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"It is said that an argument is what convinces reasonable men and a proof is what it takes to

convince even an unreasonable man.” (CRAIG,|1994)



ABSTRACT

Proofs are not a simple task to be performed. Some barriers are also put in place when it
comes to checking them, as there are proofs that are so specialized that few people can even
understand them or so long that few have time to check them. Computers have been an ally
in this sense, as they support those who deal with it, automating all or part of the process, in
addition to performing the verification of the proof steps. In this context, we have proofs as-
sistants that are capable of generating some proof steps automatically, but that still need the
collaboration of a user to conduct the process. There are a variety of proof assistants, how-
ever, with different purposes. A better understanding of strengths and weaknesses regarding
these systems can lead to a choice that means less effort for formalization and proof, for
instance. In this work, we codified a specification of the software product line refinement
theory in the Coq proof assistant. This theory guarantees that we are not introducing errors
or changing the behavior of existing products in a product line during an evolution, ensuring
a safe evolution. This theory has been specified and proved using the Prototype Verification
System (PVS) proof assistant. Nevertheless, the Coq proof assistant is increasingly popular
among researchers and practitioners, and, given that some programming languages are al-
ready formalized into such tool, the refinement theory might benefit from the potential in-
tegration. Therefore, in this work we present a case study on porting the PVS specification
of the refinement theory to Coq. This specification includes specific models such as Feature
Model, Asset Mapping, and Configuration Knowledge, as well as instantiation using Type-
classes and formalizing templates that can be used in SPL evolution scenarios. Moreover, due
to the fact that this theory has already been formalized in the PVS, we compare the proof as-
sistants based on the noted differences between the specifications and proofs of this theory,
providing some reflections on the tactics and strategies used to compose the proofs. Accord-
ing to our study, PVS provided more succinct definitions than Coq, in several cases, as well as
a greater number of successful automatic commands that resulted in shorter proofs. Despite
that, Coq also brought facilities in definitions such as enumerated and recursive types, and

features that support developers in their proofs.

Keywords: Software Product Lines. Theorem Provers. Coq. PVS.



RESUMO

As provas ndo sdo uma tarefa simples de serem realizadas. Algumas barreiras também
sdo postas quando se trata de verifica-las, uma vez que existem provas que sdo tao especial-
izadas que poucas pessoas sdo capazes de entendé-las ou tdo longas que poucas dispoe de
tempo para checé-las. Os computadores vém sendo um aliado nesse sentido, pois dao su-
porte para aqueles que lidam com isso, automatizando todo ou parte do processo, além de
realizar a verificacdo dos passos de provas. Nesse contexto, temos 0s assistentes de provas
que sao capazes de gerar alguns passos de provas de forma automatica, mas que ainda pre-
cisam da colaboracdao de um usudrio para conduzir o processo. Existem uma variedade de
assistentes de provas, porém, com finalidades diferentes. Um melhor entendimento de pon-
tos fortes e fracos a respeito desses sistemas podem levar a uma escolha que signifique em
um menor esforco de formalizacao e prova, por exemplo. Nesse trabalho, codificamos uma
especificacao da teoria de refinamento de linha de produtos de software no assistente de
provas Cog. Essa teoria d4 a garantia de que nao estamos introduzindo erros ou alterando o
comportamento dos produtos existentes de uma linha de produtos durante uma evolucao,
assegurando uma evolucdo segura. Esta teoria foi especificada e comprovada usando o as-
sistente de prova Prototype Verification System (PVS). No entanto, um outro assistente de
prova, Coq, tem se tornado cada vez mais popular entre pesquisadores e desenvolvedores
e, dado que algumas linguagens de programacao ja estdao formalizadas em tal ferramenta,
a teoria do refinamento pode se beneficiar do potencial de integracao. Dessa forma, neste
trabalho, apresenta-se um estudo de caso sobre a portabilidade da especificacdao PVS da
teoria de refinamentos para Coq. Esta especificacdo inclui modelos especificos, tais como
Feature Model, Asset Mapping e Configuration Knowlegde, como também a instanciacao us-
ando Typeclasses, além da formalizacao de templates que podem ser usados em cendrios de
evolucao de SPL. Adicionalmente, pelo fato dessa teoria j4 ter sido formalizada no PVS, este
trabalho compara os assistentes de prova com base nas diferencas observadas entre as es-
pecificacoOes e as provas dessa teoria, proporcionando algumas reflexdes sobre as téticas e
estratégias utilizadas para compor as provas. Como resultado, de acordo com este estudo, o
PVS forneceu defini¢cdes mais sucintas do que o Coq, em varios casos, bem como um maior
numero de comandos automdticos bem-sucedidos que resultaram em provas mais curtas.
Apesar disso, Coq também trouxe facilidades nas defini¢cdes, como tipos enumerados e re-

cursivos, e recursos que dao suporte aos desenvolvedores em suas provas.

Palavras-chaves: Linhas de produtos de software. Provadores de Teorema. Coq. PVS.
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1 INTRODUCTION

The question "What is proof?", and variations on it, have been discussed for some time, and
many answers have been proposed, because different communities may agree on different
answers to this question. In particular, in Mathematics, proofs are absolutes (GEUVERS} 2009).
This means that we can rely on the statements once they have been proved. Moreover, there
are many methods that can be used to prove the statements. In Formal Proofs, we assume
that some hypotheses are true and make use of known facts and the deduction rules of
logic to reach the conclusion (JIMENEZ; SANCHEZ, |2010). Every logical inference made must
be checked all the way back to the fundamental axioms of mathematics, which is why there
is a need for a precise syntax to make proofs easily understood by provers and checkers.

Formal proofs are often constructed with the help of computers, allowing some or all of
the proof steps to be generated automatically. These proofs can be checked automatically,
also by the computer. In this context, proof assistants provide a formal language to write
mathematical definitions, theorems and executable algorithms. In contrast to automated
theorem proving, these proof management systems need a man to guide the process. How-
ever, the fact of having a user interacting with the system increases expressiveness, making
it possible to set-up a generic mathematical theory in such a system (GEUVERS, 2009).

The Mizar, PVS, HOL, HOL4, Light, Isabelle/HOL and Coq tools are examples of this type
of system. Each of them has its particularities, which may lead to less or greater effort, de-
pending on the situation, both with the development of proofs and formalizations. However,
there are not so many studies that present cases of specific formalizations with the intention
of making comparisons between these systems. In our work, we chose to formalize the Prod-
uct Line Refinement Theory, which guarantees the management of the evolution of SPL arte-
facts over time and ensuring the consistent integration of the changes in all affected products
of the SPL (POHL; B6CKLE; LINDEN, 2005).

We consider the choice of this theory because it requires several types of definitions, such
as data value, uninterpreted types, recursive functions, axioms, lemmas, theorems, in ad-
dition to several properties to be proved. In addition, one of the authors of this work was
responsible for the formalization in PVS, which provides a specification language based on
higher-order logic and a proof checker based on the sequent calculus that combines au-
tomation (decision procedures), interaction, and customization (strategies).

In addition to PVS, another proof assistant is Coq. Coq is based on the Calculus of In-
ductive Constructions (CIC) (TEAM, [2017), a higher-order logic that is constructive and very
expressive. Since the introduction of the CIC and the first implementation of Coq, very few
issues have been found in the underlying theory of Coq (TABAREAU, 2020). Coq also provides
a specification language, called Gallina, to represent the usual types and programs of pro-

gramming languages, capable of formalizing both mathematical definitions, algorithms and
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also theorems, and the command language is called Vernacular (BERTOT; CASTRAN, 2010). The
dependent type system implemented in Coq is able to associate types with values, providing
greater control over the data used in these programs.

Coq has a large user community, which is also reflected by its solid presence in pop-
ular websites, such as GitHub repositories and StackOverflow questions]l] We found more
than 4.000 projects returned from our search on the GitHub GraphQL APIEl There are sev-
eral projects in different areas that have made use of this tool. An example is in the math-
ematics field. Georges Gonthier, as well as workmates from Microsoft Research and INRIA,
have proved the Feit-Thompson theorem (GONTHIER, 2011). Another example is related to
the companies Gemalto and Trusted Logic. These companies obtained the highest level of
certification (EAL 7) for their formalization of the security properties of the JavaCard plat-
form (CHETALI, 2008).

In this work, we conduct a qualitative study whereby we ported the SPL refinement the-
ory from PVS to Coq. Our goal is twofold: 1) to port the theory to a system used by a wider
user community; 2) to provide a case study on this process. This enables us to reflect and
investigate the similarities and differences between the two proof assistants in terms of their
specification and proofs capabilities, which might be useful for the research community to
better understand the strengths and weaknesses of each tool.

This study then tackles questions like "Is Coq expressive enough to deal with the defini-
tions made in the specification of the SPL Refinement Theory in PVS?". Furthermore, regard-
ing the comparison, "Are there different efforts regarding the specifications and the proofs
made in the two proof assistants?". The answer to the first question is achieved from our for-
malization of the SPL refinement theory through direct mapping of the same specification
in PVS. For the second case, we will use the comparison between the systems.

To make this comparison, we present some snippets of specifications from both systems,
discussing similarities and differences. Moreover, we manually categorized the used proof
commands, which allowed us to compare the proof methods at a higher granularity level.
From this study, we can say that we were able to successfully port the theory to Coq, with
some advantages from the point of view of usability and definition, but as the refinement
theory heavily relies on sets, the PVS version ended up with a more succinct form of specifi-
cation. PVS proofs also had a greater usage of automated commands than Coq, simplifying
their proofs. However, this might be due to previous experience with this particular proof
assistant and less experience with Coq. We have mined data from GitHub repositories using
Coq that suggests that the Coq proofs could have been simplified using specific tactics.

Therefore,this work provides the specification in Coq of concrete theories such as Fea-
ture Model, Asset Mapping and Configuration Knowledge, in addition to the general theory

of SPL and the creation of instances of this theory with the concrete ones, which are used for

1
2

<https://stackoverflow.com/questions/tagged/coq>
<https://developer.github.com/v4/explorer/>


https://stackoverflow.com/questions/tagged/coq
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formalization of the SPL safe evolution templates. Additionally, we contributed with a com-
parison between Coq and PVS based on the specification of the SPL theory performed on
these two systems.

The remainder of this work is organized as follows:

¢ Chapter[2|presents an overview of SPLs and SPL refinement;

* Chapter [3] presents other essential concepts used throughout this work, such as the

concept of proofs, proof assistants, in addition to characteristics about PVS and Cogq;

* Chapter[4| presents the formalization of the SPL refinement theory and our compari-
son between the specifications and proofs in Coq and PVS. Besides, it presents a dis-

cussion on lessons learned from our study;

o Chapter|§| presents the final considerations of this work, discusses related work, and

future work.
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2 SOFTWARE PRODUCT LINES

Nowadays, in order to meet the different desires and needs of customers, mass customiza-
tion has brought individualism back to the focus of production, without neglecting large-
scale production capacity (APEL et al.,[2013). This combination of interests was made possi-
ble through the reuse of parts in which their combinations generate different products. The
benefits of this approach make the idea of reuse present in different industrial segments.
For example, in Figure[I} there are some steps to place an order in a food delivery App. Cus-
tomers have customization options by choosing what they want to put in or take out of their
burritos. This brings a sense of individuality, despite users being limited in their options.

According to Clements and Northrop (CLEMENTS; NORTHROP, 2001) a software product
line is a set of software-intensive systems sharing a common, managed set of features that
satisfy needs of a particular market segment or mission and that are developed from a com-
mon set of core assets in a prescribed way. The most obvious benefit from SPL development
is increased productivity, but from SPLs we also have the advantages of reducing costs, since
we are not creating a single product from scratch, and also a better quality of what is deliv-
ered to the customer, since assets are typically more exposed and tested by being used in
different products (APEL et al., | 2013).

In software development, mass customization is present with SPL adoption that enables
the generation of related software products from reusable assets (POHL; B6CKLE; LINDEN} 2005;
BORBA; TEIXEIRA; GHEYT, 2012). SPLs have gained considerable momentum in recent years,
both in industry and in academia. One case is the Core Flight Software System (CFS) SPL.
Launched as open source in 2015, it was developed by NASA’'s Goddard Space Flight Cen-
ter (GSFC) and has been serving as a base for software that records space experiments that
without using it would take years to complete (SUKHWANI et al., 2016). Companies and in-
stitutions such as Hewlett Packard, General Motors, Boeing, Nokia, Siemens, Toshiba and
Philips also apply product line technology with great success. A prominent example from
the open-source community that can be considered as an SPL is the Linux kernel with more
than 11.000 features (TARTLER et al., 2012).

In this work, we adopted an SPL representation consisting of three elements: (i) a feature
model that contains features and dependencies among them, (ii) an asset mapping, that
contains sets of assets and asset names, (iii) a configuration knowledge, that allows features
to be related to assets (BORBA; TEIXEIRA; GHEYI, |2012; [PASSOS et al) 2015). In the remainder of
this chapter, we introduce these elements in more detail.
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Burrito Supreme

Awarm flour tortilla loaded with seasoned
beef, refried beans, tomatoes, onions,
iceberg lettuce, reduced-fat sour cream, red

sauce and cheddar cheese.

& Burrito Supreme

Sauces

18

Avocado Ranch Sauce +$1.20
Choice of Meat v Chipotle Sauce +$1.20
Required
Seasoned Beef [] Creamy Jalapefio Sauce $1.20 ea
Chicken $1.20 [J Guacamole $120 ea
@ Steak +$1.20 [J Mexican Pizza Sauce $1.20 ea
No Seasoned Beef [J Nacho Cheese Sauce $1.20 ea
Beans [] Pico De Gallo $1.20 ea
Black Beans [] Spicy Ranch $1.20 ea
[] Mexican Pizza Sauce $120 ea
& Burrito Supreme
Nacho Cheese Sauce $1.20 ea
Add Ons v o
[] Pico De Gallo $1.20 ea
3 Cheese Blend +$1.20
[J Spicy Ranch $1.20 ea
[ BlackBeans $1.20 ea
0] Fritos $0.69 ea Special Instructions
No onions
[ Jalapefio Peppers $1.20 ea
[ Potatoes $110 ea
[J Red Strips $0.69 ea ! *
[[] Seasoned Rice $1.20 ea
Add1tocart - $10.84
[[] Shredded Chicken $1.20 ea

Figure 1 — STEPS TO PLACE AN ORDER IN A FOOD DELIVERY APP.

