598.84(2615.43)
19 1915.02(9.97) 1913.94(5.45) 1914.20(8.03)
20 2016.44(13.58) 2017.15(11.41) 2011.34(8.09)
21 2228.83(39.88) 2254.38(32.75) 2245.35(29.77)
22 2229.63(13.36) 2225.95(9.75) 2221.92(12.64)
23 2556.44(126.63) 2571.14(112.93) 2547.03(128.80)
24 2651.78(74.43) 2611.25(67.47) 2620.95(62.03)
25 2862.97(132.21) 2873.79(90.61) 2876.91(93.42)
26 2826.19(188.55) 2746.13(142.64) 2778.84(146.76)
27 3092.26(1.42) 3093.23(2.65) 3093.57(2.07)
28 3380.92(44.65) 3384.09(114.58) 3383.62(116.58)
29 3199.48(19.17) 3191.80(28.09) 3195.51(23.20)
30 12464.23(7271.84) 11386.59(6676.41) 12948.80(8259.95)

Source: Produced by the author.

172

Figure 50 — Mean fitness of the best policy found after some time of training in hours
with quantile fractions of 0.125, 0.25, and 0.375. Each plotted point in the
lines shows the mean best fitness found by HCLPSO controlled by the best
policy found so far. Only functions 1-16 are shown.

(a) Function 1

@
z i — o
g7 || =
o

210 ‘11

= |

@105 |

E | |

E

10 |

b IS

¥ R
F

1 4 7 10 13 16 19 22 24
Accumulated execution time (hours)

(d) Function 5

T
® [N — vis
£ s3x10? | =t
I
2 5.25% 107 \I\
£ s2x100 “Q
- s
ES1sx1° |
] 3
-
= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(g) Function 8
£ 835x107 - a1m
= —om
& — aws
o 83x10°
E 8,25 x 107
£ m2xi0? i
= p
£ 815 x 107 e
] =i S——
= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(j) Function 11
) % ~ aum
E L14x10° 5 =
L1135x10° || =
2 113x10° ||
f1125x10% |
£ 1azx100 ||
£ 1.115x10° |
1 ——
£ Llxie?
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(m) Function 14
] = ~ e
5 147x10° 1 —r
|| | — s
£ 1465 x 10° |
2
& 148x10° |
B |
* 1.455 x 10° -
H X
Z 1.45x10 -

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(b) Function 3

I - a1

\ =k

6 x 10° il

"
&
®
g

P —

1 4 7 10 13 16 19 22 23
Accumulated executlon time {hours)

(e) Function 6

Moan fitness {log scale)

v
w
®
g

2 E05%10% - s
] M —
\l — s

. 6.04 % 107

g

= 602x107 | |

-4 |

¥ 8.02x10°

6.01 x 107
6310 —

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(h) Function 9

Mean fit

93x10° | =

8.25 x 107 —
= 9.2x107
.15 x 107
9,1 % 107
9,05 x 167
9107 = —
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(k) Function 12

og scale}

Mean fitness

— aws

-
c
L]

[
=)
r

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(n) Function 15

Mean fitness {log scale}
|-
o
n

2x%10° A

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

Source: Produced by the author.

(c¢) Function 4

T 4.09 % 10° =
& . f—
faoaxior || =%
Ta.07x10? ||

= 4.06 x 107
£a05x10° ||
Eaoax1i0f |

c SO

% 4.03x 107 —
t3

1 4 7 10 13 16 19 22 23
Accumulated executlon time {hours)

(f) Function 7

7.5%107 - s
w — s
7.45x 10° || — aams
Taxie? ||
7.35x10° |
7.3 107
7.25 = 107
7.2 % 107

Mean fitness {log scale}

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(i) Function 10

Tesx109 5 = e
¢ Lex10® St
£ 1.55 % 10° ‘l
% lsx1e° ‘
é‘ 1.45 x 10°
£ lax1le? a
£ 1.35%10°
]
= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(1) Function 13
% 3x10* \ —
7 TS
g 1
£ il
fcor
@ i
E2x10 kN
& E
i ==
2 T
1 4 7 10 13 16 19 22 24
Accumulated execution time (hours)
(0) Function 16
2176%10° - ~ a1z
Firaxier | =
Z1.72x10° A
T LTx10’

fresxier ||
Eueex10® iy
£ 1.64 % 10° 1!
f1e2x100 ==
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

173

Figure 51 — Mean fitness of the best policy found after some time of training in hours
with quantile fractions of 0.125, 0.25, and 0.375. Each plotted point in the
lines shows the mean best fitness found by HCLPSO controlled by the best

policy found so far. Only functions 17-30 are shown.

(a) Function 17

Limzxiet o — s
% Le1x10® | — o
2 1.8x10°
- L79x10°
f1rax10® [T |
3 14
grrrxe L
g 1.76x10% = e e
; 1.7% x 107 e ———
1 4 7 10 13 16 19 22 24
Accumulated execution time {hours)
(d) Function 20
% 2.06x10° —am
% ~aws
c205x10° ||
= |
204 % 10°
&
£ 2.03x10° | |
& 1N
fzoaxie'| oo ————
= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(g) Function 23
] o
T 2,63 x10% = e
VI 2,62 X% 103 \ BATS
g2.61x107
o 2.6x10°
2 2.50 x 107
5 2.58 % 107
= 2.57 % 10° \ \
5 2.56 x 10* e
® 1 4 7 10 13 16 19 22 24
Accumulated execution time (hours)
(j) Function 26
¥ x s
= 28x10° | —am
288 10° \I, — v
g \
= 2.86 x 10* | S S
w [o
g z.84x10° | h
& 2.82x10° h ‘l‘
E 28x10° § :
] e
= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(m) Function 29
I - = i
e 322x10° 1] —i=
3215 % 107 "‘ S
Z 3z21x10° 4
v 3208x100 [}
T \\ —
= 3195 x 107
5 319x10° Al L
1 -
=

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(b) Function 18

log scala)

Moan fitnae:
"o

1 4 7 10 13 16 19 22 23
Accumulated executlon time {hours)

(e) Function 21

T

0 - — aim
Z232x10° || =t
£ 23x107 \

£ 2.28 %107 \

4 | FO—

Ezz26x100 D5

£ 22410 \

=

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(h) Function 24

T2T6x100 ——
Earax10® | —an
g = A — s
g2.72x10" ||
= * L)
w ST X0 i

é‘: 268x10® \M
£ 2.66 % 107 (=gl
£ 2.64 x 107 e

]
= 2.62x10°
1

4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(k) Function 27

2.096 x 107 5 - e
3.0055x10° ||| — s
2095100 | N

ess {log scale)

£ 3.0935 x 107 L= ’
% z0e3x10° 1
- 32.0925 x 107 ! \
=

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

Source: Produced by the author.

(¢) Function 19

£ 1.96%10°
= —am
£ 1.9%x 10" —
=] |

|

? 1.94 % 10°

~ sz

£ 183107 \,
2

£ 192 %107
@

= 1 4 7 10 13 16 19 22 23

Accumulated executlon time {hours)
(f) Function 22

= s

S2.36x10° —r

Pazanle’ N =

=

Z2z32x10° ||

e z3x10? ||

& 2.28x10° Gi‘

E226x10° S

£ 2.2ax10° < vl
£ 222x100 e=e——————
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(i) Function 25

2,93 x 107
Gz9e2x10% || =
g2901x10* ||

. 29x10° YR

4 2.89 x 109 b
£2.88 x 10*
5 2.87 x 10°
Z286x10%

4 7 10 13 16 19 22 24
Accumulated execution time (hours)

(1) Function 28

7:5 3.41 % 10° —ia
£ 3.40% x 107 =
= 3axie’
§ 2,395 x 107
£ 339x10° ~
£ 3.385 x 10° R
£ 338x10°

1 4 7 10 13 16 19 22 23

Accumulated executlon time {hours)

(n) Function 30

E _—

< =
3 ol — s
- 4% 10 |

=3x104

w

g |

3

Eax 10 |

s R

s e
=

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

174

A5 HYPERPARAMETER ANALYSIS - RESAMPLE PROBABILITY

Figure 52 — Comparing the 30% best policies trained with different resample probabilities:
0.25, 0.5, 0.75. The comparisons have been made between samples of the best
fitness found in the executions of the HCLPSO algorithm solving functions
1-16 from the CEC17 benchmark set. The original p-values were computed
with the Mann-Whitney U test.

(a) Function 1

0.25 0.5 075
Resample probability

(d) Function 5

0.25 0.5 0.75
Resample probability

(g) Function 8

0.25 .5 0.75
Resample probability

(b) Function 3

0.25 0.5 0.75
Resample probability

(e) Function 6

g o8 & g o8 & g 0.8 %
BN £ BN £ BN £
og -0 G og -0 G og -0 G
2 T e T 2 k-]
S oo 2 Zun -0 2 Zun -0 2
g £ g £ g £
[-% [-% [-%

5 -—0.4£ £ -0.4E £ -—0.4E
&m o] & m] & m &]
2 ; l—0.8,=_— 2 ; 0,82 2 ; 0,82

0.25 0.5 0.75
Resample probability

(h) Function 9

0.25 .5 .75
Resample probability

Source: Produced by the author.

(c¢) Function 4

Em Io‘s E g Io.a K é;m Io‘a £
&n - £n rr i) an Locart
=== 4 5 =} e - -] 4
=] P 2 = g °
B o0 U Sn -0.0 ¥ San 0.0 ¥
b E 2d E Lo E
= c =3 s = c
£ =044 E -0.4 £ =044
) E B £) E
gn —0.8 gn 0.8 gn 0.8
o g o

0.25 0.5 075
Resample probability

(f) Function 7

0.25 0.5 0.75
Resample probability

(i) Function 10

g Iu.s g g Iu.a g £ Io.a E
o a o a o a8
30 04 % 28 04 Za 04 %
2 T 2 k-] 5 =
on -0.0 g oo -0.0 g oo -0.0 g
g2° = g2° = g2° =
E 0 E —0.di E —0.di
] (4] (=4] (=4] (=4
f-ost
8 8 8

025 05 075 025 05 075 025 05 075

Resample probability Resample probability Resample probability

(j) Function 11 (k) Function 12 (1) Function 13
= Io‘s s g Io.s g £ Io.s g
0 [} 58] 4 [
% P ‘o4 % s 04 Z % s 0.4 %
om -0.0 E oa -0.0 § oa -0.0 §
=Q c =0 =0
£ -0.48 = 0.4 g = -—0.48
L o = -] = -] =
W i on [ERT
£t I—o.a,’_& 25 l—o.a,? 25 l—o.a,?

0.25 035 075 025 0.5 0.75 025 0.5 0.5

Resample probabilicy Resample probability Resample probability

(m) Function 14 (n) Function 15 (o) Function 16

g Io.s E ., Ims 4 £, Ims 4
50] = & =0 ©
8o 0.4 3 £s foa £s foa f
S -0.0 E Sin -0.0 E Sin 0.0 ?E:
27 s s°® 5 af g
£ —0.4 £ -—0.4. £ =044
1] = L o l = o l [
won a w B w o 3
T~ -0.82 [0.8 F [-0.8 F
=3 = 2 5 E & g =

0.25 .5 .75
Resample probability

175

Figure 53 — Comparing the 30% best policies trained with different resample probabilities:
0.25, 0.5, 0.75. The comparisons have been made between samples of the best
fitness found in the executions of the HCLPSO algorithm solving functions
17-30 from the CEC17 benchmark set. The original p-values were computed
with the Mann-Whitney U test.

(a) Function 17 (b) Function 18 (c) Function 19
g Io.s] £ Io{s E £ Io{s 5
3]] ©] O
=3 04 % 3 ‘oa 3 lo.a I
S -00 € S -0.0 ¥ Sy -0.0 ©
o £ e E 28 £
E —0.4E B . ;-—o.qg B . ;-—o.qg
" n 5 w o w o
g; -0.88 33 -0.85 33 -0.8%
0.25 0.5 0.75 0.25 0.5 073 0.25 0.5 o073
Resample probability Resample probability Resample probability
(d) Function 20 (e) Function 21 (f) Function 22
g Iu.s K -_’;m Ioa 8 Qn Ioa 3
3]] © = ®
g 0.4 L al ‘o4 § al loa %
= i ° o o o
S in -0.0 € S -0.0 © Cn 0.0 ©
2d E Lo E Lo E
E 0.4 g B 0 A»E B . -0 A»E
7 n 0 L w o w
25 I»—os,? ir l—oa,’_f ir l—oa,’_ﬁ
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
Resample probability Resample probability Resample probability
(g) Function 23 (h) Function 24 (i) Function 25
= Io‘s 2 g Io.s E g Io.s g
0] o] =1 [
g o4 =2 04 2 me 04
e - 2) (= -]
Oy -0.0 U S 0.0 & S -0 I
Lo E G E ig E
£ : :-—D.A»E £ -—0.4¢ £ -0.4¢
s s
iR I—o.a,’_& LR l—o.a,? ZR -0.82
5 5
® 025 03 o073 025 0.5 0.75 025 0.5 0.5
Resample probabilicy Resample probability Resample probability
(j) Function 26 (k) Function 27 (1) Function 28
g Io.s ES -_’2“ Io‘a 8 é"m Io‘a L
3 g] ©] =
=a 0.4 % g3 loa 7 g3 loa 2
S -0.0 € O -0.0 © Cin -0.0 ©
2g E 28 E g 5
E —D.rlé E -0 4-—; E 5 -—0 4-—;
i on w i w i
25 -0.82 ix ‘—oa,_ﬁ ir l—oa,_E
0.25 0.5 0.75 0.25 035 075 0.25 05 075
Resample probability Resample probability Resample probability
(m) Function 29 (n) Function 30
2 Ios g Z os %
Z s S0 s
=3 0.4 Z =3 0.4 2
2 - 2 =
2n -0.0 2 25 o0 &
£3 : ie ;
E . -—o.uE £ -—o.aE
E E I‘-D.Sg E E I‘—U-B,g
0.25 ©.5 0.75 0.25 0.5 0.75
Resample probability Resample probability

Source: Produced by the author.

