| [
e
e~

®!

ey

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
POS-GRADUACAO EM CIENCIA DA COMPUTACAO

PEDRO HENRIQUE SOUSA DE MORAES

Willow: A Tool for Interactive Data Structures and Algorithms Visualization

Recife
2020

PEDRO HENRIQUE SOUSA DE MORAES

Willow: A Tool for Interactive Data Structures and Algorithms Visualization

Dissertation presented to the Postgraduate Pro-
gram in Computer Science at the Federal Univer-
sity of Pernambuco, as a partial requirement to
obtain the degree of Master at Computer Science.

Concentration Area: Software Engineering
and Programming Languages

Advisor: Leopoldo Motta Teixeira

Recife
2020

Catalogagao na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

M827w Moraes, Pedro Henrique Sousa de

Willow: a tool for interactive data structures and algorithms visualization /
Pedro Henrique Sousa de Moraes. — 2020.
113 f.: il fig., tab.

Orientador: Leopoldo Motta Teixeira.

Dissertagao (Mestrado) — Universidade Federal de Pernambuco. Clin,
Ciéncia da Computagéo, Recife, 2020.
Inclui referéncias e apéndices.

1. Engenharia de software. 2. Linguagem de programacao. |. Teixeira,
Leopoldo Motta (orientador). IlI. Titulo.

005.1 CDD (23. ed.) UFPE - CCEN 2020 - 207

Pedro Henrique Sousa de Moraes

“Willow: A Tool for Interactive Data Structures and Algorithms Visualization”

Dissertagdo de Mestrado apresentada ao
Programa de Pos-Graduacdo em Ciéncia da
Computagdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obteng¢do do titulo de Mestre em Ciéncia da
Computagao.

Aprovado em: 29/10/2020.

BANCA EXAMINADORA

Prof. Dr. Leopoldo Motta Teixeira
Centro de Informatica/ UFPE
(Orientador)

Prof. Dr. , Roberto Almeida Bittencourt
Departamento de Ciéncias Exatas / UEFS

Prof. Dr. Christina von Flach Garcia Chavez
Departamento de Ciéncia da Computacao / UFBA

ACKNOWLEDGEMENTS

This work was accomplished with the help of several people. I would like to express
my deeply appreciation to my advisor Leopoldo Motta Teixeira, who instructed me along
my trajectory and provided me with encouragement and patience throughout the dura-
tion of this project. 1 would also like to extend my gratitude to the professor Marcelo
d’Amorim, whose help in several stages of the research with practical suggestions cannot
be overestimated. I gratefully acknowledge the assistance of professor Waldemar Neto,
who provided a good amount of assistance during the development of the research.

All the gratitude to my parents (Genilda Tedfilo and Pedro Saraiva), for all the support
and always ensuring that I had everything to complete this stage of life.

We acknowledge support from FACEPE (IBPG-0751-1.03/18 and APQ-0570-1.03/14),
and CNPq (409335/2016-9). This research was partially funded by INES 2.0,
FACEPE grants PRONEX APQ-0388-1.03/14 and APQ-0399-1.03/17, and CNPq grant
465614,/2014-0.

ABSTRACT

Teaching Introductory Programming and Data Structures and Algorithms is an im-
portant part of Information Technology courses. Both disciplines include essential con-
cepts for software development. Preparing lessons for these courses can be time demand-
ing and tedious as instructors often need to create and modify examples using slides and
sketches on a board. Students may also have difficulties due to the high level of abstraction
of the content taught in both courses. Educational visualization tools, such as Python
Tutor exist, but they provide rigid choices of visualization schemes used to represent the
data. Most educational tools are discontinued or have limited support to the visualization
of data structures and algorithms. Other tools create visualizations of several algorithms,
but lack the ability to edit the source code or inputs. This work proposes WILLOW, a
web-based interactive tool to visualize program state. WILLOW enables the user to cus-
tomize visualizations and to walk through the code in both directions to facilitate code
understanding. The sensible features of WILLOW are its ability to change data represen-
tations, jump to any point of a program with visual support during debug sessions, and
detection and animation of common data structures such as lists and trees. To evaluate
WiLLoOwW, we conducted two studies, a survey with instructors of several universities, and
a follow up experiment with programmers of a freelancing platform. We obtained positive
feedback from 91% of the survey participants, suggesting that WILLOW can be used as
an teaching aid tool by instructors. In the follow up experiment with programmers, we
could not find significant difference between participants that used WILLOW and partic-
ipants that did not, the results of the experiment were not conclusive. Nevertheless, we
obtained positive results after considering a subset of the experiment tasks, participants

also reacted positively to the tool and many would like to use it again.

Keywords: Program Visualization. Algorithm Visualization. Educational Tool.

RESUMO

O ensino de Introdugao a Programacao, e Algoritmos e Estruturas de Dados é parte
importante da formacao de alunos em cursos de computacado. Ambas as disciplinas in-
cluem conceitos essenciais para o desenvolvimento de software. No entanto, preparar
as aulas para esses cursos pode ser demorado e tedioso, pois os professores geralmente
precisam criar ou modificar exemplos de algoritmos executando passo a passo, usando
apresentacoes de slides ou esbogos em um quadro. Os alunos também podem ter difi-
culdades, devido ao alto nivel de abstracao do conteido ministrado em ambos os cursos.
Existem ferramentas de visualizagao educacionais, como o Python Tutor, mas essas fer-
ramentas fornecem visualizacoes rigidas de esquemas usados para representar os dados.
Varias ferramentas educacionais foram descontinuadas ou tem suporte limitado a visua-
lizagdo de estruturas de dados e algoritmos. Outras ferramentas criam visualizagoes de
varios algoritmos, mas nao tém a capacidade de editar o cddigo-fonte ou entradas. Este
trabalho propoe WILLOW, uma ferramenta interativa baseada em tecnologias web para
visualizar o estado de programas. WILLOW permite que o usuario personalize visualiza-
¢oOes e navegue pelo codigo em ambas as diregoes para facilitar a sua compreensao. As
principais caracteristicas de WILLOW sao sua capacidade de alterar representacoes de da-
dos, saltar para qualquer ponto de um programa com suporte visual durante as sessoes de
depuragao, e deteccao e animacao de estruturas de dados comuns, como listas e arvores.
Para avaliacao de WILLOW, realizamos dois estudos, um survey com professores de varias
universidades, seguido de um experimento com programadores de uma plataforma de fre-
elancers para resolucao de problemas com e sem WILLOW. Obtivemos feedback positivo
de 91% dos participantes do survey, que sugere que WILLOW pode ser usado como uma
ferramenta de auxilio no ensino pelos professores. Com relacao ao estudo com progra-
madores, nao foi encontrada diferenca significativa nas respostas entre participantes que
usaram WILLOW e participantes que nao usaram. Contudo, foram obtidos resultados po-
sitivos ao considerar um subconjunto das tarefas do experimento, participantes também

reagiram positivamente a ferramenta e muitos gostariam de usa-la novamente.

Palavras-chaves: Visualizacao de Programas. Visualizagao de Algoritmos. Ferramenta

Educacional.

LIST OF FIGURES

[Figure 1 — Software Visualization Categories.|. 20
[Figure 2 — Simulation of a sorting algorithm in VisuAlgo.|. 26
[Figure 3 — Scratch editor.|o 27
[Figure 4 — Python Tutor interface| 28
(Figure 5 — Omnicode IDE.| oo 29
[Figure 6 — OPT+GRAPH data structure visualization pane.| 30
[(Figure 7 — UUhisle, a visualization tool for Introductory Programming Education.| 32
[Figure 8 — FluidEdit intertace.| 33
[Figure 9 — Kanon intertace.| L 34
(Figure 10 — WILLOW interface.| 37
[Figure 11 — WILLOW’'s editors.] 38
[Figure 12 — WILLOW's stack and call tree of a Fibonacci sequence algorithm. . . . 39
(Figure 13 — WILLOW’s node representations.| 41
[Figure 14 — WILLOW's architecture. 44
[Figure 15 — Python Tutor visualization of a tree structure|. 47
[Figure 16 — Kanon’s representation of arrays. 48
[Figure 17 — Participants’ teaching institutions.| 54
[Figure 18 — Participants years of experience with I[P and DSA.| 55
[Figure 19 — Common teaching practices adopted by instructors.| 56
[Figure 20 — Participants perception about WILLOW’s visualizations.| 57
[Figure 21 — Participants confidence in their solutions.|. 66
[Figure 22 — Time participants take to solve problems.| 67

[Figure 23 — Participants’ scores average and medians for each question and treatment. 68

LIST OF TABLES

[lable 1 — Differences between categories ot Software Visualization tools|. 23

[Table 2 — Latin-square design, a complete 2x2 layout.| 64
[Table 3 — "T'hreats to validity and control actions.| 68

CONTENTS

1 INTRODUCTIONI 11

12

12

13

13

13

17

18

19

19
24 EDUCATIONAL PROGRAM VISUALIZATIONI 20
2.4.1 Algorithm Visualization| 21
2.4.2 Program Visualization|, ... 21
3 RELATEDWORKI e e e e e e e e e 25
B.1 VISUALGO! 25
B2 SCRATCH e 26
B3 PYTHONTUTORI e, 27
34 OMNICODEl 29
B — OPTEGRAPH| 30
Bo6 UUHISLE 31
B7Z — TFLUDEDITI. e s 32
3.8 KANONI. 33
k3.9 SURVEYSI. . . . 34
4 WILLOW e e e e e e e e e e 36
4.1 DESIGNI. 36
4.1.1 Editorsl 37
4.1.2 Stack and Call Treel 38
4.1.3 Heap| 40
[4.1.3.1 Node Types 40
[4.1.3.2 Positioning and Animation| 41
[4.1.3.3 Program Navigation| 42
4.1.4 Language Support| 42
4.1.5 Limitationsl 42
@2 ARCHITECTURE. 43
421 Clientl. 43
4,22 Databasel. 45

43 COMPARISON WITH OTHER TOOLS

b1 SURVEY 49
5.1.1 Objective] 49
5.1.2 Research Questions| 50
BI3 " ResearchMethod 50
6.1.4 Population| 50
5.1.5 Questionnaire] 50
BI6 Results 53
[5.1.6.1 Participants Teaching Practices 53
[5.1.6.2 Participants Perceptions Towards WILLOW| 56
b.1.7 Threats to Validity 59
2 EXPERIMENTI 59
6.2.1 Objective] 60
6.2.2 Research Question and Hypothesis| 60
6523 Variables 61
[56.2.3.1 Independent Variables 61
[56.2.3.2 Dependent Variables 61
b.2.4 The Choice of Dependent Variables| 62
6.2.5 Experimental Subjects| 62
h.25.1 Ethical Concernd 62
5.2.6 Objects and Tasks 63
6.2.7 Experimental Design| 63

APPENDIX B - EXPERIMENT FORMI
APPENDIX C - EXPERIMENT TEST INPUTS

11

1 INTRODUCTION

Introductory Programming (IP) and Data Structures and Algorithms (DSA) are impor-
tant courses in the Computer Science curriculum. Teaching and Learning these courses
can be challenging for instructors and students. Abstract concepts and programming
languages can be overwhelming and lead students to misconceptions and difficulties to
understand the concepts. To help students, instructors typically prepare examples on
lecture slides or create sketches on the board to illustrate algorithm behavior (GUO,
2013).

This task can be daunting for instructors and ineffective for students. Lecture slides
require a great deal of planning and preparation from the instructors and whiteboard
sketches take time to draw during class, and the diagrams can get confusing (ORSEGA,;
VANDER ZANDEN; SKINNER] 2012). Moreover, both approaches require the instructor
to create new examples every time new inputs and modifications are proposed.

Another option to illustrate how DSAs work is through the use of graphical tools. Some
of these tools, (e.g., Python Tutor) were already adopted in introductory CS courses in
Universities in the US and Canada such as Berkeley and Toronto with good acceptance
of instructors, who indicated the tool helped clarify basic programming concepts (GUO,
2013). Unfortunately, the currently available graphical tools generate “rigid” graphical
representations—they adopt the same visual elements to represent different types of data
structures and do not preserve the positioning of objects. Hence, many of the algorithms
usually seen through a DSA course can not be consistently represented (SORVA et al.
2012; FOUH; AKBAR; SHAFFER, [2012). Python Tutor, for example, can not create
good visualizations for data structures more complex than linked lists, due to its restric-
tions in the positioning of objects.

To overcome these limitations we propose WILLOW, a tool for generating interactive
examples of algorithms, data structures and other basic programming concepts. WILLOW
allows users to create visualizations for programs written in Python or Java, with few
restrictions. In order to create better representations of algorithms, WILLOW also allows
users to change how objects are represented, by doing so, users can achieve better quality
examples which favor understanding.

WILLOW’s main focus is to provide a tool that can help instructors and students
through the visualization of more complex DSAs, since the best current available tools
such as Python Tutor (and derivatives) (GUO, 2013) and Kanon (OKA; MASUHARA,;
AOTANTI, [2018) are not capable of effectively showing a good variety of algorithms.

To be able to create such visualizations, WILLOW allows users to manipulate a base
visualization, changing how objects are represented, creating animations for data struc-

tures, and navigating to any point of a program.

12
1.1 MOTIVATION

In the past decades, several tools had been developed with the purpose of visual-
izing generic programs, focusing mainly in didactic visualizations to teach students of
introductory courses. However, very few educational tools targeted more complex algo-
rithms commonly taught in DSA (SORVA; KARAVIRTA; MALMI| 2013; VELAZQUEZ-
ITURBIDE, 2019). Another factor that motivated the creation of WILLOW is that almost
all educational tools are discontinued for several reasons, such as the use of old technolo-
gies, closed source development and abandonment.

WiLLoOw was created to be flexible and extensible, being able to support multiple
languages (an extremely rare feature among the older tools) and create visualizations for
any source code the user provides. WILLOW’s implementation also uses the most recent
web technologies and is open-source, its repository is available at: https://github.com/
pedro@ddk/willow.

1.2 RESEARCH

To evaluate WILLOW, we carried two studies, a survey with IP and DSA instructors
of several universities and an experiment with amateur programmers from the freelanc-
ing platform Upwork (UPWORK)] 2020). Our studies aimed at answering the following

research questions:

« RQ1: What are the most common practices used by instructors when teaching

coding-related courses?
o RQ2: What are the perceptions of these instructors towards WILLOW?

« RQ3: What are the benefits WILLOW can offer to programmers when solving data
structures and algorithms problems, with regard to time to solve, confidence and

correctness?

In the following chapters we discuss the background of our research (Chapter [2)) and
some of the most recent related work (Chapter . We then describe our proposed tool
(Chapter . We detail all the evaluation process and results of both studies applied in the
evaluation of WILLOW(Chapter [f]). Finally, we conclude this dissertation (Chapter [6]).

https://github.com/pedro00dk/willow
https://github.com/pedro00dk/willow

13

2 BACKGROUND

This chapter introduces an overview of the difficulties that Information Technology stu-
dents suffer in initial courses, such as Introductory Programming, and Data Structures and
Algorithms. These difficulties are categorized, detailed and associated with the concept
of notional machines. Notional machines are abstractions of how students comprehend
code execution dynamics. Educational visualization tools provide support for students by
showing correct models of notional machines, making abstractions more clear and, hence,

helping them to better understand the programming concepts.

2.1 THE LEARNING CHALLENGE

The challenges that Information Technology students have to overcome are presented
since the beginning, when they have to attend to their potentially first Introductory
Programming courses. Introductory Programming courses can be very challenging to
novices. The primary goal is to make students learn how to create their own programs, and
solve simple problems using some programming language. This is a demanding task for
students, and is often not achieved. As a result of that, courses fail to teach programming
worldwide, exhibiting high failure rates (SORVA et al., [2012)).

One of the main causes of failures are misconceptions and other difficulties exhibited
by novices throughout the courses, drastically reducing students ability to learn and make
progress (QIAN; LEHMAN, J.;2017)). Still, misconceptions are only one of many possible
causes that may lead to students difficulties in learning. There are several other reasons

that may impact the students learning process, such as social, personal or institutional
problems (SILVA RIBEIRO; BRANDAO; BRANDAO, 2012),

2.1.1 Misconceptions

The early studies in the area of misconceptions in Computer Science and programming
arose in 1980s (BAYMAN; MAYER! |1983; DU BOULAY], [1986). Many studies emerged
from researchers in the Computer Science education area, analysing students imprecise
or incomplete understandings of programming concepts. Since there is no commonly
used definition to students difficulties, studies use misconception or similar terms, such
as "difficulties", "errors', "mistakes" and so on (QIAN; LEHMAN, J.| [2017)).

Misconceptions are deficient or inadequate understandings for many practical con-
texts. In programming, misconceptions includes syntax errors, confusions with control
flow primitives, wrong interpretation of concepts, difficulties in using learned constructs,
planning and debugging problems and others (QIAN; LEHMAN, J., 2017; SORVA; KAR-

14

AVIRTA; MALMI, 2013; [JACKSON; COBB; CARVER) 2005).

Misconceptions with Syntax

Novices in Introductory Programming courses often exhibit syntactic errors in their
programming activities. A study on large volumes of student source code in the Java
language (ALTADMRI; BROWN], [2015), showed that the most frequent errors presented
by students are mismatches of parenthesis, brackets and quotation marks. Other common
Java syntactic errors committed by novices are missing semicolons, unresolved symbols
and illegal expressions (JACKSON; COBB; CARVER [2005). Semicolon is a character
used to terminate statements in Java and other programming languages, and it is often
forgotten by novices. The unresolved symbol error is frequently the result of accessing
the value of a undeclared variable. And illegal expression errors are often caused by
malformed boolean expressions due to unfamiliarity with operators. For example, often
novices mistakenly use the assignment operator (=) as a comparison operator (==), caus-
ing syntactic errors and in some cases semantic errors, which are harder to be fixed by
novices (ALTADMRI; BROWN] [2015; SORVA et al., 2012).

Syntactic errors are among of the most frequent mistakes students make (JACKSON;
COBB; CARVER, 2005; [ALTADMRI; BROWN| 2015). However, they can be easily
fixed, because most modern integrated development environments (IDE) and language

compilers can easily spot syntax problems and present the user with error messages about
the problems and sometimes hints for correction (QIAN; LEHMAN, J., [2017)).

Misconceptions with Semantics

Most of the errors students make are related to syntax of programming languages (JACK-
SON; COBB; CARVER, 2005; GARNER; HADEN; ROBINS| 2005)), they are the most
frequent type, but also superficial, and easy to fix. However, students misconceptions
with program semantics have a much greater impact on their mental models of a program
runtime. These misconceptions prevent the student to correctly express their solutions for
problems, because they cannot understand the behavior of the programs they make (BAY-
MAN; MAYER) 1983; SORVA et al., |2012).

There are many sources of misconceptions in the semantic context of programming
languages, such as variables, for instance, variables are one of the fundamental building
blocks for any program, used to store inputs and outputs of program operations. Many
different types of misconceptions involving variables were reported by studies. Students
may not understand that variables only store a single value, causing then to try assign-

ing and retrieving multiple values at the same time for a single variable (DOUKAKIS;

15

GRIGORIADOU; TSAGANOU, 2007)). Novices can also misunderstand how both the
statement order and the expression order (e.g. A=B; B=A;) influence in the result of the
assignment (DU BOULAY], [1986)). Another source of confusion around variables is the
meaning of their names, which can cause novices to misinterpret the value of a variable.
Variable names, even being arbitrary, may cause students to think the value contained
in a variable is always the meaning of the variable name (KACZMARCZYK et al., 2010;
QIAN; LEHMAN, J., [2017)).