2.1 FEATURE MODEL

Variability management is an important aspect in SPLs, because software development must
take the fact that they are configurable into account, meaning that the assets must be devel-
oped in order to enable the generation of different products within the SPL. This requires a

way to distinguish members of a family, which is achieved through the concept of features.

Although the concept of a feature is inherently hard to define precisely (APEL et al., [2013),

we assume a feature to be a prominent and distinctive user visible characteristic of a sys-
tem (APEL et al}, 2013} [KANG et al},[1990).
Feature Model (FM) were proposed as part of the FODA (Feature-Oriented Domain Anal-

ysis) method (KANG et al.,1990) and are used to capture the combinations of features in SPLs.

The relationships among features are usually displayed as a tree in FMs, whose nodes are

feature names and a specific notation is used to specify the relationships.
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Legend:

SAA

optional mandatory  alternative or

| Mobile Media |

N
[anagement |
AN

| Photo |{Music | | Send Photo || Sorting | [ 128x149 || 240x320 |

Send Photo = Photo
Figure 2 - FEATURE MODEL (NEVES ET AL.,|2015).

Figure [2| describes the MOBILE MEDIA FM. Each software product must have the ME-
DIA, MANAGEMENT and SCREEN S1ZE mandatory features. The SEND PHOTO and SORTING
features may or may not be present, since they are optional features. In addition, only one
screen size can be selected for a given product in this line, as these are alternative features.
Each system will also feature at least one of the or-inclusive features: PHOTO and MUSIC.

Restrictions are imposed graphically to have valid configurations. In this work, we define
a configuration as a set of feature names. Therefore, some valid configurations, according to
the FM in Figure2} are:

e {MOBILE MEDIA, MEDIA, PHOTO, MANAGEMENT,
SORTING, SCREEN SIZE, 128x149}

e {MOBILE MEDIA, MEDIA, MUSIC, MANAGEMENT,
SEND PHOTO, SCREEN SIZE, 128X149}

e {MOBILE MEDIA, MEDIA, MUSIC, PHOTO, MANAGEMENT,
SORTING, SCREEN SIZE, 128x149}

We can increase the expressiveness of FMs by inserting representation of relationships
among features of different branches called cross tree constraints (CTC). With the CTC we
have SEND PHOTO and PHOTO related in the FM of Figure 2l Through the formula, SEND
PHOTO => PHOTO, we know that PHOTO must be selected whenever SEND PHOTO is. This
means that {MOBILE MEDIA, MEDIA, MUSIC, MANAGEMENT, SEND PHOTO, SCREEN SIZE,
128x149} is an invalid configuration, since the constraint expressed by the formula is not
satisfied.

2.2 ASSET MAPPING

A SPL has a set of assets on which a shared family of systems is built. Assets are the con-
cretization of the features, introduced in Section|2.1} and can be documents, XML files, im-

ages, and other artifacts that we compose or instantiate in different ways to specify or build
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Mainl | >

Main.java
Main2 |—>

Main.java
Common  —

Common.java

Figure 3 - ASSET MAPPING (NEVES ET AL., 2015).

the different products. But for simplicity, for the examples and concepts, we focus on code
assets that can be specified in any language. In Mobile Media, for example, there must be
software components that allow to take photos, play music and send photos. So, when cre-
ating a product with the following configuration {MOBILE MEDIA, MEDIA, PHOTO, MANAGE-
MENT, SORTING, SCREEN SIZE, 128x149} we can select the assets that will be part of this
product, excluding from this selection the asset whose name is MUSIC, responsible for the
execution of songs in this product. In an Asset Mapping (AM), these asset names are mapped
toreal assets, being a unique mapping and able of eliminating ambiguities. In the example in
Figure we have the names of the assets on the left side related to their respective assets, on
the right side. There are two MAIN.JAVA, however, one is related to the asset name MAIN1 and

the other to MAIN2, which is possible because these are different files in different locations.

2.3 CONFIGURATION KNOWLEDGE

The Configuration Knowledge (CK) defines restrictions on how the variation of system fam-
ilies should be composed for the derivations of products by mapping features to their im-
plementation. To generate a specific product from an SPL, given a valid FM configuration,
the processing of a CK generates the sets of source codes needed to build the corresponding
product. We use [[K]]Z to denote the set of assets that comprise the product generated by
processing the CK according to the given configuration.

An explicit and compositional representation of a CK is given in Figure [4] It is repre-
sented as a table, showing a mapping of feature expressions to a set of asset names. It is
the asset name because it is the path to the asset itself. When selecting PHOTO, for example,

PHOTO.JAVA, among others that do not appear in Figura[dl must be present in the final prod-
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Mobile Media MM. java, ...
Photo Photo. java, ...
Music Music.java,...

Photo V Music Common.aj, ...

Photo A Music App.aj, ...

Figure 4 —- CONFIGURATION KNOWLEDGE (NEVES ET AL.,[2015).

uct. If PHOTO and MUSsIC are selected, COMMON.AJ, MUSIC.JAVA, PHOTO.JAVA, among others,
are part of the product.

Once we have introduced the triple of such elements, we give the formal definition of
SPL, where all products are well-formed. Well-formedness (wf()) might take different mean-
ings depending on the particular languages used for the SPL elements. For instance, it might
mean that code is successfully compiling. Since we do not rely on a particular asset lan-
guage, we just assume the existence of a wf() function that must return a boolean value. Its
concrete implementation depends on instantiating the general theory with a particular asset

language.

Definition 1. ( Software Product Line)
For a feature model F, an asset mapping A, a configuration knowledge K, the tuple (F, A, K) is
a product line when, ¥ c € [[F]] - wf([K1)4).

2.4 PRODUCT LINE EVOLUTION

Despite promised benefits, adopting the SPL approach involves considerable barriers that
not all companies are prepared to face (APEL et al., 2013). One of these barriers is associated
to the costs involved in establishing the product line, which exceeds the values of traditional
strategies (LINDEN; SCHMID; ROMMES, |2007). To compensate for this disadvantage, SPLs must
evolve, whether motivated by new customer requirements, either foreseeing future needs
of the company or to launch a new product. Looking at Figure 5} only from three products,
which is the point where costs are equivalent, the costs of single systems grow faster than
those of the system family, which makes SPL a more profitable strategy than traditional ones.

Nevertheless, some challenges arise when an SPL evolves. Each product is a configura-

tion resulting from a number of possible configurations. This variability can escalate until
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Figure 5 - SPL X SINGLE SYSTEM (POHL; BOCKLE; LINDEN, |2005).

it becomes an almost impossible task to manage, if we consider manually performing this
task. This may mean introducing bugs, modifying the behavior of products from the original
line, compromising the benefits promised by this approach (NEVES et al., 2015).

The success of evolution lies in understanding the impacts of changes, and several stud-
ies have proposed ways to help developers to minimize such impacts (BORBA; TEIXEIRA; GHEYT,
2012; [SAMPAIO; BORBA; TEIXEIRA, [2019} [NEVES et al., )2015; |GOMES et al, 2019} [BiRDEK et al., 2015).
Some of these works are divided between the concepts of safe and partially safe evolution,
and consider the notion of SPL refinement. This notion was based on the idea of program re-
finement. SPL refinement leverages the notion of program refinement, allowing the addition
of new products and preserving the behavior of existing ones. This idea is formalized through
a refinement theory (BORBA; TEIXEIRA; GHEYI, 2012), that has been encoded and proved using
the PVS, a proof assistant.

In general, what differentiates safe evolution from partially safe evolution is how many
products in the original product line will have their behavior preserved. It is a prerequisite for
safe evolution that all products correspond behaviorally to the original PL products (NEVES
et al,,[2015). Thus, users of an original product cannot observe behavioral differences when
using the same functionalities as the corresponding product in the new SPL.

For the evolution to be safe, FM and CK must be taken into account. Figure|§| shows the
refinement in adding the optional Copy feature to Mobile Media SPL. This change results in
twice as many products in the new SPL, that is, for each existing configuration before the
change, it is possible to include the name of the new feature. And we can say that this is a

safe evolution because half of them behave exactly like the original products.
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Figure 6 — ADDING AN OPTIONAL FEATURE REFINEMENT (NEVES ET AL., 2015).

Partially safe evolution, in turn, arises from the need to support developers in scenarios
where at least one product will have its behavior modified, for example, a bug fix. So, in these
cases, partially safe evolution only requires behavior preservation for a subset of the existing
products in a SPL (SAMPAIO; BORBA; TEIXEIRA, 2019).

In particular, in this work, we focus on the concept of safe evolution, which is formalized
through the product line refinement notion. This notion lifts program refinement to prod-
uct lines, by establishing that an SPL is a refinement after a change when all of the existing
products have their behavior preserved. Since [[K]]# is a well-formed asset set (a program),
we use [K ]]‘C“ C [[K']] ‘C“,/ to denote the program refinement notion. In what follows we present
the main refinement notion, but we provide further details in the following chapter, as we

discuss our formalization.

Definition 2. ( Software Product Line Refinement)
For product lines (F, A,K) and (F', A',K"), the latter refines the former, denoted by (F, A,K) &
(F', A',K"), whenever¥c € [[F]]-3c" € [[F']) - [[K]]A = [[K']]’g.

2.5 CAPTURING EVOLUTION SCENARIOS BY TEMPLATES

Studies on safe and partially safe evolution have resulted in templates that are abstractions
of recurrent practical evolution scenarios in SPL. Neves et al. (2015) initially analyzed the
evolution scenarios of the TaRGet SPL, resulting in 11 evolution scenarios and a set of safe
evolution templates that abstract, generalize and factorize the analyzed scenarios and that
can be used by developers in charge of maintaining SPLs. Benbassat, Borba and Teixeira
(2016) on the other hand, conducted a study using an industrial system developed in Java
with 400 KLOC, revealing the need for new templates to address feature extraction scenar-
ios. Sampaio, Borba and Teixeira (2019) has defined templates based on these refinement
templates by changing conditions to allow partially safe changes, finding evidence that these
templates could cover a number of practical evolution scenarios by analyzing commits from
the Linux and Soletta systems. Gomes et al. (2019) also analyzed commits from the open
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source project Soletta, but this time, the goal was to characterize the evolution of the SPL as

a whole, measuring to what extent the evolution history in safe compared to partially safe.

A A
F

I
T

Fre<se'
names(e') € names(F)

Figure 7 - TEMPLATE OF REPLACE FEATURE EXPRESSION (NEVES ET AL., [2015).

Templates are useful because they help developers not to introduce defects in the prod-
uct line by evolving the SPL manually, and it can result in the development of tools to help
developers make their changes. It is not required that developers have knowledge of the the-

ory behind these templates, but only that they understand what the templates suggest for
them to make the change safely.

TaRGeT

Java Files

Input UseCaseDocumentParser

Input WordDocumentProcessing

1S4

Template 5
Heplace Feature Expression

TaRGeT

Java Files

Input UseCaseDocumentParser

Word ¥| WordDocumentProcessing

Figure 8 - TEMPLATE OF REPLACE FEATURE EXPRESSION EXAMPLE (]NEVES ET AL.|, |20 15[).




25

To understand templates, it is necessary to know what is common for all templates. The
templates show the representations of the FMs, AMs and CKs. Those in the left side corre-
spond to abstractions that capture properties of the initial SPL (LHS) (SAMPAIO; BORBA; TEIX-
EIRA, 2019), and in the right side we have the evolved SPL (RHS) (SAMPAIO; BORBA; TEIXEIRA,
2019). The FM representation only shows the features involved or affected by the evolution.
AM is represented by two square brackets, with meta variables to indicate the name of the
assets and the assets. Finally, we have the CK composed of two columns, in the first column
there are the meta variables for the expressions of features, and in the second, the meta vari-
ables for the name of the assets. If there are meta variables F, A and K, which represent FM,
AM and CK, respectively, it means that these models remain unchanged after evolution.

If the developer wants to substitute a feature expression, according to the template shown
in Figure[7] the formula F - e <= ¢’ shows that all product configurations of a feature model
F should lead to an equivalent evaluation for the feature expressions in e and e’. The devel-
oper is also required to use a new feature expression that references F names. This change is
useful because it improves the readability of CK and FM.

Figure [8] illustrates how we can use this template. In this case, the developer uses the
template to change the feature expression related to the WORDDOCUMENTPROCESSING asset
from INPUT to WORD. This is possible because as WORD is under INPUT, selecting the first

means that the second is also selected.
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3 PROOF ASSISTANTS

In the previous chapter we gave an introduction to SPLs and their structure. In this chap-
ter, we continue to provide the relevant concepts for understanding our work. In the current
chapter, we give an introduction to proofs in general, to proof assistants and focus on pro-

viding some characteristics of the Coq proof assistant.

3.1 THE ROLES OF PROOF

Mathematicians, philosophers, educators, computer scientists and others interested in math
ematics, try to agree on what a mathematical proof actually means. Despite this, we are all
aware that a proof follows a sequence of steps that leads us to reach a goal. More specifi-
cally, according to the Webster’s dictionary definition, a proof is "the process or an instance
of establishing the validity of a statement especially by derivation from other statements in
accordance with principles of reasoning" (MERRIAM-WEBSTER, [2011). These derivations start
from established axioms or other theorems that have already been proven.

The several different roles that proofs play can also be an aggravating factor in the task
of defining proof. Villiers identified a non-exhaustive list of proof roles (VILLIERS, 1990). Ac-
cording to him, a proof can assume the role of verification, explanation, systematization,
discovery, intellectual challenge, and communication. Other works consider a proof as a jus-
tification of definitions. Among these, the roles of verification and explanation are the main
ones. Geuvers (GEUVERS, 2009) agrees with this statement when he defines two roles for a

proof:

e A proof convinces the reader that the statement is correct.

* A proof explains why the statement is correct.