176

Table 18 — Mean and standard deviation (between parenthesis) of the best fitnesses found
by HCLPSO with the 30% best policies trained with different resample prob-

abilities: 0.25, 0.5, and 0.75.

Function

Probability: 0.25

Probability: 0.5

Probability: 0.75

© 00N W

W N NNNNNNNNLNHRRERKHRH B H H -
S © XTI TARXNROO©WNO WK WNRO

8554.90(13973.90)
782.43(791.32)
404.35(2.09)
524.57(8.79)
602.34(3.14)
729.38(7.82)
828.06(9.84)
938.38(51.90)
1447.53(140.47)
1124.43(14.24)
379037.67(894686.73)
3138.82(1310.99)
1473.03(17.82)
4583.84(2502.11)
1836.32(114.72)
1820.76(32.15)
13821.35(5792.08)
1947.12(36.83)
2051.86(25.23)
2328.93(19.57)
2539.31(512.17)
2647.51(37.22)
2756.13(37.49)
2924.44(35.14)
2923.27(74.02)
3098.24(4.12)
3411.58(8.19)
3237.72(38.13)
27340.11(18193.29)

37505.78(90437.82)
499.53(282.06)
404.40(1.95)
523.59(8.26)
601.86(2.56)
729.04(7.62)
826.67(9.23)
933.62(47.66)
1443.67(136.58)
1119.25(9.48)
214801.41(539974.14)
3045.63(1203.92)
1470.40(17.60)
4475.72(2481.99)
1840.97(114.93)
1816.52(30.98)
13769.20(5606.61)
1945.81(34.07)
2048.42(23.46)
2328.44(16.67)
2593.18(541.45)
2644.23(38.16)
2756.51(35.74)
2922.42(30.99)
2911.61(73.64)
3097.86(3.81)
3411.57(8.02)
3235.81(39.29)
25022.49(15927.70)

51867.84(105183.66)
511.77(341.93)
404.46(1.95)
523.84(8.49)
601.95(2.48)
729.35(7.76)
827.61(9.61)
930.78(36.92)
1445.08(138.06)
1119.34(9.82)
211618.46(532502.97)
2981.10(1152.46)
1469.75(17.36)
4488.95(2511.58)
1835.11(119.48)
1817.83(32.85)
13659.41(5519.70)
1944.49(32.87)
2049.26(23.83)
2328.73(15.28)
2576.45(535.01)
2643.73(40.53)
2756.15(35.52)
2923.01(30.20)
2910.39(70.84)
3097.87(3.89)
3411.44(9.26)
3234.92(38.96)
25323.89(16111.62)

Source: Produced by the author.

177

Figure 54 — Comparing the best policy trained with different resample probabilities: 0.25,
0.5, and 0.75. The comparisons have been made between samples of the best
fitness found in the executions of the HCLPSO algorithm solving functions
1-16 from the CEC17 benchmark set. The original p-values were computed
with the Wilcoxon Rank-Sum test.

(a) Function 1

2 u
Zm 0 023 023 l“ 2
% p ‘oa [
Gy 0.23 0 0.0 ©
e E
£ _ -0.4¢
G, -023 RN o £
g E l—o.s £

0.25 0.5 0.73

Resample probability

(d) Function 5
z s !
= 0.54 -0.74 |
=
e
S 0 i
g E
£ 0.43
i 074 o002 £
it

0.25 0.5 0.75

Resample probability

(g) Function 8
2 u
= 0.63 -0.52 l“ 2
g o lo.a I
S 0.0 ©
vg E
2
£ -0.4&
L &
& § l—o.s 5

0.25 0.5 0.75
Resample probability

(j) Function 11

£
£, o8 &
=]
=a 0.4 2
2 ©
= -0.0 €
2g E
[]
E -0.48
R o [
z o~ -0.85
-

.25 a.5 0.75
Resample probability

(m) Function 14

=) [
Ss 0 026 0.06 l"" 2
w N =
E o -04 3
Sn 026 0 | 04 -00
i3 :
8 0.06 -0.4 0 0y
Z E 05 | ~0.882

0.25 0.5 0.75
Resample probability

(b) Function 3

Resample probability
0.5 0.25

0.75

0.25 0.5 0.75
Resample probability

(e) Function 6

2, loa g

= :

ge- loa 7

= 00 ©

20 E

g 0%
[=]

0.25 0.5 0.75
Resample probability

(h) Function 9

z “ o8 %
5 [:3
I oa {
9 =
oy 0.0 ©
og E
Yo E
E -0.48

&
iR 085

@ 0.25 0.5 0.75
Resample probability
(k) Function 12

2 [
Zw 0 003 0089 I‘“ 2
2N £
B 0.4 %
&n 003 0 021 -0 ©
28 E
3 -0.4¢
w -0.089 0.21 0 5
2 ; 0.8

0.25 .5 0.75
Resample probability

(n) Function 15

£ lo.s g
50 g
5g 0.4 %
E k=]
S -0.0 &
&g E
= <]
E —D.Q:
R0 [
g; -8

0.25 0.5 0.75
Resample probability

Source: Produced by the author.

(¢) Function 4

2 o8 Y
% n 0 -0.32 ;& l E
E P o4 L
Sy 032 0 012 -0 ¥
L E
c . -4
% ‘04 012 1] c
R ’ﬂ&J l—o.s g
° 0.25 0.5 0.75
Resample probability
(f) Function 7
Z U
Zw 0 o006 032 f°° 2
w z
£ P lo.a T
S -0.06 O m 00
Se E
¢ 048
%, 032 0 =
Al - |
o

0.25 0.5 0.75
Resample probability

(i) Function 10

g [
Zm 0 018 0 l"‘s -
§¢ lo.a I
Gy 018 0 a0 ©
29 E
£ -0.4&
2, -0 o 3
25 l—o.s,’_»‘.’

0.25 0.5 0.75
Resample probability

(1) Function 13

g 0.8 §
o o
=3 04 3

2 o

= -0.0 €
o E

3 -0.4&

Bn]

25 08¢

025 05 075
Resample probability
(o) Function 16

P [
I 0.7 -0.72 || el
SN P
£« - e
e 0.7 0 037 -00 ©
£ :
E o o —D.CE
g E i -0.82

0.25 0.5 0.75
Resample probability

178

Figure 55 — Comparing the best policy trained with different resample probabilities: 0.25,
0.5, and 0.75. The comparisons have been made between samples of the best
fitness found in the executions of the HCLPSO algorithm solving functions
17-30 from the CEC17 benchmark set. The original p-values were computed
with the Wilcoxon Rank-Sum test.

(a) Function 17

0.25 0.5 .75
Resample probability

(1) Function 29

0.25 0.5 0.75
Resample probability

(b) Function 18

.25 0.5 075
Resample probability

Source: Produced by the author.

(c) Function 19

iy u g u Fad | u
=) 2 0.8 % = 2 IiO{B % 2 2 0 U-SI 0.12 IiO{B %
%e’ oa I %e’ ‘oa %e’ : ‘o %
oy 0.0 © S 0.0 © G4 -0.27 0 018 o0 ¥
v3 E 3 . £ Ls 4 §
£ -0.4¢ £ - -0.4¢ £ -0.4¢
& & @ d o £ T, 012 018 0O g
gﬁ 0.8 gﬁ = I—D-S.'-"-' 2§ l—o.s,’_.‘.’
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
Resample probability Resample probahility Resample probability
(d) Function 21 (e) Function 22
2, loa g 2, loa g 2 loa 5
= [} = [} = [
e e | e |
= 00 © = 00 © = 00 ¥
24 E sg E zg E
£ -0.a§ £ -0.a§ £ -0.a§
2 c % c % ':
gg I:—D.s,_E gg -0.8F gg -0.8°
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
Resample probability Resample probability Resample probability
(f) Function 23 (g) Function 24 (h) Function 25
g u Fd u . u
Zm 0 026 0.089 l“ E Zn o8 3 2y lo‘s E
g,s lo.a I %,s oa I %,s lo.a I
a | 7 B | L1 g I oy
Sn 026 0 00 © S 00 © S 00 ¥
Yo E Yo E Yo E
E -0.4& E -0.48 E i -0.4&
S, -0.080 W o € 2 g g 012 o0 g
35 l—o.s,’_-‘.' gE 08 gE l—o.s,’_»‘.’
0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75
Resample probability Resample probability Resample probability
(i) Function 26 (j) Function 27 (k) Function 28
£ v £ v £ v
o a.8 % E_E 0.8 % em 0 0.18 0.8 %
TN z i z i z
-~ 0.4 3 -] 0.4 & E=iy -] ro.4 &
e 5 [} o B o
= 00 ¥ Oin 0.0 © O (] 00 ©
Yg E 3g E g E
% —D.-!-—E € -0 4% € o8 . —IJ.-!-—E
ﬁﬁ 0.8 ¢ EE l—n 8 E EE i l—n.s,’_»‘.’

0.25 0.5 .75
Resample probability

(m) Function 30

z z P)
=n =n 0,47 J 03 s
™ m ™ >
g9 g° Fo.a
=) Sy 0 021 .00 @
La L E
=5 [=5

£ £ _ —0.4&
%, T, -026 021 O €
2h n : -0.8E

Q o

0.25 0.5 0.75
Resample probability

179

Table 19 — Mean and standard deviation (between parenthesis) of the best fitnesses found
by HCLPSO with the best policy trained with different resample probabilities:
0.25, 0.5, and 0.75.

Function

Probabilities: 0.25

Probabilities: 0.5

Probabilities: 0.75

© 00N W

1871.58(2570.42)
302.28(2.95)
402.69(2.21)
511.32(3.45)
600.00(0.00)
719.33(3.61)
812.42(4.42)
900.12(0.08)
1318.66(72.49)
1110.61(4.36)
7183.36(5164.44)
1654.86(143.25)
1451.57(16.47)
2340.42(932.14)
1626.69(39.20)
1756.49(17.67)
6672.07(2674.56)
1915.02(9.97)
2016.44(13.58)
2228.83(39.88)
2229.63(13.36)
2556.44(126.63)
2651.78(74.43)
2862.97(132.21)
2826.19(188.55)
3092.26(1.42)
3380.92(44.65)
3199.48(19.17)
12464.23(7271.84)

1258.53(1497.63)
300.72(0.74)
402.48(1.68)
512.01(4.15)
600.01(0.01)
719.74(2.91)
814.02(4.79)
900.10(0.13)
1320.06(102.69)
1110.95(5.33)
6848.12(3165.11)
1571.99(179.09)
1448.30(14.26)
2005.76(467.43)
1619.82(30.65)
1760.80(15.94)
5555.61(2253.23)
1913.94(5.45)
2017.15(11.41)
2254.38(32.75)
2225.95(9.75)
2571.14(112.93)
2611.25(67.47)
2873.79(90.61)
2746.13(142.64)
3093.23(2.65)
3384.09(114.58)
3191.80(28.09)
11386.59(6676.41)

1621.28(1823.51)
301.70(1.86)
402.46(2.01)
510.20(3.69)
600.01(0.00)
719.00(4.11)
811.28(3.39)
900.05(0.04)
1323.21(118.30)
1109.03(3.49)
6606.88(3718.77)
1743.12(295.09)
1451.34(15.61)
1890.91(319.05)
1631.08(46.30)
1768.71(32.55)
5598.84(2615.43)
1914.20(8.03)
2011.34(8.09)
2245.35(29.77)
2221.92(12.64)
2547.03(128.80)
2620.95(62.03)
2876.91(93.42)
2778.84(146.76)
3093.57(2.07)
3383.62(116.58)
3195.51(23.20)
12948.80(8259.95)

Source: Produced by the author.

180

Figure 56 — Mean fitness of the best policy found after some time of training in hours
with resample probabilities of 0.25, 0.5, and 0.75. Each plotted point in the
lines shows the mean best fitness found by HCLPSO controlled by the best
policy found so far. Only functions 1-16 are shown.

Figure 57 — Function 1

(a) Function 1

T
2 - s
3 1 —as
w I L)
o

2100 |

= |

&

£

E 1o

<10

"o -

g —
=

1 4 7 10 13 16 19 22 24
Accumulated execution time (hours)

(d) Function 5

¥ = T

£ 53x10° — i

% ~

£ 5.25x 107

£ sa2x10

B i\

Epasx1e? B

3 e S

£ s1x10? ;
4 7 10 13 16 19 22 28

1
Accumulated executlon time {hours)

(g) Function 8

B.35%10° -

s 1 ey
E s
z 8.3 %107
= td
y ezsxie |
£ s2x100 ||
815 x107 e
i T
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(j) Function 11
% 1L14x10° = —aw
:_ 1.135x 10 | % —
£ 123x100 |
gLizsxiet | |
£ L12x100 | ||
Fainsxier |
33 1.11x10° e =]
1 4 7 10 13 16 19 22 28
Accumulated executlon time {hours)
(m) Function 14
] - s
2 o147x10®] =
7 1 — ams
E1.465x 10° \"
= \
£ 146107 |
i 1,46 x 1 i
Elassxi® |V T
E Lasx10°
b1

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(b) Function 3

E 1 =
2 I — s
g 10 |

fex10° ‘|

g

cax10? |

£

$axTn EE————
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(e) Function 6

T osx10t 5 - s
= 6.04 % 10° —

= 6.02x 107

re
Eeo2x 10°
% 6.01x 107
£
£ 6x 10% L
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(h) Function 9
= = ~ aia
£ 93x10° | o
® — ams
o 9.25 x 107
= 9.2x10°
foasx10
£ sax10
£ 9.05 x 10° \
B e
£ 9x107 e
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(k) Function 12
I s
i =
o0t ||
= I
n
E 10° ‘l ‘|
- 11
g 100 N
1 a4 7 10 13 16 19 22 24
Accumulated executlon time {hours)
(n) Function 15
T — wan
e \I\ — &6
3% 10% \ wazs
g |\
" =
b I S
o
£ H
= e
& 2x10° x
¥
=

1 4 7 10 13 16 19 22 24
Accumulated execution time (hours)

Source: Produced by the author.