Other difficult concepts for novices that cause many misconceptions, are control flow
primitives (e.g. if-else, while, for). For instance, students may believe that both
if and else conditional blocks are executed, or that if the condition for a conditional
statement evaluates to false, the program execution stops. Loop constructs are also a
challenge to novices, since they still did not develop a concise understanding of variable
scopes, the use of loop structures becomes too confusing. Novices may not know which
lines of the loop scope are executed, how many times the loop executes, initialization,
stop and increment statements, and so forth (QIAN; LEHMAN, J., 2017). Another
misconception involving loop statements is about how the loop code executes. Some
students fail to understand that loop code executes sequentially and that information
can be propagated to the next loop executions (DU BOULAY], 1986). In programming
languages with multiple loop constructs such as Java, many novices avoid using some of
these constructs, as they believe that one construct is better than the others. This is a
result of the lack of understanding of the benefits of each loop construct and how to use
them to help solving different problems (QIAN; LEHMAN, J., 2017).

Since the increase in popularity of the object-oriented paradigm (OOP) in the 1990s,
studies conducted with novices reported that students often struggle with many OOP
principles (GUZDIAL; |1995; RAGONIS; BEN-ARI, 2005; SORVA et al., 2012). Con-
cepts such as classes and objects are among the most confusing in OOP, novices often
misunderstand what these elements are for, and how they relate to one another (KACZ-
MARCZYK et al., |2010). Methods and functions are other sources of misconceptions.
These concepts introduce new ways to interpret already seen concepts, such as variable
scopes, making it even more confusing when mixed with classes and instances attributes.
Some students may exhibit difficulties in understanding where the function parameters
come from, as well as side effects that may or may not happen on parameters values,
how the return statement works and where the return value goes (RAGONIS; BEN-ARI,
2005). Novices may not even understand the role of the main method, or the relationship
between methods, objects and classes (SAJANIEMI; KUITTINEN; TIKANSALO, 2008)).
When objects are introduced, novices have to deal with references, a new type of variable
value. Although in most languages the assignment semantics of a reference value is iden-
tical to the semantics of primitive values, novices may not distinguish between references

and objects, causing them to misunderstand the result of copying references (KACZMAR-

16

CZYK et al., [2010). This misinterpretation may cause students to build different mental
models about reference assignments (QIAN; LEHMAN, J.| 2017).

Besides misconceptions with general object-oriented programming concepts, novices
may also exhibit difficulties in developing decentralized solutions, required for OOP pro-
gramming (GUZDIAL] 1995), and correct construction of a object oriented mental model
and notional machines (SORVA et al., 2012).

Misconceptions with Strategies

Strategies refer to knowledge in programming activities such as planning, writing,
testing and debugging programs. Different terms were adopted to describe programmer’s
strategic knowledge, such as plans, patterns, schemas and others (EBRAHIMI| [1994;
LOPEZ et al, 2008; QIAN; LEHMAN;, J.| 2017).

The first barrier novices have to overcome to develop good strategy knowledge is a
correct understanding of programming language syntax and semantics. Studies report
that students misconceptions in strategic knowledge are highly correlated with difficulties
in syntactic and semantic knowledge (EBRAHIMI, (1994 LOPEZ et al., 2008). Since
novices only have small programming knowledge, their lack in strategies and patterns
to solve programming problems. This lack of strategies is associated to their capacity
to interpret the problem objectives and decompose the problem, which influences in the
planning, testing and debugging (MULLER) 2005).

Most novices in Introductory Programming are capable of creating programs that
"work". However their program often will not check program invariants, conditions and
other edge cases which can cause the program to fail at runtime (SAJANIEMI; KUITTI-
NEN]| 2005). In some cases, students may not know how to check the correctness of their
programs, and believe that they can obtain a partially correct result from the program if
part of the code they wrote is correct.

Another problem is the use of debugging tools. Novices are unfamiliar with the in-
formation provided by debuggers. By combining the unfamiliarity with debuggers and
semantic elements of the program, the result is a poor and local analysis of the program
runtime behaviour (QIAN; LEHMAN, J.. 2017). After all, most of the problems novices
confront in debugging tasks are not fixing the program errors, but rather understanding
the program behaviour and finding the error (MCCAULEY et al., [2008). After identify-
ing and locating the errors in the program, novices can fix most of them (FITZGERALD
et al., 2008).

17
Misconceptions on Data Structures and Algorithms

Not only students of Introductory programming suffer from misconceptions of pro-
gramming topics. Some studies reported misconceptions with topics of Data Struc-
tures and Algorithms courses (DANIELSIEK; PAUL; VAHRENHOLD, 2012; PAUL;
VAHRENHOLD 2013; [KARPIERZ; WOLFMAN]| 2014} ZEHRA et al.| 2018} ZINGARO
et al. [2018; VELAZQUEZ-ITURBIDE, 2019). These studies showed that students of
Data Structure and Algorithms (DSA) courses commonly exhibit misunderstandings of
the subjects studied, some students also show misunderstandings on Introductory Pro-
gramming topics.

One study reported that students exhibited confusion in understanding the differences
between heaps and binary search trees (BST). This confusion was caused because students
developed restricted mental models of heaps, where the data structure representation must
be similar to a tree. Another misconception that contributed to the confusion was the
unawareness of the left-completeness property of heaps (PAUL; VAHRENHOLD| 2013).
Another study reported source of confusion involving binary search trees was that students
struggled with the possibility of inserting duplicate keys (keys already present in the data
structure) (KARPIERZ; WOLFMAN| [2014)). Students also exhibited misconceptions in
greedy algorithms, they did not understand the design decisions that lead to efficient
implementations, which led to bad greedy algorithm implementations (VELAZQUEZ—
[TURBIDE; [2019).

2.2 FACTORS CONTRIBUTING TO MISCONCEPTIONS

Many factors can contribute to novices misconceptions and other difficulties. Previ-
ous research reported previous math knowledge, understanding of the English language,
task complexity, instructor knowledge and teaching methods, and more, as factors that
may contribute to novices misconceptions (ROBINS; ROUNTREE; ROUNTREE, [2003;
URQUIZA-FUENTES; VELAZQUEZ-ITURBIDE, 2009).

Prior math knowledge is a great source of misconceptions among novices. It is specially
true for students that had a deficient basic formation in the area of exact sciences (SORVA;
LONNBERG; MALMI, 2013). Due to the lack of math knowledge, students may ex-
hibit difficulties when abstracting information or to interpret syntax and semantics of
programming languages. Difficulties related to algebraic expressions are common, and
students often forget to declare variables before using it, because it is not necessary in
high school (JACKSON; COBB; CARVER] 2005). Other misconceptions caused by math
knowledge is about integer and floating point variables and numeric precision. Students
may believe that variables are capable of holding numbers of any precision, which may

cause confusion when applying operators with different data types or due to unexpected

18

floating point operation results due to limited precision (DOUKAKIS; GRIGORIADOU;
TSAGANOU, 2007).

Many programming language constructs are based on natural languages, specially in
the English language. A study with Chinese high school students reported that the ability
with English was the best predictor of students success rates (QIAN;: LEHMAN, J. D,
2016).

Task complexity is a factor that affects novices’ cognitive load, causing confusion
mainly among early beginners that are still unfamiliar with programming language key-
words and syntax. Beginners may forget the most basic programming constructs such as
parenthesis, operators or semicolons when solving problems. A study reported that stu-
dents submissions for the first Introductory Programming activities were mostly flawless,
but when activities become increasingly challenging, students started to present more syn-
tactic errors (ANDERSON; JEFFRIES| [1985)). Students may also suffer when debugging
code, tracing skills require high demand on concentration, and due to limited knowl-
edge novices often use wrong variable values and miss errors when debugging (VAINIO;
SAJANIEMI, 2007)).

Occasionally, teaching methods adopted by instructors may contribute to students’
misunderstandings. Instructors may use inadequate analogies or metaphors. A common
example in Introductory Programming is to describe a variable as a box, students may
believe that a variable may hold more than one value because boxes can hold many
objects (CLANCY] 2004). The use of analogies can contribute to students’ understanding,
especially for complex concepts, but their inadequate use may create barriers for novices,

preventing then from building correct knowledge and progress in learning.

2.3 MENTAL MODELS

Mental models are interpretations of the thinking processes about the behavior of
anything in the real world (RAMALINGAM; LABELLE; WIEDENBECK]| |2004)). These
interpretations shape how a person understands the relationships, opportunities and con-
sequences of his or her actions. A mental model can be seen as descriptions of the processes
of how something works, since it is impossible to remember all details. These models al-
low us to simplify complexity and evaluate which things are more relevant, defining how
we reason. Mental models play a major role in the learning process, particularly in many

activities related to problem solving, such as cognition, reasoning, decision-making and
event anticipation (GOTSCHI; SANDERS; GALPIN, 2003).

19
2.3.1 Notional Machines

In the Computer Science context, a notional machine is a mental model for how a
person understands the the behaviour of programming constructs. Programmers think
of the notional machine as a conceptual computer, whose operations and properties are
implied by their knowledge of the programming language being used (SORVA et al., 2012).

Students in Introductory Programming start developing their own notional machines
since the beginning of the course. However, novices have fragile knowledge in program-
ming languages syntax and semantics, which tends to affect their notional machines,

hence, developing misconceptions (LOPEZ et al., [2008).

2.3.2 \Visualizing Notional Machines

To help students comprehend programming concepts, instructors often use visualiza-
tions of some sort in their classes (NAPS; ROSSLING, et al., 2002). With the help of
visualizations, instructors can show details of program concepts, bringing to the surface
the program runtime, which was hidden from the students focusing on the program only
at the code level. Visualization can be of any sort, and depending on the instructor
objectives, different levels of abstractions may be used to represent a program runtime.
Usually, these representations are visualizations of instructors’ own notional machines, and
serve as conceptual models to help students build their programming knowledge (SORVA;
KARAVIRTA; MALMI| 2013]).

A common strategy adopted by instructors to show visualizations is the chalk-and-talk
approach (BECKER; WATTS, [2001), where instructors draw sketches of visualizations
on the blackboard. Another alternative to only drawing sketches, is involving novices
in this activity. Some studies experimented with novices participation by making them
draw their own perceptions of program runtimes (HERTZ; JUMP, 2013; [HOLLIDAY;
LUGINBUHL), 2004). However, drawing sketches may take a long time, which limits the
amount of examples a instructor can show in a lecture (SORVA; KARAVIRTA; MALMI|
2013). The drawing can also get messy and possibly confuse novices (GUO, 2013). It
is also common for instructors to use lecture slides containing pictures and diagrams to
illustrate programming concepts, data structures or algorithms. Still, the creation of
presentation material of good quality for lectures requires a long time of planning and
preparation (ORSEGA; VANDER ZANDEN; SKINNER| 2012).

20

2.4 EDUCATIONAL PROGRAM VISUALIZATION

To assist novices and instructors in providing examples of programming concepts, sev-
eral tools that aim to make visualization more practical were developed since the 1980s.
The idea behind most of these tools is to show a program or algorithm runtime steps.
The level of abstraction may vary with the tool, as well as if the steps are displayed auto-
matically or require some interaction (SORVA; KARAVIRTA; MALMI, 2013)). With the
help of these tools, instructors can demonstrate programming concepts and algorithms,
and students can analyse behavior.

There are some studies that define different taxonomies to classify software visualiza-
tion (SV) tools (NAPS; COOPER, et al., [2003; HUNDHAUSEN; DOUGLAS; STASKO,
2002; MALETIC; MARCUS; COLLARD, 2002; KELLEHER; PAUSCH, [2005). Fig-
ure (1| shows a diagram of how Software Visualization tools for education are organized,
the diagram shows a common taxonomy used by review studies to categorise software
visualization tools by form, and contain two main categories, which are Algorithm Vi-
sualization (AV) and Program Visualization (PV) (PRICE; BAECKER; SMALL, [1993)).
Algorithm Visualization tools show highly specialized visualizations for a limited set of
algorithm it supports, the algorithms cannot be modified. Program Visualization tools
require users to implement their own code, the purpose of visualization in these tools vary,
some tools abstract the code representation, other create visualizations of the program

runtime dynamics.

Software Visualization (SV)

/—\ / Program Visualization (PV) \

Visualization of Code - Visualization of Program

. Structure Runtime
Algorithm ——
. . . //
Visualization Visual
[ISud Program
(AV) ‘ Visual Program

Animation
(PA)

Simulation
(VPS)

~ Progra \ming

S\

Figure 1 — Software Visualization Categories.

The Software Visualization term (SV) refers only to educational tools. Diagram adapted
from (SORVA; KARAVIRTA; MALMI, 2013). The area of the categories do not matter.

21

2.4.1 Algorithm Visualization

Algorithm Visualization tools are by far the most common kind of tool studied in the
field of educational program visualization (SORVA; LONNBERG; MALMTI, 2013). The
Algorithm Visualization category includes tools that automatically execute predefined
programs. The provided programs cannot be changed, and for many tools, users cannot
even change program inputs. The tools in this category provide very low control of
their visual elements. Users usually only have access to the program execution controls.
Another property of AV tools is their high level of abstraction. This makes AV tools less
interesting for novices, because it makes learning fundamentals of program runtime more
difficult (SORVA; KARAVIRTA; MALMI, 2013).

Since AV tools only provide a single or a small set of programs, they generate visual-
izations with detailed elements, which can be useful for instructors to use in demonstra-
tions. Algorithm Visualizations can still be used by more advanced students alone, but
it requires sufficient attention to the visualizations. However, simply viewing generated
visualizations may not be enough to help the student understand the content (SORVA;
LONNBERG; MALMI, [2013)).

AV tools are an interesting approach to demonstrate data structures and algorithms
from a visual and abstract point of view. However, some studies propose that having stu-
dents interacting with visualizations rather than only viewing is more beneficial from a
learning point of view (HUNDHAUSEN: DOUGLAS; STASKO, 2002; NAPS; COOPER,
et al., 2003)). This shifted the trend of educational program visualization from Algo-
rithm Visualization to Program Visualization (SORVA; LONNBERG; MALMI, 2013).
Examples of AV tools are provided in the Chapter [3

2.4.2 Program Visualization

The Program Visualization (PV) category includes tools that allow the user to ma-
nipulate program source code. PV tools are further divided into two main groups showed
in Figure

Some tools use visual abstractions of program source code structures, which allow
users to create programs using simplified visual components that represent code elements
such as variables, operators, flow control flow primitives and so forth.

Other tools focus on providing visualizations for program runtime dynamics. These
tools work like debugger applications, the code provided is analysed while in execution,
the collected information is used to generate visualizations which are displayed to the
user (SORVA; KARAVIRTA; MALMI, 2013)). However, this flexibility comes with a cost.
Generated visualizations are good for explaining simple programming concepts, but due to

tool limitations, they lack detail to explain more complex data structures and algorithms.

22

Examples of PV tools are provided in the Chapter [3]

Visual Programming

Within the program visualization category, Visual Programming tools attempt to
provide new ways to create programs by dropping common text based formats in favor
of using graphic components. One of the Visual Programming most adopted strategies is
the use of programming blocks (ROQUE, 2007; WEINTROP; WILENSKY| 2015; BAU
et al., [2017). Another strategy adopted by tools is the use of programming nodes for data
processing pipelines, which is common among rendering and game development software. [[]

Due to their simplicity, Visual Programming tools were being used for a long time
in other environments besides education, such as multimedia creation, data analysis and
other fields (BRESSON;: AGON; ASSAYAG, [2011; |LAURSON; KUUSKANKARE; NO-
RILOL 2009; YOUNG; ARGIRO; KUBICA| |1995; TAKATSUKA; GAHEGAN] 2002).

Visual Program Simulation

In Visual Program Simulation (VPS), the learner takes the role of the computer, he
or she is responsible for the program execution. This is possible in VPS tools because the
visualization components are interactive. These components are controlled by the learner
to declare variables, to evaluate expressions, to make modifications in the program state,
and to control the program flow. By using these graphical controls, VPS tool users can
guide the program runtime execution step by step (SORVA et al., [2012)). Therefore, VPS
tools only provide visual support as the user reads and advances through the source code.

The strategy adopted by VPS tools is beneficial for novices. Solving problems using
VPS tools challenges novices by making them think like a computer. Such activities
help them to understand the dynamics of program runtimes, one of the main difficulties
students have in Introductory Programming courses (SORVA; LONNBERG; MALMI,
2013).

However, VPS tools are not well suited for more advanced students. From the moment
the student has a better consolidated knowledge about program runtime dynamics, having
to control program execution step by step becomes bothersome and tedious, reducing

students cognitive engagement.

L https://www.blender.org https://unity.com https://www.unrealengine.com

https://www.blender.org
https://unity.com
https://www.unrealengine.com

23

Program Animation

Similar to Algorithm Visualization, tools in the Programming Animation (PA) cate-
gory display visualizations of program runtime elements.

Programming Animation tools can create visualizations from any source code provided
by users. However, the generated visualizations usually have lower levels of abstractions,
these visualization often contain all declared variables and their values, allocated ob-
jects and information of their attributes, and so on. Navigation through the program
runtime is often manually controlled by the user and with step (a source code line) reso-
lution (SORVA; KARAVIRTA; MALMI| 2013).

The low level of abstraction makes visualizations harder to understand by early novices.
On the other hand, PA tools have debugging capabilities similar to typical tree-view de-
buggers, and a study reported that PA tools can be used even by professional developers
for some activities such as data structure development (OKA; MASUHARA; AOTANI,
2018).

Table 1 — Differences between categories of Software Vi-

sualization tools.

Tool type | Source code Program in- | State visualiza- | Code execution

puts tion

Algorithm | Provided by the | May be pro- | High level visu- | Controlled by the

Visualiza- | tool. ~May con- | vided by the | alization, with | tool, but some

tion tain support for | tool or the | specific detail | tools allow the
only one or multi- | user. for individual | user to control ex-
ple algorithms. algorithms. ecution.

Visual Provided by the | Provided by | No direct state | The execution

Program- | user, but assisted | the user. visualization. is uninterrupted

ming by the tool. The as a normal
user programs program.

with visual struc-
tures rather than

plain text.

24

Visual Provided by the | Provided by | Low level visu- | The user acts as
program user. the user. alization, show- | the computer,
Simula- ing all the data | executing every
tion allocated in the | step of the pro-
stack and mem- | gram. The user
ory. has to interact
with the state
visualization in-
terface to inform
what computa-
tion is happening
in the program.
Program Provided by the | Provided by | Low level visu- | Controlled by the
Animation | user. the user. alization, show- | user.

ing all the data
allocated in the
stack and mem-

ory.

25

3 RELATED WORK

This chapter presents a review of visualization tools intended to use in Introductory
Programming or Data Structures and Algorithms courses, and small descriptions on how
these tools were evaluated. All tools described in this section were prominent tools created

within the last decade, nevertheless, some of them are already discontinued.

3.1 VISUALGO

VisuAlgo is a web based tool that provides visualizations for dozens of algorithms
commonly studied in Data Structures and Algorithms courses (DIXIT; YALAGI, 2017). E]

Since VisuAlgo is an Algorithm Visualization tool, it provides predefined visualiza-
tions, not allowing users to create their own programs. Although users cannot create
their own programs, it is possible to change algorithm inputs in some of the visualiza-
tions, allowing users to analyse the behaviour of the algorithms in different cases. The tool
provides a large collection of visualizations, for sorting algorithms, lists, trees, graphs, and
so on. Figure [2] shows the execution of a sorting algorithm and some of the visualization
details.

The authors conducted an experiment with 78 students of Design and Analysis of
Algorithms. The participants were divided into 4 groups and had to answer exercises
about the quicksort algorithm, two of the four groups were allowed to access Visualgo
through its website (VISUALGO,...| n.d.). The study found that the best students had
good results no matter in which of the groups they were. For the other participants, the
ones from the group that was allowed to access Visual exhibited better scores.