The first point is to verify the correctness of basic steps and how they are combined to
have the proof as a whole, validating it. Additionally, a theorem can have different explana-
tions, each of which shows a new point of view of why the proof is correct. This last role
helps us to counter the complaints that it does not make sense to prove theorems that "ev-
eryone knows" or that have been proven in the past, and allow us to justify why new proofs
of old theorems are valuable (VILLIERS, |1990). Mathematicians often value a new proof of a
well-established theorem for its explanatory power. In this way, we also have the challenge
of explaining what can be obtained with a proof beyond the knowledge that the resulting

theorem is true.
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Figure 9 — PROOF DEVELOPMENT IN A TYPE THEORY BASED PROOF ASSISTANT (GEUVERS,
2009).

3.2 PROOF ASSISTANTS

Proof assistants (also known as “interactive theorem provers”) are systems that automatically
generate some proof steps, but depend on the man to guide the process from the beginning
to the conclusion, providing support for provers and checkers in their tasks that, without
them, could be tedious and with greater possibilities of introducing errors. The need for in-
teraction with a user has the advantage of greater expressiveness in specifications, so any
theory can be formalized in this type of system. These systems usually come with an in-
terface where the user enters commands to manipulate the current goal, that is, what one
intends to prove at the moment, or hypotheses. These goals are transformed into other sub-
goals that are easier to prove, and once the prove of each one of them is finished, the proof
is concluded as a whole. This is basically a trial and error task (YANG; DENG, |2019). The user
analyzes the feedback of the tool to conclude whether to proceed or to go back a step to try
another command.

Proof assistants deal with formal proofs that, in every step, have their construction ver-
ified according to the fundamental axioms of mathematics. So, internally, there must be a
logical structure to allow formal verification, so that we can trust the tool. In the case of proof
assistants, there is the proof engine, which is responsible for building the proof-term from
the inputs of user (GEUVERS, |2009). These proof-terms are not visible to the user, but they are

objects that are checked during the construction of the proof.

3.3 PVS

PROTOTYPE VERIFICATION SYSTEM (PVS) is a tool that provides an expressive specification
language based on higher-order logic (CROW et al., 1995), including, by default, types such as
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numbers, records, matrices, sets, lists, as well as a mechanism for defining abstract types.
This tool is also an interactive environment for conducting formal proofs, able to solve var-
ious objectives in an automated way. PVS provides a collection of powerful primitive in-
ference procedures, which include propositional and quantifier rules, induction, rewriting,
data and predicate abstraction, and symbolic model checking, and the their goals are divided
into antecedents and consequents (OWRE et al., 2001). Some proof assistants generate proof-
objects that store the term to be checked by a simple proof checker, giving greater reliability,
which is not the case with PVS, but this fact provides advantages such as allowing all kinds
of rewriting for numeric as well as symbolic equalities (NAWAZ et al., 2019).

This tool has been shown to be attractive both for academics and industry having been
used successfully in these environments and with several applications, such as checking file
systems, analyzing distributed cognition systems, cryptographic protocolos, etc. NASA has
also been providing some contributions to support the PVS user community, some of which
are: i) NASA PVS Library, a large collection of PVS developments, ii) ProofLite, a Batch prover
and proof scripting, iii) Manip and Field, an Algebraic manipulation of real-valued expres-
sions, iv) Sturm and Tarski, decision procedures for single- variable polynomials, v) Interval
Affine Arithmetic and Bernstein Polynomials, semi-decision procedures for real-valued ex-
pressions (MUNOZ, 2017).

PVS provides an interactive environment for writing specifications. These PVS specifi-
cations are organized from a set of theories. In turn, these theories are formed by a series
of statements that are used to introduce type names and constants, definitions, variables,
axioms and theorems, into the theory. The IMPORTING clause can also be used to allow im-
porting the visible names of other theories. In addition, we have in PVS an internal library
called Prelude, which defines a collection of basic theories about logic, functions, predicates,
sets, numbers, among others. An example of constructing a theory in PVS is given below in
MyFirstTheory, with the definition of square and with the lemma and axiom defined from
that.

MyFirstTheory:
THEORY BEGIN

square(n:nat): nat = n * n
square nondecreasing: LEMMA
FORALL (n:nat) : square(n) >= n
sqrt : [nat-> nat]
axiom sqrt: AXIOM

FORALL (n:nat) : square(sqgrt(n)) <= n
AND n < square(sqrt(n)+1)

END
MyFirstTheory

The theory can make use of standard PVS types, such as MyFirstTheory, which uses nat



29

in its definitions. However, type declarations can be used to introduce new type names to
the context. These types can be uninterpreted, uninterpreted subtype, interpreted or enu-
meration type (OWRE et al., 2001). Uninterpreted types are those that do not provide concrete
information, imposing the lowest possible level of restriction on the specification, support-
ing abstraction. Here we give the example of the CK declaration as being an uninterpreted
type. At another time, CK is instantiated as a set of items. In PVS, for each instantiation of
uninterpreted types, it is necessary to prove that all the assumptions made in the imported
theory are also valid for the most concrete theory. Therefore, valid properties for an uninter-

preted type of CK must also be proven for its instantiations.

CK: TYPE

In addition to uninterpreted types, a predicate subtype of a given type can be defined as
the subset of elements in a type that satisfies a given predicate. For example, we have the
subtype of reals other than zero, which is written as x: real | x /= 0. Despite the simplification
that the use of the subtype brings, the type verification is undecidable and can lead to proof
obligations called type correction conditions (TCCs). Such TCCs must be proven by the user
with the help of the PVS itself.

Finally, among other things, PVS also contains a theorem prover, which provides spe-
cific commands for solving each of proof goals. These commands are called rules or strate-
gies. PVS uses the sequential-style proof representation to display the purpose of the current
proof goal for the ongoing proof. We give the example of a simple implication A-> B V A.
The goals of proofs are divided into formulas known as antecedents (negative numbers) and
consequents (positive numbers). The users enter proof commands after “Rule?” and awaits
feedback from the tool. In this case, the flatten command applies a series of disjunction

rules that are sufficient to resolve the implication.

{1} A IMPLIES (B OR A)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,
Q.E.D.

Another example is the prop rule, which generates subgoal sequents when applied to a
sequent that is not propositionally valid. After that, the user will have to enter other com-

mands to proceed with this proof.

{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)
Rule? (prop)

Applying propositional simplification,

this yields 2 subgoals:
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3.4 THE COQ PROOF ASSISTANT

The Coq proof assistant is a software tool that implements the CIC, presented in Section[3.4.1}
The system was designed to develop mathematical proofs, write programs, and has the power
to express desired properties of these programs, that is, to define specifications, and develop
a set of theories. This is possible due to the two languages used in this tool: Gallina, Ver-
nacular and Ltac. Gallina is the language that allows the development of theories that are
constructed from axioms, hypotheses, parameters, lemmas, theorems, definitions of con-
stants, functions, predicates and sets (TEAM, 2017). Vernacular, in turn, is the language of
commands, used to define objects, build proof scripts and provide interaction with the user.
Finally, Ltac is the tactic language available in Coq.

Coq is one of the most successful proof assistants, and has been growing in popular-
ity among academics, researchers, mathematicians and engineers. The ACM page for the
award (Programming Languages Software Award, 2013) which recognizes the development
of software systems that have had a significant impact on research, implementations and

programming language tools, tells us the following about this system:

“The Coq proof assistant provides a rich environment for interactive development of ma-
chine checked formal reasoning. Coq is having a profound impact on research on program-
ming languages and systems, making it possible to extend foundational approaches to un-
precedented levels of scale and confidence, and transfer them to realistic programming lan-
guages and tools. It has been widely adopted as a research tool by the programming language
research community, as evidenced by the many papers at SIGPLAN conferences whose results
have been developed and/or verified in Coq. It has also rapidly become one of the leading tools
of choice for teaching the foundations of programming languages, with courses offered by
many leading universities and a growing number of books emerging to support them. Last
but not least, these successes have helped to spark a wave of widespread interest in dependent

type theory, the richly expressive core logic on which Coq is based.”

Its dependent type feature enables the user to associate types with values in order to
build safer and more efficient programs, providing greater control over the data used in
these programs. In addition, it is an easy-to-check Kernel proof language that meets the De
Bruijn criterion. By this, we mean that the proof assistant creates an ‘independently check-
able proof object’ while the user is interactively proving a theorem (GEUVERS, [2009). So, we
can ignore the possibility of errors during the construction of a proof and rely only on a (rela-

tively small) proof verification kernel (CHLIPALA, 2013). This Kernel is implemented using the
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OCaml language, and it is highly unlikely that an OCaml bug will interrupt Coq consistency
without interrupting all other types of resources from Coq or other software compiled with
OCaml (TEAM, 2017).

3.4.1 THE CALCULUS OF INDUCTIVE CONSTRUCTIONS

As for the proof assistants, the issue of the validity of the proof quickly arises. It is important
to choose well the formalism that will be used in these systems, not only to avoid failures,
but also so that the formalism is expressed in an understandable way. TYPE THEORY is fun-
damental in this regard. It is concerned with the classification of entities in sets called types
and is used by programs to find simple mistakes at compile time, to generate information
about data to be used at runtime, as well as in proving theorems, in the study of the founda-
tions of mathematics, proof theory and language theory (NEDERPELT; GEUVERS, 2014).

The formalism implemented by Coq is called the CALCULUS OF INDUCTIVE CONSTRUC-
TIONS (CIC), and it is an expressive type theory that provides a natural representation of
notions like reachability and operational semantics defined through inference rules (PAULIN-
MOHRING,; [2015). The language behind CIC is CALCULUS OF CONSTRUCTIONS (CC). However,
as Coq is designed to be used by an interface in text mode, there are differences in the syntax
used for that language.

In CIC, expressions are terms that are associated with types, and types are also associated
with types, called classifications, being types and classifications terms. Coq’s set of types S
can be: i) SProp, the universe of definitionally irrelevant propositions; ii) Prop, the universe
of logical propositions; iii) Set, the universe of program types or specifications; iv) Type(i), a

universe hierarchy with i = 1. So, formally we have:
* S =SProp, Prop, Set, Type (i) |[ie N

It is not necessary to define the index i when referring to the universe Type(i) because the
system itself generates an index for each instance of Type (TEAM, |[2017).

The Check command checks whether the expression is well formed and asks Coq to show
its type.

Check bool.
=> bool: Set
Check 3.

=> 3: nat
Check nat.
=> nat: Set.

That said, we have the bool object, for instance, as a predefined type for Boolean values,
having the type Set. The constant 3 is the natural type, whose type is in Set. Functions like
andb itself are also data values, like true and false.
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Check andb.
=> andb
bool -> bool -> bool.

Propositions have the type Prop, for example, 1 <10 is the type of all proofs that 1 is less
than 10 and is also a term of the type Prop. Actually, in general, the convention is that the
programs are in Set and the proofs are in Prop. Taking the example of the axioms, they must
be of the type Prop and not Set, since the axioms belonging to Prop are always erased by

extraction, so we sidestep the axiom’s algorithmic consequences.

Check 3 =3.
=> 3 =3
Prop.

When using the tool, the Coq user may need to deal with universe inconsistency error
messages, due to variables that are not in the same type hierarchy, which shows that the
type is predicative. This concept is related to the unpredictability, involving inconsistent
constructions like "the set of all sets that do not contain themselves" (CHLIPALA, [2013). With
regard to Prop in Coq, what we really care about is the provability of a proposition, not the
proof of it. There are several ways to prove a proposition, but they are equal in the sense that
they provide the same proposition. So their distinction is just irrelevant.

In type theories, there are typing rules that define whether the terms are well typed. These
rules depend on E and T, which represent, respectively, the Environment and the Context
for the inference. The environment includes all global name definitions and the context in-
cludes all local definitions. The notation [] denotes the empty local context, and by I'l; I'2 we
mean concatenation of the local context I'l and the local context I'2. We denote I'::(y: T) as
being the local environment enriched with the definition of a local variable y, whose type is
T,andE; c: T is the global environment enriched with the declaration of a constant ¢, whose
type is T. We also take I'::( y:= t: T) as the local environment enriched with the definition
of the variable y, whose value is t and type is T, and E; c:= t: T is the global environment
enriched with the definition of the constant ¢, with the value ¢ and type T (TEAM, 2017).

Additionally, the expression E [I'] - #: T states the fact that the term ¢ has type T in the
global environment E and local context, and WF(E) [I'] is used to state that the global envi-
ronment E is well formed and the local context I' is a valid local context in this global envi-
ronment. With that, we present below some typing rules whose premises are placed above

an horizontal line and the conclusion appears below the same line.

* W-Empty:

WE([DI]
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W-Local-Assum:

E[I'TFT:s SeS x¢ I’

WEE)T :: (xT)]

W-Local-Def:

E[T T x¢ T

WE(E)[T :: (x:=t:T)]

W-Global-Assum:

E[]FT:s SeS c¢ E

WE(E;c: T)I]

W-Global-Def:

E[l FtT c¢ E

WE(E;c:=t:T)I[]

These are the rules for well-formedness of local contexts and global environments, either
for assumptions (W-Local-Assum and W-Global-Assum) or for definitions (W-Local-Def and
W-Global-Def). The W-Global-Def rule, for example, states that so that a variable ¢, whose
value is t and type is T, is placed in the global environment and this is well-formed, the term

t that has type T must be placed in the context E and ¢ must not belong to E.

3.4.2 GALLINA

GALLINA is the core language of Coq. It is used to represent proofs, propositions, terms and
types. With that, we can formalize theories and specify programs. Since Coq provides a type
checker to verify whether the program meets your specification, Coq allows the development

of correct programs and the certification of programs already developed.

Inductive vowel: Type :=

u: vowel.

| a: vowel
| e: vowel
| i: vowel
| o: vowel
I
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Gallina does not exhibit any syntactic distinction between terms and types, implying that
the syntax of terms in its grammar is used to represent both value and type terms. In gen-
eral, everything after := and before the period, is a term in Gallina, and can be PROP, SET
or TYPE. As we have previously mentioned in Section 3.4, Coq allows building types from
scratch instead of just using existing data in internal resources (PIERCE et al., 2018). Enumer-
ated types are a simple way to describe finite sets (BERTOT; CASTRAN, |2010), whose members
are represented by their constructors.