(c¢) Function 4

‘%‘- 4,09 = 107 - - e

b 2 — am

& 4.08 x 10% =

2 4.07 % 107
% 4,06 x 107

& 4.05x 107

= 4.04 %107

Saosxaor) B

= 1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)
(f) Function 7

2 7.5%x107 = —

7 7.45 x 10° — ams
£ 7.4x10°

¢ 7.35 % 107

£ 73x10?

= .28 x 107

€ 725 x 1 i)

& 72107 e s
= 1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)
(i) Function 10

TLesx10® e

S 1Lex107 7| S

% — ams
o 1.55 % 10° \

i— 15x107

fra5x100 |

é: Lax10? II

S13s5x10® L

] e ——
= 1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)

(1) Function 13

3 x 10"

.
2373 =
w BI26
- \\

2

8 |

g <L

= 2x 10 \I ‘ s

£ WegEE e
" \ —_—
i ==

=

1 4 7 10 13 16 19 22 24
Accumulated execution time (hours)

(o) Function 16

L76x10° = ey
17ax1e® || ~
172x10° |\

1LTx102 [
nesx10t |||

Mean fitness {log scole}

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

181

Figure 58 — Mean fitness of the best policy found after some time of training in hours
with resample probabilities 0.25, 0.5, and 0.75. Each plotted point in the
lines shows the mean best fitness found by HCLPSO controlled by the best
policy found so far. Only functions 17-30 are shown.

(a) Function 17

] : —
#1.81x10 ’\ —
g 18x10% \

< L79%10% L‘\

w = L

T 1,78 x 10 ™)

4‘: 1.77 x 10 ~ =t]
§ 176 x 10* Y

= 1 4 7 10 13 16 19 22 24
Accumulated execution time (hours}

(d) Function 20

'!:; 2.06%10° ~ a1z
5 —am
g ~ s
205 10° \\
2,04 % 10° ‘
|
203x10° | \
2.02 % 10° N

Mean fitness {lo

2,01 %107 e
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(g) Function 23

262x10°)
2.6 x 107

2.58 x 10°

2.56 = 10°

Mean fitness {log scale}

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(j) Function 26

29x10° = = i
. 2.88 x 10° _3\ —
286x10% N~
.84 x 107 Y- —
.62 x 10° :
2.8x 10° g
78 = 107 =
.76 x 107 !
74 x 10°
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(m) Function 29

NN

Mean fitness {log scale)

NNN

] =

5 3.22x10° s

7 ~ s

3215 % 10°

= 321x 10?

§ 3.205 x 107

£ 32x10° e ——
£ 3.195x 10° \ = v
B

=

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

Mean fitness {log scale}

(b) Function 18

2 S
& |I —ams
N |

2 a0t

“ I

Fy =L

& et

Fexi0® =,

z

1 4 7 10 13 16 19 22 23
Accumulated executlon time {hours)

(e) Function 21

2.3 %107

228x10° | 11

226 x 10° T —,
| X2
"|—

1 4 7 10 13 16 19 22 24

Accumulated executlon time {hours)

(h) Function 24

2.32%10° Tll —an
1)
i

2.24 x 107

Mean fitness {log scale}

Frr6x100 _ —

faraxie T —

=272x10% | \

2 z7x1e? N

£ 2,68 %107

£ 2.66x 107 WA

T 28410 v

£ 2.62x 10° —

= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(k) Function 27

3.096 x 10° | e
3.0955 x 107 -}\' — o

3095x10° ||
- 3.0045 x 10° ‘5‘5— i
2.094 x 107 "Il A
3.0935 x 107 L, =
3.003 x 10° \
3.0925 x 107 |

1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

Source: Produced by the author.

(¢) Function 19

£1.96x10° — ~ i

b \ — am

® — ams

e Le5x10° ‘l

T 194 x 10" H |

& |

£193x10° “ |

= U

§1o2x 10 hie——ov |

= 1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(f) Function 22

¥ - =

236100 =

" 234 %10° 1 =

g

E232x100 1|

T 23x10 \ 'i
¥228x10° |

E 2.26 x 10 ']1\

£ 2.2d x 10* .

£ 2.22x10° e —
1 4 7 10 13 16 19 22 24
Accumulated executlon time {hours)

(i) Function 25

T 2.92%10°

= - =4
4 - —
§292x10° || =k
2.91x10° ﬂl

5 2ex10° R

& 2

Ezoaxae =N

= 2.88x 107 W

£ 2.87 % 10° |

Z 2.86 % 107 e
1 4 7 10 13 16 19 22 24
Accurmulated executlon time {hours)

(1) Function 28

] ain
5 3a41x10® —=
L3d0sx10 | M
= 3axie’
£ 3398 % 10°
£ 339x10°
§ 3.303x 10° ——
£ 338x10°
1 4 7 10 13 16 19 2Z 28
Accumulated executlon time {hours)
(n) Function 30
% - -
S || —
% " ~ s
saxwt ||
=

N

e SE

1 4 7 10 13 16 19 22 28
Accumulated executlon time {hours)

182

A.6 ANALYSIS OF DIFFERENT BUDGETS IN THE TRAINING AND TESTING PHASES

Figure 59 — Comparing the 30% best policies trained with 100 and 300 iterations per
episode. The comparisons have been made between samples of the best fitness
found in the executions of the HCLPSO algorithm solving functions 1-16 from
the CEC17 benchmark set. The original p-values were computed with the
Mann-Whitney U test.

Mumner of iterations in trainin Mumbper of iterations in trainin Mumner of iterations in trainin Mumnbper of iterations in trainin

Mumper of iterations in trainin

(a) Function 1

=]
=]
m

100
[-]
Q
— | —
Il e o 8
e 92 & b @
@ &
Transformed pvalue
Mumnbper of iterations in trainin
300 100
[-]
Q
— | —
Il e o 8
e 92 & b @
@ &
Transformed pvalue
Number of iterations in trainin
300 100
[-]
(=]
— | —
Il e ® 8
e 92 & & @
@ &
Transformed pvalue

100 300
Number of iterations in training

(d) Function 5

[=]
=]
m

100
(-]
Q
— | e ——
L e o @8
© © & & @
w A
Transformed p-value
Mumner of iterations in trainin
300 100
(-]
Q
Transformed p-value
Number of iterations in trainin
300 100
(-]
Q
— | —
Il e 9 @
S 2 & & @
w A
Transformed p-value

100 300
Numbper of iterations in training

(g) Function 8

=]
=]
m

100
(-]
Q
— " e
Il e o 8
e 9 & b @
@ &
Transformed pvalue
Mumbper of iterations in trainin
300 100
(-]
Q
1 | o ©
e e B oo
@ &
Transformed pvalue
Numper of iterations in trainin
300 100
[-]
Q
— —
1 | - C
e o
@ &
Transformed pvalue

100 200
Number of iterations in training

(j) Function 11

300 100
o
Q
- | —
e o 8
S & b B
B
sformed pvalue
Mumner of iterations in trainin
300 100
o
Q
—-— | —
L e e 8
-
w &
Transformed pvalue

c
--0.8 2
100 300

Numbper of iterations in training

(m) Function 14

=]
=]
m

1
[-]
Q

— | —
L e o 8
e 9 & b @
w &
Transformed pvalue

100 300
Numper of iterations in training

(b) Function 3

100 300
Number of iterations in training

(e) Function 6

100 300
Numbper of iterations in training

(h) Function 9

-0.0

100 200
Number of iterations in training

(k) Function 12

100 300
Numbper of iterations in training

(n) Function 15

£

£

= .
£ I-n.a £
c =
-] 0 =
g0 0.4 7
= =
= -0.0 ¢
o =
= L _ =
g o 0.4¢
ca =
il --0.8 £
o

E 100 300

S Numober of iterations in training

Source: Produced by the author.

Mumbper of iterations in trainin

(c¢) Function 4

100 300
Number of iterations in training

(f) Function 7

100 300
Numbper of iterations in training

(i) Function 10

io00 300
Number of iterations in training

(1) Function 13

Mumnper of iterations in trainin
100
-}
o
I_I " |
Il e o8
@ 9 & & &
w B
Transformed p-value

=}
=}
- m

io00 300
Numbper of iterations in training

(o) Function 16

300 100
(-]
Q
; | —
I e 8 2
S o b @
B
sformed pvalue

=
--0.8 £
100 300

Numper of iterations in training

183

Figure 60 — Comparing the 30% best policies trained 100 and 300 iterations per episode.

Mumbper of iterations in trainin Mumner of iterations in trainin Mumbper of iterations in trainin Mumner of iterations in trainin

Numbper of iterations in trainin

The comparisons have been made between samples of the best fitness found
in the executions of the HCLPSO algorithm solving functions 17-30 from
the CEC17 benchmark set. The original p-values were computed with the
Mann-Whitney U test.

(a) Function 17 (b) Function 18 (c) Function 19

c c
£ £
G m }
I-u.a E £ I-u.a E 5 08 %
= c = = =
§ 9 0.4 2 o § 9 0.4 2 = ‘o4 I
0.0 e 0.0 = 0o &
. £ E - £ [) =
= = o =
< £ | _ < = __pas
) 0 S04y o 0 0-4% < 0-45
g 5 °g 5 e 5
m -—0.8 & =M -—0.8 & o -—0.8 5
= < = g =
100 300 E 100 300 E 100 300
Number of iterations in training = Numper of iteratiens in training Z MNumber of iteratiens in training

(d) Function 20 (e) Function 21 (f) Function 22

I-[l 8
0 i
° o --0.4
A I
m -—0.

io00 300
Number of iterations in training

100
o
B

-0.0

100
(-]
Q
— | —
Il e o 8
e 9 & b @
@ &
Transformed pvalue
Mumbper of iterations in trainin
100
(-]
Q
— |
1 | o ©
e e B oo
@ &
Transformed pvalue

Mumnper of iterations in trainin

-]
W
Transfarmed pvalue

=] =]
=] =]
m m

|
o

100 200
Number of iterations in training

(g) Function 23 (h) Function 24 (i) Function 25

100 200
Number of iterations in training

£ c
5 5
I-n.a £ £ I-n.a £ £ I-n.a E
[l =4 [l (=4 Il
S 9 0.4 2 w8 0.4 2 w8 < 0.4 2
- < =" < A =
-0.0 E = -0.0 E = -0.0 E
£) £ z £
< = | _ < = | _ I
- o --0.a& . o.ag teo o 0.4¢
=1 = =1 = =1 =
m --0.8 2 5 m --0.8 2 =M --0.8 £
=] c
100 300 E 100 300 E 100 300
Numbper of iterations in training Z Numper of iteratiens in training Z Number of iterations in training

(j) Function 26 (k) Function 27 (1) Function 28

I-IJ.E
a -0,
° o 0.4
A I
m -—0.

100 300
Numper of iterations in training

100
e
&=

100
o
-

\
a
°

sformed p-value
|
-]

Mumbper of iterations in trainin
300 100
(-]
Q
— | —
L e ® 8
e 9 & = @
w &
Transformed p-value

Mumbper of iterations in trainin

;
|
o
)
-]
Transformed pvalue

300

=
--0.8 £

|
o

100 300
Numper of iterations in training

(m) Function 29 (n) Function 30

100 300
Numper of iterations in training

100
o
o

Transformed pvalue

100
(-]
Q
—-— | —
L e e 8
e 2 o b @
w &
Transformed pvalue

o -0.4
o I b

100 300
Number of iterations in training

..

-]
© © o
o &

=] 2
=] Q
m m

100 300
Numbper of iterations in training

Numbper of iterations in trainin

Source: Produced by the author.

184

Table 20 — Mean and standard deviation (between parenthesis) of the best fitnesses found
by HCLPSO with the 30% best policies trained with different 100 and 300

iterations for each episode.

Function 300 iterations

100 iterations

© 00N

W NNNNNNNNNNKRKRRRRKHKHR R
SO XN NN WNR,O OO UAWNR O

8554.90(13973.90)
782.43(791.32)
404.35(2.09)
524.57(8.79)
602.34(3.14)
729.38(7.82)
828.06(9.84)
938.38(51.90)
1447.53(140.47)
1124.43(14.24)
379037.67(894686.73)
3138.82(1310.99)
1473.03(17.82)
4583.84(2502.11)
1836.32(114.72)
1820.76(32.15)
13821.35(5792.08)
1947.12(36.83)
2051.86(25.23)
2328.93(19.57)
2539.31(512.17)
2647.51(37.22)
2756.13(37.49)
2924.44(35.14)
2923.27(74.02)
3098.24(4.12)
3411.58(8.19)
3237.72(38.13)
27340.11(18193.29)

92387.42(214938.81)
457.68(173.54)
404.65(2.05)
523.46(8.08)
601.84(2.56)
729.65(7.79)
826.29(9.02)
936.58(51.15)
1456.20(144.57)
1119.96(11.07)
308752.55(756040.51)
3016.29(1175.49)
1470.68(18.27)
3977.08(2162.91)
1808.43(113.16)
1810.37(27.71)
13723.58(5707.39)
1946.41(35.34)
2048.72(23.41)
2326.97(20.90)
2487.87(470.98)
2641.24(34.38)
2753.21(42.73)
2919.72(31.99)
2912.50(79.95)
3097.32(3.41)
3411.41(9.96)
3231.66(37.12)
24907.65(15748.79)

Source: Produced by the author.