Besides VisuAlgo, there are many others Algorithm Visualization tools such as OpenDSA [},
AlgoVIZ (ROMANOWSKA et al., 2018), IScketchMate (ORSEGA; VANDER ZANDEN;
SKINNER, 2012), DAVE (VRACHNOS; JIMOYTANNIS| 2014), and more. All of these
tools provide very similar visualizations for the available algorithms and data structures.
On the other hand, Program Visualization tools offer more diverse visualizations and ways

of interaction.

https://visualgo.net

2 |https://opendsa-server.cs.vt.edu

https://visualgo.net
https://opendsa-server.cs.vt.edu

26

7 WISUALG O/ [f 8 /sorting BUBBLESORT SEL INS MER QUI R-Q COU RAD Exploration Mode v

10 19 21 22 9 42 42 47 49 50

Bubble Sort

Swapping the positions of 27 and 24. >
Set swapped = true.
do
swapped = false
for i = 1 to indexOfLastUnsortedElement-1
if leftElement > rightElement

swap(leftElement, rightElement)

swapped = true

About Team Terms of use

Figure 2 — Simulation of a sorting algorithm in VisuAlgo.

The image shows an array (1) being ordered, the operations that the user can run are listed in
the orange box (2). On the right size (3), a pseudo-code that accompany the program
execution is provided, also describing the operations being executed.

3.2 SCRATCH

Scratchﬂ is a web based programming environment for novices (MALONEY et al.,
2010). Scratch works by providing a visual interface for program construction. Users can
create programs by using blocks of several types, simple blocks that can be used to declare
variables, control the program flow, use operators, and more complex blocks that read
user input, play sounds, interact with sprites and so forth (BAU et al., [2017)). Therefore,
Scratch can be categorized as a Visual Programming tool.

Figure|3|shows Scratch interface and the blocks used to build a program. Users create
programs by combining several types of logic blocks, which can be used to read inputs,
play sounds and control sprites in a canvas.

Visual Programming tools fulfill the role of creating abstractions of programming
languages syntax, reducing novices cognitive load. A study with 90 students reported that
participants found it was easier to create programs using block-based environments rather
than text-based (WEINTROP; WILENSKY], [2015). On the other hand, the number of

syntax constructions mapped by the provided blocks are limited, not allowing the use of

3 https://scratch.mit.edu

https://scratch.mit.edu

27

@~ e Edit @ Tutorials Join Scratch Signin

= Code &f costumes o) Sounds . .

@ w
Metion

tun 0 (B degrees if key space v pressed? . then
&

tion
point towards mouse-pointer v N
wn > @ sere
: ¥
move @ steps
;
i secstox: :

g

®

z

,.‘
3

Q
:l
3
®

E

o
b
g

point towards mouse-pointer ¥

i
&

sprite | spriten e o 1ty o Stage

point in direction ()

My Blocks
show | @ | B size 100 Direction %

point towards mouse-painter =

Sl 0)
»
Tutarials

Backdrops

if on edge, bounce

set rotation style left-right +

Figure 3 — Scratch editor.

Example of a program built using scratch, programs are built using a (1) list of blocks for flow
control, variable declarations, operators, read user input and interacting with sprites. Users
can drag blocks to the program pane (2) and create any logic they want. Scratch offer many

video tutorials (3) in how to create several programs. After build the program, users can
execute the program, and sprites (5) will act in the output pane (4) according to the program
logic.

more complex programming constructions such as objects, pointers, arrays, classes and
more. These concepts are fundamental for Introductory Programming students, as they

are needed to express more complex programs.

3.3 PYTHON TUTOR

Python TutOIEI is currently one of the most well-known visualization tools in the Pro-
gram Animation category. (GUQO,|2013). Since its release, Python Tutor has been adopted

by some universities in their Introductory Programming courses, such as UC Berkeleyﬂ

MIT, University of Washington and University of Waterloo (GUO, 2013)). Some of the
major elements that contributed to the high popularity of this tool were the fact that it

was developed for the web environment, being easily accessible by students and professors,

* http://pythontutor.com
5 |https://cs61a. org/

http://pythontutor.com
https://cs61a.org/

28

and the growth in popularity of the Python language among Introductory Programming
courses. Before Python Tutor, most Program Visualization tools only supported lan-
guages such as Java and C/C++.

Python Tutor was first released in January 2010, motivated by the experience of its
creator with the Python language to novices, by drawing messy diagrams on the board.
Currently, the tool still receives updates (PYTHON. . .| n.d.)). The main goal was to create
a tool that professors and students prefer to use in addition to traditional strategies such
as sketches and lecture slides (GUO, [2013)).

Python 3.6
3 Frames Obijects 4
def listSum(numbers):
1 if not numbers: Global frame function
return O) listSum(numbers)
listSum
else:) | | |
(f, rest) = numbers myList U;pe 1 t:pe 1 n;pe 1
- . .
return f + listSum(rest) ‘ b %/ 2 .,ﬂ 3 | None
listSum
myList = (1, (2, (3, None))) numbers
9 total = listSum(myList) i
Edit this code rest
line that just executed
== next line to execute NAsESu
| numbers

2 ‘<Prev|‘Next>‘ f|2
e oo rest

Step 11 of 22
Python Tutor by Philip Guo
Customize visualization (NEW!)

Figure 4 — Python Tutor interface.

The screenshot shows the visualization of a linked list. The components showed in the
visualization are (1) the source code provided to the tool with highlights on the lines being
executed, (2) slider and buttons for code step navigation, (3) view of the program stack
frames, scopes and variables and (5) view of the program heap, showing allocated objects and
references.

Most types of objects can be represented in Python Tutor, with dedicated representa-
tions for some built-in data structures such as sets and dictionaries, Figure [4] shows the
representation of a linked list made of Python’s native tuples. However, Python Tutor
can only understand simple linear data structures, such as linked lists, stacks and queues.
More complex data structures, such as trees, are still displayed, but the objects position-
ing does not represent the data structure, and modifications in the structure completely
change the object layout. The behavior of Python Tutor visualizations in these situa-
tions makes harder to understand data structures, which discourages its use in a Data
Structures and Algorithms course.

Due to Python Tutor success and the fact that it is open source, many new tools

29

where created using its source code as base. Some of these tools are Omnicode
GUO| and OPT+GRAPH (DIEN; ASNAR/ 2018)), that provide new elements to the
visualization and others tools such as Codeopticon and Codechella (GUO;)
WHITE; ZANELATTO)| 2015)), which allow multiple online users to interact in real time
through the tool.

3.4 OMNICODE

The objective of Omnicode is to provide a live programming environment (KRAMER
et al., 2014; TANIMOTO, 2013; BURNETT; ATWOOD; WELCH, [1998) that shows the

entire history of the entire program execution at once. Like Python Tutor, Omnicode can

show the abstract representations of program stack and heap, and in addition, represent
the entire history of a program. Omnicode uses scatter plots to show variable values
throughout the program execution. These plots are used to represent numeric variables
and also some properties derived from other data types (KANG; GUO, 2017), Figure

shows an example of a program visualization and scatter plots used to represent the entire

program state.

MeanMedian2 RS7 Sign ou
mpute the difference between mean - de 1FF(ns : /
alld median of a given list of numbers e ¥ variable

J
temp

Testcase 1
Input [1]

Output 0
Returned
Status @ mean | None

Testcase 2 median |None

Input [1,2.3] ilo

Output 0 ils

Returned tamp 6

Status @ J s
Testcase 3 | =
Input [1,3,5,5,6] .

dput 1
rned
s @
ase 4
Input [35.56,1,6] sum(nums) sum(nums) sum(nums)
Output 1
Returned None

Status @
Testcase 5

@execution step (@execution step

temp

Input [7,31,2.2.54,6,7.8.9.1,333.2] -
Output 1.125
Returned

Status @ N
\s;ss 20 a5 70

len(nums) len(nums) len(nums)

]
temp

Figure 5 — Omnicode IDE.

Omnicode is a tool based on Python Tutor where users can (1) load programming problems
from a library and (2) test cases, (3) see visualizations of the history os variables values
throughout the program execution in a matrix of scatter plots, (4) visualize values derived
from native data structures and evaluate their own expressions, (5) filter generated
visualizations by selecting variables in code and (6) view the stack frames and allocated
objects. This image was taken and modified from the original article (KANG; GUO, 2017)).

The authors ran a small exploratory study with 10 novice programmers. The study

30

objective was to evaluate if Omnicode could contribute to novices ability to write and
understand code, form proper mental models and their ability in explain the program
behavior to others. They found that Omnicode can contribute to novice students in both

program debugging and as a tool to facilitate communication.

3.5 OPT+GRAPH

Just like Omnicode, OPT+GRAPH is another tool derived from Python Tutor, which
is in its name, OPT means Online Python Tutor). OPT+GRAPH is one of few program-

ming visualization tools that offer support to graph data structures (DIEN; ASNAR|

2018).

Graphs are detected based on matching of the three most common ways to represent

these data structures, which are adjacency matrices, adjacency lists and edge lists. After
detecting a graph data structure, the OPT+GRAPH will render the graph in a dedicated

pane as shown in Figure [6]

E Primitif Visualization @ Graph Visualization = Print Output

var: ary

\

Node: 2 item | Edge: 1 link | weighted | directed

Figure 6 — OPT+GRAPH data structure visualization pane.

Small graph visualization obtained from the OPT+GRAPH tool, other components which are
not shown in the picture are similar to Python Tutor’s. This image was taken and modified
from the original article (DIEN; ASNARJ 2018).

To evaluate OPT4+GRAPH, the authors performed an online experiment. The ob-
jective was to evaluate the effectiveness of the visualizations provided by the tool based
on the correctness and time participants take to answer questions. The presented results
showed that visualization tools influenced positively in the time students took to answer

questions and the correctness.

31
3.6 UUHISLE

UUhisle is another program visualization tool for Introductory Programming and other
similar courses, meant for simple and small programs (SORVA et al., 2012; SORVA;
LONNBERG; MALMI, 2013; [UUHISLE... .} n.d.). Although only working with simple
programs, UUhisle is a flexible tool that can be used for many activities.

Users can use UUhisle to view their program execution, UUhisle acts as a debugger,
providing detailed information of the variable values and animations. Professors can use
UUhisle to create examples and animations to their students, UUhisle allows professors
adjust how the created examples are displayed. Students can also use UUhisle as an Visual
Program Simulation tool, where they take the role of the computer and are responsible
for carrying the execution of a program. This is possible by allowing users to interact
the created visualizations, being able to create variables, call functions and execute many
kinds of operations (SORVA et all| [2012). Figure [7| shows the user interacting with the
tool interface in the Visual Program Simulation mode.

The authors evaluated UUhisle through a qualitative research with 11 students of In-
troductory Programming. The authors conducted semi-structured interviews with partic-
ipants, they had to answer to a Visual Programming Simulation exercise while thinking
aloud (SORVA; LONNBERG; MALMI, 2013). Supplementary data was also collected
from previous studies with UUhisle (SORVA et al., |2012).

The study results were a mix of good and bad results. They found that it is possible
for novices to use Visual Program Simulation tool effectively and learn from then in a
rich way. However, novices can exhibit different ways of understanding the visualizations,
for some participants, learning through VPS is nothing more than learning to perform
graphical manipulations. These difficulties must be first addressed to make the tool more

useful.

32

Program Controls Settings Feedback Help
Program code Data in heap

+
=) 1 def fact(n): o [3][1][2] 2
2 ifn==1: -
3 return1)
| else: Call stack = Functions =
return n * fact(n - 1) fact(n)

§ Frame (fact), called from line 5 3
7 fact(3) o

a1 |

] (2) Assign to new variable

[Pl

[e]

Frame (fact), called from line 7

n
(3J

Frame (module level)

Info

How do | deal with a function call? What did | just do?

Operators

Please do the next step yourself. ==
fact()
@ @ 0

Slow Fast | |

Figure 7 — UUhisle, a visualization tool for Introductory Programming Education.

Interface of UUhisle in Visual Program Simulation mode, the user is manually executing a
program containing a recursive factorial function. The interface shows the (1) code and line
being executed, a (2) basic visualization of objects allocated in the heap, (3) information of
variables and values of the program stack, (4) buttons for code execution to step forward and
backward.

3.7 FLUIDEDIT

Different from previous tools that focused in novices from Introductory Programming
courses, FluidEdit tries to help students from Data Structures and Algorithms by pro-
viding a method for automatic heap representation that can be used to focus on essential
parts of data structures (OU; VECHEV; HILLIGES, 2015)).

FluidEdit is a tool to help development, analysis and debugging of data structures.
The tool tries to generate visualizations that automatically capture only the essential
elements at any given point of the program being analyzed while abstracting the rest.
This feature allows users to focus only in the local elements of their program.

FluidEdit also allows users to stop and continue the execution of a program at any
point, and interact with the elements of data structure being analyzed by showing, hiding
and modifying program objects.

The authors evaluated FluidEdit with 27 participants, ranging from undergraduates
to post-doctoral researchers. The experiment main objective was to verify if visualizing

the heap of a program could improve the code understanding and help participants to

33

public Node reverse(Node head) {

4
5 Node node = null; l ! }
6 Node prev = null; urr \
7 Node curr = head;
8 while(curr.next !'= null){ (value:5)------
9 node = curr;
10 curr = curr.next;
11 node.next = prev;
"I ,r"‘\‘
)) 1
QQ l prev \ l head
O-O-B-O-
12 prev = node; [\ —— —next o
13 ¥
014 return head; 40
15 }

Figure 8 — FluidEdit interface.

FluidEdit showing a linked list data structure being reversed. This image was taken and
modified from the original article (KANG; GUO\ [2017)).

find errors in the source code if compared to a traditional debugger. The study reported
that FluidEdit helps users to detect errors in data structures algorithms faster than using

debuggers provided by IDEs.

3.8 KANON

Kanon is a development environment focused in the visualization of data struc-
tures (OKA; MASUHARA; AOTANI| 2018; OKA; MASUHARA; IMAI et al 2017).
The objective of this tool however, is not to help novices or Data Structures and Algo-
rithms students, but for any programmer in general that is developing data structures.
Although not geared towards students, Kanon provides similar visualizations of program
heaps similar to many other educational tools, showing objects, their properties and ref-
erences.

One of the Kanon main features is the ability to automatically compute data structure
layouts, preserve and update them as the user navigates through the code. In Figure[9] the
layout was automatically computed by Kanon. This feature is called mental map preser-
vation, and help users preserve the representation of the data structure in their minds by
not abruptly changing the layout of objects in the tool. Although this tool is interesting
for data structures based on nodes, such as linked lists and trees, the same representation
is used for all objects, which makes impossible to visualize data structures based on ar-
rays. Another interesting feature is the support for live programming (KRAMER et al.;
2014; [TANIMOTO) 2013; BURNETT; ATWOOD; WELCH, |1998), which updates the
visualization immediately and renders the program visualization to the point the user is
editing.

The authors of Kanon ran an small study with 13 participants, all of then were pro-

6 https://prg-titech.github.io/Kanon/

https://prg-titech.github.io/Kanon/

34

View Modesnapshot__ v | font size{12 || B Auto Layout | [save file | Choose File | No file chosen [redraw |
1+ class Node {
2 constructor(val) { @ Edit
3 this.val = val; iree
4 this.left = null;
5 this.right = null;
6 this.parent = null;
U ¥ BST
8 3} root
9
1@ - class BST {
11- constructor() {
12 this.root = null;
13 }
14 \ .
15- add(val) { left right
16 let temp = new Node(val); € arent
17 parent P
18- if (this.root === null) {
19 this.root = temp;
20 - } else {
i; let current = this.root; Node Node
23~ while (current.val <= val && current al ©"
24 - if (current.val <= val) { iaht letr ht
25 current = current.right; aremnt ra &b rent aréht
. | el 1 paremntft parent P P
27 current - current.left;
28 ' 2 6
29 }
30 - if (current.val <= val) { Node Node Node Node
31 current.right = temp;
32 temp.parent = current;
EERd } else {
34 current.left = temp; val val vl val
35 temp.parent = current;
36 }
- , 1 3 5 7
38 }
new BST
23 . adde One'w Node
40 - rotateRight() {
a1+ if (this.Toot B& this.root.left) { : ; add-(0y O new Node
42 let curxent = this.root.left; new Node
! dd
43 let new_root = current; add O~ 8‘”"‘”51
44 delete new_root.parent; new Node
45 current = current.right;) add% @wm:]‘
45 this.root.left.Tight = this.Toot; maino--('
47 this.root.parent = new_root; add-(O) () new Node
48 new Node
dd
49 this.root.left = current; 2 o whilel
50 current.parent = this.root; new Node
51 this.Toot = new_root; addg_ @wmg
52 } rotateRight
53 } - search 8 new BST new BST
52) 0_ search search

Figure 9 — Kanon interface.

Kanon showing the visualization of a binary search tree. On the left (1) the user can provide
any code to be executed, by simply changing the code, the visualization is immediately
recomputed and presented in the heap. The heap view (2) shows all allocated objects, their
properties and references, green arrows represent variables from the stack. Kanon also provide
a basic overview of the program stack trace (3), showing functions called and their order.

fessional developers. The study was a small qualitative evaluation of the participants’
impressions about the tool. They asked participants to try solving programming prob-
lems using Kanon and common textual environments (IDEs). No difference was found
between Kanon and textual environments, although participants were positive about us-
ing Kanon, the authors reported that participants took longer to resolve errors and used

inappropriate strategies to solve problems when using Kanon.

3.9 SURVEYS

All tools presented in this Chapter were developed in the last decade. Still, there
are hundreds of older Algorithm Visualization and Software Visualization tools and stud-

ies made before that. Surveys of older systems can be found in the following refer-
ences (SORVA; KARAVIRTA; MALMI, 2013; [FOUH; AKBAR; SHAFFER) 2012} SHAF-

| 3

FER et al., 2010; [URQUIZA-FUENTES; VELAZQUEZ-ITURBIDE, 2009).

Section compares the visualizations of some of the tools reviewed in this Chapter

with our proposed tool.

36

4 WILLOW

This chapter presents WILLOW, an educational tool for generating program visualizations.
In the following sections we give a basic introduction of the tool, then we present design
details and a brief overview of the tool architecture.

WILLOW is a Program Animation tool (Section , therefore, it can create visual-
ization directly from the source code of a program. WILLOW focuses in providing features
that allow users to manipulate the generated visual elements, allowing the creation of
more expressive visualizations, which can be useful for representing data structures and
algorithms.

Because WILLOW requires extra interactions to create visualizations, the tool is mainly
targeted at instructors, they can use the tool to create lecture material by creating vi-
sualizations for the programs they want to teach, and testing the program with different
input data. Although instructors are the main target, students can also use the tool
without any hassle for a variety of activities such as developing programs with visual
support, analysis and debugging of data structures and algorithms, understanding basic
programming concepts ans so forth.

WILLOW’s source code, website and other resources are available through the following
URL: https://github.com/pedro0odk/willow.

Videos with examples of WILLOW’s visualizations are available online on YouTube

and can be accessed through the following playlist:

https://www.youtube.com/playlist?list=PLpNZKTBEk73m5-DcKbpc45PZIe8WbEsj2

4.1 DESIGN

Figure[10[shows a screenshot of WILLOW. The tool is divided into two main groups of
components. On the left side we have the source code and input editors, and the output
pane. On the right side there are the visualization components, that display the program
stack and heap representation.

WILLOW visualizations are based on Stack and Heap memory abstractions, which
are common in several programming languages. Many elements of WILLOW’s visualiza-
tions are inspired by Python Tutor (Figure , but with extra features to support the
representation of more complex algorithms and data structures.