In the above definition, we have the inductive type vowel, being a Type and its construc-
tors are ‘@, ‘¢, ‘i, ‘0’ and ‘u’. When we define an inductive type, Coq automatically includes
theorems, so that it is possible to reason and compute enumerated types. VOWEL_IND, for
example, is the principle of induction associated with the inductive definition. To view it, we

can use the command Check vowel_ind, and we will get the following result:

vowel_ind

forall P : vowel -> Prop,
P a ->
P e —>

Pi ->P o ->P u -> forall v : vowel, P v.

Here we can notice a universal quantification (forall) regarding a logical property P, fol-
lowed by nested implications, where each premise is P applied to one of its values, the con-
clusion is that P is valid for all values of vowel. In summary, it indicates that, to check if a
property is valid for all values of vowel, we just need to check if it is valid for each one of
them.

Coq also includes the recursion principles VOWEL_REC and VOWEL_RECT, which differ
from VOWEL_IND because their initial quantifications manipulate a property whose value is
in Set or Type, respectively. With these implicit definitions, we are able to define a function
on the vowel type simply by providing the values for each vowel. We can also use VOWEL_REC
to create recursive definitions, without the command Fixpoint, as is the case with the app2

recursive function, which uses list_rec in its construction.

vowel_rec

forall P : vowel -> Set,
P a ->
P e ->

Pi ->P o ->P u -> forall v : vowel, P v.

vowel_rect

forall P : vowel -> Type,
P a ->
P e ->
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Pi ->P o ->P u -> forall v : vowel, P v.

list_rec
forall (A : Set) (P : list A -> Set), P nil ->
(forall (a :A) (1 : list A), P 1 ->P (a :: 1)) ->

forall (1 : list A), P.

Definition app2 (A:Set) (11 12:1ist A) : list A :=

list_rec A (fun _=>1list A) 12 (fun x xs r=> cons A x r) 11.

Gallina also allows to create non-recursive functions, using the command Definitionin
the format Definition name args: type:= term, where term is the body of the function
that we can build, for instance, from pattern enumeration. The constructionmatch ... with
...end is a macro that allows the writing of expressions with pattern matching and case
analysis, in which each case consists of a pattern, the arrow "=>" and the result term.

When using pattern enumeration, all constructors of the function’s argument type must
be considered, which is not seen in the function NEXT_VOWEL. As the letter ‘u’ is not cov-
ered, the following error is displayed: Non exhaustive pattern-matching: no clause found for

pattern u.

Definition next_vowel (v: vowel) : vowel :=

match v with

| a => e
| e => 1
| i => o
| o =>u

end.

The recursive functions are built using the command Fixpoint, where the recursive call
must occur only in syntactic subterms of one of its arguments and can be captured through

pattern matching.

Fixpoint evenb (n:nat) : bool :=
match n with
| 0 => true
| S 0 => false
| S (S n') => evenb n'

end.

The function evenbis an example of a recursive function that indicates whether a natural
number n is even, where n’ is a subterm of n. When calling evenb, the patterns will be tested
and, depending on the result, will call the function again. For this function, pattern matching

is done in its single argument:
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1. Ifitis zero, then the number is even. Since this is a base case, the function will end.
2. Ifitis 1, then false is returned because it is an odd number. This is another base case.

3. Otherwise, we call the function by passing n-2 as an argument, in order to arrive at the

base cases of the function.

Coq ensures that all functions will terminated, so it is required that some argument of

the recursive calls is “decreasing” (PIERCE et al.,|{2018).

3.4.3 TACTICS

In Coq, there are expressions that are only used in the context of proofs and that change the
current state of the proof, transforming the goal into subgoals. These expressions are known
as tactics. The tactics are used for several purposes and below we give examples of some of

them and their description.

Table 1 - EXAMPLES OF TACTICS

Tactic Description

tauto Tauto implements a decision pro-
cedure for intuitionistic proposi-
tional calculus to solve goals con-
sisting of tautologies that hold in

constructive logic.

intuition The tactic intuition makes use of
auto tactics and takes advantage
of the search-tree built by the de-
cision procedure involved in the

tactic tauto.

contradiction The contradiction tactic attempts
to find in the current context a hy-
pothesis that is equivalent to an
empty inductive type, to the nega-
tion of a singleton inductive type,

or two contradictory hypotheses.

simpl This tactic tries to reduce a term to

something still readable instead of

fully normalizing it.
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left/right Replaces a goal consisting ofa P /\
Q disjunction with only P or Q.

split Replaces a goal consisting of a
conjunction P /\ Q with two sub-

goals P and Q.

generalize This tactic applies to any goal.

It generalizes the conclusion with

respect to some term.

3.4.4 HOW TO DEVELOP PROOFS

There are some IDEs that allow the manipulation of vernacular files, so that commands can
be executed or undone. COQIDE, shown in Figure[10} is one of the most used in this regard.
We can execute the commands in the window on the left using the buttons at the top of the
tool. By doing this, the user can analyze the feedback through the colors: yellow, green and
red. CoqIDE highlights in yellow "unsafe" commands such as axiom declarations, and tactics
like "give_up". The green highlighted part has been verified by Coq. Beside that, Coq high-
lights the error in red. Also, the user observes the new subgoals and hypotheses generated
in the upper right window, and the outputs of commands displayed in the lower right win-
dow, which can also indicate errors. Analyzing this feedback, the user can choose to continue

executing new commands, or go back a step and try a different command.

B ox 4 4 0 & ¥ %@ ¢

Theorem plus_n_0 : forall n:nat, n =n + 0. 2 subgoals
Proof. (1/2)
intros n. induction n as [| n" IHn']. 0=0+0
(*n 0 *) reflexivity (2/2)
- (*n Sn' *) simpl sn' Sn' +0
[rewrite <- IHn'. reflexivity
Qed.

Figure 10 - COQIDE.

In general, as soon as the user starts to build the proof of a theorem through the com-
mand Proof, he applies tactics on the current goal, which can solve that goal, or generate

hypotheses and new subgoals in a stack, meaning that they will need to be proven in reverse



38

order, subgoal by subgoal (YANG; DENG,2019). Once the stack is empty, the theorem is proved
and the command Qed, Save and Defined is used to save it. With Qed the name is added to
the environment as an opaque constant, but Saves saves a completed proof with the name
identifier. But Defined makes the proof transparent, which means that its content can be ex-
plicitly used for type checking and that it can be unfolded in conversion tactics (TEAM, 2017).
From this, it is possible to reference the proven sentence and use it through tactics. As il-
lustration, we use the MINUS_N_N theorem which ensures that the subtraction of two equal

numbers is zero.

Theorem minus_n_n : forall n,
minus n n = 0.
Line Tactic Subgoals
1 intros n.
1 goal
n: nat
n - n=2o
2 induction n.
2 goals
0 - 0 =0
subgoal 2 is:
Sn'" -Sn'" =20
3 - simpl.
1 goal
0 =0
4 reflexivity. This subproof is complete, but
there are some unfocused goals.
5 - simpl. rewrite IHn'.
1 goal
n': nat
IHn': n'" - n' = 0
0 =0
6 reflexivity. No more goals.

Initially, intros are used to introduce variables appearing with forall. The tactic - is used
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onlines 3 and 5. These markers are very useful for maintaining the organization of the proofs,
in addition to supporting the prover by making visible only the current subgoals, otherwise,
Coq shows a list of all subgoals that need to be proved before the entire proof is completed.
There are other markers as + and *. The ; tactical applies the tactic on the right side of the
semicolon to all the subgoals produced by tactic on the left side.

A successful Coq proof implicitly generates a proof tree. Figure [11]illustrates the proof
tree for PLUS_N_O theorem (forall n : nat, n = n + 0), where the root is the original theorem,

whose nodes are goals and the edges are the tactics.

Proof. Vn:H0 n=n+o0
l intro n.
n: N
n=n+20

induction n as [| n' IHn'].

2NN

IHn': n' = n' + 0

0=0+20 Sn' =8n'" +0

-reflexivity. l -simpl; rewrite <- IHn'.
n': [

IHn': n' = n' + 0

Sn' =8n'
reflexivity. Qed.

Figure 11 — PROOF TREE.

3.4.5 TYPECLASSES

One of the most important characteristics in high-level languages is polymorphism. Ap-
proaches like OOP and TYPECLASSES deal with polymorphism in their developments, but
in different ways. Java programmers, for example, confuse classes with Typeclasses. In fact,
the latter case is more similar to generic interfaces, which will be composed of functions, but
also properties that must be proved by your instances.

Code modularization using Typeclasses has become popular thanks to languages like
Haskell and Isabelle, and two possible reasons for using this approach are mathematical clar-
ity and productive code reuse (LUNDY, |2019). Typeclasses and their instances in Coq come
with an advantage over these two languages, as they are first class citizens. This means that,
in Coq, classes and their instances are implemented as common record types (dictionaries)
and registered constants of those types. Although they are records in their essence, Coq uses

a particular syntax to declare typeclasses.

Class classname (p1 : t1) ...(pn : tn) [: sort] :=



40

{ f1 : ul 5 .05 fm @ oum 3.
Instance instancename ql...gm : classname pl...n := {
f1 := t1 ; ...; fm := tm }.
Here, (p1: t1) ... (pn: tn) are the parameters of the class and (f1: ul); .3

(fm: um) are called methods of the class. Furthermore, [: sort] indicates that the type can
be Prop, Set or Type. Once we define a class, by instantiating it, we can set these variables
with compatible types, functions and existing properties, which include axioms, lemmas and
theorems (TEAM, 2017). A typical example of Typeclass is that of the Eq class. In addition to
the interface, we also present a possible instance.

Class Eq A :=
{
egb: A -> A -> bool;
T.
Program Instance eqBool : Eq bool :=
{

egb := fun (b ¢ : bool) =>
match b, ¢ with
| true, true => true
| true, false => false
| false, true => false

| false, false => true
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4 COQ FORMALIZATION

Proof assistants can provide formal specifications for algorithms, programs and systems in
general. These specifications are composed of types, definitions, functions, lemmas, theo-
rems, their respective proofs, among other elements. The soundness of the theories related
to SPL refinement has already been proven through the specification made in the PVS. How-
ever, as mentioned in Section proofs can play several roles, in addition to showing that
some statements are true. Based on this, and taking the attractive facts of the Coq proof as-
sistant, we chose to specify these same theories in Coq. With that, we have the possibility
to make a comparison between the two specifications and draw some reflections about the

difference between these two systems.

name.v -

form.v

= | |

feature_model.v . spl_refinement.v

assets.v I asset_mapping.v
— formula_theory.v

F configuration_knowledge.v
_{ feature_model_semantics
[

— feature_model_refinement.v

Instances

specific_spl.v

Figure 12 - THEORY STRUCTURE.

In this chapter we present the main results of our work, which is a formalization of SPL
Refinement theory, in parallel with the original PVS specification, comparing and contrast-
ing both of them. For brevity, we are omitting some definitions. The complete formalization
is available in the project repositoryﬂ

Figure[12]shows the dependencies between the existing modules, where the arrow means
import and Instances are all files referring to Typeclasses. The present formalization can be

organized into the following groups:

1 <https://github.com/spgroup/theory- pl-refinement-coq>


https://github.com/spgroup/theory-pl-refinement-coq
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Basic definitions

Feature Model

Asset and Asset Mapping

Configuration Knowledge

SPL

Instantiations and Templates

Regarding the files associated with the basic definitions, FM, Asset and Asset Mapping,
Configuration Knowledge, the general theory of SPL, Feature Refinement and that of the
templates, we have defined about 39 variables in both systems, 16 types in PVS and 19 in
Coq, 60 functions in PVS and 51 in Coq, 3 recursive definitions in PVS and 11 in Coq, 20
lemmas in both systems and approximately 50 theorems.

Additionally, a summary of comparison is presented in Section4.7] In addition, the proofs

and discussion are presented later.

4.1 BASIC DEFINITIONS

A product is described by a valid feature selection, which we call a Configuration. List-

ing4.1.4land |4.1.2]illustrate how we represent a configuration as a set of feature names, as

given by the Name type. We use uninterpreted types, without concrete information about it,
which is an important characteristic for reasoning about arbitrary values that satisfy some
specifications. The theory is divided into THEORIES in PVS and MODULES in Coq. The basic
Coq library does not include the definition of sets. For this reason, we import the LISTSET
library for finite sets, implemented with lists, to specify sets, as it is the case with Configura-

tion.

Listing 4.1.1 - Name and Configuration (Coq)
Module Name.
Require Import Coq.Lists.ListSet.

Inductive Name : Type.
Definition Configuration : Type := set Name.
End Name.

Listing 4.1.2 — Name and Configuration (PVS)
Name: THEORY
BEGIN
Name: TYPE
Configuration: TYPE = set[Name]
END Name
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The validity of a configuration is given by satisfying the restrictions among features, which
in our specification are expressed using propositional formulae. Such formulas are defined
as a new set of data values, ENUMERATED TYPES in Coq, and ABSTRACT DATATYPE in PVS.
In both cases, it is necessary to provide a set of constructors that cover the abstract syntax
of propositional formulas for the possible values and relations, such as true/false, feature
names, negation, conjunction, and implication, which in PVS comes along with associated
ACCESSORS and RECOGNIZERS. The recognizers TRUE?, FALSE?, NAME?, NOT? AND? and IM-
PLIES? are predicates over the Formula_ datatype that are true when their argument is con-
structed using the corresponding constructor. The accessors n, f, f 0 and f_1 may be used to

extract the arguments.

Listing 4.1.3 — Formula (Coq)

Inductive Formula : Type :=
| TRUE_FORMULA : Formula
| FALSE_FORMULA : Formula
| NAME_FORMULA : Name -> Formula
| NOT_FORMULA : Formula -> Formula
| AND_FORMULA : Formula -> Formula -> Formula
I

IMPLIES_FORMULA : Formula -> Formula -> Formula.

