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ABSTRACT

In this dissertation we are interested in the dynamics of open quantum systems in the
context of quantum information. First, we investigate the dynamics of one qubit at the
regime where an inverse evolution is not well defined. This limit is widely used and explored
in this work, called as the limit of non-bijectivity. We demonstrate how to compute a
completely positive inverse evolution, based on the theory of recovery maps, here to be
the Petz recovery map. The analyzed evolutions are the typical decoherence processes:
dephasing, depolarizing and amplitude damping channels in the regime of non-bijectivity.
To measure how efficient the Petz can be recovering a random quantum state, we use the
fidelity function as the figure of merit. Also, we quantify how non-invertible a dynamics is
compared to another. As an application for this formalism, in the second part of this work
we show how we can explore recovery maps in the context of non-Markovian evolutions, in
order to minimize memory effects. We demonstrate that recovering maps can be useful
under certain constraints to simulate a non-Markovian evolution by an “almost” Markovian
one. We demonstrate that there exists a strong dependence between the success of this
strategy and the initial correlations between system and environment.

Keywords: Quantum Channels. Petz recovery map. Non-invertibility degree. Markovian
evolutions. Non-Markovian effects.



RESUMO

Nesta dissertação estamos interessados na dinâmica de sistemas quânticos abertos no
contexto de informação quântica. A princípio, investigamos a dinâmica de um qubit no
regime em que uma evolução inversa não está bem definida. Este limite é amplamente
explorado neste trabalho, chamado de limite de não-bijetividade. Demonstramos como
construir uma evolução inversa que seja um processo físico bem definido, baseado na teoria
de mapas de recuperação, aqui o mapa de recuperação Petz. As evoluções analisadas são
típicos processos de decoerência: dephasing, depolarizing e amplitude damping, no regime
de não-bijetividade. A fim de medir o quão eficiente o Petz recupera um estado quântico
aleatório, nós usamos como figura de mérito a função fidelidade. Também, quantificamos
o quão não-inversível uma dinâmica é comparada a outra. Como uma aplicação doesse
formalismo, na segunda parte do trabalho, mostramos como os mapas de recuperação
podem ser explorados em se tratando de evoluções não-Markovianas, a fim de minimizar
efeitos de memória. Demonstramos que sob certas circunstâncias os mapas de recuperação
podem ser úteis para simular uma evolução não-Markoviana por uma “quase” Markoviana.
Evidenciamos que existe uma forte dependência entre o sucesso da estratégia aqui proposta
e as correlações iniciais entre sistema e ambiente.

Palavras-chave: Canais quânticos. Mapa de recuperação Petz. Grau de não-invertibilidade.
Evoluções Markovianas. Efeitos não-Markovianos.
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1 INTRODUCTION

"What prevents us believing that
through the expansion of physical
knowledge new formulas and
rules will be developed, which,
together with the current formal
approach, will make precise
predictions possible again? ”

Grete Hermann

Quantum mechanics provides us tools and approaches to describe the nature at a
small scale like atoms and molecules. Since the beginning of its development is surrounded
by critics regarding the lack of a physical principle that justifies its peculiar behavior. In the
quantum world, the outcomes of measurements, in order to characterize the system, could
never be predicted with certainty (BORN, 1926). This “incompleteness” was demonstrated
in 1927 with Werner-Heisenberg’s uncertainty principle, by which two properties of a same
system could not be determined simultaneously with precision (HEISENBERG, 1927).

Since the 1970s many techniques for controlling single quantum systems have been
developed. For example, manipulations in even smaller scales, trapping a single atom in an
‘atom trap’, isolating it from the rest of the world and allowing us to probe many different
aspects of its behavior with incredible precision (PRITCHARD, 1983). Developments both
in the fundamentals of the theory and in its applications have led to the creation of the
quantum information field (NIELSEN; CHUANG, 2000).

In the 1980s and 1990s, the concept of information has been reformulated. Accor-
ding to Rolf Landauer : "Information is physical" (LANDAUER, 1991). More precisely,
information is a physical entity, subjected to the laws of nature that govern the systems
where it is stored and processed. Scientists began to wonder about how information could
be better processed and encoded in quantum particles and how it could be affected by
the non-classical phenomena. Quantum effects became powerful resources to improve
information-processing technologies.

In the last few years, with the advance of quantum computing and quantum
communication, open quantum systems became an active area of research, see (NIELSEN;
CHUANG, 2000; SCHUMACHER; WESTMORELAND, 2010; BREUER et al., 2002) for
a deep influx to this formalism. It is very uncommon to deal with systems in complete
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isolation. As a consequence of this interaction with the environment, unexpected memory
effects and information losses are challenges for the development of quantum technologies.

In this work we investigate the non-bijectivity property in open quantum systems.
Recently, the study of non-bijective evolutions received considerable attention (CHRUŚ-
CIŃSKI et al., 2018; JEKNIC-DUGIC et al., 2021). A simple way to find non-bijectivity is
in image non-increasing maps. Here, we study the limit of non-bijectivity, when an inverse
map is not well defined, of typical one-qubit quantum channels, such as dephasing, depola-
rizing and amplitude damping. By their usefullness in foundational issues, it is possible
to investigate crucial tools and analyze the behavior of a quantum system subjected to
certain conditions that allow us to explore the concept of non-invertibility of quantum
evolutions. Invertibility is a concept difficult to be addressed in open quantum systems.
Based on the approach of recovering maps, we build an inverse physical map capable to
recover an information that was previously lost about the system. We also provide an
extensive analysis of the Petz recovery maps and its properties.

With the obtained results, we developed a tool to investigate the non-invertibility
issue in non-Markovian evolutions. The notion of non-Markovian evolutions has attracted
considerable attention due to the relevance in the development of new quantum technologies.
In practice, physical evolutions are in fact non-Markovian, dynamics with some memory
effects due to the system environment interaction. Many techniques have been used to go
beyond Markovian approximations in order to better understand these memory effects.
An example is the coarse graining map, when the time is discretized in bigger intervals
than the correlation time of the environment. A procedure good enough to describe a
variety of processes like the spontaneous emission of a two-level atom or the damping
of an harmonic oscillator. It is possible to use this strategy in an attempt to recover a
Markovian dynamics by coarse graining its time evolution (BERNARDES et al., 2017). In
this work, we propose an approach based on the concept of CP-divisibility (RIVAS et al.,
2014). We use the Petz recovery map to transform a non completely positive dynamics
into a completely positive one. This technique allow us to explore the main differences
between the original NM dynamics and the proposed one, including the reasons behind
the memory effects. We show that using our approach is even possible to attenuate the
non-Markovian behavior, and suppress strange memory effects.

1.1 THESIS OUTLINE

The focus of this work is to analyze non-bijective maps, characterizing quantum
channels and exploiting non-Markovian dynamics. The thesis can be break up as follows:

1. Chapters 2 and 3 present a brief introduction to the formalism of quantum information



Capítulo 1. INTRODUCTION 17

theory and open quantum systems, respectively.

2. Chapter 4 introduces non-bijective evolutions from a mathematical perspective and then
classify the previously mentioned physical evolutions in the limit of non-bijectivity.
Later is also presented the Petz recovery map approach and some useful mathematical
properties.

3. In Chapter 5 we apply the Petz recovery map to develop an approach that enables
us to define a physical reverse map. We compare different non-bijective maps and
propose a non-invertibility degree to the analyzed quantum channels.

4. In Chapter 6 we review Markovian quantum processes. We also present proposed
measures to quantify and detect non-Markovianity.

5. In Chapter 7 we apply our formalism to describe a completely positive (CP) dynamics
from a non-completely positive (NCP) one. We demonstrate that depending on
the evolution, the Petz recovery map approach can be useful in the study and
characterization of non-Markovian dynamics.

6. The Chapter 8 consists in the discussion of new perspectives and presenting the
concluding remarks.
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2 QUANTUM INFORMATION: FUNDAMENTALS

"I have completely forgotten the
symbolic calculus."

Emmy Noether

The main goal of this chapter is reviewing basic and essential concepts for cha-
racterizing many of the fundamental notions of quantum information theory. What is
information?

There are many different answers to this question. We can summarize them as
the following: information is both the uncertainty we have about a physical system before
observing it and also the knowledge we have about the system after observing it. It is
interesting that some amount of information can be carried by very different forms, or
signals. Classically, the smallest unity of information is the bit. The bit is a way to describe
a physical system with two possible distinguishable states 0 and 1. In the quantum world
is a little bit different, but a property shared between both theories is the transformability
of information. Information can be transformed. This is the central point and matter of
study of information processing tasks. We begin by briefly introducing the quantum bit,
the fundamental unit of information, following by mathematical and geometrical tools
used to describe information processing models.

2.1 QUANTUM BITS

The state of a physical system is described by a density operator ρ defined on
a linear space of complex vectors, known as the Hilbert space H. The density operator,
called usually as density matrix is a hermitian, trace one, positive operator acting on H.
In this work we are concerned with the study of qubits or quantum bits, a simple two-level
system, which state space is H = C2, and consequently ρ is a 2 × 2 matrix.

A classical bit is a unity of information that can have two values 1 or 0. Thanks to
the superposition principle in quantum mechanics, the qubit can assume a superposition
of values between |0〉 and |1〉. It can be described as:

|ψ〉 = α|0〉 + β|1〉, (1)

where α, β are complex numbers and |α|2 + |β|2 = 1, since they are probabilistic coeffi-
cients, and 〈ψ|ψ〉 = 1. A measurement can be performed on this qubit leaving it in the
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corresponding state |0〉 or |1〉 with respective probabilities |α|2 and |β|2. The states |0〉
and |1〉 are known as a computational basis states.

The basis is a reference set of orthonormal states. For this work, it is worth to
mention the following standard operators, called Pauli operators, written in this basis

σ0 ≡


1 0

0 1


 ; σ1 ≡


0 1

1 0


 ; (2)

σ2 ≡


0 −i

i 0


 σ3 ≡


1 0

0 −1


 . (3)

The Pauli operators are examples of quantum gates, operations acting on a fixed
number of qubits. Quantum logic gates are a class of operations widely used in quantum
computing. They are represented by unitary matrices. The most common quantum gates
operate on spaces of one or two qubits, analogous to the common classical logic gates that
operate on one or two bits (NIELSEN; CHUANG, 2000).

Another possible choice for the basis is the set |+〉 ≡ (|0〉 + |1〉)/
√

2 and |−〉 ≡ (|0〉
- |1〉)/

√
2. The arbitrary state in Eq. 1 can be re-written in this basis as:

|ψ〉 = α + β√
2

|+〉 + α − β√
2

|−〉.

2.2 DENSITY OPERATOR

As we saw, the state of a quantum system is represented by a state vector |ψ〉.
However, it is possible for a system to be in a statistical ensemble of different state vectors
|ψ〉1, |ψ〉2, ..., |ψ〉n with different probabilities p1, p2, ..., pn. For this reason the system is
often described by a density operator ρ as

ρ =
∑

i

pi|ψi〉〈ψi|, (4)

where pi ≤ 1 are non-negative real numbers and ∑
i pi = 1. A density operator acting on

the Hilbert space H satisfies:

1. Positivity ρ ≥ 0, it has a spectral decomposition with only positive eigenvalues:

ρ =
∑

j

λj|j〉〈j|; λj ≥ 0,

where the states |j〉 are orthogonal.
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2. Hermiticity ρ = (ρ)†.

3. Normalization Tr(ρ) = 1.

A density operator describes a pure state if

ρ = |ψ〉〈ψ|.

In other words, it is a rank one operator, only one eigenvalue is different than zero and
equal to 1. In contrast, if ρ cannot be written in this form, the system is in a mixed state.

2.3 BLOCH SPHERE

A well known geometrical visualization of a qubit is through the Bloch sphere,
named after Felix Bloch, see Fig. 1.

Figure 1 – State of a qubit in the Bloch sphere, parametrized in terms of spherical coordinates.

The Bloch sphere, also called as Bloch ball, is a unit sphere in R3. The quantum
states are uniquely represented by

|ψ〉 = cos
(

θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉, (5)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The parameters θ and φ correspond to the spherical
coordinates. The states |0〉 and |1〉 are at the surface of the sphere and corresponds to the
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north pole and south pole, respectively.
Consider |χ〉 the opposite point to |ψ〉 on the Bloch sphere, defined by the spherical
coordinates (1, π − θ, φ + π)

|χ〉 = cos π − θ

2 |0〉 + ei(φ+π) sin π − θ

2 |1〉 (6)

= cos π − θ

2 |0〉 − eiφ sin π − θ

2 |1〉 (7)

So
〈χ|ψ〉 = cos θ

2 cos π − θ

2 − sin θ

2 sin π − θ

2
Using cos(a + b) = cos a cos b − sin a sin b,

〈χ|ψ〉 = cos π

2 = 0.

Opposite points correspond to orthogonal qubit states and this also explains why the angle
θ must be divided by 2 in Eq. 5, then two points are orthogonal 90◦ apart.

A general qubit state can be written as

ρ = 1
2(σ0 + σ1r cos φ sin θ + σ2r sin φ sin θ + σ3r cos θ) (8)

=
∑

i

1 + ri.σi

2 , (9)

where σi are the well known Pauli matrices σx, σy and σz. The vector �r = (rx, ry, rz) =
(r sin θ cos φ, r sin θ sin φ, r cos θ) is known as the Bloch vector, with |�r| ≤ 1.

