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ABSTRACT

Embedding artificial intelligence on constrained platforms has become a trend since
the growth of embedded systems and mobile devices, experimented in recent years. Al-
though constrained platforms do not have enough processing capabilities to train a sophis-
ticated deep learning model, like Convolutional Neural Network (CNN), they are already
capable of performing inference locally by using a previously trained embedded model.
This approach enables numerous advantages such as more privacy, smaller response la-
tency, and no real-time network dependence. Still, the use of a local CNN model on
constrained platforms is restricted by its storage size and processing power. Most of the
research in CNN has focused on increasing network depth to improve accuracy. In the
text classification area, deep models were proposed with excellent performance but rely-
ing on large architectures with thousands of parameters, and consequently, they require
high storage size and processing. One of the models with much renown is the Very Deep
Convolutional Neural Networks (VDCNN). In this dissertation, it is proposed an archi-
tectural modification in the VDCNN model to reduce its storage size while keeping its
performance. In this optimization process, the impacts of using Temporal Depthwise Sep-
arable Convolutions and Global Average Pooling in the network are evaluated regarding
parameters, storage size, dedicated hardware dependence, and accuracy. The proposed
Squeezed Very Deep Convolutional Neural Networks (SVDCNN) model is between 10x
and 20x smaller than the original version, depending on the network depth, maintain-
ing a maximum disk size of 6MB. Regarding accuracy, the network experiences a loss
between 0.1% and 1.0% in the accuracy performance while obtains lower latency over
non-dedicated hardware and higher inference time ratio compared to the baseline model.

Keywords: Convolutional Neural Networks. Text Classification. Embedded Platform.
Constrained models.



RESUMO

Embarcar inteligência artificial em plataformas com restrições de desempenho tem se
tornado uma tendência desde o crescimento no uso de sistemas embarcados e dispositivos
móveis, presenciado nos últimos anos. Apesar de sistemas com restrições de desempenho
não terem capacidade de processamento suficiente para treinar modelos complexos, como
as Redes Neurais Convolucionais (RNC), eles já são capazes de realizar sua inferência
utilizando um modelo embarcado previamente treinado. Essa abordagem oferece diversas
vantagens, tais como maior privacidade, menor latência de resposta e a não dependên-
cia de conexão com a internet em tempo real. De todo modo, o uso de um modelo de
RNC em dispositivos com restrições de desempenho é condicionado ao seu tamanho de
armazenamento e poder de processamento. Muitas das pesquisas em RNC tem focado em
aumentar a profundidade da rede para melhorar sua acurácia. No campo de classificação
de texto, modelos profundos apresentam excelente performance, mas se baseiam em ar-
quiteturas grandes, com milhares de parêmetros, e consequentemente, alto requisito de
armazenamento e processamento. Um dos modelos com bastante destaque é o Very Deep
Convolutional Neural Networks (VDCNN). Nesta dissertação, é proposta a modificação da
estrutura do modelo VDCNN para reduzir seu tamanho de armazenamento mantendo sua
performance. Neste processo de otimização, são avaliados os impactos do uso de Depthwise
Separable Convolutions e Global Average Pooling na arquitetura da rede, considerando a
quantidade de parâmetros, tamanho de armazenamento, dependência de hardware dedi-
cado e acurácia. O modelo proposto, Squeezed Very Deep Convolutional Neural Networks
(SVDCNN), é entre 10 e 20 vezes menor do que sua versão original, dependendo da pro-
fundidade da rede utilizada, mantendo um tamanho de armazenamento máximo de 6MB.
Com relação à acurácia, o modelo experimenta uma perda entre 0.1% e 1.0% na perfo-
mance de classificação enquanto obtém menor latência em hardware não-dedicado e maior
quociente de tempo de inferência comparado com o modelo base.

Palavras-chaves: Redes Neurais Convolucionais. Classificação de Texto. Plataformas
Embarcadas. Modelos restritos em performance.
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1 INTRODUCTION

The general trend in the success of deep learning approaches has been developing models
with increasing layers and parameters. Deeper neural networks have achieved high-quality
results in different tasks, such as image classification, detection, and segmentation. Deep
models can also learn hierarchical feature representations from the input (ZEILER; FER-

GUS, 2014b). On the other hand, in the Natural Language Processing (NLP) field, the
belief that compositional models can also be successfully applied to text-related tasks is
more recent.

The increasing availability of text data motivates the research for models able to im-
prove accuracy, over massive datasets, in different language tasks. Following the image
classification Convolutional Neural Network (CNN) tendency, the research in text classi-
fication has placed effort into developing deeper networks. The first CNN based approach
for text was a shallow network with one layer (KIM, 2014). Following this work, deeper ar-
chitectures were proposed (CONNEAU et al., 2017; ZHANG; ZHAO; LECUN, 2015). Conneau
et al. (CONNEAU et al., 2017) was the first to propose Very Deep Convolutional Neural
Networks (VDCNN) applied to text classification. According to the authors, VDCNN ac-
curacy increases with depth. The approach with 29 layers presents excellent performance
for text classification (CONNEAU et al., 2017).

However, regardless of making networks deeper to improve accuracy, little effort has
been made to fit text classification models under constrained platforms, like embedded
systems and mobile devices. Although constrained platforms do not have enough process-
ing capabilities to train a sophisticated deep learning model, they are capable of processing
predictions locally. In this approach, the model is trained on a proper environment for
deep learning tasks, and then the trained model is transferred to the target constrained
platform so that it performs the inference step.

Still, the model storage size is a limiting factor for constrained platforms (IANDOLA

et al., 2016; HOWARD et al., 2017; GONG et al., 2014). Concerning embedded systems, Field
Programmable Gate Array (FPGA) are a clear example: they usually offer less than
10MB of on-chip memory and no off-chip memory or storage. Regarding mobile devices,
the model size impacts directly on the final application size. At the same time, there is a
constant effort for developing smaller sized applications on both entry-level and cutting-
edge devices. Relative to entry-level devices, there are Operational Systems (OS) with
several restrictions for maximum application size. For example, on Android GO OS, ap-
plications should be less than 40MB on the device, while games should be less than 65MB
on the device (GOOGLE, 2020).

Moreover, embedding smaller local models provides additional benefits, even to plat-
forms that do not have storage constraints, such as cutting-edge smartphones and devices.
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For example, the final size of an application impacts the amount of mobile data needed for
its download and update. Additionally, there are other relevant benefits while embedding
local models such as:

• No real-time network dependence: The user can use the application even with no
internet connection;

• Lower latency speed: The inference is performed locally (not on a server) so it can
be faster and more reliable by avoiding network requests;

• Scalability: No need to worry about scaling or distributed computing, once each
user device performs the processing;

• Privacy: No personal data needs to leave the device since all processing is performed
locally;

Therefore, the rising number of embedded systems and mobile devices, in addition
to the increasing appeal for embedding artificial intelligence, motivates the research for
smaller models.

1.1 GOALS

The main objective of this dissertation is to propose a very deep CNN model able to
be locally embedded on constrained platforms while keeping accurate results. Thus, this
work presents the Squeezed Very Deep Convolutional Neural Networks (SVDCNN), a
very deep text classification model that requires significantly fewer parameters compared
to the state-of-the-art CNN. Therefore, the main goals of this work are listed in details
as follows:

• Reduce the number of parameters and consequently the storage size of the model;

• Keep the same accuracy performance or present minimal degradation;

• Examine the dedicated hardware dependency of the proposed model;

• Perform experiments to validate the proposed architectural modification;

To achieve the abovementioned goals, the use of Temporal Depthwise Separable Con-
volutions and Global Average Pooling techniques was investigated in the VDCNN network
proposed by Conneaut et al. (CONNEAU et al., 2017).
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1.2 DISSERTATION-RELATED PUBLICATIONS

• Duque A.B., Santos L.L.J., Macêdo D., Zanchettin C. (2019) Squeezed Very Deep
Convolutional Neural Networks for Text Classification. In: Tetko I., Kůrková V.,
Karpov P., Theis F. (eds) Artificial Neural Networks and Machine Learning –
ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in
Computer Science, vol 11727. Springer, Cham.

1.3 DOCUMENT ORGANIZATION

The remain sections are strutured as follow.

• Chapter 2 presents a historical review since the beginnings of Artificial Neural Net-
works until the modern Convolutional Neural Networks and their lightweight ver-
sions. Lastly, an overview of Deep Neural Networks for text classification tasks is
performed, presenting the main related works, and the importance of the model
used as base of this research.

• Chapter 3 presents the VDCNN, the model used as the base to the proposed SVD-
CNN model. Its architecture is deeply explained, as well as the author’s experience
with the application of shortcut connections.

• Chapter 4 presents an overview of Separable Convolutions. Its two types, Depthwise
and Spatial, are introduced with discussions of applicability, benefits, and draw-
backs.

• Chapter 5 presents the Global Average Pooling technique, reviewing its first appari-
tions and architecture besides its applicability, benefits, and drawbacks as well.

• Chapter 6 introduces the proposed SVDCNN, a text classification model that presents
state-of-the-art results and holds significantly less trainable parameters so that it
can be locally embedded in constrained platforms. Also, the two architectures mod-
ifications implemented are discussed in detail.

• Chapter 7 describes how the experiments were performed, detailing the parameters,
base system, and datasets utilized.

• Chapter 8 presents the results obtained by the SVDCNN model compared to the
VDCNN and Char-CNN models. These results are exhibited in terms of the number
of parameters, storage size, shortcut connections performance, inference time, and
accuracy.