Listing 4.1.4 - Formula (PVS)
Formula_: DATATYPE
BEGIN
IMPORTING Name
TRUE_FORMULA: TRUE?: Formula_
FALSE_FORMULA: FALSE?: Formula_
NAME_FORMULA (n: Name): NAME?: Formula_
NOT_FORMULA(f: Formula_): NOT?: Formula_
AND_FORMULA(f_0, f_1: Formula_): AND?: Formula_
IMPLIES_FORMULA(f_0, f_1: Formula_): IMPLIES?: Formula_
END Formula_
When we define an inductive type, Coq automatically includes theorems, so that itis pos-
sible to reason and compute enumerated types. So, for Formula, Coq includes the Formula_
ind induction principle, in addition to the Formula_rec and Formula_rect recursion prin-

ciples.

4.2 FEATURE MODEL

Features are used to distinguish SPL products. A feature model is then a set of feature names,
with propositional formulae using such names. In Coq, we defined the names function, which
receives an FM and provides the features, in addition to the formulas function, which re-

quires an FM to return a set of formulas, accessing the first and second record fields, respec-
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tively. In PVS, names are obtained using set comprehension, despite having access to record
fields similar to that of Coq.

Listing 4.2.1 — Names and formulas (Coq) Listing 4.2.2 — Names (PVS)
Record FM: Type := { FM: TYPE =

features: set Name; [# features:set[Namel],
formulas: set Formula }. formulae:set[Formula_] #]
Definition names (fm: FM):= names (fm: FM): set[Name] =
fm.(features). {n:Name | features(fm)(n)}

Definition formulas (fm: FM):=
fm.(formulae).

The names_ function is our first recursive function and it returns the set of features names
used in a given formula. To specify a recursive definition in PVS, we need to prove TYPE-
CORRECTNESS CONDITIONS (TCCs), to guarantee that the function terminates. This is done
by the MEASURE keyword that receives a well-founded order relation, to show that the recur-
sive function is total. Coq employs conservative syntactic criteria to check termination of
all recursive definitions, allowing recursive calls only on syntactic subterms of the original
primary argument.

Another detail in the Coq definition is that working with lists requires that its element
types are DECIDABLE, due to CIC. A type has decidable equality if any two elements of that
type are the same or different. Since LISTSET uses lists to implement sets, we need to de-
mand the following predicate Vxy : R,{x = y} +{ x = y}, where R is an arbitrary type for a
list element. For this reason, we need to introduce axioms such as name_dec to establish that
certain types are decidable. Adding axioms is a threat to the validity of this study, but these
axioms are mostly limited to types belonging to lists, or to hypotheses we assume to be true

from the SPL refinement theory.

Listing 4.2.3 — Names Recursive Function (Coq)
Fixpoint names_ (f : Formula) : set Name :=
match f with
| TRUE_FORMULA => empty_set Name
| FALSE_FORMULA => empty_set Name
| NAME_FORMULA n1 => set_add name_dec nl1 nil
| NOT_FORMULA f1 => names_ f1
| AND_FORMULA f1 f2 => set_union name_dec (names_ f1)
(set_diff name_dec (names_ f2) (names_ f1))
| IMPLIES_FORMULA f1 f2 => set_union name_dec (names_ f1)
(set_diff name_dec (names_ f2)(names_ f1))
end.
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Listing 4.2.4 —- Names Recursive Function (PVS)

names (f:Formula_): RECURSIVE set[Name] =
CASES f OF
TRUE_FORMULA: emptyset,
FALSE_FORMULA: emptyset,
NAME_FORMULA(n1): {n:Name | nl=n},
NOT_FORMULA(f1): names(f1),
AND_FORMULA(f1, f2): {n:Name | names(f1)(n) OR names(f2)(n)},
IMPLIES_FORMULA(f1, f2): {n:Name | names(f1)(n) OR names(f2)(n)}
ENDCASES
MEASURE complexity (f)

In names_ we also notice that set comprehension are used for defining NAME_FORMULA,
AND_FORMULA and IMPLIES_FORMULA constructors in PVS, while in Coq we use the set_add,
set_union, set_diff functions of LISTSET for the same purpose.

As previously mentioned, a configuration is only considered valid if it satisfies the FM for-
mulae. The satisfies function is responsible for capturing this requirement.The traditional
rules of propositional logic apply here. For example, a configuration satisfies the conjunction
formula p A gifit satisfies p and g. Additionally, and most importantly, a configuration c sat-
isfies the feature name formula 7 if 7 is a value in ¢. We opted for Prop instead of bool in
our specification, since we are constantly using LISTSET functions that use Prop, and sen-
tence construction must also be in Prop. Otherwise, we would have to do several castings

throughout our work.

Listing 4.2.5 — Valid Configuration (Coq)
Fixpoint satisfies (f: Formula) (c : Configuration) : Prop :=
match f with

| TRUE_FORMULA  => True

| FALSE_FORMULA => False

| NAME_FORMULA n => set_In n c

| NOT_FORMULA f1 => ~(satisfies f1 c)

| AND_FORMULA f1 f2 => (satisfies f1 c) /\ (satisfies f2 c)

| IMPLIES_FORMULA f1 f2 => (satisfies f1 c¢) -> (satisfies f2 c)

end.

The semantics of FMs are given by the set of all valid configurations. In Coq, following
an operational specification, we use the genConf function, which generates the powerset of
the FM features, that is, it generates all possible configurations from a given set of features.
We then use the filter function, which takes the FM restrictions into account, to only yield
the configurations of interest, that is, the valid ones.The satImpConsts and satExpConsts
functions support this check. The first one returns True if all the names of a configuration
are contained in the FM, and the second function returns True only if for all formula in a

given FM, it is evaluated as true for a given configuration. Meanwhile, with declarative style
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of specification, PVS allow the definition of sets using set comprehension: A = {x: B | P (x)},

which allows a simplified declaration of this function.

Listing 4.2.6 - FM semantics (Coq)

Fixpoint filter (fm:WFM) (s: set Configuration) : set Configuration

match s with
| nil => nil

| a1l :: x1 =>
if Is_truePB ((satImpConsts fm al) /\
(satExpConsts fm al)) then al :: filter fm x1
else filter fm x1
end.
Fixpoint genConf (fm : set Name) : set Configuration :=

match fm with

| nil => nil

| x :: xs => (set_add conf_dec (set_add name_dec x (nil)) (genConf
xs)) ++ (genConf xs)

end.

Definition semantics (fm : FM): set Configuration :=
filter fm (genConf (names_ fm)).

Listing 4.2.7 - FM semantics (PVS)

semantics(fm: FM): set[Configuration]=

{c:Configuration | satImpConsts(fm,c) AND satExpConsts(fm,c)}

We also define a refinement notion for FMs. It states that any configuration in the orig-

inal FM (ABS) must also be present in the modified FM (CON). In our work, the functions

that capture this idea require that exactly the same configuration is present in both. To ac-

count for renaming features we also have a more general definition, that does not require the

configuration to be exactly the same, but we omit it from the text for brevity.

Listing 4.2.8 — Refine (Coq)

Definition refines (abs : FM) (con : FM) : Prop :=
forall (c : Configuration), set_In c (semantics abs) ->

set_In ¢ (semantics con).
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4.2.1 FEATURE MODEL REFINEMENT THEORY

Developers may be interested in adding features, either MANDATORY or OPTIONAL, for ex-
ample. The definitions of the functions that represent the addition of features are similar,
as we see in the Listings [4.2.9]and [4.2.10}, which show the functions of adding optional and

mandatory features respectively, differing only in terms of the formula that is added to the

original FM.

Listing 4.2.9 — Add Optional Node (Coq)

Definition addOptionalNode abs con nl1 n2: Prop: =

set_In nl1 (names_ abs) /\

(~set_In n2 (names_ (abs))) /\

names_ (con) = set_add name_dec n2 (names_ (abs)) /\
formulas (con) = set_add form_dec

(IMPLIES_FORMULA (NAME_FORMULA (n2)) (NAME_FORMULA (n1)))
(formulas (abs)).

Listing 4.2.10 - Add Mandatory Node (Coq)

Definition addMandatoryNode abs con nl1 n2: Prop: =

set_In n1 (names_ abs) /\

(~set_In n2 (names_ (abs))) /\

names_ con = set_add name_dec n2 (names_ abs) /\

formulas con = set_union form_dec

(app ((IMPLIES_FORMULA (NAME_FORMULA (n2)) (NAME_FORMULA (n1))))
((IMPLIES_FORMULA (NAME_FORMULA (n1) (NAME_FORMULA (n2)))))
(formulas (abs)).

In both functions, when adding a new feature named n2 as a child of n1, first nl must
be present in the set name of the original FM abs, and n2 is not contained in this set. The
names_ function returns the set of names for a given FM. As a result, we have n1 added to
the set of names of abs and a new formula, which expresses the optional and mandatory

relationship between nI and n2, added to the set of con formulas.

Listing 4.2.11 — Add Optional Node (Coq)

Theorem addOptNode: forall (abs: WFM) (con: WFM) (n1 n2: Name),
addOptionalNode abs con n1 n2 ->
ref ref abs /\ wfFM con.

Having defined addOptionalNode and addMandatoryNode, some behaviors expected from
adding a feature have been specified and proven. The addOptNode theorem provides the
guarantee that when adding an optional feature, the original FM is refined by the new one,
that is, the set of configuration of abs is present in the set of configuration of con. Addition-

ally, con is well-formed.
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4.3 ASSET AND ASSET MAPPING

SPLs have a set of assets from which products are built. Assets are related to names through
the AM. To express this, we created a theory for maps, as shown in Listing which are
basically key-value pairs, where S represents the type of all keys and T the type of all values
that can be mapped to keys, and both are uninterpreted types.

Listing 4.3.1 — Asset and Asset Mapping (Coq)

Inductive S: Type.
Inductive T: Type.

Definition pair_ :Type := prod S T.
Definition map_ :Type := list pair_.

Definition Asset : Type Maps.T.

Definition AssetName : Type Maps.S.

Definition AM := map_.

An AM is a unique mapping, where an asset name is related to only one asset. In the
Coq specification it was necessary to use the isMappable function that indicates whether
there is a mapping of a given key and a given value, in a given map s, in contrast to the PVS
specification in Listing[4.3.3] which uses predicate subtypes.

Listing 4.3.2 — Mapping is unique (Coq)
Definition unique s : Prop :=
forall (1: S) (r1 r2: T),
(isMappable s 1 r1 /\ isMappable s 1 r2) -> rl1 = r2.

Listing 4.3.3 — Mapping is unique (PVS)
unique(s): bool =
FORALL(l,r1,r2): (s(l,r1) and s(l,r2) => ri1=r2)

The SPL refinement notion relies on an asset refinement notion. For generality, we as-
sume assetRef, as the theory does not depend on a particular asset language. The basic
intuition is that it returns a proposition that is True when refinement holds. The constructs
of this function are not analogous in the two proof assistants. In Coq, we use global declara-

tions using the Parameter inline command to define a function interface.

Listing 4.3.4 - Asset Refinement (Coq) Listing 4.3.5 — Asset Refinement (PVS)

Parameter inline assetRef : |- : [set[Asset],set[Asset]->bool]
set Asset -> set Asset -> Prop.
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While we do not demand a specific asset refinement notion, we require it to be a preorder.
The Orders theory in the PVS prelude provides a nice syntactic sugar for specifying this,
while we hard-coded this notion in the Coq specification, although there are also libraries
for that.

Listing 4.3.6 — Refinement is preorder (Coq)

Axiom assetRefinement:
forall x y z:set Asset, assetRef x x /\
assetRef x y -> assetRef y z -> assetRef x z.

Listing 4.3.7 — Refinement is preorder (PVS)
assetRefinement: AXIOM

orders[set[Asset]].preorder?( |- )

We also define an AM refinement notion, which is important for establishing composi-
tionality. In this case, the original and modified AM domains must be equivalent. Any asset
contained in the original AM must have a corresponding refined version in the modified AM.
We observe that the Coq specification is more verbose for dealing with sets, when compared
to PVS. Using Coq’s dependent typing the definition could have been reduced, since we had
to make explicit the set_In an (dom aml) premise in aMR.

Listing 4.3.8 - AM refinement (Coq)

Axiom Asset_dec
forall x y: Asset, {x = y} + {x <> y}.

Definition aMR (aml am2: AM) : Prop :=
(dom aml = dom am2) /\ forall (an : AssetName),
set_In an (dom aml) -> exists (al a2: Asset),
(isMappable aml an al) /\ (isMappable am2 an a2) /\
(assetRef (set_add Asset_dec al nil) (set_add Asset_dec a2 nil))

Listing 4.3.9 — AM refinement (PVS)
|>Cam1,am2): bool =
(dom(aml)=dom(am2) AND (FORALL an: dom(aml)(an) =>
EXISTS al,a2: (aml(an,al)) AND (am2(an,a2)) AND |-(al,a2)))
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4.4 CONFIGURATION KNOWLEDGE

The CKrelates features to assets and there are different representations of this model. One of
them is the association of feature expressions to the set of asset names. This representation
is called compositional and we specify the CK as a list of i tems, defined as a record whose

elements are asset names and formulas, which represent features expressions.

Listing 4.4.1 — Configuration Knowledge (Coq)

Record Item: Type: = {
exp_: Formula;
assets_: set AssetName;
3.
Definition CK: Type: = set Item.

The CK semantics is defined as mapping AMs and product configurations to a finite set
of assets. The function eval is the auxiliary function of semantics_ that yields only the asset

names evaluated as true for a given product configuration, aided by the assetsCK function.

Listing 4.4.2 - Semantic of CK (Coq)

Fixpoint assetsCK items: set AssetName :=
match items with
| nil => nil
| x :: xs => (x.(assets_)) ++ (assetsCK xs)

end.

Definition eval ck c: set AssetName: =
assetsCK (evalCK ck c).

Definition semantics_ (ck: CK) (am: AM) (c: Configuration):

set Asset:= maps a am (eval ck c).