By interacting with WILLOW’s visualizations, users can modify them to represent
more complex concepts. Data structures and algorithms that rely on uni-dimensional
or bi-dimensional arrays such as sorting algorithms, binary search, heaps, dynamic pro-
gramming and more, can be represented using special data representations that help the

visualization of interactions on these structures. Node based data structures such as linked

https://github.com/pedro00dk/willow
https://www.youtube.com/playlist?list=PLpNZKTBEk73m5-DcKbpc45PZIe8WbEsj2

37

m Willow How to use 1

pedro0Odk@gmail.com Sign out
Language python # > + d Step 911 of 911 @ Visualization @D Preserve layout
Editor <module> <module>
1- class Node: Tk o p— put put put put put put put put put
2- def __init_ (self, v, b):2 - _put _put put _put _put _put _put _put _put
3 self.left = None AVL <class'_ma... _put _put _put _put _put _put
4 self.v i v - _put _put
5 self.b = b
6 self.right = None
7
8- class AVL: 5 6
9- def __init__ (self):
10 self.root = None
11 Node
12~ def put(self, v): 7_.3511_,.wL o left ';.:
13 self.root = self._put(v, s ’—_] —mot = (v 7
14 7p (root Ha = b 0
15~ def _put(self, v, pointer): right &—
16 - if pointer is None: e T tghy
17 return Node(v, @), 1 e h
18 Node A:/ Node
19 - if v < pointer.v: left = left i
20 child, child_growth = 3 b
21 pointer.left = child ; = : ;'1
22 balance_before = point ~ 4
23 pointer.b -= child_gzrc gt # . right :
24 growth = 1 if balance__ y @94< .é
25- T B ») e N / |
IIT pul Node £ N Node Node 4 ‘Nm‘le
left = left] left None left None
v n v 5 v 8 v 10
b /o b /o b 1] b 1
right .?'L.,L right '§,~..‘I—‘ right None right .L
/ 8 /"‘ S E
Output ¥ v 22 v
Node Node Node Node Node
left None left None left None left None left None
4 v [v 2 v 4 v 6 v 11
b 4] b 0 b 0 b 0 b 0
right None right None right None right None right None

Figure 10 — WILLOW interface.

Screenshot of WILLOW shows a visualization of a balanced tree data structure. At the top (1)

there is the utility bar, which contains language, navigation and some visualization controls, as
well as the information of the current program execution step. On the left side (2, 3, 4) there

are respectively the source code editor, the input editor and the output pane. The list of stack
frames, their variables ans values is displayed in the center (5), on the right side (6) there is
the program call tree, which shows all created scopes. The heap visualization (7) shows the
allocated objects, their properties names and values, and references among objects and from

variables of the stack.

lists, queues, stacks, deques and all kinds of binary search trees can also be represented
and even animated by WILLOW.

WIiLLOW is implemented as a web based tool, it can be accessed without installing
any software. This feature makes the tool easily available for instructors and students,

which can access it from any computer with an internet connection.
4.1.1 Editors

The source editor allows users to provide any code they want to execute. Basic syntax
highlight and snippets are provided automatically according to the selected language.

During the code execution phase, the source editor also provides information on which

38

line is going to be executed and the type of operation the code executed. These operations
are distinguished by the the line highlight color, they are: function calls (green), function
returns (yellow) and raised exceptions (red).

The input editor allows users to provide input to the program to be executed. This
editor acts as the program standard input stream, meaning that users can use simple ways
to read input data as if the code would have been executing locally. Because of that, it is
easier to parameterize the code and test different cases just by changing the input.

Besides the created program visualizations, WILLOW also outputs any text informa-
tion the program generates. Any data written to the standard output and standard
error streams is displayed in the output pane. This includes printed messages, uncaught

exceptions and compilation errors.

Editor Input

1- class Node: 1

2- def __init_ (self, v): 2

3 self.next = None 3

4 self.v = v 4

5 self.prev = None 5

6 6

7- class LinkedList:

8- def __init_ (self):

9 self.head = self.tail = None

10 self.size = @

11

12~ def append(self, v):

13 new = Node(v)

14 - if self.size == @: Output

15 self.head = self.tail = new

16 - else: value 1 inserted
17 self.tail.next = new value 2 inserted
18 new.prev = self.tail value 3 inserted
19 self.tail = new value 4 inserted
20 self.size += 1 value 5 inserted
21 print(f'value {v} inserted')
22
23 11 = LinkedList()
24- try:
25~ while True:
26 11.append(int(input()))
27 - except:
28 pass

Figure 11 - WILLOW’s editors.

WILLOW’s editors, they are shown in a different layout from Figure [10| because the
visualization is disabled.

4.1.2 Stack and Call Tree

The stack component shows all program scopes (function calls) and their declared
variables at the current program execution point. When the user navigates through the

program, the stack also highlights variables that changed value, allowing easy identifica-

39

tion of what has been modified. Stack scopes also show function return values and raised
exceptions, even though they are not captured by any variable.

The call tree component displays all function calls performed during program exe-
cution. It shows their names, the caller and which other functions they call. It also
highlights the scope of the current execution point. The call tree is specially useful to
navigate through the program by clicking on the function scopes, which makes the current
execution point jump to the beginning selected scope, or by double clicking to go to the
end of the scope instead.

Figure [12| shows the stack and call tree of two Fibonacci sequence algorithms, the first
implementation (fib) uses the naive recursive strategy, while the second implementation
(fib_ memo) uses memoization. Similarly to the source code editor, both stack and call

tree show color codes to indicate function calls, return and exceptions.

Stack Call tree

<module> “ <module>
fib <class ‘function'> Lo RAmemg
: : fib fib_memo
fib_memo <class "function’> fib fib fib_memo
fib fib fib fib fib_memo
fib_memo fib fib fib fib fib fib fib fio_memo
n 8 fib fib fib fib fib fib_memo
fib fib_m...
memo
#return# 21
Heap
dict

1 1

0 0

2 1

g 2

4 3

5 5

6 8

7 13

8 21

Figure 12 — WILLOW’s stack and call tree of a Fibonacci sequence algorithm.

Screenshot of the execution of two Fibonacci sequence algorithms. The Call Tree component
on the top right shows the recursive behaviour of both implementations. The first algorithm
(left to right) is the naive implementation, while the second algorithm is a memoized version.
The Stack on the top left shows the last scope of the Fibonacci algorithm, the yellow color and
the “#return#” variable indicates the scope is returning. On the bottom, the Heap component
shows the dictionary used by the memoized algorithm.

40
4.1.3 Heap

The heap shows objects created by the program at some execution point. This com-
ponent is where users can interact with the visualizations, the interactions allow users to
modify the visual representation of objects, change their layout and create animations.

The heap component does not display all objects of a program, many objects are
omitted, such as builtin objects and strings, since these objects are allocated in the heap,
visualizations would get too polluted. Each program object is associated to a node type,
which is how WILLOW visually represents the objects in the view. However, objects are
not tightly coupled to their node types. This means that they can be changed if needed,
changing the way the object is displayed.

4.1.3.1 Node Types

Figure 13| shows WILLOW’s nodes. Four types of nodes are currently supported, they

are:

o Array: The array node shows all fields of the underlying object as a list of its values.
Array is the default node for integer indexable types, such as implementations of

arrays and lists in different languages.

e Columns: This is an alternative to visualize numeric arrays as a column chart,
which can help noticing when changes happen in the underlying object. This node
can be used to highlight swap operations in sorting algorithms. The arrangement
helps the user to understand how elements are sorted. The visualization is based in

common patterns found in examples of sorting algorithms.

o Map: This node displays object fields as a pair of columns of keys and values.
Map is usually used for dictionary-like objects, Figures [10| and [12| use this node to

represent objects.

o Field: Field is used to show a single property of an array or object. It is use-
ful for representing user-created data structures, where objects may contain many

properties, making it cleaner and easier for understanding.

Each node type also comes with a set of extra parameters, which can be modified by

the user through context menus, affecting the way the node is rendered.

41

—Column.__o, 4
list
—dield o
UserClass
size ___JJ_SELL_COJ.UIU_n______E
s K =
it
(1] 1 2 3 4 5 5] K & 5 10
\ 2 3 0 9 8 1 4 7 0 3 9
—map__
dict
number 123

complex (1+2j)

string str

Figure 13 — WILLOW’s node representations.

All four node types currently supported by WILLOW.

4.1.3.2 Positioning and Animation

All nodes rendered by WILLOW can be moved by the user. Their positions are re-
membered by WILLOW and, when the user goes through the same section of code again,
WILLOW replays all previous object positions. This feature can be used to create anima-
tions for many kinds of algorithms, e.g. linked list insertions or balanced tree rotations.

Another feature is the detection and automatic layout of groups of objects that belong
to common data structures such as lists or trees. The automatic layout feature is triggered
by the user by double-clicking any object that belongs to a data structure, which applies
the layout to the inner elements that compose the data structure. Nevertheless, there are

some restrictions in the data structure detection, which are as follows:

o The inner data structure elements must be made of objects of the same type.

o Objects of a data structure can contain references to other objects which store
values, but these values must have a different type from the data structure objects,

otherwise they will be detected as part of the structure.

By combining detection of data structures, automatic layout and re-positioning, users

can quickly create animations of entire data structures without having to move objects

42

one by one.

4.1.3.3 Program Navigation

WILLOW provides three ways to navigate though the program being visualized. The
user can use the keyboard left and right arrows, or click on the step forward and step
backward buttons in the utility bar (Figure . WiLLow allows navigation in both
directions of the program, the user can go forward or backward, even when an exception
is reached during the program execution, this feature is called time travel navigation.

It is also possible to click on the scope of a function displayed in the call tree (Fig-
ure , allowing users to jump to any point in the program they desire, skipping parts
of the program that would not be useful to the visualization. By jumping from an scope
to another, all the accumulated differences in the objects and variables of a program are

highlighted, providing an overview of all changes.

4.1.4 Language Support

WILLOW mainly supports the Python programming language, which is a popular
language among introductory courses. In the recent years, Python has been adopted
as the Introductory Programming language across many Universities. MIT[] and UC
Berkeley, some of the largest departments of Computer Science use Python. Several
online courses also use Python in their introductory courses (ATEEQ et al., [2014; GUO,
2013).

Despite Python’s growing popularity, many Introductory Programming courses still
use Java or even C/C++ as their programming language. Based on that, Willow also
provides support for Java. The current language can be switched easily through the utility

bar as shown in Figure

4.1.5 Limitations

Although being a Program Animation tool that can execute user provided source code,
there are some limitations on what can be executed and for how long. Some of these
limitations come from Willow design itself, where others are dependent on the selected
language back-end.

The main limitations are:

o Willow expects that all code of the program is provided in a single file. Since

our main goal is to support Introductory Programming and Data Structures and

I https://ocw.mit.edu/courses/intro-programming

https://ocw.mit.edu/courses/intro-programming

43

Algorithms classes, we believe that requiring everything to be in a single file is
reasonable. Still, this limitation can confuse novices in some situations, such as

declaring many classes in a single file.

« Programs have restricted time to execute. Time restriction comes in two forms: the
duration of the program execution in seconds and the number of source code steps
executed. Source code steps are approximately linked to the source code lines. A
source code line usually represents a single program step, but in some cases more

steps are executed per line.

Programming language limitations are related to the access of languages libraries and
features. These limitations include blocked access to the file system, network and multi-
threading libraries. These limitations were intentionally added to prevent abuse against
the tool.

There are also limitations related to the visualization. Most simple data structures
and algorithms have abstract representations similar to machine representations, e.g. each
linked list node is an object or struct. These data structures are easy to represent using
Willow. More complex data structure are harder to, or can not be represent using Wil-
low. Graphs are an example of structures of which Willow can not create good abstract
representations. This limitation is due to different ways of representing graphs, such as
adjacency matrix, adjacency list and edges list. These machine representations of graphs
are not similar to its abstract representation. In this case, the generated visualizations
would run over the machine representation of the graph, not an abstract representation.
Willow can however be used to highlight the differences of the machine representations,

showing their advantages and disadvantages

4.2 ARCHITECTURE

Figure[l4|shows WILLOW’s architecture, which is composed of three elements: the user
client, a database to log user actions, and tracers, which are responsible for executing and

collecting program runtime information.

4.2.1 Client

WILLOW’s client is a web application implemented using REACTP}, a popular library
for creating user interfaces. The client is composed of several modules, mainly split into

user, tracer and visualization tasks.

2 https://reactjs.org

https://reactjs.org

44

Willow Architecture

Client
User Module

LOgjn Us,
« User creation and login = ¢ Cloud Firestore
« User actions logger W} \-\'i'racer's endﬂpéih/t‘sr
Tracer Module o User authentication

Request Tracer endpoints * User action Iogs

Trace requests

- Tracer state manager .
S
- - - &
Visualization Module X, @
« Rendering Cloud Functions
« User interactions
« Visualization features Java Tracer Instance

Request Code Trace ——» Python Tracer Instance

Another Client

Figure 14 — WILLOW'’s architecture.

User task modules are in charge of signing in and out the user and collecting activity
logs yielded by other modules. These activities are temporarily stored in a cache and
then uploaded to the database every few seconds.

Tracer tasks manage tracer languages and URLs collected from the database, and
issue trace requests to tracers. Trace requests contain the code to be executed as well as
text input. Once the request is answered, the tracer module creates an index to access
any point of the program in execution order, by line of code or by name of any function
called during code execution.

After a successful code trace, the user will have access to the interface elements that
allow navigating through the code as described in Section When the user selects a
program point to be visualized, the visualization modules update the stack and heap views,
checking if there are any visualization modifications applied by the user, analysing the
heap graph looking for data structures, and applying automatic positioning, if requested
by the user. When the user jumps to another point of the program, the visualization
modules verify if there is any new positioning recorded for objects at the new program

point and smoothly animate these objects from the old to the new position.

45
4.2.2 Database

WILLOW’s database is implemented with Google’s Firestore database services, which
already provides user authentication services. Since this is mainly used for logging pur-
poses, there is no need for a back-end to manage authentication or other complex tasks.
The database stores actions users execute in the client, including the source code; input
and language used in tracing requests; a basic summary of the request result, indicating
if the code executed successfully or if there was any compilation or runtime error; and
user interactions with the visualization, such as steps using the keyboard, arrows or call
tree scopes, changes in object representation and the use of automatic layout detection
and positioning features. The database also stores currently available tracers in a table

with tracer languages and URLs.

4.2.3 Tracers

Tracers are the components which conduct all necessary code compilation, execution
and analysis. Tracers work similarly to traditional debuggers. When a tracer receives a
code trace request from a client, it executes the code and creates records of the program
state at each step. The record contains information about the line of code that was
executed. For instance, if the current line is a function call, a function return or if an
exception is being raised, the variables declared in each scope of the program and their
values at that specific execution point, as well as objects allocated in the heap and their
properties. At the end of the program analysis, the record is serialized into JSON and
sent back to the client.

Because WILLOW only interacts with tracers through HTTP requests, they are com-
pletely independent from other WILLOW’s modules and can be implemented using any
technology. Previous versions of WILLOW had their tracers implemented using TAAS
technologies (Infrastructure as a service) and Docker, which allowed high control of the
resources that tracers had access, and fast initial response times. However, since the tool
was not frequently used, the cost of maintaining the virtual machine provided by the
[AAS was unnecessarily high. The current WILLOW version implements tracers using
FAAS technologies (Function as a service, also known as serverless) provided by Google
Cloud Functiong’] Since tracers are stateless, the migration from IAAS was fairly simple
and yielded a large reduction in costs, while increasing system scalability:.

Tracers can be implemented in any language. Both Java and Python tracers are
implemented in their respective languages to benefit from features that each programming

language provides to support the implementation of debuggers.

3 https://cloud.google.com/functions

https://cloud.google.com/functions

46

The Java Tracer uses the Java Platform Debugger Architecture (JPDA), which is used
to spawn a new JVM process in debug mode (also called debuggee JVM) to execute the
requested code, and then connect the current JVM using the Java Debug Interface (JDI).
Interruptions are sent to the debuggee JVM and its current state is recorded through the
JDI.

The Python Tracer is simpler than the Java Tracer, since Python code does not require
compilation, and also, for performance reasons, the code to be traced is executed using
Python’s builtin exec function. The exec function also allows the specification of an
initial global scope, which is used to create a new empty scope and prevent variable
contamination between the code to be traced and the tracer itself. The specification of a
global scope is also used to restrict access to some builtin function and modules. Python
offers its debugging capabilities through the settrace function of the sys module. After
setting a trace function, it is called after each executed line of code. The trace function

has access to the program scope, making easy to directly collect all record data.

4.3 COMPARISON WITH OTHER TOOLS

Program Animation tools generally provide support for only simple algorithms and
structures common to introductory coding courses. Even most recent tools have limita-
tions when handling some data types or data structures. WILLOW’s extends on these
tools by providing features that support the visualization of a larger set of algorithms and
data structures.

Python Tutor, for instance, cannot represent data structures more complex than linked
lists, even doubly linked lists diagrams are drawn in messy layouts, which makes harder
to visualize the data structure. This is due to the static visualizations, making impossible
change how objects are represented or change their positions. Figure|15(shows the Python
Tutor execution of same balanced tree algorithm presented in Figure[I0] The final diagram
layout is messy and hard to understand.

Another advantage of WILLOW over Python Tutor is the program navigation. Python
Tutor visualizations only provide a slider where users can drag to choose a point of of the
program to be rendered. WILLOW on the other hand, allows users to precisely navigate
to any function call of the program through the Call Tree.

Kanon (OKA; MASUHARA; AOTANI, 2018) is another recent Program Animation
tool with similar features to WiLLow. Similarly to WILLoOw, Kanon supports the de-
tection of some data structures, such as lists and trees, and it has some other interesting
features such as live programming and code navigation based on line of code being edited.

However, there are some disadvantages in using Kanon with educational purposes.
Kanon only supports the JavaScript programming language, which is not commonly

adopted as an introductory language. Another disadvantage of Kanon is the represen-

| AVL instance

root

Node insta "-:e

left

TaTot=

<
w

__J

Node instance

b|0
left | None
A
/ right | Mone
f v|0
E
Node instarjce
b/l
Ieﬁ_T_
right %
=X
v|1 \
|II| MNode instance
H b|0
+ left | None
right | Mone
v|2

Mode instance

b |0

left

hght_l_

v

=1

L

Node |nsr.3nél|9
|
b|0 \

left | None

right | No

N

e

l

right

P

d

Node ing| 24e
0
left | None

right | None

V|6

Nodg instance
0

left| "
-
5

Nede ins

b

; left

right

v

Node instance

b

left
4

/ right

{
/ v

targce
1

\lc-:lalnsr.}p(

left

right

Figure 15 — Python Tutor visualization of a tree structure.

| Node insi
|
| b

v left

right

d
e

None

None

11

0

None

None

tance

1

None

10

47

The illustration is cut in three parts because is too long and elements are badly positioned,
making it harder to navigate.

tation adopted for arrays, which are extremely poor and cannot be used to illustrate

algorithms.

Figure [16| shows how Kanon represents arrays, as opposed to WILLOW in Figures

which has more than one way to represent data of different types. Kanon uses a rep-

resentation that does not preserve the order of elements, which makes the visualization

impractical to represent several array based algorithms and data structures.

87 12 4

12 4 13

15
93
1
—crr ——
6
8
84 n s
17

39

81

20

14

10

93

23

48

70

71

Figure 16 — Kanon’s representation of arrays.

48

This representation of an array has no ordering structure; therefore, it cannot be properly used

in array based algorithms.

49

5 EVALUATION

This chapter discusses in detail the studies we carried to evaluate WILLOW and the
obtained results. We ran two studies to evaluate WiLLOW. The first is a survey with in-
structors of Introductory Programming (IP), and Data Structures and Algorithms (DSA)
courses, and the second is an experiment with programmers.

The main goal of the survey was to evaluate the potential impact of WILLOW as a
teaching aid. The specific goals of the survey are 1) to understand the practices that are
commonly adopted by instructors when teaching (e.g., how often they use the board as
opposed to slide presentations and other strategies) and 2) to understand their opinions
on the usefulness of WILLOW, relative to the quality of the produced examples, resistance
and difficulties on the adoption of the tool in class, and opinions on the impact of the
tool on their students.