A quantum pure state ρ = |ψ〉〈ψ| has |�r| = 1. As a consequence, all pure states
are displayed at the surface of the sphere. As previously mentioned, a mixed quantum
state is a statistical distribution of pure states, often called a statistical mixture. Contrary
to the pure ones, the mixed states remain in the interior of the Bloch ball, |�r| < 1. These
notions will be widely used in the next chapters.

We focus our analysis here on qubits and its transformations. As can be seen
in the next section, the state space of any finite dimensional quantum system can be
understood as a composition of a number of qubits.

2.4 COMPOSITE QUANTUM SYSTEMS

The space state of a larger or composite quantum system is the tensor product of
the individual state spaces, for example H1...n = H1 ⊗ H2 ⊗ ... ⊗ Hn. For two qubits for
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example, often called bipartite systems, a widely used basis to describe the state is

|Φ+〉 = |00〉 + |11〉
2 ; (10)

|Φ−〉 = |00〉 − |11〉
2 ; (11)

|Ψ+〉 = |01〉 + |10〉
2 ; (12)

|Ψ−〉 = |01〉 − |10〉
2 ; (13)

where |00〉 ≡ |0〉 ⊗ |0〉 is a state of two qubits. The above states are called Bell states,
after John Bell, or sometimes the EPR states, after Eistein, Podolski and Rosen pointed
out the strange properties of them (EINSTEIN et al., 1935). This strangeness is due to a
property called entanglement.

Quantum entanglement is related to a strong correlation between parts of a
system. For example, a measurement performed in a particle "affects instantly"the particle
entangled to it. In 1935, Einstein, Podolski and Rosen argued that no action taken on the
first particle could instantaneously affect the other, since this would involve information
being transmitted faster than light. A condition forbidden by the theory of relativity
(EINSTEIN et al., 1935), that suggests that this sort of relativistic local causality, the idea
that causal influences should never propagate faster than the speed of light, is a necessary
property of any acceptable physical theory. That is why Albert Einstein criticized the
quantum mechanics formulation, calling this effect a “spooky action”.

Today we know that there is no such “spooky action”. In fact, quantum mechanics
contradicts Einstein’s philosophical postulate that any acceptable physical theory must
fulfill "local realism". In 1964, John Bell investigated this situation proposing in (BELL,
1964) a set of inequalities that are just simple probabilistic predictions that must be satisfied
by any local realistic theory, but which are violated by correlations in quantum mechanics.
He proved that no theory that satisfies the conditions imposed by local realism can
reproduce the probabilistic predictions of quantum mechanics under all circumstances. The
fact that quantum mechanics violates Bell inequalities indicates that any hidden-variable
theory underlying quantum mechanics must be non-local (BELL, 1964).

A composite quantum state ρAB acting on H = HA ⊗ HB, is called separable if it
may be written as

ρ =
∑

i

piρ
i
A ⊗ ρi

B, (14)

with pi ≥ 0 and ∑
i pi = 1. Otherwise the state of the system is entangled. Another

interesting thing widely used in the field of quantum computation is that separable states
can be prepared using only local operations, operations performed in each part separately,
and classical communication, commonly called LOCC.
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If we think of systems with three, four qubits or multipartite systems, there are
different types of entanglement. Discussions about this can be found in (DÜR et al., 2000).

2.5 DISTINGUISHING QUANTUM STATES

Classically, different states are usually distinguishable, at least in principle. For
example, we can always identify the differences between the outcome of an experiment.
A simple example is the launch of a coin. It is easy to identify if the coin has landed
heads or tails. In the quantum world, is not always possible to distinguish arbitrary states.
This indistinguishability of non-orthogonal quantum states is at the heart of quantum
computation and quantum information. There are two widely used operational measures
that shed a light into this question. These are the trace distance and the fidelity.

2.5.1 Trace Distance

The trace distance quantifies how close two quantum states are (NIELSEN;
CHUANG, 2000; BENGTSSON et al., 2008). Given ρ and σ, the trace distance is defined
as

Dtr(ρ, σ) = 1
2 ||ρ − σ||1, (15)

where
||A||1 ≡ Tr

√
A†A, (16)

is the trace norm. The interpretation of the trace distance is related to the probability
of successfully distinguishing the state ρ from σ in a single shot measurement. It can be
also understood as a metric on quantum states, with 0 ≤ Dtr ≤ 1. The trace distance is a
particularly good measure of distance between quantum states. Just a simple example, if
we take ρ1 and ρ2 orthogonal states in the Bloch sphere, this means that Dtr(ρ1, ρ2) = 1.

Another interesting fact is the contractivity property of the trace distance (RUS-
KAI, 1994) as can be seen below

Dtr(Λ(ρ1), Λ(ρ2)) ≤ Dtr(ρ1, ρ2), (17)

whenever Λ is a trace-preserving quantum operation. The main point here, we will return
to it later, is the physical fact that a quantum process acting on two quantum states
cannot increase their distinguishability.

2.5.2 Fidelity

Another measure of distance between quantum states is the fidelity (JOZSA,
1994). The fidelity is a well known measure of the similarity between two quantum states.
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For ρ1 and ρ2 density matrices, the fidelity is defined as

F (ρ1, ρ2) = ||√ρ1
√

ρ2||21. (18)

In addition, the fidelity satisfies some interesting and useful properties:

1. 0 ≤ F (ρ1, ρ2) ≤ 1 and F (ρ1, ρ2) = 1 iff ρ1 = ρ2.

2. Is symmetric F (ρ1, ρ2) = F (ρ2, ρ1).

3. If one of the states is pure ρ1 = |ψ〉〈ψ|, F (ρ1, ρ2) = Tr(ρ1ρ2).

4. (a) It is a convex function. If ρ1, ρ2 ≥ 0, p1 + p2 = 1 then

F (ρ, p1ρ1 + p2ρ2) ≥ p1F (ρ, ρ1) + p2F (ρ, ρ2)

. (b) F (ρ1, ρ2) ≥ Trρ1ρ2.

5. It is multiplicative, F (ρ1 ⊗ ρ2, ρ3 ⊗ ρ4) = F (ρ1, ρ3)F (ρ2, ρ4).

6. It is non-decreasing after some evolution or any measurement on the states. This means
that F (ρ′

1, ρ′
2) ≥ F (ρ1, ρ2), where ρ′

1 = Λ(ρ1) and ρ′
2 = Λ(ρ2). It is also preserved

after a unitary evolution.
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3 QUANTUM DYNAMICAL MAPS

"Nada é absoluto. Tudo muda,
tudo se move, tudo gira, tudo
voa e desaparece"

Frida Kahlo

In order to better understand the nature and properties of physical quantum
systems, we present in this chapter their evolution over time followed by the mathematical
formalism of quantum dynamical maps.

3.1 CLOSED SYSTEMS

In classical mechanics, a closed system is a physical system that does not exchange
matter with its surroundings, in thermodynamics is the analogous to an isolated system.
There is no heat, work or matter exchange with the reservoir or environment. It is intuitive
to notice that in realistic physical systems it is quite difficult to consider that the system
is completely isolated from the external influences of the environment. Except if we
think at the universe as a whole. The study of closed systems is important to simulate
and consequently solve problems in much more complicated systems, even obtaining
approximate solutions. In quantum information theory a system is closed if there is no
information exchange with the environment. The time evolution can be described by the
following first-order linear differential equation (BREUER et al., 2002),

dρ(t)
dt

= − i

�
[H(t), ρ(t)]. (19)

Known as the Liouville-von Neumann equation, where H is the Hamiltonian of the system
and contains all information about the interactions driving the dynamics. If the system
is closed, states are represented as unit vectors |ψ〉. Eq. 19 reduces to the well known
Schrödinger equation

d|ψ(t)〉
dt

= − i

�
H(t)|ψ(t)〉. (20)

Solving Eq. 19, we obtain :

ρ(t) = U(t, t0)ρ(0)U †(t, t0), (21)

where U(t, t0) = e−i
∫ t

0 H(s)ds is the unitary operator governing the evolution, which is
subjected to the initial condition: U(t0, t0) = 1, in other words, the identity operation.
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Figure 2 – Schematic representation of an open quantum system.

3.2 OPEN QUANTUM SYSTEMS

In general terms, an open system is a system S coupled to another one E, for which
we usually use the term environment or even bath. The total system is then represented as
the combined subsystems S +E. Now the subsystem S will change according to its internal
dynamics and interaction with the surroundings. Consequently, correlations between S

and E could emerge such that the evolution of S can no longer be represented in terms of
unitary operators (BREUER et al., 2002). The total Hamiltonian takes now the form

H(t) = HS ⊗ 1E + 1S ⊗ HE + HI(t),

where HS is the Hamiltonian of the system S, HE is the Hamiltonian of the environment
and HI is the Hamiltonian describing the interaction between S and E. A schematic
picture is shown in Fig. 2.

As we are interested in the changes at the subsystem S over time, it is possible to
obtain the reduced density matrix of the system S as

ρS = TrE{ρSE}.

The equation above represents the partial trace over the degrees of freedom of
the environment. From now on, we are looking only for quantities of interest related to S.
Since the total density matrix ρSE evolves unitarily,

ρS(t) = TrE{U(t, t0)ρSE(t0)U †(t, t0)}. (22)
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Analogous to what we observed in Eq. 19, we obtain

dρS(t)
dt

= − i

�
TrE[H(t), ρ(t)].

These evolutions can be represented by completely positive and trace preserving
(CPTP) maps. Known as quantum operations, superoperators (mathematical definition
for an operator acting on another operator) or quantum channels, they will be discussed
in further details in this chapter.

3.2.1 Dynamical maps

As we discussed in the previous section, the state of a subsystem S due to
its interactions with the environment can change, and its evolution can no longer be
represented in terms of a unitary evolution. Regarding the dynamics of the system, we
return to Eq. 21. For our purposes, it can be summarized by the following equation

ρS(t) = Λt,t0(ρS(t0)), (23)

where Λ is a quantum map.

A map is a linear superoperator. In other words, a quantum linear transformation
acting on an N -dimensional Hilbert space Λ : H(N) → H(N):

ρ′ = Λ(ρ).

In order to evolve density operators into density operators, the map must satisfy the
following properties: 1.Linearity, 2. Trace preserving, 3. Hermiticity preserving, 4.Positivity
(Complete positivity).

Just some considerations regarding the above mentioned properties: 1. Non-linear
maps could also map a physical state into another, as can be found in driven-dissipative
quantum optical setups. However, with the linearity condition we arrive at more treatable
results; 2. and 3. The map preserves the hermiticity and trace of the density matrix; 4.
A positive superoperator maps a density matrix into another density matrix. When we
move to composite systems, the positivity is no longer sufficient, we require the map to be
completely positive.

Since our work consists in analyzing these evolutions, we present the mathematical
framework of the dynamical matrix, quite useful to analyze quantum maps.

XERO POPISXERO POPIS
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3.2.1.1 Dynamical Matrix

A quantum map Λ is uniquely characterised by its dynamical matrix. The density
matrix ρ of size N can be treated as a vector �ρ after reshaping it (BENGTSSON et al.,
2008). We can take as an example

ρ =

ρ11 ρ12

ρ21 ρ22




→ �ρ = (ρ11, ρ12, ρ21, ρ22).

The following formula can also be used

�ρk = ρij where k = (i − 1)N + j.

Now it is simple to rewrite the equation 23 as

�ρ′ = L�ρ or ρ′
mµ = Lmµnνρnν ,

where L is a linear matrix of size N2, encoding the transformations of the coordinates of
the vector �ρ. It is implicit here the summation over repeated indices.

It is also necessary to present here another operation called reshuffle. Given a
rectangular X matrix of size M × N . The process of reshuffling consists of reshaping each
row of X into a rectangular M × N submatrix and placing it into a bigger matrix block
by block. This gives us

XR
mµnν ≡ Xmnµν .

For simplicity, let us take a 4 × 4 matrix X. The correspondent reshuffled matrix can be
written as 



X11 X12 X21 X22

X13 X14 X23 X24

X31 X32 X41 X42

X33 X34 X43 X44




.

In bold we observe the elements that remain in the same position as before.

Finally it is possible to introduce DΛ, the dynamical matrix associated with some
evolution Λ :

DΛ = LR. (24)

This notion of dynamical matrix was first introduced by Sudarshan in (SUDARSHAN;
RAU., 1961). Later these matrices were studied by Choi in (CHOI, 1975). It is common to
call them Choi matrices JΛ:

JΛ = (I1 ⊗ Λ2)|Ω〉〈Ω|, (25)
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where |Ω〉 = 1√
n

∑ |i〉1 ⊗ |i〉2 is a maximally entangled state. The Choi matrix associated
to Λ is the outcome of applying the map on one side of the maximally entangled state.
The above representation is also known as Jamiokolwski isomorphism (JAMIOłKOWSKI,
1972). Since it relates a quantum operation Λ to the matrix JΛ. This isomorphism allows
us to treat maps using the same tools as used to treat quantum states.

The most interesting and useful property of this matrix is that it completely
determines the map Λ. As can be seen from Eq. 25, if we know somehow how the map
acts on |Ω〉 we can completely determine how it will act on any other quantum state. The
quantum map can also be written as

Λ(ρ) = Tr1{(ρT ⊗ I2)JΛ}, (26)

where I2 is the identity map for a qubit, a 2×2 identity matrix. The Choi Matrix approach
will be widely explored in Chapters 6 and 7.

3.2.1.2 Positive and completely positive maps

These kind of maps should take density matrices into density matrices. This means
that the resulting state ρ′ should share the same properties of ρ :

(i) Hermiticity ρ′ = (ρ′)†.

(ii) Tr(ρ′) = 1.

(iii) Positive semi-definite operator → ρ′ ≥ 0 .

These conditions must been also satisfied by the dynamical matrix J.