When evolving an SPL, in addition to proving that the original SPL is refined by the new
one, we also need to ensure the well-formedness of the target. For that, we need additional
restrictions on the CK. In this case, the constraint requires that all feature expressions in
CK refer only to FM features, expressed by the third line of wfCK, and all features names
that appear in CK are in the AM domain, expressed by the first line of this function using
set_diff, which is the set difference function. For two sets x and y set_diff returns the set
of all els of x that does not belong to y. Beside that, by the third line of wfCK, where wf is an
auxiliary definition that captures the requirements for exp being well-typed with respect to

the feature model FM.
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Listing 4.4.3 — CK is well-formed (Coq)
Definition wfCK (fm: WFM) am ck: Prop: =

forall c, set_In c (semantics fm) ->
(set_diff an_dec (eval ck c) (dom am) = nil) /\
forall exp, set_In exp (exps ck) -> wt fm exp.

45 SOFTWARE PRODUCT LINES

Definition |1 states that an SPL is formed by the FM, AM and CK, jointly generating well-
formed products. In PVS, we are able to use predicate subtypes to estalish this fact. Using
(p) to define a type, restricts that all elements of such type satisfy the predicate p. This might
result in proof obligations that we might need to satisfy to produce a consistent specification.
In Coq, we use records. Record fields are defined with :>, which make that field accessor a
coercion. This coercion is automatically created by Coq. Thus, in the definitions that make
use of PL, the well-formedness constraint is required, as we see in Listing[4.5.5]

Listing 4.5.1 — Software product lines (Coq) Listing 4.5.2 — Software product lines (PVS)

Record PL: Type := { PL : TYPE = (wfPL)
pls:> ArbitrarySPL;
wfpl:> Prop; 3.

We are then able to formalize the SPL refinement function, as in Definition 2. Accord-
ing to this function, for all existing configuration in the semantics of the FM of pl1, given by
FMRef, there must be an equivalent configuration in the semantics of the FM of pl2. Addi-
tionally, the set of assets of pl2, given by the semantics of CK (CKSem) refines the set of assets
of pll.

Listing 4.5.3 — Software product line refinement (Coq)

Definition plRefinement (pll1 pl2: PL): Prop :=
(forall c1, set_In c1 (FMRef (getFM pll1)) ->
(exists c2, set_In c2 (FMRef (getFM pl2)) /\
(assetRef (CKSem (getCK pl1) (getAM pl1) (c1))
(CKSem (getCK pl2) (getAM pl2) (c2))))).

Note that this function does not give us guarantees that a given configuration, which was
present in the original SPL, will be present in the resulting SPL. Thus, a stronger notion of
refinement is also needed, which is sensitive to the name and semantics associated with
each resource. That's what we have in Listing[4.5.4]
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Listing 4.5.4 — Stronger SPL refinement (Coq)

Definition strongerPLrefinement (pll1 pl2:PL) : Prop :=
forall c1: Conf, set_In c1 (FMRef (getFM pli1)) ->
(set_In c1 (FMRef (getFM pl2)) /\
(assetRef (CKSem (getCK pl1) (getAM pll) c1)
(CKSem (getCK pl2) (getAM pl2) c1))).

In practice, it might not be the case that all three elements are changed in an evolution
scenario. In this sense, we prove the so-called compositionality theorems, that enable rea-
soning when a single one of the three elements evolves. The main idea is to establish that
safely evolving one of such elements results in safe evolution of the entire SPL. We have com-
positionality results established for the independent evolution of each element (FM, AM, and
CK), and the full compositionality theorem, that enables reasoning when all three of them
evolve. It basically states that if we change the FM and CK resulting in equivalent models (this
notion is provided in our repository), which is represented by the functions equivalentFMs
and equivalentCKs, the AM is refined as previously described in Listing[4.3.8] the resulting
SPL is a refined version of the original. The formalization in Coq is analogous to that of PVS,

except for the use of the Where command to define pl2, in the PVS theorem.

Listing 4.5.5 — Compositionality (Coq)
Theorem fullCompositionality:

forall (pl: PL) (fm: FM) (am: AM) (ck:CK),
equivalentFMs (getFM pl) fm /\

equivalentCKs (getCK pl) ck /\

aMR (getAM pl) am ->

plRefinement pl {| pls := (fm ,am, ck);

wfpl:= wfPL (fm ,am, ck)|} /\

wfPL (fm ,am, ck).

Listing 4.5.6 — Compositionality (PVS)

fullCompositionality: THEOREM
FORALL (pl,fm,am,ck): (
equivalentFMs (F(pl),fm) AND equivalentCKs (K(pl),ck) AND
| >(A(pl),am) => plRefinement(pl,pl2) AND wfPL(pl2))
WHERE pl2=(# F:=fm, A:=am, K:=ck #)

Additionally, we specify the weaker compositionality theorem, that uses the weaker CK
equivalence notion, which establishes equality according to the FM semantics. This is useful
when we intend to support operations such as replacing an equivalent feature expression in
the CK, as shown in the templates section. This theorem also makes use of the FM refinement

notion, which is represented by the function FMRefinement, which indicates whether there
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is refinement between two FMs.

Listing 4.5.7 - Weak Compositionality (Coq)

Theorem weakFullCompositionality:
forall (pl: PL) (fm: FM) (am: AM) (ck: CK),
(FMRefinement (getFM pl) fm) /\ equivalentCKs (getCK pl) ck /\
wfPL (pl2) -> plRefinement pl

{I pls := ((fm ,(getAM pl)), (getCK pl));
wfpl := wfPL ((fm ,(getAM pl)), (getCK pl))}.

4.6 THEORY INSTANTIATION AND TEMPLATES

Even though we present concrete FM and CK languages previously, the SPL refinement the-
ory does not rely on a particular concrete language for FM, CK, or AM. Nonetheless, instan-
tiating the theory with concrete languages enables us to establish refinement templates. In
PVS, we do this through the theory interpretation mechanism. We use the IMPORTING clause
to provide the parameters for the uninterpreted types and functions. PVS then generates

proof obligations that we must prove to show that such instantiation is consistent.

Listing 4.6.1 — Theory Interpretation (PVS)

IMPORTING SPLrefinement[Configuration,
WFM, Assets.Asset,Assets.AssetName,

CK, semantics, semantics]

In Coq, we use typeclasses. We establish the SPL class with interface declarations and
required properties. Properties are defined as axioms or theorems. We present the example of
the plStrongSubset theorem, which states that if there is a stronger refinement between pl1
and pl2, then for all configuration present in the semantics of the pll1 FM, there is this same
configuration in the semantics of the pl2 FM. We also specify parameters for instantiating
the class. As we import functions from other typeclasses, we need to handle constraints. For
instance, the SPL class generates the FeatureModel constraints, due to the typeclass defined
earlier. FeatureModel is satisfied by {FM: FeatureModel F Conf}, for example.

We use the Program Instance keyword to define a concrete instance, and we must prove
that each parameter satisfies the previously defined properties. Class methods must also be
related to their implementation, as is the example of p1Refinement. Finally, Coq generates
obligations for the remaining fields, which we can prove in the order that they appear, using
the Next Obligation keyword.



Listing 4.6.2 — SPL Class (Coq)

Class SPL (A N M Conf F AM CK PL: Type) {FM: FeatureModel F Conf}
{AssetM: AssetMapping Asset AssetName AM} {ckTrans: CKTrans F A AM CK

Conf}:

Type := {
(x====================fynctions=======================x%)
plRefinement : PL -> PL -> Prop;

strongerPLRefinement : PL -> PL -> Prop;

(#===========Axioms - Lemmas - Theorems=================x%)
plStrongSubset: forall pll pl2: PL,
strongerPLRefinement pll pl2
-> (forall c: Conf, set_In c (FMRef (getFM pl1))
-> set_In ¢ (FMRef (getFM pl2)));

Listing 4.6.3 — SPL Instance (Coq)

Program Instance Ins_SPL: SPL Asset AssetName AM Conf FM AM CK PL:=
{
plRefinement:= plRefinement_func;

strongerPLRefinement:= strongerPLrefinement_func;

}. Next Obligation. {
(xplStrong Subset=*)
intros.
destruct pll. destruct pl2.
unfold strongerPLrefinement_func in H. specialize (H c).
destruct c1, c@. apply H in H@. destruct HO. apply HO.

} Qed.

With such instantiation, we are then able to prove soundness of the refinement tem-

plates. That is, for each template, we prove that performing the changes as described to the

original SPL, results in SPL refinement. Not all properties are fully proven, which is a limita-

tion of our study. We have so far provided eight properties out of fifteen.

4.6.1 REPLACE FEATURE EXPRESSION TEMPLATE

As described in Section[2.5) REPLACE FEATURE EXPRESSION guarantees that it is safe to change

a feature expression associated to an asset n in the configuration knowledge from e to e’ as

long as the restriction that these expressions describe are equivalent considering the FM is

respected. When we specify the templates, we define functions that express the similarities

and differences between the original and the resulting SPL.
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One of these functions is the syntax, which represents the syntactic relationships be-
tween LHS and RHS. From Figure |§|, we notice that F and A, which are FM and AM respec-
tively, remain the same, so there is no need to mention them here. In addition, only one line
in the CK s divergent between SPLs. This line is expressed as a CK item. So, syntactically, we
have that the source CK ck1 corresponds to the union of a given iteml1 with items, which
are the other items that do not change. We also have that the resulting CK ck2 corresponds

to the union of item2 with items, and the set of assets of item1 and item?2 is the same.

Listing 4.6.4 — Syntax of Replace Feature Expression (Coq)

Definition syntaxReplaceFeatureExp ckl ck2 iteml item2 items: Prop: =
(ck1
(ck2 = app items item2) /\

app items iteml) /\

iteml.(assets) = item2.(assets).

Another function is conditions, which represents the transformation preconditions so
that change is safe. In this case, the constraint is that all configurations of F lead to equiva-
lent evaluation for the feature expressions in both item1 and item2. We also specify that the
features expression in item?2 is well-typed with respect to F, that is, any feature referred to in
the expression belongs to F.

Listing 4.6.5 — Conditions of Replace Feature Expression (Coq)

Definition conditionsReplaceFeatureExp fm iteml item2: Prop: =
wt fm (item2.(exp)) /\
forall c, set_In c (semantics fm) ->

iff (satisfies (iteml.(exp)) c) (satisfies (item2.(exp)) c).

We then establish the auxiliary theorem replaceFeatureExp_EqualCKeval, which uses
syntaxReplaceFeatureExp and conditionsReplaceFeatureExp to ensure that replacing
the feature expression by an equivalent one results in the same set of assets when evaluating
the CK.
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Listing 4.6.6 — Theorem of Replace Feature Expression (Coq)
Theorem replaceFeatureExp_EqualCKeval
{Mp: Maps Asset AssetName AM}
{Ft: FormulaTheory Formula Name FM}
{FtM: FeatureModel FM Configuration}
{AssetM: AssetMapping Asset AssetName AM}
{ckTrans: CKTrans FM Asset AM CK Configuration}
{SPL: SPL Asset Configuration FM AM CK PL}:
forall pl ck2 iteml item2 items,

wfCK (getFM pl) (getAM pl) (getCK pl) /\
syntaxReplaceFeatureExp (getCK pl) ck2 iteml item2 items /\
conditionsReplaceFeatureExp (getFM pl) iteml item2

)
->
forall ( ¢ : Configuration ) , set_In c ( semantics ( getFM pl ) )
-> semantics_ ( getCK pl ) ( getAM pl ) c
= semantics_ ck2 ( getAM pl ) c

Finally, the replaceFeatureExpression theorem encodes the soundness proof for this
template. The general theorem for proving soundness establishes that we have to prove both
SPL refinement and well-formedness of the resulting SPL. The previous lemma establishes
that when we replace a feature expression by another which is equivalent, we generate the
exact same products. Therefore, this results in a well-formed and refined SPL, due to the

above lemma and reflexivity of the asset refinement notion.
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Listing 4.6.7 — Theorem of Replace Feature Expression (Coq)

Theorem replaceFeatureExpression
{Mp: Maps Asset AssetName AM}
{Ft: FormulaTheory Formula Name FM}
{FtM: FeatureModel FM Configuration}
{AssetM: AssetMapping Asset AssetName AM}
{ckTrans: CKTrans FM Asset AM CK Configuration}
{SPL: SPL Asset Configuration FM AM CK PL}:
forall pl ck2 iteml item2 items,

wfCK (getFM pl) (getAM pl) (getCK pl) /\
syntaxReplaceFeatureExp (getCK pl) ck2 iteml item2 items /\
conditionsReplaceFeatureExp (getFM pl) iteml item2

)

->
plRefinement pl (gerPL fm2 (getAM pl) ck2) /\
wfCK (getFM pl) (getAM pl) ck2

4.6.2 SPLIT ASSET TEMPLATE

n—a ne—a'
F N F n'— a"

e n e nn'

I

a ; al a"

n and n' do not show up in other CK lines
n' is not used in other AM lines

Figure 13 — SPLIT ASSET TEMPLATE (NEVES ET AL., 2015).

The SPLIT ASSET TEMPLATE described in Figure[I3]indicates that it is possible to split an
asset ainto two other assets a’and a”, as long as the composition of the assets a’and a”refine
the asset a. This is considered a SPL refinement because for each product that contained
the asset before, there is now a corresponding product that contains the composition of the
assets a’ and a” after the change. This is useful in situations where you want to modularize

code, for example. Figure [14]illustrates this case where the developer wants to extract the
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INTERRUPT feature code, which is contained in three different Java classes, and move it to
PMINTERRUPTIONASPECT.

TaRGet

.

Java Files

Interruption

-

TaRGet

Java Files

PMinterruption

Interruption

Aspect.aj

TaRGet

TaRGetProjectRefresher
FeaturesView
FeaturesTreeViewLabelProvider

TaRGet

TaRGetProjectRefresher
FeaturesView
FeaturesTreeViewLabelProvider
PMinterruptionAspect

v

Figure 14 — SPLIT ASSET CASE (NEVESET AL.,|2015).

As for the syntax function, for this template, the first thing to note is that F is invariant,

so it doesn't appear in syntaxSplitAssets. In this function we also have that the asset map-

pings am1 and am2 differ only in relation to the modified assets, the other lines of AM (pairs)

are the same. The same occurs with ck1 and ck2, which have the same feature expression,

but which differ in terms of item1 and item2, which has an extra asset name, since we cre-

ated a new asset by dividing the original.