185

Figure 61 — Comparing the best policies trained 100 and 300 iterations per episode. The

Mumbper of iterations in trainin Mumber of iterations in trainin Mumber of iterations in trainin Mumhber of iterations in trainin

Numbper of iterations in trainin

comparisons have been made between samples of the best fitness found in the
executions of the HCLPSO algorithm solving functions 1-16 from the CEC17
benchmark set. The original p-values were computed with the Mann-Whitney

U test.

(a) Function 1

I 0.8
-0.4

-0.0

--0.4
I»-n.sg

100
nsformed p-value

300

100 300
Number of iteratiens in training

(d) Function 5

I 0.8 %
T

g 0 -0.12 0a I
= =
-0.0 E

s 0.2 0 [—0-4{-:
[=] =
m -0.8°

100 300
Mumber of iteratiens in training

(g) Function 8

ID,B E
z
= i oa 2
= =
-0.0 E
-—0.4
g 0 l 2
m ~0.8°
100 300
Number of iteratiens in training
(j) Function 11
|n.s El
&
e o -0.089 0. 2
) B
0.0 £
<
o 0.089 i} [*0-41:
=] c
L --0.8 £
100 300
Number of iterations intraining
(m) Function 14
I»n.a E
0 0.26 g
g 0. 7
L %
0.0 £
b=
o -0.26 i} [-0-%
=] c
" --0.8 2
100 300

Number of iterations in training

Mumbper of iterations in trainin Mumner of iterations in trainin Mumbper of iterations in trainin Mumner of iterations in trainin

Numbper of iterations in trainin

(b) Function 3

100

|
e

o o

w

Transformed p-value

300

|os

100 300
Number of iterations in training

(e) Function 6

|n.s El
[
=1 0 E
g 0.4 7
0.0 &

-

<

- 0 -0.4¢
2 z
" --0.8 E

100 200
Number of iterations in training

(h) Function 9

p—
2 ©
2w

100
|
8
(=]
sformed pvalue

300
|
(=
B

z
--0.8 2
100 300

Number of iterations in training

(k) Function 12

|D.B
0.4
-0.0

=
--0.8 £
100 300

Numper of iteratiens in training

(n) Function 15

100
sformed p-value

300
|
=
B

100
Transformed pvalue

300

100 300
Number of iterations in training

Source: Produced by the author.

Numbper of iterations in trainin

(¢) Function 4

I 0.8
-0.4

-0.0

--0.4
I»-n.sg

nsformed p-value

100 300
Number of iteratiens in training

(f) Function 7

Numner of iterations in trainin

c
c
i .
£ In,s El
c i}
23 9 o4 %
c ™ =
= - T
& o0 2
2 oaf
= e 1] R
ca =
oM ~0.8°
k=l
E 100 300
= Number of iterations in training
(i) Function 10
c
c
@ .
£ Io,a E
=4 il
g 0 e o,
z = =
E = -0.0 g
€z c
= = -—0.42
5 g [0z o 2
g M -0.85
s
E 100 300
Z MNumber of iteratiens in training
(1) Function 13
s
E
led "
E I»n.s E]
c =
28 0 0.4 7
g - -
- - <
E 0.0 £
= — =
- 0 0.4E
g™ --0.8 £
c
E 100 300
= Number of iteratiens in training
(o) Function 16
In.a E
T @
g 0 0.37 04 2
a =
. -0.0 &
E
oAb
g 037 0 0%
m --0.8 5
100 300

Number of iterations in training

186

Figure 62 — Comparing the best policies trained 100 and 300 iterations per episode. The

Mumber of iterations in trainin Mumber of iterations in trainin Mumber of iterations in trainin Mumhber of iterations in trainin

Number of iterations in trainin

comparisons have been made between samples of the best fitness found in the
executions of the HCLPSO algorithm solving functions 17-30 from the CEC17
benchmark set. The original p-values were computed with the Mann-Whitney

U test.

(a) Function 17

(b) Function 18

(c) Function 19

= c

£ [
o m i
IDSE 5 ID,SE 5 ID,S&
el © i © = I
S 0 0.35 Lo 2 -] Lo 2 =8 9 0.29 Lo 3
L 2 £R = £a z
-0.0 ¢ 5 -0.0 @ = -0.0
00 2 E - E £
- o = o =4
S __0.45 = __0.45 = -—0.4 8
g 0.35 0 043 e 043 g .29 0 0.4
] < = sg = S g £
L] -0.8 5 g L] -0.8 5 g L] -0.8 £

100 300 E 100 300 E 100 300
Mumber of iterations in training Z Number of iteratiens in training Z MNumber of iteratiens in training

(d) Function 20

(e) Function 21

(f) Function 22

£ c
£ =
i i :
I 0.8 E = I 0.8 E = I 0.8 ﬁ
T [= T 1= il
] 0 -0.2L o.a % =8 ° Lo L 28 o 0.8 ‘o I
= b= =i b= c =
5 i = 3 o = 3 &
0.0 £ g 0.0 £ = 0.0 £
= o = o =
__g.a8 = __g.a8 = - —0.48
e 021 0 0.4 e 0 0.4 e 0.18 0 0.4
g B] B se g
m -0.8%5 E m -0.8%5 E " -0.85
100 300 E 100 300 E 100 300
Mumber of iteraticns in training 2 Number of iterations in training = Number of iterations in training
(g) Function 23 (h) Function 24 (i) Function 25
£ c
£ =
G © .
I 0.8 & = I 0.8 & = I 0.8 &
© [= © E Il
] '] -0.03 Lo I iz] -0.57 Lo I 2 2 Q Loa I
~ < Ela < o =
-~ @ = - @ - - @
0.0 2 = 0.0 2 = vo 2
- @ 1= o c
= = = = _0.4E
s 0.03] 0.4 Y 0.57 0.4 ceo] 0-45
=} = S g = S g s
m -0.8° :E m -0.8° ;‘: m -0.85
100 300 E 100 300 E 100 300
Number of iteratiens in training Z Number of iteratiens in training Z MNumber of iteratiens in training
(j) Function 26 (k) Function 27 (1) Function 28
£ 1=
[S
o m i
I 0.8 E = I 0.8 E = I 0.8 ﬁ
Lo w = [= i
e ° -0.35 Lo % 28 Lo % - ‘o I
= = £ = R 5
- i = -p.0 o = -p.0 ¢
00 £ £ g £ £
£ i £ T £
. | =} = | =} = | (=}
s 0.35 (1] 0.4 iy 0.4y e 0.4g
c - < e < e <
L -0.85 5" -0.85 ™ -0.85
= o
100 300 E 100 300 E 100 300
Number of iterations in training 2 Number of iterations in training 2 Number of iteratiens in training

(m) Function 29

| —
L
o

T 1 T
| @ ©
S o B
a
ansformed pvalue

[

100 300
Mumber of iteratiens in training

Source: Produced by the author.

Jmber of iterations in trainin

]

(n) Function 30

100

ansformed pvalus

+

—
1
Ly
® &
T

100 300
Mumber of iterations in training

187

Figure 63 — Transformed p-values for the comparisons between the best policy trained
with 100 and 300 iterations and the random policy (100vR and 300vR, re-

1 1

spectively).

- 1 i

" 1 1

<+ 1 1

in 1 1

e 1 1

~ 1 1

) 1 1

] 1 1

S £ & 0.4

- 1 1

=

™~ 1 1

-

" 1 1

- u

- 1 2 I 3

- 2
o : :
'12 Q 1 1 -0.0 E
=
o 1 1 "E

1

L] . £

o 1 3 i

a

o 1 1

~N

- 1 1

™

™~ 1 1

™

m 1 1

™~

< 1 1

™~

i 1 1

~N

9o 1 0.9

~N

M~ 1 1

r~

® 0.9 0.6

~N

) 1 1

™~

o

s}

100vsR 300vsR
Comparisons

Source: Produced by the author.

188

Table 21 — Mean and standard deviation (between parenthesis) of the best fitnesses found
by HCLPSO with the best policies trained with different 100 and 300 iterations
for each episode.

Function

100 iterations

300 iterations

Random policy

© 00O Tk WK

WNNNNNNNNNNRERKERBRRRBRHHBERR B -
©C © W N O U h WINMEOO©OOWNO UK WNHO

1917.12(1615.90
300.74(0.59
402.15(1.87
511.13(4.41
600.03(0.04
721.13(5.01
813.89(4.86
900.03(0.05
1313.75(54.97
1110.40(5.21
8802.53(6387.07)
1814.85(501.14)
1451.33(12.20)
1850.94(364.13)
1635.25(41.91)
1763.17(31.37)
5321.73(2312.69)
1915.70(8.08)
2016.24(12.71)
2228.99(38.65)
2232.36(19.40)
2575.64(92.71)
2634.67(73.49)
2876.52(87.43)
2795.74(112.47)
3093.85(2.77)
3375.47(98.30)
3195.42(25.82)
12991.72(5883.13)

)
)
)
)
)
)
)
)
)
)

—_ = = =

1871.58(2570.42)
302.28(2.95)
402.69(2.21)
511.32(3.45)
600.00(0.00)
719.33(3.61)
812.42(4.42)
900.12(0.08)
1318.66(72.49)
1110.61(4.36)
7183.36(5164.44)
1654.86(143.25)
1451.57(16.47)
2340.42(932.14)
1626.69(39.20)
1756.49(17.67)
6672.07(2674.56)
1915.02(9.97)
2016.44(13.58)
2228.83(39.88)
2229.63(13.36)
2556.44(126.63)
2651.78(74.43)
2862.97(132.21)
2826.19(188.55)
3092.26(1.42)
3380.92(44.65)
3199.48(19.17)
12464.23(7271.84)

48289899.76(18746878.94)
2132.70(957.48)
411.58(4.62)
535.53(5.97)
605.69(2.00)
753.51(6.16)
838.64(6.31)
948.03(31.73)
1754.17(93.59)
1152.69(17.99)
7229464.29(2584268.38)
3212.27(1131.47)
1485.87(20.59)
5064.15(2696.46)
1870.38(97.67)
1828.83(19.02)
17893.20(4596.12)
1970.03(48.31)
2073.73(16.89)
2339.94(7.89)
2547.46(544.45)
2666.23(42.75)
2767.08(5.85)
2947.83(10.05)
2960.84(23.97)
3097.00(2.81)
3412.01(0.09)
3253.57(21.15)
69216.35(39271.03)

Source: Produced by the author.

189

190

A.7 GENERALITY ASSESSMENT

Figure 64 — Transformed p-value for each of the comparisons between the selected and
the best policies and the random, tuned and human-designed policies, in
the experiments with HCLPSO. SvsR, SvsT, and SvsH refer to the compar-
isons between the selected trained policy and the random, the tuned, and the
human-designed policies, respectively. BvsR, BvsT, and BvsH refer to the
comparisons between the best trained policy and the random, the tuned, and
the human-designed policies, respectively.

1 1
0.99 -0.94
099 -1

-0.99

1
L
1
1
1
1
1
1

-0.93
-1
1

1
0.29 1R:-¥)
2 0.63
1 1

0.85 0.85 0.85
1 [-0.57 [oBk:]

-~ B 1 1
N 1 1 1
'y 1 1 1
in 1 1 1
N 1 1 1
~ e 1 1
o B 1 1
o B 1 1
1 1 1 0.4
1 1 1
1 1 1 1
1 0.67 1 1
0.96 1 1 E
o -0.93 0.9 E
;E 0.98 0.96 -0.63 1 -o_oE
W 0.98 [:7M -0.65 1 .E
. Z
1 1 1 g
1
1
1
3
1
|
1
8

o I

0.

=

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

SvsR SvsT SvsH BvsR BvsT BvsH
Comparisons

Source: Produced by the author.

191

Figure 65 — Transformed p-value for each of the comparisons between the selected and
the best policies and the random, tuned and human-designed policies, in
the experiments with DE. SvsR, SvsT, and SvsH refer to the comparisons
between the selected trained policy and the random, the tuned, and the
human-designed policies, respectively. BvsR, BvsT, and BvsH refer to the
comparisons between the best trained policy and the random, the tuned, and
the human-designed policies, respectively.

-0.67 -0.96
1 0.99
1 1

=
[

- 1 1

u) -0.99 1 1

< = i 1 1

in 1 1 1 1

e 1 I 1 1

™~ 1 1 1 1

w0 1 1 1 1

o 1 1 il 1

g il . i 1 0.4

- 1 1 1 0.9

-

~ 1 A f 1 1

=

m 1 1 1 1

| = o

o 1 1 : =2

. 2
g n 1 1 1 g'
So 1 i -0.0 ¢
™ E
Z ~ I 1 1 8

s i

m

® 1 1 1 2

) 1 1 : |

=1

=] 1 1 1

~N

- 1 1 1

™]

~ 1 1 1 -—0.4

™

" 1 1 1

™~

< 1 1 1 1

™~

n 1 pALEl 1 1

© 1 0.93 1 1

™~

P~ 1 1l

™~

w© 1 1

~N

) 1 1

™~

=]

m

SvsR SwvsT SvsH BvsR BvsT BvsH
Comparisons

Source: Produced by the author.

192

Figure 66 — Transformed p-value for each of the comparisons between the selected and
the best policies and the random, tuned and human-designed policies, in the
experiments with FSS. SvsR, SvsT, and SvsH refer to the comparisons be-
tween the selected trained policy and the random, the tuned, and the human-
designed policies, respectively. BvsR, BvsT, and BvsH refer to the compar-
isons between the best trained policy and the random, the tuned, and the
human-designed policies, respectively.