• Chapter 9 finishes this research work presenting the conclusions obtained, as well
as the contributions and directions for future works.
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2 HISTORY REVIEW AND RELATED WORKS

2.1 ARTIFICIAL NEURAL NETWORKS

The first directions to artificial neural networks took place in the 1940s when the neu-
rophysiologist Warren McCulloch and the young mathematician Walter Pitts modeled a
simplistic neural network manipulating electrical circuits. In their published paper, they
described how the brain neurons’ behavior could be replicated. Later in 1949, Donald
Hebb came up with one of the more crucial researches for the Artificial Neural Network
(ANN) field advent, the Synaptic Plasticity theory. In its research, namely The Orga-
nization of Behavior, he showed that each time a set of brain cells fire together, they
strengthen the synapses, so that the connection between them is improved (MCCULLOCH;

PITTS, 1988). This theory profoundly influenced the formulation of the first train rules of
the ANN models.

The 1950s started, and the IBM researcher Nathanial Rochester, driven by the in-
crease of computational power, attempted to simulate the first neural network, but, un-
fortunately, he did not succeed. Still, the efforts for boosting both artificial intelligence
and neural network researches did not cease. In 1956, the Dartmouth Summer Research
Project in Artificial Intelligence fomented these areas, and in 1957, John von Neumann
proposed to simulate simple neuron functions via telegraph relays or vacuum tubes.

The turn of the ’50s was brilliant to the ANN field, beginning with the neuro-biologist
of Cornell, Frank Rosenblatt (ROSENBLATT, 1958). In order to understand the processing
associated with the operation of a fly’s eye, Rosenblatt started to work on the Percep-
tron. Its implementation was hardware-based and enabled the classification of continuous
values, given as input, between two classes. To perform the classification, the Perceptron
calculates the weighted-sum of the inputs and then subtracts a threshold. Figure 1 shows
the proposed Perceptron architecture. The result points to one of the two possible classes.
This scheme became known as Rosenblatt update weight rule, and it is currently the
oldest neural network architecture in usage.

After, in 1959, the models ADALINE and MADALINE were published by Bernard
Widrow and Marcian Hoff. The models’ names are acronyms inspired by the usage of
Multiple ADAptive LINear Elements. ADALINE model is capable of recognizing binary
patterns so that it can predict the next bit of a sequence of bits. It can be useful, for
example, when decoding streaming bits from a phone line. MADALINE, on the other
hand, can eliminate phone lines’ echoes by using an adaptive filter. It was the first neural
network employed in a real-world problem (WIDROW; HOFF, 1960).

Almost three decades passed, and although the Widrow-Hoff rule has enabled to solve
several problems, a way to train neural networks with more than two layers was needed
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Figure 1 – Perceptron architecture proposed by Rosenblatt.

to step forward. In 1986, three different autonomous research groups came up with sim-
ilar methods to distribute pattern recognition errors inside the network. These methods
were later unified as what is known as backpropagation. The backpropagation rule re-
quired thousands of iterations to learn, being in practice slower than the Widrow-Hoff
rule but generated more accurate results. One of the research groups mentioned above
included David Rumelhart, a previous Stanford’s psychology department member who
published a functional version of the Multilayer Perceptron (MLP) (RUMELHART; HIN-

TON; WILLIAMS, 1986). Also, in this study, the authors proved mathematically that an
MLP could implement any continuous function as long as there were enough neurons in
the network.

With the advent of MLP networks, deeper neural network architectures started to be
investigated. In 1989 the first Convolutional Neural Network (CNN) was prosed by Yann
LeCun and propelled the Deep Learning field (LECUN et al., 1989). After nine long years of
research, LeCun came with LeNet5, a network architecture that could effectively extract
similar features from multiple locations of an image through the usage of convolutions
with few learnable parameters (LECUN et al., 1998). Also, the research directed by LeCun
stated that the features are distributed over the whole image. The LeNet5 architecture was
composed of a sequence of three layers: convolution, pooling, and non-linearity. Moreover,
this architecture introduced map subsample by spatial average and sparse connection
matrix among the layers to avoid the high computational cost. The LeNet5 was a turning
point for the deep learning field, and truly inspired many of the modern deep learning
architectures for image-related tasks.

Although LetNet5 opened the directions for the Deep Learning field, the computa-
tional power was a substantial limitation to train deeper models. At that time, Graphics
Processing Unit (GPU) has not been managed to work as a general-purpose computing
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tool, and even the Central Processing Unit (CPU) did not have relevant processing ca-
pabilities. Hereupon, the years between 1998 and 2010 were tepid, with the researchers
not presenting much progress. Nevertheless, with the popularization of smartphones and
digital cameras, an increasing amount of data was being generated, and in 2010 the first
deep network, implemented in GPU, was published by Dan Claudiu Ciresan and Jurgen
Schmidhuber (CIRESAN et al., 2010). That network had forward and backward operations
performed by an NVIDIA GTX 280 GPU and also included up to 9 layers.

With the rise of the computational power pulled by the usage of the GPU as a general-
purpose computing tool, and with the increasing availability of data, deep learning models
became a prolific direction for image classification tasks. In 2012, a more in-depth and
broader version of the Lenet5 network was published by Alex Krizhevsky (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012). Known as AlexNet, this network won the challenging Ima-
geNet competition by a considerable margin, showing the extraordinary potential of deep
learning models. After the enormous AlexNet success, the scientific community turned
their eyes to deep learning models, and day by day, increasingly powerfull models for
image-related tasks were proposed. Some of them are VGG, NiN and GoogleLeNet. (SI-

MONYAN; ZISSERMAN, 2015; LIN; CHEN; YAN, 2013; SZEGEDY et al., 2015).
Indeed, the increase in computational power allowed the creation of even more pro-

found models. Usually, the addition of extra hidden layers boosts the network capability
of learning more sophisticated functions, and consequently, its prediction capacities. Nev-
ertheless, the more profound a model is, the more difficult it is to back-propagate the
error concerning the weights. The gradients tend to be increasingly smaller as they move
backward in the network so that the first layers train very fast while the last ones train
very slow or they are not even able to train. As a result, it was not possible to get extra
performance by adding extra layers: the training process becomes longer, and the accu-
racy performance is degraded. This barrier is named the Vanish Gradient problem, and
it was the major problem to train Deep Neural Network models about 10 years ago.

An significant step to overcome the Vanish Gradient problem was given in 2011. Glo-
rot et al. demonstrated that the ReLU activation function enabled better training for
deeper models (GLOROT; BORDES; BENGIO, 2011). Instead of offering increasingly smaller
gradients as the Sigmoid and Tanh activation functions, which have a maximum slope
of 0.25, the ReLu offers a stable gradient output due to its gradient slope equal to 1.
Another solution to the Vanish Gradient Problem was also proposed by Kaiming He et
al. in the Deep Residual Learning for Image Recognition paper. This paper presented the
skip connection, a pathway that connected the output of one layer with the input of a
previous layer. This approach make the gradient easier back-propagation thorough the
layers and has became a profitable direction to improve the accuracy of very deep CNN
models (HE et al., 2016a).
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2.2 DEEP NEURAL NETWORKS FOR NLP

Deep neural networks have been successfully achieving meaningful results on different
text-related tasks as transduction, synthesis, and classification. The Transformer model,
proposed by (VASWANI et al., 2017), was the first transduction model that excluded the
use of RNNs sequentially aligned, convolutions, and encoding levels, thus the Trans-
former model computes its representations between input and output entirely through
self-attention. In the text synthesis field, Reed et al. proposed a Generative adversarial
network (GAN) architecture which enables compelling text to image synthesis of bird and
flower images from human-written descriptions (REED et al., 2016). The GAN architecture
was first proposed by Goodfellow et al., and it works by learning the data distribution in
order to generate artificial instances (GOODFELLOW et al., 2014). Further, GAN models
can also be applied to several other tasks as frame prediction, image generation, and voice
syntheses (LOTTER; KREIMAN; COX, 2015; ISOLA et al., 2016; GAO; SINGH; RAJ, 2018).

Concerning text classification, the default approach has been the usage of Recurrent
Neural Network (RNN). This approach is a particular case of Recursive Neural Networks,
where the contexts are combined using the weights sequentially, from left to right (SOCHER

et al., 2011). Thereby, it is possible to capture the word’s relations naturally, considering
the text direction. The most common approach for RNN is the Long Short-Term Memory
(LSTM) model (HOCHREITER; SCHMIDHUBER, 1997; SUNDERMEYER; NEY; SCHLUTER,
2015; TAI; SOCHER; MANNING, 2015), which is a variety of RNN that preserves long term
dependency more effectively in comparison to its base model.

Although RNN models have been a safe direction to text classification tasks, the suc-
cessful results obtained by Convolutional Neural Networks on the image classification field
raised the curiosity about its applicability in the text classification field. Differently from
earlier classification approaches, where feature extraction and classification were processed
as two entirely different tasks, CNN deal to perform these two steps at once, as one single
unified task (LECUN et al., 1998). Another positive direction has been the sequential apply-
ing of pooling layers, which leads to improving the hierarchical representation extraction
(ZEILER; FERGUS, 2014a).