Definition syntaxSplitAssets aml

Listing 4.6.8 — Syntax of Split Asset (Coq)

anl an2 al a2 a3 pairs: Prop: =

aml = set_add pair_dec (ant,
am2 = set_add pair_dec (ant,
ckl = app iteml items /\
ck2 = app item2 items /\

iteml.(exp) = item2.(exp) /\

iteml.(assets)
item2. (assets)

am2 cki

set_add an_dec ani

set_add an_dec ani

al) pairs /\
a2) (set_add pair_dec (an2, a3) pairs) /\

nil /\
an2.

ck2 iteml item2: Item items

The definition conditionsSplitAssets establishes the precondition that the asset a1 is

refined by a2 and a3. Besides, the remaining CK items cannot refer to an1 or an2.



59

Listing 4.6.9 — Condition of Split Asset (Coq)

Definition conditionsSplitAssets al a2 a3 anl an2 items: Prop: =
assetRef_func al (app a2 a3) /\
forall item, set_In item items
-> ~(set_In anl (item.(assets))) /\
(~set_In an2 (item.(assets))).

To prove this template, we use auxiliary lemmas over the syntax and conditions predi-
cates defined, which we omit here for brevity. First, splitNotEvalItem ensures that CK eval-
uation is not affected if the feature expression of i tem1 is not activated, resulting in the same
products. This addresses configurations without the asset a. splitEvalRemainingItems en-
sures that evaluating the remaining items in the CK (items) yields the same set of assets in
the original and resulting CK. Finally, splitEvalItemUnion states that if item1 is evaluated
as true, CK evaluation is equal to the union of the assets mapped by this item — {a} in the
original SPL, and {a’,a”} in the resulting SPL — with the remaining items.

Based on these auxiliary lemmas, we can prove the splitAsset theorem, and ensure
that Split Asset is a safe evolution template. When item1 is not activated, the products are
the same, and when it is activated, refinement follows from the compositionality of asset

refinement, since {a} = {a’,a”}.

Listing 4.6.10 - Condition of Split Asset (Coq)

Theorem splitAsset {Mp: Maps Asset AssetName AM}
{Ft: FormulaTheory Formula Name FM}
{FtM: FeatureModel FM Configuration}
{AssetM: AssetMapping Asset AssetName AM}
{ckTrans: CKTrans FM Asset AM CK Configuration}
{SPL: SPL Asset Configuration FM AM CK PL}:
forall pl am2 ck2 iteml item2 al a2 a3 anl an2 items pairs,

(
(
wfCK (getFM pl) (getAM pl) (getCK pl) /\
syntaxSplitAssets (getAM pl) am2 (getCK pl) ck2 iteml item2 items
anl an2 al a2 a3 pairs /\
conditionsSplitAssets al a2 a3 anl an2 items
)
->

plRefinement pl (gerPL (getFM pl) am2 ck2) /\
wfCK (getFM pl) am2 ck2) /\
wfPL (gerPL (getFM pl) am2 ck2)
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4.7 SUMMARY

In this work, we made a direct mapping of the specification of the SPL refinement theory
made in PVS to the proof assistant Coq. In general, both specifications are similar for most
encodings. Most of the differences noted are presented earlier in this chapter and their key
aspects are summarized in Table 2, which is divided between the existing sections, the type
of definition made, and how the specification was made in both systems. For the definition of
FM semantics in the FM section, for instance, we have followed an operational specification

in Coq and declarative specification in PVS.

Table 2 — SPECIFICATION SUMMARY

Section Definition Coq PVS
. . Sets ListSet Library Prelude
Basic Definition
Set of Data Enumerated Abstract Datatype
values Type
Recursive Conservative TCCs;
Feature Model . e .
Function syntactic criteria Measure function
FM semantics Operational Declarative
specification Specification
AM Maps Theory Maps Theory
Asset Parameter inline Syntactic sugar for
Asset and AM L
Refinement function interface
Refinement is Explicit reflexivity’s | Syntactic sugar from
preorder and transitivity’s | Order theory
definition
AM Axioms of Predicative subtype
refinement decidability;
Explicit definition
SPL PL Record Predicative subtype
Compositionality | PL as a triple Where command
Theory Instances Typeclasses Theory Instantiation
Instantiation

Coq and PVS provide powerful integrated languages in terms of syntax expressiveness,
used to define different structures such as uninterpreted types, records, recursive functions
and, as systems used to prove theorems, these proof assistants also provide a means of spec-
ifying lemmas and theorems. Figure [15|shows the total number of lines and Figure[16/shows
number of specific concepts used in the specifications. The figures presented includes the
files associated with the basic definitions, FM, Asset and Asset Mapping, Configuration
Knowledge, the general theory of SPL, Feature Refinement and that of the templates, with-
out taking the proofs into account.
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First, we note the difference in the number of lines that indicates the PVS specification as
being less verbose. PVS took advantage of the definitions made with subsets, subtypes, of not
needing one to use some keywords (such as Inductive, Definition in Coq), etc. In addition,
most of the extra lines in Coq are related to the specifications of the templates that require
some restrictions to be satisfied. The import numbers are similar, however, nine Require

Import were used to include libraries in Coq.

1000

750
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Lines

250

Coqg

Figure 15 - TOTAL OF LINES IN COQ AND PVS SPECIFICATIONS.
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Figure 16 — SUMMARY OF SPECIFICATION DEFINITIONS.
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The biggest difference is in the number of functions and recursive functions. Not using
Dependent Types in Coq meant that we used a few more definitions to express what had

been defined in PVS. An example with extra definitions is the definition of lemmaSetComp in

Listing and Listing[4.7.2]

Listing 4.7.1 —- Lemma lemmaSetComp (PVS)

lemmaSetComp : LEMMA

FORALL (ck,c):

{i:Item | ck(i) AND satisfies(exp(i),c) } =
intersection({i:Item | ck(i)}, {i:Item | satisfies(exp(i),c) 3})

Listing 4.7.2 - Lemma lemmaSetComp (PVS)

Fixpoint SetCompAux ck c: set Item :=
match ck with
| nil => nil
| x :: xs => if Is_truePB (satisfies (getExp x) c) then
X :: (SetCompAux xs c) else (SetCompAux xs c)
end.

Lemma lemmaSetComp: forall ck c,
SetCompAux ck ¢ = set_inter item_dec ck (SetCompAux ck c).

It is necessary to define a recursive structure to define the lemma that is simplified with
the use of set comprehension in PVS. FM semantics in Section |4.2|is also a good example of
this.

4.8 PROOFS

In proof assistants, unlike automated theorem provers, we need to interact with the system
to prove lemmas and theorems. For this, they provide commands — namely tactics in Coq,
and rules or strategies in PVS — that act on the current proof goal, potentially transforming
it into subgoals, which might be simpler to prove. Once every subgoal of the proof is dealt
with, the task is finished.

Coq offers the Search feature. We use this command to search for previously stated lem-
mas/theorems that might assist proving the current goal. This prevents us from declaring
other lemmas. As Coq’s Prelude is smaller, we were unable to obtain much advantage of it,
except for the lemmas from ListSet and other results that we had proven. PVS contains a
richer Prelude, and we often used available results. For instance, nine existing lemmas were
used to prove AM refinement in PVS. Nevertheless, PVS does not provide an easy search fea-

ture such as Coq, so the user needs to have prior knowledge of the theories that are in its
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standard library or integrate PVS with the Hypatheon libraryﬂ

Although we are porting an existing PVS specification, the proof methods often differ
between the two systems. For example, Listings [4.8.1 and [4.8.2| show Coq’s and PVS'’s proofs
for the inDom lemma. This lemma belongs to the map theory and states that, if there is a

mapping of a key [ to any value r, then the domain of that map contains . In Coq, we prove
the lemma by induction. The base case is solved by simplifying the hypothesis HMpb and by
using the contradiction tactic, since we obtain False as assumption. In the inductive case, in
addition to other tactics, the apply tactic was used to apply the isMappable_elim lemma,
to remove a pair from the mapping check. We also use this same tactic to transform the goal
from the implications of lemmas set_add_introl and set_add_intro2, by ListSet.

The intuition tactic was used to complete the last two subgoals. This tactic calls auto,
which works by calling reflexivity and assumption, in addition to applying assumptions
using hints from the considered hint databases. These calls generate subgoals that auto tries
to solve without error, but limited to five attempts by default, to ensure that the proof search
eventually ends. The user has the option of increasing this number of attempts in order to
increase the chances of success, as well as adding already solved proofs to the hint databases.

Both should be used with care due to performance.

Listing 4.8.1 —inDom proof in Coq

Lemma inDom
forall am (an: AssetName) (a: Asset),
isMappable am an a -> set_In an (dom am).
Proof .
intros am@ an@ a HMpb. induction amo.
- simpl in HMpb. contradiction.
- Search "isMappable”. apply isMappable_elim in HMpb.
inversion HMpb. clear HMpb. destruct H as [Heqll Heql2].
+ rewrite Heqll. simpl. Search "set_add".
apply set_add_intro2. reflexivity.
+ simpl. apply set_add_introl. apply IHam@. apply H.
+ intuition.
+ intuition.
Qed.

2 |<https://github.com/nasa/pvslib>
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Listing 4.8.2 —inDom proof in PVS

inDom: LEMMA
FORALL(m,1,r): m(l,r)
(inDom 0
(inDom-1 nil 3498485387
("" (skolem 1 (m 1 r))
(("" (expand dom)
(¢"" (flatten)

(("" (instantiate
(¢"" (propax) nil
nil))
nil))
nil))

nil)

=> dom(m) (1)

nil))
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The PVS proof, in turn, is simpler. The foundation of PVS logic is also based on set theory,

which influences in this simplicity. We first perform skolemization, then we expand the def-

inition of dom, which results in the proof goal EXISTS (r: Asset): m(l,r). We instantiate

the existential quantifier with r, which concludes the proof.

4.8.1

COMPARING PROOF METHODS

To compare proof commands of both systems, we have clustered the tactics and proof rules

according to their effect on the goals, as follows, with selected examples of Coq tactics and

PVS rules or strategies. This is an adaptation of an existing categorizationEl

e Category 1 - Proving Simple Goals: This category groups simple commands that dis-

charge trivial proof goals.

- Cogq: assumption, reflexivity, constructor, exact, contradiction;

— PVS: Simple goals are automatically solved.

* Category 2 - Transforming goals or hypotheses: These commands change the state of

goals through simplification, unfolding definitions, using implications, among others,

allowing progress in the proof process.

— Cogq: simpl, unfold, rewrite, inversion, replace;

— PVS: replace, replace %, expand, instantiate, use, inst, generalize.

* Category 3 - Breaking apart goals or hypotheses: Those that split the goal or hypoth-

esis (antecedent and consequent in PVS) into steps that are easier to prove.

— Coq: split, destruct, induction, case;

3

<https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.html>
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- PVS: flatten, case, split, induct.

e Category 4 - Managing the local context: Commands to add hypotheses, rename, in-
troduce terms in the local context. There is no direct progress in the proof, but these
commands bring improvements that might facilitate such progress.

- Coq: intro, intros, clear, clearbody, move, rename;
— PVS: skolem!, copy, hide, real, delete.

* Category 5 - Powerful Automatic Commands: Powerful automation tactics and strate-
gies that solve certain types of goals.

- Coq: ring, tauto, field, auto, trivial, easy, intuition, lia;

- PVS: grind, ground, assert, smash.

We could also establish other categories, but those listed here are sufficient to group all

tactics and rules used in our Coq and PVS proofs.

Proof Assistant Category 1 Category2 Category3 Category4 Category5 Total

Coq 25 357 225 120 33 760
PVS — 209 97 85 126 517

Table 3 - TOTAL TACTICS BY CATEGORY

Table [3| presents the numbers for such categories in our proofs. First, we note that the
number of tactics in Coq is 47.7% higher than that of PVS, even though we often use se-
quences of tactics such as destruct H@, H1, which breaks hypotheses HO and H1 into two
others in the same step. One possible reason for these differences is the ability of PVS to
automatically solve simple goals, which does not happen in Coq. Additionally, the PVS spec-
ification has taken more advantage of automatic commands. In this systems, six results are
proven using the grind rule and, in other six proofs, this command resolved all the subgoals
generated by a command of the type Breaking apart goals and hypotheses. The PVS docu-
mentation recommends automating proofs as much as possible. One reason may be proof

brittleness, as on some occasions, updates to PVS have broken existing proofs.
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Figure 17 — TACTICS FROM OUR COQ SPECIFICATION
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Figure 18 — TACTICS FROM GITHUB

A greater number of commands that make changes to goals and hypotheses can also be
explained by a greater number of branches generated from the Managing the local context
category. For instance, induction, which generates from one to six more subgoals in this
formalization, was used 15 times in Coq and only 5 in PVS, for example. Also, for each subgoal
generated, we mark each one with bullets in Coq, increasing the number of commands in the

Breaking apart goals and hypotheses category.
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Finally, we also notice that we do not use tactics that act on other tactics - which would
be a new category - such as repeat and all, which would simplify the proofs. We intend
to do this in the future. We did not find this type of proof rule being used in PVS, but some
commands like skosimp and grind implicitly contain control structures.

Nonetheless, to provide some external validity for our analysis, we also mined Coq repos-
itories from GitHub using GraphQL API v4 and PyDriller (SPADINI; ANICHE; BACCHELLI, 2018).
This resulted in 1.981 projects, with 65.661 . v files. We have also categorized the tactics from
these projects, in this case also considering more categories to group a larger number of
tactics. Figures[17]and [18|compare the distribution of commands among the categories, for
both our specification and the aggregated data from the GitHub projects. The percentage of
Transforming goals or hypotheses commands is similar, but Proving Simple Goals appears
more often among GitHub projects. In addition, automated commands are further explored
in these projects. In projects where the Hint command was found, 16.43% of the tactics are
automated versus 5.38% in projects that have not made such use. This suggests that we could

have simplified our proofs using this command.