Functions

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

- 1 1 1
] 1 .94 1
< 1 1 1
" 1 1 1
© 1 1 i |
~ 1 1 1
] 1 i F 1
-] il 1 1
1 1 1 p.a
1 1
1 1
1 1
1 |
0.9 i |
1 1 -0.0
1 1
1 1

Transformed p-value

1
-1 099 -1
0.96 1 0.99
1 1 1
0.81 -0.84 -0.99
1 1 1 0.99
-0.85 0.99 -0.72 1

SvsR SwvsT SvsH BvsR BvsT BvsH
Comparisons

Source: Produced by the author.

193

Figure 67 — Transformed p-value for each of the comparisons between the selected and
the best policies and the random, tuned and human-designed policies, in the
experiments with binary GA. SvsR, SvsT, and SvsH refer to the compar-
isons between the selected trained policy and the random, the tuned, and the
human-designed policies, respectively. BvsR, BvsT, and BvsH refer to the
comparisons between the best trained policy and the random, the tuned, and
the human-designed policies, respectively.

9

-0.0

12 11 10

Functions
Transformed p-value

22 21 20 19 18 17 16 15 14 13

23

SvsR SwvsT SvsH BvsR BvsT BvsH
Comparisons

Source: Produced by the author.

194

Figure 68 — Transformed p-value for each of the comparisons between the selected and
the best policies and the random, tuned and human-designed policies, in the
experiments with ACO. SvsR, SvsT, and SvsH refer to the comparisons be-
tween the selected trained policy and the random, the tuned, and the human-
designed policies, respectively. BvsR, BvsT, and BvsH refer to the compar-
isons between the best trained policy and the random, the tuned, and the
human-designed policies, respectively.

9

12 11 10

-0.0

Functions
Transformed p-value

22 21 20 19 18 17 16 15 14 13

23

SvsR SwvsT SvsH BvsR BvsT BvsH
Comparisons

Source: Produced by the author.

195

Table 22 — Mean of the best fitnesses found by HCLPSO with its parameters controlled
by the selected policies, the best policies, a human-designed policie, a random
policy, and the same algorithm with static parameters defined by I/F-Race.

Functions Selected Best Tuned Human-designed Random
1 5718.30 3057.93 39784.05 14624.41 53631491.47
3 305.00 302.52 309.15 946.75 2268.20

4 403.49 402.59 405.68 406.50 411.15

5 519.35 512.17 523.24 510.81 537.28

6 600.40 600.00 601.21 600.09 605.47

7 725.26 720.58 742.52 721.90 754.20

8 822.31 813.37 823.66 812.18 839.21

9 901.95 900.12 2070.04 900.24 957.77
10 1417.93 1370.14 1705.89 1471.25 1709.24
11 1116.57 1110.55 1134.14 1112.18 1144.02
12 68489.16 5304.08 1654627.59 1524043.92 5660436.91
13 1895.52 1689.17 9468.94 2147.14 3451.58
14 1451.33 1450.04 1491.09 1456.16 1482.77
15 4822.70 2293.16 2197.94 3766.02 5193.20
16 1779.90 1634.52 1854.31 1681.37 1842.91
17 1811.01 1760.89 1799.03 1772.13 1837.47
18 7652.16 6124.17 18887.83 10407.79 19042.83
19 1914.37 1916.03 2063.66 1930.34 1966.40
20 2027.66 2020.26 2043.78 2020.16 2089.52
21 2322.04 2229.43 2332.20 2312.54 2339.59
22 2290.09 2230.56 3117.18 2228.58 2394.23
23 2624.64 2555.47 2637.35 2606.78 2669.70
24 2757.57 2629.10 2767.82 2741.20 2766.18
25 2910.95 2853.58 2923.68 2932.04 2951.10
26 2853.43 2758.13 2940.31 2901.24 2953.84
27 3104.48 3092.89 3097.63 3097.60 3096.87
28 3411.82 3386.63 3411.82 3411.82 3412.01
29 3208.87 3202.04 3194.94 3194.91 3246.37
30 12557.70 14555.50 39278.70 18085.06 62427.46

Source: Produced by the author.

196

Table 23 — Mean of the best fitnesses found by DE with its parameters controlled by the
selected policies, the best policies, a human-designed policie, a random policy,

and the same algorithm with static parameters defined by I/F-Race.

Functions Selected Best Tuned Human-designed Random
1 489.00 100.00 100.00 6019784427.70 534348270.78
3 814.90 300.00 300.00 124195.78 300.00
4 401.80 400.00 401.42 673.15 405.74
5 517.03 506.31 534.09 584.82 593.03
6 600.04 600.00 600.06 641.02 639.70
7 722.39 716.32 730.18 877.39 806.21
8 813.15 807.47 845.73 886.43 893.18
9 900.01 900.00 1305.77 2389.08 2343.36
10 1346.06 1178.83 1547.55 2647.20 1578.83
11 1103.06 1100.87 1103.36 3035.59 1173.19
12 1531.93 1277.21 2642.18 126355151.18 5771.95
13 1314.28 1303.18 1305.20 2899814.47 1664.62
14 1422.35 1403.05 1404.25 1721.08 1490.24
15 1502.11 1500.68 1502.55 38258.77 1558.45
16 1619.14 1606.05 1650.71 2139.70 2051.25
17 1750.47 1716.03 1835.49 1879.79 2015.80
18 1824.90 1812.57 1821.80 6036138.87 1915.44
19 1902.63 1900.60 1902.38 16831.58 1940.01
20 2030.84 2000.25 2025.84 2087.87 2207.73
21 2307.27 2293.28 2343.50 2375.58 2373.56
22 2561.05 2305.56 3426.52 4120.49 3444.63
23 2615.00 2585.60 2636.55 2776.34 3029.69
24 2746.55 2751.61 2765.06 2856.52 2876.24
25 2905.28 2896.78 2936.33 3297.36 2990.99
26 2925.51 2828.98 2901.48 3898.70 3621.44
27 3161.57 3074.53 3112.22 3200.00 3118.38
28 3278.00 3226.70 3273.88 3299.76 3278.66
29 3141.06 3126.79 3237.00 3656.63 3385.81
30 3230.32 3201.85 3202.79 41442.71 3530.41

Source: Produced by the author.

197

Table 24 — Mean of the best fitnesses found by FSS with its parameters controlled by the
selected policies, the best policies, a human-designed policie, a random policy,
and the same algorithm with static parameters defined by I/F-Race.

Functions Selected Best Tuned Human-designed Random
1 14942026.17 1203173.75 75552469.22 51456296.37 36571310.56
3 39476.46 14310.30 15456.95 30034.36 20294.10
4 408.05 404.12 411.91 410.04 412.91

5 514.47 507.91 523.21 538.52 537.11

6 602.86 601.00 612.93 613.06 610.96

7 740.14 730.49 872.12 767.74 754.38

8 811.50 807.72 910.04 843.88 834.92

9 905.97 900.80 2037.81 1012.01 1018.68
10 1592.47 1397.19 1771.96 2142.61 2253.92
11 1273.43 1201.45 1309.96 1245.91 1306.06
12 3776875.12 1312499.11 1948267.91 5800850.15 5171175.16
13 17177.42 8395.02 9754.04 21732.65 13163.57
14 1570.77 1507.15 1585.87 1552.03 1539.79
15 12887.50 2220.71 12847.41 5733.02 4735.37
16 1847.78 1636.85 2057.68 1912.50 1822.27
17 1909.62 1785.02 2015.94 1936.62 1842.45
18 19538.06 13370.53 35615.87 25453.00 29238.39
19 3042.66 2413.03 3122.74 2413.44 2637.25
20 2093.35 2062.18 2199.16 2160.95 2131.13
21 2313.33 2313.02 2334.95 2339.86 2334.72
22 3353.83 3719.91 3766.32 2396.82 2320.42
23 2600.64 2528.26 3731.70 2591.91 2647.01
24 2740.62 2735.15 2772.11 2766.33 2765.20
25 2939.25 2908.22 2927.10 2916.55 2944.85
26 2914.97 2905.47 2919.47 2930.56 2958.69
27 3110.55 3091.02 3118.46 3095.26 3096.24
28 3376.07 3357.80 3387.53 3391.42 3386.46
29 3306.35 3195.95 3317.77 3285.69 3259.44
30 279463.28 59619.66 113083.90 127455.36 288677.55

Source: Produced by the author.

198

Table 25 — Mean of the best fitnesses found by binary GA with its parameters controlled
by the selected policies, the best policies, a human-designed policy, a random
policy, and the same algorithm with static parameters defined by I/F-Race.

Functions Selected Best Tuned Human-designed Random
1 8034.80 8709.10 8367.20 8213.80 8485.10
3 19721.00 21304.30 20916.30 20077.40 20499.75
4 14472.95 15950.05 15744.85 14865.45 15094.45
5 8945.55 8946.00 8946.00 8945.85 8946.00
6 10042.25 10116.25 10097.00 10073.25 10105.75
7 24472.85 24486.95 24479.25 24484.90 24480.55
8 16552.50 16768.35 16619.40 16634.35 16667.55
9 2250.90 2271.50 2268.50 2258.00 2262.50
10 3417.20 3486.90 3458.60 3460.95 3447.55
11 13258.50 13405.05 13363.20 13327.80 13394.55
12 13915.60 14031.05 14012.25 13972.05 13992.45
13 5344.25 5426.20 5437.70 5361.30 5393.20
14 1250.75 1738.60 1736.10 1461.45 1640.20
15 27095.40 28231.50 27769.90 27539.30 27514.35
16 4614.35 8927.00 7229.60 6821.55 8371.75
17 9223.50 9255.30 9251.70 9243.45 9248.70
18 5555.40 5556.90 5556.60 5556.15 5556.75
19 0.00 126.15 0.00 0.00 0.00

20 0.00 0.00 0.00 0.00 0.00

21 14222.55 14575.05 14350.10 14304.30 14501.65
22 8887.20 9118.80 9056.40 9054.05 9096.55
23 16284.55 16703.15 16457.55 16468.25 16683.65

Source: Produced by the author.

Table 26 — Mean of the best fitnesses found by ACO with its parameters controlled by the
selected policies, the best policies, a human-designed policy, a random policy,

and the same algorithm with static parameters defined by I/F-Race.

Functions Selected Best Tuned Human-designed Random
1 0.00047 0.00047 0.00000 0.00047 0.00036
3 0.00033 0.00034 0.00034 0.00034 0.00035
4 0.00033 0.00035 0.00035 0.00035 0.00040
5 0.00034 0.00035 0.00000 0.00035 0.00036
6 0.00038 0.00040 0.00000 0.00039 0.00037
7 0.00365 0.00376 0.00000 0.00369 0.00413
8 0.00376 0.00398 0.00000 0.00389 0.00397
9 0.00490 0.00513 0.00000 0.00491 0.00337
10 0.00372 0.00409 0.00409 0.00404 0.00371
11 0.00017 0.00019 0.00000 0.00020 0.00017
12 0.00017 0.00017 0.00000 0.00018 0.00015
13 0.00016 0.00017 0.00000 0.00018 0.00016
14 0.00016 0.00017 0.00000 0.00019 0.00018
15 0.00016 0.00017 0.00000 0.00018 0.00016
16 0.00173 0.00195 0.00200 0.00193 0.00156
17 0.00165 0.00198 0.00172 0.00185 0.00161
18 0.00162 0.00181 0.00000 0.00171 0.00151
19 0.00162 0.00185 0.00121 0.00189 0.00144
20 0.00176 0.00195 0.00143 0.00191 0.00155
21 0.00010 0.00010 0.00000 0.00011 0.00010
22 0.00010 0.00010 0.00000 0.00011 0.00010
23 0.00010 0.00011 0.00000 0.00011 0.00009

Source: Produced by the author.

199

Figure 69 — Mean fitness found by HCLPSO with the selected policies, the best policies,
and static tuned parameters, after some time of training in hours. Only func-

tions 1-16 are shown.

(a) Function 1 (b) Function 3 (c¢) Function 4

g [
|2 % 100 i E oaaxie’ =
| Tuses Parsmusers ks —— Tumad Parsmssers W 4,35 x 107 || | — Tumad Parsmezers
i iy 5 oazwie’ | |
| = = 4.25 x 107 | |
i 2 oazx1of| |l
| = 10% 5 4.15x 10¢ {
| (A G S s = Nor 4 e 4lxlo’ | o~ ||
2 X : = 2 Tk, ; : T 4.05x 107 THIL e - =
* 1 4 7 10 13 16 18 22 24 * 1 4 7 10 13 16 19 22 24 - 1 4 7 10 13 16 19 22 24
Training haurs Training haurs Traiting haurs

(d) Function 5 (e) Function 6 (f) Function 7

% i T .16 % 107 \ — Suischad Mot z . i — Sleced Magel
5 s3x107 | (et § 614 x 107 W= g 6% 10 1 el
o o 6.12 x 10 o z
4 \ 1 | 1] | F7.5x10
£ 525 x 107 VS i S 6lx107 | grax
w ey ’ - v 6.08 x 10° | £ 7.4% 107
Y 52 x10% b % 6.06x 107 | hil 2
i . £ 6.04x10° || T = 7.3x 107
g -8 x a0 £ 6.0Zx10° T N < X AL
g 6% 107 = T e 102
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Teaining haurs Training haurs Trairing haurs
(g) Function 8 (h) Function 9 (i) Function 10
T g3sx10® ; i & T yaxi0 | — Sninctud s
® | Nt it @ | Il © y ol e
o B3x10? P e o [" 022w 107 N
g) | =2 % 10° | ; 2 2x100 ||
7 825 %107 —— - o) ¥ aaxaot |4
o \ a | Tumad Parwmstary o | 7
£ w2107 | 5 | | | S16x10° |
£ \ { £ | S \
£ 8,15 % 107 5 100 ! [5 14100 e
u o el v
- 1 4 7 10 13 16 18 22 24 - 1 4 7 10 13 16 19 22 24 - 1 4 T 10 13 16 19 22 24

Taining haurs Taining haurs Taining haurs

(j) Function 11 (k) Function 12 (1) Function 13

L 2ax10? | — Selecsed Moset ERTY | — Seleced Madet
B s % 107 Ao it = Ao it
i 2 f = Tersesrr 4 | = pumtialy
o 2x 107 | Z 1p¢
o | g | [
= 18x10° I = YT Satscran Mnat
frex10t || = e gl
E1.ax10° £ 10 | P SRS
z , = .