The usage of CNN instead of RNN started to be investigated. Its usage in text clas-
sification tasks has some peculiarities. Contrasting with the traditional bi-dimensional
representation of images, texts are one-dimensionally represented. Due to this property,
temporal convolutions are employed. Furthermore, in order to train the networks, it is
necessary to generate a numerical representation from the text so that the characters’ dis-
crete space can be mapped to a numerical continuous vector. This representation, namely
embedding, is low dimensional, and it is usually obtained through the application of a
lookup table generated from a given dictionary (CONNEAU et al., 2017).

A new approach for text classification tasks consisted of a shallow neural network
working on the word level and using only one convolutional layer followed by a one-
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dimensional max polling layer (KIM, 2014). The author reported results on six small
datasets, highly focused on the Stanford Sentiment Treebank. Later, Zhang et al. (ZHANG;

ZHAO; LECUN, 2015) proposed the first CNN to a character level (Char-CNN), which
allowed them to train up to 6 convolutional layers, followed by three fully connected
classification layers. Char-CNN uses convolutional kernels of size 3 and 7, as well as
simple max-pooling layers. Also, the author introduced the usage of large-scale datasets.

Char-CNN model was able to achieve state-of-the-art results when it was proposed,
but there was still a gap between the CNN models for text and image classification. While
the networks in computer vision used up to 150 layers (HE et al., 2016a; HE et al., 2016b),
there was a belief that it was not possible to improve the accuracy by increasing the
network depth for text classification tasks. However, Conneau proposed the Very Deep
Convolutional Neural Networks (VDCNN), also on a character level (CONNEAU et al.,
2017), presenting improvements compared to Char-CNN. Conneau has shown that deeper
models can increase text classification accuracy, indeed. VDCNN has up to 49 layers and
uses only small kernel convolutions and pooling operations. The proposed architecture
relies on the VGG and ResNet philosophy (HE et al., 2016a; SIMONYAN; ZISSERMAN, 2015):
The number of feature maps and the temporal resolution is modeled, so their product is
constant. This approach makes it easier to control the memory footprint of the network.
Just like Zhang, Conneau CNN utilized standard convolutional blocks and fully connected
layers to combine convolution information(ZHANG; ZHAO; LECUN, 2015; CONNEAU et al.,
2017). This architecture decision increases the number of parameters and the storage size
of the models. However, size and speed were not the focus of this work.

The idea of developing smaller and more efficient CNN models with minimal accuracy
degradation, is a less explored research direction in the NLP field. However, it has already
been a trend for computer vision applications (HOWARD et al., 2017; IANDOLA et al., 2016;
SANTOS et al., 2018). Most approaches consist of compressing pre-trained networks or
training small networks (HOWARD et al., 2017).

A recent tendency in image deep learning models is replacing standard convolutional
blocks with Depthwise Separable Convolution (DSC). DSC were initially introduced by
Sifre while participating in the Google Brain internship (SIFRE; MALLAT, 2014). Its first
application, though, was seen in the AlexNet model where the usage of DSC enabled a
speed-up on convergence time, a significant reduction in the number of parameters, and a
small accuracy improvement (LECUN et al., 1998). Since then, DSC have been successfully
applied to image classification, and (HOWARD et al., 2017; SANTOS et al., 2018; CHOLLET,
2017) machine translation (KAISER; GOMEZ; CHOLLET, 2017) to reduce the computation
in convolutional blocks. Another approach that aims to light-weight the models is the use
of a Global Average Pooling (GAP) layer to perform the final classification task, instead of
the traditional fully connected layers. This strategy has become a standard architectural
decision for newer CNN (HE et al., 2016a; HUANG et al., 2017).
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2.3 CONCLUSION AND ADDITIONAL COMMENTS

In recent years, the image classification field has presented surprising accuracy results
using increasingly deeper CNN models. Still, there was unbelief that the text classification
tasks would not be able to follow this tendency. In this context, the VDCNN model
representes a significant mark to the text classification field. This model demonstrated that
its possible to obtain increasingly accurate results when the number of layers increases in
text classification tasks (CONNEAU et al., 2017) — also, the VDCNN model encourages the
research in the application of other successful approaches used in the image classification
field, to text-related tasks.

The SVDCNN model comes to step forward in the direction fomented by Conneau.
The proposed model goes through another tendency successfully experienced only in the
image classification field: the reduction of very deep CNN models with minimal accuracy
degradation, aiming constrained platforms. To achieve this goal, the use of Depthwise
Separable Convolutions and Global Average polling is performed as well as the usage of
skip connection to improve the model’s performance.
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3 VDCNN MODEL FOR TEXT CLASSIFICATION

This chapter presents the Very Deep Convolutional Neural Networks (VDCNN), the model
used as base for the proposed Squeezed Very Deep Convolutional Neural Networks (SVD-
CNN) model.

3.1 THE MODEL

The VDCNN is a modular architecture for text classification tasks developed to offer
different depth levels (9, 17, 29, and 49). Fig. 2 presents depth-9 architecture configuration.
The network begins with a lookup table, which generates the embeddings for the input
text and stores them in a 2D tensor of size (𝑓0, 𝑠). The number of input characters (𝑠) is
fixed to 1,024 while the embedding dimension (𝑓0) is 16. The embedding dimension can
be seen as the number of RGB channels of an image.

The next layer (3, Temp Convolution, 64) applies 64 temporal convolutions of kernel
size 3, so the output tensor has size 64 * 𝑠. Its primary function is to fit the lookup table
output with the modular network segment input composed by convolutional blocks.

The following rule is employed to minimize the network’s memory footprint: Before
each convolutional block doubling the number of feature maps, a pooling layer halves the
temporal dimension. This strategy is inspired by the VGG and ResNets philosophy and
results in three levels of feature maps: 128, 256, and 512 (see Fig. 2).

The tensor output size (𝑇𝑜𝑢𝑡) of each convolutional block can be calculated according
to the following equation:

𝑇𝑜𝑢𝑡 = 𝑁𝑓𝑚 * 𝑠

2𝑝
(3.1)

Where 𝑁𝑓𝑚 is the number of feature maps of the convolutional block, 𝑠 is the input
size, and 𝑝 is the number of down-sampling operations performed. Since the VDCNN
model uses padded input, the 𝑠 value is constant (1,024). However, if variable-sized input
is employed, the convolutional encoder can also provide adequate representation. The
author emphasizes that representations of a text as a set of vectors of variable size can
be valuable, namely for neural machine translation, in particular when combined with an
attention model.

Lastly, for the classification task, the 𝑘 most valuable features (𝑘 = 8) are extracted
using 𝑘-max pooling, generating a one-dimensional vector which supplies three fully con-
nected layers with ReLU hidden units and softmax outputs. The number of hidden units
is 2,048, and they do not use dropout but rather batch normalization after convolutional
layers perform the network regularization. The VDCNN also contains shortcut connec-
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tions (HE et al., 2016a) for each convolutional block implemented through the usage of
1 × 1 convolutions.

Figure 2 – VDCNN depth-9 architecture configuration.
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Figure 3 – VDCNN Convolutional Block 256.

3.2 CONVOLUTIONAL BLOCKS

Each Convolutional Block is a sequence of two temporal convolutional layers, each one
accompanied by a temporal batch normalization layer (IOFFE; SZEGEDY, 2015) and a
ReLU activation. Fig. 3 shows the VDCNN Convolutional Block.

The architecture applied to the convolutional blocks of the VDCNN model goes against
the natural trend of Convolutional Networks for Natural Language Processing (NLP)
related tasks. Typically, the process of model short-span and long-span relations is made
easier when n-grams with different lengths are employed. Therefore, for these tasks, the
architectures have been using up to 6 convolutional layers and combining convolutions of
different sizes so that it could spawn tokens accordingly.

However, due to the high depth of VDCNN (up to 49 layers), only small convolutions
of size 3 were used, so that the number of parameters of the network could be reasonable.
Also, with each stacking of 4 layers of these small-sized convolutions, it is possible to obtain
a span of 9 tokens, so that the network can build itself a deep hierarchical relation between
the different “3-gram features” extracted. Furthermore, Conneau affirms that VDCNN
architecture can be seen as a temporal adaptation of the VGG network (SIMONYAN;

ZISSERMAN, 2015).
The different network depths are obtained by varying the number of convolutional

blocks. As a convention, the depth of a network is given as its total number of convolutions.
For instance, the depth-17 architecture configuration has two convolutional blocks of
each level of feature maps, which results in 4 convolutional layers for each level (see
Table 2). Considering the first convolutional layer of the network, we obtain the depth
2 * (2 + 2 + 2 + 2) + 1 = 17. Table 2 summarizes the different depth architectures provided
by VDCNN model.
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Table 2 – Number of convolutional layers for each different VDCNN depth architecture

Depth 9 17 29 49

Convolutional Block 512 2 4 4 6
Convolutional Block 256 2 4 4 10
Convolutional Block 128 2 4 10 16
Convolutional Block 64 2 4 10 16
First Convolutional Layer 1 1 1 1

3.3 SHORTCUT CONNECTIONS

Deeper networks suffer from accuracy degradation after they achieve certain depth max-
ima, especially if it is a standard Convolutional Neural Network (CNN) (He et al., 2016a).
This accuracy reduction is not related to overfitting or the training set but to the opti-
mization process. The deeper the network, the harder it is to backpropagate the gradient
through its layers. Also, the Stochastic Gradient Descent (SGD) starts not to be able to
converge to a proper loss function minimum.