Based on encouraging results obtained in the survey, we conducted a second study
where we recruited participants from the freelancing platform upworkﬂ. In the experiment
we switched the focus from the instructor (analysed in the survey) to the student. During
the experiment, participants had to solve programming problems with and without the
support of WiLLOW. The goal of the experiment was to evaluate how can WILLOW assist
participants in solving programming problems and to what extent. More precisely, we
assessed if participants that use WILLOW can produce more correct solutions, if the tool
helped them to solve problems faster, and also if there were any difference in the their

confidence when solving the problems with or without WILLOW.

5.1 SURVEY

This section elaborates on the study design of the survey we conducted to assess the

potential impact of WILLOW as an aid to instructors of IP and DSA courses.

5.1.1 Objective

The survey objective is to analyse the perceptions and opinions of participants about
WiLLow, with the purpose of comparing the tool with traditional teaching strategies
adopted by the participants, with respect to the benefits WILLOW may provide in the
creation of programming concepts and algorithms examples, from the point of view of
instructors of IT courses, in the context of Introductory Programming, and Algorithms

and Data Structures courses.

L https://www.upwork.com/

https://www.upwork.com/

50
5.1.2 Research Questions

We translated our objective in two research questions:

« RQ1l: What are the most common practices used by instructors when teaching

coding-related courses?

o RQ2: What are the perceptions of these instructors towards WILLOW?

The first question helps us to understand the behavior of instructors when teaching
code-related courses. For example, a “hands-on” instructor that engages with students in
writing code during lectures is more likely to react positively to WILLOW and other SV
tools. This question therefore attempts to characterize the teacher. The second question

evaluates the reactions of teachers based on observations of the key features of WiLLOW.

5.1.3 Research Method

To answer our research questions, we adopted a mixed methods research method (LAM-
BERT; LAMBERT], 2012)). Since we collect participants perceptions and opinions about
WILLOW, this survey can be classified as a descriptive study (LAMBERT; LAMBERT)
2012), where outcomes are unlikely to change by carrying the study multiple times. This
allowed us to carry out the study in a cross-sectional manner (WOHLIN et al. [2012;
LEVIN| 2006)) (run the study only once), because there are no factors in the study that

require a longitudinal application.

5.1.4 Population

The population of this study is composed of instructors that teach or have taught in I'T-
related courses, such as Computer Science, Computer Engineering, Software Engineering
and so forth. Since the study is carried out only once (Subsection and we use an
online questionnaire to collect participants’ data (Subsection , we did not present a
participation agreement form to the participants. Because of that, the consent term and

ethical concerns where included in the questionnaire.

5.1.5 Questionnaire

We used online questionnaires, which is an indirect strategy for data collection (where
there is no physical interaction between researchers and participants).

The questionnaire was designed with two main goals:

o1

1. Identify the practices that are most commonly adopted by instructors in their class-

rooms (to answer RQ1).

2. Identify their perceptions about WILLOW (to answer RQ2).

The questionnaire presents the study objectives, researchers’ names and contact in-
formation, a description of WILLOW, the expected duration to answer the questions,
concerns about privacy and a consent term. The questionnaire contains mainly closed
questions, containing single choice, multiple choices and Likert scale questions. All Lik-
ert scale questions in the questionnaire are followed by optional open questions, where
participants could provide rationale for their answers if they wanted.

In the first part, we asked whether or not instructors of IP and DSA courses adopt
certain practices in the classroom, for example, sketch diagrams on the board, use pro-
gramming tools during class, etc. In the second part, we prepared various short videos of
approximately 2 minutes to demonstrate the tool features using small examples of data
structures and algorithms which are related to the courses we focused. We also provided
a link to WILLOW so that participants could give a go on the tool, if they wanted.

In total, 6 videos were presented in the questionnaire, 3 videos contained basic concepts
commonly taught in Introductory Programming courses, the remaining 3 videos contained
examples commonly taught in Data Structures and Algorithms course. All videos used

the Python language. In what follows we detail each video.

o Introductory Programming:

— Tuples, Lists and Mutation: This example shows the creation of these data
structures, followed by some operations that can be executed with them, such
as indexing elements, slicing, update, insertion and removal in lists, and sorting.
The goal of this video is to demonstrate which operations are possible with
each data structure, what happens when one attempts to change the contents
of an immutable data structure, and consequently demonstrate the difference

between mutable and immutable data structures.

— Recursion: This video presents the visualization of a factorial function. The
main goal of the visualization is to shows the behavior of recursive functions
with respect to the program stack. In the video, it is possible to see how the
function scopes are stacked one after the other in the stack, and the value of
their variables preserved during the execution until the function reaches the

base case, when they start to be popped.

— Objects and Special Functions: This video show how WILLOW displays objects,
the parameter binding in method calls and how Python can overload operations

through the use of functions with special names.

52

« Data Structures and Algorithms:

— Quicksort: This video shows an example of the classic Quicksort algorithm.
To better represent the operations the quicksort algorithm executes in the
list, a column based representation is used. The column representation in
combination with the default color hints of modifications in the data structure

is used to highlight the swap operations executed by the sorting algorithm.

— N-Queens: The second video about Data Structures and Algorithms shows two
examples of the N-Queens backtracking algorithm for N=4 and N=5. Similar
to the Quicksort example, a different visualization of the list data structure
is adopted. This time a matrix is used, and combined again with color hints
of modifications, the visualization displays the check areas of the board every

time a new queen is placed or removed.

— Self-Balancing Tree: The last example example show the visualization of con-
secutive insertions in an AVL-Tree. this visualization uses more advanced
features, such as data structure detection and automatic positioning (Sec-

tion|4.1.3.2)), and time traveling (Section [4.1.3.3)). These features are combined

to show animations of the insertion of new nodes in the tree.

Different features of WILLOW are presented in the videos, such as multiple object
representations, delta highlighting, time-traveling, automatic data structure detection
and positioning, and animations. The videos are available online on YouTube and can be

accessed through the following playlist:
https://www.youtube.com/playlist?list=PLpNZKTBEk73m5-DcKbpc45PZIe8WbEsj2

The questionnaire was revised several times in pilot trials. Two instructors not directly
involved with WILLOW offered their assistance to informally assess whether the survey
balanced completeness (as to answer the questions we posed) and time-consumption (as
to reduce the effort of participants). Their answers were discarded and not used in the
analysis. Finally, the questionnaire included background questions (e.g., name, experi-
ence, etc.) and questions about practices, questions about the perception of participants
on WILLOW in the context of IP and DSA disciplines, and questions to collect feedback
and criticism.

Considering background information, we asked each participant’s name, institution,
courses taught, years of experience, and demographics. Regarding the teaching practices
adopted by instructors, the survey covered different practices that we observed as com-
monly used and had an open text field for participants to indicate practices that we did
not cover. Finally, considering the part related to the perception of participants about
WILLOW, we prepared questions related to the videos in the playlist above, asking partic-

ipants whether such a tool could help the teaching activities. For example, after showing

https://www.youtube.com/playlist?list=PLpNZKTBEk73m5-DcKbpc45PZIe8WbEsj2

53

a video containing examples of tree rotations in WILLOW, we asked “Do you agree that
the animations shown in the video helps to illustrate tree rotation?”. We collected answers
about such perceptions on a 5-point Likert scale. The scale indicates how strongly the
participant felt about a question associated with a given video. Participants had the
option to provide a rationale for their scores.

Since participants may have experience in only one of the courses of interest, we split
videos and questions into two sections contained in the same form, one for each course.
We also made all questions optional, and informed that participants may skip a question
if that question does not apply. At the end, we collected suggestions, comments, and

critics. The form content is available in the Appendix 1E]

5.1.6 Results

This section discusses the data we collected from the survey. We sent invitations
through email to 1771 instructors that teach or taught IP or DSA and collected a total of
111 responses from them. Not all of the 111 responses where considered in the analysis,
6 participants did not have experience with the courses of interest, and 1 participant
answered the form twice, 104 remained. From the 104 participants that answered the
survey, 97 of them taught 1P, 81 taught DSA, and 74 participants taught both courses.

To send such number of invitations, we established a criteria to gather candidates.
Participants should be instructors in one of Brazil’s Federal Universities. This criteria
was established because it provided us a limit of candidates to send emails. If we chose to
collect candidates of any Brazilian institution, it could not be possible to gather candidates
from all institutions. Federal Universities are also recognized in Brazil by their above
average quality, and are spread across the country, providing us with high diversity data.
Figure [17| shows the number of participants per institution.

Figure [18 shows two histograms—one for each course of interest—to summarize char-
acteristics. Each histogram shows the distribution of years of teaching experience of
participants on a given course. Although the number of experienced instructors in IP
was higher compared to DSA, overall, there was a balanced number of experienced and
inexperienced instructors participating in the survey. We considered that the answer of

both kinds of participants are important.

5.1.6.1 Participants Teaching Practices

To understand teaching practices adopted by the participants, we presented questions

that relate to common strategies used in classes. Figure [19 shows the prevalence of each

2 The questionnaire and videos were translated to English. The original language is Portuguese.

54

12

10

count
=2}

~

[aS]

DR o oP P 2> v~
o“ \)Qno \)QQ \:z NN q&\y:bq{ 5 0 ,90'?*
e

O

\;\
institution

Figure 17 — Participants’ teaching institutions.

practice. The size of each bar shows the number of participants who adopted a given
practice, as indicated in the survey.

The most commonly-adopted practices in the classroom appears at the top of the
figure. The three most common were writing sketches of code and data on the board,
writing program code during class, and using slides to illustrate diagrams. Overall, we
found that the adoption of interactive visual aids (e.g., visualizations of state transitions,
or that allow changes in source code or input) in teaching IP and DSA was relatively low,
as indicated in the size of the second to last listed practice on Figure [I9]

We also asked questions about instructors’ experiences with SV tools, we asked “ Have
you ever used any tool that automatically create program visualizations?”, and collected
the names of tools that participants have used. Since participants may not be familiar
with the definition of Software Visualization (SV), we used a somewhat generic question,
and filtered results based on the list of tools that participants provided. For instance,
some participants mentioned that they use PowerPoint, which does not qualify as a SV
tool. After filtering only those with answers that interest us, we identified that some
participants have not necessarily used SV tools to prepare lectures or during the lectures,

but they know that such tools exist and what can they can do. In total, 29 participants

95

experience m | essthan1year M From1to2years B From2to5years B More than 5 years

P DSA

course

35

count
=

[
(4]

=
=]

| .
0 |
Figure 18 — Participants years of experience with IP and DSA.

have tried SV tools.

Although the use of simple illustrations is common among participants (79.8%), only
29 participants (27.9%) have tried SV tools to create visualizations. Among these, the
most commonly used tools were Python Tutor and VisuAlgo (DIXIT;
'YALAGI, 2017)), which had been tried by 16 and 13 instructors respectively, older tools

such as Jeliot (3) and BlueJ (3) where also reported, a few remaining tools were reported

by one participant each.

Participants also gave their opinions on results obtained from SV tools they have used.
Most of them had good experiences, only one participant reported results as unsatisfying.
Although we could not verify if instructors indeed used SV tools during class or to create
lecture materials, when correlating the use of SV tools with adopted practices, we found
that 59% of instructors that use tools to create or that contain interactive visualizations
have used SV tools, whereas for all other practices, 25% have used SV tools. This suggests

that some instructors adopted SV in their classes.

56

Sketches on board

Write program code during class

Simple diagrams in slides

Create algorithm examples using slides

Use debuggers to show program execution

Use tools to create or that contain interactive visualizations

- I
o
P
o0
=) ai

Only talk

Q

20 40 60 80 100
count

Figure 19 — Common teaching practices adopted by instructors.

Answering RQ1: According to the collected data, board sketches
is the most common practice used by instructors, closely
followed by writing code during class and using lecture slides to
show diagrams and algorithm illustrations. Only 27.9% of
instructors reported experimenting with SV tools, and the

adoption of such tools in classes is even smaller.

5.1.6.2 Participants Perceptions Towards WILLOW

In the following sections of the form, the goal was to collect perceptions of the partic-
ipants towards WILLOW, in the context of IP and DSA disciplines.

Figure 20| shows participants’ perceptions toward videos containing examples of basic
programming concepts, data structures and algorithms, created using WiLLoOw. These
videos are described in Section [5.1.5 Figure [20] displays a diverging stacked bar chart
quantifying and summarizing participants’ perceptions over different WILLOW features
illustrated by the videos. The size of each bar represents the number of participants who
have chosen a particular value in a 5-point Likert scale, ranging from “totally disagree” to
“totally agree” or “Very unsatisfactory” to “Very satisfactory” for a given question (e.g.,
“Regarding recursion, do you think your students can benefit from the features illustrated

in the video?”). The three first rows in the chart refer to the perception of basic pro-

o7

gramming concepts common to IP] The fourth and fifth rows refer to data structures
and algorithms common to DSA, and the last row refers to participants opinions regard-
ing if WILLOW could contribute to lecture material participants proposed previously for
explaining tree rotations. The scatter traces are the average and median of participants’

answers.
Likertscale m 1 m 2 ®m 3 W 4 ® 5 - average ;;*- median

tuples, lists and mutation
recursion % 30%

objects

quicksort and n-queens

AVL tree insertions

Complement material

Figure 20 — Participants perception about WILLOW’s visualizations.

Diverging stacked bar chart showing the perception of participants about WILLOW in a scale
from 1 (negative perception) to 5 (positive perception). The average and median are
represented by the scatter traces on the right side.

Figure [20[shows that participants had an overall good acceptance on all of WILLOW’s
visualizations, and agreed with the possible applicability of WILLOW in the teaching
process.

In general participants mostly agreed with the following benefits of using WiLLOw:

o Good representation of programming concepts: Participants liked WILLOW’s visu-
alizations and agreed that the visualization elements can provide good visual ab-
stractions to explain programming concepts and inner workings of algorithms to

students.

o Fast way to create examples: Many participants reported that WILLOW may help
by making the creation of examples faster. They would not have to create examples
in lecture slides or draw sketches, which would save class time. Some participants
also said it would be very useful for algorithms that require drawing of too many

steps, such as sorting algorithms. Other participants also cited the possibility of

3 The number of answers in the “objects” entry is smaller due to a problem in the execution phase, part

of the responses had to be discarded.

o8

making small modifications in the algorithms without having to redraw illustrations

again.

o Benefits to students: Another common received feedback was the benefits for stu-
dents, such as being able to explore the content in an interactive manner, and that
WILLOW could be used as an “extra class” resource, where students could use it to
study alone by following visualizations of algorithm executions, and go beyond the

explanations given by their instructions.

A few participants did not appreciate some of WILLOW’s visualizations. The most

common complaints were related to:

o Complicated visualizations: Participants reported that some visualizations were not
intuitive due to several causes. For example, they complained that sometimes too
much information could be displayed at once, and that having multiple focus points
may confuse beginners. Moreover, they also mention pointer “pollution”, when
multiple variables point to the same object. WILLOW already applies filtering of
references, this feature can be made customizable to filter more references and reduce

this problem.

o Indistinguishable objects: Some objects rendered in the heap are very similar, such
as tuples and lists, which are distinguishable only by the type name over the object
representation. Different representations of objects already exist in WILLOW, these
representations could be used to differentiate objects, new representations can also

be implemented if necessary.

o Adherence of visualizations to a single programming language: Instructors com-
plained that visualizations may be tied to a single programming language, which
could compromise students understanding of programming concepts. Some partici-
pants also reported that they would not use WILLOW because it does not support
C/C++. Because the visualizations used the Python language, some participants
thought it was the only supported language. It is true that WILLOW currently does
not support C/C++, but visualizations are not restrained to a single language. Both
Python and Java can be used, and since WILLOW has an extensible language sup-
port, C/C++ and other languages might be added. Although further investigation

on how to map language elements in visualization elements is necessary.

Answering RQ2: Results indicate that the majority of
participants (91.3%) had positive impressions about WILLOW.
In particular, 5 participants manifested strong interest in
applying WILLOW in their next classes, even though WILLOW is

still not mature.

99

5.1.7 Threats to Validity

Some of the common validity criteria used in quantitative studies, such as internal va-
lidity, reliability, and objectivity are not suitable for qualitative studies. The main threats
to validity in qualitative studies are related to trustworthiness, which can be translated in
the question “Can the findings of the study be trusted?”. Based on that, we adopted the
following validity criteria: credibility, transferability, and confirmability (KORSTJENS;
MOSER, 2018])

The following describes each criteria and our actions to accomplish them:

o Chredibility: The confidence that research findings are correctly inferred from the col-
lected data. To ensure credibility, the development of the questionnaire and other
research materials was conducted by two researchers, the questionnaire complete-
ness was corroborated with pilot trials with two instructors, and although this is
a qualitative study, a large part of the data collected from questions was already

quantified and categorized through the use Likert scales and predefined categories.

o Transferability: The degree to which the results of our survey can be transferred
to other contexts or settings with other respondents. All materials necessary to
carry the study —questionnaire content, videos and WILLOW itself— are publicly
available. We collected responses from a large sample of our population, which are

IP and DSA instructors, totalizing 104 participants of several universities.

o Confirmability: The degree to which the findings of the study could be confirmed by
other researchers. All the findings we obtained were derived directly from the ques-
tionnaire answers, a large part of our conclusions were derived from the quantitative
data we collected, while using participants provided rationale to further understand
their decisions. Although, we did not had authorization to publish participants
responses. Finally, we also described in detail our research design, processes and

taken decisions throughout this document.

5.2 EXPERIMENT

This section reports the results of an experiment comparing the performance of devel-
opers who used WILLOW and traditional textual tools to solve simple data structure and

algorithms problems.

60
5.2.1 Objective

According to the Goal/Question/Metric (GQM) template, our research goal (BASILI;
ROMBACH, |1988) is as follows:

Analyze developers as experimental subjects, for the purpose of comparing the
performance when using WILLOW against textual tools (IDEs or text editors of prefer-
ence), with respect to time to solve the problem, confidence of the developer in their
answer, and the correctness of the answer, from the point of view of amateur software
developers, in the context of an experiment involving developers hired from an online

outsourcing platform platform and involving online tools.

5.2.2 Research Question and Hypothesis

We translated our goal in the following research question, and its associated hypoth-

esis:

o RQ3: What are the benefits WILLOW can offer to programmers when solving data
structures and algorithms problems, with regard to time to solve, confidence and

correctness?

In the definition of the objective (Section [5.2.1)), we manifested that we want to com-
pare participants in two situations, which are the use of WILLOW and the use of traditional
textual tools. The participant performance can be translated in the metrics described in
the objective. Based on that, and since we are looking for any benefits WILLOW can

provide to users, the hypothesis for the RQ3 is stated as:

Hy: There is no benefit in using WILLOW as an assisting tool with regard to time to

solve, confidence and correctness.

HO : M(TIME)textual S M(TIME)WiIIOW A
((CONFIDENCE)soxtnal > t(CONFIDENCE) yinow A
U(CORRECTNESS)textual = W(CORRECTNESS)wilow

H,: There is benefit in using WILLOW as an assisting tool with regard to time to solve,

confidence and correctness.

Ha : M(T]ME)textual > /vL(T]ME)willow Vv
((CONFIDENCE)extual < f(CONFIDENCE)witiow V
((CORRECTNESS)textual < W(CORRECTNESS)wition

o (W(TIME)extua: The time taken to answer the problem using textual tools.

61

o W(TIME)yinow: The time taken to answer the problem using WiLLOW.

e W(CONFIDENCE)extua: The confidence of the participant in their solution using

textual tools.

e W(CONFIDENCE)yiow: The confidence of the participant in their solution using
WILLOW.

e (CORRECTNESS)textual: The correctness of the participant’s solution using tex-

tual tools.

e W(CORRECTNESS)winow: The correctness of the participant’s solution using
WIiLLOW.