§12x100 | Lo o A A % 100 8 Berts
= -3

1 4 7 1013 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 1013 16 19 22 24
Trainiog hars Trainiog hawrs Training hours
(m) Function 14 (n) Function 15 (o) Function 16

El Z z
2 1.53x10° Seliea el ¥ Seliea el T 95 x10° — salscsed odt
s s I\ e i e © 1.95 % 10 R Mokl
Frszx10t | = g Sl § w10t —fhe Se i

1.51x 10 A ! =
£ sx10m g 2185107 il (e !
41,49 x 10° i i - g Lexaed || b A 4 g
Z148x10°] L 2 17sx10® | /
Z147x100 — [£ 17x10" |
= = &
3 1.46 x 10° - = \ T 165 x 107
21.45x10° g u

1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 12 16 19 22 24
Training hours Training hours Training hours

Source: Produced by the author.

200

Figure 70 — Mean fitness found by HCLPSO with the selected policies, the best policies,
and static tuned parameters, after some time of training in hours. Only func-

tions 17-30 are shown.

(a) Function 17

(b) Function 18

(¢) Function 19

T 1.88 x 10° - T T3y 10° =

€ 1 g6x10% A ey Tax10% [\] | =™

o L 1 —— Tumad Parsmsers 7 |V & 11— Nimes parmmecers

Sreaxae A [| F2x10" | \J =4 2

- v (=4) L/ Sainched Madal =

pLe2x10%) | L 7 e = w

¢ o1ax10® V LN L : \ : £

£178%10° £ 1o € |

H 5 2x10%

i 176 x 10° £ P e 1

- 1 4 7 10 13 16 18 22 24 - 1 4 7 10 13 16 19 22 24 - 1 4 7 10 13 16 18 22 24
Training haurs Training hours Training hours

(d) Function 20

(e) Function 21

(f) Function 22

@ T 3)
w2.12x10° | = e W 2.34 % 10° T3ax10t
& 3l - Faremesers b 5 = & 3.2 % 107
o 2110 i 52.32%10 o .
= V1 i & a s 100 | |
2.08 % 10° | = 2.3 =10 e = . fem i
ul | ul 3 e w .8 x 10 Bent Musdn |2
T 2.06x 10° W 2.2B % 10 Tirad Raramarars a orsee Wsiirhatent 1
E I By e e 10 £ 26x 10| |
Eao0a%xi0 T £ 2 E B
o 2.02 % 109 e i n 2.24 % 107 g24x10 0, Ly |
a2 & £ 2.2x10° = g
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24

1 4 7 10 13 16 19 22 24
Training haurs

(g) Function 23

Training haurs

(h) Function 24

Tairing haurs

(i) Function 25

_ & &
w4107) Sy iy E 2.78x 10° N = s = e
g { === B 276 108 ST e z96x10 ===
m3zx1ot || | S | o g X
2 it S 2.74 % 107 &2.94 % 10
PRETEUL 1 | G 2.7zx100 | oo 2.92x10° | AR
] | 1= " s AN Twna Paramasars o = AT AT
SzEx10° | 5§ 27410° £ 29x107
e " g 0810 = 2.88 x 10°
T 2.6 x 107 T 2.66 x 10° H
g 2 ¥ 2.86 % 10°
1 4 7 10 13 16 18 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Training hours Training haurs Training haurs
(j) Function 26 (k) Function 27 (1) Function 28
i - i — i s
T 3.2 %10 | | i 3 N =iy \ §3a15x10 _ 1
T ET i —— Tuma Parwmsers 5 221X 1I0% nea reramaten 5 3.41x10°
g aix1er | |] 3 . g 3.a05 x 10°
—305x10° | = 3105 x 15 = zax10 P ——
z s 5 i 5> et
¥ mxap 8 31x10° s o 3,395 x 10° e i
£ 2.95x 10° 5 : +} g
£ 2 ax10t — = \ & 3.39x10°
Fag s 5 3.095 % 107 2 3.385 x 10°
T 2.85x 10 \ H H
g £ { 338x10®
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Trainiog hours Training hours Training hours
(m) Function 29 (n) Function 30
T 3,3x107 | — viscsnd ot K] — Sebuciud vt
i e et 2 e s
¥ 3,28 % 107 | —— Tused Peremsters i —— Tused Peremscars
L= 1 o
2, - 2 B =)
= 326 x 107 1 —_
" (" X i 10°
azaw1o? || D o
2 N H
£ \ \ =
= 3.22% 104 ! = 3
- e ok TN
3 — =\ & e
i 32x10 i Sl
1 4 7 10 13 16 19 22 24

1 4 7 10 13 16 18 22 24
Taining haurs

Source: Produced by the author.

Taining haurs

201

Figure 71 — Mean fitness found by DE with the selected policies, the best policies, and
static tuned parameters, after some time of training in hours. Only functions
1-16 are shown.

(a) Function 1

Taining laurs

(d) Function 5

(b) Function 3

Taining haurs

(e) Function 6

(c¢) Function 4

e g z —
| = 3 == fanaxio | e
gln' | — e Parwmesars] || e parmmsnar ¢ a12x107 | —— Tumast Parwmecers
El | = | © 4.1x10° |
o 1o*® 0 iz 4.08 x 10°
@ @ 107 ¥ 4.06 x 107 2
E | £ | £a.pax10? | 'l \
c 10 | = = : W] \ \
€ e himi € = 4.02 % 10 A A —
2 I R N . i ———] | T oaxie? L e

1 4 7 10 13 16 18 22 24 1 4 7 10 13 16 18 22 24 1 4 7 10 13 16 18 22 24

Taining lkurs

(f) Function 7

z — — T 65% 207 — Toxror
| R it] [e T |
| e Vamry ‘ 6.ax10 I e Wiy 2 |
2 |
| £ 6.3 %107 | 2 ST
@ U8 % 10° e
W1 6.2 = 10¢ { I | Timasd Paramerary
H Z
L . | = |
| \f = 6.1x 104 = it
I e - H U A i i e .
S Gaxa0? WDl e w =
= =
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Training hours Training hours Training hours
(g) Function 8 (h) Function 9 (i) Function 10
) — — nincsnd o] — — nincsud ot Tyaxion |
8x 107 | < LN % 2% 10% e iy 7 1.8%10°
s | @ II 21,7 % 10°
6% 10 - = = L6 x 107
| @ PR
B.4 x 107 b 1< a | g 3Ix107 - \
i 5 | 514x10® | \ V= =
cmzxan’ W £ p2 | & 13 %107 i
g e e £ 12x10°
1 4 7 1013 16 19 22 24 1 4 7 1013 16 19 22 24 1 4 7 1013 16 19 22 24
Training haurs Training haurs Teaining hours
(j) Function 11 (k) Function 12 (1) Function 13
T 32x10" ey Z e i Suincsad Masat
= | iy P = ey
8 1183 % 100 | St % 10% | s merarnatems [= Wormatan
S1aex10® || =g |
u a fl |
2 1.14 x 10° z | 'I I
£ R S = 10% |
T Lizx1et | i ;m | . ™
i _L H 5 ; 5]
£ Llx10? e ERTE e - i Lfy =
1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24 1 4 7 10 13 16 19 22 24
Training hours Training hours Training hours
(m) Function 14 (n) Function 15 (o) Function 16
o -, T —— S R UL p—
& L48x10° i — selscsed s & 1.56 % 107 i — st s 2 : i
i 1.47%10° | Tl 5 155 x10? | e 5 2x10 .
2146 % 107 | 4 N | \ 2 1.0 % 107 11
= 1.45 x 10°) jl.ﬁﬂxlﬂ f : J A { Satvcred Mt
: . . i S ot
¥ 104 x 107 ¥ 1535107 | “iaxa0r || Timae Paramssars
E 1.43x10° £ 1.52x%10° L 5 ()
= = -~ | = 3 | i \
clazxie’ | i fisixier ||/ fr7xae [| ! N,
§1a1x10 i =S § 15100 i - —
1 4 7 1013 16 19 22 24 4 7 10 13 16 19 22 24 1 4 7 10 12 16 19 22 24

Taining haurs

Taining haurs

Source: Produced by the author.

Taining haurs

202

Figure 72 — Mean fitness found by DE with the selected policies, the best policies, and
static tuned parameters, after some time of training in hours. Only functions

17-30 are shown.

(a) Function 17

z g ¢
g 2w =y
M 1,95 x 107 ., — Tuned Paramatars
o \
2 Lax1lo? Fi
4 1.85x 107 Y
o { P 1A
5 18x10® [| §] | TV
T LI5x10° \ V \
o N
=
1 4 7 10 13 16 19 22 24
Training haurs
(d) Function 20
i g e i
g z2zx107 |I | e
22,15 % 10° |
w |
¥ 2107
£ xbi
E205x10° |]|
n o =
& zx1o0®
1 4 7 10 13 16 19 22 24
Taining haurs
(g) Function 23
o
m 32w 10! | = e
= T T | — Tumed Parwmusers
g |
2 zwan? 1]
w29 x 107 |
i . |
5 28x10 |
F2.7x107 |
o = i il
2.6 % 10° 5
1 4 7 10 13 16 19 22 24
Taining haurs
(j) Function 26
0 .
2ax10 — Suinciud Miadat
a | R Msitad
L | — Parsmstars
o
2 |
a
H
=] |
= W |
- B T R
H L
- 1 4 7 10 13 16 19 22 24
Taining haurs
(m) Function 29
2 ™ i ad Mimtel
3 3.4x10° | "
k] A " inad Paramatars
- 3.35%x 107
Q -
= 3.3x107
o
i 3.25x 107 a
2 32x107 |
53,15 % 10°
il

=

1 4 7 10 13 16 19 22 24
Training hours

(b) Function 18

-
o

3 , e
] 1l Bt et
— Tumas Paremesers
2 |
P !
H TR |
E I
F ot |
1 4 7 10 13 16 1% 22 24

Taining haurs

(e) Function 21

% 2.38 x 107 Bected e
a2 | L

b —— Tunea Parametars
= 2.36 x 107 |

2 |

o234 x 107 ! |

- A ¥

Zz32x10" | ||

H s

2 z3x10

1 4 7 10 12 16 19 22 24
Traiming haurs

(h) Function 24

2.88x10° |
2.86 % 107 | —— Tumed Paramesers
.B4 x 104 |
2.82x10°
2.8 % 10°
2.78 % 107 L] \
2.76 x 10° = =
2.74 % 10°

2.72 x 10°
1 4 7 10 12 16 19 22 24

Taining haurs

(k) Function 27

wean titress (ing scale)

i

1 . | — seiecsed acet
T 3.16% 10 \ | R Maital

i | | — Tumec Paremusers
£31ax10° | A

¥ 3.12 % 10° |

@ {

£ o =4

£ sax10® [

H 3

?‘" 2.08 x 10

1 4 7 10 13 16 19 22 24
Training haurs

Source: Produced by the author.

(¢) Function 19

i — S
5 1.84 % 10° s
o |
= 1.8%x 10° |
@
@ 1.82 % 16°
£ |
= 191 10° |
" e s A
Y 1mx100 == z ;
4 7 10 13 16 18 22 24
Traiting haurs
(f) Function 22
i
T 3.6 = 107
h3ax1e? L
Tazxan? | Lo P \
= 3x10% 1A Salurhad Mo se
w 1 et Mavel
@ 2.8 % 10° \ Timas Paremtars
E.e —
:;_‘_ 2.6 % 107
2.4 % 103
£
- 1 4 7 10 13 16 19 22 24
Tairing haurs
(i) Function 25
g 3 — s e
m 2.98 % 10 i o
H il —— Tumad Parsmeters
@296 x 10° I
i 2.94 x 10° i
o U
£2.92x10°
E 2.9 % 107
- 1 4 7 10 12 16 18 22 24
Trairing haurs
(1) Function 28
T
I
G 328% 104
bt - jra
S 3,27 % 107 i)
= B
W | et Mo
4§ 3.26 % 10° Tt Paramstars
I
=225 107
n
L3 zax 107
1 4 7 10 13 16 19 22 24
Trairing haurs
(n) Function 30
& E——
et et
It 1ot — Tumas Parsmeters
o | |
&
06 x10% |
@
£ W
eaxao® (4|
i —
o i ———
= 3 x10°
1 4 7 10 12 16 19 22 24

Taining haurs

203

Figure 73 — Mean fitness found by FSS with the selected policies, the best policies, and
static tuned parameters, after some time of training in hours. Only functions

1-16 are shown.