To study this accuracy degradation problem on text classification tasks, the VDCNN
implements optional shortcut connections, seen from the first time on the ResNet model
for image classification. These shortcut connections create a quick path that allows the
input data 𝑥 of a convolutional block to be aggregated with its result and passed forward
as a residual map.

Figure 4 – Shortcut connection schema.
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Figure 4 shows a shortcut connection schema. This technique allows the gradients to
flow more easily in the network, and do not add almost any extra parameters or compu-
tational complexity (He et al., 2016a). Despite the good results presented by the ResNet
model, the use of shortcut connections on VDCNN did not bring a consistent accuracy
increasing. Concerning the depth-9, depth-17, and depth-29 architecture configurations,
its use was not helpful. While to the depth-49, its use allowed better accuracy, but still
not able to beat the results delivered by the depth-29 architecture configuration. Table 3
shows the accuracy results reported by the author on the Yelp Review Full data set with
or without shortcut connections (CONNEAU et al., 2017).

Table 3 – Accuracy results on the Yelp Full data set for all depths, with or without short-
cut connections.

Depth Without Shortcut With Shortcut

9 62,37 59,73
17 63,90 60,82
29 64,72 63,99
49 62,59 63,85
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4 SEPARABLE CONVOLUTIONS

Separable convolutions have received increasing attention since its apparition in MobileNet
(HOWARD et al., 2017). In contrast with the Standard Convolutions, the Separable ones
have sensible less trainable parameters, which enables several benefits as being less prone
to overfitting and reduce the demanded computation. This chapter starts describing how
a Standard Convolution works and follows by explaining the two types of Separable con-
volutions available, named Depthwise Separable Convolution (DSC) and Spatial Separa-
ble Convolution (SSC). The first one had its temporal version applied to the proposed
Squeezed Very Deep Convolutional Neural Networks (SVDCNN) model. Additionally, all
this chapter uses the same base example, so that the different convolution approaches can
be appropriately compared.

4.1 STANDARD CONVOLUTION

In the deep learning field, bi-dimensional images are usually represented by a composition
of three channels, namely, height, width, and depth (the RGB component). Still, concern-
ing text-related tasks, the input is one-dimensional, and its depth component length is
defined by the embedding process applied. Let us assume that the embedment operation
outputs a text representation as a 𝐼𝑛𝑙 × 𝐸𝑚𝑏𝑑 vector, where 𝐼𝑛𝑙 is the length of the
input and 𝐸𝑚𝑏𝑑 is the embedding dimension or channels ( as the RGB channels of an
image). Hereupon, to make the comprehension easier, consider 𝐼𝑛𝑙 = 20 and 𝐸𝑚𝑏𝑑 = 5.
Out of curiosity, the values used in the VDCNN/SVDCNN models are 𝐼𝑛𝑙 = 1024 and
𝐸𝑚𝑏𝑑 = 16.

Figure 5 shows the process of performing a convolution of kernel size 3 (3 × 1 convo-
lution) with no padding and stride 1 in the text. Considering only the length dimension
of the text, the convolution of the input text (20 × 1) with the kernel of size 3 (3 × 1)
generates the output text (18 × 1).

The 3 × 1 kernel undergoes scalar multiplication with every three positions of the text
tensor, generating one number each time. Thus, the generated text has an 18 × 1 shape
since there is no padding (20 – 3 + 1 = 18).

However, because the text representation has five channels, the convolutional kernel
also needs to have five channels. Therefore, instead of performing 3 * 1 = 3 multiplica-
tions, we actually do 3 * 5 = 15 multiplications every time the kernel moves. Also, the
scalar matrix multiplication performed on every three positions of the text outputs only
1 number. Consequently, after being submitted to a 3 × 5 kernel, the 20 × 5 text will have
its shape modified to 18 × 1. Figure 6 shows the process discussed above.

Finally, to achieve the target number of channels (or depth) 𝑛, it is necessary to
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Figure 5 – 3 × 1 kernel being convoluted with a 20 × 1 sized text, with no padding and
stride 1.

Figure 6 – The process of convolve a 20 × 5 text with a 3 × 5 kernel outputs a text with
the 18 × 1 shape.
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generate 𝑛 kernels so that it is possible to produce 𝑛 18 × 1 text representations and
aggregate them together. Figure 7 shows this process with the 𝑛 parameter set to 8.

Figure 7 – Aggregation of eight 18 × 1 outputs, generating a output text with 18 × 8
shape.

Lastly, the number of multiplication operations performed by a one-dimensional stan-
dard convolution (𝑀𝑠𝑐) is defined as follows:

𝑀𝑠𝑐 = 𝐾𝑠 * 𝑂𝑢𝑡𝑐 * (𝐼𝑛𝑙 − 𝐾𝑙 + 1) (4.1)

Where, 𝐾𝑠 is the kernel size, 𝑂𝑢𝑡𝑐 is the targe number of output channels, 𝐾𝑙 is the
kernel length, and 𝐼𝑛𝑙 is the input length. Therefore, the total amount of multiplication
performed by the example mentioned above is:

𝑀 = 3 * 5 * 8 * (20 − 3 + 1) = 2160 (4.2)

4.2 DEPTHWISE SEPARABLE CONVOLUTION

A depthwise separable convolution separates the process performed by the standard con-
volution into two parts: a depthwise convolution and a pointwise convolution. This con-
volution holds this name because it deals with both spatial and depth dimensions. The
spatial dimensions are, for example, the width and the height of an image or kernel, while
the depth dimension is the number of channels. Also, the versatility of being able to
substitute any standard convolution makes its usage a prevailing direction in the deep
learning field.
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4.2.1 Depthwise Convolution

The depthwise step convolves the text without altering its depth by the application of 5
kernels of shape 3x1. Figure 8, shows the depthwise convolution operating. Each kernel
iterates one channel/depth of the text, performing the scalar products of every three
positions of the text vector so that 18x1 texts are generated. Finally, by aggregating all
generated text together, the 18x5 text is obtained.

Figure 8 – Depthwise convolution, using 5 kernels to transform a 20 × 5 text into a 18 × 5
text.

4.2.2 Pointwise Convolution

As seen in section 4.1, the standard convolution transformed a 20 × 5 text into an 18 × 8
text. The depthwise convolution has already transformed the 20 × 5 text into an 18 × 5
text, as seen in Figure 8.

In order to transform the 18 × 5 text into an 18 × 8 text, the pointwise convolution
applies 1x1 kernels. These kernels iterate over every single position of the text vector
and have the depth equals to the text depth. Therefore, the convolution of a 1 × 5 kernel
through the 18×5 text generates an 18×1 text. Figure 9, shows the pointwise convolution
transforming a text of 5 channels into a text of 1 channel.

Lastly, the process performed to obtain the desired number of channels is pretty similar
to the one done by the standard convolution: the aggregation of 18 × 1 texts, in this case,
generated by the application of multiple 5 × 1 kernels. Visit the Figure 7 once more to
review this process.
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Figure 9 – Pointwise convolution, transforming an text of 5 channels to an text of 1 chan-
nel

The number of multiplication operations performed by a 1D depthwise separable con-
volution (𝑀𝑑𝑠𝑐) is defined as follows:

𝑀𝑑𝑠𝑐 = 𝐼𝑛𝑐 * 𝐾𝐷𝑠 * (𝐼𝑛𝑙 − 𝐾𝐷𝑙 + 1) + 𝑂𝑢𝑡𝑐 * 𝐾𝑃𝑠 (4.3)

Where, 𝐼𝑛𝑐 is the number of the input channels, 𝐾𝐷𝑠 is the size of the kernel used
in the depthwise convolution, 𝐼𝑛𝑙 is the length of the input, 𝐾𝐷𝑙 is the length of the
kernel used in the depthwise convolution, 𝑂𝑢𝑡𝑐 is the target number of output channels,
and 𝐾𝑃𝑠 is the size of the kernel used in the pointwise convolution. Therefore, the total
amount of multiplication performed by the example mentioned above is:

𝑀𝑑𝑠𝑐 = 5 * 3 × 1 * (20 − 3 + 1) + 8 * 1 × 5 = 310 (4.4)

4.3 SPATIAL SEPARABLE CONVOLUTION

The spatial separable convolution, as the name suggests, works over the spatial dimen-
sions. Its operation consists of factorizing the standard convolution into two other con-
volutions with smaller kernels. To keep the equivalence, the multiplication between the
two smaller kernels need to result in the original one. For illustration, consider the 4 × 4
kernel showed in Figure 10.

This approach enables a reduction in the computational complexity since fewer mul-
tiplications operations are performed. A standard convolution performs 16 multiplication
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Figure 10 – Separating a 4x4 kernel spatially

operations considering the 4 × 4 kernel while its analogous spatial separable version per-
forms 8, four of the 4 × 1 kernel plus four of the 1 × 4 kernel. Figure 11 shows this process
in more details.

Figure 11 – Standard and Spatial Separable convolutions.

Although its simple formula, the spatial separable convolution has significant limi-
tations. First, it does not have an equivalent version for each possible standard convo-
lution, since the kernel of the standard convolution needs to have a size that allows its
factorization. Second, since it works over spatial dimensions, it is not applicable for one-
dimensional problems, for example, text classification. Due to these restrictions, its usage
is not a prevailing direction in the deep learning field.