5.2.3 Variables
5.2.3.1 Independent Variables

The only independent variable (factor) of this experiment is the tool to be used. This

independent variable contains two levels:

1. participant must use a textual environment (text editor, IDE, etc.) to solve prob-

lems.

2. participant must use WILLOW to solve problems.

This variable is manipulated by asking participants to use WILLOW in the middle of
the experiment. More about level switching is explained in the Sections [5.2.7] and [5.2.8]

Since the tool to be used is the only factor of the experiment, the levels of this variable

can be interpreted directly as the only treatments of the experiment.

5.2.3.2 Dependent Variables

The dependent variables are the time to understand and solve problems (TIME),
participants confidence in their solutions (CONFIDENCE) and the correctness of the
solution (CORRECTNESS).

TIME is collected when the participant submits a solution, the elapsed time is au-
tomatically by the tool used to conduct the experiment. CONFIDENCE is provided by
the participant after solving each problem, participants choose the confidence on their
solution through a 5-point Likert scale asking how confident they have in the provided
solution. CORRECTNESS is extracted from participants’ source code, by executing it

62

with test inputs. The correctness of each answer was evaluated against 6 test cases which
are available in Appendix Section [6.2]

5.2.4 The Choice of Dependent Variables

Since the purpose of visualization tools is to provide visual aid through the creation of
illustrations, we expected that users would understand the behavior of programs’ abstract
constructs more easily and clearly with the help of illustrations. For this reason, we
decided to collect the time the participant takes to solve a problem and the correctness
of the solution. The confidence was collected to complement the other variables, the
purpose of this metric was to verify if WILLOW had any impact in the participants’ own

understanding of their solutions.

5.2.5 Experimental Subjects

The population is composed of developers with “basic knowledge” of the Python pro-
gramming language and data structures and algorithms, regardless of the their profes-
sional experience or formation. Due to the COVID-19 outbreak, universities were closed
and this made hard to recruit students to participate in the experiment. This way, we
used the Upwork platform (UPWORK] 2020). We published our experiment as a job offer
in the platform and received proposals from freelancers all over the world. Each proposal
was filtered according to the population constraints, and we then hired each freelancer
and sent all information necessary to run the experiment. We received 34 proposals from
freelancers, and 18 participants were selected and participated in our experiment.

The participant selection was complex due to our population constraints. In our
conception, “basic knowledge” means that participants should have the intuition on how
to solve problems, but they should not have much experience or be experts in the topics.
Participants also could not be too amateurs, to the point of not even understanding the
problems, or having no idea how to solve them.

Another limitation on participant selection was the financial, due to the limited bud-

get, we could only hire 18 freelancers as participants.

5.2.5.1 Ethical Concerns

Due to the nature of the experiment, we did not notice any possible ethical concerns
that could lead to problems, except for privacy concerns. We decided that all participant
information would be private, and clearly stated this in the experiment introduction.

Although, since all participants were paid to participate in the experiment, we did not

63

allow participants to request withdrawal from the experiment and consequently discard

their responses.

5.2.6 Objects and Tasks

Four objects (data structures and algorithms problems) are used during the exper-
iment. All problems are fairly simple to solve, but also allow different solutions with

varying difficulty degrees. The problems are:

1. Cycle Detection: Participants have to implement a solution to find if a linked list

contains a cycle;

2. Jessie Cookies: Participants have to consecutively combine the smallest elements in

an array and create a new one until the smallest element surpasses a threshold;

3. Lowest Common Ancestor: Participants need to find the lowest common ancestor

of two nodes in a binary search tree;

4. Reverse List: Participants have to reverse a singly linked list.

Each problem contains a basic description of the objective, a program template, which
reads inputs and prints outputs, and some examples. Participants are supposed to imple-
ment only one function, which is described in the objective and with the signature already
in the template. Problems (1) and (2) compose the first task and problems (3) and (4)
compose the second task.

Appendix Section contains the form used to present the questions during the

experiment. This form contains the description of all objects of the experiment.

5.2.7 Experimental Design

Our experiment is based on programming exercises, where participants have to solve
algorithms and data structures problems. We chose this kind of experiment because our
goal is to objectively evaluate and classify participants’ solutions using test cases. This
helped us to avoid the subjective part of the participants’ opinions on the tool, which has
already been evaluated already in the survey. The only inherently subjective element in
this study is the participant’s confidence in the provided answers.

We adopted a single-factor latin-square (WOHLIN et al., 2012)) experimental design
with with two treatments. The adopted design is illustrated by Table |2l The latin-square
design was chosen to avoid within-subjects design drawbacks in this specific experiment,
i.e., to reduce impact on the performance of participants when solving problems they

already solved using another treatment. In this design, participants are divided into

64

groups, and each group solves a set of tasks using different treatments (Section |5.2.6)).
Treatments correspond to the tool used by the participant to solve a task (Section |5.2.3)).

Table 2 — Latin-square design, a complete 2x2 layout.

Treatment 1 | Treatment 2
Participant group 1 Task 1 Task 2
Participant group 2 Task 2 Task 1

An important property to ensure validity of latin-square designs is randomizing the
participants’ groups. In controlled experiments where all participants are present at the
same time, this can be done a priori, before the experiment starts. To conduct this exper-
iment, however, we used the Upwork freelancing platform (UPWORK] [2020)) for selecting
participants. Therefore, we did not had access to all participants promptly so they could
not be randomly distributed into groups prior to the experiment. To mitigate and solve
this problem, we created a form engine, dubbed JSON—FORI\/ﬁ, designed to apply simple
factorial designs in an online setting. With JSON-FORM, when new participants access
the form, they are randomly assigned to a group, automatically, and the specific order for
tasks and treatments of the chosen group is then applied. JSON-FORM also solved other
issues that we had experienced when using common form engines (e.g., Google Forms),
such as collecting the time that participants take to solve problems. Most importantly,
it enables us to present formatted text, which is a prominent need in an experiment such
as ours, where we need to show source code when describing the input and output of the
presented problems. With the help of JSON-FORM, participants could join the experiment

at any moment, without researcher supervision.

5.2.8 Protocol

The process started with hiring amateur freelancers. After posting a job calling for
participants, we filtered participants questions about data structures and algorithms, re-
moving candidates with too much or too little experience (the former would not benefit
from the tool due to very solid mental models, the latter would not be capable of answer-
ing questions due to lack of knowledge). After being accepted, the participant received
instructions and access to the form created with JSON-FORM (the form is available in the
Appendix Section . Participants could answer the form at any moment until their
due date.

When accessing the form, participants are presented with information about the study,
such as researchers contact, study objective, privacy concerns, procedures and expected
time to answer the form (which is approximately 1 hour based on 5 pilots). The form

presents tasks in different orders based on the group which was randomly chosen for the

4 https://github.com/pedro@adk/json-form

https://github.com/pedro00dk/json-form

65

participant. After the introduction section of the form, the following sections present two
problems to be solved using any textual tool (e.g., IDEs or text editors) the participant
feel most comfortable.

After the first two questions, WILLOW is presented to the participants and a small
tutorial section must be completed before proceeding to the next problems. The tutorial
is composed of four steps, which teach participants how to execute code on WILLOW and
have basic interactions with the visualization. After the tutorial, two more problems are
presented, which have to be solved using WILLOW.

Participants were prohibited of accessing search engines and look for solutions, al-
though, search for documentation was allowed. Participants also had to record their
screen during the entire process, the recording was used to verify if participants respected
the restrictions (Section and followed the tutorial and other procedures.

5.2.9 Results

This section discusses the data we collected from the experiment. From the 18 par-
ticipants, 6 were graduated developers, 3 were developers without a major degree, and 9
were undergraduate students. Since our hypothesis is composed of sub-components, we
first present the data and hypothesis tests, and then discuss about them.

Figure [21] shows participants confidence in the solutions they submitted when using
textual environments and WILLOW, each bar represents the number of participants that
manifested their confidence in a 5-point Likert scale.

As shown in Figure 21 the confidence of participants participants clearly does not
follow the Poisson distribution. We applied the Brunner-Munzel test (BRUNNER; MUN-
ZEL| |2000)), which is a non-parametric test similar to the Wilcoxon-Mann-Whitney U test
(also known as generalized Wilcoxon test), but does not assume similar variance of the
samples being tested. Our tests yielded a p-value of 0.49 in a one-sided test, which does

not reject the confidence term in from the null hypothesis:

((CONFIDENCE)iextual = t(CONFIDENCE) itonw

Figure shows the time in minutes participants took to solve the programming
problems using their preferred textual environment and WILLOW. Each point represents
one of the samples of a participant, and the violin plot on the side displays the distribution
of the data.

The distribution of the time participants took to solve problems does not follow the
normal distribution. We applied Brunner-Munzel test to verify if there were differences
between the samples. We obtained a p-value of 0.59 in an one-sided test, which does not

reject the time term from the null hypothesis:

66

confidence ®m 1 m 2 m 3 m 4 u 5

textual willow

12

10

count
IN o o

M

o

treatment

Figure 21 — Participants confidence in their solutions.

p(TIME)extuar < p(TIM E)winow

Figure [23| shows the statistics of the solutions correctness when using textual tools
and WILLOW. Each trace represents the average (colored traces) or median (gray traces)
for each question. Section [5.2.0] describes each question. The purple trace and dotted
trace with squares show the average and median of solutions written with textual tools.
The green trace and dotted trace with circles shows the average and median of solutions
written with WILLOW.

The distribution of the solutions correctness does not follow the normal distribution
since the average and median are far apart. We applied Brunner-Munzel test again to
verify if there were differences between the samples. We obtained a p-value of 0.38 in an

one-sided test, which does not reject the correctness term from the null hypothesis:

((CORRECTNESS)extual < t(CORRECTN ESSS)ittow

We also tested our hypothesis with all subsets of questions. For the time and confidence
variables, we did not find any marginally better result. However, some subsets of questions

presented much better results. Especially, ¢/ and ¢2 individually yielded a p-value of

67

100 : O

80 .
0 60 .
&L
S
£ . .
E 40) g
.® * e
20 2 o
-.l.-_ . .]
.‘..'. 0. .:.' -.
O . . .
textual willow
treatment

Figure 22 — Time participants take to solve problems.

0.14 and 0.11 individually. When combining the solutions for ¢/ and ¢2, we obtained a
p-value of 0.054. Still, the hypothesis could not be rejected at a significance level of 5%.
Discarding the answers of ¢3 and ¢4 and increasing the significance level might increase
type II error, which would be favorable to our conclusion. Thus we prefer to stick with a

significance level of 5% in this experiment.

Answering RQ3: Since we could not reject the null hypothesis,
the evidence collected in this study does not allow us to claim
that WILLOW brings the benefits we analysed to programmers

with regard to time to solve, confidence and correctness.

Since the survey with instructors presented very positive results, we expected good
results in this follow-up experiment, even though the context and populations are different.
We suspect that our main problems were the participant selection and the WILLOW’Ss
tutorial.

Due to the population constraints related to participant’s knowledge and experience,

and the online setting in which the experiment occurred, it was hard to classify and select

68

- textual mean -2 textual median =@~ willow mean --g- willow median

1160 1.00
0.8
0.6
0.4
0.35
0.2
0.17 0.17
0
ql q2 q3 q4

Figure 23 — Participants’ scores average and medians for each question and treatment.

participants to the experiment. Some participants were much more experienced than the
population allows and others were too immature. For instance, 3 of the 18 participants
were not able to solve a single problem.

WILLOW’s tutorial was too short for the experiment, but because of financial restric-
tions we could not make the experiment any longer. WILLOW’s tutorial can be viewed in

Appendix Section 6.2}

5.2.10 Threats to Validity and Control Actions

During the planning phase of this experiment, we focused mainly in how to handle
threats that could occur in an online setting. Since the experiment happened in an
asynchronous manner (experimenter did not watch participants resolution), we decided
to focus in preventive and fix-up control actions. Table 3| shows a list with threats to

validity and their respective control actions.

Table 3 — Threats to validity and control actions.

69

Threats to Validity

Threat Description

Control Actions

Incomplete data col-

lection (internal)

Participants may sub-

mit incomplete an-

SWErSs.

* Clearly state in the data col-
lection tool how to fill the data.
* Verify if the failure is caused by

the submission method.

Interaction between | When a treatment in- | x The latin-square design is used to
treatments (con- | fluences positively or | prevent participants from solving the
struct) negatively the results | same questions with different treat-
of the next treat- | ments.
ments.
Insufficient Training | When the training
(internal) process does not

provide all necessary
the

participants, or does

information to

not give enough time

for practicing.

Familiarity with the

experimental material

When the participant

has very little or no

* Use simple problems that allow

multiple different solutions.

(internal) knowledge of the ex-
periment material.
Heterogeneous Sam- | When there are dif- | x Use an experimental design that

ple (conclusion)

ferences among the
participants related to

expertise and experi-

minimizes the impact of hetero-

geneous samples (latin-square).

* Assign participants to groups

ence. randomly.
Fatigue can affect the | If the experiment is | x Use problems that can
participant’s perfor- | too long, participants | be resolved more quickly.

mance (internal)

may feel tired or

bored.

* Add Dbreaks

jects and tasks.

between the ob-

70

Application of inap-
propriate statistical

test (conclusion)

There are factors that
must be met in order
for a statistical test to
be used, such as sam-
ple size and data nor-

mality.

* Verify is the sample data fits all
constraints of the statistical test.
* Verify the adoption of the statis-

tical test in other experiments.

Precision on data col-

lection (internal)

The data may not be
precise if the partici-
pants are responsible

for collecting it.

x Use a tool to do all data collection.

Abandonment (inter- | Participants may | » Discard participant’s incomplete
nal) abandon the experi- | data.

ment (internal)
Interruption (inter- | Participant may have | x Add breaks between the objects
nal) to stop executing the | and tasks.

experiment by any

reason.
Ignore treatments | Participant may ig- | x Disqualify participant and discard
(construct) nore the treatments | their data.

when solving the

tasks.
Search for solutions | Participants may | * Disqualify participant and discard
(construct) search for solutions of | their data.

the problems online.

71

6 FINAL CONSIDERATIONS

This chapter presents the conclusions we drawn from the development and evaluation of

WiLLow. We then describe our expectations of future work involving the tool.

6.1 CONCLUSION

This work presents WILLOW, a tool to support Data Structure and Algorithms lessons
through the creation of interactive program visualizations that can be used by instructors
and students in the teaching-learning process. Notable features are the ability to change
the representation of the program data, create animations and navigate to any point of a
program, specialized nodes to show array data or select specific fields of an object allow the
user to better control which and how objects are shown in order to make programs easier
to understand. This allows the creation of visualizations for Introductory Programming
concepts, and Data Structures and Algorithms.

The first conducted study with instructors revealed that WILLOW can be promising
if used as an aid tool for the creation of algorithm visualization in both Introductory
Programming and Data Structures and Algorithms courses. Instructors also agreed that
WILLOW could be beneficial to students if used directly by them. In our follow-up ex-
periment, however, we were not able to verify such statement, even though we had such

positive results in the first study.

6.2 FUTURE WORK

Future work includes execution of another experiment similar to the one executed
with freelancers, this time with students from IT courses. We also plan to continue the
development of WILLOW, bringing new features, such as better data structure detection,
representations for complex data structures like graphs, new ways to visualize objects,
general visualization improvements and support for new programming languages. Fi-
nally, we want to publish our results to present WILLOW and our studies to the scientific

community.

72

REFERENCES

ALTADMRI, Amjad; BROWN, Neil CC. 37 million compilations: Investigating novice
programming mistakes in large-scale student data. In: PROCEEDINGS of the 46th

ACM Technical Symposium on Computer Science Education. [S.1.: s.n.], 2015.
P. 522-527.

ANDERSON, John R; JEFFRIES, Robin. Novice LISP errors: Undetected losses of
information from working memory. Human—Computer Interaction, Taylor &
Francis, v. 1, n. 2, p. 107-131, 1985.

ATEEQ, Muhammad et al. C4++ or Python? Which One to Begin with: A Learner’s
Perspective. In: IEEE. 2014 International Conference on Teaching and Learning in
Computing and Engineering. [S.1.: s.n.], 2014. P. 64-69.

BARBOSA, Marcelo RG et al. Implementacao de compilador e ambiente de
programacao iconica para a linguagem logo em um ambiente de robdtica pedagogica de
baixo custo. In: 1. BRAZILIAN Symposium on Computers in Education (Simpésio
Brasileiro de Informatica na Educacao-SBIE). [S.L.: s.n.], 2009. v. 1.

BASILI, Victor R; ROMBACH, H Dieter. The TAME project: Towards
improvement-oriented software environments. IEEE Transactions on software
engineering, IEEE, v. 14, n. 6, p. 758773, 1988.

BAU, David et al. Learnable programming: blocks and beyond. Communications of
the ACM, ACM New York, NY, USA| v. 60, n. 6, p. 72-80, 2017.

BAYMAN, Piraye; MAYER, Richard E. A diagnosis of beginning programmers’
misconceptions of BASIC programming statements. Communications of the ACM,
ACM New York, NY, USA, v. 26, n. 9, p. 677-679, 1983.

BECKER, William E; WATTS, Michael. Teaching economics at the start of the 21st
century: Still chalk-and-talk. American Economic Review, v. 91, n. 2, p. 446-451,
2001.

BLENDER, the free and open source 3D creation suite. [S.1.: s.n.].
https://www.blender.org/. Accessed: 2020-06-06.

BERKELEY University CS 61A: Structure and Interpretation of Computer Programs.
[S.l.: s.n.]. https://cs61a.org/. Accessed: 2020-06-10.

BRESSON, Jean; AGON, Carlos; ASSAYAG, Gérard. OpenMusic: visual programming
environment for music composition, analysis and research. In: PROCEEDINGS of the
19th ACM international conference on Multimedia. [S.L.: s.n.], 2011. P. 743-746.

https://www.blender.org/
https://cs61a.org/

73

BRUNNER, Edgar; MUNZEL, Ullrich. The nonparametric Behrens-Fisher problem:
asymptotic theory and a small-sample approximation. Biometrical Journal: Journal
of Mathematical Methods in Biosciences, Wiley Online Library, v. 42, n. 1,

p- 17-25, 2000.

BURNETT, Margaret M; ATWOOD, John Wesley; WELCH, Zachary T. Implementing
level 4 liveness in declarative visual programming languages. In: IEEE.
PROCEEDINGS. 1998 IEEE Symposium on Visual Languages (Cat. No. 98TB100254).
[S.L: s.n.], 1998. P. 126-133.

CHRISTIAWAN, Lucky; KARNALIM, Oscar. AP-ASD1: An Indonesian Desktop-based
Educational Tool for Basic Data Structure Course. Jurnal Teknik Informatika dan

Sistem Informasi, v. 2, n. 1, 2016.

CLANCY, Michael. Misconceptions and attitudes that interfere with learning to
program. Computer science education research, Taylor and Francis Group,
London, p. 85-100, 2004.

DANIELSIEK, Holger; PAUL, Wolfgang; VAHRENHOLD, Jan. Detecting and
understanding students’ misconceptions related to algorithms and data structures. In:
PROCEEDINGS of the 43rd ACM technical symposium on Computer Science
Education. [S.l.: s.n.], 2012. P. 21-26.

DIEN, Habibie Ed; ASNAR, Yudistira Dwi Wardhana. OPT+ Graph: Detection of
Graph Data Structure on Program Visualization Tool to Support Learning. In: IEEE.
2018 5th International Conference on Data and Software Engineering (ICoDSE).

[S.L: s.n.], 2018. P. 1-6.

DIXIT, Rashmi K; YALAGI, Pratibha S. Visualization based intelligent tutor system to
improve study of Computer Algorithms. Computer, v. 1, n. 2, p. 1, 2017.