(iv) JΛ = J†
Λ.

(v) TrA(JΛ) = I.

(vi) JΛ(ρ) ≥ 0 when ρ ≥ 0.

Condition (v) shows that the partial trace of JΛ with respect to the first subsys-
tem is the unity operator for the second subsystem. The condition (vi) requires further
explanation. The map is positive if it takes positive matrices to positive matrices. A linear
map Λ is positive if and only if the corresponding dynamical matrix is block positive.

This condition is not sufficient when we are dealing with physical evolutions. It
is common to add an auxiliary system, often called ancillary, to the system of interest.
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Consequently the state space is now extended. This requires us to check if the map is still
positive in this new configuration. In other words, if Λ ⊗ I is positive.

A map is completely positive if and only if for an arbitrary K extension, where
HN → HN ⊗ HK , the extended map Λ ⊗ IK is positive. This leads us to the following
theorem:

Choi’s theorem A linear map is completely positive if and only if the correspon-
ding dynamical matrix JΛ is also positive. A completely positive map can be written in
the form

ρ → ρ′ =
∑

i

KiρK†
i .

This is known as the operator sum representation. The operators Ki are called
the Kraus operators. In order to satisfy (ii), the following condition must be satisfied:

∑
i

K†
i Ki = 1.

The operator sum is not unique, since it depends on the choice of the basis set. If we had
chosen another set we would have arrived to different Kraus operators.

Now, we have all the necessary knowledge to classify a map as completely positive
and trace preserving (CPTP). This kind of evolution is widely used and explored in
quantum computation and quantum information theory, and also goes under another
name: quantum channel.

3.2.2 One-qubit maps

A simple way to deal with CPTP one-qubit maps is using the Bloch sphere
representation as presented in Chapter 1. The map of the Eq. 23 can be rewritten as

�r
′ = T�r + �τ , (27)

where T is a 3 × 3 real matrix that, after some orthogonal transformations can be
represented in a diagonal form. The elements of these matrices can be represented by the
distortion vector �η = (ηx, ηy, ηz) because they take the Bloch ball to an ellipsoid. In other
words it determines the shape of the Bloch ball after the action of the map. The vector
�τ = (τx, τy, τz) is known as a translation vector, because it moves the ellipsoid, and its
parameters determine its orientation.

In some cases when �τ = 0, the maps are classified as unital, maps that, when
acted on the identity state 1, leave it unchanged

Λ(1) = 1. (28)
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The dynamical matrix DΛ, as presented in Eq. 24, can be written as

DΛ = 1
2




1 + ηz + τz 0 τx + iτy ηx + ηy

0 1 − ηz + τz ηx − ηy τx + iτy

τx − iτy ηx − ηy 1 − ηz − τz 0
ηx + ηy τx − iτy 0 1 + ηz − τz




(29)

The requirement of complete positivity to one qubit quantum channels puts some
restrictions on the possible transformations of the Bloch sphere. The map is CP if the
ellipsoid remains at the Bloch ball, so an expansion along one of the three orthogonal
directions is not allowed, only a contraction. The inverse transformation to a quantum
operation is not physical since some mixed states are sent outside the set of positive
operators. Some examples of operations in the Bloch ball will be presented in the next
section.

3.2.3 Quantum Channels

In this work we analyze typical decoherence quantum channels for a qubit as the
dephasing, depolarizing, and amplitude damping channels.

3.2.3.1 Dephasing

The dephasing describes the loss of quantum information, since the coherences,
off-diagonal terms of ρ, vanish. Physically it means that the relative phase between the
energy eigenstates is lost. The Bloch ball is then contracted to an ellipsoid and the qubits
are projected along the z axis as shown in Fig. 3. The map can be written as

Λdeph(ρ) =
(

1 − p(t)
2

)
ρ +

(
p(t)
2

)
σzρσz, (30)

where p(t) is some time dependent probability distribution. The Kraus operators are

K0 =
√

1 − p(t)1

,

K1 =
√

p(t)
2


1 0

0 −1




After shrinking the sphere, the Bloch vector is �r′ = (
√

1 − p(t)rx,
√

1 − p(t)ry, rz). The
states along the z axis remain invariant while the off-diagonal terms decay along time.

3.2.3.2 Depolarizing

In the depolarizing process, with probability (1 − p) the system remains intact,
while with probability p the the following errors can occur:
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Figure 3 – Action of the quantum channels on the states of the Bloch sphere. In a) dephasing channel
schrinking the Bloch ball into an ellipsoid in the z-axis; b) depolarizing taking all states into
the maximally mixed state; c) amplitude damping taking all states to the ground state.

1. Bit flip : |ψ〉 → σx|ψ〉, σx =

0 1

1 0


 ,

2. Phase flip : |ψ〉 → σz|ψ〉, σz =

1 0

0 −1


 ,

3. Bit flip + Phase flip : |ψ〉 → σy|ψ〉, σy =

0 −i

i 0


 .

It is a channel with nice symmetry properties. As shown in Fig. 3, the Bloch ball is mapped
to a sphere with a smaller radius and all the qubits are driven to the maximally mixed
state 1/2, the center of the Bloch sphere. The channel can be represented as follows

Λdepol(ρ) = (1 − p(t))ρ +
(

p(t)
3

)
(σxρσx + σyρσy + σzρσz) (31)

It is easy to identify the Kraus operators

K0 =
√

1 − p(t)1,K1 =
√

p(t)
3 σx, (32)

K2 =
√

p(t)
3 σy,K3 =

√
p(t)
3 σz. (33)

After the action of the channel, the resultant Bloch vector is

�r′ = (1 − 4
3p(t))�r.

This channel can be simply describe as a contraction of the Bloch sphere by the factor
(1 − 4

3p(t)). It is worth mention that it is possible to reverse the action of Λdepol with a
inflation. But this is a non-completely positive map, since the inflation will take values of
�r ≤ 1 to values with �r > 1. Clearly this is not a density operator anymore. The reverse
process is then not physical.
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3.2.3.3 Amplitude Damping

The amplitude damping channel can be interpreted physically as a two-level
system, as the decay of an atom from the excited state due to spontaneous emission of a
photon. The ground state is denoted by |0〉 and the excited state by |1〉. Transitions may
or not occur depending on the state of the system, according to

|0〉S|0〉E → |0〉S|0〉E

|1〉S|0〉E →
√

1 − p(t)|1〉S|0〉E +
√

p(t)|0〉S|1〉E

The map is represented as

Λa.d(ρ) = K0ρK†
0 + K1ρK†

1, (34)

where the Kraus operators K0 and K1 can be written as

K0 =

1 0

0
√

1 − p(t)


 and K1 =


0

√
p(t)

0 0


 . (35)

The time dependent decay rate is represented by p(t). After the action of the amplitude
damping channel, the entire Bloch ball is contracted to one of the poles of the sphere. All
the qubits are driven to the ground state, the north pole of the ball as can be seen in Fig.
3. The resultant Bloch vector is �r′ = (

√
1 − p(t)rx,

√
1 − p(t)ry, p(t) + (1 − p(t))rz). This

is an example of a non-unital map. It not only compress the sphere, but it also shifts the
maximally mixed state to the north pole.
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4 NON-BIJECTIVE QUANTUM EVOLUTIONS AND RECOVERING
MAPS

“A verdadeira segurança provém
apenas do conforto com a
insegurança. Ficarmos à vontade
com o fluxo das coisas, ficarmos
à vontade ao estarmos inseguros,
essa é a maior segurança, pois
nada pode nos tirar do prumo.”

Jetsunma Tenzin Palmo

As mentioned before, non bijective evolutions have been considerably explored
(CHRUŚCIŃSKI et al., 2018; JEKNIC-DUGIC et al., 2021). In this chapter we extend
the mathematical idea of non-bijective transformations to physical evolutions. Next, we
introduce the approach of Petz recovering maps.

4.1 NON-BIJECTIVITY

Bijectivity is a mathematical property from functions and linear transformations.
A transformation is bijective if it has a one to one correspondence for all of the elements of
the domain. This means that the dimension of the image Im is equal to the dimension of
the domain U. Rigorously, the linear transformation T : U → V is bijective, if for all v ∈ V

there is a unique u ∈ U , such that T (u) = v. A non-bijective transformation certainly
does not obey this condition. For a non-bijective transformation there is not a one-to-one
correspondence, and dim(Im(U)) < dim(U), regarding that Im(U) ∈ V . Consequently
these types of transformations do not have a well defined inverse, in other words, they are
not invertible. An easy way to visualize it is using diagrams as shown in Fig. 4.

4.1.1 Non-bijective quantum maps

Now we analyze this mathematical property in physical quantum processes. Given
a quantum map Λ(t1,0), we wonder if it would be possible to write an evolution capable to
reverse the action of the map in time Λ(0,t1), such that

Λ(0,t1)Λ(t1,0) = Λ−1
(t1,0)Λ(t1,0) = I

Theorem A CPTP map Λ(t1,0) can be inverted by another CPTP map if and
only if it is unitary Λ(t1,0) = U(t1,t0) (RIVAS; HUELGA, 2012).
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Figure 4 – Diagram of two linear transformations T 1 and T 2, a bijective one and a non-bijetive, respectively.
For the first one there is a one-to-one correspondence between the elements of the domain U
and V, which corresponds to the image set Im. For the second one, there is not a one-to-one
correspondence and the dim(V ) > dim(Im(U)). In this specific non-bijective case, an inverse
(T 2)−1 is not well defined, since we can not associate uniquely an element of U to v2

2.

Mathematically, the inverse of a map can be computed, but in most cases the
inverse is not a physical evolution, only if the evolution is unitary.

The main point is that the connection between the failure of an inverse for a
dynamical map reflects the irreversibility of the universal open quantum systems dynamics.
Regarding the previously mentioned quantum channels, we investigate the limit of non-
bijectivity for these CPTP evolutions. To do so, we consider the image non-decreasing
condition. Taking the limit of non-bijetivity consists in reducing the image set to its
minimum. This is exactly what we will define as follows

(Dephasing) The map drives the states to a line at the z axis that connects the north
pole to the south pole and can be represented as

ρIm.deph = q|0〉〈0| + (1 − q)|1〉〈1|, (36)

where q is a probabilistic parameter, which defines what is the state of ρ′ ∈ Im.

(Depolarizing) All the states are mapped to the maximally mixed state,

ρIm.depol = 1
2 = |0〉〈0| + |1〉〈1|

2 . (37)

(Amplitude Damping) All the states are mapped to the ground state,

ρIm.adamp = |0〉〈0|. (38)

In order to understand the physical implications behind the concept of non-
bijectivity in physical quantum systems, we introduce here the approach of recovering
maps.
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4.2 RECOVERING MAPS

Trying to understand how well it would be possible to reverse a process, the entropic
inequalities became a matter of study in recent years. They constitute a fundamental law
of quantum information theory, being helpful in determining boundaries and limits to
many physical processes.

4.2.1 Quantum Relative Entropy and Uhlmann’s Theorem

Classically, given a discrete random variable X, with possible outcomes {x1, ..., xn},
which occur with probability {P (x1), ..., P (xn)}, the entropy of X is formally defined as

H(P ) ≡ −
n∑

i=1
P (xi) log P (xi). (39)

Where the sum is over all possible values of the variable X. The logarithm is commonly
calculated in base 2, which gives the unit of bits. The equation above is known as the
Shannon entropy, introduced by Claude Shannon in (SHANNON, 1948). In information
theory it is common to relate the idea of entropy with information. Information is directly
associated with a "surprisal"of an outcome xi, which decreases as the probability P (xi)
increases. The entropy in Eq. 39 measures then the average amount of information conveyed
by identifying the outcome of a random trial, it is also defined as "uncertainty"and, at the
same time, a certain level of "information" about the system (NIELSEN; CHUANG, 2000).
Let’s return to the example of tossing a coin.

We know that the probability of coming up heads is the same as the probability
of tails Pheads = Ptails = 1/2. Of course, there is no such way to predict the outcome of
the coin launch ahead of time. Such experiment E has the entropy as high as it could be
for a two-outcome trial, I(E) = 1. This means that learning the actual outcome contains
one bit of information. In contrast, if we use now a coin that has two heads and no tails,
there is no information I(E) = 0. Since the outcome is always predictable, the coin will
always come up heads.

The quantum analogous to the Shannon entropy is the von Neumman entropy
(NEUMANN, 1927; NEUMANN, 1933)

S(ρ) = −Trρ log ρ, (40)

where ρ is a density operator on a finite dimensional Hilbert space H. The above two
equations are related in the following way: if the set X labels an orthonormal basis
{|x〉 : x ∈ X} of H, it is possible to construct

ρP =
∑

x

P (x)|x〉〈x|,
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corresponding to the distribution P (x). Consequently,

S(ρP ) = H(P ).

With these definitions in mind, we present now the relative entropy. A function widely
used in quantum information theory due to its strong identities and inequalities, pro-
viding insights into the quantification of entanglement. The relative entropy also plays
an important role in the distinguishability of quantum states. It gives us a picture of a
"distance" measure between density operators.

Let ρ and σ be quantum states. We define the quantum relative entropy S(ρ||σ)
as

S(ρ||σ) = Trρ log ρ − Trρ log σ. (41)

It has many useful properties (NEUMANN, 1927):

1. S(ρ||σ) ≥ 0, the equality is satisfied if and only if ρ = σ.

2. S(ρ||σ) < ∞ if and only if supp(ρ) ∈ supp(σ). The supp(ρ) or support of ρ is the
subspace spanned by eigenvectors of ρ with non-zero eigenvalues.