By the comparison of equations 4.2 and 4.4 its if possible to notice that the depth-
wise separable convolution performs significantly fewer multiplication operations than the
standard convolution, saving about 85% of computational power. Moreover, the reduction
of parameters accomplished by the depthwise separable convolution allows reducing the
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proneness to overfitting and storage size of the network, without reducing its accuracy
significantly (HOWARD et al., 2017; CHOLLET, 2017). Hereupon, there are no critical draw-
backs in the replacement of the standard convolutions by its depthwise separable versions,
unless the model has already fewer parameters. In this case, an additional reduction of
parameters might cause a failure in the network learning during the training process.

Concerning the spatial separable convolutions, its usage is limited. Since its usage
depends on a matrix decomposition, not always the standard convolutions are eligible.
Also, since it works in the spatial dimension, they are not adequate to one-dimensional
tasks as the text related ones.
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5 GLOBAL AVERAGE POOLING

5.1 THE METHOD

The usage of densely connected layers as the final classification layers has been the tradi-
tional architecture choice for convolutional neural networks, presenting meaningful results
on both images (SIMONYAN; ZISSERMAN, 2015) and text (CONNEAU et al., 2017) classifi-
cation tasks. This architecture choice is associated with the usage of multiples series of
convolutional layers interspersed with polling operations. The convolutional layers extract
different components of the input data and represent them through feature maps, which
fed up the final densely connected layers. These final layers are frequently fully connected
layers and work as a standard neural network classifier that “interprets” feature map
outputs and performs the category predictions.

Notwithstanding, the employment of Fully Connected (FC) layers drastically increases
the number of trainable parameters of the network. For example, on the image classifi-
cation model VGG16, the FC layers represent 89% of the total amount of the network
parameters, while in the text classification model VDCNN, the FC layers represent 77%
of the total amount of the network, in average, depending on the network depth configura-
tion. The presence of a high number of parameters leads to two undesirable characteristics:
1. The network becomes more prone to overfitting, which prejudices its generalization abil-
ity. ; 2. The network becomes heavier, requiring more computational processing power and
increasing its size when stored.

To prevent the overfitting urged by the usage of FC layers, Hinton et al. proposed the
Dropout. This regularizer randomly sets half of the activations that feeds FC layers to
zero during the training step. This approach leads to improve the generalization ability
and largely prevents overfitting (KRIZHEVSKY; SUTSKEVER; HINTON, 2012). However, Lin
et al. came up with a technique that allows getting rid of FC layers and its deficiencies:
the Global Average Pooling (LIN; CHEN; YAN, 2013).

The global average pooling technique consists of replacing the fully connected layers
by Global Average Pooling (GAP) layers to reduce the total number of parameters in
the model and consequentially making it less prone to overfitting. GAP layers work by
reducing the spatial dimension of a tensor. Let h, w, and d be the height, width, and
depth dimensions of a 3D tensor. The GAP transforms a ℎ × 𝑤 × 𝑑 tensor in a 1 × 1 × 𝑑

tensor, by averaging all the ℎ × 𝑤 values. Figure 12 illustrates this process.
The first model, designed with GAP layers, namely NiN, was proposed by Lin et

al. (LIN; CHEN; YAN, 2013). In the NiN model, each image category in the dataset is
represented by one activation map given by the last max-pooling layer. Hereupon, a GAP
layer receives these activation maps and averages them, producing a vector with a single
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Figure 12 – Global Average Pooling transformation.

entry for each possible target class. Lastly, a softmax activation function outputs the
predicted class probabilities.

Other authors, as Hoa et al. (DenseNet), Iandola et al. (SqueezeNet), and Santos et al.
(SquezeNet-DSC), followed the same direction of eliminating all FC layers (LE; CERISARA;

DENIS, 2017; IANDOLA et al., 2016; SANTOS et al., 2018). Kaiming et al., on the other hand,
performed a more conservative modification using a global average pooling layer followed
by one FC layer and softmax activation function to perform the class prediction (HE et

al., 2016a).
Besides the two main GAP benefits, which are the reduction of the trainable parameter

and reduction of over-fitting tendency, Lin et al. emphasize two more important benefits.
By the removal of the FC layers, the feature maps become more closely related to the
classification categories, acting as a class pertinence map. Also, the network becomes
more robust to spatial translations in the data. If the discriminative features do exist in
the feature map, no matter where they are, it will still be captured due to the averaging
operation (LIN; CHEN; YAN, 2013).
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6 SVDCNN MODEL FOR TEXT CLASSIFICATION

The proposed model is designed to be a light-weight version of the Very Deep Con-
volutional Neural Networks (VDCNN) model. Therefore, the objective is reducing the
number of parameters so that the network can fit in constrained platforms as embedded
systems and mobile devices while presenting minimal accuracy performance degradation.
To achieve this purpose, we performed two architectural modifications in the base model.
First, the replacement of the standard convolutions used in the convolutional blocks by
Temporal Depthwise Separable Convolution (TDSC). Next, the application of the Global
Average Pooling (GAP) technique to avoid the fully connected layers. The resulting pro-
posed architecture is called Squeezed Very Deep Convolutional Neural Networks (SVD-
CNN).

6.1 TEMPORAL DEPTHWISE SEPARABLE CONVOLUTIONS ON SVDCNN MODEL

The use of Depthwise Separable Convolution (DSC) over standard convolutions allowed
to reduce the number of parameters without relevant accuracy loss (HOWARD et al., 2017).
As explained in section 4.2, DSC work decompounding the standard convolution into two
parts: Depthwise and Pointwise. The first one is responsible for applying a convolutional
filter to each channel of the input. When working with images, the network input chan-
nels are the RGB components, whereas, in a text input, we use the dimensions of the
embedding for representation. The result is one feature map by channel for both cases
above. The second convolution unifies the generated feature maps successively applying
1x1 convolutions to achieve the target amount of feature maps.

TDSC are DSC that work with one-dimensional convolutions. Although DSC holds
verified results in image classification networks, the use of its temporal version for text-
related tasks is less explored. Fig. 2a presents the architecture of a standard temporal
convolution present in the VDCNN model (composed by the convolution, a Batch Nor-
malization, and a ReLU layers), while Fig. 2b presents the equivalent TDSC architecture.

For a more formal definition, let 𝑃𝑡𝑠𝑐 be the number of parameters of a Temporal
Standard Convolution (TSC), where In and Out are the numbers of Input and Output
channels respectively, and 𝐷𝑘 is the kernel size:

𝑃𝑡𝑠𝑐 = 𝐼𝑛 * 𝑂𝑢𝑡 * 𝐷𝑘 (6.1)

Alternatively, a TDSC achieves fewer parameters (𝑃𝑡𝑑𝑠𝑐):

𝑃𝑡𝑑𝑠𝑐 = 𝐼𝑛 * 𝐷𝑘 + 𝐼𝑛 * 𝑂𝑢𝑡 (6.2)
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Figure 13 – a) Temporal Standard Convolution; b) Temporal Depthwise Separable Con-
volution.

In the VDCNN model, one convolutional block is composed of two temporal standard
convolutional layers. The first one doubles the number of feature maps, while the second
keeps the same value received as input. In our model, we proposed changing the temporal
standard convolutions by TDSC .

Fig. 14 presents the standard convolutional block on the left and the proposed convolu-
tional block using TDSC on the right. The pattern used in the figure for the convolutional
layers is the following: "Kernel Size, Conv type, Output Feature Maps"; as a brief example
consider "3x1, Temporal Conv, 256", which means a Temporal Convolution with kernel size
3 and 256 feature maps as output. From Equation 6.1, we have the number of parameters
of the original convolutional block (𝑃𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘) as follows:

𝑃𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘 = 𝐼𝑛 * 𝑂𝑢𝑡 * 3 + 𝑂𝑢𝑡 * 𝑂𝑢𝑡 * 3 (6.3)

Moreover, from equation 6.2, the number of parameters of the proposed convolutional
block (𝑃𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘−𝑡𝑑𝑠𝑐) that uses TDSC being:

𝑃𝑐𝑜𝑛𝑣𝑏𝑙𝑜𝑐𝑘−𝑡𝑑𝑠𝑐 = 𝐼𝑛 * 3 + 𝐼𝑛 * 𝑂𝑢𝑡 + 𝑂𝑢𝑡 * 3 + 𝑂𝑢𝑡 * 𝑂𝑢𝑡 (6.4)

For illustration, following the same characteristics of Fig. 14, consider that the number
of input channels In is equal to 128, and the number of output channels Out is equal to
256. Our proposed approach accumulates a total of 99,456 parameters. In contrast, there
are 294,912 parameters in the original convolutional block. The use of TDSC yields a
reduction of 66.28% in the network size.

Lastly, since each standard temporal convolution turns into two (Depthwise and Point-
wise), the number of convolutions per convolutional block has doubled. Nevertheless, these
two convolutions work as one because it is not possible to use them separately, keeping
the same proposal. In this way, we count them as one layer in the network depth. This de-
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cision holds the provided depth architectures the same as the VDCNN model summarized
in Table 2, contributing to a proper comparison between the models.

Figure 14 – a) Standard convolutional block of the VDCNN; b) Modified convolutional
block of the SVDCNN.

6.2 GLOBAL AVERAGE POOLING TECHNIQUE ON SVDCNN MODEL

The VDCNN model uses a 𝑘-max-pooling layer (𝑘 = 8) followed by three Fully Con-
nected (FC) layers to perform the classification task (Fig. 15). Although this approach
is the traditional architecture choice for text classification Convolutional Neural Network
(CNN), it introduces a significant number of parameters in the network. Also, consider-
ing the classification layers, the FC are the only layers that contribute to the number of
parameters since the 𝑘-max-pooling layer does not have trainable parameters.