DOUKAKIS, Dimitrios; GRIGORIADOU, Maria; TSAGANOU, Grammatiki.
Understanding the programming variable concept with animated interactive analogies.
In: PROCEEDINGS of the The 8th Hellenic European Research on Computer
Mathematics & Its Applications Conference (HERCMA’07). [S.1.: s.n.], 2007.

DU BOULAY, Benedict. Some difficulties of learning to program. Journal of
Educational Computing Research, SAGE Publications Sage CA: Los Angeles, CA,
v. 2, n. 1, p. 57-73, 1986.

EBRAHIMI, Alireza. Novice programmer errors: Language constructs and plan
composition. International Journal of Human-Computer Studies, Elsevier, v. 41,
n. 4, p. 457-480, 1994.

EGAN, Matthew Heinsen; MCDONALD, Chris. Program visualization and explanation
for novice C programmers. In: ACE. [S.1.: s.n.], 2014. P. 51-57.

74

FITZGERALD, Sue et al. Debugging: finding, fixing and flailing, a multi-institutional
study of novice debuggers. Computer Science Education, Taylor & Francis, v. 18,
n. 2, p. 93-116, 2008.

FOUH, Eric; AKBAR, Monika; SHAFFER, Clifford A. The role of visualization in
computer science education. Computers in the Schools, Taylor & Francis, v. 29,
n. 1-2, p. 95-117, 2012.

GARNER, Sandy; HADEN, Patricia; ROBINS, Anthony. My program is correct but it
doesn’t run: a preliminary investigation of novice programmers’ problems. In:
PROCEEDINGS of the 7th Australasian conference on Computing education-Volume
42. [S.1.: s.n.], 2005. P. 173-180.

GOTSCHI, Tina; SANDERS, Ian; GALPIN, Vashti. Mental models of recursion. In:
PROCEEDINGS of the 34th SIGCSE technical symposium on Computer science
education. [S.1.: s.n.], 2003. P. 346-350.

GUO, Philip J. Codeopticon: Real-time, one-to-many human tutoring for computer
programming. In: PROCEEDINGS of the 28th Annual ACM Symposium on User
Interface Software & Technology. [S.l.: s.n.], 2015. P. 599-608.

. Online python tutor: embeddable web-based program visualization for cs
education. In: ACM. PROCEEDING of the 44th ACM technical symposium on
Computer science education. [S.1.: s.n.], 2013. P. 579-584.

GUO, Philip J; WHITE, Jeffery; ZANELATTO, Renan. Codechella: Multi-user program
visualizations for real-time tutoring and collaborative learning. In: IEEE. 2015 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). [S.1.: s.n.],
2015. P. 79-87.

GUZDIAL, Mark. Centralized mindset: A student problem with object-oriented
programming. ACM SIGCSE Bulletin, ACM New York, NY, USA, v. 27, n. 1,
p. 182-185, 1995.

HERTZ, Matthew; JUMP, Maria. Trace-based teaching in early programming courses.
In: PROCEEDING of the 44th ACM technical symposium on Computer science
education. [S.1.: s.n.], 2013. P. 561-566.

HOLLIDAY, Mark A; LUGINBUHL, David. CS1 assessment using memory diagrams.
In: PROCEEDINGS of the 35th SIGCSE technical symposium on Computer science
education. [S.1.: s.n.], 2004. P. 200-204.

HUNDHAUSEN, Christopher D; DOUGLAS, Sarah A; STASKO, John T. A
meta-study of algorithm visualization effectiveness. Journal of Visual Languages &
Computing, Elsevier, v. 13, n. 3, p. 259-290, 2002.

75

JACKSON, James; COBB, Michael; CARVER, Curtis. Identifying top Java errors for
novice programmers. In: IEEE. PROCEEDINGS frontiers in education 35th annual
conference. [S.1.: s.n.], 2005. tdc—tdc.

KACZMARCZYK, Lisa C et al. Identifying student misconceptions of programming. In:
PROCEEDINGS of the 41st ACM technical symposium on Computer science education.
[S.1: s.n.], 2010. P. 107-111.

KANON;, a live programming environment specialized for data structure programming.
[S.1.: sn.]. https://prg-titech.github.io/Kanon/. Accessed: 2020-06-15.

KANG, Hyeonsu; GUO, Philip J. Omnicode: A novice-oriented live programming
environment with always-on run-time value visualizations. In: PROCEEDINGS of the
30th Annual ACM Symposium on User Interface Software and Technology. [S.1.: s.n.],
2017. P. 737-745.

KARPIERZ, Kuba; WOLFMAN, Steven A. Misconceptions and concept inventory
questions for binary search trees and hash tables. In: PROCEEDINGS of the 45th ACM

technical symposium on Computer science education. [S.1.: s.n.], 2014. P. 109-114.

KELLEHER, Caitlin; PAUSCH, Randy. Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice programmers. ACM
Computing Surveys (CSUR), ACM New York, NY, USA, v. 37, n. 2, p. 83-137,
2005.

KORSTJENS, Irene; MOSER, Albine. Series: Practical guidance to qualitative research.
Part 4: Trustworthiness and publishing. European Journal of General Practice,
Taylor & Francis, v. 24, n. 1, p. 120124, 2018.

KRAMER, Jan-Peter et al. How live coding affects developers’ coding behavior. In:
IEEE. 2014 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). [S.L: s.n.], 2014. P. 5-8.

LAMBERT, Vickie A; LAMBERT, Clinton E. Qualitative descriptive research: An
acceptable design. Pacific Rim International Journal of Nursing Research, v. 16,
n. 4, p. 255-256, 2012.

LAURSON, Mikael; KUUSKANKARE, Mika; NORILO, Vesa. An overview of PWGL,
a visual programming environment for music. Computer Music Journal, MIT Press,
v. 33, n. 1, p. 19-31, 2009.

LEVIN, Kate Ann. Study design III: Cross-sectional studies. Evidence-based
dentistry, Nature Publishing Group, v. 7, n. 1, p. 24-25, 2006.

LOPEZ, Mike et al. Relationships between reading, tracing and writing skills in
introductory programming. In: PROCEEDINGS OF THE FOURTH
INTERNATIONAL WORKSHOP ON COMPUTING EDUCATION RESEARCH.
[S.1.: s.n.], 2008. P. 101-112.

https://prg-titech.github.io/Kanon/

76

MALETIC, Jonathan I; MARCUS, Andrian; COLLARD, Michael L. A task oriented
view of software visualization. In: IEEE. PROCEEDINGS First International Workshop
on Visualizing Software for Understanding and Analysis. [S.1.: s.n.], 2002. P. 32-40.

MALONEY, John et al. The scratch programming language and environment. ACM
Transactions on Computing Education (TOCE), ACM New York, NY, USA,
v. 10, n. 4, p. 1-15, 2010.

MCCAULEY, Renee et al. Debugging: a review of the literature from an educational
perspective. Computer Science Education, Taylor & Francis, v. 18, n. 2, p. 67-92,
2008.

MIT Open Courseware, introductory programming courses. [S.l.: s.n.].

https://ocw.mit.edu/courses/intro-programming/. Accessed: 2020-06-22.
MORENO, Andrés et al. Visualizing programs with Jeliot 3. In: PROCEEDINGS of the

working conference on Advanced visual interfaces. [S.l.: s.n.], 2004. P. 373-376.

MULLER, Orna. Pattern oriented instruction and the enhancement of analogical
reasoning. In: PROCEEDINGS of the first international workshop on Computing
education research. [S.l.: s.n.], 2005. P. 57-67.

NAPS, Thomas L; ROSSLING, Guido, et al. Exploring the role of visualization and
engagement in computer science education. In: WORKING group reports from ITiCSE

on Innovation and technology in computer science education. [S.1.: s.n.], 2002.

P. 131-152.

NAPS, Thomas; COOPER, Stephen, et al. Evaluating the educational impact of
visualization. ACM SIGCSE Bulletin, ACM New York, NY, USA| v. 35, n. 4,
p. 124-136, 2003.

OPENDSA, build your knowledge of Data Structures through visualizations and
practice! [S.L.: s.n.]. https://opendsa-server.cs.vt.edu/. Accessed: 2020-06-06.

OKA, Akio; MASUHARA, Hidehiko; AOTANI, Tomoyuki. Live, synchronized, and
mental map preserving visualization for data structure programming. In:
PROCEEDINGS of the 2018 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. [S.1.: s.n.], 2018.

P. 72-87.

OKA, Akio; MASUHARA, Hidehiko; IMAI, Tomoki, et al. Live Data Structure
Programming. In: COMPANION to the first International Conference on the Art,
Science and Engineering of Programming. [S.l.: s.n.], 2017. P. 1-7.

ORSEGA, Michael C; VANDER ZANDEN, Bradley T; SKINNER, Christopher H.
Experiments with algorithm visualization tool development. In: PROCEEDINGS of the
43rd ACM technical symposium on Computer Science Education. [S.1.: s.n.], 2012.

P. 559-564.

https://ocw.mit.edu/courses/intro-programming/
https://opendsa-server.cs.vt.edu/

7

OU, Jibin; VECHEV, Martin; HILLIGES, Otmar. An interactive system for data
structure development. In: PROCEEDINGS of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. [S.L.: s.n.], 2015. P. 3053-3062.

PAUL, Wolfgang; VAHRENHOLD, Jan. Hunting high and low: instruments to detect
misconceptions related to algorithms and data structures. In: PROCEEDING of the 44th
ACM technical symposium on Computer science education. [S.1.: s.n.|, 2013. P. 29-34.

PRICE, Blaine A; BAECKER, Ronald M; SMALL, Tan S. A principled taxonomy of
software visualization. Journal of Visual Languages & Computing, Elsevier, v. 4,
n. 3, p. 211-266, 1993.

PYTHON Tutor development history. [S.1.: s.n.].
https://github.com/pgbovine/OnlinePythonTutor/blob/master/history.txt.
Accessed: 2020-06-10.

QIAN, Yizhou; HAMBRUSCH, Susanne, et al. Teachers’ Perceptions of Student
Misconceptions in Introductory Programming. Journal of Educational Computing
Research, SAGE Publications Sage CA: Los Angeles, CA, v. 58, n. 2, p. 364-397, 2020.

QIAN, Yizhou; LEHMAN, James. Students’ misconceptions and other difficulties in
introductory programming: A literature review. ACM Transactions on Computing
Education (TOCE), ACM New York, NY, USA, v. 18, n. 1, p. 1-24, 2017.

QIAN, Yizhou; LEHMAN, James D. Correlates of Success in Introductory
Programming: A Study with Middle School Students. Journal of Education and
Learning, ERIC, v. 5, n. 2, p. 73-83, 2016.

RAGONIS, Noa; BEN-ARI, Mordechai. A long-term investigation of the comprehension
of OOP concepts by novices. Computer Science Education, Taylor & Francis, 2005.

RAMALINGAM, Vennila; LABELLE, Deborah; WIEDENBECK, Susan. Self-efficacy
and mental models in learning to program. In: PROCEEDINGS of the 9th annual
SIGCSE conference on Innovation and technology in computer science education.
[S.1.: s.n.], 2004. P. 171-175.

ROBINS, Anthony; ROUNTREE, Janet; ROUNTREE, Nathan. Learning and teaching
programming: A review and discussion. Computer science education, Taylor &
Francis, v. 13, n. 2, p. 137-172, 2003.

ROMANOWSKA, Katarzyna et al. Towards Developing an Effective Algorithm
Visualization Tool for Online Learning. In: IEEE. 2018 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart City
Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). [S.l.: s.n.], 2018.
P. 2011-2016.

https://github.com/pgbovine/OnlinePythonTutor/blob/master/history.txt

78

ROQUE, Ricarose Vallarta. OpenBlocks: an extendable framework for graphical
block programming systems. 2007. PhD thesis — Massachusetts Institute of
Technology.

SAJANIEMI, Jorma; KUITTINEN, Marja. An experiment on using roles of variables in
teaching introductory programming. Computer Science Education, Taylor &
Francis, v. 15, n. 1, p. 59-82, 2005.

SAJANIEMI, Jorma; KUITTINEN, Marja; TIKANSALO, Taina. A study of the
development of students’ visualizations of program state during an elementary

object-oriented programming course. Journal on Educational Resources in
Computing (JERIC), ACM New York, NY, USA, v. 7, n. 4, p. 1-31, 2008.

SCRATCH, create stories, games and animations, share with others around the world.
[S.l.: s.n.]. |https://scratch.mit.edu/. Accessed: 2020-06-06.

SHAFFER, Clifford A et al. Algorithm visualization: The state of the field. ACM
Transactions on Computing Education (TOCE), ACM New York, NY, USA,
v. 10, 1. 3, p. 1-22, 2010.

SILVA RIBEIRO, Romenig da; BRANDAO, Leonidas de O; BRANDAO, Anarosa AF.
Uma visao do cenario Nacional do Ensino de Algoritmos e Programagao: uma proposta
baseada no Paradigma de Programc¢ao Visual. In: 1. BRAZILIAN Symposium on

Computers in Education (Simpoésio Brasileiro de Informatica na Educagao-SBIE).
[S.1.: s.n.], 2012. v. 23.

SORVA, Juha et al. Visual program simulation in introductory programming
education. 2012. PhD thesis.

SORVA, Juha; KARAVIRTA, Ville; MALMI, Lauri. A review of generic program
visualization systems for introductory programming education. ACM Transactions
on Computing Education (TOCE), ACM New York, NY, USA, v. 13, n. 4, p. 1-64,
2013.

SORVA, Juha; LONNBERG, Jan; MALMI, Lauri. Students’ ways of experiencing visual
program simulation. Computer Science Education, Taylor & Francis, v. 23, n. 3,
p. 207-238, 2013.

STOREY, M-AD; FRACCHIA, F David; MULLER, Hausi A. Cognitive design elements
to support the construction of a mental model during software exploration. Journal of
Systems and Software, Elsevier, v. 44, n. 3, p. 171-185, 1999.

SYKES, Edward R. Determining the effectiveness of the 3D Alice programming
environment at the computer science I level. Journal of Educational Computing
Research, SAGE Publications Sage CA: Los Angeles, CA, v. 36, n. 2, p. 223-244, 2007.

https://scratch.mit.edu/

79

TAKATSUKA, Masahiro; GAHEGAN, Mark. GeoVISTA Studio: A codeless visual
programming environment for geoscientific data analysis and visualization. Computers
& Geosciences, Elsevier, v. 28, n. 10, p. 1131-1144, 2002.

TANIMOTO, Steven L. A perspective on the evolution of live programming. In: IEEE.
2013 1st International Workshop on Live Programming (LIVE). [S.1.: s.n.], 2013.
P. 31-34.

UNITY Engine, a cross-platform game engine developed by Unity Technologies.
[S.1.: s.n.]. |https://unity.com/. Accessed: 2020-06-06.

UNREAL Engine, the world’s most open and advanced real-time 3D creation tool.
[S.1.: s.n.]. |https://www.unrealengine.com/en-US/. Accessed: 2020-06-06.

UPWORK. [S.1.: s.n.], 2020. Available from: <https://www.upwork.com/>. Visited on:
1 Aug. 2020.

URQUIZA-FUENTES, Jaime; VELAZQUEZ-ITURBIDE, J Angel. A survey of
successful evaluations of program visualization and algorithm animation systems. ACM
Transactions on Computing Education (TOCE), ACM New York, NY, USA, v. 9,
n. 2, p. 1-21, 2009.

UUHISLE, a Program Visualization Tool for Introductory Programming Education.
[S.l.: sn.]. http://uuhistle.org/index.php. Accessed: 2020-06-06.

VAINIO, Vesa; SAJANIEMI, Jorma. Factors in novice programmers’ poor tracing skills.
ACM SIGCSE Bulletin, ACM New York, NY, USA, v. 39, n. 3, p. 236-240, 2007.

VISUALGO, visualising data structures and algorithms through animation. [S.l.: s.n.].
https://visualgo.net/. Accessed: 2020-06-06.

VELAZQUEZ-ITURBIDE, J Angel. Students’ Misconceptions of Optimization
Algorithms. In: PROCEEDINGS of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education. [S.1.: s.n.], 2019. P. 464-470.

VRACHNOS, Euripides; JIMOYTANNIS, Athanassios. Design and evaluation of a
web-based dynamic algorithm visualization environment for novices. Procedia
Computer Science, Elsevier, v. 27, p. 229-239, 2014.

WEINTROP, David; WILENSKY, Uri. To block or not to block, that is the question:
students’ perceptions of blocks-based programming. In: PROCEEDINGS of the 14th

international conference on interaction design and children. [S.1.: s.n.], 2015. P. 199-208.

WOHLIN, Claes et al. Experimentation in software engineering. [S.1.]: Springer
Science & Business Media, 2012.

YOUNG, Mark; ARGIRO, Danielle; KUBICA, Steven. Cantata: Visual programming
environment for the Khoros system. ACM SIGGRAPH Computer Graphics, ACM
New York, NY, USA, v. 29, n. 2, p. 22-24, 1995.

https://unity.com/
https://www.unrealengine.com/en-US/
https://www.upwork.com/
http://uuhistle.org/index.php
https://visualgo.net/

80

ZEHRA, Shamama et al. Student misconceptions of dynamic programming. In:
PROCEEDINGS of the 49th ACM technical symposium on Computer Science
Education. [S.1.: s.n.], 2018. P. 556-561.

ZINGARO, Daniel et al. Identifying student difficulties with basic data structures. In:
PROCEEDINGS of the 2018 ACM Conference on International Computing Education
Research. [S.L.: s.n.], 2018. P. 169-177.

APPENDIX A - SURVEY QUESTIONNAIRE

Opinions and interest in the Willow tool

Researchers

Pedro Moraes -- phsm@cin.ufpe.br

Leopoldo Teixeira -- Imt@cin.ufpe.br

Marcelo d'’Amorim -- damorim@cin.ufpe.br
Waldemar Neto - waldemar.neto@gmail.com

Participants
The participant must have experience as a professor teaching a CS-related course.

Willow

Willow is a tool for creating program visualizations from source code, focusing on
representing basic programming concepts, algorithms, and data structures.

It is available at https://willow-beta.web.app/

It is not required to use Willow before answering this form, short videos will be presented
showing features while the participant responds to the survey.

Objective

Analyze participants' interests and opinions about the Willow tool, for the purpose of
comparing Willow with traditional teaching strategies used by participants, with respect to
the ease of creating illustrations of basic programming concepts, algorithms, and data
structures created to assist in the teaching, from the point of view of professors of CS-related
courses.

Duration
The estimated duration is 15 minutes.
All questions besides the demographic questionnaire below are optional.

Privacy

The information obtained from your participation in this study will be kept strictly
confidential. Any material will be referenced only by an identifier. For registration of the work,
you must provide your name. Any results presented in future scientific publications will be
anonymized

* Required

By proceeding, | declare that | have had sufficient time to read and understand
the information contained in this form. The objectives have been explained, as
well as what will be required of me as a participant. | am aware that | can give up
participating in the survey at any time, and in doing so, request that my data
should not be used for analysis and discarded. *

| agree to participate

81

2. Your name*

3. Your teaching institution *

4. When was the last time you taught any of the courses below? *

IP: Introduction to Programming, Programming 101, or equivalent; DSA: Data structures and Algorithms or

equivalent.
I am currently Lessthan From 1 to From 2 to More than Never
teaching it 1 year 2 years 5years 5years
IP O O -, -, O O
DSA O -, - @), - -

5. For how long have you taught these courses? *

IP: Introduction to Programming, Programming 101, or equivalent; DSA: Data structures and Algorithms or

equivalent.
Never Less than 1 Between 1and2 Between2and 5 More than 5
year years years years
IP O - -, -, -,
DSA @) - -, -, -,

6. Do you prepare examples of programs, algorithms, or data structures beforehand
to be used as lesson material? *

Mark only one oval.