3. The function S(ρ||σ) is jointly convex in its arguments. Given ρ1, ρ2, σ1, σ2 and p1, p2

non-negative numbers, such that p1 + p2 = 1,

S(ρ||σ) ≤ p1S(ρ1||σ1) + p2S(ρ2||σ2),

where ρ = p1ρ1 + p2ρ2 and σ = p1σ1 + p2σ2.

Another interesting property of the relative entropy can be seen in (LIEB; RUSKAI,
1973), known as the monotonicity of the relative entropy. This property states that
discarding part of a composite system AB can only decrease the relative entropy between
two density matrices

S(ρA||σA) ≤ S(ρAB||σAB).

As discussed in the previous section, discarding part of a system can be seen as a quantum
operation T = TrB, the partial trace over HB, which as a linear map can be written
as T = IA ⊗ Tr. With this in mind, we finally arrive at the Data Processing Inequality
theorem (LIEB; RUSKAI, 1973).

Theorem. Given two quantum states ρ and σ acting on a Hilbert space H, and
Λ a quantum channel, the relative entropy between two quantum states does not increase
after a CPTP evolution

S(ρ||σ) ≥ S(Λ(ρ)||Λ(σ)). (42)
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The equality
S(ρ||σ) = S(Λ(ρ)||Λ(σ)) (43)

holds if and only if there is a recovery map ΛRecover such that

ρ = (ΛRecover ◦ Λ)(ρ), σ = (ΛRecover ◦ Λ)(σ).

The composition of quantum maps A ◦ B is a is a mathematical operation analogous to
the composition of two functions f ◦ g. It is worth mentioning that the composition of two
completely positive maps yields again a completely positive map (BENGTSSON et al.,
2008).

In this work we will explore a type of recovery map known as the Petz recovery
map ΛP etz.

4.2.2 Petz recovery maps

The Petz recovery map, developed initially by Dénes Petz in (PETZ, 1986; PETZ,
1988) and further analyzed in (PETZ, 2003; AL., 2018), is a completely positive, trace
preserving and unique on the support of Λ(σ). For finite Hilbert spaces, on the support of
Λ(σ), the Petz can be written as

ΛP etz(.) = σ
1
2 Λ†(Λ(σ)− 1

2 (.)Λ(σ)− 1
2 )σ 1

2 (44)

where Λ is the evolution that we are trying to reverse and σ is known as the reference
state of the map such that

supp(ρ) ∈ supp(σ). (45)

Furthermore, the adjoint map Λ† of Λ can be written as

Λ†(ρ) =
∑

i

A†
iρAi if Λ(α) =

∑
i

AiαA†
i , (46)

where α is a quantum state. The existence of an explicit recovery map is universal in the
sense that it depends only on the reference state σ and the quantum channel Λ to be
reversed (AL., 2018). From Eq. 44, it is possible to show the following properties of the
Petz recovery map:

i) It is linear, completely positive and trace preserving

Tr{ΛP etz(ρ)} = Tr{σ
1
2 Λ†(Λ(σ)− 1

2 ρΛ(σ)− 1
2 )σ 1

2 }

= Tr{σΛ†(Λ(σ)− 1
2 ρΛ(σ)− 1

2 )}

= Tr{Λ(σ)(Λ(σ))− 1
2 ρ(Λ(σ))− 1

2 }

= Tr{ρ}
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ii) Perfectly recovers σ from Λ(σ)

ΛP etz(Λ(σ)) = σ
1
2 Λ†(Λ(σ)− 1

2 Λ(σ)Λ(σ)− 1
2 )σ 1

2

= σ
1
2 Λ†(1)σ 1

2

= σ

This is an interesting property, because it give us a hint about the reference state
σ. Observe that it is always a recoverable state for the Petz. This can be easily
understood because the recovery map has some amount of information about σ in
its form, see Eq. 44. In the following chapter the dependence of the success of the
Petz recovering states with the reference state will become clearer.

iii) If the evolution to be reversed is the identity map Λ = I, the Petz is the
identity map

ΛP etz = I.

This condition is quite intuitive, because, if nothing happens, nothing changes the
state, and consequently there is no need to recover some information.

For the two following properties we define ΛP etz ≡ Λσ,Λ
P etz, the recovery map

associated with the channel Λ and the reference state σ.

iv) Tensor products The Petz recovery map is a tensor product of individual Petz
recovery maps:

Λσ1⊗σ2,Λ1⊗Λ2
P etz = Λσ1,Λ1

P etz ⊗ Λσ2,Λ2
P etz

v) Composition of channels Λ1 ◦ Λ2

Λσ,Λ1◦Λ2
P etz = Λσ,Λ1

P etz ◦ ΛΛ1(σ),Λ2
P etz

It seems a little bit complicated, but observe that, in order to achieve a pretty good
recovery, it is necessary first to recover from the last noise, when even the reference
state was affected Λ1(σ), and than recover from the first noise.

The last three conditions can be found in (LI K., 2018). The whole mathematical
framework of this approach was developed by Petz in (PETZ, 1986; PETZ, 1988; PETZ,
2003).
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5 INVERTING NON-BIJECTIVE EVOLUTIONS THROUGH RECOVE-
RING CHANNELS

“Imaginação é quando a
inteligência se diverte”

Rita Lee

Using the approach of Petz recovering maps described in the previous section, we
propose to construct an inverse evolution in the limit of non-bijectivity to the mentioned
one qubit quantum channels, as dephasing, depolarizing and amplitude damping. In this
chapter we present in the first section, our approach to reverse the dynamics, in the second
section the obtained results, and in third section we analyze and discuss the implications
of this work.

5.1 COMPUTING THE INVERSE

To construct a physical inverse evolution, we set a simple quantum circuit as
shown in Fig. 5. The gates Λ and ΛP etz are the quantum channels and the Petz recovery
map, respectively.

Figure 5 – Schematic representation of the total evolution including the Petz recovery map. A initial
state ρ0 is taken to a evolved state ρt = Λ(ρ0). The Petz is then applied to the evolved state
ΛP etz(ρt).

The main idea is to compare the state recovered by the Petz map ΛP etz(ρt) to the
initial state ρ0 that we had before the evolution. With the results in hand it will then be
possible to consider and analyze all variables, in order to build an inverse operation whose
outcome is as close as possible to ρ0.
To do this comparision between ΛP etz(ρt) and ρ0, we use the fidelity as the figure of merit.
Its properties were presented in Section 2.5.
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5.2 RESULTS

Based on what we developed in the previous sections, we present in this section
the results obtained by this analysis.

5.2.1 Behavior of the fidelity according to the Petz

In order to understand the Petz behavior and consequently its efficiency in
recovering a previously lost information, we begin our analysis by observing the behavior of
the fidelity function, F (ρ0, ΛP etz(ρt)) for each one of the evolutions. For this analysis, the
parameter t is fixed since the quantum channels were set at the regime of non-bijectivity,
as presented in Section 4.1.1. It is worth to mention here, that for the amplitude damping
channel we took the closest value to one, approximately p(t) = 0.99. There is no difference
if we set, for example, p(t) = 0.999 or p(t) = 0.9999. The evolution is not sensible to
this minimal changes. Although the theoretical limit was defined in Section 4.1.1, this
approximation is necessary for the amplitude damping channel, because if we look at Eq.
44, the map diverges for p(t) = 1, since the inverse of σ = |0〉〈0| cannot be calculated
numerically.

In Fig. 6 below, we observe the maximal dephasing, depolarizing and amplitude
damping acting on pure states ρ0(θ, φ). It is possible to note the strong dependence of the
Petz efficiency, here to be considered as the capacity of recovering the state, represented
by the fidelity function, with the previously fixed reference state σ.

From Fig. 6 it is easy to see that when we are trying to recover states close to
the chosen reference state, the value of the fidelity is high and consequently the efficiency
is high. On the contrary, if the state to be recovered is far from the reference state, the
fidelity decays a lot. Since there is this sense of proximity, it is not possible to find a Petz
recovery map that works equally well for all states of the Bloch sphere. Here we arrive
at an interesting point of this analysis, the emergence of certain domains or regions were
a recovery map reaches its biggest values of fidelity. Therefore we found quantum states
that can always be recovered. We will return to this point later.

To summarize, the Petz works really well depending on the choice of σ. At the
beginning it seems complicated to identify which reference state fits best for our pourposes.
As the name reference says, we can interpret σ as some amount of information that we
have about the initial state ρ0. In a more realistic scenario, when we are dealing with
uncontrollable parameters and environments, we do not have this information and that is
the reason why this work can be useful to some extent. The main point here is to build a
recovery map capable to recover the initial state without having any previous information
about the ρ0. At this point I consider that the analogy from Fig. 7 can be very useful to
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Figure 6 – Fidelity of the state recovered by the Petz ΛP etz(ρt) and initial pure states ρ0(θ, φ) parametrized
in terms of the spherical coordinates, θ and φ. In a) with σ fixed next to |0〉〈0| the fidelity is
high for ρ0 next to it but decays as we move away from this point. The same is not observed
for the dephasing, which increases from θ ∈ [π/2, π]. In b) σ = 1/2, we observe the same
behavior for the dephasing but for the other two evolutions, the fidelity remains constant at
approximately 0.7. c) σ ≈ |+〉〈+| that obtain high values for states next to it, and it is also
possible to notice the decay of the fidelity when we approach the orthogonal state |−〉〈−|. d)
σ ≈ |−〉〈−| we observe the exact opposite to c).

clarify this point.

Figure 7 – Example of an experiment reproducing the construction of the Petz recovery map. Observe
that this is an ideal scenario where no information about the state to be recovered ρ0 was
provided.

Suppose that in the Lab 1 a person evolves a initial state ρ0 through some quantum
channel Λ to a final state ρt. Then, this experimentalist communicates the performed
process to a friend in another laboratory, Lab 2. The friend from Lab 2 does not have any
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information about the initial state ρ0 but since she knows the process Λ, she is capable to
build a recovery map that recovers ρ0 no matter which evolved state ρt she receives.

Based on Fig. 6, we noticed that it is not easy to build an inverse evolution
completely "blindly". For this reason, in order to analyze the efficient recovery map for this
scenario, or at least clarify which way can be taken, we propose in the following subsection
the best strategy independent of the initial state.

5.2.2 Best recovery map for each one of the evolutions

We developed a numerical simulation to find the best sigma σbest that maximizes
the value of the fidelity for each one of the evolutions. The algorithm is quite simple. We
generate a random mixed reference state σ, specified in the Appendix A, and calculate the
fidelity between the state recovered by the Petz and the initial state F (ΛP etz(Λ(ρ0)), ρ0).
We obtained a set of pairs (σ0, F̄0), (σ1, F̄1), ..., (σn, F̄n), where F̄i = ∑n

α F (ρα, ΛP etz(ραt))/n

is the fidelity on average for n initial randomly chosen states, using the reference state
σi. For each reference state we took an average of the fidelity over n = 104 initial states
(this number will be specified in the Appendix B). After that, we pick the best pair which
corresponds to the highest fidelity on average and the correspondent recovery map. The
obtained values for the fidelity were F̄ = 0.8623 for the dephasing, F̄ = 0.7951 for the
depolarizing and F̄ = 0.8094 for the amplitude damping map.

The results are quite interesting. Proving our assumption from the beginning,
the maximally mixed state seems to be a good choice for σ. It is a state that satisfies
the condition in Eq. 45 and if we are analyzing the whole state space for a qubit, it is
reasonable that the central point of the sphere is a good reference state on average.

The above result, specifically the different numerical values of F̄ , is also directly
related to the image set on the limit of non-bijectivity in Eqs. 36-38 for the dephasing,
depolarizing and amplitude damping map, respectively. The image state plays an important
role in the study of evolutions. It is intuitive to classify these points as some amount of
information about the process. Since they are states that never change over time. It is
worth to mention that for the dephasing channel, as can be seen in Eq. 36, the image state
is actually a set of states. Confirming our analysis, we noticed that any state of this set
satisfies the condition as the best σ on average.

5.2.2.1 Hierarchy between quantum channels

To clarify this point, Fig. 8 shows the fidelity function behavior in terms of initial
mixed states ρ0 = ρ0(r, θ, φ). At the beginning we were looking only for pure states
ρ0 = ρ0(1, θ, φ), but now the analysis was extended for the whole Bloch sphere. Due



Capítulo 5. INVERTING NON-BIJECTIVE EVOLUTIONS THROUGH RECOVERING CHANNELS44

to symmetry properties of the mentioned quantum channels, the azhimutal angle was
fixed, without loss of generality, to φ = 0. Following the r axis in Fig. 8 a) the value of
F (ρ0, ΛP etz(ρt)) begins in its maximum and decreases as long as ρ0 reaches pure states
(r = 1) for all the three quantum channels. In Fig. 8 b) we observe another view of the
same image where it is possible to note that the initial state is better recovered for the
dephasing channel in comparison to the other evolutions, since the fidelity maintains itself
more stable at its maximum.

Figure 8 – Plot of the fidelity in terms of initial mixed states for both three evolutions. The Petz recovery
map was previously prepared with σ = 1/2 for each channel. In a) a frontal view, in b) a side
view where it is possible to see the different behavior for the dephasing map.

With the above results in hand, we propose a hierarchy for the quantum channels
characterized by the non-invertibility degree of the maps. A connection between the results
obtained using the Petz approach and the invertibility of the channels can be easily made,
if we think about the image state defined in section 4.1.1.