(a) Function 1

o

= Gesected Hudel
a Sk Bost Mol

EET LI — Tuned Paramaters
@ e L

a \

107

1 4 7 10 13 16 19 22 24
Training hours

(d) Function 5

T 62 %107

— Seleched Madel

6x 10¢ / | T
8% 107 | |

.6 x 10%

.4 % 10¢

.2 % 107

1 4 7 10 13 16 19 22 24
Training haurs

(g) Function 8

@ s
2 10
I
L=
& I
= Satectent Mocal
U0 X 10T — Bt e |
H Tenae Forarmaters | [|
I |
=
= i
e B
L] £
= 8Bx 10
1 4 7 10 12 16 18 22 24
Training haurs
(j) Function 11
T 3 (s
m 1.7 %10 et it
u — Wuned feramaters | |
o LG % 107
5
= 1.5x 107
“
2 1.4 % 107
E i Y =
pa B8 U LS 1 —
o T
£ L2x10"
1 4 7 10 13 16 19 22 24
Training haurs
(m) Function 14
2 17x10° \ — Seluctad Model
3 1.675x 10° \ S L
o LBS ¥ 10% 1k
Z21625%10° |
% Lex10' |
£ L575x 100 T % £
=155 x 107
@ 1525 x 10°
o
=

1 4 7 10 13 16 18 22 24
Taining haurs

(b) Function 3

Fexiot) =
3 \ s
Taxiot |
PEES [
] L)
£ 2x%10° I e
-
5
2
- 1 4 7 10 13 16 19 22 24
Training haurs
(e) Function 6
FeTx10’ | B ety
D610 | e
Z6.5x10° |
T B w107
6.3 % 107
= 6.2 % 107
Selx10® Oy
£ 6x10° g
1 4 7 10 13 16 19 22 24
Training hours
(h) Function 9
@
= -
53 w0t
o
o I 1
2l s s
PELEL T [
] — Tard Pt
£
£ gan
5 w0 by
- 1 4 7 10 13 16 19 22 24
Training haurs
(k) Function 12
T 107 Btected Massl
3 Vet taee
F ox 100 il
E
~ 4x10°%
f ax10® —
E
£ 2100
=
o
L

1L 4 7 10 12 16 19 22 24
Training hours

(n) Function 15

1 4 7 1013 16 19 22 24
Taining haurs

Source: Produced by the author.

(c¢) Function 4

T g x 107 e
[} | v
o 1 — Timact Parwmscars
o
8 W
5 5x 107 I
@
£ o |1
= |
i AU) LY g
2 ax10? =
1 4 7 10 13 16 18 22 24

Taining lkurs

(f) Function 7

Tsax107
TREH IO b Hein
= B.4 % 107
= 83x107

8% 107 I\
7.8%10° {
= 7ex% 107 !
2 7.4 %107 Wt

=

1 4 7 10 13 16 19 22 24
Tairing haurs

(i) Function 10

i e
© 2.2 x 10¢ 1 S Than.
I ol — Tumad Parwmesers
= 2 X 10t |
8
9 1.8 x 10" |
a
c |
£1.6x10° !
H
214107
1 4 7 10 13 16 18 22 24

Taining haurs

(1) Function 13

Tax1ot i e v
FEEE Ul S s Y
o W

2 2% 104

M

g |

E 104 /

A

5

H !

= 1 4 7 10 13 16 19 22 24

Trairing haurs

(o) Function 16

ax107 | i
e

55 (log scale)
e MM
=
x
"
2

anfitre
Sl
~ @ e
x ¥ X
o
cao
oW o

MiE

1 4 7 10 1 16 19 22 24
Taining haurs

204

Figure 74 — Mean fitness found by FSS with the selected policies, the best policies, and
static tuned parameters, after some time of training in hours. Only functions

17-30 are shown.

(a) Function 17

T

T 2.15 % 107 \ ==

2,1 %107 Il —— Tumes Parwmesers

&'2.058 % 10° \ i

o Zx10% =

¥ Lesx 10’

£ 1L8x10°

T 1.85x10t |

T 1.8x10°

- 1 4 7 10 13 16 18 22 24
Training haurs

(d) Function 20

i

% 23x10

g'2.25 % 107 | \

v 22K10° —

4 7 10 13 16 19 22 24
Training haurs

(g) Function 23

3.8 % 10°

3.6 % 107 | .

3.4 % 107 \ il I

3.2 % 107 II. I P —p—

Q scale)

s (lo

2% 103 { I Timad Parmmisbars
2.8 % 10° \
- - !

2.6 % 107

Wean fitres:

1 4 7 10 13 16 18 22 24
Taining haurs

(j) Function 26

% 5% 103 — Selscied Hodal

1] Best Muds

& — Tanen Parsmates |
o

o

= 4% 10% |
w |
O

=

=

a]

m |

03 x 107 e |

= 1 4 7 10 13 16 19 22 24

Training haurs

(m) Function 29

| — Selected Mosel
Bt Meidat

|| — Tumes Parwmscers

1 4 7 10 13 16 18 22 24
Taining haurs

(b) Function 18

g e
a . Bt Pracia
5 ax10t | il o Waratin
R 4 £ &
2 3% 108 \
] |
P L
; FER
€
n
]

1 4 7 10 13 16 1% 22 24

Taining haurs

(e) Function 21

4 2.42 % 10° |, — Selscted et
Iy ! B Msdad

I 4 —— Tumad Parsmesers
) 2.4 % 10

Zz3ex10 | || |

w Vi

¥ 2.36%10° | |

c |

E_ 2.34 % 10* '-‘! v

P :

§2.32x10 ¥

- 1 4 7 10 13 16 19 22 24

Training haurs

(h) Function 24

—— Saluctad Massl
Bt Maial
—— Tumad Paremstars

2.78 x 10*

FT A

2.76 % 107

2.75 % 10°
2.74 % 10

Wi fitress (iog scaled

1 4 7 10 13 16 19 22 24
Taining haurs

(k) Function 27

T335%10° i g

5 33107 — st remmen |

=

2 225 % 107

u

Y 3zx1pf

E

£ 3.15x 10°

3 31x10t Ll S

- 1 4 7 10 13 16 19 22 24
Training haurs

Source: Produced by the author.

n
.

0qg scale}

5L

5

Mean fitne

(¢) Function 19

o Guiactad total
[et ol
¥ | " Tined Paramatara
o |
g i
w
[
=
&
o
H
b]
- 1 4 7 10 13 16 19 22 24
Training hours
(f) Function 22
T ax 1
n
3 f
d . m=
o T |
= 'fI |
FEES U |
4 |
= Voo
= U st Makal
a | 1 At Maiked
H g T Parsensiar
- 1 4 7 10 13 16 198 22 24
Trainiog haurs
(i) Function 25
3.04 % 10° — Salected Masel
- 1 At Mpcdal
202 x 10° St)
% x 10t
2.98 % 107 l
2.96 x 10% | |
2.94x10° 7T
2.92 % 107 ¥
1 4 7 10 13 16 18 22 24
Trairing haurs
(1) Function 28
f — Snisciud Mot
sax 107 | —
3.39 x 10°
3.38 % 10%
3.37 % 10%
1 4 7 10 13 16 18 22 24
Trairiog haurs
(n) Function 30
o
m 3% 10°
m \ \.
2'2x10° !
=]
w Bt et
a Timas Paramssary
£ 10° | e
=
i
£ 6x10%

1 4 7 10 1 16 19 22 24
Taining haurs

205

Figure 75 — Mean fitness found by binary GA with the selected policies, the best poli-
cies, and static tuned parameters, after some time of training in hours. Only
problem instances 1-12 are shown.

q scale)

Mean fitness (lo.

e

8.8 %
8.7 %
B.6x
8.5 %
8.4 x
8.3x
B2 x
8.1x

8%

Mean fitness (lag scal

1012 %
L011x

1.01 x
S 1009 x
1008 x
L.007
1.006 x
1.005 x

2T x

25w
.24 %
23 %
B
21 %

Mean titress (iog scale)
MO KM OM NN N

1404 =
1402 =
14

1398 =

1.296 x
1.394 =
1.392 x

1.39 %

(a) Function 1

10°
107
107
107
10°
10’
10?
107
104

L —— Tuned Parsmetsrs

1 4 7 10 13 16 19 22 24
Training hours

(d) Function 5

10%
107
104
104
107
107
104
104

PUA
Smimcted Masel
Rt Mt
Tuned Parametsis

1 4 7 10 12 16 19 22 24
Traiming hours

(g) Function 8

104

107
107
10?
10?
104

| o sslected Mgl
st Maitel
| Tunad! Paimsrsiars

1 4 7 10 13 16 18 22 24
Taining haurs

(j) Function 11

104
10"
104
10*
ot
104
104
10"

1 4 7 10 13 16 19 22 24
Trairing haurs

(b) Function 3

Salsctan Mg
L A - st el
i Tismad Paramabars

1 4 T 10 13 16 18 22 24
Taining haurs

(e) Function 6

2.4486 » 10°

2.4484 x 107

7.4482 x 10"

2,448 x 10" —— P —

2.4478 x 107 X Tt Ponpmi

2.4476 x 107 \

24474 % 10 e

}2.4a72 x 10")

1 4 7 10 13 16 19 22 24
Training haurs

(h) Function 9

et i e

b

3.49 x 10°
3.48 x 10° |

3.47x 100 Ll |
3.46 % 10° ' Satectest eat
245 x 107 1 Tt Parmsiss
.44 % 10°
.43 x 104 |
3.42 % 10

(ing =cale]

Mean titness

1 4 7 10 13 16 19 22 24
Taining haurs

Source: Produced by the author.

(c¢) Function 4

B.946 x 10°
8.94505 x 10°
85,9459 x 107
B.94585 x 107
8,9458 x 10°
294575 x 107
#.9457 « 10°

1

Selactan g

Timad Paramabars

4 7 10 13 16 18 22 24
Taining lkurs

(f) Function 7

1675 % 10%
1.67 » 10"
1665 x 107
1.66 x 10"
= 1.655x 107

1.65 = 107

1

Balarhad Mgt
st Mae
Tumast Paramatars

4 7 10 13 16 19 22 24
Training haurs

(i) Function 10

1.34 = 107
= L338 x 104
Z 1,538 x 107

3 scale)

£ 1334 %107

£ 1.332x10°
z 1.33 = 104
LoLErmx ot

"

1

[N S—

4 7 10 13 16 18 22 24
Taining haurs

(k) Function 12

| 5.44 x 10°
1 5.42 x 10%

q sCale)

o

5.4 % 107

w 2
£ 338x10
EEELES UL
¢ 5.34 x 10°
- 1

Babertnd Mgt
aest Aaue
| Tumad Paramatars

4 7 10 13 16 19 22 24
Trairing hours

206

Figure 76 — Mean fitness found by binary GA with the selected policies, the best poli-
cies, and static tuned parameters, after some time of training in hours. Only
functions 13-23 are shown.

(a) Function 13

T
© 1.7 % 107

b 2

@ 1.6 % 107 |
8

- L5% 107 1 eluchat Mngat

s Maiet
2 1ax10 | Tirmad Parsmabars

< 13x10*
b \
2 1.2%10°

4 7 10 13 16 18 22 24

Taining laurs

(d) Function 16

G
7 9.255 x 107
] =
o 9.25% 108
2 \
= ; Setnesant agen
0 9.245 % 107 b e
] i Tumasl Paramstary
& 9.24 = 107
£ 9.235 % 107
H L
=
1 4 7 10 13 16 19 22 24

Trairing haurs

(g) Function 19

1.0001 x 10" *
00008 » 1079

00006 = 10 * ‘Selncsad Mo get

s Maiet

00004 = 10" et Ry

~00002 = 10 °

10"
1 4 7 10 12 16 18 22 24
Training hours

(j) Function 22

2 1.68 x 107
= 167 x 10*
- 1.66 % 10°

LE5x 104 |

an fitress (I

N
-
o
B
®
-
=]
T

: 1.63x 10%
1

Trairing haurs

4 7 10 13 16 19 22 24

(b) Function 14

Selectad Mgl
et o
f276x100 Timas Parwmstars
= 2.74 % 107 !

2 2,72 % 104

E L
1 4 7 10 13 16 1% 22 24

Taining haurs

(e) Function 17

: 5.5572 x 10°
i 5,557 % 1p?
55568 x 10
- 5.5566 x 10°
© 55564 x 10°
D 88567 x 107
I 5.556 % 10°
! 55558 x 107

Eatartan Hodal
sl Mg
Turadt Perarraters

1 4 7 10 13 16 19 22 24
Training haurs

(h) Function 20

1.45x 10%
L.445 x 107
. Laax 1ot Saiacted Madal

1.435% 109 —— Bt Moasl

1.43 x 10¢ 1 Tuned Parameters
1.425 % 107

1.42x 107

1.415x 10%
1

q scale)

Ty

Mean fitness (lo

4 7 10 13 16 19 22 24
Training hours

Source: Produced by the author.

(c) Function 15

T g x10%

w

5 Bx 104 \

27 %100 |

= | Selncsa aget
st Pt

o6 10* Tumad Paremetars

1 4 7 10 13 16 18 22 24

Taining lkurs

(f) Function 18

= 1p? { T
9 |
Z 10°
= [—
- Bt Mt
Z 1o-2 Tarad Pararnaters
£ 10—
i |
1 4 7 10 13 16 19 22 24

Training haurs

(i) Function 21

T
T 8.15 x 10°
FARER 0 T L ;
= 905 % 10° \ Selectad Masal
I 1]
£ sxiot Tinad Paremstars
|
£ 8.95x 10° L
" a \
3 ®ox10 \
- 1 4 7 10 13 16 18 22 24

Taining haurs

(k) Function 23

% 2.09 % 10%
- 2.085 » 10"
2.08 x 107

.075 % 107) Satnchas Mo s
4 207 x10% [\ I Loem i
2.065 » 107 | 1 St

© 2,055 % 10% \
= 2.05x 10°
1 4 7 10 13 16 19 22 24
Teaining hours

207

Figure 77 — Mean fitness found by ACO with the selected policies, the best policies, and
static tuned parameters, after some time of training in hours. Only problem
instances 1-12 are shown.