The number of parameters present in the classification layers of VDCNN model (𝑃𝑐𝑣𝑑𝑐𝑛𝑛)
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Figure 15 – VDCNN classification layers.

is calculated as follows, considering a problem with four target classes:

𝑃𝑐𝑣𝑑𝑐𝑛𝑛 = 𝑓𝑐1 + 𝑓𝑐2 + 𝑓𝑐3 + 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 (6.5)

While, the number of parameters of an FC layer holds is obtained as follows:

𝑓𝑐 = 𝑓𝑐𝑖𝑛 * 𝑓𝑐𝑜𝑢𝑡 (6.6)

Expanding equation 6.5 by using equation 6.6 it is obtained the equation 6.7:

𝑃𝑐𝑣𝑑𝑐𝑛𝑛 = (𝑓𝑐1𝑖𝑛 * 𝑓𝑐1𝑜𝑢𝑡) + (𝑓𝑐2𝑖𝑛 * 𝑓𝑐2𝑜𝑢𝑡) + (𝑓𝑐3𝑖𝑛 * 𝑓𝑐3𝑜𝑢𝑡) + 0 (6.7)

Finally, feeding the proper values (Fig. 15) in equation 6.7, the number of parameters
present in the classification layers of VDCNN model is obtained:

𝑃𝑐𝑣𝑑𝑐𝑛𝑛 = (4, 096 * 2, 048) + (2, 048 * 2, 048) + (2, 048 * 4)
𝑃𝑐𝑣𝑑𝑐𝑛𝑛 = 12, 591, 104

(6.8)

As seen in chapter 5, a more recent architecture tendency relies on the reduction of fully
connected layers by the usage of the GAP technique. The application of GAP guarantees
some essential benefits such as the reduction of parameters without significantly degrade
of the network accuracy (LIN; CHEN; YAN, 2013), and making the network less prone to
overfitting.
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Following the SqueezeNet philosophy, the idea is to modify the base model so that the
last convolutional layer outputs one activation map for each target class. To accomplish
that, we used a temporal convolutional layer that takes the place of the 𝑘-max-pooling
layer. Next, the activation maps are fed into a GAP layer, which produces a tensor with a
unique entry for each possible class. Lastly, a softmax activation provides the probability
associated with each class, enabling the prediction.

Fig. 16 presents this proposed modification. Now, considering the classification layers,
the only that has parameters is the temporal convolutional layer added since the GAP
layer does not have any trainable parameter.

Figure 16 – SVDCNN classification layers.

Furthermore, the number of parameters present in the classification layers of SVDCNN
model (𝑃𝑐𝑠𝑣𝑑𝑐𝑛𝑛) is calculated as follows, also considering a problem with four target
classes:

𝑃𝑐𝑠𝑣𝑑𝑐𝑛𝑛 = 𝑃𝑡𝑒𝑚𝑝𝑐𝑜𝑛𝑣 + 𝑝𝑜𝑙𝑙𝑖𝑛𝑔 (6.9)

While the number of parameters of a Temporal Convolution layer holds is obtained
as follows:

𝑃𝑡𝑒𝑚𝑝−𝑐𝑜𝑛𝑣 = 𝐾𝑤 * 𝐼𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 * 𝑂𝑢𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 (6.10)
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Expanding equation 6.9 by using equation 6.10 it is obtained the equation 6.11:

𝑃𝑡𝑒𝑚𝑝−𝑐𝑜𝑛𝑣 = 𝐾𝑤 * 𝐼𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 * 𝑂𝑢𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 + 0 (6.11)

Finally, feeding the proper values (Fig. 16) in equation 6.11, the number of parameters
present in the classification layers of SVDCNN model is obtained:

𝑃𝑔𝑎𝑝 = 512 * 4
𝑃𝑔𝑎𝑝 = 2, 048

(6.12)

The proposed approach accumulates a total of 2,048 parameters in the classification
layers. In contrast, there are 12,591,104 parameters in the original classification method.
This architecture choice yields a reduction of 99.98% in the number of parameters.
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7 EXPERIMENTAL METHODOLOGY

The experiment’s goal is to investigate the impact of modifying the convolutional block
of Very Deep Convolutional Neural Networks (VDCNN) model to Temporal Depthwise
Separable Convolution (TDSC) and using the Global Average Pooling (GAP) technique
over the original classification approach with three Fully Connected (FC) layers. We in-
vestigate if the techniques proposed to optimize Convolutional Neural Network (CNN)
for text classification concerning constrained platforms and without degrading accuracy.
Therefore, we compare our model with state-of-the-art CNN. We evaluate Char-CNN,
VDCNN, and SVDCNN according to the number of parameters, storage size, inference
time, and accuracy. The source code of the proposed model is available in the GitHub
repository SVDCNN1.

The original VDCNN paper reported the number of parameters of the convolutional
layers, in which we reproduce in this dissertation. For SVDCNN and Char-CNN, we
calculated the abovementioned number of parameters from the network architecture im-
plemented in PyTorch. As for the FC layer’s parameters, the number is obtained as the
summation of the product of the input and output size of each FC layer for each CNN.

Considering the network parameters 𝑃 and assuming that one float number on Cuda
environment takes 4 bytes, we can calculate the network storage in megabytes, for all the
models, as follows:

𝑆 = 𝑃 * 4 ÷ 1, 0242 (7.1)

Regarding the inference time, its average and standard deviation were calculated as
the time to predict one instance of the AG’s News dataset throughout 1,000 repetitions.

The SVDCNN experimental settings are similar to the original VDCNN paper, using
the same dictionary and the same embedding size of 16 (CONNEAU et al., 2017). The
training is also performed with Stochastic Gradient Descent (SGD), utilizing a size batch
of 64, with a maximum of 100 epochs. We use an initial learning rate of 0.01, a momentum
of 0.9, and a weight decay of 0.001. All the experiments were performed on an NVIDIA
RTX 2080Ti GPU + Intel Core i7 4770s CPU.

7.1 DATASETS

When a model works with low-level raw features, for example, characters, it usually ob-
tains better accuracy and generalization results when trained over largescale datasets.
Still, most of the open-source datasets used for text classification related tasks are consid-
erably short, and large-scale datasets are designed with a training set significantly more
1 Link: <https://github.com/lazarotm/SVDCNN-v2>

https://github.com/lazarotm/SVDCNN-v2
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concise than the testing set (LEWIS et al., 2004). To solve this problem, Zhang et al. gen-
erated a set of largescale datasets for text classification tasks, which was used for the first
time in the Character-level Convolutional Networks for Text Classification paper.

The model’s performance is evaluated on six of the large-scale public datasets intro-
duced by Zhang et al. (ZHANG; ZHAO; LECUN, 2015): AG’s News, Yelp Review Polarity,
Yelp Review Full, Amazon Review Polarity and Amazon Review Full. Table 4 presents
the statistics of the datasets mentioned above.

Table 4 – Datasets used in experiments

Dataset #Train #Test #Classes Classification Task

AG’s News 120k 7.6k 4 News categorization
Yelp Polarity 560k 38k 2 Sentiment analysis
Yelp Full 650k 50k 5 Sentiment analysis
Amazon Review Full 3,000k 650k 5 Sentiment analysis
Amazon Review Polarity 3,600k 400k 2 Sentiment analysis

7.1.1 AG’s News Dataset

The AG’s news dataset uses the AG’s news corpus. ComeToMyHead organization con-
structed this corpus and employed almost one million news articles from about two hun-
dred news sources. The AG news dataset has 30000 training and 1900 test samples,
randomly chosen, from each of the four largest classes present in the AG’s news corpora.
Also, only the title and description fields were utilized. Table 5 shows one example of each
class of the AG News dataset.

Table 5 – AG’s news’ instance examples

Instance – "Tittle", "Description" Class

"Famous scofflaws hit Japan", "US chess legend Bobby Fischer
is the latest in a string of problem migrants for Japan." World
"Defeat for GB canoeists", "British canoeists Nick Smith and Stuart
Bowman are out of the men’s C2 doubles." Sports
"Hip Hop’s Online Shop","Celebrity fashion is booming. These
webpreneurs are bringing it to main street" Business
"Catwoman far from perfect", "The Catwoman game is a major
disappointment that feels like a pointless tie-in with the film." Sci/Tech
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7.1.2 Yelp Reviews Datasets

The Yelp review datasets arose from the Yelp Dataset Challenge in 2015. This dataset
includes 1,569,264 text samples and their reviews. The Yelp Full dataset has 130,000
training and 10,000 testing samples for each class and was build using the number of
stars given by the users as the prediction classes. Thus, since the number of stars varies
between one and five, there are five prediction classes. Tables 6 shows one example of each
class of the Yelp Full dataset.

Table 6 – Yelp Reviews Full’s instance examples

Instance – "Description" Class

"Great location! Close to shops and theatre. Nice staff." 5
"Good pizza and hoagies. It is always busy. Cash only." 4
"Dined in twice, food ok, atmosphere good." 3
"Slow service. Below average food. I’ll pass" 2
"The only thing worse than the food is the service." 1

The Yelp Polarity dataset has 280,000 training and 19,000 test samples in each polarity.
The samples with 1 and 2 stars have negative polarity, while the samples with 3, 4, and
5 have positive polarity. Tables 7 shows one example of each class of the Yelp Polarity
dataset.