As already mentioned, the dephasing channel presents higher values for the fidelity
compared to depolarizing and amplitude damping, which have values so close to each
other, in a manner that the channels cannot be distinguished in Fig. 8, since the curves
are overlapped. Now the question is what differs the dephasing from the other evolutions?
Based on what was developed in this work, the answer is quite simple to understand. The
image set of this quantum channel, at the limit of non-bijectivity, corresponds to a line
that contains an infinite number of states that can be the best state on average. From
another perspective, after a totally dephasing evolution we lose less information than for a
totally depolarizing one, for example, where all the initial states converge to the maximally
mixed state. The key point is that, the harder it is to retrieve information from a channel,
the more non-invertible it can be classified.

It must be taken into account, of course, that the image set depends on the domain
where the map is acting. In this work our analysis was more general, since we were looking
for the whole Bloch sphere, the subspace of all one-qubit states, where no constraints or
bounds were imposed. However, we saw that depending on what σ the experimentalist
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chooses, the Petz recovery map achieves different performances. The same can happen
if there are constraints on the space where the map Λ is acting, for example a mini-ball
inside the Bloch sphere positioned more to the left of the center. Or, another case, if there
is a non-uniform distribution of states at the sphere, with all of them positioned only in
the north hemisphere or only in the south hemisphere. For sure, the best reference state,
consequently the best recovery map, will change for each one of these situations. Yet our
proposed analysis can be helpful.

5.2.3 Without applying the recovery map

This section consists in comparing the Petz recovery map to an identity channel.
Basically we want to see if our strategy works well compared to simply not doing it. In
other words, we would like to analyze how good the Petz is to recover the initial state
compared to the strategy were no recovering is performed. The identity channel is defined
as

I(ρ) = ρ.

A schematic idea is shown in Fig. 9.

Figure 9 – The final state is simply the state after the evolution ρf = Λ(ρ0) = IΛ(ρ0).

We calculated the fidelity between the initial state ρ0 and the evolved one ρt,
F (ρ0, ρt). The obtained results are F̄identity = 0.8610 for the dephasing, F̄identity = 0.7945
for the depolarizing, and F̄identity = 0.4971 for the amplitude damping map. Quite similar
to the results using the Petz recovery map in the Section 5.2.2, at least for the dephasing
and depolarizing channels.

This can be analytically verified if we consider σ as the best reference state
on average in the Eq. 44. Replacing σ by 1/2, since both channels are unital maps, as
explained in Chapter 3, Eq. 28, we observe that the Petz in Eq. 44 reduces to the map Λ
itself. In other words, the map is moving the input state ρt to the opposite direction of
the initial state ρ0. Thinking of an invertibility perspective, the state is pushed away from
the backward direction. Of course the Petz strategy works, but since the identity channel
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give us less work, it should be preferable to use it. The calculations of this strategy can be
seen in Appendix C.

The same is not observed for the amplitude damping channel, a non-unital map.
The Petz performance is twice as good as the performance of the identity channel. This
can be confirmed analytically replacing σ and testing different input states. It is not clear
if there is something else behind the invertibility of unital and non-unital maps. At least
not from the Petz perspective yet.

It is worth mentioning that the previous results are for one-qubit channels, as
one-qubit identity channel, and the same for the fidelity measure. As shown in Eq. 44,
the Petz is a general map which can be extended for higher dimensions. Repeating this
analysis may have a different result for higher dimensions.
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6 ANALYZING NON-MARKOVIAN EVOLUTIONS

"In my opinion, a problem is
something that takes your life
off the tracks - an inconvenience
is not being able to sit in your
favorite seat on the runaway
train in question"

Carrie Fisher (Princess Leia)

In this chapter we review the concept of classical Markov processes and then
adapt it to the quantum case. Later we characterize non-Markovianity, introducing some
useful measures to its quantification and witnessing in quantum systems.

6.1 MARKOVIAN EVOLUTIONS

Classically, a stochastic process is a family of random variables X depending on
time. It is called as a Markovian process if the probability that a random variable X takes
the value xn at any time tn depends only on the value xn−1 that it took at the time tn−1.
In other words, a Markov process does not have memory of the past values of the variable
X. This can be represented in terms of the conditional probabilities

p(xn, tn|xn−1, tn−1; ...; x0, t0) = p(xn, tn|xn−1), ∀tn ∈ I,

where I is some time interval. Markov processes, named after the Russian mathematician
A. Markov, are defined in terms of the Chapman-Kolmogorov equation (BREUER et al.,
2002):

p(x3, t3|x1, t1) =
∫

dx2p(x3, t3|x2, t2)p(x2, t2|x1, t1). (47)

This equation says that the probability of going from state 1 to state 3 can be found
from the probabilities of going from 1 to an intermediate state 2 and then from 2 to 3, by
adding up over all the possible intermediate states 2. In the quantum case, the classical
Chapman-Kolmogorov equation is replaced by

Λ(t2,t0) = Λ(t2,t1)Λ(t1,t0), for t2 ≥ t1 ≥ t0. (48)
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The equation above defines the divisibility property. As we saw in Chapter 3, an
operation describing the evolution of a system over time is called dynamical map. If the
map can be expressed as a sequence of linear maps, as in Eq. 48, it is called divisible.

Definition. A quantum system under the action of a family of trace preserving
linear maps Λ(t2,t1), where t2 ≥ t1, is Markovian if for every t2 and t1, Λ(t2,t1) is a complete
positive map and satisfies Eq. 48.

A very nice property of the divisibility condition is that it may be defined without
any explicit mention to measurement processes. In quantum systems this is a huge
advantage since a measurement can change and disturb the state of the system. It is also
possible to obtain a differential equation for ρ(t), called the Master equation (BREUER et
al., 2002).

We know by definition that the derivative corresponds to the following limit for
ε → 0 :

dρ(t)
dt

= lim
ε→0

ρ(t + ε) − ρ(t)
ε

. (49)

Consider the difference

ρ(t + ε) − ρ(t) = [Λ(t+ε,0) − Λ(t,0)]ρ(0) = [Λ(t+ε,t) − 1]Λ(t,0)[ρ(0)] = [Λ(t+ε,t) − 1]ρ(t).

Now, substituting the expression above in Eq. 49, we obtain

dρ(t)
dt

= lim
ε→0

[Λ(t+ε,t) − 1]
ε

ρ(t) = Ltρ(t), (50)

where Lt is known as the generator of the evolution. If the evolution is Markovian, we
arrive at the following result.

Theorem. An operator Lt is the generator of a Markovian process if and only if
it can be written as

dρ(t)
dt

= Lt[ρ(t)] = −i

�
[H(t), ρ(t)] +

∑
k

γk(t)[Vk(t)ρ(t)V †
k (t) − 1

2V †
k (t)Vk(t), ρ(t)], (51)

the famous Gorini-Kossakowski-Susarshan-Lindblad (GKSL) (LINDBLAD, 1976; GORINI
et al., 1976) equation, where H(t) is the self-adjoint Hamiltonian that determines the
system dynamics, Vk(t) is a time dependent operator, and γk(t) ≥ 0 ensure that the
equation is trace-preserving and complete positive. If the dissipation rate γk(t) is zero,
then the equation above reduces to the quantum Liouville equation for a closed system, as
shown in Eq. 19, also known as the von Neumann equation. The GKSL master equation
describes the evolution of an open quantum system in the weak-coupling limit. Further
assumptions have to be made, known as Born-Markov approximations:
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1. Slowly developing of the correlations between system and environment.

2. Excitations of the environment decay quickly.

3. When compared to the system timescale, terms that oscillate fast can be neglected.

It is easy to understand that in realistic physical systems, the assumption of a
Markovian dynamics relies in simplifications that neglect all memory effects to describe
the system.

The phenomenon of the non-trivial memory effects in open quantum systems,
known as the non-Markovian regime, has been extensively investigated in recent years. A
large variety of analytical and numerical methods were developed to quantify the degree
of non-Markovianity in physical systems, as can be seen in (RIVAS et al., 2014; VEGA;
ALONSO, 2017; LI et al., 2020; LI et al., 2019).

6.2 NON-MARKOVIAN RANDOM UNITARY QUBIT DYNAMICS

In this section we present the analysis developed in (CHRUŚCIŃSKI; WUDARSKI,
2013), which is quite useful for our purposes, as will be seen in Chapter 7.

A random unitary dynamical map can be described by

Λtρ =
3∑

α=0
pα(t)σαρσα, (52)

where σα are the Pauli matrices and pα(t) is a time-dependent probability distribution,
such that p0(0) = 1 guarantees Λ0 = 1. Aiming to build a non-Markovian evolution Λt,
we must find a local generator Lt that does not satisfy the GKLS theorem presented in
Section 6.1. Based on the results from (CHRUŚCIŃSKI; WUDARSKI, 2013), the local
generator is given by

Lt(ρ) =
3∑

k=1
γk(t)(σkρσk − ρ). (53)

As previously discussed, the dissipation rates γk are time dependent functions which must
be positive to satisfy the Markovianity condition.

Definition. The random unitary dynamics in Eq. 52 is Markovian if and only if,

γ1(t) ≥ 0, γ2(t) ≥ 0, γ3(t) ≥ 0, for all t ≥ 0. (54)

The time dependent probabilities shown in Eq. 52, and also in Eqs. 30-34 are characterized
in terms of these decay rates γi′s(t).
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Let us introduce
Γk(t) =

∫ t

0
γk(τ)dτ. (55)

The probability distributions pα(t) are given by

p0(t) = 1
4[1 + A12(t) + A13(t) + A23(t)],

p1(t) = 1
4[1 − A12(t) − A13(t) + A23(t)],

p2(t) = 1
4[1 − A12(t) + A13(t) − A23(t)],

p3(t) = 1
4[1 + A12(t) − A13(t) − A23(t)],

where Aij(t) = e−2[Γi(t)+Γj(t)]. For a deduction and more detailed algebraic calculations, see
(CHRUŚCIŃSKI; WUDARSKI, 2013).

We can choose then negative rates and the correspondent probabilities to construct
a wide range of non-Markovian evolutions for one-qubit dynamics.

6.3 MEASURING AND WITNESSING QUANTUM NON-MARKOVIANITY

After introducing the theoretical aspects and presenting examples of quantum
non-Markovian systems, we may think about its quantification and detection. We begin by
presenting some useful techniques to quantify and witness non-Markovianity in quantum
systems as geometric mesures, RHP measure and the BLP quantifier. A good question we
may ask ourselves is about the difference between those techniques. Basically a measure is
more related to quantification, for example, a function which assigns a number to each
dynamics. Such number can be seen as a markovianity (non-markovianity) degree. A
witness is related to detection, whose outcomes are "yes" or "no".

6.3.1 Geometric measure

This measure is expressed as a distance between some dynamical map Λt,0 and
its closest Markovian dynamics ΛM

t,0, originally proposed in (WOLF; CIRAC, 2008). The
quantity D(Λ1, Λ2) ∈ [0, 1] is some distance measure in the space of dynamical maps. The
geometric non-Markovianity measure for some time t is then defined as

N geo
t [Λ(t,0)] := min

ΛM ∈M
D(Λt,0, ΛM

t,0),

where M is the set of Markovian dynamics. Observe that this value is zero if and only
if Λt,0 belongs to the set M. The geometric measure of non-Markovianity in some time
interval I is the maximum value of the geometric non-Markovianity for t ∈ I,

DI
NM := max

t∈I
N geo

t [Λt,0]. (56)
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This quantity can be seen as a degree of non-Markovianity whose values lie between 0 and
1 and is positive if an only if the process is non-Markovian. Despite the measure being very
easy to understand, it is quite difficult to be computed, since it involves an optimization
process.

6.3.2 RHP measure

Another widely used measure was proposed by Rivas, Huelga and Plenio (RIVAS
et al., 2010; RIVAS et al., 2014). The RHP measure is worth to be mentioned because
it is much simpler to be computed than the previous one, since it does not involve an
optimization. Given a family Λt2,t0 , t2 ≥ t0, the idea is to quantify the positiveness of the
intermediate dynamics Λt2,t1 , t2 ≥ t1, for every time t1.

Regarding the Eq. 48, we know that for non-Markovian dynamics, there must be
some t1, such that Λt2,t1 is not CP. To quantify how much the intermediate map is NCP,
they used the Choi-Jamiolkowski isomorphism, presented in Chapter 3.

The Choi Matrix related to this evolution can be calculated as shown below:

[Λt2,t1 ⊗ 1](|Φ〉〈Φ|), (57)

where |Φ〉 is a Bell state. The map is CP if and only if the Choi matrix is positive
semidefinite. The trace norm of this matrix, discussed in Section 2.5, provides a measure
of the NCP character of Λt2,t1 :

||[Λt2,t1 ⊗ 1](|Φ〉〈Φ|)||1




= 1, iff is CP,

> 1, otherwise.
(58)

Now it is possible to define a function g(t) that is the right derivative of the trace norm:

g(t) := limε→0+
[Λt2,t1 ⊗ 1](|Φ〉〈Φ|) − 1

ε
(59)

So, if g(t) > 0 for some t, the evolution is non-Markovian. The total amount of non-
Markovianity in an interval t ∈ I will be given by

N I
RHP :=

∫

I
g(t) dt. (60)

To compute this measure it must be taken into account that it is necessary to know the
complete dynamics to compute the function g(t).

6.3.3 BLP quantifier

Based on the trace distance Dtr(ρ1, ρ2) for two quantum states ρ1 and ρ2, Breuer,
Laine and Piilo define the rate of change of the trace distance as

σ(ρ1, ρ2, t) := dDtr[ρ1(t), ρ2(t)]
dt

.
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As proved in (RUSKAI, 1994), all CPTP maps are contractions for the trace distance. This
means that no trace preserving quantum operation can ever increase the distinguishability
of two states. As demonstrated in (BREUER et al., 2009), σ(ρ1, ρ2, t) ≤ 0 for Markovian
processes. There are, however, physical processes where this quantity is larger than zero
for certain times. Processes which we call non-Markovian.