(a) Function 1

,..
B
"
B
®

2

I — tatechut Wil
R 4.72%107% | Mt s
=
2 a7x10¢
% 4,68 x 10°"
i
= a.n6 x 10!
% a.6ax10-"
3
1 4 7 10 13 16 18 22 24
Trainiog haurs
(d) Function 5
_l‘; — Saimciect Madsl
4 | imtiea
A 4xio B Wiy
=
Z3.95%10 %
M
 39x10?
T .85 x 10"
&
i
=

1 4 7 10 13 16 19 22 24
Trairing haurs

(g) Function 8

5.1x10°% .
e

.05 = 10~

£ 4.9%10 o

£ 4.85 = 10

k]
4 7 10 13 16 18 22 24
Taining haurs

(j) Function 11

1.78 %10
1.76 = 10
174 % 10
1.72 %10
1.7 =10

fitress (log acals)

% 1.66 % 10
2 1.68x10

168 x 10

a

—a
a
a
a
a pr—
Salctad thasal
3 et adiel
N Tuandl Parmmsbars

1 4 7 10 13 16 19 22 24
Trairing haurs

(b) Function 3

§3.525% 10 * — seimcud ol
A 3.5m10¢ Tamen Feramaters
HEF YRS U
- 3.45x10°°
7 3.425% 10

3.4 107"

Z3.375w10 ¢ —
I L i
' 1 4 7 10 13 16 18 22 24

Taining haurs

(e) Function 6

g 3.76x107 Beseie Masel
23,74 % 109 Timearerarns
Fa7zx10?
E 3.7x10?
2 368x10?
; 3.66 x 102
3 3.64 x 102 Ve
= 1 4 7 10 12 16 19 22 24
Traiming haurs
(h) Function 9
T oalw 07 e -
B 40 X RO
> 4xl0
Z35=10 "

4 39%x107*
C 3.85= 10"
2.8x1077
23,75 %10

+ it

!

W

1 4 7 10 13 16 19 22 24
Taining haurs

Source: Produced by the author.

(c¢) Function 4

I s
3 3asx10-0 P
A R
32475 % 1077
H 4
2 zasx10
1 3.425x 107
S onaxiee
i 3.375% 10 4]
4 o235 107 f
1 4 7 10 13 16 19 22 24
Training hours
(f) Function 7
L e
= o e
7 EE5 107 T NR
Z 38x10*
2 3.85%10"7
E 3.8x107
H
1 4 7 10 13 16 19 22 24
Training hours
(i) Function 10
T 1.82x%107
I 18x10
= 1.78 = 10 ¢
E. 1.76 = 107 Selnceard Mose!
: 4 ety
g L7410 Timas! Paramatary
= 1.72 = 10"
= 7%
E 1.68 = 10°°
=

1 4 T 10 13 16 19 22 24
Taining haurs

(k) Function 12

1.68 x 10
1.66 x 10
1.64 x 10
1.62 = 10
1.6 = 14
1.58 = 10

|I © et Mosal
I} rr——
Timas P siars

1 4 7 10 13 16 19 22 24
Trairing hours

Mean fitness (ing scals)
S S e S A |

1.56 = 10

208

Figure 78 — Mean fitness found by ACO with the selected policies, the best policies, and
static tuned parameters, after some time of training in hours. Only functions

13-23 are shown.

(a) Function 13

;
3 1.675%10 ¢
hoLESx10 4 \
31.625x 10-" \
. lExi10- |
31575 x10°" I'
2 Lss=10¢
| — Seincied bhsta

S L525x10 % | et Maiiel
H Tiaat Parimsiars

1.5= 10"
4 7 10 13 16 18 22 24
Taining laurs

(d) Function 16

S95 % 107 — Selecied Hodsl
Bast Hdas
1.9=x10°F Tanza Feramaten

.83 %107

1.8=10"7

75 % 1075

= 17x10°%

I 1.65x10-%

= 1 4 7 10 13 16 19 22 24
Training haurs

(g) Function 19

295 H L0 e Mol
= Bast it

1.8 % 10-2 Tansd Faramaiees

JB5 = 10 *

1.8x 1077
D1, r8x10 7
=

1 4 7 10 13 16 19 22 24
Training haurs

(j) Function 22

i

T L06x 10-7

7 4

=) 1.04 x 10

Zaazx10t e]
" et e

i 0% Tirmast Paramtar
S sExlo

T eex10®

=

1 4 7 10 13 16 19 22 24
Trairing haurs

(b) Function 14

1.7 x 107"
1.675=10°*
1651077
1.625 % 10 ¢
1.6x10
1.575 % 10
1.55 % 10
5 1.525% 10
! Lsx1o

N s g sunnsg

— ambeed Pest
st Maitel
Tumad! Paimsrsiare

1 4 7 10 13 16 19 22 24

Taining laurs

(e) Function 17

LY

t)

scale

3 wecind W
LBx 107"

B 3 75 x 10-3 i et
1.7x10°*

H1.65x10°*

(log

16x10?

= 1.55x 107"

L5x 1077
1

1L

Mea

4 7 10 12 16 19 22 24
Traiming haurs

(h) Function 20

.02 % 10!
.01 % 107"

-t
9.9x10 *
9.8x10"
9.7 % 10-*
9.6 10 °

-

Mean fitness (og scals)

1 4 T 10 13 16 19 22 24
Taining haurs

Source: Produced by the author.

(c) Function 15

I 2x10 : Baleetad Hetel
¥ 2,93 x 1077 |[ImRRE L
g 19x107
E 1.85x 10 2
4
5 18x10?
T 175x10°%
5 /
£ 1L7x10-%
1 4 7 10 13 16 19 22 24
Training hours
(f) Function 18
L ES % 101 — sebecietodal
= bt it
5 3 gx10- Tanea Fararatees
S 1.75x%10 ¢
RS
= 165 x10°%
£ Lex10?
1 4 7 10 13 16 19 22 24
Training haurs

(i) Function 21

3 04
79.95%10°°
7 sexi0t
Zomsx10®
¢ 8.8x10-" Vsl
4 T Paramsbird
=
1 4 7 1013 16 19 22 24
Teaining hours
(k) Function 23
i
T 1L.05= 107"

71,04 % 1077
F103x10 %

G L0zx10 " i

110110 Tumasl Paramstary

= -

T sexio*

T s@x10

= 1 4 7 10 13 16 19 22 24
Trainiog heurs

209

Figure 79 — Quantile of the selected policies in the ranked pool of trained policies. For
instance, the cell in the first row and first column shows that the selected
policy to control HCLPSO in the test with function 1 is the worst performing
policy among the 3.6% best policies available in the pool of trained policies
for this case.

-1.0

-0.8

-0.6

Problem instances
Quantile

3029 2827 262524 23 22212019181716151413121110 9 8 7 6 5 4 3 2 1

-0.0
HCLPSO DE FSS Binary GA ACO

Metaheuristics

Source: Produced by the author.

210

APPENDIX B - PAPERS RELATED TO THIS STUDY

This section provides the papers written throughout the doctorate that are related to this

study.

B.0.1 Population Size Control for Efficiency and Efficacy Optimization in Popula-
tion Based Metaheuristics

Authors: Marcelo Gomes Pereira de Lacerda, Hugo Amorim Neto, Teresa Bernarda Lu-
dermir, Herbert Kuchen, and Fernando Buarque de Lima Neto.

Abstract: This paper proposes a mechanism of dynamic adjustment of the population
size of population based metaheuristics in order to balance its efficacy and efficiency. In
this approach, an external trajectory based metaheuristic (MH) is used to dynamically
adjust the population size of an inner population based metaheuristic. A Particle Swarm
Optmization (PSO) implemented for a Compute Unified Device Architecture platform
(CUDA), called CUDA-PSO, is used as inner MH, while a sequential Simulated Annealing
(SA) is used as an external one. The main objective of this paper is to evaluate the SA
capabilities of finding a good balance between efficiency and efficacy during the CUDA-
PSO execution and to assess its adaptability to different hardwares without any prior
information about the computing platform. The results show that the new approach was
able to find a good balance in most cases. Also, it was observed that this approach is able
to adapt its operation to different hardwares.

Keywords: metaheuristics, high performance computing, particle swarm optimiza-
tion, simulated annealing, hyperheuristics.

Status: Published in 2018 IEEE Congress on Evolutionary Computation (CEC), Rio
de Janeiro, Brazil, 2018, pp. 1-8, DOI: 10.1109/CEC.2018.8477792 (Qualis A1).

B.0.2 On the Learning Properties of Dueling DDQN in Parameter Control for

Evolutionary and Swarm-based Algorithms

Authors: Marcelo Gomes Pereira de Lacerda, Fernando Buarque de Lima Neto, Hugo
Amorim Neto, Herbert Kuchen, Teresa Bernarda Ludermir.

Abstract: This work is intended to assess the learning capability of an agent imple-
mented with a Dueling Double Deep Q-Network in the problem of parameter control for
Evolutionary and Swarm-based algorithms. The objective is to build a general parameter
control method for these algorithms, that can be used for any Population Based Algorithm
(PBA) to solve any numerical optimization problem, implemented for any computing plat-
form, and is able to choose a good sequence of parameter values for the PBA, given a

time budget constraint. For the experiments, an implementation of the Particle Swarm

211

Optimization for CUDA devices was chosen as the PBA and a set of well-known highly
complex numerical minimization problems were used for the benchmark. The experiments
showed that the agent is clearly able to evolve from a completely random decision policy
to a fitness-minimization-oriented policy for most of the functions.

Keywords: parameter control, reinforcement learning, swarm intelligence, evolution-
ary algorithms, deep g-networks.

Status: 2019 IEEE Latin American Conference on Computational Intelligence (LA-
CCI), Guayaquil, Ecuador, 2019, pp. 1-6, DOI: 10.1109/LA-CCI47412.2019.9036764 (Qualis
B4).

B.0.3 A systematic literature review on general parameter control for evolutionary

and swarm-based algorithms

Authors: Marcelo Gomes Pereira de Lacerda, Luis Filipe de Aratjo Pessoa, Fernando
Buarque de Lima Neto, Teresa Bernarda Ludermir, Herbert Kuchen.

Abstract: This paper presents a systematic literature review on general parameter
control for evolutionary and swarm-based algorithms. General methods can be applied
to any algorithm, parameter or problem, in contrast to methods that are tailored to
specific applications. In this literature review, a total of 4449 studies were retrieved by
the search engines and only 50 of them were selected to the extraction phase. Finally,
only 15 were fully analyzed and discussed. To the best of our knowledge, this is the first
literature review on such a field and one of the very few systematic reviews on parameter
adjustment for those algorithms.

Keywords: Parameter control, Evolutionary algorithms, Swarm intelligence, System-
atic literature review.

Status: Published in Swarm and Evolutionary Computation, v. 60, p. 100777, 2021.
ISSN 2210-6502, DOI: https://doi.org/10.1016/j.swevo.2020.100777 (Qualis Al).

B.0.4 Towards a Parameterless Out-of-the-box Population Size Control for Mono-
Objective Metaheuristics

Authors: Marcelo Gomes Pereira de Lacerda, Hugo de Andrade Amorim Neto, Teresa
Bernarda Ludermir, Herbert Kuchen, Fernando Buarque de Lima Neto.

Abstract: We present an innovative step towards a parameterless out-of-the-box pop-
ulation size control for mono-objective metaheuristics. To the best of our knowledge, our
approach is the first parameterless out-of-the-box parameter control for metaheuristics. It
is easy to implement and to use, since it does not require extra parameters. The general
idea is to increment the velocity of the population change if the best fitness stagnates, and
decrement it otherwise. Then, in order to effectively change the population size, a mecha-
nism of removal/addition of individuals inspired by the selection methods of evolutionary

algorithms is executed. Our experimental results provide evidence that our controller is

212

not only compatible with any mono-objective algorithm and optimization problem, but
that it also performs well in many scenarios.

Keywords: Population Size Control, Parameter Control, Swarm Intelligence, Evolu-
tionary Computation.

Status: Submitted to a scientific journal.

B.0.5 A Distributed Training Process for an Out-of-the-box Parameter Controller
for Metaheuristics

Authors: Marcelo Gomes Pereira de Lacerda, Fernando Buarque de Lima Neto, Teresa
Bernarda Ludermir, Herbert Kuchen.

Abstract: We present an out-of-the-box methodology for training parameter-control
policies for mono-objective evolutionary and swarm-based algorithms using distributed
reinforcement learning algorithms with continuous action space. The proposed method is
designed to be compatible with any metaheuristic to solve any mono-objective optimiza-
tion problem. The main objective is to address the following shortcomings usually found
in reinforcement learning-based approaches: (1) training is usually very time-consuming;
(2) the approaches are restricted to discrete action spaces and (3) they require the ad-
justment of a large number of hyperparameters. Extensive experiments have shown that
our method addresses these points very well and that it provides a new and promising
direction in the field of parameter control for evolutionary and swarm-based algorithms.

Keywords: parameter control, reinforcement learning, swarm intelligence.

Status: Submitted to a scientific journal.

B.0.6 Distributed Reinforcement Learning for Out-of-the-box Parameter Control

in Evolutionary and Swarm-based Algorithms

Authors: Marcelo Gomes Pereira de Lacerda, Fernando Buarque de Lima Neto, Teresa
Bernarda Ludermir, Herbert Kuchen.

Abstract: The methods on parameter control for metaheuristics with Reinforcement
Learning put forward so far usually present the following shortcomings: (1) parameter con-
trol algorithms are usually very time-consuming and no scalable training methods have
been proposed so far; (2) RL-based controllers require the adjustment of a large number
of hyperparameters and their performances can be very unstable; and (3) very limited
experimental benchmarks have been used in the papers about out-of-the-box parameter
control. This paper addresses these issues by proposing a methodology for training out-
of-the-box parameter control policies for mono-objective Evolutionary and Swarm-based
algorithms using distributed Reinforcement Learning algorithms with Population Based
Training. Moreover, our method includes and exploits the benefits of distributed plat-
forms. The experimental results in this paper show that the proposed method improves

satisfactorily all the aforementioned issues.

213

Keywords: parameter control, metaheuristics, reinforcement learning, evolutionary
algorithms, swarm intelligence.

Status: Submitted to a scientific journal.