Table 7 – Yelp Reviews Polarity’s instance examples

Instance – "Description" Class

"Good pizza and hoagies. It is always busy. Cash only." Positive
"Slow service. Below average food. I’ll pass" Negative

7.1.3 Amazon Reviews Datasets

The Amazon reviews datasets were built from the Stanford Network Analysis Project
(SNAP). The SNAP fords 18 years with 34,686,770 reviews from 6,643,669 users on
2,441,053 products (MCAULEY; LESKOVEC, 2013). The build process was the same ap-
plies to Yelp reviews datasets: one for precise score prediction and the polarity version
for soft prediction. The Full dataset includes 600,000 training and 130,000 testing sam-
ples per class, while the Polarity dataset includes 1,800,000 training and 200,000 testing
samples per class. Also, the fields employed are the title and the content review. Tables 8
and 9, show one example of each class of the Amazon Full dataset and Amazon Polarity,
respectively.
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Table 8 – Amazon Reviews Full’s instance examples

Instance – "Tittle", "Description" Class

"Wonderful Pattern", "This is a great pattern for a special occasion
or every day use... well worth it!!!" 5
"ok", "i liked good book from the past....great that we can look back
on these great books and enjoy them ." 4
"OK Movie","This was a typical cop show and if you are looking for
some pretty mindless entertainment this movie hits the spot." 3
"needs $$ upgrade", "Only has limited access to OBDII data stream
unless you pay more money to upgrade the software." 2
"My brain froze over", "This supposed thriller is mind-numbingly
dull and inept - I had to give up half way through." 1

Table 9 – Amazon Reviews Polaity’s instance examples

Instance – "Tittle", "Description" Class

"Wonderful Pattern", "This is a great pattern for a special occasion
or every day use... well worth it!!!" Positive
"My brain froze over", "This supposed thriller is mind-numbingly
dull and inept - I had to give up half way through." Negative
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8 EXPERIMENTS AND RESULTS

8.1 EXPERIMENTS CONSIDERING THE NUMBER OF PARAMETERS

The use of Temporal Depthwise Separable Convolution (TDSC) promoted a significant
reduction in the number of parameters held by the convolutions compared to the Very
Deep Convolutional Neural Networks (VDCNN) model. For the first depth configuration,
depth-9, the number of parameters went from 1.76 to 0.71 million, presenting a reduction
of 59.66%. At the same time, for the more in-depth configuration depth-49, the number of
parameters passed from 7.36 to 2.64 million, conferring a reduction of 64.13%. Considering
all depth configurations, the overall parameter reduction achieved by the usage of TDSC
was 62.42%. The Char-CNN model, which has six convolutional layers (depth-6), hols 1.37
million of parameters. Table 10 shows the number of parameters holds by the convolutional
layers for each compared model.

Table 10 – Number of parameters hold by convolutional layers in millions. Best results
by depth denoted in bold. The smaller the better.

Network Depth Configuration

6 9 17 29 49

SVDCNN – 0.71 1.43 1.56 2.64
VDCNN – 1.76 3.85 4.22 7.38

Char-CNN 1.37 – – – –

The network size reduction obtained by the use of the Global Average Pooling (GAP)
technique is even more representative since both compared models use three Fully Con-
nected (FC) layers for their classification tasks. Considering a problem with four target
classes, the VDCNN model holds 12.59 million parameters on its classification layers, while
the Char-CNN model holds 11.34 million parameters. The Squeezed Very Deep Convo-
lutional Neural Networks (SVDCNN) model, on the other hand, does not have any FC
layers, since they were entirely replaced by one convolutional layer and a global average
pooling layer, as explained in section 6.2. Thus, the classification layers of the proposed
model contain only 2,048 parameters, representing a reduction of 99.98% compared to the
base model.

Comparing SVDCNN with VDCNN, the total number of parameters of the network
has passed from 14.35 to 0.71 million for the depth-9, while for the depth-49, it moved
from 19.97 to 2.64 million. Thus the proposed model is between 86.8% and 95.1% lighter
than its base model. Following with the same comparison, the proposed model is between
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79.23% and 94.41% smaller than the Char-CNN model, which counts with a total number
of parameters of 12.71 million. Figure 17 shows the total number of parameters between
the compared models.

Figure 17 – Total number of parameters in Million.

8.2 EXPERIMENTS CONSIDERING THE STORAGE SIZE

The reduction of the total parameters impacts directly on the network storage size. While
the most in-depth model of SVDCNN, with depth-49, has only 10MB, the shallowest VD-
CNN model, with depth-9, uses 76MB of storage. Likewise, Char-CNN (which has depth
6) occupies 43.25MB. Figure 18 shows the storage size required for each compared model.
This reduction is a very significant result for constrained platforms such as embedded
systems and mobile devices. For example, Field Programmable Gate Array (FPGA) often
have less than 10MB of on-chip memory and no off-chip memory or storage (HOWARD

et al., 2017). Concerting to mobile devices, the usage of a reduced local model offers nu-
merous benefits, such as no real-time network dependence, lower latency speed, increase
scalability, privacy, and data saving.

Figure 18 – Storage size required to embedding the compared models in MB.
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8.3 EXPERIMENTS CONSIDERING THE SHORTCUT CONNECTIONS

As described in section 3.3, the base model presents worse results, for the depths-9,
depth-17, and depth-29 architecture configurations, when shortcut connections are en-
abled. While for the depth-49 architecture configuration, the accuracy result is better
when using the shortcut connections but not better than the results obtained by the
depth-29 without shortcut. The accuracy results mentioned above were verified on the
Yelp Full dataset, and the author concludes that the usage of shortcut connections does
not bring any benefit to the VDCNN model.

On the other hand, the SVDCNN model has shown positive results while using shortcut
connections. Over the same Yelp Full dataset, the usage of shortcut connections increases
the accuracy of the depth-17, depth-29, and depth-49 architecture configurations. For the
depth-49 configuration, the model is not even able to train without shortcut connections,
presenting a pour accuracy performance of 28,81. Still, similar to the base model, the
depth-49 configuration of the SVDCNN does not overcome the accuracy of its depth-29
configuration. Table 11 shows the results obtained by the VDCNN and SVDCNN models
over the Yell Full dataset with and without shortcut connections, as well as the variation.

Table 11 – Accuracy results of VDCNN and SVDCNN over the Yelp Full dataset, without
and with Shortcut Connections. Best values by depth by model in bold.

Accuracy

Without Shortcut With Shortcut Variarion

VDCNN
9 62,37 59,73 -2,64

17 63,90 60,82 -3,08
29 64,72 63,99 -0,73
49 62,59 63,85 1,26

SVDCNN
9 62,30 62,04 -0,26

17 63,26 63,32 0.06
29 61,05 63,39 2,34
49 28,81 63,20 34,39

The main point about the good results presented by the SVDCNN model in contrast
with the VDCNN model, concerning the use of shortcut connections, is that in practical
terms, the proposed model is more profound than its base model due to the usage of
depthwise separable convolutions. As described in section 6.1, each standard temporal
convolution of the convolutional blocks was substituted by two convolutions: one depth-
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wise and one pointwise. Since it is not possible to use them separately, keeping the same
propose, we adopted to count them as one to make easier the comparison between the
models. Still, the real depths of the proposed model are more extensive. Table 12, presents
the practical depths of the SVDCNN model, while table 2 presents the depths of the VD-
CNN model.

While the VDCNN model has the depth-9, depth-17, depth-29, and depth-49 architec-
ture configurations, its analogous architecture configurations in the SVDCNN model are
in fact, depth-18, depth-34, depth-58, and depth-98, respectively. Again, since each depth-
wise and pointwise convolution are functional only when working together, we choose to
count them as one to compare the models. Still, concerning the usage of shortcut con-
nections, it is essential to clarify the reason why it implies better accuracy results on the
proposed model: its architecture is, in practice, way more profound than the base model
architecture.

Table 12 – Adopted and Practical depths of the SVDCNN architecture and its number of
convolutional layers

Adopted Depth 9 17 29 49

Last Convolutional Layer 1 1 1 1
Convolutional Block 512 4 8 8 12
Convolutional Block 256 4 8 8 20
Convolutional Block 128 4 8 20 32
Convolutional Block 64 4 8 20 32
First Convolutional Layer 1 1 1 1

Pratical Depth 18 34 58 98

8.4 EXPERIMENTS CONSIDERING THE INFERENCE TIME

Deep learning processing architectures have the property of offering high parallelization
power. Therefore, it is expected a fewer inference time while performing predictions on
dedicated deep learning hardware in comparison to non-dedicated ones. Nevertheless, this
is not the only aspect that determines the inference time of a model.

The parallelization potential of a model can vary according to its architecture. As
we have more parameters per layers, more parallelizable a model tends to be, while the
increase of the depth gets the opposite result. Another natural comprehension fact is that
if a model has few parameters, there exists less content to be processed, and then we
have a faster inference time. Concerning constrained platforms, like embedded systems
and mobile devices, the presence of dedicated deep learning hardware such as a Graphics
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Processing Unit (GPU) is not entirely feasible. This kind of hardware usually requires more
energy and dissipates more heat, two undesirable features for such constrained platforms.

A metric that can be deduced from the inference time is the inference time ratio. This
metric is the quotient between Central Processing Unit (CPU) and GPU inference times,
and it is a general indicator of how independent of dedicated hardware is the inference
time performance of a model. The range of values obtained by this metric varies between
0 and 1. The closer to 1, the smaller is the difference of the inference time due to the
use of dedicated hardware — the closer to 0 the opposite effect. Consequently, the closer
to 1 the inference time ratio of a model, the more it tends to be useful for constrained
platforms.