In order to construct a quantity to measure the total increase of distinguishability
over the whole time-evolution, let us say for some time interval I, they introduce the BLP
measure as follows

NBLP := max
ρ1,ρ2

∫

σ>0
σ(ρ1, ρ2, t) dt. (61)

Observe that the time integration was extended over all time intervals in which σ is
positive, and the maximum is taken over all pairs of initial states.

Due to its simplicity and intuitive physical interpretation, these measures are
widely and commonly used in the study of non-markovianity in quantum systems.

6.4 MEASURES TO COMPARE QUANTUM CHANNELS

In order to compare evolutions, regarding the geometric measure in Section 6.3.1,
we present now measures capable of comparing two quantum channels. Of course a good
measure must have a useful operational interpretation, satisfy properties for theoretical
reasoning and ideally be easy to compute. For example, if ρ′

1 = Λ1(ρ) and ρ′
2 = Λ2(ρ), the

trace norm of ρ′
1 − ρ′

2 determines how well ρ′
1 and ρ′

2 can be distinguished. In this section
we review two measures which have an operational interpretation in terms of channel
discrimination.

6.4.1 Diamond Norm

In order to introduce the diamond norm, also known as completely bounded trace
norm, let us imagine the following situation: We have access to quantum channels that we
know are either Λ1 or Λ2 with probabilities α and 1 − α, respectively. The probability of
success in a single shot for distinguishing Λ1 or Λ2 is given by

p = 1
2 + 1

2 ‖ αΛ1 − (1 − α)Λ2 ‖1 . (62)

The 1-norm of a channel Λ is given by

||Λ||1 = max{||Λ(A)||1 : A ∈ H(A), ||A||1 ≤ 1}. (63)

Note that A is some operator whose 1-norm was defined in Section. 2.5.
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If the channels are randomly chosen and we know nothing about the probability
of being Λ1 or Λ2, we assume that α = 1/2, and

p = 1
2 + 1

4 ‖ Λ1 − Λ2 ‖1 . (64)

Observe that as mentioned before, ‖ Λ1 − Λ2 ‖1 is not a good definition to distinguish
quantum channels. The main reason behind is that it is not possible to explore quantum
entanglement to increase the distinguishability, an interesting work related to this was
developed in (RIVAS et al., 2010). For a perfect discrimination, an ancillary Hilbert space
K with dimension equal to that of the input, even when the output dimension is much
smaller, is required. Consequently the input states are now ξ defined in K ⊗ H. The
output states to be discriminated are now (1K ⊗ Λ1)ξ and (1K ⊗ Λ2)ξ. Consequently, the
probability of success reads

p = 1
2 + 1

4 ‖ Λ1 − Λ2 ‖�, (65)

where the diamond norm ‖ Λ ‖� is given by

‖ Λ ‖�≡ max
ξ

‖ (1K ⊗ Λ1)ξ ‖1 (66)

Working on the above equation, we may define the diamond norm distance between the
channels as

‖ Λ1 − Λ2 ‖�= sup
ξ

‖ (1K ⊗ Λ1)(ξ) − (1K ⊗ Λ2)(ξ) ‖1, (67)

where 1K denotes the identity map. The supremum is always achieved, provided dim(K) ≥
dim(H).

It is possible to proof that the diamond norm is bounded (WATROUS, 2012;
KLIESCH et al., 2016), as can be seen below

1
n

‖ Λ1 − Λ2 ‖�≤‖ J(Λ1) − J(Λ2) ‖1≤‖ Λ1 − Λ2 ‖�, (68)

where n is the normalization factor. In other words, the dimension of H and J(Λ) is the
Choi-matrix associated to Λ, as presented in Chapter. 3. For the validity of the second
inequality we are considering ξ = 1/n

∑
1≤i,j≤n |i〉〈j| ⊗ |i〉〈j|. Back to Eq. 65, it is easy

to observe that depending on the choice of Λ1 and Λ2, the channels can be perfectly
distinguishable (‖ Λ1 − Λ2 ‖�= 2).

The diamond norm is not easy to compute. There are limited analytical expressions
that can be obtained, and only in special cases. Basically most algorithms developed to
calculate it are based on semi definite programming, which is a special class of convex
optimization, that use sophisticated algorithms to find the optimal value. Due to its
complicate evaluation, we present an algorithm developed in (BENENTI; STRINI, 2010)
to compute the diamond norm numerically using Monte Carlo.

MESSI É MUITO MILHOR DO QUE O PENALDO

EASTER EGGS: GUILHERME ARAUJO DE SÁ MOREIRA
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6.4.1.1 F-algorithm

Called F-algorithm, for using the Fano representation (FANO, 1957), the algorithm
consists in optimizing the trace norm over a large number of randomly chosen input states
ξ. For one-qubit channels, it is sufficient to add a single ancillary qubit when computing
the diamond norm (KLIESCH et al., 2016). A convexity argument shows that it is enough
to take the maximum only over pure states (BENENTI; STRINI, 2010). Then, ξ = |ψ〉〈ψ|,
where |ψ〉 is a two-qubit state. As presented in Chapter 2, the state of a qubit can be
written in terms of the coordinates of the Bloch vector �r. In the Fano-form, �r = (x, y, z, 1)T .
The transformation of the Bloch vector induced by a quantum channel Λi is directly
determined by

�r′
i ≡ M(1)

i �r,

where M(1)
i is a 4 × 4 affine transformation matrix. In order to represent the quantum

operations 1K ⊗ Λi, we define
M(2)

i ≡ 1(1) ⊗ M(1)
i .

These 16 × 16 affine transformation matrix maps the 16 × 1 vectors R into
R′

1 = M(2)
1 R and R′

2 = M(2)
2 R. The vector R is a column vector of real coefficients Rαβ

Rαβ = Tr[(σα ⊗ σβ)ξ],

with α, β = x, y, z, I labeling the well known Pauli matrices σx, σy, σz and σI = 1. Finally,
it is possible to represent any two-qubit state in the Fano form:

ξ = 1
4

∑
α,β

Rαβσα ⊗ σβ. (69)

The trace distance is then computed between the output states ξ′
1 = (1K ⊗ Λ1)(ξ) and

ξ′
2 = (1K ⊗ Λ2)(ξ)

‖ ξ′
1 − ξ′

2 ‖1=
∑

k

|λk|, (70)

where λ1, ...λk are the eigenvalues of ξ′
1 − ξ′

2.

Computing the F-algorithm is quite straightforward and easily implemented in
the most commonly used programming languages. Another alternative to compute the
diamond norm is to obtain directly the Kraus representation from ξ′

1 and ξ′
2. But, in most

cases, it is not easy to obtain the Kraus operators.

Another advantage of the F-algorithm is that the matrix elements of Mi give
us a clear physical interpretation of the transformations of the expectation values of the
system’s polarization measurements. This can be easily seen because the matrix elements

QUEM VOTOU EM BOLSONARO É TAPADO
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of Mi represent the transformation on the Bloch vector, that is directly related to the
polarization of a qubit.
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7 APPLICATION

“All you have to do is move
people just a little bit for
changes to happen. It doesn’t
have to be something huge.”

Viola Davis

In this chapter we propose an approach to study non-Markovian evolutions.
By exploring the idea of replacing non-physical inverse evolutions by the Petz recovery
map, widely discussed in the Chapter 5. We show that it is even possible to attenuate
non-Markovian undesired effects using this strategy.

7.1 APPLICATION

In order to investigate non-Markovian evolutions from the Petz recovery map
perspective, we recall the divisibility property for quantum maps in Eq. 48. Without loss
of generality, choosing t0 = 0 we obtain

Λt2,0 = Λt2,t1Λt1,0, for t2 ≥ t1 ≥ 0. (71)

The equation above describes the dynamics of a quantum state from 0 to t2. The interme-
diate map Λt2,t1 can be defined as

Λt2,t1 = Λt2,0Λ−1
t1,0. (72)

Recalling section 6.1, if Λt2,t1 is not CP, the dynamics will be non-Markovian. Observe
that the intermediate map is written in terms of the inverse map Λ−1

t1,0, which in most
cases is not a CP map. Many times the map Λt1,0 is not invertible and consequently the
intermediate map is not well defined. This is a way to think of it as a lack of information
about the process. Based on what was developed in the previous chapter, we propose to
replace the inverse map of Λt1,0 by the Petz recovery map

Λ−1
t1,0 ≈ ΛP etz.

We would like to define an approximate intermediate map given by

Λapprox
t2,t1 = Λt2,0ΛP etz. (73)

Since the Petz is a completely positive map, it is possible to construct a new dynamics
where the problem of the inverse not being CP was solved. Note that by doing this, we
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guarantee now that the intermediate map is CP. Replacing in Eq. 48 the intermediate
map by Eq. 73, we obtain the total dynamics given by

Λapprox
t2,0 = Λt2,0ΛP etzΛt1,0. (74)

7.2 NON-MARKOVIAN DEPHASING

Recalling section 6.2, we construct a non-Markovian evolution for a qubit choosing
γ1(t) = 1 and γ2(t) = sin(t). It is easy to see that Γ1 = t and Γ2 = 1−cos(t). The evolution
is clearly non-Markovian since γ2(t) = sin(t) is periodic and can assume negative values
for some time intervals (CHRUŚCIŃSKI; WUDARSKI, 2013). Equation 30 can then be
rewritten in terms of a new probability distribution defined as

pdeph
1 (t) = α(1 − e−2(1−cos(t))), (75)

where α = e4/(e4 − 1). It is a periodic function of period 4π as can be seen in Fig. 10. In
order to investigate a different behavior, we propose another dephasing model, defined by
the following probability distribution

pdeph
2 (t) = 1 − e−0.3 cos2 t. (76)

This model has an interesting behavior, it is a damped oscillation which stabilizes in
pdeph

2 (t) = 1, for longer times. From this point on, we classify both dynamics above as Case
1 and Case 2, for pdeph

1 (t) and pdeph
2 (t).

Figure 10 – Probability distributions characterizing a non-Markovian dephasing evolution.

Both evolutions above define the original non-Markovian dynamics Λt2,0. For
simplicity let us replace t2 = tf and t1 = t. In the following subsections we analyze our
strategy for the two different situations: the evolution is free going from t0 = 0 to the final
time tf = 2t, and when the evolution is fixed with tf = 2π.
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7.2.1 Final time free in 2t

This is the case of an evolution occurring in an unlimited time interval. We deal
with only one parameter t. Equation 48 is rewritten as

Λ2t,0 = Λ2t,tΛt,0. (77)

Consequently, the same happens to Λapprox
2t,0 = Λapprox

2t,t Λt,0. We begin by verifying the
positiveness of the dynamics through Fig. 11. As discussed in Chapter 3, the eigenvalues
of the Choi Matrix are positive if the map is CP.

Figure 11 – Plot of the smallest eigenvalues λ of each one of the intermediate dephasing maps Λ2t,t and
Λapprox

2t,t .

We noticed that the smallest eigenvalue of Λapprox
2t,t is positive for all times no

matter what probability distribution pdeph
i (t) we choose. As expected, since by construction

Λapprox
2t,t is CP. On the other hand, for the Λ2t,t map, there is a negative eigenvalue for some

time intervals, consequently, this evolution cannot be classified as CP. Observe that the
minimal value of the most negative λ, occurs in the limit of non-bijectivity, we can confirm
this by looking to Fig. 10. Observe that both eigenvalues in Fig. 11, are most different
as possible at this regime of non-bijectivity. It is also interesting to observe that there is
some time intervals where λ of Λ2t,t is positive. For the Case 1, when t ∈ [1.4, 1.8] and
t ∈ [4.6, 5] the minimum eigenvalue of Λapprox

2t,t is equal to the minimum eigenvalue of Λ2t,t.
In other words, since the eigenvalues are directly related to the Kraus operators, we can
say that the maps are equal at these points. It is easy to prove that all the eigenvalues,
even the larger ones coincide at these points, a property of the Kraus operators, discussed
in Chapter 3.

For Case 2, the behavior is quite similar. We noticed that due to the form of
pdeph

2 (t), the value of λ oscillates more frequently. In a more detailed analysis, the valleys on
the negative semi-axis are narrowing over time. Also, the separation between the ridges on
the positive semi-axis is less pronounced. The negative eigenvalue becomes more positive
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over time. Contrary to what happens in the first case, this can be understood since pdeph
2 (t)

is stabilizing for t >> 2π. Initially we can be led to believe that the new proposed dynamics
is Markovian. To find out if this is indeed true, we use the already presented trace distance
in Section 2.5 and again discussed in Section 6.3. The idea behind is that for Markovian
processes the trace distance is a monotonically decreasing function in time. In other words,
under a Markovian evolution any two initial states can never become more distinguishable
over time.

Figure 12 – Distinguishability between two states Dtr(ρ1, ρ2) over time for dephasing. With ρ1 = |+〉〈+|
and ρ2 = |−〉〈−| for both cases.

We took two initial orthogonal states ρ1 = |+〉〈+| and ρ2 = |−〉〈−|. Looking
at Fig. 12, they are completely distinguishable at the beginning of the evolution, as
expected. However, for the proposed dynamics Λapprox

2t,0 there is still an increase of the
distinguishability between the two states, therefore being still NM. This can be explained
if we look back to Eq. 74. The total dynamics is CP but is not CP-divisible, since there is
still a dependence from the original NCP dynamics Λt2,0 treated here as Λ2t,0.