4.9 DISCUSSION AND LESSONS LEARNED

Coq posed some difficulties during this the development of this work, but has also helped
some other tasks. It is important to highlight that participants of this research had a much
stronger previous experience in PVS than Coq, so this certainly has an impact in our results.
We intend to collect further feedback from experts in Coq to improve the Coq specification.

A point to be considered in favor of Coq, which contributed to the development of our
specification, is its large active community and the vast amount of available information,
which provides greater support to its users. There are forums that support Coq developers, as
well as an active community in both StackOverflow and Theoretical Computer Science Stack
ExchangeﬁWe are also aware of The Coq ConsortiumEl which provides greater assistance to
subscribing members, with direct access to Coq developers, premium bug support, among
others.

Regarding the specification, Coq presented an easier way to define recursive functions.
It uses a small set of syntactic and conservative criteria to check for termination, where the
developer must provide an argument that is decreasing as the calls are made. In fact, there is
a way to perform recursive definitions without meeting this requirement. Just specify a well-
founded relation or a decreasing measure mapping to a natural number, but it is necessary to
prove all obligations to show this function can terminate. On the other hand, PVS generates
TCCs to ensure that the function is complete and a measure function to show this.

PVS allows partial functions, but only within total logic structures, from predicate sub-

types. The definitions that made use of these subtypes made the specifications more suc-

4
5

<https://cstheory.stackexchange.com/questions/tagged/coq>
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cinct and easier to read when compared to the Coq definitions. PVS also provided syntactic
sugar throughout its specification, allowing for less coding effort by the developer. We could
have further leveraged Coq notations to achieve similar results. Besides that, PVS provides a
greater amount of theories in its standard library. However, there is also a wide variety of Coq
libraries available on the web.

The proofs are often different between the proof assistants. PVS proofs had a greater us-
age of automated commands like grind, solving some goals with just that command. It was
also not necessary to worry about simpler goals. For example, the flatten rule not only
yields a subgoal in order to simplify the goal, but it also solves simpler goals then, such as
when we have False in the antecedent. In Coq, except in cases where automated tactics
can be used, we need to explicitly use tactics such as contradiction to deal with False as
assumption, or reflexivity to prove goals that are automatically discharged by PVS.

Although the proofs in Coq are longer in our specification, we noticed that important
features, which give greater support to the prover, were not used. Tactics like all and repeat
could have been useful to avoid repetition. The use of Hints and the increased search depth
of the auto tactic may increase the chances of automated tactics being successful in their
attempts.

From a usability point of view, Coq specifications and their corresponding proofs belong
to the same file. In PVS, it is also necessary for the prover to be aware of control rules to go
through the .prffile, such as the undo rule that undoes commands. In addition, it is common
to lose proofs that are in these files, because of automatically renamed TCCs, for example.
Finally, Coq also has search commands, either by identifiers or by patterns, which might

prevent the unnecessary definition of lemmas.
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5 CONCLUSIONS

In this work, we port the existing SPL refinement theory mechanized in PVS to Coq. This
theory is the basis of previous works (BORBA; TEIXEIRA; GHEYT, 2012} SAMPAIO; BORBA; TEIXEIRA,
2019; [NEVES et al., 20155 GOMES et al., 2019) related to safe and partially safe evolution of SPLs,
although here we only discuss the safe evolution aspect of this theory. This formalization is
initially composed of basic definitions, such as Name, Formula and Configuration. Addition-
ally, having defined an SPL as a triple (FM, AM and CK), we formalized the concrete theories
of these models, as well as the specification of the general SPL refinement theory. Typeclasses
were used to instantiate these theories, defining the interfaces and proving the obligations
generated by their instances. The concept of safe, partially safe evolution and SPL refine-
ment allows the derivation of templates that support developers in SPL evolution scenarios.
These templates were also formalized in Coq and most of their theorems have been proven.

We also compared Coq and PVS using the developed specifications, showing the differ-
ences observed in the specifications of the corresponding modules, file-by-file. A compari-
son of the proofs was also made. In this case, we divided the tactics and rules into five cat-
egories: Proving Simple Goals, Transforming goals or hypotheses, Breaking apart goals or
hypotheses, Managing the local context and Powerful Automatic Commands. For each of
the categories, we surveyed the number of commands used in each of the proof assistants
and give some reasons for the results found. This categorization was also used for an exter-
nal evaluation. We mined more than 1900 public projects available on GitHub and compared
them with our results.

Through our study, we concluded that Coq’s formalism and languages are sufficiently ex-
pressive to deal with and represent the different types of definitions found in the PVS mech-
anization. We have seen, however, that PVS provides ways to simplify most of the formaliza-
tion presented. In this case, we agreed that there was less effort regarding the specification of
the SPL refinement theory made in this system. The use of subtypes and predicate subtypes
simplified several definitions, requiring a smaller number of recursive definitions compared
to Coq, for instance, which is important, since PVS has disadvantages regarding this type of
definition.

The proofs followed different ways in the two systems, using different methods to solve
them. We noticed a greater difficulty in Coq in the proofs that relate to recursive definitions.
When using the unfold tactic, for instance, there was a greater difficulty in using simplifica-
tion tactics and application of other previously proven properties. The proofs of the prop-
erties of the general theory of SPL got bigger in PVS. For the amRefCompositional proof,
the biggest proof, about 121 proof rules were used in PVS, while we used 43 tactics in Coq
to complete that same proof. In fact, the proofs of the properties of the general theory of

SPL were shorter in Coq than in PVS. However, in general, as we saw in the comparison of
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the proof commands, proof rules in PVS reduced the proof effort by the user, having proofs
like wtFormRefinement that were solved with automatic commands. However, we also need
to emphasize that Coq brings features, such as Hint, tactical commands, dependent typ-
ing and advanced notations in which users of this tool can overcome this difference in both
definitions and proofs. Its larger community and documentation availability might provide
greater support for this purpose. In addition, we must take the constant improvements made

to these proof systems into account.

5.1 THREATS TO VALIDITY

As any case study, our work also presents threads to validity. This section discusses these

threats in what follows.

51.1 EXTERNAL VALIDITY

The first threats to be mentioned in this section concern the generalization of our findings.
This study involves a case study, comparing two specifications of the SPL refinement theory
and from our results we cannot say that they are representative for all specifications. Despite
this, we consider this theory an option to trace this type of comparison, given the variety
of definitions that it involves, such as interpreted types, uninterpreted types, enumerated
types, recursive functions, records, theorems, lemmas, axioms, among others. The specifi-
cation also includes the formalization of abstract, concrete entities, instances, in addition to
various properties that needed to be proven. In addition, we mine several GitHub reposito-

ries in order to give some external validity to our proofs comparison.

5.1.2 INTERNAL VALIDITY

Besides, as mentioned earlier, the fact that the researchers involved in this study have more
experience with PVS affects our results, being a threat to the validity of our comparison. With
that, we recognize that in our Coq specification there may be better alternatives to existing
structures, notations, or libraries that could be used to lessen the effort of this task. We also
recognize that there may be tactics that could have been used to simplify the evidence. How-
ever, when porting the PVS theory to Coq, most definitions are similar, using similar struc-

tures.

51.3 CONSTRUCT VALIDITY

In this work, we consider the concept of safe evolution, which requires the preservation of
the behavior of all SPL products, when making certain changes. However, this is not suitable
for all possible evolution scenarios. For instance, if the developer wants to make a bug fix
or remove a feature, there is no way to guarantee that all products have the same behavior.

With this we have the notion of partially safe evolution, to support developers in these and
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other non refinement situations, where only a subset of the products will preserve their be-
havior. Because of this, the main limitation of this dissertation is that it does not include the
concept of partially safe evolution. Furthermore, there are admitted proofs in SpecificSPL,
the file containing the templates specification. It could be that some properties which have
been assumed, but not proven, may have specification errors. Ideally, all proofs should be

completed.

5.2 RELATED WORK

There are several formalizations in Coq. Gonthier et al. presents a large and complete for-
malization of a proof of the Feit-Thompson Odd Order Theorem in the Coq proof assistant,
which took about six years to complete (GONTHIER et al,, [2013). Benzaken et al. (BENZAKEN;
CONTEJEAN; DUMBRAVA, |2014) presented a specification of the relational model as a first step
towards verifying relational database management systems with the Coq proof assistant.
Ramos and Queiroz (RAMOS et al., 2015) formalized parts of context-free language theory in
the Coq proof assistant, which includes the formalization of closure properties for context-
free grammars (under union, concatenation and closure) and the formalization of gram-
mar simplifications. In addition to these, there are works that provide comparisons between
proof assistants, as described below.

Wiedijk (WIEDIJK, 2003) draws a comparison between 15 formalization systems, includ-
ing Coq and PVS. In his work, users of each system were asked to formalize the irrationality
of p 2 by reducing it to the absurd. For each system, the author compare the number of lines
of the specification, whether it was proven by the irrationality of p 2 or by an arbitrary prime
number, in addition to verifying whether the users proved the statement using their system’s
library.

As a result of this comparison, Otter, HOL and Omega presented the lowest formaliza-
tions, using 17, 29 and 38 lines, respectively. Most made use of their libraries only, except
Otter and Theorem who specified too many lemmas to complete their tests. The Agda sys-
tem does not have a library, but the formalization did not use any unproved statements. As
for PVS and Coq, Coq needed fewer lines to perform its proof, 68 lines versus 77 in PVS.

The study also compared prover theorems regarding the criteria of logic used, frame-
work, dependent type and De Bruijn criterion for showing how ‘mathematical’ the logic of
the system is. It also used the criteria of automated interaction style, Poincaré principle, user
automation and powerful built-in automation for shows how much automation the system
offers. As a result, the authors put Metamath and Agda as more mathematicians and ACL2
and PVS as more automatic. Despite losing to PVS for automation, Coq is well placed on his
level of mathematical logic.

Despite the breadth of such study, the comparison among the systems is performed
against a simple proof problem. This points to the need for comparison on a larger scale, in

order to have the possibility to further explore the difference between these systems, specifi-
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cally. This is what we have attempted to perform in this work, even though we only compare
two systems. Moreover, our findings cannot be readily generalized to any mechanization us-
ing Coq or PVS, since we have only specified a particular type of theory.

Nawaz et al. compares 40 theorem provers in order to provide details on implementa-
tion architecture, logic and calculus used, library support, level of automation, programming
paradigm, programming language, differences and application areas (NAWAZ et al,,|2019) . The
authors created research questions to be answered by experts in these theorem provers to
obtain relevant information about these systems. This work differs from ours because it does
not intend to compare the tools in a practical way, with proof problems for example, but fo-
cuses on providing a quick and easy guide to the interested users into the area of theorem
provers.

Bodeveix et al. (BODEVEIX; FILAL; MUNOZ, 1999) formalized the B-Method using Coq and
PVS. The B-Method is a uniform language, which is Abstract Machine Notation, to specify,
design and implement systems. Its usual development involves an abstract specification,
followed by some refinement steps. The main components of the B-Method are: i) Abstract
machine, where the project’s goal is specified; 2) Refinement, where the specification is clari-
fied to make the abstract machine more concrete; 3) The implementation, where refinement
continues, until a deterministic version is reached.

The work provides the mechanization of most constructions, showing the main aspects
in the coding of the two systems for each stage of formalization. This work is similar to ours,
but in this case, the authors prefer to show the specification in PVS when it differs from that
of Coq, since the PVS syntax s closer to B. In addition, the article only presents six definitions,
where only three present differences between the specification of PVS and Coq. We also draw
a comparison between the tactics and strategies that make up the proof, using data collected
from Github projects to strengthen our statements.

Results similar to ours are found in the specification of Invariants, which are introduced
as a predicate of Inv restriction over state space. This restriction in PVS is introduced us-
ing the predicate subtype of its underlying type theory, which leads to undecidability and,
consequently, the PVS type checker produces proof obligations to verify the subtyping. In
Coq, a record was used to provide proof of the state space constraint. This is similar to the
alternative taken in Coq for the PL specification, in Section 4.5.

In general, the authors presented the following conclusions regarding their comparison:

* Dependent types and subtypes simplify the specification of abstract machines. Coq
does not have a subtyping mechanism, but its dependent type theory is more powerful

than that of PVS, with respect to type constructors.

* PVS obligations correspond to the concept of proof obligations B. In Coq, theorems are

always stated explicitly.
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* PVS made use of the WITH clause to represent updates to copied data structures. Coq
does not have this type of construction, but Coq’s grammar extension features should

allow the definition of the construct.

5.3 FUTURE WORK

First, as a future work, we intend to deal with some threats to validity of this work. Starting
by continuing the proofs of the SPL safe evolution templates. We provide eight properties of
fifteen, proving two templates altogether. In addition, we intend to extend our formalization
to consider partially safe evolution as formalized through partial SPL refinement.

We previously presented the limitation of our study regarding the difference in experi-
ence in PVS and Coq by the participants of this study. Therefore, we also intend to collect
feedback from Coq experts to improve our formalization. We have already been notified of
how we can reduce some definitions with the use of advanced notations, fold and Dependent
Types, for instance.

Additionally, we plan to address simplification of proofs, taking important Coq features
presented in Section 4.9 into account, which was not our focus in this work. In this sense,
we already know that Coq has a language called Ltac (and its experimental version Ltac2)
that allows the definition of more complex tactics and decision procedures. We also intend
to obtain gains with the use of tacticals, which will allow the simplification of our proofs in
Cog. The findings regarding the Hint command are also indicative that we can reduce the
proof effort with the use of that specific command.

We also plan to conduct a semi-structured interview with experts from the two proof as-
sistants in order to investigate their experiences using these systems. In this interview, we
can obtain reports of such experiences, questioning the participants about facilities and dif-
ficulties encountered during specifications and tests made. This will also be an opportunity
to contrast with the results of this work.

Furthermore, we intend to provide a table, raising the number of various criteria to com-
pare PVS and Coq, such as Prelude, specification evolution, evidence evolution, instantia-
tion, expressiveness, automation, recursion, datatypes, time, support tactics, among others.
Textbooks will also be part of this list of criteria, as they provide greater support to users who

want to get started with the tools.
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