Table 13 – Time results for AG’s News dataset. For GPU, CPU, and Ratio, best results
by depth denoted in bold.

Inference Time

GPU CPU Ratio

SVDCNN
9 3.95ms ± 0.25 15.82ms±0.77 0.25

17 6.62ms ± 0.27 28.50ms±1.60 0.23
29 10.90ms ± 0.36 46.78ms ± 2.70 0.23

VDCNN
9 3.12ms±0.23 21.06ms ± 0.62 0.15

17 5.08ms±0.22 31.50ms ± 1.42 0.16
29 7.55ms±0.29 44.30ms±2.94 0.17

Char-CNN
6 7.72ms ± 0.42 216.71ms ± 4.89 0.04

Concerning to SVDCNN model, each convolutional layer, of the convolutional blocks,
was substituted by two convolutions, as shown in Fig. 13. As explained in Sections 6.1
and 8.3, we decided to count the two convolutions as only one layer in the network depth
calculus. Nevertheless, compared to the baseline model, the number of convolutions per
convolutional block has essentially doubled, for the same depth configuration. Due to this
particularity, the SVDCNN tends to show higher inference times compared to the base
model on high parallelizable platforms, like GPU. On the other hand, due to the notable
parameter reduction, SVDCNN is expected to obtain better results than the baseline
model over constrained platforms, which deal with memory and processing constraints.

The inference times obtained for the three compared models and their respective ratios
are available in Table 13. When performing predictions over GPU, the proposed model
presented results with a small performance loss compared to the inference time of the
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baseline. As aforementioned, this result happens due to the architectural change proposed,
where two convolutions substituted each convolutional layer of the convolutional blocks.
On the other hand, the SVDCNN model presented two desirable properties for constrained
systems deployment. First, the SVDCNN obtained lower inference times than VDCNN
model when executing on non-dedicated hardware (CPU). Applying the Wilcoxon Paired
test, the SVDCNN results for the depth-9 and depth-17 architecture configurations were
significantly lower in comparison with the baseline model, with a confidence level of 95%.
For depth-9, it was obtained 15.82ms against 21.06ms and for depth 17, 30.65ms against
28.50ms of the baseline model. Second, the inference time ratio was higher in all depth
levels compared, 0.24 against 0.15 on average. It indicates that the SVDCNN model is
more undependable of dedicated hardware then the baseline model. Looking to Char-
CNN, this model got notably inferior results compared to the proposed method, with
216.71ms of CPU inference time and a Ratio of 0.04.

8.5 EXPERIMENTS CONSIDERING THE ACCURACY PERFORMANCE

Regarding accuracy performance, usually, a model with such parameter reduction should
present some loss of accuracy in comparison to the original model. Nevertheless, the
difference in accuracy between VDCNN and SVDCNN models is at most 1%, which is
pretty modest, considering the parameters and storage size reduction aforementioned. In
Table 14, it is possible to see the accuracy results obtained by the compared models.
Still, the proposed model keeps overcoming the Char-CNN accuracy on the three largest
datasets analyzed. Another significant result obtained is that the base property of VDCNN
model was preserved on its squeezed version: the performance still increasing up with the
depth.

Table 14 – Accuracy results. Best global results in bold.

SVDCNN VDCNN Char-CNN

9 17 29 9 17 29 6

Accuracy
Ag News 90.23 90.54 91.13 90.83 91.12 91.27 92.36
Yelp Polarity 95.11 95.22 95.26 95.12 95.50 95.72 95.64
Yelp Full 62.30 63.32 63.39 63.27 63.93 64.26 62.05
Amazon Full 61.34 62.18 62.35 62.05 62.61 63.00 59.57
Amazon Polarity 95.08 95.23 95.39 95.30 95.59 95.69 95.07
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Now, having as target a platform with internal storage constraints, the proposed model
becomes a notably profitable option. For all evaluated datasets, the SVDCNN with depth-
29 configuration overcomes the accuracy of the VDCNN model with depth-9 configuration
(see Table 14). However, the first one has 5.95MB of storage size, while the last one is
more the 9x bigger: 54.75MB. To become this benefit more clear see Figures 19 and 20.

Figure 19 – Accuracy vs Storage Size comparison over Ag News dataset.

Figure 20 – Accuracy vs Storage Size comparison over Amazon Polarity dataset.

These figures show an accuracy comparison considering the storage size of the model
for the Ag News and Amazon Polarity datasets, which are respectively the smallest and
the biggest evaluated. Through the SVDCNN model, it is possible to obtain state-of-the-
art accuracy results with significantly less storage size requirements.
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9 CONCLUSION

9.1 FINAL CONSIDERATIONS

The increasing of network depth on CNN models has been a safe direction to obtain better
accuracy results for image-related tasks. Also, although the depth increase results in more
parameters to the network, structural network modifications were successfully proposed
to make these models light-weight without significant accuracy loss.

For text-related tasks, though, there was a belief that the accuracy of CNN models
could be improved by increasing its network depth. This thought changed when, in 2018,
Conneaut et al. proposed the VDCNN model, a very deep CNN for text classification,
that holds up to 29 layers presenting increasingly better accuracy results. This research
was a mark for the CNN text-classification field, were the most profound model proposed
had up to 6 layers. Still, being a light-weight model was not one of the objectives of the
VDCNN. Its architecture relies on thousand of parameters, which make it unfeasible of
being locally embedded on constrained platforms. Although constrained platforms do not
have enough processing capabilities to train a sophisticated deep learning model, they are
already capable of performing inference locally by using a previously trained embedded
model. This approach enables numerous advantages such as more privacy, smaller response
latency, and no real-time network dependence.

The growing availability of text data, as well as the ascension of embedded systems
and mobile devices, experimented in recent years, motivates the research for structural
network modifications over deep neural networks for text-related tasks aiming at its weight
reduction. In this context, we presented the SVDCNN, a Squeezed version of the VDCNN
model. The primary goal of this work was the reduction of parameters compared to state of
the art Convolutional Neural Network (CNN) for text classification. This reduction made
the SVDCNN model feasible of being deployed on constrained platforms while presenting
minimal accuracy loss compared to the baseline model. To achieve this goal, we analyzed
the impact of including TDSC and GAP besides the usage of skip connections.

The proposed model reduces about 92.45% the number of parameters and storage
size. While the size of VDCNN model varies between 54.75 and 64.16MB, the size of
SVDCNN model varies only between 2.80 and 6.03MB. Concerning accuracy performance,
the network experiences an acceptable loss, below 1%. Still, differently from the base
model, where the use of skip-connection did not improve the network accuracy, its use on
the SVDCNN model promoted significant accuracy gains. While the use of skip-connection
decreased the accuracy performance of VDCNN in 2.15% on average, to the SVDCNN
model, its use increased the accuracy performance in 0.72%. This behavior occurs because,
in practical terms, the SVDCNN model is deeper than the base model since each temporal
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standard convolutional layer was substituted two convolutions, one depth-wise and one
point-wise (review section 8.3). Therefore, skip-connections became more profitable in the
proposed model.

Secondary goals of this work covered the analysis of inference time and deep learning
dedicated hardware dependence. Although the difference in inference times obtained by
the baseline and the proposed model is small, the difference is still statistically significant.
Compared to VDCNN model, SVDCNN model presents lower inference time over CPU
processing for depth 9 and 17, while offers a higher inference time ratio, 0.24 against 0.15
on average. Therefore the proposed model is less dependent on dedicated deep learning
hardware, which is often a desirable behavior for constrained platforms.

As mentioned before, smaller CNN models enable its deployment on constrained plat-
forms, such as embedded systems and mobile device. FPGA, for example, usually offer
less than 10MB of on-chip memory and no off-chip memory or storage (HOWARD et al.,
2017). Concerning entry-level mobile devices, there are Operational Systems (OS) with
several restrictions for maximum application size. For example, on Android GO OS, ap-
plications should be less than 40MB on the device, while games should be less than 65MB
on the device (GOOGLE, 2020). Also, the usage of a reduced local model offers numerous
benefits, such as no real-time network dependence, lower latency speed, increase scal-
ability, privacy, and data saving. In the image classification field, several shrunk CNN
models were proposed (HOWARD et al., 2017; IANDOLA et al., 2016; SANTOS et al., 2018).
However, to the best of our knowledge, works on this direction for the text classification
field are still scarce, despite the several critical real-world applications which depend on
text classification tasks such as sentiment analysis, recommendation, and opinion mining.

Lastly, part of this research is presented in the paper Squeezed Very Deep Neural
Networks for Text Classification, published in the ICANN 2019 conference (DUQUE et al.,
2019) and, the source code of the proposed model is available in the GitHub repository
SVDCNN2

9.2 FUTURE WORKS

This work opens several new research directions. Concerning architectural changes, other
pooling techniques can be applied and analyzed, aiming for further accuracy improve-
ments. Also, other techniques able to reduce storage size after the model be trained can
be applied, such as model compression (GONG et al., 2014).

Finally, another direction is to modify other sophisticated network architectures for
text classification, besides CNN models, to become them more light-weight, and feasible
of being locally embedded in constrained platforms.

2 Link: <https://github.com/lazarotm/SVDCNN-v2>

https://github.com/lazarotm/SVDCNN-v2
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