It could be also noticed that for the Case 1, the effects of non-Markovianity are
stronger than in the Case 2, whose revival occurs but is smaller. We can state, especially for
the second case, that apparently a large part of the non-Markovian effects were suppressed
using this approach. There is a simple reason for this to happen. If we go back to Fig. 10,
and analyze it from a physical perpective, we notice that pdeph

1 (t) induces a drastic change of
the state undergoing this evolution. Observe that when pdeph

1 (t) = 1 the map is completely
dephasing, the state was driven to one possible state of the image set, stays there for a
considerable time and then is drived back to the initial point. On the contrary, the second
probability induces a smooth change, it is happening by parts until finally stabilizes in the
completely dephased state for longer times. We can think of it as a thermalization process,
when a stationary state is reached for t → ∞. This kind of oscillatory behavior is found in
damped oscillators.
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Another issue to be addressed here is the similarity between the original NM
dynamics and the new proposed dynamics. To do so, we use the formalism presented in
Section 6.4. We observed that ||Λapprox

2t,0 − Λ2t,0||� = ||J(Λapprox
2t,0 ) − J(Λ2t,0)||1. Then, for

simplicity, to avoid the maximization required to compute the diamond norm, we opted to
investigate the trace distance between the Choi matrices shown in Fig. 13 for both cases 1
and 2. For this calculation we still used the Fano algorithm; however, we applied the map
only to one of the Bell states.

Figure 13 – Distance between the Choi matrices over time for both cases for a dephasing channel.

The above Figs. 11 and 13 can be seen as complementary ones. For the Case 1,
we observe that the peaks in 13 occur in the same time interval when the eigenvalues in
Fig. 11 are so discrepant. The same line of thinking applies when the distance between
the maps is zero, which occurs when the λ′s are equal.

For the second case, an increase in distance is also observed when the eigenvalues
are different, reaching peaks when the discrepancy between them is as large as possible.
Similarly, the distance is null in the time intervals when the eigenvalues of Λ2t,t and Λapprox

2t,t

coincide. This behavior is explained by the fact that when the eigenvalue of the Choi
matrix of a map becomes positive, the map is completely positive. It is expected that
the distance between a CP map and another CP map to be smaller than the distance
between a CP and a NCP map. As seen in the Fig. 12, the proposed CP dynamics indeed
reduce non-Markovian effects. For example, a simple way to verify this is the difference
between the values of the distance between the Choi matrices for the different cases. For
Case 1, the value is much larger than for Case 2. This means that our proposed dynamics
works better when the evolution is described by pdeph

2 (t). We noticed that as time goes by,
Λ2t,0 and Λapprox

2t,0 become hard to distinguish. Contrary to the Case 1, when the distance is
"periodic". The same behavior will be observed if we plot from t = 2π to t = 4π or from
t = 4π to t = 6π, and so on. Of course this happens due the fact that the related time
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dependent probability distribution pdeph
1 (t) is also periodic.

Finally we arrived at the main point of this analysis, the success of the proposed
strategy is strongly correlated to the probability distribution which defines the evolution.
We can think that the probabilities pi′s(t) are related to the correlations between the
system and the environment or bath, for example. It determines how the evolution will
develop, if the steady state will be reached quickly, slowly, and how the information flow
between system and environment will occur.

This is an interesting result because it opens the possibility to study different
non-Markovian dynamics. It is worth to mention that most physical phenomena are in fact
non-Markovian, but not always easily to be understood. With this strategy, it would be
possible to investigate the similarity between a non completely positive and consequently
non-physical map, inside a NM evolution and a CP one.

7.2.2 Final time fixed

Now we look for a fixed evolution, when the final time is previously set. We
provide here two examples, the first one with tf = 2π and the second one with tf = 4π.
The strategy is the same as the one used before, we have two time dependent probability
distributions pdeph

1 (t) and pdeph
2 (t) defined in Eqs. 75 and 76, corresponding to the cases 1

and 2, respectively.

Fixed final time tf = 2π The corresponding evolution can be written as

Λ2π,0 = Λ2π,tΛt,0. (78)

The approximate dynamics is also changed to

Λapprox
2π,0 = Λapprox

2π,t Λt,0, (79)

where Λapprox
2π,t = Λ2π,0ΛP etz. In order to verify the completely positiveness of the

dynamics, we look for the eigenvalues λ of the Choi matrix of the intermediate map.
Looking for Fig. 14, we observe a similar behavior to what was presented before
for tf = 2t. Our proposed dynamics has positive eigenvalues, being a CP map, as
expected for both Cases 1 and 2. The main difference now is that the intermediate
map from the original dynamics Λ2π,t is "less positive"compared to the previous
analysis. For Case 1 there is no regime where λ is positive contrary to Fig. 11. For
Case 2 we observe that this regime of positivity is getting smaller over time, until it
vanishes as can be seen for t > 3π/2. In order to give a better explanation, let us
analyze the dynamics for tf = 4π.
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Figure 14 – Plot of the smallest eigenvalues λ of each one of the intermediate dephasing maps Λ2π,t and
Λapprox

2π,t .

Fixed final time tf = 4π Quite similar to the previously mentioned example, we want
to compare the evolutions Λ4π,0 and Λapprox

4π,0 . This example illustrates well the main
difference between the behaviors of the probability distributions.

Complementary to Fig. 14, Fig. 15 shows the behavior of the eigenvalues over time
when we extend the final time. As expected, for the Case 1 we have a periodic
function for λ, quite similar to pdeph

1 (t) that is also a periodic function. For Case 2,
as already mentioned, there is a decrease in the regime in which the eigenvalues are
positive. Much like what happens when tf = 2t in Fig. 11, but in a less subtle way.
We also observe that for a fixed dynamics, there is a boundary as can be observed
comparing the Figs. 14 and 15, especially for the Case 2.

Figure 15 – Plot of the smallest eigenvalues λ of the Choi matrix of the intermediary maps Λ4π,t and
Λapprox

4π,t .

To summarize, we look for Fig. 16 that shows the distances between the Choi
matrices for tf = 2π and tf = 4π. The first thing to be observed is that for Case 1, the
distance is now larger than the one showed in Fig. 13, meaning that the dynamics is more
different when we set the time to a fixed value.
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Figure 16 – Choi distances for both cases with final time fixed. In a) tf = 2π and b) tf = 4π.

For Case 2 the distance gets smaller when we fix the final time tf , and even smaller
for t >> 2π. This can be easily understood if we look at the probabilities in Fig. 10. Note
that pdeph

2 (t) slightly oscillates and then starts to stabilize at its maximum value equal to
1. What happens to the map in this time frame? Basically it is a maximum dephasing
that comes back and forth due to the non-Markovianity effects, represented here by these
oscillations. When we fix the time, it is as if we limited the dynamics to stabilize more
quickly, decreasing these oscillations. The point is that now, as already mentioned, the
eigenvalues of the original dynamics are less positive, which makes it difficult for a CP
map to perfectly simulate a NCP one. For this reason, although the distance has now
decreased and does not fluctuate, it will never reaches zero, unlike what we get with a
non-fixed time. For even bigger times, we have reached the regime where the dynamics
Λ4π,t is even more stable as can be verified in Fig. 10. For this reason, the distance is even
smaller.

We can think in dynamics with a fixed time to occur when the system is not
evolving for an unlimited time interval. This can be quite interesting if we are interested
in building a dynamics which happens in a short period of time. An atom decays with a
short half-life. Or even if we set the final time because what comes next does not interest
us anymore.

7.3 NON-MARKOVIAN DEPOLARIZING

In this section we will repeat the same analysis for the depolarizing channel.
Following the lead of (CHRUŚCIŃSKI; WUDARSKI, 2013), since the depolarizing is
also a random unitary evolution as presented in Eq. 52, we define the first probability
distribution as

pdepol
1 (t) = β(1 − e−2(1−cos(t))), (80)

where β = 3e4/4(e4 − 1). It has the same periodic behavior as pdeph
1 (t).
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We also look to another depolarizing model. After resizing pdeph
2 (t) to satisfy Eq.

31, we obtain
pdepol

2 (t) = 3
4(1 − e−0.3 cos2 t). (81)

From this point on, we maintain the classification used in the last section. We use Case 1
and Case 2 for pdepol

1 (t) and pdepol
2 (t), respectively.

Figure 17 – Probability distributions characterizing a non-Markovian depolarizing evolution.

7.3.1 Final time free in 2t

From now on, what comes next is quite straightforward. We will analyze again
tf = 2t, replacing Λt2,0 = Λ2t,0 and Λt2,t1 = Λ2t,t, with Λ = Λdepol, defined in Eq. 31. We
begin by analyzing the complete positiveness of our proposed dynamics Λapprox

2t,0 compared
to the original NM ones.

Figure 18 – Plot of the smallest eigenvalues λ of the Choi matrix of each one of the intermediate depolarizing
maps Λ2t,t and Λapprox

2t,t .

At first, we notice the similarity between Fig. 11 and Fig. 18. Both smallest
eigenvalues of Λapprox

2t,t are positive for all times. We keep obtaining a CP dynamics as
expected. What is interesting is that the eigenvalues are smaller compared to the dephasing
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evolution. Despite having the same time intervals when Λ2t,t is positive, the maximum
positive value obtained is now smaller than the one in Fig. 11.

For the Case 2, specifically, we observe again in Fig. 18 the narrowing of the
valleys on the negative semi-axis over time and the decrease in the separation between the
ridges on the positive semi-axis. For t > 3π/2, the ridges begin to disappear into a plateau.

From the previous section, we know that we are not building a Markovian dynamics.
Besides the map Λapprox

2t,0 is CP, it is not CP-divisible. Even so, it is interesting to compare
how the distinguishability varies over time for different evolutions. We used the same
initial states ρ1 and ρ2 as in the previous section.

Figure 19 – Distinguishability between two states Dtr(ρ1, ρ2) over time for depolarizing. With ρ1 = |+〉〈+|
and ρ2 = |−〉〈−| for both cases .

The Fig. 19 shows the distinguishability between ρ1 and ρ2 over time for the
original and approximated maps. We noticed that it is quite similar to Fig. 12. The reason
behind this is that we are using the same probabilities, they just were resized to satisfy
the dynamical maps defined in Chapter 3. Again the proposed CP dynamics indeed reduce
the non-Markovian character of the evolution.

However, this is not all. If we look to Fig. 18, when t = π the eigenvalues are
completely different. This is the regime of non-bijectivity. Observe that at this point, the
states are not distinguishable, since the map drove ρ1 and ρ2 to the maximally mixed
state. However, the distinguishability starts to grow around t = 5.2. This confirms that
our proposed dynamics is not Markovian, because as already mentioned, it is still not
CP-divisible. There is no new information from Case 2. The distinguishability decreases
for both evolutions. Then around t = π/2 it starts growing for the original dynamics, but
surprisingly, the CP one only starts growing around t = π until it reaches the value of 0.1
approximately. After this, it decreases to zero and remains there.

Again, we are dealing with two evolutions defined by different probabilities and
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consequently with two different performances of the Petz recovery map. However, it is worth
mentioning that non-Markovianity effects were suppressed by the proposed dynamics.

Regarding the distance between the dynamics shown in Fig. 20, it is possible
to identify right away that the distance ||J(Λapprox

2t,0 ) − J(Λ2t,0)||1 is larger than for the
dephasing channel. For Case 1, we now have the maximum value of the distance equal to
1.5. This agrees with the results presented in Chapter 5, since the Petz recovery map is in
fact able to better recover states from the dephasing evolution, something justified here by
the degree of non-invertibility of the channels. For Case 2, the values are also larger than
for the previous quantum channel, what confirms that the maps are now a little bit more
different. Basically the Petz is a little bit less effective for this channel. Apart from the
numerical values, the shapes of the curves for both cases are equal compared to Fig. 13.
Of course, something that is expected since we maintained the behavior of the probability
distribution functions.

Figure 20 – Distance between the Choi matrices over time for both cases for a depolarizing channel.

Regarding Fig. 18, we noticed that the peaks in Fig. 20 occur in the same time
interval when the eigenvalues are completely different. Also, the distance is zero in the
time intervals where the eigenvalues for Λ2t,t and Λapprox

2t,t coincide.

Due to its similarity with the previous channel, we are not concerned in repeating
the same analysis for tf = 2π.

7.4 NON-MARKOVIAN AMPLITUDE DAMPING

The analysis for the amplitude damping is a little bit different. First of all, it is
not a random unitary evolution like the other two. This means that the approach used
in the previous sections to construct a non-Markovian evolution cannot be used again
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for this channel. Second, the amplitude damping is not a unital map, for this reason the
calculations are a little bit more complicated.

Based on the book (NIELSEN; CHUANG, 2000), we assumed the following
probability distribution

pa.d
1 (t) = sin2(t/2). (82)

It is also a periodic function, quite similar to pdeph
1 and pdepol

1 , but the peak when pa.d
1

reaches its maximal value is more accentuated and less like a plateau.

Figure 21 – Probability distributions characterizing a non-Markovian amplitude damping evolution.

The other evolution that we analyzed was described by the same probability as
pdeph

2 since it is not necessary to resize it. For this section we define the pa.d
2 ≡ pdeph

2 . Both
evolutions are shown in Fig. 21. From now on, we repeated the previous analysis, taking
into account that Case 1 and Case 2 refers now to pa.d

1 and pa.d
2 , respectively.

7.4.1 Final time free in 2t

Our evolution is again written as Λ2t,0, where the evolution is now the amplitude
damping channel, Λ = Λa.d, defined in Eq. 34. The complete positivity of the intermediate
maps can be checked in Fig. 22.