@ Yes
C) No

82

7. Do you think this task takes too long or it is tedious?

Totally agree Totally disagree

8. Do you use visual resources, such as illustrations or animations to help with
students' comprehension of algorithms and code snippets? *

IP: Introduction to Programming, Programming 101, or equivalent; DSA: Data structures and Algorithms or
equivalent.

Sim Nao
IP

DSA

Other disciplines

9. What tools or strategies have you used to teach in your classes? *

I only talk and do not use visual resources

Draw sketches on a blackboard

Use simple diagrams in lecture slides

Build entire algorithm examples using slide presentations

Write program code during class (python notebooks, live coding)

Use programs or websites that build or contain interactive visualizations

Use traditional debuggers to show program execution step by step
Other:

83

10. Have you ever used any tool to automatically create program visualizations? *

Mark only one oval.

C) Yes
C) No

11. Which visualization tools have you used?

Only answer this question if you have already used some visualization tool

|| Python Tutor
|| visuAlgo

| | OpenDSA
|| uunisle

Other: D

12. What did you think of the results?

Only answer this question if you have already used some visualization tool

Very unsatisfactory Very satisfactory

This section contains questions about using Willow in the context of an
introductory programming discipline or similar.

Note: The visualizations shown are created directly from the program
source code.

We recommend you to open the videos in a new tab by clicking on the
"youtube" button (after starting it).

84

13. Which topics in introductory programming courses do you see as most
challenging for students? Please, provide some rationale, if possible.

This video shows basic interactions with tuples and lists using Willow. The goal is to
show the behavior of the operations over mutating structures.

I ..t comywateh?

v=ntxWBNUuvFU

14. Do you think the effect of operations and functions over lists and tuples in the
video above is clear and that the features of Willow can help students to
comprehend mutability?

Totally disagree Totally agree

85

86

15. If you want, you can provide the rationale for your answer from the previous
question.

16. Are difficulties or misconceptions in understanding the concept of recursion
common among your students?

Mark only one oval.

Yes

No

17. What strategies or metaphors do you use to explain recursion?

This video shows the runtime behavior of a simple recursive algorithm using Willow.

0 vt

I .ot compwatct

v=fi0c3QjpDPo

87

18. Regarding recursion, do you think your students can benefit from the features
illustrated in the video?

Totally disagree Totally agree

19. If you want, you can provide the rationale for your answer from the previous
question.

This video shows an example of class and objects, also showing how special methods

are called by operators.

I .t comywateh?

v=nBcGBUSRBdk

20. The object-oriented paradigm is a complex subject for novices. Many
professors recur to illustrations to demonstrate the relationship between
classes and objects. Do you think Willow can help to create visualizations about
this subject to be presented to students?

Totally disagree Totally agree

21. If you want, you can provide the rationale for your answer from the previous
question.

This section contains questions about using Willow in the context of a
data structures and algorithms course.

Note: The visualizations shown are created directly from the program
source code.

We recommend you to open the videos in a new tab by clicking on the
"youtube" button (after starting it).

22. How much do you agree with this statement: "Visualizing animated versions of
algorithms and data structures helps students on understanding how they
work".

Totally disagree Totally agree

23. If you want, you can provide the rationale for your answer from the previous
question.

The video shows an array ordered by the quicksort algorithm. A column-based
representation is used to facilitate perceiving operations on the list.

| |

http://youtube.com/watch?v=VuoXhjiR30I

This video is a visualization of the N queens problem. This time, a matrix represents
the board. When a new queen is placed, we can see the board highlighting the
changes.

3|
! : ! v
"

http://youtube.com/watch?
v=UG22rl0sPoA

89

24. The videos above show the same data structure (list) represented in different
forms. Do you think that flexible visualizations may contribute to students'
understanding of an algorithm or data structure behavior if used correctly?

Totally disagree Totally agree

25. If you want, you can provide the rationale for your answer from the previous
question.

26. Suppose you will teach a lesson on balanced trees. How would you explain
rotation operations to students?

Draw on the blackboard the trees before and after the rotation

Create lecture slides showing examples of tree rotations

Use visualization tools to create examples of tree rotations
Other:

90

This video contains a series of insertions of sequential values in an AVL tree, showing,
in a general way, how rotation operations modify the tree.

)
-

http://youtube.com/watch?
v=KsApC71GxNQ

What did you think of the animations shown in the video above?

Very unsatisfactory Very satisfactory

If you want, you can provide the rationale for your answer from the previous
question.

Do you agree that the animations shown in the video could help to complement
the material you proposed previously?

Totally disagree Totally agree

30. If you want, you can provide the rationale for your answer from the previous
question.

31. Do you think Willow could contribute in any way to you as a professor and to
your students? Why?

32. Are there any suggestions, comments, or criticism you want to make?

This content is neither created nor endorsed by Google.

92

APPENDIX B - EXPERIMENT FORM

An analysis of Willow's impact in assisting the
development of solutions to Data Structure and
Algorithm problems

Researchers

« Pedro Henrique Sousa de Moraes - phsm@cin.ufpe.br
* Leopoldo Motta Teixeira - Imt@cin.ufpe.br

* Marcelo d’Amorin - damorin@cin.ufpe.br

« Waldemar Neto - waldemar.neto@gmail.com

Study Objective

Analyze the performance of the participants in solving Algorithms and Data
Structures problems in two situations:

« Assisted by the Willow tool
» Without the aid of visualization tools

We compare the two situations regarding the time taken to solve problems and the
quality of responses (correctness, asymptotic complexity).

If you need further clarification about any mentioneditem, or need information that
has not been included, contact the researchers through their e-mail addresses.

Privacy

Participant information will be kept strictly confidential. Any material will be
referenced only by an identifier. For participant registration only, you must provide
your name, email and demographic information. All results presented in future
scientific publications will be anonymized.

Procedures

This form has four problems about algorithms and data structures. The first two
should be answered without using Willow, the remaining two with Willow. Basic
Willow training/tutorial for the introduction of basic tool concepts will be presented
before solving the problems.

When starting to solve a problem, a timer will be displayed. It is not possible to stop
it, but you can still submit your answer if you exceed the time limit. After each
problem, there is a transition section, where you can stop. During this period, time
will NOT be counted.

Time
In total, the expected that the time of the training tutorial and to solve ALL problems

of the questionnaire about 40 to 60 minutes.

Notes

Willow is a tool currently in development, so you must use Google Chrome. You
also must have a Google Account to log into the tool, the login will let you run
longer programs and allow the tool to collect basic user interaction data.

Fill the form below.

Your name }

* required

Your email address ‘

* required

Your degree.

OUnderaraduate student

93

OPost-graduate student
OProfessor

OGraduated developer
ONon-graduated developer

* required

If you are an undergraduate, post-graduate student or professor, fill the fields
below.

’Your institution ‘

‘YOUF course name ‘

’Your current semester (only undergraduates) ‘

Next

94

No tools

In the following sections, two problems will be presented. You can use the
programming environment (text editor, IDE, etc) that you find most comfortable.
You can also use websites that execute code online, such as https:/replLit/. You
must prepare your programming environment now.

In each problem, a base code that already reads inputs and prints the program's
outputs will be provided. You should only implement a function presented in the
problem. After solving the problem, you must copy all the code in the answer field.

Important

You CAN still submit your response if the time limit is exceeded. There is no
problem if your answers are not be completely correct.

If you need to stop, there is a waiting session between the problems, it is NOT
possible to stop the timer while solving a problem.

95

96

9:57 remaining

Cycle Detection

A linked list contains a cycle if any of its nodes is visited more than once when you
go through the list.

head
I
\%
+-- -+ next +-- -t next +-- -t
| 1 |---------- I A e > | 3 |---+
+---t +---t +o--t |

You have to complete the function has_cycle(head) that receives one argument:
e head: the head of a linked list

The function must return True if the list contains a cycle or False otherwise.

Input

The input is composed of only one line, which contains numbers that compose the
linked list, if there is a cycle in the list, the element that starts the cycle is preceded
by a #. For the diagram above, the inputis 1 #2 3. There will be always at least
one element in the list.

Code

implement the function below
def has_cycle(head):

#

return False

class ListNode:
def __init_ (self, v):
self.v = v
self.next = None

if __name__ == '__main__':
head, tail, cycle = None, None, None
for v in input().split():
if not head: head = tail = ListNode(v)
else:
tail.next = ListNode(v)
tail = tail.next
if v[0] == '#': cycle = tail
tail.next = cycle
tail = cycle = None
print(has_cycle(head))

Examples

Input:

0O0#0000
0123#45
#012345

012345

Output:

True

True

True

False

When you're done, paste all the code here

* required

Next

97

How confident are you about the correctness of your previous solution?

Not confident O1 02 O3 O4 O5 Very confident

* required

98

9:57 remaining

Jessie Cookies

Jessie loves cookies. He wants the sweetness of his cookies to be greater then a
value k. To archieve that, Jessie repeatedly mixes his two less sweet cookies co
and c1, and creates a new combined cookie c.

Let the cookie co be less or as sweet as another cookie c1, the new cookie will
have the sweetenessc = co + 2 * ci.

He repeats the proceduer until all of his remaining cookies have the sweetness
greater than or equal k.

You have to complete the function combinations(cookies, k), which takes two
arguments:

e cookies: a list containing cookies sweetness
o k: the minimum expected sweetness

The function must return how many cookie mixes are necessary for all cookies to
have at least k sweetness. If the sweetness can not be archieved, the function
must return -1.

Input

The first input line contains a list of numbers when represent the sweetness of
each cookie. The second line contains k.

Code

implement the function below
def combinations(cookies, k):
#
return -1

if __name__ == '__main__':
cookies = [int(i) for i in input().split()]
k = int(input())
print(combinations(cookies, k))

Examples

Input:

7198509
50

72513267
70

225311
45

Output:

When you're done, paste all the code here

99

100

* required

Next

101

How confident are you about the correctness of your previous solution?

Not confident O1 02 O3 O4 O5 Very confident

* required

Willow

In the following sections, two problems will be presented. You must use Willow to
help visualizing and solving the problems.

Tutorial

You must follow this tutorial slowly and paying close attention to the text
before advancing to the next problems. The estimated time to finish this tutorial
ranges from 6 to 10 minutes.

Before proceeding to the problems, you must access Willow and follow the steps
below. The steps will provide basic training on how to use Willow. Read the
instructions, look at the images and clips, and then, do the same.

First click on the link below to access the Willow website.

https://willow-beta.web.app/

After accessing the site, you must log-in with a google account through the button
in the right upper corner. The log-in will allow you to run longer programs.

Sign in to execute bigger programs Sign in

@ Visualization @ Preserve layout

Step 1

Select the Python language in the toolbar, and then paste the code below into
Editor. This code is a linked list implementation, and it will be used to show
features of Willow.

class Node:
def __init_ (self, v):
self.next = None
self.v = v
self.prev = None

class LinkedList:
def __init_ (self):
self.head = self.tail = None
self.size = 0

def append(self, v):

new = Node(v)

if self.size == 0:
self.head = self.tail = new

else:
self.tail.next = new
new.prev = self.tail
self.tail = new

self.size += 1

11 = LinkedList()
1l.append(input())
11.append(input())
11.append(input())
11.append(input())
11.append(input())

— ==

Paste also the program inputs into Input, which are the values that will be used to
create the list nodes.

102

A WO N B

i) Willow Howto use pedro00dk@gmail.com Sign out

Language | python = P ee @ Visualization @ Preserve layout

Editor stack
1- class Node:
20 def _init_(self, v):
3 Self.next = None
4 self.v =
5 self.prev = fone
6
7+ class LinkedList:
8- def _init_(self):
9 self.head = self.tail = lio
10 self.size = 0
1
12 def append(self, v):
13 new = Node(v)
14- if self.size == 0:
15 self head - self.tail
16- else:
17 self tail.next = new
18 new.prev - self.tail
19 self.tail = new
20 self.size += 1
21

22 11 = LinkedList()
23 11.append(input())
24 11.append(input()) i
2 i »

Input
0
1
2
3
P

Output

Step 2

To run the code, click the play button on the toolbar. Wait a few seconds for the
visualization is generated.

ﬁﬁﬂ Willow How to use

Language python % ’ - -

pedro00dk@gmail.com Sign out

Editor

i) Willow Howto use

Language python ¢ » TR Step 10f 85 @ visualization @ Preserve layout

Editor <module>

1- T 5 lin.. _ append . append append append append
2- def __init__(self, v): . e i
B self.next = None
4 self.v = v
5 self.prev = None
6
7- class LinkedList
8- def __init__(self)
9 Self.head = self.tail = No
10 self.size =
1
12+ def append(self, v):
13 new = Node(v)
14- if self.size == @:
15 self.head = self.tail
16~ else:
17 self tail.next = new
18 new.prev = self.tail
19 self.tail = new
20 self.size += 1
21
22 11 = LinkedList()
23 11.append(input())
24 11.append(input()) i
25 1 o o v
Tnput
L
1
2
3
4
Output

Step 3
Use the right and left arrows to navigate to the end of the program. You can also

click on a call tree scope to jump to this point in the program. Double-clicking
jumps to the end of a scope instead of the beginning.

103

Editor <module>
1- N Lin... append append append append append
2- def _init_(self, v): [[[[o=
3 self.next = None
4 self.v - v
5 self.prev = fone
6
7- class LinkedList:

8- def _init_(self):
9 self .head - self.tail - o
10 self.size = 0
8 R
12- def append(self, v):
13
14- if self.size == 0:
15 self head = self.tail
16- else:
17 self.tail.next = new
18 new.prev - self.tail
19 self.tail = new
20 self.size += 1
B Click the tray icon
or press the shortcut again to stop recording

22 11 = LinkedList()
23 11.append(input())
24 11.append(input()) 5
25 1k o

Step 4

Now, try to drag the heap objects around.

Node

=

You can also activate automatic layout, just double-click on any internal object in
the list. It also works with other linked data structures, such as binary trees.

Linkedlist

tail

R

Node N

next None

When activating automatic layout, the outline of the nodes will be slightly darkened.
If you move any node, the automatic arrangement will be disabled.

With automatic layout enabled, try to navigate through the program using the arrow
keys and clicking on the scopes.

In each problem, a base code that already reads inputs and prints the outputs of
the program will be provided. You should only implement a function presented in
the problem. After solving the problem, you must copy all the code in the answer

104

105

field.

Important

You CAN still submit your response if the time limit is exceeded. There is no
problem if your answers are not be completely correct.

If you need to stop, there is a waiting session between the problems, it is not
possible to stop the timer while solving a problem.

106

9:58 remaining

Lowest Common Ancestor

In a binary search tree, the lowest common ancestor of two nodes va and vb is the
common ancestor of these nodes which is the farthest from the tree root. If va is a
parent or ancestor of vb or vice-versa, then the parent is also the common
ancestor.

You have to implemente thr function lca(root, va, vb) with takes three
arguments:

« root: the binary tree root node
» va e vh: values of two tree nodes, such that va <= vb, of which we want to
obtain the common ancestor.

The function must return the value of the lowest common ancestor of va e vb.

Input

The first line is a list of numbers to be inserted one at a time in a BST. The seconds
line contains the values va and vb. va and vb are always contained in the BST.

Code

implement the function below
def lca(root, va, vb):

#

return 0

class BSTNode:
def __init_ (self, v):
self.v = v
self.left = None
self.right = None

if __name__ == '__main__':
root = None
for v in (int(v) for v in input().split()):
parent, node = None, root
while node is not None and v != node.v: node, parent =
(node.left if v < node.v else node.right), node
if node is not None: continue
if parent is None: root = BSTNode(Vv)
elif v < parent.v: parent.left = BSTNode(Vv)
else: parent.right = BSTNode(v)
va, vb = [int(v) for v in input().split()]
print(lca(root, va, vbh))

Examples
Input:

70859
59

6315497
14

Output:

7
3

107

When you're done, paste all the code here

* required

Next

108

How confident are you about the correctness of your previous solution?

Not confident O1 02 O3 O4 O5 Very confident

* required

109

9:58 remaining

Reverse List

A singly linked list is allows the navigation only from the head towards the tail of the
list. Sometimes we need to navigate in the opposite direction frequently, and for the
to be possible, the list direction must be reversed. After the list reverse, the previos
tail becomes the new head, and the previous head the new tail.

You have to complete the function reverse(head) which takes one argument:
» head: the head node of a singly linked list

The function must return the new list head after the reverse operation.

Input

The input is composed of only one line, which contains numbers that compose the
linked list. There will be always at least one element in the list.

Multiple inputs can be provided at once, ther must be an empty line between each
input line.

Code

implement the function below
def reverse(head):

#

return head

class ListNode:
def __init_ (self, v):
self.v = v
self.next = None

if __name__ == '__main__":
head, tail = None, None
for v in (int(v) for v in input().split()):
if not head: head = tail = ListNode(v)
else:
tail.next = ListNode(v)
tail = tail.next
head = reverse(head)
while head is not None:
print(head.v, end=' ' if head.next is not None else '\n')
head = head.next

Examples

Input:

4

10 20 30
0234589
9854320

Output:

4
30 20 10

9854320
0234589

110

When you're done, paste all the code here

* required

Next

How confident are you about the correctness of your previous solution?

Not confident O1 02 O3 O4 O5 Very confident

* required

111

Finally, answer what you think of Willow

Do you think Willow helped you understand the
behavior of your code and solve the problems?

Totally disagree O1 02 O3 04 O5 Totally agree

* required

What fetures of Willow do you find more interesting?
And why?

Write here

* required

Would you use Willow again to study or debug an
algorithm?

Iwould notuseitagain O1 02 O3 O4 O5 |would use it again

* required

Describe all problems you encountered when using
willow, recommendations and ideas for features that
you think would be interesting.

Write what you thought here

* required

112

113

APPENDIX C - EXPERIMENT TEST INPUTS

test_inputs = {

|q1-

] '

‘g2

0
‘@', '¥#', '@ 12 345",
'@ 12345#", '@12#345', 'abcdef’

[
'1 245", 'S5 4 2 3 1\wn3@", "2 1 5 4 3\n4@’',

‘41267 8\nled’, 'Y 1985 9wni@", '7T2513226 7\n7@’

ol

Y‘nl 3", "2 1 3\wn2 2', '7 B &5 9\wn3 9",

213
J®859n39', '631549 7wl 4, 'B28&7T69\wna7T

[
I@I, I1I, Ij-ﬁlr
'12 345", '12 20 30 40 58', '1 12 120 1000 12980 lo0eon’

	Title page
	Acknowledgements
	Abstract
	Resumo
	Introduction
	Motivation
	Research

	Background
	The Learning Challenge
	Misconceptions

	Factors Contributing to Misconceptions
	Mental Models
	Notional Machines
	Visualizing Notional Machines

	Educational Program Visualization
	Algorithm Visualization
	Program Visualization

	Related Work
	VisuAlgo
	Scratch
	Python Tutor
	Omnicode
	OPT+GRAPH
	UUhisle
	FluidEdit
	Kanon
	Surveys

	Willow
	Design
	Editors
	Stack and Call Tree
	Heap
	Node Types
	Positioning and Animation
	Program Navigation

	Language Support
	Limitations

	Architecture
	Client
	Database
	Tracers

	Comparison with Other Tools

	Evaluation
	Survey
	Objective
	Research Questions
	Research Method
	Population
	Questionnaire
	Results
	Participants Teaching Practices
	Participants Perceptions Towards Willow

	Threats to Validity

	Experiment
	Objective
	Research Question and Hypothesis
	Variables
	Independent Variables
	Dependent Variables

	The Choice of Dependent Variables
	Experimental Subjects
	Ethical Concerns

	Objects and Tasks
	Experimental Design
	Protocol
	Results
	Threats to Validity and Control Actions

	Final Considerations
	Conclusion
	Future Work

	REFERENCES
	APPENDIX A - SURVEY QUESTIONNAIRE
	APPENDIX B - EXPERIMENT FORM
	APPENDIX C - EXPERIMENT TEST INPUTS