What is interesting for this channel is that the smallest eigenvalue of the proposed
CP dynamics Λapprox

2t,t , the green curve in Fig. 22, is smaller than the positive eigenvalues
of Λ2t,t. A curious fact about this is that contrary to the other evolutions, there is no time
intervals for t ∈ (0, 2π] when all the eigenvalues coincide. The blue line corresponds to
another eigenvalue of Λapprox

2t,t , which coincides at some points with the negative eigenvalue
of Λ2t,t. This can be useful for our analysis.
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Figure 22 – Plot of the eigenvalues λ of the Choi matrix of the intermediary amplitude damping maps
Λ2t,t and Λapprox

2t,t . We plotted two eigenvalues of J(Λapprox
2t,t ).

For Case 1, we observe the negative eigenvalue with minimal point when t = π.
This point corresponds to the limit of non-bijectivity, when pa.d

1 = 1, as can be seen in
Fig. 21. There are also time intervals, for t ∈ [0, 2.1] and again for t ∈ [4.2, 6] where Λ2t,t is
positive. When we look for Case 2, we confirm one more time what was mentioned before
about the narrowing of the valleys on the negative semi-axis. This is explained due to
the behavior of pdeph

2 (t) which is stabilizing for t > 2π. Until now, there is no brand new
information about the dynamics.

In Fig. 23 we observe how the distinguishability varies over time for both cases.
For Case 1, there is a decrease until t = π, and then non-Markovian effects begin to show
up. It is worth to mention here the reason for this behavior. When t = π we are at the
limit of non-bijecivity (max amplitude damping), when all states were driven to the ground
state |0〉〈0|. For t > π the system is somehow recovering information and the states are
distinguishable again. However, despite the growing of the curve for Λapprox

2t,0 , it grows less
than for the original dynamics. For t = 2π, the system recovers all initial information, and
the states were driven to the initial points. Just to remind, the Petz is not giving us this
information, but the dynamics itself is taking charge of this. A remarkable characteristic
of non-Markovian evolutions.

In the second case, the only difference is the presence of more oscillations. The
distinguishability also reaches its minimum value in the regime of non-bijecivity, which
happens approximately for t = π/2, t = 3π/2, t = 5π/2 and so on. Once again, we can
state that, althought the new CP dynamics is still non-Markovian, it considerably reduces
the effects of non-Markovianity present in the original non-Markovian one.

When we analyze the distance between the Choi matrices of the two maps, we
certainly notice a peculiar behavior. Let us analyze it by parts. Looking for the dashed



Capítulo 7. APPLICATION 69

Figure 23 – Distinguishability between two states Dtr(ρ1, ρ2) over time for amplitude damping. With
ρ1 = |+〉〈+| and ρ2 = |−〉〈−| for both cases .

curve in Fig. 24, we see that the maximum value is around 1.75, larger than the values for
the dephasing and depolarizing channel. Of course, we have chosen different probabilities,
since now we are not dealing with Pauli channels. However pdeph

1 , pdepol
1 and pa.d

1 have the
same oscillatory behavior, with the same amplitudes. Another technicality is the fact that
in Fig. 24, the full width at half maximum (FWHM), is larger than in Figs. 13 and 20.
Contrary to what happens with the probability, since the full width at half maximum is
larger for pdeph

1 , pdepol
1 . We may ask ourselves now, what does this mean?

Figure 24 – Distance between the Choi matrices over time for both cases for an amplitude damping
channel.

Well, if we compare the p′
1s in Figs. 10 and 21, the depolarizing follows the same

line of thought, having a large FWHM means a slow growth towards the maximum.
Basically the amplitude damping goes faster into the regime of non-bijectivity than the
other two evolutions. That is why the distance is larger between the dynamics for more
time intervals, simply because this reduces the possibility of the Petz in recovering the
state and acting like an inverse. When we move to the regime of non-bijectivity we are
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loosing information about the process, as was already discussed before.

For Case 2, the peaks are reached for t = π/2 and t = 3π/2, exactly when pa.d
1 = 1.

The larger peak has an amplitude of approximately 0.8. The distance reaches zero when
the eigenvalues coincide in Fig. 22. Compared to the other two channels, the amplitude
damping has the worst performance. There is a peculiarity regarding this evolution. The
peaks of the curves are not quite "smooth". They occur at the limit of non-bijectivity, that
is when the Petz does not properly work at this point. It is a singularity, as mentioned in
Chapter 5.

7.5 SUMMARY

With this strategy we conclude our approach to compute an inverse evolution
through the Petz recovery map. We investigated that the invertibility degree proposed in
Chapter 5 was in fact relevant to deal with non-Markovian evolutions.

All this analysis confirms the fact that the time dependent probability distribution
p(t) completely determines the positivity of the dynamics. Consequently it is a determining
factor for the success of this strategy that we proposed. This can be understood in a
simple way if we think in a system S interacting with an environment E. Depending on
the correlations between S and E, the information flux between those two can be decisive
for the emergence of irreversibility in the process.

Regarding non-Markovian dynamics there is still a plethora of open problems.
One example that I consider especially interesting is related to thermodynamics. Quantum
master equations as shown in Eq. 51 are not well indicated to describe thermodynamic
properties of quantum systems, since we have no longer information about the global state
S + E, and a lot of approximations are made. An alternative is to use collisional models,
that allows full control over the interaction between the system S and tiny fractions of the
environment, called ancillas A. What is interesting is that these models are fully described
by a map Λcol controlled by the experimentalist. From this model it is possible to derive
the second law of thermodynamics for an open system (LANDI; PATERNOSTRO, 2020).
If we now allow for the ancilla to interact with each other in a well defined manner we
introduce non-Markovianity in the collisonal models (GARCÍA-PÉREZ et al., 2020). At
this point our strategy can be useful and bring irreversibility into a new perspective.
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8 CONCLUSION AND PERSPECTIVES

“Não se preocupe em entender.
Viver ultrapassa todo
entendimento. Renda-se como
eu me rendi. Mergulhe no que
você não conhece como eu
mergulhei.”

Clarice Lispector

In this work we investigated the concept of irreversibility for open quantum
systems. We addressed the issue by reviewing the characterization of a qubit undergoing a
physical evolution described by a quantum channel. Due to their numerous applications in
quantum communication and computation, we chose to work with typical decoherence
channels, such as dephasing, depolarizing and amplitude damping. We proposed to explore
the Petz recovery maps to build an inverse quantum channel at the regime where an inverse
map is not well defined. Our results demonstrated how the Petz can be useful to compute
a completely positive inverse evolution. We showed that this is strongly related to the size
of the image set at the non-bijectivity limit. Based on these results we defined an hierarchy
between the dephasing, depolarizing and amplitude damping channels characterized by
the non-invertibility degree of these decoherence processes. It is quite interesting if we
think of it as an amount of information that we own about the system. This brings the
possibility of application of this work to the field of quantum information theory and
quantum computing, since we are able to construct a recovery map that gives us back
information that was previously lost.

We also showed that, in certain situations, for a qubit undergoing a dephasing or
depolarizing evolution, the same value of fidelity is achieved by simply doing nothing to
the input state (identity map). However, as can be seen in (ŻYCZKOWSKI; SOMMERS,
2005), the fidelity between arbitrary states decays with the increase of the dimension N.
Since F (ρ, σ) ∝ 1/N . This is just a comment, the analysis itself was not done in this work,
but the framework presented in this dissertation have risen new questions which could be
the potential focus of subsequent work. The Petz recovery map could be more efficient in
larger dimensions. One more time, it must be taken into account that, in this work, we
analyzed the evolutions acting in the subspace of all one-qubit states. However, we may
find ourselves restricted to certain constraints and bounds which change our domain where
the map is acting. This is what I consider the central point of this study, in these specific
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cases, for example, the Petz performance could be improved, and our analysis provide the
necessary tools to find the best reference state and consequently the best recovery map.

Later we presented a general framework of Markovianity in open quantum systems,
followed by measures to quantify the degree of non-Markovianity in an open system. The
geometrical measure that compares two evolutions and calculates the distance between
them; the RHP measure that identifies non-Markovian effects due to the violation of the
divisibility property of the dynamical maps family; the BLP measure that quantifies the
distinguishability between quantum states. In Chapter 7, we introduced a new strategy
that can be quite useful to establish possible relations between non-Markovianity and other
characteristics of an open quantum system, such as invertibility. We explored the results
from Chapter 5 to build a physical evolution capable to simulate a non-completely positive
one. Although a substantial reduction of non-Markovian effects has been achieved, it was
not possible to build a Markovian evolution since the new proposed dynamics is CP but
not CP-divisible. An interesting result obtained was the strong dependence of the success
of this strategy with the initial correlations between the system and the environment,
described by the time dependent probability distribution.

Another alternative would be to search the CP-divisible map closest to the original
non-Markovian dynamics, as mentioned in Section 6.3. We may now ask ourselves how
far is the Petz from this map? This is an open question. As discussed in Section 6.3,
the geometrical measure could find the next Markovian dynamics. However a tricky
optimization would be necessary.
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APPENDIX A - RANDOM MIXED STATE GENERATION

The generation of a random mixed state was made computationally using Mathe-
matica program. We build a function that generates a random mixed state using an
uniform distribution U{a, b}, whose values are represented by numbers in an interval [a, b],
so that a and b become the main parameters of the distribution. This distribution is a
symmetric probability distribution, whose values are equally likely to be observed.

This is quite useful since we want to achieve all states of the Bloch sphere, and
consequently we are not privileging one region more than the other. This gives us a faithful
range of mixed states of the sphere.
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APPENDIX B - CONVERGENCE TEST

In statistical analysis, the convergence of random variables to some limit random
variable is an important concept and with lots of applications in probability theory, and in
the study of probability distribution describing an unknown phenomena. The idea can be
formalized that a sequence of essentially random or unpredictable events can sometimes
be expected to converge into some behavior that is essentially unchanging or settle down
to a limiting constant value. Mathematically we expect that the variance V ar(X)

V ar(X) =
n∑
i

(Xi − X̄)2

n − 1

decreases to a negligible value or even zero. Where the Xi
n
i=0 are the outcomes of some

random variable X and X̄ is the mean value. It measures how far a set of numbers is
spread out from their mean value.

In Fig. 25, we noticed that the difference between the values of the fidelity on
average F̄ becomes negligible when we take a sample of bigger or equal than 104 initial
states corresponding to the state space of the Bloch sphere. We opted to choose this value
because it is sufficient and necessitates a smaller simulation time compared to a bigger
sample of states.

Figure 25 – Decay of the variance with the increase of the number of initial states as sample space.



APPENDIX C - IDENTITY CHANNEL

This section demonstrates the calculation of the fidelity on average without
applying the Petz recovery map. Instead, we use the well known Identity channel I. Given
a quantum state ρ, the action of this channel is given by

I(ρ) = ρ. (83)

Based on the scheme of Fig. 9, we need to calculate the fidelity between the initial state
and the evolved state ρt, since according to Eq. 83, the state remains itself I(ρt) = ρt. In
order to obtain the mean value of a function f(u, v, w) we compute the integral of f over
a region D, and divided the result by the volume of D as can be seen here

Mean value = 1
V

∫∫∫

D
f(u, v, w) du dv dw (84)

With this idea in mind, we calculate the function F (ρ0, ρt) that is the fidelity over all the
states of the Bloch sphere. Each state can be written in spherical coordinates ρ = ρ(r, θ, φ).
In this case the region is a sphere of radius 1. The fidelity on average is then given by

F̄ = 1
4π
3

∫ 1

0

∫ π

0

∫ 2π

0
F (ρ0, ρt)r2 sin θ dr dθ dφ, (85)

where V = 4π/3 the volume of a unitary sphere, r2 sin θ is the Jacobian in spherical
coordinates. This calculation is made for each one of the quantum channels.
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Capítulo 3. QUANTUM DYNAMICAL MAPS 28

3.2.1.1 Dynamical Matrix

A quantum map Λ is uniquely characterised by its dynamical matrix. The density
matrix ρ of size N can be treated as a vector �ρ after reshaping it (BENGTSSON et al.,
2008). We can take as an example

ρ =

ρ11 ρ12

ρ21 ρ22




→ �ρ = (ρ11, ρ12, ρ21, ρ22).

The following formula can also be used

�ρk = ρij where k = (i − 1)N + j.

Now it is simple to rewrite the equation 23 as

�ρ′ = L�ρ or ρ′
mµ = Lmµnνρnν ,

where L is a linear matrix of size N2, encoding the transformations of the coordinates of
the vector �ρ. It is implicit here the summation over repeated indices.

It is also necessary to present here another operation called reshuffle. Given a
rectangular X matrix of size M × N . The process of reshuffling consists of reshaping each
row of X into a rectangular M × N submatrix and placing it into a bigger matrix block
by block. This gives us

XR
mµnν ≡ Xmnµν .

For simplicity, let us take a 4 × 4 matrix X. The correspondent reshuffled matrix can be
written as 



X11 X12 X21 X22

X13 X14 X23 X24

X31 X32 X41 X42

X33 X34 X43 X44




.

In bold we observe the elements that remain in the same position as before.

Finally it is possible to introduce DΛ, the dynamical matrix associated with some
evolution Λ :

DΛ = LR. (24)

This notion of dynamical matrix was first introduced by Sudarshan in (SUDARSHAN;
RAU., 1961). Later these matrices were studied by Choi in (CHOI, 1975). It is common to
call them Choi matrices JΛ:

JΛ = (I1 ⊗ Λ2)|Ω〉〈Ω|, (25)
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